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ABSTRACT OF THEDISSERTATION

Towards Gigabit and Green 802.11 Wireless Networks

by

Ioannis Pefkianakis

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2012

Professor Songwu Lu, Chair

Wireless is an increasingly dominant communication medium. The continued quest

for wireless connectivity in a multitude of mobile devices,along with the emerging

bandwidth hungry applications, has resulted in a huge growth of the wireless traffic.

Multiple-Input Multiple-Output (MIMO) is considered the dominant technology to

provide gigabit wireless links, and to accommodate the increasing demand of speed

over wireless. By using multiple transmit and receive antennas, MIMO can support

more reliable and faster communication. But how efficient arethe current MIMO

systems?

Our experiments with commodity MIMO 802.11n devices revealthat, the current

MIMO wireless is low speed and energy hungry. The fundamental reason for MIMO

devices’ poor performance is the use of legacy 802.11a/b/g,single antenna designs

over the multiple antenna, MIMO 802.11n setting. Specifically, the existing designs

used over the new MIMO 802.11n devices, are oblivious to MIMOunique communi-

cation characteristics. They do not also consider that, MIMO speed comes at the cost

of increased power consumption, proportional to the numberof antennas.

In order to investigate solutions to these problems, this dissertation first experi-

mentally studies the unique features of MIMO wireless and their impact on existing
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designs’ performance. Then, it revises the key mechanisms that control speed and

energy over MIMO wireless, namedRate Adaptation, andMIMO Energy Save, and

develops three systems. History-Aware Robust Rate Adaptation (HA-RRAA) is our

first step towards gigabit wireless. It opportunistically selects the best goodput PHY

transmission rate for legacy 802.11a/b/g networks by introducing novel mechanisms

to capture short-term channel dynamics. Different from HA-RRAA, our MIMO Rate

Adaptation (MiRA) proposal, seeks to identify the best goodput PHY transmission

rate in MIMO 802.11n networks by considering the unique features of MIMO. Fi-

nally, MIMO Energy Save seeks to select the optimal antenna setting at runtime to

minimize energy consumption. Our proposals depart from existing designs in three

fundamental ways. They manage the unique MIMO communication modes in a dis-

tinct manner. They consider new metrics, to capture the tradeoffs between speed and

power consumption. Our proposals also apply novel learningmechanisms to capture

the wireless channel dynamics.

There are three main contributions in this dissertation. First, it builds a strong con-

nection between wireless communication theory and wireless system design. Specif-

ically, this dissertation provides the first experimental study of fundamental MIMO

wireless communication tradeoffs (i.e. diversity vs. spatial multiplexing MIMO modes,

speed vs. number of antennas) using 802.11n standard-compliant commodity testbeds.

Then, it uncovers their impact on existing designs’ performance. Second, it pro-

poses novel and practical rate adaptation and energy save designs that consider MIMO

unique characteristics, and are able deliver high performance gains. Third, this dis-

sertation provides the first implementation and evaluationof MIMO rate adaptation

and energy save using 802.11n standard-compliant commodity devices. The high per-

formance gains in real world settings make our proposals a significant step towards

gigabit and green wireless networks.
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CHAPTER 1

Introduction

Wireless is an increasingly dominant communication medium. International Telecom-

munication Union reported 5.9 billion mobile-cellular subscriptions at the end of 2011

[1], which corresponds to 87% of the world population. Mobile computing devices

need to serve increasingly demanding networked applications (video conferencing,

multiplayer 3-D games, cloud-supported mobile augmented reality [2]), which current

wireless speeds struggle to accommodate. For example, a HD 1080p video’s data bit

rate is 50Mbps, while the current 802.11a/g devices offer approximately 30Mbps peak

MAC-layer throughput. So, the continued quest for wireless connectivity in a multi-

tude of mobile devices, along with the emerging bandwidth hungry applications, has

resulted in a huge growth in wireless traffic. In October 2010, FCC pointed out that

Cisco Systems, the Yankee Group and Coda Research projected that mobile data traffic

in 2014 will be 35 times the volume of traffic in 2009 [3].

Designing very high speed wireless that offers high quality-of-service (QoS) con-

stitutes a significant research and engineering challenge.We can, in principle, meet the

Gbps data rate requirement if the product of bandwidth (measured in Hz) and spectral

efficiency (measured in b/s/Hz) is greater than109. However, employing sufficiently

high bandwidth to increase wireless speed poses significantlimitations. First, spec-

trum is a scarce and expensive resource. The spectrum allocated between 2-6GHz for

WiFi and other license-free applications does not exceed 0.5GHz, and as a result it

does not allow for channels wide enough for gigabit speeds. Opening up new spec-

1



trum at frequencies higher than 6GHz can offer a potential solution for high bandwidth

wireless communication (IEEE 802.11ad at 60GHz band [4]). However, transmissions

at very high frequencies are extremely prone to atmosphericattenuation, which renders

non-line-of-sight (NLOS) and long distance wireless linksunusable.

An emerging technology known as Multiple-Input Multiple-Output (MIMO), of-

fers significant promise in making Gbps wireless links in NLOS environments a real-

ity. MIMO adds the space dimension to the current 2-dimensional (frequency and time)

wireless communication to improve performance. It uses multiple transmit and receive

antennas to support two main modes of operation.Spatial Diversityachieves more reli-

able communication by supplying to the receiver multiple independently faded replicas

of the same information symbol.Spatial Multiplexingtransmits independent informa-

tion symbols in parallel from the multiple antennas to boostthe transmission speed. As

MIMO constitutes a significant technological breakthrough, it has been adopted from

both wireless LAN (802.11n [6]) and cellular network markets (LTE [5]). The current

IEEE 802.11n standard [6] supports MIMO with 4 antennas and 600Mbps rates, while

the upcoming 802.11ac standard [7] will allow for 8 antennasand higher than 6Gbps

rates. But, how far are we from MIMO gigabit speeds?

Our experiments with MIMO 802.11n devices reveal that current MIMO is low

speed and energy hungry. First, we identify a significant drop between the speed that

the current MIMO radio can support (physical transmission rate) and the achieved

MAC-layer speed (goodput1). Specifically, our experiments with commodity MIMO

802.11n devices show a 56% drop between the speed at the MAC layer and the

speed that the PHY layer can support at interference-free access point-client settings.

Second, the current low MIMO speed comes at a high energy budget, which hin-

ders MIMO deployment at the mobile device side. Our measurements show that, a

1Goodput is defined as effective throughput by excluding protocol overheads.
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MIMO 802.11n radio can deplete a smartphone’s battery in less than two hours, when

all its components (i.e., display) but the 802.11n radio areOFF. But why is current

MIMO slow and energy hungry? Our study reveals the use of legacy (single-antenna

802.11a/b/g) designs, over the new MIMO 802.11n setting, which can lead to signifi-

cant performance degradation. To this end, thegoalsof this dissertation are twofold:

• Uncover the limitations of existing designs to achieve highspeeds at low energy

cost over the new MIMO 802.11 setting.

• Design, implement, and evaluate new solutions which can utilize MIMO speed

gains at a low energy budget.

In Section 1.1 we present the roadmap towards high speed, energy efficient MIMO

802.11 wireless.

1.1 Roadmap to the Solution

The goals of this dissertation are to uncover the limitations of existing designs and to

present solutions towards high speed (gigabit), energy efficient (green) 802.11 wire-

less. Our study of gigabit 802.11 communication focuses on the key mechanism that

controls the speed over wireless, namedRate Adaptation(RA). IEEE 802.11 spec-

ifications mandate multiple transmission rates/speeds at the physical layer (PHY).

Rate adaptation, which exploits such multi-rate capability, dynamically selects the best

goodput rate, based on the time-varying and location-dependent channel quality. When

the signal (signal-to-noise ratio - SNR) is strong, rate adaptation must switch at a high

rate option, to utilize channel capacity [12]. When the signal is getting weaker (e.g. the

wireless client is moving away from the access point) rate adaptation must switch at a

low rate option to avoid exceeding the channel capacity, which will result in excessive
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packet loss.

Our study on rate adaptation starts from the legacy single-antenna 802.11a/b/g set-

ting. We first expose the limitations of existing designs to address the dynamics of

the 802.11a/b/g wireless channel (multipath fading and interference) using real exper-

iments. We then design, implement and evaluate a robust 802.11a/b/g rate adaptation.

After understanding the dynamics of the legacy 802.11a/b/gnetwork, we extend our

view to the MIMO 802.11n setting. Our experiments reveal a significant impact of

MIMO communication characteristics on existing rate adaptation algorithms’ perfor-

mance. To this end, we design, implement and evaluate MIMO 802.11n rate adapta-

tion, which considers the unique characteristics of the MIMO 802.11n channel. Un-

fortunately, MIMO speed comes at a cost of increased MIMO power consumption

proportional to the number of antennas. Our study towards green 802.11 communica-

tion seeks to identify the energy optimal antenna setting atruntime. We next elaborate

on the different components of our study.

Legacy 802.11a/b/g rate adaptation We first experimentally study rate adapta-

tion in the legacy (single antenna) 802.11a/b/g setting. Our key finding is that, practical

state of the art algorithms do not adequately utilize the knowledge of wireless chan-

nel short-term performance. This results in transmissionsat low speed rates. To this

end, we design and implement a new History-Aware Robust Rate Adaptation Algo-

rithm (HA-RRAA). HA-RRAA uses short-term loss ratio to opportunistically guide

its rate change decisions, and an adaptive time window to limit transmissions at low

speed rates. HA-RRAA outperforms existing practical algorithms with goodput gains

up to 51.9% in field trials. The next question we seek to answeris how do legacy rate

adaptation designs perform over the MIMO setting?

MIMO 802.11n rate adaptation We next experimentally evaluate state of the

art practical rate adaptation algorithms over the MIMO 802.11n setting. To our sur-

4



Access Point Client

Application data rate = 3 Mbps (video)

Access Point Client

Application data rate = 50 Mbps (HD video)

MIMO: 779.6 mW / 3 Mbps 

Legacy: 547.8 mW / 3 Mbps 

MIMO: 973.5 mW / 46.4 Mbps 

Legacy: 567.6 mW / 12.5 Mbps 

Figure 1.1: MIMO vs. legacy energy tradeoff.

prise, popular RAs give lower speeds than the best goodput fixed-rate scheme. The

fundamental problem is that all such algorithms do not properly consider the inher-

ent features of MIMO modes (diversity and spatial multiplexing), which exhibit very

different loss characteristics. As a result, they transmitat rates other than the optimal

(best goodput rate) sacrificing the MIMO channel capacity. To this end, we design

implement and evaluate MIMO rate adaptation (MiRA). Different from existing algo-

rithms, MiRA manages diversity and spatial multiplexing in adistinct manner. Using a

novel probing scheme it is able to identify the optimal rate with low overhead. Our ex-

periments with commodity MIMO 802.11n testbeds show that MIMO rate adaptation

can outperform existing designs with 73.5% goodput gains infield trials.

From performance to Watt per performance The goal of rate adaptation is to

maximize transmission speed over wireless. However, is speed the right metric? Our

experiments uncover an important tradeoff between MIMO speed and power consump-

tion. Although MIMO speed increases with the number of antennas, our measurements

reveal a monotonic increase of MIMO power consumption with the number of anten-

nas as well. In the first scenario of Figure 1.1, both legacy and MIMO settings can

accommodate the offered 3Mbps video data rate. However, thelegacy receiver saves
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30% power over the MIMO receiver providing a better user experience. A realistic

gauge of quality of user experience is the per-bit energy consumption (joule/bit). Per-

bit energy consumption is defined as the ratio between the total consumed energy and

the delivered bits during any data transfer. In the first scenario of Figure 1.1, legacy

receiver saves 30% energy over MIMO. However, when the videodata rate increases

(50Mbps), the MIMO receiver achieves 3.7 times higher goodput than the legacy re-

ceiver. MIMO gains compensate the additional MIMO receiverpower consumption

and give 54% energy savings over legacy. Our case study of Figure 1.1 uncovers a

dilemma between legacy and MIMO 802.11. Which is the most energy efficient?

In the second part of this dissertation (Chapter 6) we revise our metric from per-

formance to Watt per performance. Then, we design MIMO energy save which seeks

to identify the energy optimal antenna setting at runtime using a low-cost informed

probing scheme.

1.2 Contributions

In this dissertation we seek to build a strong connection between wireless communica-

tions and wireless protocol design. To this end, we first provide a deep understanding

of 802.11 wireless channel and radio features using real experiments and study their

impact on the performance of existing protocols. We then propose novel algorithms

that harness the insights gained from our experimental results and analysis. Our im-

plementation and evaluation with IEEE 802.11 standard-compliant testbeds show that

our designs can deliver large gains in practical settings.
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1.2.1 Experimental study of 802.11 MAC and channel features

This dissertation builds on a strong understanding of the characteristics of the 802.11

MAC layer and wireless channel.

Legacy 802.11a/b/g channel We first study 802.11a/b/g channel using com-

modity hardware. Our results reveal significant channel fluctuations even in static,

indoor, interference-free settings. Existing rate adaptation algorithms present limi-

tations to capture these short-term channel dynamics, which results in poor goodput

performance.

MIMO 802.11n channel This dissertation provides the first experimental study

of fundamental MIMO wireless communication tradeoffs usingMIMO 802.11n com-

modity testbeds.We first uncover the tradeoffs between diversity and spatialmulti-

plexing MIMO modes. Then, we experimentally study the diversity and spatial mul-

tiplexing gains as a function of the number of antennas. Our work departs from wire-

less communication theory studies in three key ways.a) First, our study reveals that

findings which are considered norms in wireless communications may not apply in

a practical 802.11n setting. For example, signal-to-noiseratio (SNR) metric which

has been used in theory to differentiate MIMO modes [10] has limitations to iden-

tify the best goodput MIMO mode in real 802.11n systems.b) Second, our study

uncovers new factors as 802.11n MAC-layer frame aggregationwhich can affect the

performance of MIMO modes.c) Finally, different from theoretical work we study the

impact of MIMO channel dynamics in MAC-layer algorithms’ (i.e. rate adaptation)

performance.

802.11 MAC-layer features Our study uncovers 802.11 MAC-layer and radio

features, which play a key role in 802.11 wireless networks’performance. At the

MAC-layer, 802.11n frame aggregation used to amortize protocol overheads has a
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significant impact on goodput performance. On the radio, ourmeasurements reveal a

monotonic increase of power consumption with the number of antennas. This increase

in power consumption significantly affects MIMO systems’ energy performance.

1.2.2 Novel algorithms for rate adaptation and MIMO energy save

This dissertation provides a critique on practical, state of the art algorithms for rate

adaptation and MIMO power save. After identifying the Achilles’ heel of existing

algorithms, it suggests a fresh angle on how to design gigabit and green 802.11 wireless

networks. We highlight the main algorithmic contributionsbelow.

• HA-RRAAhas been designed for legacy 802.11a/b/g networks, and usesshort-

term loss ratio to opportunistically adjust the rate based on the wireless channel

quality. The key feature of HA-RRAA is its adaptive time window, which pre-

vents transmissions at low goodput rates.

• MiRA is among the first practical rate adaptation designs for MIMO802.11n

wireless networks. Different from existing algorithms, MIRA manages MIMO

diversity and spatial multiplexing modes in a distinct manner. This allows for

MiRA to identify the best goodput rate at low probing overhead.

• MRESintroduces Watt per performance as the evaluation metric ofa MIMO

system. It seeks to save energy by identifying the energy optimal antenna setting

using an informed probing scheme.

1.2.3 Implementations with 802.11 standard-compliant testbeds

This dissertation provides the first implementation and evaluation of MIMO rate adap-

tation and energy save using 802.11n standard-compliant commodity devices.Our
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proposed designs are practical in three ways. First, they are 802.11 standard-compliant

and have been implemented in 802.11 commodity hardware. Second, they do not make

any assumptions about the implementation of the underlying802.11 radio and its fea-

tures. Finally, they do not require channel feedback (SNR) from the receiver, which is

not supported by the current 802.11 systems. We summarize the major experimental

results below.

• We evaluate HA-RRAA in both controlled static and mobile settings and realistic

field trials where various sources of dynamics coexist in a complex manner. The

comparison of HA-RRAA with state of the art practical designs as ARF [17],

SampleRate [23] and RRAA [34], shows goodput gains from 6% to 52%in

realistic field trials.

• We compare MiRA and several MIMO RA alternatives with both popular prac-

tical legacy [23, 34] and MIMO [32] rate adaptation algorithms. We conduct

our experiments in various scenarios with static/mobile clients, hidden terminal

stations, under different MIMO configurations with both TCP and UDP traffic.

Our MIMO RA proposal shows 73.5% goodput gains in realistic field trials.

• We compare MRES with designs that represent two different philosophies. First,

we enable all the antennas at both sender and receiver seeking to maximize per-

formance (speed). Second, we compare MRES with the IEEE 802.11n Spatial

Multiplexing Power Save (SMPS) feature. SMPS has been proposed by the

802.11n standard, and seeks to save MIMO power (Watt), by switching from

“many” to a “single” antenna setting. MRES yields 37% energy savings in a

two-antenna 802.11n receiver.
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1.3 Organization of the Dissertation

This dissertation can be divided and read in different ways depending on what the

reader is looking for. The order of the chapters reflects the transition from legacy to gi-

gabit and further to green, gigabit wireless. Chapter 2 provides background knowledge

for the 802.11 standard, rate adaptation, and energy save. Chapter 3 presents the ex-

perimental setup and methodology used throughout this study. Chapter 4 presents our

first step towards gigabit wireless. We first study the performance of existing legacy

802.11a/b/g rate adaptation algorithms and then we design,implement, and evaluate

the HA-RRAA algorithm. In Chapter 5, we shift our focus from legacy 802.11a/b/g

to MIMO 802.11n wireless networks. We first identify the limitations of existing RAs

to perform well over the MIMO setting. Then, we design, implement, and evaluate

MIMO rate adaptation for 802.11n wireless networks. In Chapter 6, we revise our

metric to evaluate an 802.11n system from performance to Watt per performance. We

next design, implement, and evaluate MIMO receiver energy save which seeks to iden-

tify the energy optimal antenna setting at runtime. Finally, Chapter 7 concludes this

dissertation and provides our future directions. Althoughthis dissertation is structured

to guide the reader one step at a time towards gigabit and green 802.11 wireless, all

chapters can be studied independently as well.

This dissertation can be of interest for both an academicianand a practicing en-

gineer. Chapter 5 shows that MIMO diversity and spatial multiplexing modes exhibit

different characteristics. Chapter 6 uncovers a significanttradeoff between speed and

power consumption. These can fundamentally change our philosophy of how to build

protocols over the MIMO setting, as we discuss in Chapter 7. Besides a new design

philosophy, this dissertation can serve as a tutorial for implementing algorithms in

802.11 wireless drivers. Chapters 4, 5, 6, uncover 802.11 drivers’ unique features,

implementation challenges, and solutions for rate adaptation and MIMO energy save.
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CHAPTER 2

Background

This dissertation considers both infrastructure and ad-hoc 802.11 wireless networks.

An 802.11 wireless local area network (WLAN) is subdivided into cells (called Basic

Service Set or BSS). In infrastructure mode, wireless clients communicate through an

access point (AP), which serves as a bridge to a wired networkinfrastructure, as shown

in Figure 2.1. Both clients and access points use 802.11a/b/g/n interfaces. In ad-hoc

mode, there are no APs and wireless clients communicate directly with each other. The

wireless clients can be either static or roam between APs, while the APs are typically

static. We next summarize the IEEE 802.11 features related to our study, and give an

overview of prior work on 802.11 rate adaptation and energy save.

2.1 IEEE 802.11 Standard

The IEEE 802.11 standard specifies the physical (PHY) and medium access control

(MAC) layers of the protocol stack. Based on PHY and MAC layer designs, 802.11 is

divided in different standards, named with different letters (e.g. 802.11a/b/g/n). In this

section, we present the 802.11 PHY and MAC layer features, related to our study.

802.11 PHY The IEEE 802.11 PHY layer operates either at 2.4GHz band for

802.11b/g/n or at 5GHz band for 802.11a/n. Each frequency band is subdivided in

smaller frequency bands, named channels. For example 2.4GHz band in USA is di-
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Figure 2.1: IEEE 802.11 LAN architecture.

vided in 11, 20MHz channels. Only channels 1, 6 and 11 are non-overlapping as we

present in Figure 2.2. The 802.11a/g/n physical layer is based on Orthogonal Fre-

quency Division Multiplexing (OFDM). OFDM partitions the 20MHz 802.11 channel

(or carrier) into 64 subcarriers of 312.5KHz each, such thatevery subcarrier can be

considered of as a separate narrowband channel. In 802.11 OFDM, data is sent on the

subcarriers using the same modulation, coding scheme and transmit power.

IEEE 802.11 standards allow for multiple PHY transmission rates. An 802.11b

device can use four rate options of 1, 2, 5.5, 11Mbps. An 802.11a device can use

eight rate options of 6, 9, 12, 18, 24, 36, 48, 54Mbps. An 802.11g device can use all

twelve rate options. The new IEEE 802.11n allows for rates upto 600Mbps, while the

upcoming 802.11ac will support rates up to 6.93Gbps. The PHYtransmission rateR

can be calculated by the following equation:

R = 12 · BWf · NSS · Nb · RC · GIf (2.1)

BWf is the channel bandwidth factor.BWf is 1 and 2.25 for 20MHz, and 40MHz

channel bandwidths, respectively.NSS represents the number of spatial streams. The
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Figure 2.2: Channels of 2.4GHz band.

legacy 802.11a/b/g standards support only one spatial stream. As we describe in Sec-

tion 2.2, MIMO 802.11 allows for higher number of streams, and as a result higher

rates.Nb is the coded bits per OFDM subcarrier. It is 6 for 64-QAM, 4 for16-QAM, 2

for QPSK and 1 for BPSK modulation schemes, which are supported by 802.11a/g/n.

The code rateRC of a forward error correction code, is the proportion of the data-

stream that is useful (non-redundant). Finally, the guard intervalGI is used to ensure

that, distinct transmissions do not interfere with each other. The guard interval factor

GIf is 1, 1.11 for 800ns and 400ns guard intervals, respectively.

The rate to be used for transmission, is communicated from the transmitter to the

receiver in theSignal field of the 802.11 PLCP header, of an 802.11 transmission

(Figure 2.3). The rate is decided on the MAC layer, by the rateadaptation algorithm

as we discuss in Section 2.3.

802.11 MAC The default operation mode for wireless LAN/ad-hoc networks is

the Distributed Coordination Function (DCF), which applies Carrier Sense Multiple

Access with Collision Avoidance (CSMA/CA). In CSMA/CA, a stationsenses the

wireless channel, and transmits only when the channel is free. A successful DATA

frame transmission is acknowledged by an ACK frame. Specifically, when an 802.11

sender senses a free channel for DIFS (DCF Interframe Space) time interval, it trans-

mits the entire frame. Upon successful reception of a DATA frame, the 802.11 receiver

returns an ACK frame after SIFS (Short Interframe Space) timeinterval. If the 802.11
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Figure 2.3: IEEE 802.11n frame format.

sender senses a busy channel, it starts a random backoff timer. The timer counts down

only when the channel is free. Finally, the DATA frame is transmitted when the timer

expires. Timer increases or decreases upon a failed/successful transmission respec-

tively. The impact of backoff timer on 802.11 performance has been studied in [78].

The hidden terminal problem: Carrier sensing cannot always prevent packet col-

lisions. In the hidden terminal case, two or more senders canbe in the range of an

intended receiver, but out of the range of each other. In Figure 2.4(a), while station

B transmits to C, station D can act as a hidden terminal, as it cannot sense station B

transmission. As a consequence, any transmission of D will result in a collision at C.

There have been many recent proposals that, seek to address interference and hid-

den terminals [68–72]. The state of the art solutions are either not 802.11 standard-

compliant (e.g. [69,71]), or they require PHY-layer modifications and additional hard-

ware (e.g. [68–72]), which make them impractical for commodity 802.11 devices. To

address the hidden terminal problem, the IEEE 802.11 standard proposes the RTS/CTS

feature, which seeks to reserve the area around the sender and receiver for the duration

of the packet exchange. A station wishing to send data, initiates the process by sending

a Request to Send frame (RTS). The receiver replies with a Clearto Send frame (CTS).

Stations that overhear the RTS, CTS frames, defer their transmissions during the frame

exchange, by setting their Network Allocation Vector (NAV). Figure 2.4(b) illustrates

the RTS/CTS handshake process.

RTS/CTS signaling overhead includes the interframe spacingintervals (SIFS,
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Figure 2.4: Hidden terminal and RTS/CTS handshake.

DIFS), and the transmission time of RTS/CTS frames (Figure 2.4(b)), which are trans-

mitted using the basic low rate (24Mbps in our platform). As this overhead is signifi-

cant, RTS/CTS is often turned off by default in commercial APsand wireless adapters.

Our proposed MIMO rate adaptation, uses a low cost RTS/CTS scheme to address

collision losses (Chapter 5). Specifically, it leverages the802.11n frame aggregation

feature to detect collision losses, and selectively enables the RTS/CTS feature.

2.2 IEEE 802.11n New Features

The new IEEE 802.11n and the upcoming 802.11ac standards incorporate several new

features to boost performance. The most important are Multiple-Input Multiple-Output

(MIMO), channel bonding at PHY-layer and frame aggregationat MAC-layer.

MIMO IEEE 802.11n and 802.11ac PHY uses multiple transmit and receive an-
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Figure 2.6: Transmit diversity.

tennas to support two MIMO modes of operation.Spatial diversitytransmits a single

data stream from each transmit antenna, leveraging the independent fading over mul-

tiple antenna links, to enhance signal diversity.Spatial multiplexing(SM) transmits

independent and separately encoded spatial streams from each of the multiple transmit

antennas, to boost performance. IEEE 802.11n standard supports up to four spatial

steams, while the upcoming 802.11ac will support up to 8 streams. MIMO modes may

be also combined, and diversity and SM gains can be obtained simultaneously [9].

