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ABSTRACT OF THEDISSERTATION

Towards Gigabit and Green 802.11 Wireless Networks

by

loannis Pefkianakis
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2012

Professor Songwu Lu, Chair

Wireless is an increasingly dominant communication medidine continued quest
for wireless connectivity in a multitude of mobile devicedpng with the emerging
bandwidth hungry applications, has resulted in a huge drafthe wireless traffic.
Multiple-Input Multiple-Output (MIMO) is considered theodhinant technology to
provide gigabit wireless links, and to accommodate theeiasing demand of speed
over wireless. By using multiple transmit and receive andsnmMIMO can support
more reliable and faster communication. But how efficient taee current MIMO

systems?

Our experiments with commodity MIMO 802.11n devices revbat, the current
MIMO wireless is low speed and energy hungry. The fundanteatson for MIMO
devices’ poor performance is the use of legacy 802.11afmgle antenna designs
over the multiple antenna, MIMO 802.11n setting. Specifycahe existing designs
used over the new MIMO 802.11n devices, are oblivious to MINgue communi-
cation characteristics. They do not also consider that, MI8fpeed comes at the cost

of increased power consumption, proportional to the nurobantennas.

In order to investigate solutions to these problems, trgsattation first experi-

mentally studies the unique features of MIMO wireless aradrtimpact on existing



designs’ performance. Then, it revises the key mechanibatscontrol speed and
energy over MIMO wireless, namdgate AdaptationandMIMO Energy Saveand
develops three systems. History-Aware Robust Rate Adaptétié-RRAA) is our
first step towards gigabit wireless. It opportunisticajlests the best goodput PHY
transmission rate for legacy 802.11a/b/g networks by thteing novel mechanisms
to capture short-term channel dynamics. Different from RRAA, our MIMO Rate
Adaptation (MiRA) proposal, seeks to identify the best gagdpHY transmission
rate in MIMO 802.11n networks by considering the unique desg of MIMO. Fi-
nally, MIMO Energy Save seeks to select the optimal antemtizng at runtime to
minimize energy consumption. Our proposals depart frorstiexg designs in three
fundamental ways. They manage the unique MIMO communicatiodes in a dis-
tinct manner. They consider new metrics, to capture theetthsl between speed and
power consumption. Our proposals also apply novel learmaghanisms to capture

the wireless channel dynamics.

There are three main contributions in this dissertatiorstHi builds a strong con-
nection between wireless communication theory and wisetgstem design. Specif-
ically, this dissertation provides the first experimentaldy of fundamental MIMO
wireless communication tradeoffs (i.e. diversity vs. sahultiplexing MIMO modes,
speed vs. number of antennas) using 802.11n standard-emtg@@mmodity testbeds.
Then, it uncovers their impact on existing designs’ perfance. Second, it pro-
poses novel and practical rate adaptation and energy sagmdehat consider MIMO
unique characteristics, and are able deliver high perfaoaaains. Third, this dis-
sertation provides the first implementation and evaluatbMIMO rate adaptation
and energy save using 802.11n standard-compliant comymieliices. The high per-
formance gains in real world settings make our proposalg@ifgiant step towards

gigabit and green wireless networks.
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CHAPTER 1

Introduction

Wireless is an increasingly dominant communication mediumernational Telecom-
munication Union reported 5.9 billion mobile-cellular sgbiptions at the end of 2011
[1], which corresponds to 87% of the world population. Meldlomputing devices
need to serve increasingly demanding networked applitsit{wideo conferencing,
multiplayer 3-D games, cloud-supported mobile augmergatity [2]), which current
wireless speeds struggle to accommodate. For example, a080plvideo’s data bit
rate is 50Mbps, while the current 802.11a/g devices offprapmately 30Mbps peak
MAC-layer throughput. So, the continued quest for wirelessnectivity in a multi-
tude of mobile devices, along with the emerging bandwidthgny applications, has
resulted in a huge growth in wireless traffic. In October 2(AOC pointed out that
Cisco Systems, the Yankee Group and Coda Research projedtetbihite data traffic
in 2014 will be 35 times the volume of traffic in 2009 [3].

