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Abstract: Altered metabolism including lipids is an emerging hallmark of breast cancer. The pur-
pose of this study was to investigate if breast cancers exhibit different magnetic resonance spec-
troscopy (MRS)-based lipid composition than normal fibroglandular tissue (FGT). MRS spectra, using
the stimulated echo acquisition mode sequence, were collected with a 3T scanner from patients
with suspicious lesions and contralateral normal tissue. Fat peaks at 1.3 + 1.6 ppm (L13 + L16),
2.1 + 2.3 ppm (L21 + L23), 2.8 ppm (L28), 4.1 + 4.3 ppm (L41 + L43), and 5.2 + 5.3 ppm (L52 + L53)
were quantified using LCModel software. The saturation index (SI), number of double bods (NBD),
mono and polyunsaturated fatty acids (MUFA and PUFA), and mean chain length (MCL) were
also computed. Results showed that mean concentrations of all lipid metabolites and PUFA were
significantly lower in tumors compared with that of normal FGT (p ≤ 0.002 and 0.04, respectively).
The measure best separating normal and tumor tissues after adjusting with multivariable analysis
was L21 + L23, which yielded an area under the curve of 0.87 (95% CI: 0.75–0.98). Similar results
were obtained between HER2 positive versus HER2 negative tumors. Hence, MRS-based lipid mea-
surements may serve as independent variables in a multivariate approach to increase the specificity
of breast cancer characterization.

Keywords: lipids; proton magnetic resonance spectroscopy; breast cancer

1. Introduction

Historically, fat information from magnetic resonance imaging (MRI) examinations is
seldom used for diagnostic purposes. In fact, substantial efforts have been invested towards
improving fat suppression and producing fat-free images and spectra [1–3]. However,
in vivo proton MR spectroscopy (MRS) can detect and monitor lipid metabolites in breast
tissue [4]. Accumulating evidence points to the dynamic nature of lipid profiles, which
can change globally, during the menstrual cycle and carcinogenesis, and locally, during
carcinogenesis and gene therapy [5–9].

Altered lipid metabolism is, in fact, an emerging hallmark of breast cancer [10,11].
Overall, approximately 80% of body fat exists in adipocytes, 10% in cell membranes, and
another 10% in intracellular lipid droplets. Fat ingested as part of the human diet travels
to the small intestine, where it is converted to triacylglycerols; chylomicrons incorporate
these triacylglycerols, together with cholesterol and apolipoproteins, and travel with them
through the lymphatic system and bloodstream to tissues. There, lipases release the
fatty acids, which enter cells, where they are oxidized as fuel or re-esterified for storage
(in adipocytes). It is likely that lipid content in adipocytes will reflect a “centralized”
distribution which is less sensitive to local changes in the environment compared to lipid
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content in a tumor. While evidence for several changes in the overall lipid profiles of post-
menopausal women with invasive ductal carcinoma (as evidenced by multi-spectral MRI
imaging of breast adipose tissue) has recently emerged [6], it is in fact the lipid composition
local to the tumor that is more likely to change [9].

Breast cancer cells have been shown to produce and consume lipids, as part of their
wide range of tools to survive and sustain proliferative capacity in challenging tumor
microenvironments [12]. Unlike most differentiated normal tissues, under nutrient-replete
conditions, breast cancer cells synthesize fatty acids de novo [13]. This process meets the
demands of rapid metabolism, cell growth, and proliferation: fatty acids are incorporated
into new structural lipids including phospholipids and sphingomyelins to meet the de-
mand for rapid growth and cell division common to tumors, and to balance reducing
equivalents [10,13,14]. Fatty acid-derived triglycerides and cholesterol esters are stored as
lipid droplets, which may provide a rich source of energy and structural building blocks
under transient nutrient-depleted conditions [11]. Oncogenic mutations and conditions
in the tumor microenvironment such as hypoxia and poor nutrient perfusion have been
shown to influence tumor cell capacity for fatty acid chain remodeling by desaturation,
which requires molecular oxygen and iron to produce double bonds [15]. This suggests that
the fatty acid chain saturation profile of lipids in breast cancer cells may differ from normal
glandular tissues, benign lesions, and surrounding adipose tissues. In addition to cell
autonomous routes to lipid variation, non-autonomous influences on the lipid composition
in surrounding adipose tissue may also occur through pathways that mobilize adipose
fat stores to feed tumor progression, or effects stemming from cancer-associated localized
inflammation and attendant changes in adipocyte differentiation status [16,17].