Spatial diversity: Diversity techniques can be applied at both receiver and trans-

mitter sides. Figure 2.5 illustrates receive diversity fora 2-antenna receiver (1x2 sys-

tem). Each antenna receives a copy of the transmitted signal, modified by the channel

H between the transmitter and receiver. The coefficienthij of the channel matrixH,

is a complex number that represents the path gain from transmit antennai to receive

antennaj. The simplest diversity method isSelection Combining(SEL), which con-

siders only the strongest signal for packet reception, and ignores the others. The more

sophisticatedMaximal-Ratio Combining(MRC), combines the signal at the receiver,

and produces an SNR that is the sum of the antenna SNRs. Specifically, the receiver

multiplies the received signal~y = ~hx+~n by the unit vector~h∗/‖h‖, where~h∗ denotes

the complex conjugate of~h and~n is the noise vector. This operation scales each an-

tenna’s signal by its magnitude, and rotates the signals into the same phase reference
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Figure 2.7: Spatial multiplexing.

before adding them. An example of MRC can be found in [80].

Transmit diversity uses multiple transmit and a single receive antenna (Figure 2.6).

The transmitter equivalent of SEL is to select the single transmit antenna with the

strongest signal. In the equivalent to MRC transmit diversity, the transmitter precodes

the signals by delaying them to change the phase such that, they will be combined con-

structively at the receiver’s antenna. It also weights themsuch that, transmit power is

allocated to each spatial path based on its SNR. The disadvantage of transmit diversity

over receive diversity is that, the transmitter must know the channelH beforehand in

order to select between antennas or to precode the signals. This feedback may not be

available in an 802.11 device.

Spatial multiplexing: Different from diversity, in spatial multiplexing mode the

transmitter sends independent signals/streamsxi simultaneously from the different an-

tennas (Figure 2.7). The PHY transmission rates linearly increase with the number of

streamsNSS from the equation 2.1. We can express the received signal as alinear sys-

tem, using the channel matrixH, the transmitted signal vector~x, the received signal

vector~y and the noise vector~n : ~y = H~x+~n. In order to decode the multiple streams,

we need simply to solve this linear system. The transmitted signal ~x is estimated as

H−1~y = ~x + H−1~n. The matrixH will be invertible if the different spatial paths are
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Setting Capacity (bits/sec)

SISO BW · log2(1 + SNR)

Diversity (1xN or Nx1) BW · log2(1 + SNR · N)

Diversity (NxN) BW · log2(1 + SNR · N2)

Spatial Multiplexing (NxN) BW · N · log2(1 + SNR)

Table 2.1: Channel capacity of diversity and spatial multiplexing modes.

independently faded, making stream decoding feasible.

The capacities of the wireless link for diversity and SM modes for an ideal channel,

are presented in Table 2.1.BW is the channel bandwidth, while SNR is the signal-to-

noise ratio. The number of antennas isN . At low SNR locations, diversity is usually

preferred. At high SNR locations, SM allows for faster transmissions.

Channel-bonding IEEE 802.11n can simultaneously use two separate channels

to transmit data, thus doubling the rate in principle. So, while the legacy 802.11a/b/g

devices use a single 20MHz channel, 802.11n can operate in the 40MHz mode over

two adjacent channels, one as the control and the other as theextension. The upcoming

802.11ac can support up to 160MHz channels.

However, as we can see from Figure 2.2, all the 40MHz channelsare partially

overlapping in the 2.4GHz band, as opposed to the 20MHz channels 1, 6 and 11, which

are non-overlapping. Thus using 40MHz channels can lead to throughput degradation

due to increased interference with neighboring channels. Recent proposals [62, 63]

seek to dynamically assign channel bandwidths, to address the interference problem.

Channel bandwidth assignment is out of the scope of this dissertation.

Frame aggregation IEEE 802.11n seeks to amortize protocol overhead over mul-

tiple frames. To achieve this, it packs several data frames in a single aggregated frame.

There are two levels of aggregation; a) aggregate MAC protocol service unit (A-

MSDU) and b) aggregate MAC protocol data unit (A-MPDU). The main difference
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between an MSDU and an MPDU is that the former corresponds to the information

imported to or exported from the upper part of the MAC sublayer from or to the higher

layers, respectively. Different from the MSDU, the MPDU is related to the information

that is exchanged from or to the PHY by the lower part of the MAC.

A-MSDU: MSDU aggregation allows for multiple MSDUs to be sent to the same

receiver concatenated in a single MPDU. This improves the efficiency of the MAC

layer, especially when there are many small MSDUs, such as TCPacknowledgments.

A-MPDU: MPDU aggregation joins multiple MPDU subframes with a single lead-

ing PHY header. We define asaggregation level, the number of MPDUs in an A-

MPDU. A key difference from A-MSDU aggregation is that, A-MPDU functions after

the MAC header encapsulation process. The maximum A-MPDU size is 65,535 bytes.

A successful A-MPDU transmission is acknowledged by a single BlockAck frame.

BlockAck includes a bitmap field of 128 bytes, where each MPDU is mapped using

two bytes. So the maximum number of MPDUs that a BlockAck can acknowledge is
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64.

The two levels of 802.11n frame aggregation are presented inFigure 2.8, while

an evaluation of 802.11n frame aggregation can be found in [79]. This dissertation

provides a study of the A-MPDU aggregation level (Chapter 5).It shows that, although

aggregation can indeed amortize protocol overheads, it canmake rate adaptation less

adaptive to fast channel dynamics.

Fast MCS feedback The 802.11n standard also supports MCS feedback (MFB)

mechanism, which provides channel state feedback from the receiver to the transmitter.

When the MFB field has a value in the range 0 to 126, it representsthe Modulation

Coding Scheme (MCS), that the transmitter can use for transmission. However, MCS

feedback mechanism is optional. When an 802.11n receiver decides not to provide

MCS feedback, it will set MFB equal to 127. In Chapter 5, we evaluate MCS feedback,

and present its limitations in a practical setting.

2.3 Background on Rate Adaptation

Rate adaptation is a mechanism unspecified by the IEEE 802.11 standards, yet critical

to the system performance by exploiting the multi-rate capability at the PHY layer. It

selects the best goodput transmission rate based on the wireless channel quality. The

challenges that RA needs to overcome are twofold. First, the wireless channel can dy-

namically change because of multipath fading, mobility andinterference. Second, RA

has to select the best rate from a wide set of available rate options. As rate adaptation

is the key mechanism to utilize channel capacity, it has beenan active research topic

for more than 15 years. In this section we revisit the solution space and categorize

the existing designs, while in Chapters 4, 5 we critically examine commonly adopted

design guidelines using real experiments.
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2.3.1 Solution space for RA

At its core, each rate adaptation algorithm should possess at least two basic mecha-

nisms.Estimationmechanism either directly estimates the best transmissionrate based

on the current channel (e.g. using SNR), or indirectly infersthe best rate by gauging

how well the currently chosen rate performs (e.g. using frame loss statistics).Action

mechanism decides when and how the transmission rate is updated given the outcome

of channel estimation. Based on how these two mechanisms are implemented, we can

categorize rate adaptation designs into several general approaches.

Estimation: Rate adaptation algorithms can be classified based on the different

layers, information units and techniques they use to estimate the wireless channel.

Which layer to use?Algorithms can be classified based on the protocol stack layer

they use. PHY-layer approaches can utilize SNR feedback (RBAR [19], OAR [20],

CHARM [25], FARA [28], ESNR [33]), bit error rate (BER) information (SoftRate

[27]), or other signaling information as signal distortion(AccuRate [29]). MAC-layer

approaches use frame transmission successes/ losses to indirectly infer the channel

quality (ARF [17], AARF [18], ONOE [21], SampleRate [23], Atheros MIMO RA

[32], RRAA [34]). Hybrid approaches combine both PHY and MAC-layer information

(HRC [26]).

Which information unit to use?Cross layer designs utilize symbol level informa-

tion to estimate channel quality (SoftRate, FARA, AccuRate). The remaining designs

use MAC-layer frames to measure SNR or loss. These designs canbe further classified

in the designs that use DATA frames as ARF and SampleRate, or signaling frames as

RTS/CTS (e.g. RBAR and OAR).

How to estimate?SNR-based designs translate the measured SNR into a best trans-

mission rate based on pre-defined mappings. Loss-based designs estimate the channel
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quality based on the outcome of previously transmitted frames. Deterministic pat-

ternapproaches treat consecutive frame successes/ losses as anindication of good/bad

channel condition (e.g. ARF).Statistical metricapproaches use long-term or short-

term frame statistics to statistically estimate the best possible rate (e.g. SampleRate).

Action: There are two main approaches to adjust the rate upon channelestima-

tion. Sequential RAdesigns, adjust one rate option at a time. So, they move to the

next higher/lower rate when channel becomes good/bad respectively. Best RAdesigns

switch directly to rates which yield the best performance.

2.3.2 An overview of RA designs

We broadly classify RA designs as SNR-based and loss-based.

SNR-based designs:RBAR [19], one of the first proposed SNR-based designs

leverages the RTS/CTS exchange to estimate SNR at the receiver side. CHARM [25]

leverages reciprocity of the wireless channel to estimate average SNR at the receiver

using packets overheard from the receiver. So, it avoids theoverhead of RTS/CTS, and

enables implementation on commodity cards. FARA [28] uses per-frequency SNR

measurements to enable a transmitter to use different bitrates across different OFDM

subbands. ESNR [33] has been designed for Multiple-Input, Multiple-Output (MIMO)

802.11n systems and uses Channel State Information (CSI) feedback, available from

the receiver to the transmitter only in 802.11n systems. SNR-based solutions that

require feedback from the receiver, are not 802.11a/b/g standard-compliant and as a

result they have not been popular in commercial 802.11 systems.

Loss-based designs:This class of algorithms utilizes PHY-layer [27] or MAC-

layer [17,18,23,32,34] loss feedback to decide the next rate for transmission. This dis-

sertation focuses on practical 802.11a/b/g/n algorithms (ARF [17], SampleRate [23],

Atheros MIMO RA [32], RRAA [34]), which make decisions solely based on the
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MAC-layer ACK frame sent upon successful delivery of a DATA frame. ARF and

SampleRate areprobing-baseddesigns in which a few data frames are occasionally

transmitted at a rate different from the current one toprobethe channel. ARF sends a

probe packet at a rate higher than the current one, upon either ten consecutive transmis-

sion successes or when a timer expires. If the probe packet succeeds, it increases the

transmission rate. ARF decreases the rate upon two consecutive transmission failures.

SampleRate maintains the expected transmission time for each rate, and updates it af-

ter each transmission. A frame is transmitted at the rate that currently has the smallest

expected transmission time. Different from probing based algorithms, RRAA uses a

short-term loss ratio to assess the channel and opportunistically adapts the runtime

transmission rate to dynamic channel variations. Finally,Atheros MIMO RA selects

the best goodput rate based on loss statistics, while it upper-bounds probing and rate

selection.

A recent proposal [41] seeks to achieve optimal, collision-resilient RA, without

requiring channel state feedback, using rateless codes. Strider [41] has limitations to

be applied at an 802.11 setting. First, it requires new encoder/decoder components

and MAC-layer protocol changes, which are not supported by IEEE 802.11 standards.

Second, its decoder’s complexity grows with the density of the modulation scheme.

This poses new challenges for the upcoming 802.11ac, which supports up to 256-

QAM. Finally Strider has not been designed for MIMO. This dissertation focus on the

study of practical, IEEE 802.11 standard-compliant designs.

2.3.3 Departures from the state of the art 802.11 RAs

The rate adaptation proposals presented in this dissertation (HA-RRAA, MiRA), be-

long to the loss-based designs. This decision is based on ourexperimental study pre-

sented in Chapters 4, 5, which shows the limitations of SNR-based proposals to be
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used in real 802.11 settings. However, HA-RRAA and MiRA depart from the existing

loss-based designs [17, 18, 23, 32, 34] in the following key ways. First, our proposals

apply history-aware, prioritized probing schemes, to identify the best goodput rate at

low probing cost. MiRA is able to address the unique loss characteristics of diversity

and spatial multiplexing MIMO modes, by applying a Zigzag probing scheme. HA-

RRAA and MiRA are able to eliminate transmissions at rates that consistently offer

lower goodput, by applying an adaptive time probe interval.Different from existing

designs [23, 32, 34], our rate adaptation proposals use events to trigger probing, and

rapidly adapt to channel dynamics.

Although interference detection and reaction mechanisms are usually decoupled

from rate adaptation, our study shows a significant impact ofcollision losses on rate

selection process. Different from existing proposals [17,18, 23, 32], MiRA and HA-

RRAA integrate mechanisms that, can differentiate channel from interference losses,

and react by selectively enabling RTS/CTS. Finally, our rateadaptation algorithms

utilize the unique features of 802.11 protocols. For example, MiRA considers 802.11n

frame aggregation features both in rate selection and collision detection process.

2.4 Background on 802.11 Energy Save

IEEE 802.11 energy efficient designs have been widely studied both on the infrastruc-

ture [43–45] and client sides [46–58].

802.11 infrastructure energy save Infrastructure energy save proposals [43–45]

seek to save energy consumed in the 802.11 infrastructure components (i.e., APs, con-

trollers). SEAR [44] and Wake-on-WLAN [45] adopt the resource on demand strategy.

They seek to save energy for idle APs, which do not serve any traffic. Specifically, they

strategically power on and off APs to save energy, based on users’ demand. SEAR
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forms clusters of APs that are in close proximity. Then, it strategically powers on and

off APs that belong to the same cluster, based on the traffic demand that the cluster

needs to serve. Different from SEAR, which requires a centralcontroller, in Wake-on-

WLAN design, each AP independently makes decisions to power itself off, when it

does not see any clients in its vicinity. Turn on/off APs solutions have been designed

for legacy 802.11a/b/g networks, and they do not consider MIMO power consumption.

Designing MIMO energy save for the 802.11 infrastructure ispart of our future work.

802.11 client power save On the wireless client side, there are three main direc-

tions to save power in an 802.11 network. First, MIMO 802.11 speed gains come at the

cost of increased power consumption, due to the added complexity of MIMO circuit

blocks. MIMO circuitry power consumption is proportional to the number of anten-

nas [64]. MIMO power save seeks to identify the most power efficient antenna setting.

Second, an 802.11 interface consumes power even when it doesnot transmit or receive

any data, while sensing the channel for incoming transmissions. Idle power save seeks

to save 802.11 power consumption during idle times, when theadapter does not trans-

mit or receive any data. Third, power consumed on power amplifiers is proportional to

the transmit power [60]. Transmit power save, dynamically adjusts the transmit power

in an 802.11 device. We next elaborate on these directions.

MIMO power save: The IEEE 802.11n standard [6] specifies a new Spatial Multi-

plexing Power Save (SMPS) feature to save MIMO power consumption. SMPS allows

for a station to operate with only one active receive chain for a large period of time. It

supports two operation modes. In theStatic SMPSmode, the station retains only a sin-

gle receive chain, and forces the transmitter to send using only diversity single stream

rates. In theDynamic SMPSmode, the receiver switches to multiple receive chains be-

fore every multiple stream transmission, which is precededby a RTS/CTS handshake.

It switches back immediately to one active chain, when the frame sequence ends. In
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Chapter 6, we expose SMPS limitation to save both power and energy in practical

settings.

Different from SMPS which only considers MIMO power consumption, Snooze

[58] switches antenna settings according to MIMO speed (airtime utilization). Specif-

ically, it switches to the next higher receiver antenna option, when airtime utilization

is higher than a threshold. By increasing the number of antennas, Snooze seeks to

increase MIMO speed, and as a result to accommodate the offered application data

source rate. Our case study of Chapter 6 shows that, chain selection solely based on

speed, can lead to energy sub-optimal antenna setting. Except from antenna manage-

ment, Snooze schedules the sleep and wake-up intervals, of the clients connected to an

AP.

Idle power save:There are many recent proposals [46,51–53], which seek to save

idle power consumption of 802.11 interfaces. In the legacy IEEE 802.11a/b/g Power

Save Mode (PSM), clients can sleep adaptively, and wake up only when they intend

to transmit, or expect to receive packets. The access point buffers downlink packets,

and transmits them only when the client wakes up. Different from the legacy PSM,

the 802.11n standard [6] introduces the Power Save Multi-Poll (PSMP) feature, which

allows for clients to operate as a group rather than individually. PSMP schedules both

downlink (DL) and uplink (UL) traffic for multiple PSMP-capable stations in a PSMP

sequence. During a PSMP sequence, a station shall not be ableto receive and transmit

frames at the times outside its scheduled DL and UL periods. PSMP supports two

operation modes. InScheduled PSMP, the AP periodically initiates a PSMP sequence,

to serve periodic QoS traffic. InUnscheduled PSMP, the AP may initiate a PSMP

sequence for PSMP-capable, awake stations, at any time.

Transmit power save:Transmit power control designs [55,56] seek to save power

consumption by decreasing the transmit power. However, lowering the transmit power,
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while maintaining the same PHY transmission rate, may result in higher packet losses

and lower speeds. On the other hand, increasing transmit power amplifies interference.

A joint rate adaptation and transmit power control design has been proposed in [55].

Our MIMO energy save study presented in this dissertation, assumes fixed transmit

power. Joint power control and antenna selection is part of our future work.

2.4.1 Departures from the state of the art 802.11 energy save

The 802.11 energy save design proposed in this dissertation(MRES), seeks to save

receiver energy on MIMO 802.11 wireless clients. Differentfrom transmit power con-

trol designs [55,56], MRES assumes fixed transmit power, which is the default setting

in the most commodity 802.11 devices. We leave the joint antenna and transmit power

selection, as a future work. MRES also focuses only on antennaselection, and can

work with any idle power save design, as the new IEEE 802.11n PSMP. Interestingly,

our study in Chapter 6 shows that, MRES can increase sleep time opportunities and

lead to energy savings, when it works in concert with idle power save solutions.

Recent proposals (SMPS [6], Snooze [58]) apply antenna selection to save energy

at 802.11n receivers. SMPS seeks to save power consumed in MIMO circuit blocks, by

switching from “many” to a “single” antenna setting. Snooze[58] switches antenna

settings according to MIMO speed (airtime utilization). For example, Snooze will

switch at a higher antenna configuration to accommodate the offered application data

source rate. Our case study presented in Chapter 6 shows that,antenna selection solely

based on MIMO speed, or power consumption can lead to energy sub-optimal antenna

selection. MRES departs from these proposals by consideringboth speed and power

in antenna management.
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CHAPTER 3

Experimental Methodology

The results presented in this paper are obtained from real experiments. We next de-

scribe our experimental platform, setting and methodology.

Experimental platform The sender for all our experiments is a programmable

AP platform, which uses Atheros AR5416 2.4/5 GHz 802.11a/b/g/n capable chipset.

The 802.11 MAC is implemented in the FPGA firmware, to which wehave access.

The platform has several appealing features that facilitate our research on rate adap-

tation and energy save. First, we can implement our own algorithms, and run them

at the AP. Second, we can perform per-frame tracing of various metrics of interests,

such as frame hardware retries and per-antenna SNR values. Third, we can configure

many different parameters in real time on a per-frame basis such as: a) the maximum

retry count, b) RTS option, c) the transmission rate for eachframe retry. Finally, the

feedback delay from the hardware layer is small, which implies that timely link-layer

information is available to rate adaptation and energy save. We repeat our experiments

with various wireless clients, which use Broadcom, Marvell and Atheros chipsets. For

each experimental setting we describe our wireless client characteristics.

Our AP supports all the 802.11n new features, presented in Section 2.2, besides

MCS feedback. It allows for diversity, single-stream (SS) and spatial multiplexing,

double-stream (DS) modes. It also supports three antennas (RF chains). Its available

rate options can go up to 130Mbps and 300Mbps for 20MHz and 40MHz channels
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MCS Modulation Code Rate Mode Rate (Mbps) Rate (Mbps) A-MPDU Max Size A-MPDU Max Size

at 40MHz at 20MHz (bytes) at 40MHz (bytes) at 20MHz

0 BPSK 1/2 SS 13.5 6.5 6684 3216

1 QPSK 1/2 SS 27 13 13368 6434

2 BPSK 1/2 DS 27 13 13360 6430

3 QPSK 3/4 SS 40.5 19.5 20052 9650

4 16-QAM 1/2 SS 54 26 26738 12868

5 QPSK 1/2 DS 54 26 26720 12860

6 16-QAM 3/4 SS 81 39 40104 19304

7 QPSK 3/4 DS 81 39 40080 19300

8 64-QAM 2/3 SS 108 52 53476 25740

9 16-QAM 1/2 DS 108 52 53440 25736

10 64-QAM 3/4 SS 121.5 58.5 60156 28956

11 64-QAM 5/6 SS 135 65 66840 32180

12 16-QAM 3/4 DS 162 78 80160 38600

13 64-QAM 2/3 DS 216 104 106880 51472

14 64-QAM 3/4 DS 243 117 120240 57890

15 64-QAM 5/6 DS 270 130 133600 64320

16 64-QAM 5/6 DS 300 148400

Table 3.1: 802.11n rate options for 20/40MHz channels.

respectively. Table 3.1 shows our AP’s rate options and their characteristics. Our AP

and all the 802.11n adapters used for wireless clients in this dissertation, use MRC for

receive diversity, as described in Section 2.2. The transmit diversity algorithm for our

AP is Cyclic-Delay Diversity (CDD). CDD transforms spatial diversity into frequency

diversity. Specifically, the signal is cyclically shifted via the available antennas, to

address intersymbol interference.

Frame aggregation with BlockAck (i.e., ACK for A-MPDU) feedback is supported

from both our AP and our 802.11n wireless clients. Upon receiving a BlockAck, the

rate adaptation module gets feedback including the number of MPDUs in the trans-

mitted A-MPDU (called asnFrames) and the number of MPDUs received with er-

rors (called asnBad). If the entire A-MPDU is lost, the number of hardware retries

(called asretries) is also available. We can then computeSub-Frame Error Rateas

SFER = nFrames×retries+nBad
(retries+1)×nFrames

. Our AP’s Atheros driver upper-bounds the A-MPDU
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Procedure 1Atheros MIMO RA
1: maxRate← forthHighestRate;

2: probeInterval =50;

3: while truedo

4: on recv blockACK(retries, nFrames, nBad);

5: SFER← retries∗nFrames+nBad
(retries+1)∗nFrames

;

6: SFERR ←
7
8
∗ SFERR + 1

8
∗ SFER;

7: if isProbe&&retries == 0&&2 ∗ nBad < nFrames then

8: maxRate← next higher rate (maxRate);

9: probeInterval = probeInterval/2;

10: else if !isProbe&&SFERR > 55% then

11: maxRate← next lower rate (R);

12: probeInterval =50;

13: end if

14:

15: maintainmonotonicity(R);

16: R = find bestthr rate(maxRate);

17: if probeT imerF ires&&R == maxRate then

18: R = nexthigher rate(R);

19: isProbe = true;

20: end if

21: reduceSFERfor all rate(1
8
, 50);

22: end while

size, such as the ratio between the A-MPDU size and the transmission rate, to be equal

for every rate option. As a result, for the max A-MPDU size, itguarantees equal air-

time for every transmission. The A-MPDU size upper-bounds for our driver’s 40MHz

and 20MHz rate options, are presented in the last two columnsof Table 3.1. The

maximum air-time for each rate is approximately 4ms. In Chapter 5, we evaluate rate

adaptation for different A-MPDU sizes. We then uncover the tradeoff between re-

maining adaptive to channel dynamics and amortizing protocol overheads with frame

aggregation.
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The default rate adaptation algorithm for our AP platform isAtheros MIMO RA

[32]. It selects the best goodput rate based on the weighted moving average SFER

performance of each rate. SFER statistics of each rate are updated after transmit-

ting at this rate. There is also an aging mechanism, which periodically (50ms) re-

duces SFER statistics for each rate by a 1/8 factor. The candidate rates for selection

are upper-bounded by amaxRate. Upon high/low SFER of the current selected rate

R, maxRate can be decreased/increased by one rate option, respectively. The pseu-

docode of Atheros MIMO RA algorithm is presented in Procedure1. In Chapter 5, we

evaluate Atheros MIMO RA, and uncover its limitations.

Experimental setting We conduct all our experiments both in a campus setting

and in RF chamber, a RF shielded room isolated from external RF noises and interfer-

ences. We perform both controlled experiments and field trials. We perform controlled

experiments at midnight to minimize the impact of external factors, such as signal in-

terference (as verified by our sniffer) and people walking around. Field trials represent

more realistic scenarios, in which various sources of dynamics co-exist in a complex

manner. We conduct both static and mobile client experiments, under interference-free

and hidden terminal settings. The static settings are used to evaluate the stability and

robustness of an algorithm, i.e., whether it can stabilize around the optimal setting.

The mobility settings evaluate how responsive an algorithmis in adapting to signif-

icant channel variations perceived by mobile clients. The hidden terminal settings

assess how an algorithm performs under collision losses. Weconduct each experiment

for more than 8 runs and the results presented are averages over all runs. The frame

(MPDU) size used for our tests is 1.5KB.
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CHAPTER 4

History-Aware Robust 802.11a/b/g Rate Adaptation

This chapter studies rate adaptation (RA) for legacy 802.11a/b/g systems. Our ex-

periments with commodity 802.11 testbeds, show that popular, practical algorithms

[17, 23, 34] perform poorly even in static client, indoor scenarios. The fundamental

problem is that, real-world wireless networks exhibit richchannel dynamics, includ-

ing random channel errors, mobility-induced channel variation, and contention from

hidden stations. Existing RAs have limitations to capture these channel dynamics, and

as result they can even perform worse than a fixed-rate scheme.