Designing very high speed wireless that offers high qualftgervice (QoS) con-
stitutes a significant research and engineering challéivgean, in principle, meet the
Gbps data rate requirement if the product of bandwidth (oreaksin Hz) and spectral
efficiency (measured in b/s/Hz) is greater thaf. However, employing sufficiently
high bandwidth to increase wireless speed poses significaiations. First, spec-
trum is a scarce and expensive resource. The spectrumtaliblcatween 2-6GHz for
WiFi and other license-free applications does not exceB&z, and as a result it

does not allow for channels wide enough for gigabit speedsenidg up new spec-



trum at frequencies higher than 6GHz can offer a potentiatism for high bandwidth
wireless communication (IEEE 802.11ad at 60GHz band [4weler, transmissions
at very high frequencies are extremely prone to atmosph#&gauation, which renders

non-line-of-sight (NLOS) and long distance wireless linikaisable.

An emerging technology known as Multiple-Input Multiplasput (MIMO), of-
fers significant promise in making Gbps wireless links in N&.@nvironments a real-
ity. MIMO adds the space dimension to the current 2-dimera@ifrequency and time)
wireless communication to improve performance. It usegipialtransmit and receive
antennas to support two main modes of operat®patial Diversityachieves more reli-
able communication by supplying to the receiver multiptieipendently faded replicas
of the same information symbdkpatial Multiplexingrransmits independent informa-
tion symbols in parallel from the multiple antennas to balbsttransmission speed. As
MIMO constitutes a significant technological breakthrouighas been adopted from
both wireless LAN (802.11n [6]) and cellular network mask@iTE [5]). The current
IEEE 802.11n standard [6] supports MIMO with 4 antennas &@Mbps rates, while
the upcoming 802.11ac standard [7] will allow for 8 antenaad higher than 6Gbps

rates. But, how far are we from MIMO gigabit speeds?

Our experiments with MIMO 802.11n devices reveal that aurtdIMO is low
speed and energy hungry. First, we identify a significanp dretween the speed that
the current MIMO radio can support (physical transmissiate) and the achieved
MAC-layer speed (goodptt Specifically, our experiments with commodity MIMO
802.11n devices show a 56% drop between the speed at the MAC dad the
speed that the PHY layer can support at interference-freesagoint-client settings.
Second, the current low MIMO speed comes at a high energyedbuadich hin-

ders MIMO deployment at the mobile device side. Our measamsnshow that, a

LGoodput is defined as effective throughput by excludingquotoverheads.



MIMO 802.11n radio can deplete a smartphone’s battery mtlesn two hours, when
all its components (i.e., display) but the 802.11n radio@Fé-. But why is current
MIMO slow and energy hungry? Our study reveals the use ofce@single-antenna
802.11a/b/g) designs, over the new MIMO 802.11n settingchvban lead to signifi-

cant performance degradation. To this end,gbalsof this dissertation are twofold:

e Uncover the limitations of existing designs to achieve tegkeds at low energy

cost over the new MIMO 802.11 setting.

e Design, implement, and evaluate new solutions which cdizeifMIMO speed

gains at a low energy budget.

In Section 1.1 we present the roadmap towards high speedjeef&icient MIMO
802.11 wireless.

1.1 Roadmap to the Solution

The goals of this dissertation are to uncover the limitatiohexisting designs and to
present solutions towards high speed (gigabit), energgiedfi (green) 802.11 wire-
less. Our study of gigabit 802.11 communication focusesherkey mechanism that
controls the speed over wireless, naniRate Adaptation(RA). IEEE 802.11 spec-
ifications mandate multiple transmission rates/speedfephysical layer (PHY).
Rate adaptation, which exploits such multi-rate capabdiygyamically selects the best
goodput rate, based on the time-varying and location-d#gr@rchannel quality. When
the signal (signal-to-noise ratio - SNR) is strong, rate &atégn must switch at a high
rate option, to utilize channel capacity [12]. When the sigggetting weaker (e.g. the
wireless client is moving away from the access point) ratggation must switch at a

low rate option to avoid exceeding the channel capacityciwviill result in excessive



packet loss.