The lipid droplets in adipocytes and cancer cells are comprised of triglycerides and
cholesterols esters [18]. These lipid droplet fats are mainly oils, and these highly mobile
species are good candidates for MRI and spectroscopy. While largely unexplored, the
defining characteristics of altered lipid metabolism in and around breast tumors suggest
that the fatty acid profile present in cancer may be a diagnostic marker of tumor biology
and progression. Therefore, we hypothesized that lipid profiling through MRS imaging
may be a powerful tool, helping to discriminate between benign lesions or normal breast
tissue and invasive breast cancers. Given the varied genetic backgrounds and metabolic
dependencies of different molecular subtypes of breast cancer, this approach may also have
the potential to ultimately differentiate between types of invasive cancers.

The purpose of this study was to investigate if breast cancers exhibit different MRS-
based lipid composition than normal fibroglandular tissue.

2. Materials and Methods
2.1. Study Design

Following a protocol approved by our Institutional Review Board (IRB18-213, 25 April
2018), this prospective single-center study included 23 patients with suspicious breast
lesions (51.9 ± 10.4-years-old) and the final analysis included 18 patients excluding three
patients with benign lesions and two patients due to low spectral quality. All patients gave
written informed consent.

2.2. In Vivo MRS Acquisitions

MRS data were acquired with a 3T MR750 scanner (GE Healthcare, Waukesha, WI,
USA), using an 8-channel breast coil. A stimulated echo acquisition mode sequence
(TE/TR = 14/1500 ms, 64 averages) was used to acquire fat spectra data from 1 to 2 single
voxels (1–2 cc) per patient. Data from two voxels were acquired in patients with suspicious
lesions (one over the tumor, and one was placed over glandular tissue in contralateral breast,
respectively). Scanning time of each voxel required about 2 min, including shimming.
Figure 1 displays examples of voxel locations and experimental spectrum/LCModel fit
from a patient tumor and contralateral normal fibroglandular tissue (FGT); efforts were
made to keep voxels outside of adipose tissue for all voxels. As previously noted, it was
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suspected that local alteration of fat profiles in and around the tumor would be more
prominent, due to changes in intracellular lipid droplet composition. Adipocytes would
likely reflect more of the global fat content; as they are significantly larger (~100 µm) than
intracellular lipid droplets’ (~10 µm), their composition would dominate the tissue in
which they are included.
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Figure 1. Example of magnetic resonance spectroscopy (MRS) voxel locations (a,d), T1-weighted fat-unsuppressed image;
(b,e), T1-weighted fat-suppressed contrast-enhanced image and their corresponding experimental spectra (black) overlaid
with LCModel fit (red) (c,f), in normal fibroglandular tissue (a–c), and tumor tissue in a patient with invasive ductal
carcinoma (d–f).

2.3. Pathology Analysis

Following biopsy, tissues from the lesions probed by MRS were sent for pathology
analysis, which included reports of human epidermal growth factor receptor 2 (HER2),
estrogen receptor (ER) and progesterone receptor (PR) status for malignant lesions. Three of
the biopsied lesions were benign false-positives, resulting in 20 confirmed malignant lesions.