In this chapter, we first conduct a systematic experimental study and simple anal-

ysis to examine three popular design guidelines followed bypractical 802.11a/b/g RA

algorithms. These guidelines include:1) the decrease of the transmission rate upon

severe packet loss,2) the use of PHY metrics to decide new transmission rate3) the

use of long-term smoothened operation to produce the best average performance. Our

experiments surprisingly show that each of the above three seemingly valid guidelines

has its own Achilles heel. In fact, even under mild link-layer contention, these designs

not only have limitations to facilitate throughput improvement, but also may reduce

the throughput and aggravate channel contention, by falsely triggering rate decrease.

We further study the performance variations of the wirelesschannel. We observe

time periods where the channel can accommodate high transmission rates, to be suc-

ceeded by significant channel quality degradation. Popular802.11a/b/g RA solutions

may have limitations to prevent transmissions at high loss rates upon bad wireless
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channel. They may not also switch fast at higher rates, when channel quality im-

proves. This can result in up to 29% goodput loss of existing RAdesigns over the

fixed best goodput rate. To address these challenges, we design and implement a

History-Aware Robust Rate Adaptation Algorithm(HA-RRAA). HA-RRAA builds

upon RRAA [34], and leverages short-term loss ratio to providenot only fresh but

also dependable information to estimate the channel quality. It introduces novel mech-

anisms which improve RRAA performance under dynamic channelsand hidden ter-

minals. HA-RRAA applies an adaptive time window to limit the excessive number

of transmissions at high loss rates, while remaining responsive to intense channel dy-

namics. It also leverages the per-frame RTS option in the 802.11 standards and use

a cost-effective, adaptive RTS filter to suppress collisionlosses with low overhead.

Our experiments show that HA-RRAA consistently outperforms popular 802.11a/b/g

standard-compliant RAs, with 51.9% goodput gains in realistic field trials.

This chapter makes three contributions. It studies the wireless channel dynam-

ics using 802.11 testbeds, and uncovers their impact in existing RAs performance. It

proposes HA-RRAA, a new design which can successfully addressthese dynamics.

It compares HA-RRAA with state of the art RAs using real experiments in scenar-

ios with static/mobile stations, TCP/UDP flows, with/without hidden stations, and in

controlled/field trial environments.

The rest of this chapter proceeds as follows. Section 4.1 describes our experimen-

tal setting. Section 4.2 examines three key design guidelines of existing algorithms.

Section 4.3 studies the short-term channel past performance and its impact on rate se-

lection. Section 4.4 presents the design of our proposed HA-RRAA scheme. Section

4.5 describes our implementation and evaluation efforts. Finally, Section 4.6 concludes

the chapter.
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Figure 4.1: Experimental floorplan.

4.1 Experimental Setting

We conduct all our experiments in a campus setting, presented in Figure 4.1. We also

conduct SNR measurements in RF chamber. We place our clients in various locations

between spots P1 and P6, while our access point located at AP spot, serves in the

most cases as the sender of the wireless traffic. For our controlled hidden-terminal

experiments we place an AP at location H, which periodicallybroadcasts frames. Our

experimental methodology and our AP device capabilities are described in Chapter

3. At the client side, we use various adapters as Linksys WPC600N 802.11a/b/g/n,

CISCO Aironet 802.11a/b/g and AirPort Extreme, Atheros (0x168C, 0x86) adapter.

Finally, we conduct each experiment for multiple runs and the results presented are

averages over all runs. The average standard deviation for controlled performance

(goodput) experiments was smaller than 0.6 Mbps.

4.2 Critique on Existing Design Guidelines

State of the art rate adaptation algorithms have been using several design guidelines as

discussed in Section 2.3.1. In this section, using case studies we show that while such

guidelines are useful in certain presumed scenarios, they can be misleading in other
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cases. In the worst case, they yield unexpected, erroneous results.

4.2.1 Case study 1: Decrease transmission rate upon intensepacket loss

A fundamental design guideline which has been widely applied in almost all existing

algorithms (e.g. [17, 18, 21, 23, 26]) says that upon severe packet loss, rate adaptation

should decrease its current transmission rate. The original motivation for this rule is

that, whenever the link condition between the sender and thereceiver deteriorates and

thus incurs significant losses at the current rate, the sender switches to lower rates to

adapt to the worsening channel condition.

The above rule is easily broken in practice when hidden terminals exist. Hidden

terminals can cause significant loss at the receiver independently of the channel quality.

This subsequently triggers rate adaptation at the sender todecrease its rate according

to the stated guideline. However, the sender should not decrease its transmission rate

upon hidden-station induced losses, because this action will not solve the contention

problem. In fact, reducing the rate will make channel contention even worse because

it prolongs the transmission time for each packet, which aggravates channel collisions

and further reduces the transmission rate.

Our controlled hidden terminal experiments verify the above statements. In our

hidden station setting, an 802.11a access pointH broadcasting packets at location P6,

acts as a hidden terminal to an 802.11a client located at P2. UDP traffic sent from our

AP to client at P2, collides withH ’s broadcast frames. To change the intensity of the

hidden terminal setting, we vary the data source rate of the hidden access pointH. In

Table 4.1 we present how the popular ARF algorithm performs when hidden terminal

H is disabled, whenH data source is set to 2Mbps and when it is set to 4Mbps. In

the modest interference setting of 2Mbps, 59% of the frames are transmitted at rates

lower than 36Mbps which results in an 29.65% increase in losscomparing to non-
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Rates ARF ARF HT (2Mbps) ARF HT (4Mbps)

(Mbps) Rate Distribution(%) Rate Distribution(%) Rate Distribution(%)

6 29 100

9 4

12 8

18 8

24 10

36 3 9

48 57 8

54 40 24

Goodput (Mbps) 27.93 4.91 0.0015

Loss (%) 17.62 47.27 99.97

Table 4.1: Hidden terminals’ effect on rate adaptation.

interference case. In the intense interference scenario, ARF considers collisions as

channel losses and it transmits 100% of the frames at 1Mbps. We present more hidden

terminal results in Section 4.5.2.

The fundamental problem is that rate adaptation may experience much richer set

of packet loss scenarios in practice, which are well beyond the simplistic one of only

fading/path loss envisioned by the original designs. The guideline of decreasing rate

upon severe packet loss does not apply in other loss scenarios. The RA solution has to

differentiate various losses and react accordingly.

4.2.2 Case study 2: Use PHY-layer feedback to infer new transmission rate

There have been many RA proposals [19,20,25–29,33], which utilize PHY-layer feed-

back to estimate channel quality. However, several of thesesolutions [19,20,27–29,33]

are not 802.11a/b/g standard-compliant. They require explicit feedback from the re-

ceiver to the transmitter, which is not available in 802.11a/b/g systems. Moreover,

fine PHY-layer feedback may not be exposed from the hardware to the firmware of

an 802.11 device, where RAs are implemented. PHY-layer feedback is per-bit confi-

dence information in SoftRate [27], SNR of each OFDM subband in FARA [28] and
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symbol level dispersion information in AccuRate [29]. As a result, the above solutions

have been evaluated solely using simulations and software radio testbeds, rather than

commodity 802.11a/b/g adapters.

Signal-to-noise ratio (SNR) metric calculated from RSSI and noise floor feedback

on the transmitter side in the 802.11a/b/g drivers, can still be used for channel estima-

tion (CHARM [25]). However, there are significant challenges that these SNR-based

algorithms need to overcome. SNR measurements in commodity802.11 systems may

be inaccurate due to hardware calibration and interfering transmissions [25, 30]. To

evaluate the SNR-fluctuations under a stable, interference-free channel, we place an

802.11a client approximately 3 meters from our AP in RF chamber. We then create

uplink UDP traffic (from client to AP) and we measure the SNR values of back-to-

back 1.5Kbyte received UDP frames. We fix the rate at 54Mbps, while we ensure very

small gaps (< 0.6ms) between consecutive frame transmissions. Frame loss is neg-

ligible (< 0.003%). From a trace of 550 frames presented in Figure 4.2, we observe

SNR variations which can go up to 4dB between consecutive transmissions. The min-

imum, maximum SNR observed, is 33dB, 38dB respectively. Thislarge variation can

easily lead to more than one rate option deviation from the optimal rate, when trans-

lating SNR to transmission rate, based on the goodput versusSNR mappings (Figure

7 of [35]). We come to similar conclusions by experimenting with different transmis-

sion rates and distances between client and AP. Except from SNR fluctuations, SNR-

BER relationship can change with different propagation environments. Specifically,

the SNR measured at the beginning of the packet may not capture the variation in SNR

during the frame transmission due to fading. As a result SNR-based protocols require

in-situ training to perform efficiently across different propagation environments [24].

To evaluate solutions that use PHY-layer feedback, we compare SoftRate [27] with

our proposed HA-RRAA in Section 4.5.2, using ns-3 simulations.
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4.2.3 Case study 3: Use smoothened long-term operations to evaluate perfor-

mance

Another design direction suggests to use long-term smoothened operation in the pres-

ence of random losses over the channel. The long-term smoothened operation can

refer to eitherrate estimationor rate changeaction, or both. In rate estimation, this

rule recommends to use long-term statistical information to estimate the optimal trans-

mission rate. For example, popular algorithms as ONOE [21] and SampleRate [23]

both collect packet-level statistics (in terms of loss and throughput) over a period of

one to ten seconds. In rate change decision, this rule suggests to only change rates

infrequently, say once every 1 or 10 seconds. In both cases, the underlying hypothesis

is that long-term estimation/action will smoothen out the impact of random errors and

lead to best average performance. Our experiments and analysis based on information

theory invalidate both rules.

Our experiments first reveal that long-term rate estimationand rate change action

over large sampling periods will not yield best average performance. The experiment

is conducted using the ONOE algorithm implemented in MADWiFi. ONOE uses one

second as the default sampling interval. It changes its ratebased on the packet-level

loss statistics collected over each sampling period. In ourexperimental setting, the
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Sampling intervals (ms) 5000 1000 500 100

UDP Goodput (Mbps) 14.9 15.3 16.5 17.1

Table 4.2: Performance of ONOE with different sampling intervals.

sender located at a sibling to P2 spot of Figure 4.1, uses ONOEto send packets to

the AP. We vary the sampling period and the results are given in Table 4.2. The table

clearly shows that small sampling period of 100ms actually produces the best aver-

age performance in the long term. Using large sampling period may lead to 12.9%

throughput reduction. In fact, similar results have also been reported in early studies

(Figure 3-5 of [23]). One reason for this performance drop isthat the algorithm is

unable to exploit the short-termopportunistic gainover the wireless channel, which

typically occurs at the time scale of hundreds of milliseconds.

We next apply the concept ofmutual information[74] to show that long-term rate

estimate over large sampling periods does not help even in the presence of random

loss. Mutual information indicates the mutual dependency of two random variables,

i.e., how much information one random variable can tell about the other. We treat

the transmission success/failure event at a given time as a random variable and calcu-

late the mutual information for two events at different timeinstants. For our exper-

iments we disable rate adaptation and the frame retry, and record the time for each

success/failure transmission. We then calculate the mutual information for each pair

of packets separated by an interval ofx ms. Figure 4.3 plots the mutual information

evolution with respect to differentx. The figure shows that their mutual information

becomes negligible when two packets are separated by more than 150ms over time.

This implies that the success/failure event occurred 150msearlier can barely provide

any useful information for the current rate estimation. We also conduct similar ex-

periments at different locations. All results show that mutual information diminishes

when the sampling period becomes larger than 150∼250ms. We can conclude that
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large sampling periods, ranging from a few seconds to tens ofseconds, do not lead to

more accurate rate estimation. In this case, assigning different weighting factors for

samples over time, becomes a challenging issue.

We finally show that long-term, infrequent rate change decision may also lead to

performance penalty. We set up a mobility scenario where an 802.11a client is moving

between locations P1 and P5 at approximately constant pedestrian speed of 1m/s. The

traffic is UDP from the AP to the client. We next compare ARF and SampleRate im-

plemented in our AP as in MADWiFi. First, while [23] averagesthe transmission time

over a 10-second window, the MADWiFi SampleRate implementation uses exponen-

tially weighted moving average (EWMA) without any window. Second, while [23]

suggests per-packet rate decision, the rate is only changedevery 2 seconds or upon

four consecutive losses in the implementation. Both ARF and SampleRate use rela-

tively short-term rate estimation. ARF sends a probe packet no later than 15 transmis-

sions. SampleRate implementation uses EWMA with a factor of 0.05, which implies

that roughly only the recent 50 samples carry major weights in the estimation. How-

ever, the rate change actions in both algorithms are quite different. ARF allows for

rate change every 10 or 15 packets, while SampleRate takes 2 seconds to switch to a

new rate (unless four consecutive losses trigger rate decrease). These different design

directions have a significant impact in performance under our mobility scenario. Our

experimental results show that, the average UDP goodputs for ARF and SampleRate

are 20.6Mbps and 18.8Mbps, respectively. So ARF performs 9.6% better than Sam-

pleRate in the mobile client case, which shows that the delayed rate-change decisions

hurt the responsiveness of SampleRate.
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4.3 The Importance of Learning from Short-Term History

State of the art rate adaptation algorithms do not adequately utilize the knowledge of

channel’s short-term past performance. RRAA and ARF decide thetransmission rate

of the subsequent frames, solely based on the performance ofthe current transmis-

sion rate, without considering the outcome of the past transmissions at adjacent rates.

AARF [18] seeks to fix the above limitation of ARF by doubling theprobing threshold,

when a probe packet fails. RRAA+ [31] enhances RRAA by increasing/decreasing

a probabilityp[R] of transmitting at a rateR, when transmissions atR succeed/fail

respectively. Finally, SampleRate seeks to limit sampling at high loss rates by exclud-

ing from selection for 10 seconds (MADWiFi implementation), rates which faced 4

successive failures. However, the mechanisms used from AARF, RRAA+ and Sam-

pleRate to capture channel’s past performance, do not adequately address the two main

dimensions of the problem.

When does loss happen?RRAA+ and SampleRate falsely considerrate’s and not

channel’s past performanceto limit transmissions at high loss rates. Specifically, they

update the performance of a rateR, only when they transmit atR and not when there

is an indication that the channel has changed. Maintaining stale history about a rate’s

performance, can lead to goodput degradation especially inthe scenarios of intense

channel dynamics (e.g. mobility).

How severe is the loss?The above history-aware mechanisms adapt probing at

high loss rates, when transmissions at these rates fail. However, they do not consider

how significant was the loss. For example RRAA+ will halvep[R] when it moves to

lower rates independently if the loss ratio forR was 40% or say 100%. AARF will

double the probing threshold independently if the probe frame was hardware retried 1

or 10 times, while SampleRate does not distinguish cases where probe frame will face

less or more than 4 successive failures.
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Rates RRAA RRAA+ SampleRate ARF Fixed Rate Fixed Rate

Distribution(%) Distribution (%) Distribution(%) Distribution(%) Goodput (Mbps) Loss (%)

6 5.39 0.64

9 7.74 1.54

12 10.24 0.49

18 14.73 0.80

24 1 1 6 5 18.65 1.96

36 53 96.5 87 65 25.64 3.41

48 46 2.5 6 29.5 12.49 62.84

54 1 0.5 0 100

Goodput (Mbps) 18.20 25.6 23.87 21.85

Loss (%) 33.13 2.99 9.28 22.03

Table 4.3: Performance of RRAA, SampleRate, ARF at location P3.

We verify the above limitations in the following section using real experiments.

4.3.1 A case study

We start our study on history-aware rate adaptation by raising two simple questions.

How important is for RA designs to consider channel’s short-term historical perfor-

mance? Are the existing RAs history-aware? To systematically answer these ques-

tions, we conduct fixed rate experiments in many different locations and we study on

a per-frame granularity their run-time loss and goodput performance. To ensure that

our observations are attributed to channel dynamics and notto collisions from hidden

stations, we switch to 5GHz band on channel 36, which was interference-free during

our experiments, as verified by our sniffer.

Our experiments show that there are time intervals where a transmission rate’s

performance can be highly dynamic, which can be followed by time intervals where

a rate’s performance is relatively stable (longer than 10 seconds in our experiments).

This behavior is attributed to intense channel dynamics, which can change in different

environments as stated in [24]. In Figure 4.4 we present a 13-second trace of frame

loss evolution of a scenario where client was placed at location P3 and the rate was

fixed at 48Mbps. We observe that frame loss presents big variations during the first 5
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Figure 4.4: Frame loss ratio of 48Mbps over a 13 seconds trace. Each point is an

average over 200 milliseconds.

seconds of our trace, while it is relatively stable after the5th second. More specifically

during the first 5 seconds, frame loss can vary from0% to 69.4%, while it rapidly

increases after that. From 5.4th to 10th second loss ranges from 86% to 91%, while

overall from 5.2th to 13th second loss is greater than42%. The average frame loss of

our trace is54.9%.

An efficient RA algorithm should be both highly responsive to rapid channel

changes and should be able to limit the number of transmissions at high loss rates.

In the previous example, rate adaptation should switch to 48Mbps when its loss is low

and limit transmissions at this rate when loss is constantlyvery high (after 5th second).

But, how do state of the art RAs perform in this scenario? We firstextensively evaluate

the performance of all 802.11a rates at location P3 and we present the results in Table

4.3. From the Table, we observe that rates smaller than 48Mbps give very low frame

loss, while 48Mbps gives a significant average loss of62.8%. Second, we evaluate and

study the performance of RRAA, RRAA+, SampleRate, and ARF at that location.

As RRAA and ARF do not keep any state about rates other than the current one,
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they keep transmitting at high loss rates. From Table 4.3 we see that RRAA and ARF

transmit 46% and 30% of the frames respectively at low goodput 48Mbps and 54Mbps

rates. As a result, RRAA and ARF give 29% and 14.8% goodput loss respectively,

over the fixed best goodput rate, which is 36Mbps (Table 4.3).SampleRate is proven

slightly more efficient, as it still transmits 7% of the frames at high loss 48Mbps and

54Mbps rates. This results in 6.7% goodput loss over the bestfixed goodput rate.

RRAA+ yields the highest goodput among the evaluated algorithms, by transmitting

only 2.5% of the frames at 48Mbps. Although RRAA+ is proven to beefficient in

our case study setting, our extensive experiments presented in Section 4.5.2, verify the

limitations of RRAA+ design discussed above. Interestingly,they also show that its

guideline to halvep[R] upon failure, can lead to rate under-selection (selection of rates

lower than the best goodput rate).

Based on the lessons learned from our case studies, we design History-Aware

RRAA, which seeks to limit transmissions at high loss rates, while remaining adaptive

to intense channel dynamics.

4.4 Design History-Aware Rate Adaptation

In this section, we present the design of our History-Aware RRAA (HA-RRAA) al-

gorithm. HA-RRAA builds upon RRAA algorithm presented in [34]. RRAA uses a

short-term loss ratioto assess the channel and opportunistically adapt the runtime

transmission rate to dynamic channel variations. Short-term loss ratio allows for

RRAA to be robust against random loss, while remaining responsive to fast channel

changes. RRAA calculates the loss ratio in a time estimation window (ewnd) as:

P =
# lost frames

# transmitted frames
(4.1)
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It also uses two fixed thresholds to sequentially move to higher or lower rates. RRAA

will increase/decrease the current transmission rate by one option, if the loss ratioP is

lower/higher than a thresholdPORI /PMTL. Finally, RRAA leverages the 802.11 RTS

option in an adaptive manner to filter out collision losses with small overhead.

HA-RRAA departs from RRAA in the following two key ways. It leverages an

adaptive time windowto capture short-term channel past performance and avoid prob-

ing at low goodput rates. It leverages the per-frame RTS option in the 802.11 standards

and use a cost-effective, adaptive RTS filter to suppress collision losses with low over-

head. We next elaborate on these mechanisms.

4.4.1 Adaptive time window

Motivated by the 802.11 binary exponential backoff, adaptive time window (twnd)

mechanism: a) exponentially increases a timer upon transmission failure, b) resets

the timer upon transmission success, c) bounds the timer in[0, Tmax]. First, an ex-

ponential increase of time window upon failure, allows for our scheme to eliminate

the rates that consistently offer lower goodput, by transmitting at these rates less fre-

quently over time. Second, by bounding and reseting appropriately the time window,

our mechanism remains adaptive to fast channel dynamics. Adaptive time window is

set asTR = TC × 2exp. The exponent factorexp represents the number of times that

moving from a rateR to the next higher rate fails (results in moving downward atR).

It is upper-bounded by 10 in our prototype.TC represents the minimum estimation

window (ewnd).

History-Aware RRAA applies the adaptive time window to RRAA, to limit trans-

missions at the adjacent high loss rates. Our basic adaptivetime window mechanism

also utilizes the short-term loss statistics offered by RRAA to capture the magnitude

of losses, by linearly increasing time window with loss. Therevised adaptive time

45



window is expressed as:

TR = TC × 2exp × max(1,
P

P0

) (4.2)

whereP is the short-term loss ratio of the rateR andP0 is a loss normalization factor

set to10% in our prototype.

HA-RRAA maintains only one time window for the next higher rateRT of the

current transmission rateR. Every time that HA-RRAA moves downward from a rate

RT to R, it will update time window based on the equation(4.2), while it will increase

exponential by one. HA-RRAA will reset time window for a rateRT in two cases: a)

When transmissions atRT are successful, meaning that they do not trigger HA-RRAA

to move downward at rateR. b) When channel’s further deterioration will trigger HA-

RRAA to move fromR to the next lower rate. HA-RRAA algorithm is presented in

Procedure 2.

4.4.1.1 Handling mobility and hidden terminals

HA-RRAA further improves RRAA in mobility and hidden terminal settings as well.

Fast adaptation: To boost RRAA’s responsiveness to fast channel deterioration,

we enhance HA-RRAA with fast adaptation mechanism. We maintain a small win-

dow of frames (min{ewnd,10} frames in our prototype) and we compute the loss ratio

inside this window. If the loss ratioP is greater or equal to a thresholdPThresh, HA-

RRAA directly moves downward to the next lower rate. We setPThresh = 90% for our

implementation.

Cost-effective adaptive RTS filter: RRAA maintains a RTS window (RTSwnd),

in which all frames are sent with RTS on. Initially RTSwnd is set to 0 and then it is

updated as follows. When the last frame is lost without RTS, RTSwnd increments by

one because the cause of the loss was probably collisions. However, when the last
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Procedure 2HA − RRAA: Input (ACK Frame),Output (R)
1: R=highestrate;

2: timer=ewnd(R); fastimer=min{ewnd(R),10};

3: while truedo

4: rcv tx status(lastframe);

5: P = updateloss ratio();

6: if timer==0‖ (fastimer≤0 && P ≥ PThresh) then

7: if P > PMTL ‖ P ≥ PThresh then

8: if R!=RT then

9: reset(exp,TR);

10: end if

11: TR =updatetwnd(P,exp);

12: RT = R; exp++;

13: R = next lower rate(R);

14: else

15: if R==RT then

16: reset(exp,TR);

17: end if

18: if P < PORI andTR==0 then

19: R = nexthigh rate(R);

20: end if

21: end if

22: timer = ewnd(R); fastimer=min{ewnd(R),10};

23: end if

24: send(nextframe, R);

25: timer−−; fastimer−−; TR−−;

26: end while

frame transmission was lost with RTS, or succeeded without RTS, RTSwnd is halved

because the last frame clearly did not experience collisions.

HA-RRAA further improves RRAA’s adaptive RTS (A-RTS) mechanismto ad-

dress hidden terminals at a lower cost. Although A-RTS seeksto mitigate signal-

ing overhead by selectively turning on RTS, there can be still significant overhead in

the cases where frame’s transmission time is small comparing to RTS/CTS transmis-

sion overhead. HA-RRAA uses a cost-effective adaptive RTS scheme, which follows

the general paradigm of A-RTS, but without blindly turning on RTS, to avoid sig-

nificant overhead especially observed at high rate options.Instead, it turns on RTS

only when the overhead is outweighed by the potential savings. HA-RRAA first esti-

mates the RTS/CTS overhead (TRCTS), which is the channel time used for transmitting
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Procedure 3Cost-Effective Adaptive RTS
1: RTSWnd=0;

2: RTScounter=0;

3: while truedo

4: rcv tx status(lastframe);

5: if !RTSOn and !Successthen

6: RTSWnd++;

7: RTScounter=RTSWnd;

8: else ifRTSOn xor Successthen

9: RTSWnd=RTSWnd/2;

10: RTScounter=RTSWnd;

11: end if

12: if RTScounter> 0 && Tframe ≥ 1.5 · TRCTS then

13: TurnOnRTS(nextframe);

14: RTScounter−−;

15: end if

16: end while

RTS/CTS signaling messages. Second it computes the transmission time of the frame

asTframe = FRAME
R

+ Toverhead whereFRAME is the MAC-layer frame size,R

is the transmission rate andToverhead includes the various 802.11 protocols overheads

(SIFS, DIFS, ACK). Finally, HA-RRAA will turn RTS on only if the following con-

dition holds: Tframe ≥ k · TRCTS, where k is a benefit/cost ratio set to 1.5 in our

prototype. The intuition behind this condition is that, without RTS/CTS, the frame

may need at least one retry to get through, when collision occurs. The pseudocode of

the cost effective adaptive RTS filter is presented in Procedure 3.

4.4.1.2 Putting everything together

In Figure 4.5 we present the complete architecture of HA-RRAA.Upon the reception

of MAC-layer feedback, loss estimation module updates: a) loss ratio estimation for

the selection of the next transmission rate, b) history information module to set the

adaptive time window and c) mobility fast adaptation moduleto handle drastic channel

changes. It also interacts with the cost effective adaptiveRTS filter to update RTS

window, as described in Section 4.4.1.1.
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Figure 4.5: HA-RRAA architecture.

4.5 Implementation and Evaluation

We implement HA-RRAA on a programmable AP platform and we compare them

with RRAA, RRAA+, SampleRate and ARF in controlled testbeds and field trials. We

next present our implementation and evaluation efforts.

4.5.1 Implementation

There are two non-trivial challenges that our implementation must address. First, our

AP platform avoids floating point operations, thus the runtime short-term loss ratio

and the associated two thresholds are not directly applicable. To address this issue, we

count the number of lost frames, rather than calculate the decimal loss ratio. Specif-

ically, we maintain a counter to record the number of lost frames within the current

estimation window, while the loss ratio thresholds are translated into the number of

frame losses.