Our study on rate adaptation starts from the legacy singierma 802.11a/b/g set-
ting. We first expose the limitations of existing designs dor@ss the dynamics of
the 802.11a/b/g wireless channel (multipath fading anetiatence) using real exper-
iments. We then design, implement and evaluate a robusi 8@/A/g rate adaptation.
After understanding the dynamics of the legacy 802.11afkbfwork, we extend our
view to the MIMO 802.11n setting. Our experiments revealgmificant impact of
MIMO communication characteristics on existing rate adaph algorithms’ perfor-
mance. To this end, we design, implement and evaluate MIM®D18M rate adapta-
tion, which considers the unique characteristics of the KIB0D2.11n channel. Un-
fortunately, MIMO speed comes at a cost of increased MIMO gro@onsumption
proportional to the number of antennas. Our study towardsrgB802.11 communica-
tion seeks to identify the energy optimal antenna settingraime. We next elaborate

on the different components of our study.

Legacy 802.11a/b/g rate adaptation = We first experimentally study rate adapta-
tion in the legacy (single antenna) 802.11a/b/g setting.k@ufinding is that, practical
state of the art algorithms do not adequately utilize theAkedge of wireless chan-
nel short-term performance. This results in transmissairiew speed rates. To this
end, we design and implement a new History-Aware Robust Ragptation Algo-
rithm (HA-RRAA). HA-RRAA uses short-term loss ratio to opporistically guide
its rate change decisions, and an adaptive time window tib ffansmissions at low
speed rates. HA-RRAA outperforms existing practical al¢pong with goodput gains
up to 51.9% in field trials. The next question we seek to anssveow do legacy rate

adaptation designs perform over the MIMO setting?

MIMO 802.11n rate adaptation We next experimentally evaluate state of the

art practical rate adaptation algorithms over the MIMO &8Q#. setting. To our sur-
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Figure 1.1: MIMO vs. legacy energy tradeoff.

prise, popular RAs give lower speeds than the best goodput-fade scheme. The
fundamental problem is that all such algorithms do not prigpeonsider the inher-
ent features of MIMO modes (diversity and spatial multipbepy, which exhibit very
different loss characteristics. As a result, they transihrates other than the optimal
(best goodput rate) sacrificing the MIMO channel capacity. tiis end, we design
implement and evaluate MIMO rate adaptation (MiRA). Difigr&om existing algo-
rithms, MiRA manages diversity and spatial multiplexing idistinct manner. Using a
novel probing scheme it is able to identify the optimal ratnwow overhead. Our ex-
periments with commodity MIMO 802.11n testbeds show thatlIrate adaptation

can outperform existing designs with 73.5% goodput gairld trials.

From performance to Watt per performance The goal of rate adaptation is to
maximize transmission speed over wireless. However, isgsfee right metric? Our
experiments uncover an important tradeoff between MIMGd@ad power consump-
tion. Although MIMO speed increases with the number of anéesnour measurements
reveal a monotonic increase of MIMO power consumption withhumber of anten-
nas as well. In the first scenario of Figure 1.1, both legacy MiVO settings can

accommodate the offered 3Mbps video data rate. Howevetetjaey receiver saves



30% power over the MIMO receiver providing a better user exgmee. A realistic
gauge of quality of user experience is the per-bit energgamption (joule/bit). Per-
bit energy consumption is defined as the ratio between thédohsumed energy and
the delivered bits during any data transfer. In the first agerof Figure 1.1, legacy
receiver saves 30% energy over MIMO. However, when the viida rate increases
(50Mbps), the MIMO receiver achieves 3.7 times higher godipan the legacy re-
ceiver. MIMO gains compensate the additional MIMO recepewer consumption
and give 54% energy savings over legacy. Our case study afd-ih1 uncovers a

dilemma between legacy and MIMO 802.11. Which is the mostgnefficient?