2.4. Data Analysis

In vivo datasets were quantified with LCModel version 6.3-1K (http://s-provencher.
com/lcmodel.shtml, accessed on 20 March 2021), using SPTYPE = breast. Fat peaks
at 1.3 + 1.6 ppm (L13 + L16), 2.1 + 2.3 ppm (L21 + L23), 2.8 ppm (L28), 4.1 + 4.3 ppm
(L41 + L43) and 5.2 + 5.3 ppm (L52 + L53) were expressed independently. The saturation
index (SI), number of double bods (NDB), mono and polyunsaturated fatty acids (MUFA
and PUFA), and mean chain length (MCL) were also computed [19]. R 3.5.2 (R Core Team,
2020) was used for all statistical analysis [20]. Comparison of fat peaks between normal
fibroglandular and tumor tissues was performed using the Wilcoxon rank-sum test. For
comparison between tumors with different expression of ER, PR, and HER2, fat peaks
were adjusted using the Benjamini–Hochberg correction for multiple comparisons [21].
Type I error rate was set at 0.05 (α). Given the small sample size and correlated nature
of the various covariates considered, a least absolute shrinkage and selection operator
(LASSO) regularization was used to select covariates and perform a multivariable logistic
regression analysis, using the glmnet functionality in R 3.5.2 [22,23]. The value of the penalty
parameter λ was determined using 10-fold cross validation. The discriminative ability of
the resulting model was assessed using a receiver operating characteristic (ROC) curve.

Figure 2, adapted from a previous study [24], displays expected resonances and their
position in the fatty acid chain. Only a limited fraction of those can be independently

http://s-provencher.com/lcmodel.shtml
http://s-provencher.com/lcmodel.shtml
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quantified in vivo at 3T; in particular, only five lipid ratios have consistent Cramer–Rao
lower bound values below 10%. While all ten fat resonances in Figure 2 were included in the
basis set, separately fit, and used for the computation of NDB, SI, MUFA and PUFA, such
separation came at the expense of larger measurement variability, translating ultimately
into lower normal/cancer separation power.
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Figure 2. Chemical structure and list with expected resonances in lipids. Adapted with permission
from ref. [24]. Copyright © 2011 copyright John Wiley and Sons.

3. Results

Table 1 presents a summary of our measures of lipid composition from the study
subjects. The mean concentrations of all lipid metabolites and PUFA were significantly
lower in tumors compared with that of normal FGT (p ≤ 0.002 and 0.04, respectively).
Further, multivariable analysis yielded significant difference in L21 + L23 between tumors
and normal FGT, with a coefficient of −4.74, which means that as this lipid peak increases
in value, the probability of tumor diagnosis decreases. The area under the curve (AUC)
was 0.87 (95% CI: 0.75–0.98) (Figure 3). Using an internal validation dataset consisting of
randomly selected 30% of the entire dataset, the AUC of the resulting ROC curve was 0.88
(95% CI: 0.63–1.00).

Table 1. Fat peaks (concentrations in millimoles) obtained for all voxels, normal fibroglandular tissue (FGT) and tumors.
p-values refer to the comparison of fat peaks between normal FGT and tumors.

Characteristic Peak All Voxels, n = 36 Normal FGT, n = 18 Tumor, n = 18 p-Value

L09, median (IQR) 0.03 (0.01, 0.10) 0.08 (0.04, 0.12) 0.01 (0.01, 0.03) <0.001

L13 + L16, median (IQR) 0.23 (0.09, 0.66) 0.49 (0.27, 0.84) 0.09 (0.03, 0.20) <0.001

L21 + L23, median (IQR) 0.04 (0.02, 0.12) 0.10 (0.05, 0.15) 0.02 (0.01, 0.04) <0.001

L28, median (IQR) 0.004 (0.002, 0.012) 0.009 (0.004, 0.016) 0.001 (0.000, 0.004) <0.001

L41 + L43, median (IQR) 0.004 (0.001, 0.012) 0.010 (0.004, 0.014) 0.002 (0.000, 0.004) <0.001

L52 + L53, median (IQR) 0.007 (0.004, 0.017) 0.012 (0.007, 0.023) 0.005 (0.001, 0.006) 0.002