Second we need to incorporate Atheros’software (SW) retries[32] with the RA

algorithms. SW retries are pairs of{rate, number of hardware (HW) retries}. When
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RRAA RRAA+ SampleRate ARF

Static UDP (2.2-41.1)% (0.4-6.7)% (1.3-83.9)% (2.4-39.6)%

Static TCP (1.7-25.1)% (0.7-41.6)% (5.2-55.0)% (0.1-33.6)%

Mobility - 4.8% 8.6% -

Hidden Terminal up to 8.4% (4.7-21.7)% (15.4-28.5)% 50.1% -× 1145

Field Trial (1.5-5.8)% (12.4-24.8)% (4.9-6.0)% (3.6-51.9)%

Table 4.4: Performance gains of HA-RRAA over state of the art RA designs.

the rate selected from RA algorithm fails (ACK is not received), a software retry will

re-send the data frame in the next lower rate, in an attempt toget the frame through.

If the rate selected from RA algorithm (say 54Mbps) fails, ourplatform will first HW

retry the frame two times at 48Mbps, two times at 36Mbps and then four times at

24Mbps, if the previous attempts fail as well. In our implementation we consider that

a failure at a lower rate implies a failure at higher rates as well. For example, if the

selected rateR (say 54Mbps) fails two times andR (say 48Mbps) fails one time, then

the total failed frames considered in RRAA’s loss ratio will bethree. A successful

transmission for a rateR, is considered a transmission of zero HW retries.

4.5.2 Evaluation

In this section we compare the different RAs both in controlled static, mobile settings

and field trials, using real experiments. The results are averages of multiple back-

to-back runs whose standard deviation varies from 0.004 to 1.05 Mbps in controlled

settings and from 0.17 to 2.2 Mbps in the field trials (as shownby the error bars in

Figures 4.6-4.11). All the algorithms are implemented on the AP side and traffic is

downlink (from AP to client). HA-RRAA’s goodput gains over theother 802.11a/b/g

standard-compliant designs, are summarized in Table 4.4.

To evaluate solutions that use PHY-layer feedback and are not 802.11a/b/g

standard-compliant, we compare SoftRate [27] with our proposed HA-RRAA, using
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Figure 4.6:Static 802.11a client at UDP

setting.
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Figure 4.7:Static 802.11a client at high

volume (4 flows) TCP setting.

ns-3 simulations.

Static clients We first compare RA designs in five different locations (P1-P5)

on a 5GHz interference-free channel. In Figures 4.6, 4.7, 4.8, we present the goodput

performance of the five algorithms for UDP, intense TCP (4 flows) and sparse TCP

(1 flow) traffic respectively. We observe that HA-RRAA outperforms all the other

algorithms in all the locations. For UDP traffic HA-RRAA gives goodput gains up to

41.1% over RRAA, up to6.7% over RRAA+, up to83.9% over SampleRate and up to

39.6% over ARF. In static TCP setting, goodput gains are significant as well and can

go up to55%.

In static settings, HA-RRAA’s goodput gains over other solutions, can be mainly

attributed to adaptive time window mechanism. Specifically, HA-RRAA gives signif-

icantly lower average losses over the other RAs, in the most ofour static UDP and

TCP settings, by avoiding transmission at lossy rates. Compared with the history-

oblivious designs, HA-RRAA presents up to29.7% lower average loss than RRAA

and up to22.4% lower average loss than ARF. Although SampleRate considers past

performance before sampling higher rates as we discuss in Section 4.3, it yields higher

up to9.1% average losses than HA-RRAA. For the location P3 of our case study pre-

sented in Section 4.3.1, HA-RRAA gives significant better performance than RRAA,
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Figure 4.8: Static 802.11a client at low

volume (1 flow) TCP setting.
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Figure 4.9:Mobile 802.11a client at UDP

setting.

SampleRate and ARF (Figure 4.6) by transmitting only2.2% of the total frames at the

lossy 48Mbps rate. Although RRAA+’s performance comes close to HA-RRAA in

many of the locations, our experiments show that it may select rates lower than the

optimal, in various traffic and location settings for two reasons. First, RRAA+ tends to

be conservative by halvingp[R] upon failure. Second, it suffers from stale probability

p[R] statistics. The negative effects of these two observationsare most evident in the

multiple- and single-flow TCP experiments at location P3, where RRAA+ transmits

on average 40%, 58% of the frames at rates lower than 36Mbps, while the average best

goodput rate is 36Mbps. Note that TCP traffic’s bursty or sparse nature may affect

the channel estimation inewnd and may result in different rate distributions compared

with UDP.

In some scenarios, as in our case study setting presented in Section 4.3.1, ARF per-

forms better than RRAA (20% goodput gains). Although both algorithms are history-

oblivious, ARF is proven more conservative in moving to higher lossy rates and it may

also move faster to lower rates upon severe frame loss.

Mobile clients In our mobility setting, client is moving between locationsP1

and P5 at approximately constant pedestrian speed of 1m/s. The channel selected is

interference-free and traffic is UDP. From Figure 4.9, we observe that our adaptive time
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window mechanism does not have any negative effect when client is moving closer to

AP. So, HA-RRAA performs similar to RRAA and ARF. On the other hand,RRAA+

does not have any efficient mechanism to reset its stale statistics, which makes it less

responsive. As a result HA-RRAA outperforms RRAA+ by4.7%. An ideal setting

to evaluate our proposed fast adaptation mechanism, is a vehicular network scenario

when client is moving very fast away from the AP. We leave thisas a future work.

Hidden terminal In this section we evaluate HA-RRAA in a controlled hidden

terminal setting. In our interference scenario, an 802.11aclient broadcasting packets at

P6, acts as a hidden terminal to the 802.11a client at P2, which is the receiver of UDP

traffic from the AP. To change the intensity of the hidden terminal setting, we vary the

data source rate of the hidden station. In Figure 4.10 we present the performance of the

implemented algorithms in a modest and an intense hidden terminal scenario. In the

modest setting (1Mbps data source rate), HA-RRAA is the clear winner over the other

designs, with goodput gains up to50.1%. In the low interference level scenario, the

goodput gains of 8.4% of HA-RRAA over RRAA can be attributed to thecost effective

A-RTS filter of HA-RRAA compared with the simple A-RTS filter of RRAA. In the

very intense hidden terminal scenario, HA-RRAA is slightly worse than RRAA (3.2%)

because its adaptive time window can be increased upon collision losses, making HA-

RRAA to transmit at lower rates compared with the optimal transmission rate. Overall

because Adaptive RTS filter, RRAA, HA-RRAA and RRAA+ give significantly better

performance than ARF and SampleRate.

Field trials We also conduct a series of uncontrolled field trials to understand

how well the RAs perform under realistic scenarios, in which various sources of dy-

namics co-exist in a complex manner. Our field trial uses two static clients at locations

P2 and P4 and a third client initially placed at P3, which we periodically move be-

tween locations P1 and P5. We run four sets of experiments andeach lasted at least
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Figure 4.11:Field trials for 2.4GHz and

5GHz bands.

half an hour both at 2.4GHz (channel 1) and 5GHz bands (channel 36). Traffic is sin-

gle flow TCP. At 2.4GHz band the channel was heavily loaded as wesniffed 17 APs

from channel 1 to 11. Under this high interference environment HA-RRAA gives up

to 5.8%, 24.8%, 6%, 51.9%, goodput gains over RRAA, RRAA+, SampleRate and

ARF respectively, as presented in Figure 4.11. At the less congested 5GHz band the

performance of all algorithms is significantly better. HA-RRAA gives up to12.4%

goodput gains over the other algorithms as well.

Simulations We next compare HA-RRAA with SoftRate [27], using ns-3 simu-

lations. SoftRate uses confidence information calculated bythe PHY-layer (SoftPHY

hints), which are exported to higher layers to estimate the channel BER. Receiver com-

municates this BER estimate to the sender on a per-packet basis, which finally picks

the best goodput rate. Authors in [27] use software radio traces, which specify the

SoftPHY hints that are required for BER computation. As software radio traces are

not available, we calculate BER based on SINR-BER curves [73]. Given that the sim-

ulation propagation environment is fixed and there are not any hardware calibration

or interference issues that can affect SINR, we argue that oursimulated SoftRate can

perform similar to the one proposed in [27].

In our evaluation scenario, an 802.11b AP sends TCP traffic to an 802.11b client.

54



Setting HA-RRAA SoftRate

Goodput (Mbps) Goodput(Mbps)

Static 5.56 5.6

Low Mobilty 2.21 3

High Mobilty 2.05 2.91

Table 4.5: HA-RRAA vs. SoftRate under static, mobile settings.

We compare HA-RRAA with SoftRate under static and mobility scenarios. In the

mobility case, the AP remains static while the client is moving with 3mph, 80mph for

the low and high mobility setting respectively. The resultsare presented in Table 4.5.

Interestingly, in the static case where channel is stable, both algorithms give similar

goodputs and rate distributions (>80% of total frames at 11Mbps). In our mobility

setting, SoftRate can adapt the bit rate on a per-frame basis and yields up to 42%

goodput gains over HA-RRAA.

4.6 Summary

This chapter provides our first step towards gigabit wireless, by studying legacy

802.11a/b/g rate adaptation, using 802.11 standard-compliant programmable testbeds.

We first critique three popular design guidelines of existing algorithms, while we also

experimentally study the short-term dynamics of the 802.11wireless channel. The

key insight learned is that, a RA algorithm has to capture short-term channel’s per-

formance, to infer different loss behaviors and to take adaptive reactions accordingly.

To this end, we design HA-RRAA, which applies adaptive time windows to capture

the short-term channel dynamics. It also differentiates fading from interference packet

loss, by applying a low overhead RTS filter.

HA-RRAA is a practical design in three key ways. First, it is 802.11 standard-

compliant. Second, it does not require receiver-side feedback, which is not supported
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by 802.11a/b/g standard. Finally, it leverages MAC-layer frame loss feedback, which

is available in any commodity 802.11 driver. Our real experiments show that, HA-

RRAA consistently outperforms popular 802.11a/b/g standard-compliant solutions

with goodput gains up to 51.9% in field trials.

56



CHAPTER 5

From Legacy 802.11a/b/g to MIMO 802.11n Rate

Adaptation

IEEE 802.11n standard adopts Multiple-Input Multiple-Output (MIMO) technology to

further enhance its PHY-layer capability. Using multiple transmit and receive anten-

nas, it supports bothSpatial Diversityoriented single-stream (SS) andSpatial Multi-

plexingdriven, multiple-stream (double-stream (DS) in our platform) operation modes.

Together with channel bonding of two adjacent channels, 802.11n offers a much wider

range of transmission rate options up to 600Mbps. The wider span and larger num-

ber of rate options, make MIMO 802.11n rate adaptation (RA) more challenging than

legacy 802.11a/b/g RA. MIMO rate adaptation has to adjust notonly the Modulation-

Coding Scheme (MCS), but also the MIMO mode at runtime based on the channel

quality.

In this chapter, we identify issues and propose solutions for MIMO-based RA in

802.11n systems. Our work started with a simple question. Canwe simply apply RA

algorithms, which have been shown to work well for the legacy802.11a/b/g networks,

to the MIMO setting? Our experiments on standard-compliant802.11n AP platform

show that, both popular legacy RAs (RRAA [34], and SampleRate [23]) and MIMO

RAs (Atheros MIMO RA [32], used in 802.11n Atheros chipsets) have significant

limitations. To our surprise, all three algorithms offer28% to 44% lower goodput,

defined as effective throughput by excluding protocol overhead, than the best fixed-
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rate scheme.The fundamental problem is that all such algorithms do not properly

consider the inherent characteristics of SS and DS MIMO modes, which exhibit very

different loss patterns.

Our extensive experiments both in a campus environment and in RF chamber

uncover a non-negligible, non-monotonic relation betweenloss and rate in 802.11n

MIMO scenarios, when considering all rate options and ignoring operation modes.

That is, although rate increases, loss does not monotonically grow with rates in differ-

ent modes due to inherent MIMO characteristics [8–10]. Thisresults in existing RAs

to transmit at rates lower than the best goodput rate. However, within each SS/DS

mode, the monotonic behavior between loss and rate still largely holds.

In this chapter, we first design MiRA, a new practical RA algorithm for 802.11n

networks. MiRA is 802.11n standard-compliant and can be implemented using com-

modity 802.11n hardware. It does not require any channel state feedback from the

receiver, and it does not make any assumption about the MIMO radio implementa-

tion. MiRA addresses loss non-monotonicity by applying a novel zigzag RA scheme,

which opportunistically zigzags between intra- and inter-mode RA operations. It starts

by sequentially probing rates of the current MIMO mode exploiting loss monotonicity

across individual modes. When it cannot further improve goodput in its current mode,

MiRA performs inter-mode RA by exploring the other DS/SS mode.It uses a new

adaptive probe interval mechanism to limit probing at low goodput rates, while it also

exploits 802.11n frame aggregation feature and BlockAck to differentiate collision

from channel losses. In addition to MiRA, we design and evaluate several alterna-

tives to MIMO RA. Window-based rate adaptation (WRA) runs an independent RA

in each MIMO mode in parallel, to address loss non-monotonicity, while it maintains

and adjusts a rate selection window to identify the best goodput rate with limited prob-

ing cost. MIMO-SampleRate uses SNR measurements to differentiate between SS/DS
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modes.

Our experiments in indoor controlled static/low-mobilitysettings and field trials

confirm the performance gains of MIMO-mode aware RAs, under various MIMO

configurations. Specifically, MiRA consistently outperforms RRAA, SampleRate and

Atheros MIMO RA with goodput gains up to124.8%, 182.2% for static and mobile

clients, respectively. In the field trials, MiRA and WRA achievegoodput gains up to

73.5% over the other legacy and MIMO RA algorithms.

The rest of this chapter is organized as follows. Section 5.1introduces our experi-

mental setting. Section 5.2 studies a simple case of applying existing RA algorithms in

the 802.11n setting, and Section 5.3 reports the findings on characteristics of diversity

and spatial multiplexing modes. Section 5.4 presents the design of MiRA, and Section

5.5 discusses several MIMO RA alternative solutions. Section 5.6 describes our im-

plementation and evaluation, while Section 5.7 reviews therelated work. Section 5.8

concludes the chapter.

5.1 Experimental Setting

We conduct all the experiments on a programmable AP platform, which uses Atheros

AR5416 2.4/5 GHz MAC/BB MIMO chipset. Our AP supports single-stream (SS),

double-stream (DS) modes and rates up to 300Mbps. Our testbed supports frame

aggregation and 20/40MHz channels, as well. For our study, we implement both

legacy [34], [23] and MIMO RAs [32] on the AP side. We provide more informa-

tion about our experimental platform in Chapter 3. We repeat our experiments with

different 802.11n clients; Buffalo WLI-CB-AG300NH 802.11a/b/g/n wireless adapter

is based on Marvell 802.11n chipset, Linksys WPC600N 802.11a/b/g/n and Airport

Extreme wireless adapters use Broadcom chipset. The resultspresented in this chapter

59



!"

AP

P1

P4

P15

P3

P7

P2

P8

P9

P10

P12

P11

P16

P13P14

P5 P18

P19P6

P17

Figure 5.1: Experimental floorplan.

are from Airport Extreme adapter, which supports up to 270Mbps rates.

We conduct our experiments in both a campus setting and in RF chamber. Figure

5.1 shows the floorplan of the campus building we run the experiments. Spots P1 to

P19 represent different locations where the clients are placed. In all the experiments

unless it is explicitly mentioned, we initiate downlink back-to-back UDP traffic (from

the AP to client) with 1.5KB MPDUs. Channel bandwidth is set to40MHz and aggre-

gation is enabled. We also configure the AP at the interference-free (as verified by the

sniffer) 5GHz band, on channel 36.

5.2 A Case Study

We started our work by examining how well the existing RA algorithms work in the

802.11n MIMO setting. The goal is to understand which factors in these RA schemes

lead to their performance gain or loss and which MIMO characteristic is the root cause.

To illustrate our findings, we first present a case study, while we discuss more compre-

hensive results in Section 5.3. In our case study setting, the AP transmits back-to-back

A-MPDUs at a static client located at P4. We studied three representative RA algo-

rithms. RRAA [34] and SampleRate [23] have been shown to work well in the legacy

802.11a/b/g scenarios. Atheros MIMO RA is a new algorithm used in 802.11n Atheros
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Rates Atheros RRAA SampleRate Fixed Rate Fixed Rate

(Mbps) RA Goodput (Mbps) SFER

MCS2 (40.5SS) 36.23 0.12%

MCS3 (54SS) 49% 49.08 0.20%

MCS9 (54DS) 48.87 0.12%

MCS4 (81SS) 72.94 0.07%

MCS10 (81DS) 72.64 0.06%

MCS5 (108SS) 51% 96.46 0.15%

MCS11 (108DS) 47% 89% 96.31 0.16%

MCS6 (121.5SS) 53% 4% 74.01 17.92%

MCS7 (135SS) 7% 36.56 54.61%

MCS12 (162DS) 128.46 4.31%

MCS12 (216DS) 5.71 96.73%

Goodput 71.40 85.36 91.95

(Mbps)

SFER 0.59% 13.24% 7.25%

Table 5.1: Rate distribution, goodput and SFER of existing RA algorithms at P4.

chipsets. We also conducted fixed-rate experiments at every802.11n rate option.

Table 5.1 summarizes the results of these experiments. Unfortunately, all three RA

algorithms perform worse than the best fixed-rate scheme, with 28% to 44% lower

goodput. The goodput at the best fixed rate is128.5Mbps, while Atheros RA gives

71.4Mbps, RRAA offers 85.4Mbps, and SampleRate gives91.9Mbps. These re-

sults clearly indicate that the existing RA algorithms cannot be effectively applied

in 802.11n networks.

It turns out that, all three RA algorithms were transmitting at rates lower than

the best rate choice.Table5.1 states that the goodput at 162DS is128.5Mbps, while

the goodput at 108SS, 108DS, 121.5SS and 135SS are only96.5Mbps, 96.3Mbps,

74Mbps and36.6Mbps, respectively. Obviously, a good RA should transmit most of

its frames at 162DS rather than at other rates. However, as illustrated in Table5.1, the

rate distribution of each RA, which provides the percentage of data frames transmitted

at a given rate, shows the opposite results. SampleRate transmits 89% of frames at

108DS, RRAA transmits53% and47% at 121.5SS and 108SS. The Atheros MIMO
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Figure 5.2: SFER non-monotonicity in

high cross-mode rates (location P4).
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Figure 5.3: SFER non-monotonicity in

same cross-mode rates (location P10).

RA is even worse, transmiting51% at 108SS and49% at 54SS, and not using 162DS

at all.

We next examine what happens at rate 162DS and other rates. Our experiments,

plotted in Figure 5.2, reveal that two factors play a critical role: non-negligible, non-

monotonic relation between Sub-Frame Error Rate (SFER) and rate, and frame ag-

gregation. Figure 5.2 shows that, SFER does not monotonically increase as the rate

grows from 121.5 to 162 Mbps. The frame loss SFER is only4.3% at 162DS, but is

54.6% at 135SS,17.9% at 121.5SS and0.15% at 108SS and 108DS. This finding in

802.11n MIMO settings is clearly different from that in the legacy 802.11a/b/g sys-

tems. Aggregation level is another factor that affects goodput. Figure 5.2 states that,

the average aggregation level is27 MPDUs at 162DS but is15 MPDUs at 121.5SS.

This (11.3MPDU) larger aggregation level also leads to goodput improvement as the

amortized per-frame overhead is smaller. With both low SFERand high aggregation

level, 162DS significantly outperforms other rates.

Once we discovered the two factors of non-monotonic SFER andframe aggrega-
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tion level, we further look into why existing RA designs have difficulty in identifying

and staying at the best rate that offers highest goodput. TheRRAA algorithm [34]

assumes that SFER monotonically increases with rate. Therefore, RRAA assumes that

higher rates would yield higher losses when evaluating the rate 121.5SS. This is true

for 135SS but not true for 162DS. As a result, it never probes 162DS that has smaller

SFER and highest goodput. Atheros MIMO RA also assumes monotonicity in that all

rates above the current rateR have no smaller SFER. When probing, it upper bounds

the candidate rates for selection (maxRate) by probing one rate higher than the cur-

rent best goodput rateR. By analyzing actual packet traces, we observe that probing

fails at 135SS and maxRate is set at 121.5SS for most transmissions. Consequently,

Atheros MIMO RA transmits almost all of the frames at rates lower than 121.5Mbps.

SampleRate [23] randomly samples diverse rates via probing,but suffers from stale

statistics on the goodput and SFER at a rate as it updates statistics only by probing

these rates.It consequently transmits at rates below 135Mbpsas shown in Table 5.1.

Moreover, the SampleRate MADWiFi implementation bounds sampling to at most 2

rates higher than the current rate. It thus does not update stale statistics for rates greater

than 135Mbps and transmits most data at 108DS. Even when we relaxed SampleRate’s

sampling bound, it may still suffer from stale statistics and probing overhead, as we

discuss in Section 5.6.3.

5.3 Studying MIMO Characteristics in 802.11n Systems

The above case study shows that the fundamental reason for RA under-performance is

the inherent MIMO characteristics [8–10]. We next repeat our case study scenario, by

placing the client in various locations of the floorplan of Figure 5.1 and we present a

thorough study on 802.11n characteristics.
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Location SFER121.5SS (%) SFER135SS (%) SFER162DS (%)

SNR (dB) SNR (dB) SNR (dB)

P3 0.39% 7.99% 0.33%

42.97 (dB) 40.64 (dB) 41.53 (dB)

P8 0.27% 11.90% 0.39%

29.69 (dB) 30.80 (dB) 31.22 (dB)

P4 17.92% 54.61% 4.31%

21.67 (dB) 22.41 (dB) 22.15 (dB)

P10 96.29% 98.99% 74.50%

17.38 (dB) 16.75 (dB) 17.79 (dB)

Table 5.2: SFER non-monotonicity w.r.t. rate in cross modes.

5.3.1 SFER non-monotonicity in SS and DS

Our experimental results show that, different from the legacy 802.11a/b/g systems,

there exhibits a non-negligible, non-monotonic relation between the rate option and

SFER in 802.11n MIMO settingswhen considering all rates in both SS and DS modes.

SFER does not monotonically increase when the transmissionrate increases. The

non-monotonicity appears more distinctive under two scenarios: (i) in the high-rate

region (e.g.,≥ 121.5SS) as shown in Figure 5.2, and (ii) at same rates in different

modes (e.g., 108SS and 108DS) as shown in Figure 5.3. Representative examples of

these two cases are illustrated in Tables 5.2 and 5.3. Table 5.2 shows that the non-

monotonicity in SFER is particularly severe between three adjacent cross-mode rates

(i.e., 121.5SS, 135SS, 162DS). In four locations P3, P4, P8,and P10 (we show a subset

of results due to space constraints), SFER increases as the rate increases from 121.5SS

to 135SS, but drops significantly as the rate further moves to162DS. SFER drops

50.3% at P4 when switching from 135SS to 162DS. Similar results arealso observed

in the RF chamber, where 121.5SS and 135SS have up to 6.4% and 8.1% higher SFER

than 162DS, respectively. Non-monotonicity also exhibitsin the same-rate pairs. The
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Location P10 P13 P14 P11 P7

SFER(%) SFER(%) SFER(%) SFER(%) SFER(%)

SNR(dB) SNR(dB) SNR(dB) SNR(dB) SNR(dB)

MCS1 (27SS) 0.19% 0.30% 0.61% 4.95% 10.95%

17.10(dB) 14.93(dB) 12.96(dB) 12.34(dB) 7.03(dB)

MCS8 (27DS) 0.23% 0.31% 0.52% 17.79% 25.143%

13.40(dB) 14.09(dB) 12.51(dB) 14.09(dB) 7.10(dB)

MCS3 (54SS) 0.25% 1.41% 1.19% 7.44% 100%

16.1(dB) 12.34(dB) 12.87(dB) 10.60(dB) -

MCS9 (54DS) 0.25% 0.72% 9.23% 16.73% 100%

14.82(dB) 12.16(dB) 12.19(dB) 12.16(dB) -

MCS4 (81SS) 0.19% 10.14% 25.60% 27.88% 100%

17.05(dB) 11.95(dB) 11.58(dB) 11.95(dB) -

MCS10 (81DS) 1.54% 10.03% 37.04% 37.15% 100%

16.59(dB) 12.17(dB) 13.29(dB) 11.79(dB) -

MCS5 (108SS) 34.83% 99.09% 97.69% 97.85% 100%

16.13(dB) 11.64 (dB) 13.15(dB) 11.64(dB) -

MCS11 (108DS) 6.68% 82.88% 93.60% 98.24% 100%

15.02 (dB) 11.71(dB) 13.47(dB) 11.71(dB) -

Table 5.3: SFER w.r.t. different cross-mode rate pairs.

SFER difference can be as large as28.2% (location P10), as shown in Table 5.3. Note

that this non-monotonic behavior is not caused by SNR variations. Table 5.2 and 5.3

show that the SNR values only exhibit minor differences at a given location.

The root cause for the behavior is that SS and DS are based on different com-

munication approaches [8]. Thus it is unlikely that they will exhibit similar loss-rate

relations by simply merging them together via the numericalvalue of the transmis-

sion rate. In contrast, our extensive experiments reveal that the monotonicity between

SFER and rate still largely holds in individual SS and DS modes. Figures 5.4, 5.5 and

5.6, 5.7 show that SFER monotonicity is restored for the individual DS and SS modes,

for the locations P4 and P10, respectively. Although Lampe et al. [11] theoretically
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Figure 5.4: SFER monotonicity in DS

mode (location P4).
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Figure 5.7: SFER monotonicity in SS

mode (location P10).

showed that loss monotonicity may not hold for the single-mode SISO case, our ex-

perimental results advocate that loss monotonicity can safely be assumed in a practical

MIMO setting.