In the second part of this dissertation (Chapter 6) we revisereetric from per-
formance to Watt per performance. Then, we design MIMO gnsage which seeks
to identify the energy optimal antenna setting at runtimegis low-cost informed

probing scheme.

1.2 Contributions

In this dissertation we seek to build a strong connectiowbeh wireless communica-
tions and wireless protocol design. To this end, we first g®a deep understanding
of 802.11 wireless channel and radio features using rearexpnts and study their
impact on the performance of existing protocols. We themppse novel algorithms
that harness the insights gained from our experimentaltseand analysis. Our im-
plementation and evaluation with IEEE 802.11 standardpiiamt testbeds show that

our designs can deliver large gains in practical settings.



1.2.1 Experimental study of 802.11 MAC and channel features

This dissertation builds on a strong understanding of tlaastteristics of the 802.11

MAC layer and wireless channel.

Legacy 802.11a/b/g channel  We first study 802.11a/b/g channel using com-
modity hardware. Our results reveal significant channeltdlations even in static,
indoor, interference-free settings. EXxisting rate adaptaalgorithms present limi-
tations to capture these short-term channel dynamics,hwigisults in poor goodput

performance.

MIMO 802.11n channel This dissertation provides the first experimental study
of fundamental MIMO wireless communication tradeoffs ustiiylO 802.11n com-
modity testbedsWe first uncover the tradeoffs between diversity and spatialti-
plexing MIMO modes. Then, we experimentally study the dsitgrand spatial mul-
tiplexing gains as a function of the number of antennas. Qukweparts from wire-
less communication theory studies in three key wa)g-irst, our study reveals that
findings which are considered norms in wireless commumnatimay not apply in
a practical 802.11n setting. For example, signal-to-noeg® (SNR) metric which
has been used in theory to differentiate MIMO modes [10] Iragdtions to iden-
tify the best goodput MIMO mode in real 802.11n systenly.Second, our study
uncovers new factors as 802.11n MAC-layer frame aggregattooh can affect the
performance of MIMO modeg) Finally, different from theoretical work we study the
impact of MIMO channel dynamics in MAC-layer algorithms’g(i. rate adaptation)

performance.

802.11 MAC-layer features Our study uncovers 802.11 MAC-layer and radio
features, which play a key role in 802.11 wireless netwopexformance. At the

MAC-layer, 802.11n frame aggregation used to amortize pmtoverheads has a



significant impact on goodput performance. On the radio,noeasurements reveal a
monotonic increase of power consumption with the numbentd#ranas. This increase

in power consumption significantly affects MIMO systemséggy performance.

1.2.2 Novel algorithms for rate adaptation and MIMO energy sae

This dissertation provides a critique on practical, stdtthe art algorithms for rate
adaptation and MIMO power save. After identifying the Atdsl heel of existing
algorithms, it suggests a fresh angle on how to design dgigadigreen 802.11 wireless

networks. We highlight the main algorithmic contributidredow.

¢ HA-RRAAhas been designed for legacy 802.11a/b/g networks, andshees
term loss ratio to opportunistically adjust the rate basethe wireless channel
quality. The key feature of HA-RRAA is its adaptive time windomhich pre-

vents transmissions at low goodput rates.

e MiRA is among the first practical rate adaptation designs for MIBG2.11n
wireless networks. Different from existing algorithms, RA manages MIMO
diversity and spatial multiplexing modes in a distinct mannThis allows for

MiRA to identify the best goodput rate at low probing overhead

¢ MRESintroduces Watt per performance as the evaluation metrig BAMO
system. It seeks to save energy by identifying the energynapantenna setting

using an informed probing scheme.

1.2.3 Implementations with 802.11 standard-compliant tebeds

This dissertation provides the first implementation andweatgon of MIMO rate adap-

tation and energy save using 802.11n standard-compliantnsodity devices.Our



proposed designs are practical in three ways. First, the@@2.11 standard-compliant
and have been implemented in 802.11 commodity hardwar@en8ethey do not make
any assumptions about the implementation of the under§@®y11 radio and its fea-
tures. Finally, they do not require channel feedback (SN&pfthe receiver, which is
not supported by the current 802.11 systems. We summaezm#jor experimental

results below.