SI, median (IQR) 9.08 (7.34, 10.93) 9.08 (7.99, 11.23) 9.09 (6.42, 10.82) 0.4

NDB, median (IQR) 0.28 (0.13, 0.41) 0.20 (0.14, 0.35) 0.33 (0.14, 0.45) 0.3

PUFA, median (IQR) 0.16 (0.11, 0.24) 0.23 (0.15, 0.33) 0.14 (0.09, 0.20) 0.04

MUFA, median (IQR) 0.47 (0.33, 0.56) 0.38 (0.30, 0.54) 0.51 (0.45, 0.57) 0.085

MCL, median (IQR) 14.9 (13.3, 17.9) 14.4 (13.7, 17.9) 15.4 (12.2, 17.7) 0.6
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Figure 3. ROC curve of the L21 + L23 lipid peak for differentiating tumor from normal FGT, with an
AUC of 0.87 (95% CI: 0.75–0.98).

From the 18 tumors, 10 were ER positive, 8 were PR positive and 7 were HER2 positive;
two were triple negative, one was triple positive, and the rest had various combinations of
ER, PR, and HER2 expression. Table 2 presents the fat peak p-values obtained on univariate
analysis for differentiating tumors grouped with respect to ER, PR, and HER2 status. Only
the L52 + L53 peak showed statistically significant differences between tumors based
on ER and PR status, whereas multiple lipid parameters showed statistically significant
differences between tumors based on the HER2 status.

Table 2. Fat peak p-values obtained for differentiating tumors grouped with respect to ER, PR, and HER2 status.

Characteristic Peak
p-Value

ER+ (n = 5) vs. ER− (n = 13) PR+ (n = 3) vs. PR− (n = 15) HER2+ (n = 8) vs. HER2− (n = 10)

L09 0.24 0.22 0.07

L13 + L16 0.24 0.22 0.06

L21 + L23 0.22 0.22 0.06

L28 0.22 0.22 0.04

L41 + L43 0.22 0.22 0.04

L52 + L53 0.03 0.03 0.03

SI 0.24 0.22 0.14

NDB 0.22 0.22 0.11

PUFA 0.22 0.22 0.04

MUFA 0.90 0.90 0.90

MCL 0.66 0.22 0.11

4. Discussion

In this work, we have analyzed the fat profile of breast lesions and normal fibroglan-
dular tissue from the contralateral healthy breast in a prospective in vivo MRS study. The
results evidenced differences between fat metabolites in the two tissues, mainly character-
ized by a decrease in the L21 + L23 peak in invasive breast cancers.
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Early in vivo MRS studies reported differences in water and fat resonances between
normal and tumor tissues, using parameters like water-to-fat ratio [25]. Invasive carcino-
mas are high in water content with very low levels of lipid when compared to normal
fibroglandular tissue. Generally, however, such parameters had limited diagnostic utility
due to significant overlap between benign and malignant lesions, and to the variability of
water content, which is dependent on breast composition and menstrual cycle [26].

Recently, Agarwal et al. showed that the fat fraction measured by in vivo MRS is
significantly lower in malignant breast tissues when compared with benign and normal
breast tissues [27]. Prior studies also found that postmenopausal women with breast cancer
had lower MUFA and higher saturated fatty acid than those with benign tissue [6,28].
Another previous study based on six types of cancer has shown that activation of de novo
lipogenesis is an early and common event in the cancer microenvironment [29]. Multivari-
ate statistical analysis coupled with lipid distribution images revealed that significantly
increased levels of MUFA relative to PUFA were observed in the cancer microenvironment
compared with the adjacent normal tissue.

In a prior retrospective study that evaluated lipid metabolism by using breast MRS in
168 patients, malignant lesions showed significantly lower L09, L21 + L23, and L52 + L53
values than benign lesions [9]. In this prior study, lipid areas under the peak were normal-
ized with respect to MRS voxel volume prior to statistical analysis. These findings suggest
that MRS lipids concentrations could potentially be used to reduce false-positive results in
breast MRI.