The non-monotonicity between SFER and rate has profound implications for

802.11n rate adaptation design. Many existing RA algorithmsimplicitly assume the

monotonicity between SFER and rate. For example, one popular mechanism is to se-

quentially probe upward/downward the rates, and adjust therate based on the probing

result. Its underlying premise is that, the packet error rate goes higher as the rate

increases, and there is no need to probe/use higher rate if the current one performs

poorly. While this mechanism works reasonably well in the legacy system, it does not

66



work in the dual-mode MIMO settings. An efficient rate adaptation design should be

able to handle this non-monotonic SFER behavior.

5.3.2 SS/DS mode selection

The above findings indicate that MIMO RA design should differentiate the two MIMO

modes. The next issue is to identify possible conditions under which SS underperforms

or outperforms DS. Several theoretical studies [8–10] haveshed lights on it via exam-

ining the tradeoff between Diversity and Spatial Multiplexing gains. Our goal is to

find the answer via experiments in the 802.11n setting.

The comparison between SS and DS mode summarized in Tables 5.2 and 5.3,

shows that SNR can serve as a coarse-grained indicator to decide which mode is more

likely to be the winner. In low-SNR regions (say,< 13dB in our setting), SS is more

likely to outperform DS. In these low-SNR, far-away locations, SS is the winner over

DS with5% or more goodput gain in85.7% of locations tested, while its goodput and

loss are similar to DS in the remaining locations. The winning SS rates span the broad

set of 13.5SS, 27SS, 40.5SS, 54SS, and 81SS. The average goodput gain is15.6% but

varies from6% to 40.2%. In high-SNR regions (say,> 16dB in our setting), DS is

more likely to outperform SS. In fact, in almost all cases, DSis the winner over SS,

with the average goodput gain being33.2%. The actual goodput gain varies from17%

to 60.4%. The winning DS rates span the broad set of 108DS, 162DS, 216DS, 243DS,

270DS, and 300DS.

One should be cautious in applying the above findings, because they simply show

the general trend rather than claim which specific mode is thewinner in all cases. In

fact, there is always the gray area where either can be the likely winner. Moreover,

there are several non-trivial challenges in finding a good SNR threshold to be used to

select between SS and DS modes. We will elaborate on these issues in Section 5.6.3.
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Figure 5.9: Traffic source vs. aggrega-

tion level.

5.3.3 On frame aggregation

Our study on frame aggregation reveals interesting findingsdue to its interplay with

rate adaptation. Our experiments uncover that not only traffic source but also SFER

have a significant impact on aggregation level. When SFER is negligible, traffic source

determines aggregation level by affecting the number of MPDUs available in software

queue. Figure 5.9 presents aggregation level evolution with traffic source in a sce-

nario where rate is fixed to 243Mbps and loss is smaller than 2%. However higher

SFER can have both positive and negative impact on frame aggregation. Higher loss

may raise aggregation level, by increasing lost MPDUs accumulated in software queue

for retransmission. To verify this hypothesis, we fix the rate to 135SS and we use a

smaller data source (60Mbps). We next vary the SFER by switching to different loca-

tions. When the loss is small (5.3%), medium (29.2%), excessive (99.5%), the average

aggregation level is3.0, 10.5, 18.9 MPDUs, respectively. Loss may have a negative

impact on aggregation as well. Figure 5.8 plots the evolution of aggregation level with

SFER in a setting, where rate was fixed to 81SS and the data source was aggressive

enough to ensure full software queue. We see that high SFER dropped the average ag-

gregation level from21 MPDUs to8.7 MPDUs in the experiment. It turns out that, the

limiting factor here is the Block ACK Window (BAW) specified by the 802.11n stan-
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Rates (Mbps) RRAA (%) RRAA-Limited (%) Aggr. Bound (#MPDUs)

MCS0 (13.5SS) 2 1 4

MCS1 (27SS) 3 0.5 8

MCS8 (27DS) 1 0.5 8

MCS2 (40.5SS) 8 14 13

MCS3 (54SS) 23 42 17

MCS9 (54DS) 29 26 17

MCS4 (81SS) 11 1 26

MCS10 (81DS) 23 15 26

MCS5 (108SS) 35

MCS11 (108DS) 35

Goodput (Mbps) 24.22 35.60

SFER (%) 46.61 24.83

Avg. Aggr. level 19.36 11.81

Table 5.4: Rate distribution and performance for RRAA and RRAA-Limited at P6.

dard. BAW moves forward as long as MPDUs with sequence numbers inside the BAW

are acknowledged, similar to the sliding window scheme in TCP. However, if the first

MPDU with sequence numberSeq within BAW is lost and to be retransmitted, then

all followup A-MPDUs can only aggregate frames within the window of BAW, i.e.,

with sequence numbers less thanSeq + 64, where64 is maximum number of frames

aggregated in a single frame in 802.11n. If there are four followup aggregate frames,

the aggregation level is only16 MPDUs on average. Therefore, the positionSeq of the

lost MPDU affects the aggregation level for the followup frames.

Since higher aggregation can lead to higher goodput due to amortized overhead, the

RA designs may naturally try to maximize the aggregation level. However, our experi-

ments show that this is not always the best strategy. High aggregation level makes RA

less responsive to fast channel dynamics thus reducing the effective goodput. Table

5.4 presents the performance of RRAA and RRAA-Limited at location P6. RRAA-

Limited upper-bounds aggregation level in proportion to the rate (as shown in the last

column of Table 5.4 for 1.5MB MPDUs). Thus the maximum A-MPDUsize divided
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by the transmission rate (air time) should be equal at each rate. This aggregation algo-

rithm is used from Atheros driver. From Table 5.4, the average aggregation level for

RRAA is 7.6 MPDUs larger than RRAA-Limited. However, RRAA-Limited offers

46.9% goodput gain over RRAA, even with smaller aggregation. Our traces show that,

RRAA experienced21.8% higher SFER than RRAA-Limited. Table 5.4 indicates that

RRAA is less responsive to fast channel dynamics and transmits34% of frames at 81

Mbps, which yields86.3% SFER. Higher aggregation at this lossy rate hurts goodput.

So for our experiments, we upper-bound aggregation in proportion to rate (similar to

Atheros). We leave the study of aggregation impact on RA’s responsiveness to channel

dynamics, as a future work.

5.4 Design

MiRA seeks to identify and set its transmission rate to the best rate option, which

offers the highest goodput under dynamic channel conditions. Unlike other RA algo-

rithms, MiRA uses a novel zigzag scheme, which opportunistically switches between

intra- and inter-mode RA operations, to address the 802.11n MIMO characteristics.

When performing probe and rate change, it first stays in its current SS/DS operation

mode and adapts the rate upward/downward. This intra-mode RAeffectively exploits

the feature of monotonicity between loss SFER and rate in thesame mode. When it

cannot improve further in the same mode, MiRA performs inter-mode RA by switch-

ing its RA operation to the other operation mode. It further uses two-level prioritized

probing to reduce the penalty of excessive probing at bad rates. Finally, MiRA de-

tects collisions from channel errors based on the loss pattern learned from the 802.11n

frame aggregation and BlockAck, without using the RTS/CTS mechanism. We now

elaborate on each operation in detail.
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Figure 5.10: Example for Zigzag RA:

Rate upward trajectory upon better chan-

nel.
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Figure 5.11: Example for Zigzag RA:

Rate downward trajectory upon worse

channel.

5.4.1 Zigzag RA: Intra- and inter-mode RA

MiRA zigzags between SS and DS modes. It favors intra-mode over inter-mode op-

erations when there is a need to probe and change the rate (e.g., sudden change in

goodput or probe timer expires). It probes upward/downwardwithin the current mode

until it sees no further chance for goodput improvement. After intra-mode opera-

tions are completed, it then performs inter-mode RA by probing and changing rate to

the other mode. As a result, when channel dynamics call for rate adjustment, MiRA

moves upward/downward in one mode, switches to the other mode and moves up-

ward/downward until the goodput limit within the mode. Thenit may switch its mode

back, and continues the process as time goes. In both intra-mode and inter-mode op-

erations, MiRA uses probing-based estimation to identify the best goodput and adjust

the current rate accordingly. Zigzag RA is illustrated in Procedure 4, while downward,

upward and cross-mode operations are presented by the examples of Figures 5.10 and

5.11.

Suppose the starting rate is 27SS at timet0, again at location P4. Upon detecting

a better rate, MiRA moves upward in the SS mode. It continues toprobe upward as

long as the estimated goodput keeps on increasing, thus going through the probing
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Procedure 4ZigZagRA: Input (BlockAck), Output (r)
1: update-stats( BlockAck,r)

2: collision-detection-and-reaction( BlockAck,r)

3:
4: //zigzag RA: intra- and inter- probing

5: //isProbe: a variable indicating whether the last frame is a probe

6: //probeSeq: a list of rates already probed

7: if isProbe = truethen

8: update-priority-probing-timer( BlockAck,r)

9: if intra-mode-RA-finished(probeSeq) = falsethen

10: (r, isProbe, probeSeq)← next-intra-rate(r, probeSeq)

11: else if inter-mode-RA-finished(probeSeq) = falsethen

12: (r, isProbe, probeSeq)← next-inter-rate(r, probeSeq)

13: else

14: //finish probing, select the best rate among the probes

15: (r, isProbe, probeSeq)← best-rate(r, probeSeq)

16: end if

17: return r

18: end if

19:
20: if probe-timer-expired() = truethen

21: //adaptive probing timer expires

22: (r, isProbe, probeSeq)← timer-expired-rate()

23: else if Gr(t) ≤ Gr(t)− 2 · σr(t) then

24: //channel becomes good

25: (r, isProbe, probeSeq)← next-higher-intra-rate(r)

26: else ifGr(t) ≥ Gr(t) + 2 · σr(t) then

27: //channel becomes bad

28: (r, isProbe, probeSeq)← next-lower-intra-rate(r)

29: else

30: //remain in current rate

31: isProbe← false

32: probeSeq← r

33: end if

34: return r

sequence at rates of 40.5SS, 54SS, 81SS, 108SS. When it further probes 121.5SS that

gives the goodput74Mbps, it does not see a higher or equal goodput than 108SS

(offering96.5Mbps in Table 5.1). MiRA thus completes the intra-mode RA operation

within SS mode. Subsequently, MiRA zigzags to the DS mode by first probing at

108DS, which is the lowest DS rate whose loss-free goodput ishigher than96.5Mbps.

Within the DS mode, It further probes upward to 162DS and 216DS. It finally sets

the transmission rate at 162DS since 216DS delivers lower goodput than 162DS, thus

completing the upward operations.
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When the channel condition worsens at timet1 (say, the best rate for goodput now

becomes 40.5SS). MiRA detects reduced goodput and high loss SFER at its current

rate 162DS. It thus probes downward along its current mode DSvia the sequence

of 108DS, 81DS, and 54DS. Based on the goodput estimate (say, 30Mbps) at 54DS,

MiRA does not further probe downward at 27DS since the loss-free goodput at 27DS

is lower than the current estimated goodput. MiRA then zigzags to the SS mode after

identifying the best goodput rate in the DS mode is 54DS. Uponinter-mode probing,

MiRA first probes 40.5SS, since it is the lowest SS rate whose loss-free goodput is

higher than the estimated goodput of the best rate 54DS. The goodput estimate at

40.5SS turns out to be the highest36Mbps so far. In SS mode, MiRA further probes

upward at 54SS, which only offers goodput estimate29Mbps. MiRA thus zigzags

through DS and SS modes, and settles down at the best rate 40.5SS.

The zigzag RA scheme in MiRA needs to address two issues: (1) Howto decide

which rates, in the same mode or across the mode, to probe? (2)How to estimate the

goodput based on the probing results while taking into account the effect of aggrega-

tion? We next elaborate on both issues.

5.4.1.1 Prioritized probing

Different from existing RA solutions, MiRA devises a novel, prioritized probing

scheme to address MIMO related cross-mode characteristics. It also applies adap-

tive probing to dynamically adjust the probing interval based on the measured SFER

and recent probing history, in order to reduce excessive probing to bad rates. MiRA

addresses four issues in its probing scheme: (1) When to initiate probing? (2) What

rates to probe? (3) How to probe the candidate rates in both modes? and (4) How to

avoid excessive overhead?

Probing triggers MiRA triggers probing and subsequent goodput estimation us-
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ing both event-driven and time-driven mechanisms. It starts probing whenever it ob-

serves significant change in the measured goodput at the current rate. Specifically, it

probes downward (to a lower rate) whenGr(t) ≤ Gr(t) − 2 · σr(t), whereGr(t) is

the measured goodput for rater at timet, Gr(t) is the moving average of the goodput,

andσr(t) is the moving average of the standard deviation of the goodput. Similarly, it

probes upward (to a higher rate) whenGr(t) ≥ Gr(t)+2·σr(t). Alternatively, when the

probing timer for a given rate option expires, MiRA initiatesprobing at that given rate.

In essence, MiRA uses time-driven probing to update stale information on goodput

statistics, and event-driven probing scheme to quickly track sudden channel variations.

To remain adaptive, MiRA uses a single A-MPDU to probe the selected rate. Given

that there are enough frames in the software queue, an A-MPDUcan carry up to 64

MPDUs, which are sufficient for the probe to collect accurateloss statistics [34].

Candidate rates for probing MiRA opportunistically selects the candidate set

of rates to probe at a given time. When probing upward, it first starts from the im-

mediate, higher rate option within the same mode. Then it sequentially goes to each

higher rate option, exploiting the fact that SFER in monotonic within one mode. The

intra-mode probing stops at the highest rate option if its next higher rate has a goodput

estimate smaller than the highest goodput estimate obtained so far. It then initiates

inter-mode probing, starting from the lowest rate, which loss-free goodput is higher

than the highest goodput estimate so far. This zigzag operation allows MiRA to handle

SFER non-monotonicity in cross modes. In the example of Figure 5.10, the candi-

date rate set is{40.5SS, 54SS, 81SS, 108SS, 121.5SS, 108DS, 162DS, 216DS} when

the upward probing starts from 27SS. Note that in inter-modeprobing, the goodput

estimate at 108SS is about96Mbps, higher than the loss-free goodput at 81DS. There-

fore, the inter-mode probing in DS mode starts from 108DS. Indownward direction,

probing starts from the immediate lower rate within the samemode. It sequentially
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goes to each lower rate until its highest goodput estimate sofar is larger than the next

lower rate. This implies the best goodput estimate so far is larger than the loss-free

goodput that the lower rate may offer. In the example of Figure 5.11, the candidate

rate set is{108DS, 81DS, 54DS, 40.5SS, 54SS} when the downward probing starts

from 162DS. Note that the goodput estimate at 54DS is about30Mbps, so MiRA does

not probe 27SS whose loss-free goodput will be lower than thegoodput estimate at

54DS. Therefore, MiRA initiates inter-mode probing. To thisend, 40.5SS is chosen

first since its loss-free goodput is better than30Mbps. It then probes upward at 54SS

which offers lower goodput estimate, so it finally identifiesthe best rate as 40.5SS.

Two-level probing priority MiRA ranks the sequence of rates to be probed within

each mode and across modes using a two-level priority scheme. The first-level priority

addresses intra-mode and inter-mode probing. In MiRA, intra-mode probing is always

given higher priority and takes precedence over inter-modeprobing. Therefore, prob-

ing in MiRA always starts to probe other rates in the same mode (SS or DS). The

second-level priority manages probing order among candidate rates in the same mode.

MiRA always gives higher priority to the rate option closer tothe current rate. There-

fore, it always probes the adjacent rate first, and then the next higher/lower rate in the

same mode when probing upward/downward. In a sense, MiRA stays in the middle

between sequential rate adaptation (e.g., RRAA) and best-rate RA (e.g., SampleRate):

It differs from RRAA in that it may leap to the best rate nonsequentially; it differs from

SampleRate in that it still probes sequentially among rate candidates.

Adaptive probing interval Similar to HA-RRAA (Section 4.4.1), MiRA applies

an adaptive probing interval to limit transmissions at low goodput rates. It uses two

mechanisms ofloss-proportionalandbinary exponential growthto adaptively set the

probing intervals for three eligible rates; the two adjacent intra-mode rates and one

inter-mode rate. These three rates are used for probing upward and downward in the
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current mode, and probing in the other mode. The inter-mode rate is the smallest rate

in the other mode which loss-free goodput is larger than the goodput at the current rate.

Consider the current rate 54SS at timet2 in Figure 5.10, the adaptive probing intervals

are set for three rates: 81SS and 40.5SS used for intra-mode,and 54DS which loss-free

goodput is larger than the goodput 30Mbps at 54SS. As MiRA adapts its rate upward

or downward, these three rates are also changed accordingly.

Whenever the probe to these three rates results in a smaller goodput than the current

transmission rate, the probing interval for rater is adjusted based on the following

formula:

T (r) = T0 · min(2k, 210) · max(1,
l(r)

l0
) (5.1)

whereT0 is the minimum probing interval (say, 2ms in our implementation), l(r) is

the current loss percentage SFER at rater, l0 is a threshold parameter for loss per-

centage (say,10% in our implementation), andk denotes the number of probes to rate

r. The update rule states that, the probing interval increases in proportion to the loss

percentagel(r) once it exceeds the minimum loss threshold. Moreover, as thenum-

ber of probes to rater increases over time, the probing interval grows exponentially

but is upper bounded by210. The binary exponential growth eliminates the rates that

consistently offer lower goodput by probing to these rates less frequently over time.

Together, these two mechanisms effectively reduce the probing frequency to the bad

rates, thus limiting the associated performance penalty.

Whenever the probe to one of these three rates yields higher goodput, MiRA resets

the probing interval and moves to the new best rate. It subsequently applies the same

update rule to the three new probe rates.

76



5.4.1.2 Goodput estimation

The moving average and deviations of the goodput at probe rate r is computed as

follows:

Gr(t) = (1 − α) · Gr(t − 1) + α · Gr(t)

σr(t) = (1 − β) · σr(t − 1) + β · |Gr(t) − Gr(t)|

whereα = 1
8

andβ = 1
4

are two parameters. Note that the instantenous goodput

depends on the aggregation level, which may vary a lot from one aggregate frame

to another. Using the aggregation level measured from the current probe may lead to

fluctuating and inaccurate estimation. To address this issue, we use the moving average

of the aggregation level:

Ar(t) = (1 − α) · Ar(t − 1) + α · Ar(t)

whereAr(t) is the measured aggregation level (in terms of frames) for the current

probing frame. Based on this aggregation estimate, we compute the goodput as:

Gr(t) =
DATA · Ar(t) · (1 − SFER)

Toverhead + DATA·Ar(t)
r

whereDATA is the payload size of a MAC-layer frame, andToverhead is the various

802.11n protocol overhead (related toDIFS, SIFS, BlockAck, etc.).

5.4.2 Handling hidden terminals

Recent studies [24,34] have shown that interference-induced data losses can adversely

affect the rate adaptation operations. In such cases, reducing the rate upon losses may

exacerbate collisions since the transmission takes a long time at lower rates. Thus,

a good RA design should differentiate between channel fadinglosses and collision

losses. This holds for the MIMO case as well.
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Collision detection MiRA takes a novel approach to collision detection by ex-

ploiting the unique MIMO features of frame aggregation and BlockAck. During

our extensive experiments, we have observed that channel fading losses and collision

losses tend to exhibit very different patterns (uniform andnear-binary, respectively).

As an illustrative example, Figure 5.12 shows the loss patterns of UDP traffic from

the AP to a client located at P15 without interference, whileFigure 5.13 presents the

loss patterns under a hidden terminal setting. Our hidden station is located at P12 and

varies the interference level, by transmitting frames at different rates (from 0.5Mbps

to 4Mbps). We categorize the frame losses into three types, based on the number of re-

tries and the loss rate in the last retry. These results (and similar ones at other locations)

reveal a distinct pattern of collision losses:

retries ≥ 1 AND
nBad

nFrames
< 10% (5.2)

That is, the last aggregate frame experienced at least one retry, yet in the last retry, it

was received with very mild subframe loss. The root cause of the above interference

loss pattern can be attributed to the corruption of the PHY header upon collisions, thus

causing the entire A-MPDU to be lost [75].

These findings provide us a simple heuristic to infer the possible occurence of col-

lisions, by checking the above condition against each aggregate frame transmission.
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While this heuristic is shown to be quite effective in our experiments (detailed in Sec-

tion 5.6), it may lead to incorrect detection results occasionally (categorizing fading

losses as collisions, or vice versa). To improve the detection accuracy, MiRA relies

on repeated collision indications during a short timespan,rather than a single instance.

To this end, MiRA maintains a dynamic interference observation window (IFWnd),

which is normally set to 0. Whenever an aggregate frame satisfies Condition(5.2),

MiRA suspects collisions and thus initializesIFWnd to a pre-defined value (say, 3

in our implementation). For the subsequentIFWnd aggregate frames, if any of them

exhibits the collision pattern again, MiRA will confirm the collisions and trigger the

reactions, as described below. Otherwise,IFWnd decrements by one for each frame

not satisfying Condition(5.2), until IFWnd reaches 0.

Two alternatives to collision detection, using adaptive RTS filter [34] and SNR

[24], both have downsides in the 802.11n MIMO case. An MIMO device typically op-

erates at much higher rates than the legacy 802.11b/a/g device, thus the relative over-

head of RTS/CTS grows much larger. Because the adaptive RTS/CTSscheme turns on

RTS/CTS regardless of date rate or frame size, it introduces significant overhead with

high rates and/or small frames. On the other hand, the SNR-triggered approach re-

quires the sender to obtain fine-grained, per-frame accurate SNR information from the

receiver, which is not available in current 802.11n systems. Moreover, 802.11 systems

only measure SNR for successfully received, not collided frames at the receiver.

Cost-effective collision reaction Similar to HA-RRAA cost-effective A-RTS fil-

ter (Section 4.4.1.1), MiRA takes a cost-effective approachto whether to turn on

RTS/CTS protection, by enabling itonly when the potential gain outweighs the over-

head. It first estimates the RTS/CTS transmission time (TRCTS) and A-MPDU’s trans-

mission time as|AMPDU |
R

where an A-MPDU with size|AMPDU | is transmitted at

rateR. MiRA will turn on RTS/CTS only if |AMPDU |
R

≥ k · TRCTS, wherek is a ben-
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efit/cost ratio (say, 1.5 in our prototype). Benefit/cost ratio k represents the minimum

number of collisions that need to happen, to compensate the cost of enabling RTS/CTS.

If this condition is not met, MiRA resetsIFWnd, without turning on RTS/CTS.

MiRA further amortizes the RTS/CTS overhead over multiple aggregate frames.

This is done by setting the NAV (Network Allocation Vector, supported by all 802.11

standards) as the transmission time of multiple back-to-back aggregate frames in the

buffer. To reduce the negative impact of stealing fair access from other competing

devices, our prototype limits the amortization to two largeback-to-back aggregate

frames, though more aggressive amortization is feasible.

5.5 Alternative Designs for MIMO 802.11n Rate Adaptation

In this section we discuss alternative designs to MiRA, whichtake different approaches

to address SFER non-monotonicity between cross-mode rates. Our first approach is a

parallel MIMO mode RA scheme, which conceptually runs an independent RA in each

MIMO mode and selects the best goodput rate from all modes. Wealso discuss several

other alternatives, which use SNR, extensive probing at all MIMO modes, or 802.11n

fast MCS feedback to overcome SFER non-monotonicity.

5.5.1 Window-based 802.11n RA

Window-based rate adaptation (WRA) seeks to address SFER non-monotonicity be-

tween cross-mode rates, by running an independent RA in each MIMO mode in paral-

lel. To limit probing at low goodput rates, WRA maintains and adjusts aSliding Rate-

Selection Window(RSWnd) in each MIMO mode.RSWnd includes the current best

candidate transmission rates of each mode. WRA then opportunistically selects at run-

time, the best goodput rate among the best SS/DS candidate rates. We next elaborate
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WRA design.

5.5.1.1 Sliding window best rate selection

WRA design is based on a rate-selection window, specified by[minRate, maxRate].

RSWnd is introduced to reduce probing overhead based on recentrate history. Specifi-

cally, it seeks to prevent transmissions at high loss rates located abovemaxRatebound,

or at low goodput rates located belowminRatebound. To achieve this, RSWnd is ad-

justed to the rate set that offers high long-term average goodput. WRA then selects the

best goodput rate within this set, that offers highest opportunistic goodput gains ac-

cording to the instantaneous channel variations. To overcome loss non-monotonicity

observed in cross-mode rates, WRA maintains and adjusts different RSWnds for both

SS and DS modes. It sequentially moves rate-selection window up/down for each

mode independently upon low/high frames losses, to accommodate higher/lower rates

respectively. We then need to answer the following questions. (1) How to decide the

best-throughput rate? (2) When to trigger window movement? How long it will be?

(3) What is the appropriate window size?

Best-throughput rate selection WRA selects the best-throughput rater among

the rates included in SS and DS RSWnds asThr · (1−SFERr), based on the moving

average loss statisticsSFERr = 7
8
·SFERr + 1

8
·SFERr. Thr represents MAC-layer

throughput, while SFER is calculated based on equation presented in Section 3. Note

that WRA avoids using long-term aggregation statistics to select the best rate. So, it

can remain adaptive to fast channel dynamics. To this end, italso devises an aging

mechanism to periodically reset long-term SFER statisticsas we discuss next.

Triggers for window movement WRA uses a time-driven mechanism to trigger

SS and DS windows’ movement. When a timer expires, it first computes the highest
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throughput inside each RSWnd. It then moves the window downward, if the best

throughput is lower than the loss-free throughput ofminRate−1. Alternatively, WRA

moves RSWnd upward, if its upper bound ratemaxRate, yields low SFER (less than

15% for our prototype). Note that the timers for moving upward and downward may be

different, as we discuss next. To remain responsive upon rapid channel deterioration,

WRA also introduces a fast reaction mechanism, which immediately moves the SS/DS

window downward, if the last SS/DS transmission has experienced excessive retries,

respectively. Note that fast reaction mechanism only movesthe window downward, to

embrace lower rate options, without necessarily decreasing the actual rate in use. Thus

it is much more robust than early RA algorithms (e.g., ARF [17]), which immediately

decrease the rate upon consecutive sub-frame losses.