¢ We evaluate HA-RRAA in both controlled static and mobile sefsiand realistic
field trials where various sources of dynamics coexist inraglex manner. The
comparison of HA-RRAA with state of the art practical desigasARF [17],
SampleRate [23] and RRAA [34], shows goodput gains from 6% to 52%

realistic field trials.

e We compare MIiRA and several MIMO RA alternatives with both dapprac-
tical legacy [23, 34] and MIMO [32] rate adaptation algomnits. \We conduct
our experiments in various scenarios with static/mobilents, hidden terminal
stations, under different MIMO configurations with both TORI&JDP traffic.
Our MIMO RA proposal shows 73.5% goodput gains in realistildfigals.

e We compare MRES with designs that represent two differenvgbphies. First,
we enable all the antennas at both sender and receiver gdgelimaximize per-
formance (speed). Second, we compare MRES with the IEEE 805patial
Multiplexing Power Save (SMPS) feature. SMPS has been gexpby the
802.11n standard, and seeks to save MIMO power (Watt), bicking from
“many” to a “single” antenna setting. MRES vyields 37% energyirsgs in a

two-antenna 802.11n receiver.



1.3 Organization of the Dissertation

This dissertation can be divided and read in different wagigsedding on what the
reader is looking for. The order of the chapters reflectsrdnesition from legacy to gi-
gabit and further to green, gigabit wireless. Chapter 2 plesrbackground knowledge
for the 802.11 standard, rate adaptation, and energy sa\ept€I8 presents the ex-
perimental setup and methodology used throughout thiyysCidapter 4 presents our
first step towards gigabit wireless. We first study the penomce of existing legacy
802.11a/b/g rate adaptation algorithms and then we desigriement, and evaluate
the HA-RRAA algorithm. In Chapter 5, we shift our focus from lega&802.11a/b/g
to MIMO 802.11n wireless networks. We first identify the Iltations of existing RAs
to perform well over the MIMO setting. Then, we design, impént, and evaluate
MIMO rate adaptation for 802.11n wireless networks. In Caagt we revise our
metric to evaluate an 802.11n system from performance to Méatperformance. We
next design, implement, and evaluate MIMO receiver eneagg svhich seeks to iden-
tify the energy optimal antenna setting at runtime. Finalizapter 7 concludes this
dissertation and provides our future directions. Althotlgh dissertation is structured
to guide the reader one step at a time towards gigabit anch @@2.11 wireless, all

chapters can be studied independently as well.

This dissertation can be of interest for both an academiaraha practicing en-
gineer. Chapter 5 shows that MIMO diversity and spatial mpldking modes exhibit
different characteristics. Chapter 6 uncovers a signifitaeoff between speed and
power consumption. These can fundamentally change owsaphy of how to build
protocols over the MIMO setting, as we discuss in Chapter 7id8esa new design
philosophy, this dissertation can serve as a tutorial fgsl@menting algorithms in
802.11 wireless drivers. Chapters 4, 5, 6, uncover 802.Mermdi unique features,

implementation challenges, and solutions for rate adiaptand MIMO energy save.
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CHAPTER 2
Background

This dissertation considers both infrastructure and ad882.11 wireless networks.
An 802.11 wireless local area network (WLAN) is subdividetbioells (called Basic
Service Set or BSS). In infrastructure mode, wireless dientmmunicate through an
access point (AP), which serves as a bridge to a wired netinbrdstructure, as shown
in Figure 2.1. Both clients and access points use 802.11a/mgrfaces. In ad-hoc
mode, there are no APs and wireless clients communicatetigiveith each other. The
wireless clients can be either static or roam between AP#ewte APs are typically
static. We next summarize the IEEE 802.11 features relatedt study, and give an

overview of prior work on 802.11 rate adaptation and eneaygs

2.1 |IEEE 802.11 Standard

The IEEE 802.11 standard specifies the physical (PHY) andumedccess control

(MAC) layers of the protocol stack. Based on PHY and MAC layesigies, 802.11 is

divided in different standards, named with different letté.g. 802.11a/b/g/n). In this
section, we present the 802.11 PHY and MAC layer featurésteckto our study.