The current prospective study found that all lipid metabolite concentrations and the
PUFA fraction were significantly lower in tumors compared with normal FGT, consistent
with previous reports. Multivariable analysis yielded an AUC of 0.87 for the L21 + L23
peak in separating tumor tissues from normal tissue. We used the LASSO algorithm, which
is a regularization algorithm that aids in appropriate variable selection while controlling for
the variability of parameter estimates. It increases prediction accuracy, which is supported
by the findings of our multivariate analysis. Our multivariate analysis indicates that the
AUC yielded by the L21 + L23 peak in differentiating tumor tissue from normal tissue was
0.87, which is indicative of a good performance of the peak, thus also making the L21 + L23
peak a definitive entity for identifying cancers.

Despite the small sample sizes, we also observed differences in lipid peaks between
tumors grouped with respect to ER, PR, and HER2 status. Although the analysis between
receptor types was only exploratory in nature, in the present analysis, only the L52 + L53
peak was found to be lower in ER and PR negative tumors, while multiple lipid parameters
were found to be lower in HER2 positive tumors. The prior retrospective study also
showed lower lipid metabolite concentrations in luminal cancers compared with non-
luminal cancers; however, only the L28 peak remained significantly different between these
cancer groups after multiple comparison corrections [9].

The slight differences in results between the prior retrospective and current prospec-
tive study may be easily explained by the different experimental parameters. Voxels size,
field strength, and other acquisition parameters were different; for example, the echo time
of the prior study was longer and was optimized for improved choline detection, whereas
the higher signal-to-noise ratio afforded by the higher field strength and the shorter echo
time of the current study should have yielded more accurate quantification. It is to be
noted, however, that the prior study was better powered than the current one, and the
mean voxel size of 4.4 cc of the prior study was also larger than the voxel size of 1–2 cc of
the current study. These differences could easily negate the advantages of shorter echo
time and higher field strength of the current study. The focus of this study was more
on investigating different lipid components for differentiating tumor tissue from normal
fibroglandular tissue; more highly powered studies that include more benign lesions will
be needed to elucidate the noted differences.

This study has some limitations. First, this is a small dataset and as such, the estimates
cannot be generalizable; further research with larger sample sizes should be performed
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in order to conclusively validate our findings [30]. Second, in vivo MRS was performed
in single voxels. Multi-voxel MRS, simultaneously collecting data from planes or 3D
volumes, may improve the characterization of lipid metabolism in the breast. In addition,
semi-LASER pulse sequences with adiabatic refocusing radiofrequency pulses may afford
the collection of 2D or 3D MRS with uniform B1 homogeneity over the MRS volume [31].
We also note that lipid metabolites can be detected with high signal to noise at short
TE durations. Additionally, one can apply echo planar spectral imaging techniques for
speeding up 2D/3D MRSI acquisition times and making this tool clinically feasible. Finally,
in this study, we only investigated the differentiation of normal FGT and breast cancers. We
expect that these results will also translate to the differentiation of benign and malignant
lesions as altered aberrant lipid metabolism is an emerging hallmark of breast cancer
lesions and will be able to add specificity on breast MR evaluation, which is the aim of a
future study.

In conclusion, lipid profile acquired on in vivo MRS can help to differentiate malignant
from benign tissues. Overall, it is unlikely that fat lipid ratios can serve as sole, independent
breast tumor discriminators. They can, however, serve as variables in a multi-parametric
approach for better characterization of breast lesions, hopefully leading to increased breast
cancer detection specificity. MRS lipid composition data can be acquired through a very
short (1–2 min) acquisition and should be completely independent of any other MRI-based
measurements (such as permeability evidenced by dynamic contrast-enhanced MRI or
tissue cellularity evidenced by diffusion-weighted imaging).
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