Length of window movement WRA moves each RSWnd upward or downward

by one rate option at a time. The rationale behind this designchoice, is that loss

still monotonically increases/decreases when we move to higher/lower rates across an

individual MIMO mode. So WRA, cautiously explores new rate options one by one.

Impact of window size WRA’s RSWnd is fixed to two rate options for each

MIMO mode, based on our experiments. It is interesting to note that, via the choice

of window size, WRA balances between responsiveness to fast channel changes and

probing overhead. With a window size of one, WRA degenerates toa RRAA-like algo-

rithm, which transmits using the same rate for a short-term time window. This design

choice affects responsiveness to channel dynamics happening in finer time granularity.

With window size of∞, WRA is similar to SampleRate-Unbounded theme described

in Section 5.5.2, which needs to pay a significant probing cost to keep updated the

performance statistics of the big rate span offered by MIMO 802.11n.

Adaptability vs. probing overhead To remain responsive to fast channel vari-

ations, WRA applies an aging mechanism that resets periodically (every 50ms in our
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Procedure 5SingleModeRA: Input (BlockAck, MimoMode), Output (r)
1: getRSWndBounds(MimoMode, &maxRate, &minRate);

2:
3: //Fast Reaction Mechanism

4: if txFailed(MimoMode, BlockAck)then

5: moveRSWnddown(maxRate, minRate);

6: else if down timer fired() && maxThr(maxRate, minRate)< lossfreeThr(minRate-1)then

7: //Timer Expired and Channel is Bad

8: moveRSWnddown (maxRate, minRate);

9: else ifup timer fired() && SFERmaxRate < 15 then

10: //Timer Expired and Channel is Good

11: moveRSWndup (maxRate, minRate);

12: end if

13:
14: updateprobetimer(BlockAck, r);

15:
16: return bestRSWndrate(maxRate, minRate);

prototype) the loss statistics asSFERr = 7
8
· SFERr, giving the opportunity to high

goodput rates, to be probed again. However, this may increase transmissions at low

goodput rates, as well. To address this issue WRA uses MiRA’s adaptive probing in-

terval presented in Section 5.4.1.1. When a transmission at rater fails (no BlockAck

is received), probing interval is updated withl(r) set toSFERr. Probing interval is

also reset forr upon a successful transmission to this rate. So, WRA eliminates the

rates that consistently offer lower goodput by probing to these rates less frequently

over time.

5.5.1.2 Putting everything together

WRA runs RSWnd operations described in Procedure 5 for each MIMO mode and fi-

nally selects the best goodput rate between the best SS and DSrates. For our case study

scenario of Section 5.2, SS, DS RSWnds will be set to [108SS, 121.5SS], [108DS,

162DS] respectively and WRA will select 162DS as the best goodput rate. An im-

provement or deterioration in channel quality, will cause the windows to sequentially

move to higher or lower rate options respectively.
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We identify two different design philosophies comparing WRA to MiRA. First,

WRA seeks to address SFER non-monotonicity between cross-mode rates by running

in parallel across different MIMO modes. For our case study setting described in Sec-

tion 5.2, DS RSWnd will include the best goodput 162DS rate. On the other hand,

MiRA applies a zigzag mechanism to overcome this issue. Second, MiRA will trans-

mit at the selected rate for a short-term time window, until timers expire or events are

triggered. However, upon adjusting rate selection windows, WRA can switch among

different rate options on per-AMPDU basis. This design choice can be more adaptive

to fast channel dynamics, but it may come at a higher probing overhead as we discuss

in Section 5.6.3.

WRA’s operations across an individual MIMO mode differ from legacy RAs. Com-

pared with RRAA, which transmits using the same rate over a short-term window,

WRA chooses among a set of rates on per-AMPDU granularity, to exploit the intra-

mode channel opportunistic gains. Differently from SampleRate, which applies ran-

dom probing at different rates, WRA probes only inside RSWnd. So,WRA stands

in the middle between sequential and best-rate adjustment design. Inside the RSWnd,

WRA jumps at the best goodput rate. However, it moves the windowsequentially to

accommodate higher/lower rates upon better/worse channel.

5.5.2 Other design options for MIMO RA

Now we discuss several alternative design approaches to MIMO RA, which can be

implemented as extensions to legacy 802.11a/b/g RAs. The first approach searches for

the best rate option within a pre-specified range of rates spanning all modes. However,

it is nontrivial to properly pre-select the range: the smaller the rate range, the higher

probability the optimal rate is missed; the larger the rate range, the bigger the probing

overhead. We will further examine atuned SampleRatedesign in this category in
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Section 5.6.3. The second approach exploits the observation made in Section 5.3.2

and takes a SNR-based mode selection. When the measured SNR is lower (or higher)

than a threshold, it chooses the SS mode (or DS mode) and uses the conventional RA

within the mode. One challenge for this approach is how to setthe thresholds, which

change with different operation environments, as we demonstrate in Section 5.6.3.

The third approach uses the fast MCS feedback mechanism supported by the 802.11n

standard, where the receiver can communicate the best rate option to the sender. In

Section 5.6.3 we discuss implementation limitations and design challenges, which fast

MCS feedback needs to address in the current 802.11n chipsets.

5.6 Implementation and Evaluation

In this section, we describe MiRA’s implementation and evaluate its performance using

both controlled experiments and field trials.

5.6.1 Implementation

We implemented MiRA in the firmware of a programmable AP platform (about 900

lines of C code). Compared with other RA algorithms, MiRA poses two implemen-

tation challenges. First, its probing mechanism requires frame transmission and rate

control, which are two separate modules in the driver, to be synchronized on a per-

AMPDU basis. We maintain an additional binary state for eachclient (other states

kept at AP are per-client statistics), which is set upon collision losses and checked

for each AMPDU transmission. The second challenge is that, the NAV for RTS can-

not be directly set by the transmission module of the driver.To reserve the wireless

channel, we use Atheros’Virtual more Fragmentinterface, which consists of a virtual

more-fragment bit (vmf ) and aburst duration parameter. Atheros uses this interface
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Atheros RA RRAA SampleRate

Static UDP (3.4-82.3)% (2.9-71)% (1.1-104.5)%

Static TCP (9.1-107.9)% (5.9-37.5)% (14.7-124.8)%

Mobility UDP 116.1% 30.2% 182.2%

Mobility TCP 72.5% 4.9% 94%

Hidden Terminal (79.4-1094)% up to6.5% (33.8-983)%

Field Trial (46.35-67.4)% (16-28.9)% (19.4-73.5)%

Table 5.5: Goodput gains of MiRA over existing RAs.

to enable frame bursts. Upon collision losses, if channel reservation is possible we

set thevmf bit as1 andburst duration as the transmission time of the aggregated

frames that NAV in RTS protects (the reception time of BlockAck is also included

in burst duration). The virtual more-fragment bit goes down to the hardware queue

together with the burst of aggregate frames.

5.6.2 Performance evaluation

In this section, we compare MiRA with RRAA [34], SampleRate [23] and Atheros

MIMO RA [32]. For RRAA, we disabled its adaptive RTS/CTS filter, except in the

hidden terminal settings, to avoid goodput degradation which was observed to be up to

12.2% during our experiments. These experiments were conducted in various scenar-

ios with static/mobile clients, hidden terminal stations,under different MIMO config-

urations with both TCP and UDP traffic. All the algorithms wereimplemented on the

AP side. The results show that MiRA consistently outperformsexisting alogithms in

all scenarios, with goodput improvement up to73.5% in field trials. The performance

gains of MiRA over existing RAs are summarized in Table 5.5.
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Figure 5.14:3 × 3 /5GHz/UDP static

setting.
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setting.

5.6.2.1 Static clients

We first evaluate the RA algorithms with static clients at multiple locations. We

conduct these experiments during midnight and, in the 5GHz band cases, we select

interference-free channels, as verified by the sniffer. We also perform tests with various

antennas configurations. The channel bandwidth is set to 40MHz in all experiments

unless explicitly specified.

UDP/3 × 3 Antennas/5GHz case Figure 5.14 plots the UDP goodput measured

at 6 different locations (as marked in Figure 5.1) with3 × 3 antennas at 5GHz band

and the maximum MiRA goodput gains over the other designs. We see that MiRA

performs better than other algorithms at all locations, with goodput gains up to70.7%

over Atheros RA,54.2% over RRAA, and68.9% over SampleRate. Except from the

closest client-to-AP location where all RAs tend to transmitat high rates, MiRA de-

livers significant gains which can go up to70.7% at location P4.

UDP/2×2 Antennas/5GHz case To assess the impact of antenna configurations,

we also evaluate the system with2 × 2 antennas, again at 5GHz band. Our exper-

iments show that MiRA still outperforms other algorithms at all locations, with the

goodput gains varying from15.2% to 104.5%. In 3 × 3 configuration, in the same

layout (location, RA algorithm), we observe up to 43% higher goodput compared with
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the2 × 2 configuration; this gain is attributed to additional signalredundancy offered

by the third antenna.

TCP/3 × 3 Antennas/5GHz case We also conduct experiments with one flow

TCP traffic. Figure 5.15 shows that MiRA gives significant TCP goodput gain over

others, up to107.9% over Atheros MIMO RA,37.5% over RRAA, and124.8% over

SampleRate. Similar to the UDP scenario, MiRA offers high gains in all locations,

starting from24.1% (location P5) to124.8% (location P6).

UDP/3 × 3 Antennas/2.4GHz/40MHz case We also test 2.4GHz channels. Set-

ting the channel to 40MHz in 2.4GHz results in partially overlapping channels. During

this experiment, we set our AP on Channel 1. We sniff many otherAPs on other chan-

nels: twelve on Channel 1, two on Channel 4, eight on Channel 6, six on Channel 9

and nine on Channel 11. The goodput performance and gains of MiRA vary from9.6%

to 57.7% at five locations, as shown in Figure 5.16. We see that losses and goodput

degradation are significant compared with the 5GHz band due to highly uncontrolled

interference.

UDP/3× 3 Antennas/2.4GHz/20MHz case We finally repeat the experiments of

the 2.4GHz band setting using 20MHz channel. For the 20MHz channel case, MiRA

gives also significant gains which are up to36.9% over Atheros RA,70% over RRAA,

and80.3% over SampleRate. Even with 20MHz channel the highest goodputobserved

was 43Mbps because of the intense interference.

From our experiments, we identify additional aspects that contribute to the perfor-

mance gains of MiRA.

Effective probing Most existing RAs do not have any efficient mechanism

to learn from short-term past channel’s performance, whichcan lead to significant

amount of transmissions at low goodput rates. For example, at location P4 of our
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ting.

case study, RRAA sends53% of MPDUs at 121.5Mbps, which exhibits significant

loss (SFER121.5 = 17.9% from Table 5.1). Similar behavior is observed in other

scenarios such as location P10, where RRAA transmits31.7% of MPDUs at 108SS

that presents34% average loss. Similar to RRAA, SampleRate also uses non-adaptive

probing, despite less aggressive than RRAA. In contrast, theadaptive probing mecha-

nismof MiRA prevents it from excessively transmitting at lossy rates. MiRA transmits

only 2% and less than3% of MPDUs at low-goodput rates, at locations P4 and P10,

respectively.

Handling SFER non-monotonicity By zigzagging between MIMO modes,

MiRA avoids to get trapped at lower rates in loss non-monotonicity scenarios. In our

case study setting at location P4, MiRA transmits96% of frames at 162Mbps which is

on average the best goodput rate. In contrast, other algorithms transmit their frames at

rates lower than 162DS. At location P10 where non-monotonicity is exhibited between

108SS and 108DS rates, MiRA transmits79% of its MPDUs at 108DS, which is the

average winner (Figure 5.3), differently from other RAs which transmit at most 1% at

this rate. We also observed that Atheros MIMO RA may occasionally get trapped at

lower rates because of SFER same-rate-pair non-monotonicity (say 54SS/DS) in some

locations. The Atheros algorithma priori ranks all rates to be probed in the particular
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Figure 5.19: MiRA performance in

field trials.

order, say 54DS has higher ranking than 54SS but lower than 81SS in the implemen-

tation. Consider that the current probe upper-bound rate is set as 54DS in the Atheros

algorithm. If 54SS gives better performance than 54DS, the algorithm may get trapped

at 54SS (Table 5.1).

5.6.2.2 Mobile clients

In order to gauge the responsiveness of MiRA to fast channel dynamics, we carry a

client and walk from P1 to P6 and then come back at approximately constant speed

of 1m/s. Figure 5.17 plots the goodput of the four RAs for both UDP and single-flow

TCP traffic. MiRA offers goodput gains up to116.1% over Atheros RA, up to30.2%

over RRAA, and up to182.2% over SampleRate. As discussed in Section 5.4, MiRA

uses (i)moving averageto detect significant channel changes, (ii) only one AMPDU to

probe, which is transmitted in a relatively short period andtypically contains enough

samples, and (iii) resetting statistical history upon ratechanges. Consequently, MiRA

quickly adapts to channel dynamics due to mobility.
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5.6.2.3 Setting with hidden terminals

We next evaluate whether MiRA can successfully infer collision losses and adjust the

rate accordingly in the hidden terminal scenario of Section5.4.2. We also compare

MiRA with MiRA-basic (MiRA without interference module) to evaluate the perfor-

mance of our interference module. In the hidden terminal setting, we also turn on

RRAA’s Adaptive RTS filter. Figure 5.18 presents the gains of MiRA at five interfer-

ence levels where we vary the traffic intensity of the hidden terminal. We observe that

MiRA is very effective in intense interference scenarios (4Mbps and 5Mbps), where

it gives up to 11.9 times higher goodput over Atheros MIMO RA and SampleRate.

MiRA performs similar to RRAA, without having to pay the RTS/CTS overhead of

RRAA’s adaptive RTS filter. Finally, MiRA gains over MiRA-Basic range from5.1%

to 599.9%. MiRA big gains are attributed to its selective RTS mechanism, which

limits collision losses and prevents MiRA from probing down by misinterpreting in-

terference as channel losses. MiRA yields up to32.5% smaller average loss compared

with Atheros MIMO RA and SampleRate. By avoiding probing down inhigh interfer-

ence scenarios, MiRA still transmits at high rates under heavy collisions. With 4Mbps

interference, Atheros MIMO RA transmits94% of frames at the lowest rate 13.5Mbps,

while MiRA only transmits6% at this rate.

5.6.2.4 Field trials

We also conduct uncontrolled field trials under realistic scenarios, where various

sources of dynamics coexist in a complex manner. In our field trial, we use 3 static

clients, at locations P4, P10, and P17, and we move an 802.11nclient on a regular basis

based on the mobility scenario of Section 5.6.2.2. We use TCP traffic to evaluate each

RA for about an hour. During our experiments, the physical environment was highly

dynamic as people walk back and forth. Figure 5.19 shows the comparison results
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both for 5GHz band and the more dynamic and congested 2.4GHz band. MiRA gives

goodput gains up to67.4% over Atheros MIMO RA,28.9% over RRAA, and32.1%

over SampleRate.

5.6.3 Assessing MIMO RA alternatives

We next assess the alternative MIMO RA designs presented in Section 5.5 in a wide

SNR range of controlled settings (from 10dB to 30dB) and field trials, at 5GHz band,

with 40MHz channels and 3x3 antennas. In field trials, we use 3static clients, at P15,

P4 and a sibling to P8 location (P8a). We also move a client on aregular basis from

location P3a (sibling to P3) to P7 through P4, at pedestrian speed. Traffic is UDP, TCP

for controlled, field trial settings, respectively.

Window-based RA Algorithm Our experimental results presented in Figure 5.20

show that WRA can give 5.3% goodput gains over MiRA (location P18). Interest-

ingly, we observe that the average SNR at P18 is 14dB and belongs to [13dB, 16dB]

SNR range, in which our experiments have not identified a winning MIMO-mode (see

Section 5.3.2). WRA is more adaptive in this setting, as it can switch between rates

of different modes on a per-AMPDU granularity. In the remaining locations, MiRA is

able to converge to the best rate with less probing overhead and yields gains from 0.7%
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to 9.2% over WRA. In field trials presented in Figure 5.22, WRA performs similar to

MiRA, while it gives gains up to 72.5% over the other designs.

Tuned SampleRate Algorithm By upper-bounding sampling up to 2 rates higher

than the current rate, SampleRate has limitations to addressSFER non-monotonicity as

stated in Section 5.2. To address this issue, we implement SampleRate-4 that enlarges

the sampling bound to 4, and SampleRate-Unbounded that allows for search among

all the rates larger than the current rate. Figure 5.20 indeed shows that by expand-

ing its search scope, SampleRate-4 achieves goodput gain of 18% over SampleRate

at P9. However, SampleRate-4 does not perform as well in the other three locations.

At P19, SampleRate delivers 21.2% goodput gain over SampleRate-4. SampleRate-

Unbounded is even worse, incurring goodput reduction up to 37.3%. Trace analysis

reveals that SampleRate transmits 87% of frames at the high-goodput rates (40.5Mbps,

54Mbps), whereas SampleRate-4 transmits only 50% at these rates. SampleRate-

Unbounded transmits 9.5% of frames at almost 100% loss. Sampling of these ex-

panded rates consequently incurs higher probe penalty.

SNR-based Mode Selection RA Our proposed MIMO-SampleRate selects the

SS/DS mode based on a pre-selected SNR threshold, (14dB in our implementation)
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measured from the received ACK frames and averaged over all antennas.1 This design

exploits the findings of Section 5.3.2, where in low/high SNRrange SS/DS is more

likely to be the winning mode. Once the mode is chosen based onSNR, SampleRate

algorithm is used within the selected mode.

MIMO-SampleRate achieves higher or similar goodput compared with tuned-

SampleRate, with goodput gains up to 20% in static settings (Figure 5.20) and 40.4%

in field trials (Figure 5.22). However, MiRA still outperforms MIMO-SampleRate

with goodput gains up to 30% in statics settings and 23.6% in field trials. These re-

sults indicate that the SNR-based MIMO-SampleRate can achieve good performance,

while retaining its operation simplicity. However, our experiments show that, there

may not be an optimal SNR threshold to give the highest goodput in all the settings.

The best SNR threshold values may also depend on the operation environment. Figure

5.21 shows the goodput performance of different SNR thresholds at locations P9, P16,

P17, whose average SNRs are 23dB, 16dB, 14.5dB, respectively. By choosing a high

SNR threshold, say 25dB, at location P9, we exclude DS rates (including the highest-

goodput rate 162DS), thus incurring goodput degradation upto 34.9% compared with

using [13dB, 16dB] thresholds at P9. However, choosing SNR thresholds in [13dB,

16dB] does not guarantee the best performance in other locations. At P16 and P17,

25dB threshold outperforms other choices up to 15.3% and 14.8% respectively. This

is attributed to the algorithm’s fluctuation between SS/DS modes when using other

threshold values. For example, at P17, while 25dB thresholdtransmits more than 98%

of the frames at 81SS (which is the best goodput rate), other threshold values give

sub-optimal rate distributions.

RA Based on Fast MCS Feedback Fast MCS feedback (MFB) supported by

the IEEE 802.11n standard, can be used for receiver-initiated rate adaptation based on

1A more sophisticated design that uses two thresholds, givessimilar results.
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per-frame feedback [10, 33, 36–38]. Although MFB is more adaptive to fast channel

dynamics compared with MiRA, it faces certain practical limitations and design chal-

lenges. First, MFB is an optional feature and its implementation is vendor-dependent.

Our available APs which use proprietary drivers from Atheros (AR5416 chipset) and

Broadcom (BCM47XX, BCM53XX chipsets) and popular open source drivers, as In-

tel’s iwlagn and Atheros’ ath9k, do not currently implementMFB algorithms. As a

result, loss-based, transmitter-side RAs as MiRA are required when MCS feedback is

not available. Second, various metrics used in MFB algorithms, as uncoded bit error

rate or per-subcarrier SNR (a survey can be found in [38]) arenot available in many

commodity 802.11n drivers.

There are also design challenges, which receiver-side RAs need to address. Our

experiments in RF chamber reveal large SNR variations, when SNR is calculated from

received signal strength and noise floor. Figures 5.23, 5.24plot the per-antenna re-

ceived SNR for the control (the primary 20MHz channel) and the extension channel

in a static3 × 3 setting, when an 802.11n client sends back-to-back UDP 1.5KB MP-

DUs at the AP (aggregation is disabled). The rate is fixed at 135Mbps and the time

gap between consecutive frames is less than 0.35 milliseconds. We observe that SNR
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variations can be up to 5dB between consecutive frames both for control and extension

channel, which can impact the decision of the best goodput rate. SNR fluctuations

in commodity 802.11 devices have been verified by independent studies [25, 30, 33],

and can be attributed to multipath and hardware calibrations. A more accurate SNR

calculation requires per-subcarrier SNR feedback, which may not be available in the

current commodity 802.11n drivers. Finally, SNR-BER relations vary with different

propagation environments. Consequently, SNR-based solutions require in-situ training

to perform well across different propagation environments[24].

Ideally, MFB is communicated on a per-transmission basis. However, is there any

protocol overhead? What is the impact of delayed MFB in RA performance? Kant et

al. in [38] show that MFB delays can lead to more than 40% throughput decrease. We

further investigate MFB in our future work.

5.7 Related Work

There have been several rate adaptation proposals [17, 23–25, 27, 28, 33, 34] in re-

cent years. Many of them target the legacy 802.11a/b/g networks [23–25, 34], or

take a cross-layer approach [27, 28] by using PHY-layer feedback to select the best

goodput rate. These algorithms are not designed for MIMO systems and they do not

consider MIMO modes and 802.11n frame aggregation. The early work on MIMO

RA [10,33,36–38] takes the receiver-based approach by exploiting the MCS feedback.

Although, these approaches can be more adaptive to fast channel dynamics, they have

not been widely adopted by commodity 802.11n systems, due totheir practical limita-

tions (5.6.3). Transmitter-based approaches have been proposed as well. ARFHT [39]

selects the best MIMO mode based on SNR differences among receive antennas. It as-

sumes MIMO channel reciprocity as it measures SNR at the sender based on received

frames. ARFHT faces the challenges of using SNR feedback raised in Section 5.6.3.
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Atheros MIMO RA selects the best goodput rate based on SFER statistics, while it

upper-bounds probing and rate selection.

There are also a few experimental studies relevant to this work. In [33], authors

study packet error rate/SNR relation, without focusing on the performance of different

MIMO modes. In [40], experiments are based on a testbed that supports only a limited

set of 802.11n features. Finally, theoretical studies on MIMO communications [9,10],

seek to characterize the theoretical tradeoffs of MIMO systems, often in the limiting

cases. In contrast, our study uses real experiments to examine the behavior of 802.11n

MIMO devices.

5.8 Summary

In this chapter, we empirically study MIMO rate adaptation using an IEEE 802.11n

compliant, programmable AP platform. The key insight learned, is that diversity-

oriented SS mode and spatial multiplexing-driven DS mode exhibit different features

and cannot be managed indistinctly. Existing RA solutions donot properly consider

characteristics of SS and DS, thus suffering from severe performance degradation. To

this end, we first propose MiRA, a new zigzag RA algorithm that explicitly adapts

to the SS and DS modes in 802.11n MIMO systems. We also design and evaluate

window-based and SNR-based MIMO RA solutions. Our experiments in controlled

testbeds and field trials show clear gains of MIMO-mode awareRAs. In a nutshell,

our work is among the first to examine MIMO RA in a practical setting using pro-

grammable 802.11n commercial hardware. We expect that our effort will stimulate

more community effort on MIMO RA to exploit the full capacity of MIMO communi-

cation.
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CHAPTER 6

Towards Green MIMO 802.11n Wireless

The recent IEEE 802.11n standard [6] has opened the venue forfully leveraging

Multiple-Input Multiple-Output (MIMO) technology in wireless LANs. An 802.11n

device by supporting 4 spatial streams1, can deliver high rates up to 600Mbps. The

upcoming IEEE 802.11ac standard [7] will allow for higher than 6Gbps rates, by sup-

porting 8 spatial streams. However, do more spatial streams/antennas offer better user

experience?

In our first case study of Figure 1.1 discussed in Chapter 1, both legacy and MIMO

receivers can accommodate the offered 3Mbps application data source rate. However,

legacy receiver saves 30% power over MIMO, providing betteruser experience. Our

study reveals that the cause of MIMO poor user experience is MIMO circuitry power

consumption, which grows with the number of active RF chains.Specifically, our

measurements with commodity 802.11n devices show that, an 802.11n receiver can

deplete a smartphone battery in less than two hours, when allits components (i.e.,

display) but the 802.11n radio are OFF.

To address this issue, the 802.11n standard specifies a new Spatial Multiplexing

Power Save (SMPS) feature, which seeks to save power at the receiver by retaining

only one active RF chain. The rationale behind SMPS is intuitive and simple; “Main-

tain only one RF chain to minimize receive power consumption”. Our experiments

1The number of available spatial streams determines the minimum number of antennas supported by
a MIMO device.
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show that, SMPS can indeed achieve its goal, by saving up to 1.15W over multiple

active receive chains, in certain scenarios. However, can SMPS save energy over mul-

tiple active receive chains? Interestingly, our experiments show that the power hungry

multiple receive chains can yield 78.6% energy savings overSMPS. This is observed in

scenarios where MIMO speed compensates the additional MIMOpower consumption.

A realistic gauge of the tradeoff between power consumptionand speed (goodput) is

the per-bit energy consumption (joule/bit). Per-bit energy consumption is defined as

the ratio between the total consumed energy and the delivered bits during any data

transfer.