802.11 PHY  The IEEE 802.11 PHY layer operates either at 2.4GHz band for
802.11b/g/n or at 5GHz band for 802.11a/n. Each frequenoy Im subdivided in

smaller frequency bands, named channels. For example 2.4@ht in USA is di-
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Figure 2.1: IEEE 802.11 LAN architecture.

vided in 11, 20MHz channels. Only channels 1, 6 and 11 areavenlapping as we
present in Figure 2.2. The 802.11a/g/n physical layer i®das Orthogonal Fre-
guency Division Multiplexing (OFDM). OFDM patrtitions théd®Hz 802.11 channel
(or carrier) into 64 subcarriers of 312.5KHz each, such évatry subcarrier can be
considered of as a separate narrowband channel. In 802.DMQdrata is sent on the

subcarriers using the same modulation, coding scheme amshtit power.

IEEE 802.11 standards allow for multiple PHY transmissiates. An 802.11b
device can use four rate options of 1, 2, 5.5, 11Mbps. An 8@2device can use
eight rate options of 6, 9, 12, 18, 24, 36, 48, 54Mbps. An 80% device can use all
twelve rate options. The new IEEE 802.11n allows for rateeolg00Mbps, while the
upcoming 802.11ac will support rates up to 6.93Gbps. The BHEYsmission raté

can be calculated by the following equation:

R=12-BW; - Nss- N, - Re - GI; (2.1)

BW; is the channel bandwidth facto31V; is 1 and 2.25 for 20MHz, and 40MHz

channel bandwidths, respectivelyss represents the number of spatial streams. The

12
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Figure 2.2: Channels of 2.4GHz band.

legacy 802.11a/b/g standards support only one spatiamtrds we describe in Sec-
tion 2.2, MIMO 802.11 allows for higher number of streamsg @s a result higher
rates.V, is the coded bits per OFDM subcarrier. It is 6 for 64-QAM, 416rQAM, 2
for QPSK and 1 for BPSK modulation schemes, which are supgpdste302.11a/g/n.
The code rateR of a forward error correction code, is the proportion of tlaad
stream that is useful (non-redundant). Finally, the guatervalG/ is used to ensure
that, distinct transmissions do not interfere with eacteotfhe guard interval factor

GI;is 1, 1.11 for 800ns and 400ns guard intervals, respectively

The rate to be used for transmission, is communicated frentrémsmitter to the
receiver in theSignalfield of the 802.11 PLCP header, of an 802.11 transmission
(Figure 2.3). The rate is decided on the MAC layer, by the aal@ptation algorithm

as we discuss in Section 2.3.

802.11 MAC The default operation mode for wireless LAN/ad-hoc netwadsk
the Distributed Coordination Function (DCF), which appliesr@a Sense Multiple
Access with Collision Avoidance (CSMA/CA). In CSMA/CA, a statisenses the
wireless channel, and transmits only when the channel & fhe successful DATA
frame transmission is acknowledged by an ACK frame. Spelifjeghen an 802.11
sender senses a free channel for DIFS (DCF Interframe Spage)riterval, it trans-
mits the entire frame. Upon successful reception of a DABATe, the 802.11 receiver

returns an ACK frame after SIFS (Short Interframe Space) intezval. If the 802.11
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Figure 2.3: IEEE 802.11n frame format.

sender senses a busy channel, it starts a random backaff Timetimer counts down
only when the channel is free. Finally, the DATA frame is sanitted when the timer
expires. Timer increases or decreases upon a failed/sfatémnsmission respec-

tively. The impact of backoff timer on 802.11 performances baen studied in [78].

The hidden terminal problem: Carrier sensing cannot always prevent packet col-
lisions. In the hidden terminal case, two or more sendersbeaim the range of an
intended receiver, but out of the range of each other. InrEig@u4(a), while station
B transmits to C, station D can act as a hidden terminal, aniaasense station B

transmission. As a consequence, any transmission of Desilllt in a collision at C.