In this chapter, we experimentally study the tradeoff between MIMO speed and

power consumption, by uncovering step by step the“good’ , “ugly” and “bad” of

SMPS feature. We then design and implement MIMO Receiver Energy Save (MRES),

which seeks to identify and set the most energy-efficient chain setting for the receiver at

runtime. The core of MRES is a low-overhead sampling scheme, which excludes those

chain configurations that are highly unlikely to yield energy savings. Our prototype

experiments show that MRES outperforms SMPS, with energy savings up to 37%.

The rest of the chapter is organized as follows. Section 6.1 discusses MIMO power

consumption and introduces the 802.11n Spatial Multiplexing Power Save feature.

Section 6.2 presents our experimental platform and methodology. Sections 6.3, 6.4,

6.5, discuss the potential benefits (the “good”), dangers (the “ugly”) and drawbacks

(the “bad”) of SMPS. Section 6.6 presents our proposed MIMO Receiver Energy Save

algorithm, while Section 6.7 presents our implementation and evaluation efforts. Fi-

nally, Section 6.8 discusses the related work and Section 6.9 concludes the chapter.
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6.1 IEEE 802.11n SMPS

The IEEE 802.11n standard uses Multiple-Input Multiple-Output (MIMO) technology

to support high date rates up to 600Mbps. It uses multiple transmit and receive RF

chains to support two modes of operation.Spatial Diversitytransmits a single data

stream from each chain, thus leveraging independent fadingover multiple links to

enhance signal diversity.Spatial Multiplexing(SM) transmits independent and sep-

arately encoded spatial streams from the multiple chains toboost throughput. The

performance gains of MIMO are achieved at the cost of increased power consumption

due to the added complexity of MIMO related processing and circuits. The power con-

sumption along a signal pathPc, includes the power consumption of all the amplifiers

PPA and circuit blocksPb [64]:

Pc = PPA + Pb, (6.1)

where the circuit power consumptionPb is in proportion to the number of transmit (Nt)

and receive (Nr) RF chains.

The IEEE 802.11n standard [6] specifies a new Spatial Multiplexing Power Save

(SMPS) mechanism to improve power efficiency. SMPS allows for a station to operate

with only one active receive chain for a large period of time.We next describe SMPS

feature and its implementation by popular vendors.

6.1.1 SMPS feature

A station consumes more power on all active receive chains, even though they are not

necessarily required for the actual frame exchange. The 802.11n SMPS feature, seeks

to reduce MIMO power consumption at the receiver, by allowing it to operate with

only one active receive chain for a significant portion of time. It supports two modes
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of operation.

Static mode In the static mode, the station retains only a single receivechain and

forces the transmitter to send using only diversity single-stream rates. An 802.11n

station may use the SMPS action frame to communicate its SM Power Save state to

the access point (AP). It may also use the SMPS bits of its Association Request to

achieve the same purpose.

Dynamic mode In the dynamic mode, a station enables its multiple receive chains

when it receives the start of a frame sequence addressed to it. Such a frame sequence

shall start with a single-stream individually addressed frame that requires an immediate

response and that is addressed to the station in dynamic mode. RTS/CTS can be used

for that purpose [6]. So in dynamic mode, the receiver switches to multiple receive

chains when it receives a RTS addressed to it and switches back immediately to one

active chain, when the frame sequence ends. A drawback of thedynamic mode is

that a station cannot distinguish between a RTS/CTS sequencethat precedes a MIMO

transmission and any other RTS/CTS.

We start our work by asking the following questions.

1. Does SMPS achieve its goal, to save power over multiple active receive chains?

Do power savings come for free?

2. Can SMPS save energy over multiple active receive chains aswell? In what

scenarios?

We next elaborate on the“good’ , “ugly” and“bad” of SMPS feature.
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6.1.2 SMPS implementation

IEEE 802.11n provides the basic SMPS mechanism and leaves two open questions

for the vendors. When do you send SMPS action frame or RTS/CTS toswitch chain

settings in static and dynamic modes respectively? In our receiver, which uses In-

tel’s Wireless WiFi 5100A/G/N adapter and the open source iwlagn driver, SMPS can

be enabled manually by the user. Our transmitter, which is a commercial AP based

on Atheros chipset, precedes with RTS only multiple-streamframe transmissions.

Whether the transmission rate will be diversity single-stream or spatial multiplexing

multiple-stream, is determined by the underlying rate adaptation algorithm.

The second open issue is, what chain setting to select? SMPS defines switching

from one to manyactive chains and vice versa, but never defines what is the “many”.

For example the RTS frame used in dynamic mode, does not explicitly specify the

number of chains that should be activated at the receiver. Our receiver device switches

to the maximum available chains upon the reception of a RTS. Finally, it is out of the

scope of the SMPS to determine the number of active chains on the transmitter side.

The standard configuration of our AP is three active transmitchains. Our experiments

show that different implementation choices can have a significant impact on 802.11n

SMPS performance.

6.2 Experimental Setting

We conduct our experiments using two types of 802.11n devices. Our transmitter

is a programmable 802.11n AP platform, which uses Atheros AR5416 2.4/5 GHz

MAC/BB MIMO chipset and has three RF chains. Our receiver uses anIntel Wire-

less WiFi 5100A/G/N adapter and a modified version of Intel’sopen source iwlagn

driver. The receiver has two available RF chains. Both transmitter and receiver plat-
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Figure 6.1: Experimental floorplan.

forms allow for both single stream (SS) and double stream (DS) MIMO modes, with

transmission rates up to 300Mbps over 40MHz channels. We provide more informa-

tion about our experimental testbed in Chapter 3.

We conduct our experiments in a campus setting shown in Figure 6.1. Spots P1 to

P7 represent different locations where the receiver is placed. The AP is always located

at T . For each experiment, we collect frame loss, aggregation, goodput, SNR and

power consumption data. To measure the power consumption atthe receiver, we use

Intel’s PowerTOP running on Linux [42]. We disable all otherunnecessary applica-

tions and hardware at the laptop to improve accuracy. The receiver consumes 1.18W,

1.61W for one and two active chains, respectively, when remaining idle. This 36.4%

increase in idle power consumption when switching from one to two chains is also

confirmed by another independent study [57].

To single out the impact of idle period on power and energy consumption, we also

compute results for two operation modes of 802.11n adapter.At Doze OFFmode, the

802.11n adapter remains idle during idle periods, resulting in Pidle power consump-

tion. At Doze ONmode, the 802.11n adapter switches to the sleep mode during idle,

resulting in near-zero power consumption. Doze ON mode may not be always feasible

in reality. Fine-grained switching between sleep and active, say, between consecutive
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frame transmissions, may not be feasible due to switching overhead and delays which

can degrade application performance [59]. For example 802.11 PSM, NIC wakes up

at the granularity of beacon intervals (100ms). However, weshow results for Doze ON

mode as a benchmark in our study; they help us to understand the impact of transmis-

sion time on power and energy consumption.

6.3 “The Good”: SMPS Potential Power Savings

In this section, we seek to answer whether the SMPS feature indeed saves power com-

pared with multiple active receive chains. We first conduct asimple case study at a

controlled interference-free setting (location P2). We evaluate the Doze OFF mode

here, while we elaborate on Doze ON in the following sections. Our results presented

in Figure 6.2 show that, retaining one active receive chain can always save power from

0.5W to 1W, compared with multiple receive chains, in Doze OFF. Therefore, the

static SMPS mode, which retains only one chain to save power,is proven correct. The

dynamic SMPS mode yields smaller up to 0.4W power savings, over multiple active

receive chains. Consequently, the next issue to examine is whether the static mode is

always better than the dynamic mode in terms of power consumption. Our case study

of Figure 6.2 shows that, the dynamic mode always consumes from 0.2W to 0.7W

more power than the static mode in Doze OFF.

Our case study reveals the impact of two factors on power consumption: a)number

of active chainsand b)application data source rate. To substantiate our findings, we

conduct extensive experiments with various source rates and Nt × Nr settings. We

analyze our experimental results by modeling the receiver power consumption as:

Prx = Pp + Pc, (6.2)
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Figure 6.2: Receiver’s power consump-

tion (high SNR location P2).
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Figure 6.3:Goodput (high SNR location

P2).

wherePc andPp are the MIMO circuitry and processing power consumption, respec-

tively. Pp includes processing in the network protocol stack, and is proportional to

CPU utilizationUCPU . It can be estimated asPp = UCPU · Pf , wherePf is a system

power coefficient per CPU utilization unit.

Number of active chains Our extensive experiments show that, for a given source

rate, fixed number of transmit chainsNt and in Doze OFF mode, power consumption

monotonically increases with the number of receive chainsNr. Specifically, two active

receive chains, can consume 1.15W more power compared with one receive chain. The

amount of savings depends on source rate as we discuss next. This increase is mainly

attributed to MIMO circuitry power consumptionPc [64]. As a result, static SMPS

always yields power savings over multiple chains in Doze OFF, by operating with

one active receive chains for long time intervals. Dynamic SMPS always gives power

savings up to 0.5W over multiple receive chains, when it operates in Doze OFF as

well. The fact that dynamic mode activates a single receive chain only when idle, or

when transmissions are diversity, single stream, can justify its smaller power savings

compared with the static mode.
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The impact of source rate When the offered traffic volume increases, the differ-

ence in power consumptionPrx betweenNt × 2 andNt × 1 grows from 0.5W to 1W

when data source increases from 5M to 165M (Figure 6.2). First, the volume of re-

ceived frames can increase with the number of receive chainsNr under high sources,

as we show in Section 6.4. This makes the gap between processing power consump-

tion Pp betweenNt × 2 andNt × 1 to grow. In our case study, the CPU utilization was

approximately 3% higher forNt × 2 overNt × 1 settings at 165M, while it was sim-

ilar at the low 5M source. Second, the gap between power consumptionPc increases,

under high volume traffic as well. This is attributed to the fact that MIMO circuitry

needs to remain active for a larger fraction of time. We can conclude, the gap in power

consumption between two and one receive chain grows with source rate, in Doze OFF.

As a result, the potential power savings for static SMPS can increase at higher source

rates. However, data source may have the complete opposite effect in dynamic SMPS

power consumption. Increasing data source reduces receiver’s idle time and as a result

its opportunities to operate with a single active receive chain. This can reduce dynamic

SMPS potential savings over multiple active receive chains. From Figure 6.2 we ob-

serve that the gap inPrx betweenNt × 2 and dynamic mode, shrinks from 0.4W to

0.2W when data source increases from 5M to 165M.

Our first set of findings can be summarized as:

Finding 1 Regarding power consumption at the receiver,

1a. Static SMPS always saves power from 0.5W to 1.15W at the receiver, over mul-

tiple active receive chains, in the Doze OFF mode. Its power-saving margin

increases with increasing data source rate.

1b. Dynamic SMPS always saves power from 0.2W to 0.5W at the receiver over

multiple active receive chains in the Doze OFF mode. Its power-saving margin
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may increase with decreasing data source rate.

1c. Static SMPS always saves power from 0.1W to 0.7W over dynamic SMPS in the

Doze OFF mode. The reason is that dynamic mode can switch to a single receive

chain only when idle, or when transmissions are diversity, single stream.

6.4 “The Ugly”: SMPS Goodput Performance

Unfortunately SMPS power savings do not come for free. Our case study reveals that

the price for saving receive power is a significant decrease in speed. Specifically, 3x2

yields 61.8% goodput gains overNt × 1 settings and 22.6% over dynamic SMPS,

at 165M source, as shown in Figure 6.3. We identify three mainfactors that affect

goodput: a)MIMO gains, b) signaling overhead, c) application data source rate.

MIMO gains MIMO gains can be further classified as Spatial Multiplexing(SM)

and Diversity gains, observed at high, low SNR scenarios respectively. SM can in-

crease the rate of communication by sending multiple independent spatial streams from

the multiple RF chains. Diversity improves the reliability of reception, by transmitting

a single data stream from each chain [9].

Spatial multiplexing: Static Spatial Multiplexing Power Save (SMPS) does not

exploit Spatial Multiplexing MIMO gains.Maintaining only one active receive chain

in static SMPS, limits the transmitter to use only SS bit-rates, which can go up to

135Mbps, significantly lower than 300Mbps, which is our platform’s highest DS rate.

In our case study scenario, 3x2 transmits 100% of the total frames at DS rates, which

results in 61.8% goodput gains overNt × 1 settings. Our experiments at various

high SNR locations (SNR>30dB) and various transmit chainNt configurations, re-

veal goodput gains from 14.1% to 61.8% ofNt × 2 over Nt × 1 settings, as shown

in Table 6.1. Dynamic mode can still utilize spatial multiplexing, by preceding a DS
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Low SNR Medium SNR High SNR

3x2 over 3x1 up to 47.9% up to 49% up to 61.8%

2x2 over 2x1 up to 18.5% up to 54.8% up to 58.2%

1x2 over 1x1 up to×3.8 up to 11.3% up to 14.1%

3x2 over Dyn. up to 62.7% up to 47.9% up to 22.6%

Table 6.1: Spatial multiplexing and diversity goodput gains.

transmission with RTS.

A monotonic increase in goodput with the number of active chains, has been also

verified theoretically. In spatial multiplexing mode and given perfect channel state

information, capacity has been shown to grow linearly withmin(Nt, Nr) [13, 14].

Although the rate of growth may change for different SNRs, thelinear relation between

capacity and the number of chains still holds [15]. Without perfect channels or under

data source rate constraints, there is a saturation point where, increasing the number of

active chains does not boost capacity [16].

Diversity: Static SMPS does not exploit receiver Diversity MIMO gains.Maintain-

ing only one active receive chain in static SMPS, decreases the reliability of reception.

At low SNR settings (SNR≤15dB) where diversity gains are maximized, two active

receive chains give from 18.5% up to 3.8 times higher goodputcompared with one

receive chain, as shown in Table 6.1. In medium SNR range (15dB<SNR≤30dB),

goodput gains ofNt × 2 over Nt × 1 settings are mainly attributed to diversity as

well and can go up to 54.8%. Diversity goodput gains of two over one active receive

chain, for a representative medium SNR location P4 and low SNR location P7 of our

floorplan, are presented in Figures 6.5, 6.8, respectively.

A monotonic increase in goodput with the number of active chains, is theoretically

verified for diversity as well. In diversity mode, the error probability function can be

108



 5M (OFF)  5M (ON) 80M (OFF) 80M (ON)
0

0.5

1

1.5

2

2.5

3

3.5

4

Data Source Rate (Mbps)

R
x
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n
 (

W
a

tt
)

 

 

3x2
2x2
1x2
3x1
2x1
1x1
SMPS Dyn

Figure 6.4: Receiver’s power consump-

tion (medium SNR location P4).
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Figure 6.5:Goodput (medium SNR loca-

tion P4).

expressed asPe = 1
SNRNr ·Nt

[9]. Then the goodputG is given byG = R · (1 − Pe) =

R · (1 − 1
SNRNr ·Nt

), whereR is the bit-rate andSNR is the signal-to-noise ratio. As

the error probabilityPe decays with the exponent of the diversity gain factorNr · Nt,

goodput increases with the number of active chains.

Signaling overhead Dynamic SMPS is able to exploit spatial multiplexing and

diversity MIMO gains by switching from one to many receive chains on a per-

transmission basis, but at a high RTS/CTS overhead. For our case study scenario,

96.5% of the total frames transmitted at DS rates, need to be preceded by RTS. This

results in 22.6% goodput gains of 3x2 over dynamic SMPS. Our experiments at var-

ious SNR locations and data source rates, show that 3x2 can achieve from 22.6% to

62.7% goodput gains over dynamic SMPS, as shown in Table 6.1.

Our simple analysis shows that RTS/CTS handshake is proven expensive, when it

precedes every MIMO transmission. We model the transmission time of an 802.11n

aggregate MPDU frame (A-MPDU) asTtx = Toverhead + MPDU ·AR(t)
R

, whereToverhead

includes the various 802.11n protocol overheads (DIFS, SIFS, Preamble, PLCP,

RTS/CTS, ACK) andR is the transmission rate. Aggregation levelAR is the number
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Figure 6.6: 802.11n RTS/CTS frame exchange.

of MPDUs packed in an A-MPDU. If we assume that there is no frame aggregation

(AR=1), R=300Mbps and MPDU is 1.5KBytes, we can observe from Figure 6.6, that

43.3% of the total transmission time is allocated for the RTS/CTS handshake. Even in

the scenario of full frame aggregation where A-MPDU is 64KBytes, RTS/CTS over-

head allocates 28.1% of the total transmission time.

Data source rate Our experiments have revealed significant goodput gains ofNt×

2 overNt × 1 settings and dynamic SMPS. However, these gains are upper-bounded

by the offered data source rate, as we observe in Figures 6.3,6.5, 6.8, at low source

rates.

Our second set of findings can be summarized as:

Finding 2 Multiple active receive chains can give from 11.3% to 3.8 times higher

goodput compared with SMPS, when data source rate does not upper-bound achieved

goodput. These gains can be attributed to:

2a. Spatial multiplexing and diversity gains of multiple over one active receive chain

in the static mode.

2b. RTS/CTS overhead, which dynamic mode needs to pay before everyMIMO

transmission.
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Figure 6.7: Receiver’s power consump-

tion (low SNR location P7).
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Figure 6.8:Goodput (low SNR location

P7).

6.5 “The Bad”: SMPS Potential Losses

We now shift our attention to two potential drawbacks of SMPS, which come from

the interplay between power consumption and goodput. First, our study so far has

revealed power savings of SMPS over multiple active receivechains in Doze OFF

mode. However, are these savings observed in Doze ON as well?Second, our study

has been focused on SMPS receive power consumption. However, is SMPS energy-

efficient?

6.5.1 SMPS power consumption in Doze ON

Interestingly, our experiments reveal that SMPS may not save power, compared with

multiple active receive chains, when the receiver operatesin Doze ON mode.

Dynamic SMPS:For our case study scenario of Figure 6.2, dynamic SMPS con-

sumes from 0.1W to 0.3W more power compared with the other chain configurations

at 5M, Doze ON case. Our traces reveal a significant impact of RTS/CTS overhead on

dynamic SMPS power consumption performance. Dynamic SMPS transmits 96.5% of
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the total frames at spatial multiplexing DS rates, which arepreceded by RTS/CTS. This

signaling overhead increases the transmission time of the same amount of data from

5.1% to 7.2% (Table 6.2) compared with the other chain configurations and as a result

it decreases sleep time opportunities. During this active time, the receiver in dynamic

SMPS maintains two active chains to receive DS frames, whilethe faster chain settings

can save power by switching to Doze ON. Our case study result is verified in various

settings, where dynamic SMPS can require up to 8% more time compared with other

chain settings, to transmit the same amount of data. The impact of RTS/CTS overhead

on idle time, is significant at low source rates. When the data source rate approaches

or overcomes the effective goodput (e.g. at 165M of our case study), the idle time

between dynamic SMPS and remaining configurations is almostthe same.

Static SMPS:Although static SMPS can still save power compared with multiple

active receive chains in Doze ON, its savings drop significantly. For example at loca-

tion P7 (Figure 6.7),2×2 consumes only 0.01W more power than2×1 setting at 1M.

The SMPS power savings drop at P7, becauseNt × 2 settings require up to 10% less

time to transmit the same amount of data, compared withNt × 1 configurations.

Our third set of findings can be summarized as:

Finding 3 On power consumption at the receiver,

3a. Static SMPS power savings can drop to 0.01W compared with multiple active

receive chains, in the Doze ON mode. Receiving with a single chain, results in

10% less sleep time opportunities of static SMPS over multiple active receive

chains.

3b. Dynamic SMPS can consume 0.3W more power, compared with multiple ac-

tive receive chains in the Doze ON mode. RTS/CTS overhead required prior to

a MIMO transmission, results in 8% less sleep time opportunities of dynamic
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3x2 2x2 1x2 3x1 2x1 1x1 Dyn.

Idle Time 96.6% 95.1% 94.8% 94.5% 95.2% 95.3% 89.4%

Table 6.2: Idle time for 5Mbps source rate, at location P2.

SMPS over multiple active receive chains.

6.5.2 SMPS energy consumption

Our experiments show that saving power does not necessarily result in saving per-bit

energyErx formulated as:

Erx =
Prx

G
(6.3)

In our case study setting, although two active receive chains are more power hun-

gry compared with one active chain (Figure 6.2), they yield the lowest per-bit energy

consumption at 165M, as indicated by the text arrows in Figure 6.9. Specifically, 3x2

yields energy savings defined as the decrease in per-bit energy consumption, from

12.8% to 24% over static SMPS (Nt × 1 setting) and from 11.3% to 15.6% over dy-

namic SMPS. The savings can be attributed to the goodput gains of 3x2 over static

(61.8% gains), and dynamic (22.6% gains) SMPS, which compensate for its additional

power consumption.

By studying the interplay between power consumption and goodput, we end up

with two interesting conclusions.First, the fastest RF chain setting may not be the

most energy efficient.In the scenarios where source rate can be accommodated by a

single receive chain,Nt × 1 settings are more energy-efficient than the fasterNt × 2

configurations. This is observed for source rates 5M or smaller at locations P2, P4, P7.

Dynamic SMPS can still give higher power consumption in DozeON and as a result

higher energy consumption performance, at low source rates, compared with static
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Figure 6.9: Receiver’s energy consumption (high SNR location P2).

SMPS and multiple active receive chains.However, the most power hungry RF chain

setting may not be the least energy efficient.When source rate does not limit achieved

goodput of multiple active receive chains,Nt × 2 settings are energy optimal as shown

in Figures 6.9, 6.10, 6.11. In these scenarios, 3x2 can give from 12% to 78.6% energy

savings over static and dynamic SMPS.

Our experiments uncover important implementation implications on SMPS perfor-

mance. For a fixed number of receive chainsNr, goodput monotonically increases

with the number of transmit chainsNt, as well. Activating three chains at the transmit-

ter, can yield up to 5.4 times higher goodput comparing to oneactive transmit chain.

This goodput gain observed for 3x1 over 1x1 at location P7, can significantly affect the

performance of SMPS as it results in 75.5% energy savings as shown in Figure 6.11.

Our fourth set of findings can be summarized as:

Finding 4 Saving power does not necessarily result in saving energy. Multiple

active receive chains can give from 12% to 78.6% per-bit energy savings over SMPS.

This is observed when the offered data source rate is equal or higher than the maximum
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Figure 6.10:Receiver’s energy consump-

tion (medium SNR location P4).
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Figure 6.11:Receiver’s energy consump-

tion (low SNR location P7).

achievable goodput of multiple receive chains. SMPS needs to consider both consumed

power and achieved goodput to save energy.

6.6 Design

In this section, we present MIMO Receiver Energy Save (MRES) scheme, which seeks

to identify and set the most energy efficient chain setting for the receiver at runtime.

A critical design challenge is to converge to the receiver’smost energy efficient set-

ting with small sampling overhead. MRES devises a novel, low-overhead sampling

scheme, which improves over exhaustive sampling all possible chains, in Doze OFF

mode. It opportunistically evaluates the receiver chain options and excludes those

chain configurations that are highly unlikely to yield energy savings. We next describe

MRES operations.
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6.6.1 MIMO Receiver Energy Save sampling

Traffic-driven sampling MIMO Receiver Energy Save main component is a low-

overhead sampling scheme. Its main design principal is thatthe most energy efficient

is the lowest chain setting, which can accommodate the offeredsource rate, in Doze

OFF. It derives from Finding 1, which shows a monotonic increasein power con-

sumption with the number of receive chainsNr in Doze OFF, given a fixed number

of transmit active chainsNt. So MRES traffic-driven samplingsequentiallysamples

upward (higher number of active chains), starting from the lowest chain setting. It

terminates sampling when a chain’s moving-average achieved throughputThrchain is

the same as the moving-average source ratesrcRate (Thrchain ≥ α · srcRate) The

smoothing factorα is set to 0.95 in our prototype. The pseudo-code of our schemeis

presented in Procedure 6. MRES scheme needs to address two important issues: a)

When is sampling triggered? b) How long will sampling last andhow will its outcome

be evaluated?

Sampling triggers MRES triggers sampling and subsequent chain evaluation,

using both time- and event-driven mechanisms. To prevent high overhead from

switching chains on a per-transmission basis (Findings 2b,3b), it samples periodi-

cally (3 seconds in our prototype) to identify the best-energy chain. To be adaptive

to MIMO channel and data source rate dynamics, MRES triggers sampling when-

ever it observes significant change in the measured throughput of the current chain.

Specifically, it triggers sampling whenThrchain(t) ≤ Thrchain(t) − 2 · σchain(t) or

Thrchain(t) ≥ Thrchain(t) + 2 · σchain(t). Thrchain, Thrchain are the moving-average

and current achieved throughput at timet respectively, whileσchain(t) is the through-

put standard deviation. Event-driven sampling is proven critical in dynamic traffic

scenarios (e.g. VoIP, bursty web traffic) to reduce idle energy consumption.

Sampling should be long enough for RA to first identify the bestrate (TRA mil-
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Procedure 6MRES: Input (chain, doze), Output (bestchain)
1: // Update stats upon the reception of a BlockACK frame

2: update-stats(Thrchain, srcRate, chain);

3:

4: if (event-triggers(Thrchain, Thrchain, σchain)

‖ sample-timer-expired()) && issample = falsethen

5: chain = lowest-chain();

6: init-sample-period(TP );

7: is sample← true;

8: end if

9:

10: if is sample && sample-period-ended()then

11: (bestchain)← best-energy-chain(bestchain, chain);

12: if (Thrchain ≥ α · srcRate && doze=OFF)

‖ chain = highest-chain()then

13: is sample← false;

14: sample-timer-reset();

15: else

16: (chain)← next-higher-chain(chain);

17: init-sample-period(TP );

18: end if

19: end if

20:
21: return bestchain;

liseconds) and then to evaluate its performance (TE milliseconds). It should be

also short enough to limit transmissions at high-energy chain settings. MRES sets

its sampling periodTP = TRA + TE, whereTRA is RA algorithm dependent. It

also updates the measured throughput and source rate of a given chain setting as

Thrchain = 3
4
· Thrchain + 1

4
· Thrchain andsrcRate = 3

4
· srcRate + 1

4
· srcRate

every 20ms. When the best rate is reached, our prototype uses 6samples to update the

moving averages and setsTE to 120ms.

Metric MRES estimates the per-bit energy consumption of a chain setting using
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Equation(6.3). Instead of goodputG, it uses measured throughputThrchain at the

sender. Finally, the chain setting with minimumErx is selected for transmission.

Sampling cost reduction MRES limits sampling cost by preventing transmissions

at high-energy chains. Sampling cost is proportional to thesampling time at energy

sub-optimal chain settings which is expressed asTsp = TRA + TE + 2 · Tcomm +

Tant. The time to identify the best rateTRA is RA specific. For example, RRAA [34]

evaluates every rate option for approximately 15ms. So in the worst case scenario

under a stable wireless channel,TRA = 255ms given that all the available rate options

of our platform are 17 for 40MHz channel bandwidth. The totalsampling period is

thenTP = TRA + TE = 375ms. After MRES identifies that the sampled chain is

not the most energy efficient one, it requiresTant time until the receiver hardware

switches to the optimal receive chain (35usecs in our system) andTcomm time for each

of MRES handshake messages in order to commit the new setting.In a ideal scenario

with no interfering traffic,Tcomm = 59.7usecs, given that MRES management frame

size is 360bytes and is transmitted at 24Mbps in our platform. So sampling cost is

375.2ms for each energy sub-optimal sampled receive chain. In the scenario where

the optimal is the lowest receive chain, MRES can excludeNr − 1 energy-sub-opimal

chains from sampling. Without MRES low-overhead sampling, MRES would transmit

up to 37.5% of the total time at energy sub-optimal chains, given that the RA is set to

RRAA, Nr = 4 and sampling interval is 3 seconds.

Traffic-driven Sampling in Doze ON Power consumption monotonic relation-

ship with increasing number of receive chainsNr, may not hold in Doze ON. Let’s as-

sumeTtx,i is the transmission time ofM bits wheni receive chains are active. From our

analysis and experiments discussed in Section 6.3, we formulateTtx,i = Ttx,i+1 +Tidle,

whereTidle is the idle time of the higher chaini+1 upon the completion of its transmis-

sion. The per-bit energy consumption fori, i + 1 receive chains isErx,i =
Ep+Ttx,i·Pc,i

M
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andErx,i+1 =
Ep+Ttx,i+1·Pc,i+1+Tidle,i+1·PdozeON

M
respectively.Ep is the processing energy

consumption, which is assumed to be similar fori, i+1 settings, given that the amount

of bitsM to be processed is the same.PdozeON is the power consumption is Doze ON

mode, which for simplicity is considered negligible. Our proposed low-overhead sam-

pling holds in Doze ON for chainsi, i + 1 that can accommodate the offered source

rate, only ifErx,i ≤ Erx,i+1 ⇒ Pc,i+1 ≥
Ttx,i

Ttx,i+1
Pc,i. Although the relationPc,i+1 > Pc,i

is known in advance [64], transmission timeTtx,i+1 depends on rateR and aggregation

level AR (Section 6.4) which may be different between chaini andi + 1. To ensure

that the energy optimal chain setting will be identified, MREStakes a conservative

approach and disables traffic-driven sampling in Doze ON.

6.6.2 MIMO Receiver Energy Save mechanism

MRES introduces a new management frame, as neither the SMPS action frame nor the

RTS/CTS of SMPS modes can be used without modifications. First, they have not been

designed to support chain setting exchange information. Second, they do not com-

municate power consumption, which is necessary information for computing energy

consumption. To address these issues we propose a new management action frame

presented in Figure 6.12. TheEnergy Save Enabledbit is set to 1 to enable the energy

save mechanism. UsingAvailable ChainsandActive Chainsbits, the receiver informs

the transmitter for the number of its available and currently active chains.Chain Feed-

backbits are only set by the transmitter to activate the appropriate number of receive

chains. Two bits can accommodate four spatial streams available in 802.11n. Finally,

the optionalPower field PW , is used to communicate receiver power consumption

information. It is a 15 bit unsigned integer, which represents the power consumption

of a single active chain in milliwatts.PWI1, PWI2, PWI3, are 11 bit unsigned inte-

gers, which represent the additional power consumption in milliwatts of 2, 3, 4 active
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Category Action MR Energy Control

Energy Save 

Enabled

Available 

Chains

Active 

Chains

Chain 

Feedback
Reserved

Octets: ! ! "

#$ #!%#& #'%#( #)%#* #"

PW

#+,,#&& #&',,#'' #'(,,#(( #(),,#))

PWI1 PWI2 PWI3

Figure 6.12: MRES frame format.

receive chains over 1, 2 ,3 chains respectively. For examplethe power consumption

of Nr active receive chains is calculated asPW +
∑Nr−1

j=1 PWIj. The difference in

power consumption between adjacent chain settings does notexceed 1.15W in our

experiments, and can be represented by 11 bits. IfPW field is not used, transmitter

needs to estimate receiver chains’ power consumption.

When the transmitter receives a MRES action frame, it sets receiver’s energy save

status, active, available chains and power consumption information if available, while

it ignoresChain Feedback. The MRES frame sent by the receiver, does not require

any response. When transmitter requires from the receiver toswitch chains, it sends

a MRES action frame with theChain Feedbackbits set to the selected chain setting.

Upon the reception of the MRES frame, the receiver commits thenew chain setting and

it forms a new MRES frame with all butChain Feedbackfield set to the new values.

Only when the transmitter receives the MRES response, it commits the new receiver’s

chain setting.

6.7 Implementation and Evaluation

In this section, we first describe the implementation of MRES.Then, we compare it

with static, dynamic SMPS and our system’s 3x2 default configuration, using both real

experiments and trace-driven simulations.
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6.7.1 Implementation

We implement MRES in approximately 400 and 200 lines of code onthe transmitter,

receiver side, respectively. Due to hardware constraints to support the Doze ON, we

only evaluate the OFF mode in our experiments. An issue to overcome is the estimation

of the data source rate, which can accurately be measured only when it does not exceed

the effective throughput. In the case where source rate is higher than the effective

throughput, MRES checks for buffer overflows. Buffer overflow implies that source

rate cannot be accommodated by the current chain setting.

Besides our proposed traffic-driven sampling, we also apply an adaptive sampling

scheme, which seeks to eliminate chain settings that consistently incur high energy

consumption. Our scheme keeps a separate timer for the two available receive chains

of our testbed. MRES samples and updates the energy consumption of a given setting

only after its timer expires2. After sampling a setting yields higher energy consumption

than the current best one, its timer is exponentially increased. MRES prevents a chain

setting from being completely excluded by a) upper boundingthe timer to 8 seconds, b)

resetting the timer when sampling a chain setting results inlower energy consumption

than the current lowest one.

6.7.2 Performance evaluation

We now compare MRES with SMPS implemented as described in Section 6.1.2 and

with our system’s default 3x2 configuration. We first conductexperiments with one

transmitter and one receiver, in the campus setting of Figure 6.1. We evaluate the

proposed solutions in terms of receiver per-bit energy consumption, in static, mobil-

ity scenarios, with various 802.11n configurations and different RAs, with low, high

2Timers are considered only for time- and not event-driven sampling.
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Static Dynamic 3x2

SMPS SMPS

Static UDP (1-36.8)% (0.7-32)% (0.4-34.2)%

Static TCP (10.1-11.7)% (9.7-21.3)% (11.3-20.8)%

Mobility 14.4% 9.1% 14.9%

Simulation up to 12.2% (15-60.5)% (7.4-35.4)%

Table 6.3: Energy savings of MRES over alternative designs.

volume UDP and TCP traffic. The experimental results show thatMRES consistently

outperforms alternative solutions in all scenarios, with energy savings from 0.7% to

36.8% and from 0.4% to 34.2% over SMPS and 3x2 configurations,respectively. It

also offers goodput gains up to 67.5% in all the examined scenarios over static mode

and goodput gains up to 37.6% in 70% of the tested scenarios over dynamic mode.

Finally, MRES consumes from 0.02W to 0.6W less power in 83.3% of the tested sce-

narios over dynamic mode. It also never consumes more than 0.15W compared with

static SMPS in 95% of the examined scenarios.

We also run simulations for two reasons. First, they allow for us to compare the de-

signs in larger network topology. Second, they enable us to assess the Doze ON mode,

which is not available in our platforms. Simulation resultsshow up to 60.5% energy

saving of MRES over SMPS in both infrastructure and ad-hoc network scenarios. The

MRES energy savings are summarized in Table 6.3.

6.7.2.1 Static clients

We first evaluate MRES for static clients, over both interference-free 5GHz channels

verified by our sniffer and the highly congested 2.4GHz band.The channel bandwidth

is set to 40MHz and rate adaptation to MiRA in all experiments unless explicitly stated.

UDP/5GHz case Figure 6.13 plots the per-bit energy measured at high-, medium-
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Figure 6.13:Receiver’s energy consump-

tion (UDP/5GHz - Log-scale).
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Figure 6.14:Receiver’s energy consump-

tion (TCP/5GHz).

and low-SNR locations (marked in Figure 6.1), over the 5GHz band and for high and

low UDP traffic sources. MRES consistently outperforms alternative algorithms, with

energy savings up to 36.8% over static SMPS, 32% over dynamicSMPS and 34.2%

over 3x2. Its savings come from its ability to identify the most energy-efficient chain

setting for the receiver at low sampling cost.

Figure 6.15 plots the chain distribution along with the receiver power consumption

and goodput for locations P2, P5, P6. For our case study location P2, we observe that

MRES gives close to optimal distribution, by transmitting almost 100% of its frames at

3x1, 3x2 settings, for the low- (5M), high- (165M) volume UDPsources respectively.

For locations P5, P6, MRES selects the average energy optimal3x1 setting, for the low

volume UDP traffic. Under higher traffic volume and intense MIMO channel dynamics

observed usually at low SNRs, MRES can switch between one and two active receive

chains. MRES is able to identify the most energy efficient chain setting, with low

sampling overhead. It gives from 10.6% to 59.6% goodput gains over static SMPS in

the examined locations, while it outperforms dynamic SMPS at P2, P6, as well. The

goodput gain of dynamic SMPS over MRES at location P5, is attributed to the fact that

MRES selects 3x1 for 92.7% of its transmissions and not to its sampling cost.
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Figure 6.15: MRES chain distribution.

TCP/5GHz case We also conduct experiments with four TCP flows. Figure 6.14

shows that, MRES produces energy savings up to 11.7% over static SMPS, up to 21.3%

over dynamic SMPS, and up to 20.8% over 3x2.

UDP/2.4GHz case We then switch to the congested 2.4GHz band (channel 11),

where we sniff more than 20 APs on channels 1 to 11. We change channel width to

20MHz to mitigate interference caused by overlapping 40MHzchannels [61]. The per-

bit energy consumption of different algorithms for locations P2 and P4 is presented in

Figure 6.16. The higher per-bit energy consumption compared with the 5GHz settings

can be attributed to lower goodput, which does not exceed 54.7Mbps. MRES still

outperforms SMPS and 3x2 designs with savings up to 36.8% and29.4% respectively.

Impact of rate adaptation We finally evaluate the various strategies using both

legacy 802.11a/b/g RAs (RRAA [34], SampleRate [23]) and MIMO 802.11n RAs

(MiRA, Atheros MIMO RA [32]), which we have prototyped on our testbed. Figure

6.17 plots per-bit energy at the medium SNR location P3 using90Mbps UDP source.

MRES consistently outperforms SMPS and 3x2 with savings up to32% and 12.8%
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Figure 6.16:Receiver’s energy consump-

tion (UDP/2.4GHz - Log-scale).

MRES  Static Dynamic 3x2
30

32

34

36

38

40

42

44

46

R
x
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

n
J
/b

it
)

 

 

Atheros
SampleRate
RRAA
MiRA

Figure 6.17:Receiver’s energy consump-

tion. MRES over various RAs.

respectively, independently of the underlying RA scheme. Our traces reveal that chain

distributions and as a result receiver power consumption for MRES, are almost the

same for all RA algorithms. What varies among the tested RAs, is the rate distribution

and as a result the goodput. The maximum energy savings of MRESover static and

dynamic SMPS are observed over Atheros (29.8%) and MiRA (32%)respectively.

6.7.2.2 Mobile clients

To gauge the responsiveness of MRES upon MIMO channel dynamics, we carry a

client and walk from P1 to P7 through P3, P5 and then come back at approximately

constant, pedestrian speed of 1m/s. Figure 6.18 plots the per-bit energy consump-

tion of our four schemes using 100Mbps UDP source. MRES offers14.4%, 9.1%

of energy savings over static, dynamic SMPS respectively and 14.9% over 3x2 con-

figuration. Our event-driven sampling is fairly responsiveto our pedestrian mobility

scenaro, without incurring high sampling overhead or low goodput. Characteristically,

3x2 gives only 7.9% goodput gains over MRES, which cannot offset 3x2 setting’s

higher power consumption.
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Figure 6.18:Receiver’s energy consump-

tion under mobility.
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Figure 6.19:Network’s energy consump-

tion. Infrastructure and ad-hoc settings.

6.7.2.3 Trace-driven simulations

We next use trace-driven simulations to assess MRES in largerinfrastructure and ad-

hoc networks. We collect real channel and power consumptiontraces, by placing

the AP atT but moving the client across multiple locations in the campus setting

of Figure 6.1. For each location, we measure the goodput, frame loss, aggregation,

SNR and power consumption. To extend our simulation to threereceive chains, we

estimate a) power consumption of three chains based on the difference between power

consumption of two and one chain, b) goodput to be similar to 3x2 setting. We test

various traffic volume scenarios.

We feed the traces to a customized 802.11a/g/n simulator written in C++. In the in-

frastructure setting, the AP is located atT , while clients are randomly deployed in our

campus setting. We vary the number of clients from 9 to 15. Figure 6.19 plots the per-

bit energy for a 9-client topology and for both Doze ON and OFFmodes. The network

energy consumption is calculated based on the total power consumption of all nodes

and the network’s aggregate goodput. MRES performs similar to static SMPS, while

it outperforms dynamic SMPS and 3x2 with energy savings 54.9% and 28.2% respec-
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tively. In the ad-hoc scenario, we randomly deploy 50 nodes in a 1000m x 1000m area.

We vary the number of traffic flows from 10 to 30 among randomly selected transmit-

ter and receiver pairs. To emulate the MIMO channel using ourtraces, we map the

distance between two communicating nodes with an SNR value,corresponding to a

given goodput, frame loss and aggregation performance. Figure 6.19 plots the net-

work’s per-bit energy for a 10-flow setting. MRES outperformsSMPS and 3x2 with

energy savings up to 30.6% and 16.1%, respectively.

6.8 Related Work

Energy efficient algorithms have been widely studied in the legacy 802.11 wireless

networks [43–49,52]. However, the problem remains largelyunexplored in the MIMO

802.11n systems. Recent proposals (SMPS [6], Snooze [58]) apply antenna selection

to save energy at 802.11n receivers. SMPS seeks to save powerconsumed in MIMO

circuit blocks, by switching from “many” to a “single” antenna setting. Snooze [58]

switches antenna settings according to MIMO speed (airtimeutilization). However,

our study shows that, RF chain selection solely based on MIMO speed, or power con-

sumption can lead to energy sub-optimal chain setting. MRES departs from these

proposals by considering both speed and power in chain management.

There have been several theoretical studies focused on energy-efficient MIMO

systems [64–67]. They seek to find a theoretical transition point, where the most

energy-efficient MIMO setting changes. The crossover pointcan be expressed as the

tradeoff between MIMO gains, which come at the cost of increased power consump-

tion. While [64, 66] focus on the system’s energy consumption, [65] considers uplink

energy-efficient transmissions. Different from these efforts, we focus on experimental

studies, while proposing new energy save solutions for the 802.11n receivers.
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Early experimental work on identifying factors that affect802.11n energy con-

sumption on commodity hardware has been reported in [57]. Different from our study,

the authors do not consider the impact of data source rate andDoze OFF, ON modes in

their per-bit energy and power consumption measurements. They do not propose new

designs as well.

6.9 Summary

In this chapter, we discuss the tradeoff between MIMO power consumption and speed,

by presenting a critique on the newly proposed 802.11n Spatial Multiplexing Power

Save feature. Our experiments with standard-compliant 802.11n devices uncover two

important insights. First, the fastest RF chain setting may be the least energy efficient.

Second, the most power hungry RF chain setting may be the most energy efficient. To

this end, we propose a MIMO receiver energy saving scheme, which seeks to iden-

tify the energy optimal antenna setting at a low cost. We compare MRES with two

design philosophies. The first seeks to increase performance by turning all the anten-

nas on. The second philosophy switches from “many” to a “single” antenna setting to

save MIMO power consumption (SMPS). MRES gives 37% energy savings over both

philosophies for a 2-antenna receiver.
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CHAPTER 7

Conclusion

Multiple-Input Multiple-Output (MIMO) offers significantpromise in making Gbps

wireless links a reality. However, our experimental study with MIMO 802.11n com-

modity devices reveals that, the current MIMO is low speed and energy hungry. The

root cause is the use of legacy (single antenna) designs overthe new MIMO (multi-

ple antenna) setting. This dissertation advocates for the need of novel designs over

the MIMO setting, by illustrating the MIMO unique characteristics and their impact

on current network speed and energy performance. We conclude this dissertation by

summarizing the key insights learned from our study, and by examining the remaining

challenges.

7.1 Lessons Learned and Departures

The current MIMO 802.11 wireless networks are designed using the legacy

802.11a/b/g wireless networks as the blueprint. The existing designs abstract the wire-

less channel as a 2-dimensional (frequency and time) communication link, and graft

the legacy wireless protocols onto the new MIMO setting. As our study shows, MIMO

wireless channel is fundamentally different from legacy. To this end, this dissertation

seeks to answer two questions. a) Why should we consider noveldesigns over the

MIMO setting? b) What are some of these novel design ideas?

The insights gained using experiments with commodity 802.11 devices can be sum-
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marized as follows.

• MIMO modes exhibit different characteristics Our experimental study

with commodity MIMO 802.11n devices uncovers that the diversity and spatial

multiplexing MIMO modes exhibit different loss characteristics. Different from

legacy, loss is not monotonic with respect to transmission rate over the MIMO

setting. State of the art rate adaptation solutions are designed though by assum-

ing loss monotonicity, and as a result they have limitationsto identify the best

goodput transmission rate.

• MIMO speed is expensive Our experimental study with commodity MIMO

802.11n devices uncovers that MIMO speed comes at a cost of increased power

consumption. MIMO power consumption is proportional to thenumber of active

antennas. Designs that either seek to boost performance by activating all the

antennas, or to reduce MIMO power consumption by turning offall but one

antenna (SMPS) can be energy sub-optimal.

• 802.11 channel exhibits rich dynamics Our experimental study with com-

modity 802.11 devices reveals intense short-term channel dynamics for both

legacy and MIMO settings. These dynamics are attributed to multipath fading

and interference from neighboring nodes. The additional degrees of freedom of a

MIMO 802.11n radio make these dynamics even more intense. Varying the num-

ber of active antennas and spatial streams can drastically change MIMO gains.

Changing the channel bandwidth has a double impact on speed. Wider chan-

nels allow for higher PHY transmission rates, while at the same time, they can

increase interference. 802.11 channel dynamics can also interact in a complex

manner with the new 802.11n standard features, as frame aggregation. Existing

designs have limitations to address 802.11 channel dynamics, which results in

significant performance degradation.
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Based on our findings we revise rate adaptation and energy save, which lay the

foundations for gigabit and green wireless. Our proposals depart from state of the art

designs in the following key ways.

• Differentiate MIMO modes The fundamental departure of our MIMO rate

adaptation proposal is that, it manages diversity and spatial multiplexing modes

in a distinct manner. First, it classifies the transmission rates in different MIMO

modes based on the number of streams. Then, by applying sequential and zigzag

probing, it can identify the optimal (best goodput) rate in each individual mode

and the optimal mode, respectively. This allows for MiRA to overcome loss

non-monotonicity observed in cross MIMO mode rates.

• Consider new metrics The focus of MIMO is higher speed over wireless.

However is speed the right metric? Our study shows that, MIMOcan lead to

poor user experience because its higher speed comes at a costof additional power

consumption, proportional to the number of antennas. Our MIMO receiver en-

ergy save proposal considers both the MIMO speed and power consumption of

a MIMO 802.11 device. It seeks to improve user experience by selecting the

antenna setting with the lowest per-bit energy consumption.

• Learn from history Our proposed designs seek to avoid selecting sub-

optimal settings by analyzing the short-term network performance. This involves

a) learning and b) differentiating events. Both rate adaptation and energy save

use adaptive channel learning to avoid transmissions at lowperformance set-

tings. Learning requires classification and independent management of different

events. For example, our rate adaptation designs seek to differentiate channel

fading from interference losses, and appropriately enableRTS/CTS. Our rate

adaptation and energy save proposals classify goodput variations to trigger the

selection of a new setting.
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This dissertation integrates the above ideas into practical, 802.11 standard-

compliant solutions. Specifically, it integrates rate adaptation and energy save within

the current device drivers and provides prototype implementations of the proposed

designs. It also presents testbed evaluations that show large performance gains in

comparison with the state of the art algorithms. Thus, we believe that this work is a

significant step towards the future gigabit and green wireless network.

7.2 Open Issues and Future Work

The systems presented in this dissertation are a significantfirst step towards gigabit

and green wireless networks. Our experimental findings uncover also novel problems,

whose solution is of major importance for the future high speed, energy efficient, se-

cure networks. We next elaborate on these new directions.

Rate adaptation Our MIMO rate adaptation proposal is able to identify the best

goodput rate at a low probing cost by applying a prioritized adaptive probing scheme.

First, sequential probing allows for MiRA to identify the best goodput rateR across a

single MIMO mode, and prunes all the remaining rate options aboveR . Zigzag RA

prevents probing the rates, whose loss-free goodput is smaller than the current best

goodput performance. Finally, adaptive probing interval prevents MiRA from trans-

mitting at rates, which continuously offer low performance. However, probing may

still have limitations to adapt to very fast channel dynamics (e.g. vehicular mobility

scenarios), where the channel can change in microsecond scales [24]. In our future

work, we plan to examine rate adaptation that utilizes fast MCS feedback provided by

IEEE 802.11n and 802.11ac standards. The key challenge across this direction is to

overcome a) interference, b) multipath, c) hardware calibrations, which can poisson

the SNR measurements (Section 5.6.3).
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Figure 7.1: Receiver’s energy consumption as a function of spatial streams.

Energy save Our MIMO Receiver Energy Save design seeks to save energy at

the client side by selecting the energy optimal receiver antenna setting. However,

our experiments reveal that saving energy at the receiver side calls for collaboration

between the transmitter and the receiver. From Figures 6.9,6.10, 6.11 we observe that

the energy optimal antenna setting for the receiver always requires 3 active antennas

at the transmitter side. However, activating all the transmit antennas can result in high

transmit energy consumption. As a future work, we examine energy save solutions

for both infrastructure and mobile device sides. To achievethat, we need to select the

energy optimal system (transmitter and receiver) antenna setting.

Putting speed and energy together In this dissertation we design rate adaptation

and energy save as two independent MAC-layer components. OurMIMO energy save

solution can work independently of the underlying rate adaptation algorithm and vice

versa. However, our experiments with commodity 802.11n hardware reveal that rate

adaptation has a profound impact on energy consumption. Figure 7.1 shows a mono-

tonic increase in receiver power consumption with the number of spatial streams, for

a fixed number of antennas. As a result, rate adaptation that seeks to maximize speed
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may lead to high energy consumption. Designing joint rate adaptation and energy save

algorithms is part of our future work.

7.2.1 From single-user to system view

The focus of this dissertation is to optimize speed and energy for the single-user case

(single transmitter-receiver scenario). Our ongoing and future work seeks to extend

our findings to the Multi-user (MU) MIMO case, which allows a terminal to transmit

(or receive) signal to (or from) multiple users in the same band, simultaneously. The

problem of rate adaptation in multi-user case is significantly different for two reasons.

First, MU-MIMO requires channel state information at the transmitter (CSIT). CSIT

while not-essential in SU-MIMO channel, is of critical importance to most downlink

multi-user precoding techniques. Acquiring and utilizingtimely CSIT feedback in

a practical setting remains an open problem. Second, MU-MIMO allows for spatial

sharing of the channel by many users. The scheduling procedure associated with the

selection of a group of users that will be served simultaneously, adds more complexity

to the problem.

7.2.2 Beyond the gigabit radio

The key insight gained from this dissertation is that, we need to depart from the sim-

plistic view of MIMO as a pure physical layer technology. To this end, we design

MIMO rate adaptation and energy save, which seek to optimizespeed and energy at

the MAC-layer. In our future work, we are planning to go beyondthe MAC and exam-

ine how we need to revise the upper protocol layers. Specifically, we seek to answer

two questions. What should routing look like over MIMO? Is MIMO gigabit network

secure?

The tradeoffs between diversity (transmission range) and spatial multiplexing
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(speed) modes, and the speed impact on power consumption canfundamentally change

the way that we forward packets and design routing metrics. Although, spatial multi-

plexing can provide the fastest links from a source to a destination node, diversity can

be used along with opportunistic routing [76] and networking coding [77] architectures

to allow for reliable and high performance end-to-end communication. Moreover, the

fastest MIMO routing path may not be the most energy efficientone, because of addi-

tional MIMO power consumption. Designing green routing is still an open challenge.

MIMO multipath environment amplifies existing security vulnerabilities by gen-

erating a richer link signature space. Signal from authorized devices will spill over

longer distances from devices’ domain, allowing for malicious parties to overhear and

interfere with existing transmissions. In the next generation wireless, the norms in

network security for Authentication, Authorization, Confidentiality, Integrity need to

be revised.
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