There have been many recent proposals that, seek to adaie$srence and hid-
den terminals [68—72]. The state of the art solutions ateeeihot 802.11 standard-
compliant (e.g. [69, 71]), or they require PHY-layer modifions and additional hard-
ware (e.g. [68-72]), which make them impractical for comityo802.11 devices. To
address the hidden terminal problem, the IEEE 802.11 stdmulaposes the RTS/CTS
feature, which seeks to reserve the area around the sertieraaiver for the duration
of the packet exchange. A station wishing to send dataategithe process by sending
a Request to Send frame (RTS). The receiver replies with a @é&end frame (CTS).
Stations that overhear the RTS, CTS frames, defer theintrssgns during the frame
exchange, by setting their Network Allocation Vector (NA¥)gure 2.4(b) illustrates
the RTS/CTS handshake process.

RTS/CTS signaling overhead includes the interframe spagiteyvals (SIFS,
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DIFS), and the transmission time of RTS/CTS frames (Figuté2), which are trans-
mitted using the basic low rate (24Mbps in our platform). Ais bverhead is signifi-
cant, RTS/CTS is often turned off by default in commercial ARd wireless adapters.
Our proposed MIMO rate adaptation, uses a low cost RTS/CT8nseho address
collision losses (Chapter 5). Specifically, it leverages882.11n frame aggregation

feature to detect collision losses, and selectively ersable RTS/CTS feature.

2.2 |EEE 802.11n New Features

The new IEEE 802.11n and the upcoming 802.11ac standaroipimate several new
features to boost performance. The most important are Mettnput Multiple-Output

(MIMO), channel bonding at PHY-layer and frame aggregatdibMAC-layer.

MIMO IEEE 802.11n and 802.11ac PHY uses multiple transmit aneivean-
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tennas to support two MIMO modes of operati@patial diversitytransmits a single
data stream from each transmit antenna, leveraging th@emdient fading over mul-
tiple antenna links, to enhance signal diversi8patial multiplexing(SM) transmits

independent and separately encoded spatial streams fidnogtne multiple transmit
antennas, to boost performance. IEEE 802.11n standarddapp to four spatial
steams, while the upcoming 802.11ac will support up to &stie MIMO modes may

be also combined, and diversity and SM gains can be obtaimadtaneously [9].

Spatial diversity: Diversity techniques can be applied at both receiver antstra
mitter sides. Figure 2.5 illustrates receive diversitydd-antenna receiver (1x2 sys-
tem). Each antenna receives a copy of the transmitted sigioalified by the channel
H between the transmitter and receiver. The coefficignof the channel matrix?,
is a complex number that represents the path gain from triaastenna; to receive
antenng/. The simplest diversity method 8election Combinin¢gSEL), which con-
siders only the strongest signal for packet reception, gndres the others. The more
sophisticatedMaximal-Ratio CombiningMRC), combines the signal at the receiver,
and produces an SNR that is the sum of the antenna SNRs. Salégitice receiver
multiplies the received signgl= hx -+ ii by the unit vecto* /|||, whereh* denotes
the complex conjugate df and7 is the noise vector. This operation scales each an-

tenna’s signal by its magnitude, and rotates the signaistive same phase reference
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before adding them. An example of MRC can be found in [80].

Transmit diversity uses multiple transmit and a single isecantenna (Figure 2.6).
The transmitter equivalent of SEL is to select the singlednait antenna with the
strongest signal. In the equivalent to MRC transmit divgydlite transmitter precodes
the signals by delaying them to change the phase such tegtwit be combined con-
structively at the receiver’s antenna. It also weights tiseich that, transmit power is
allocated to each spatial path based on its SNR. The disay@nf transmit diversity
over receive diversity is that, the transmitter must knoa/¢hanneldd beforehand in
order to select between antennas or to precode the sigriasfeedback may not be

available in an 802.11 device.

Spatial multiplexing: Different from diversity, in spatial multiplexing mode the
transmitter sends independent signals/streamanultaneously from the different an-
tennas (Figure 2.7). The PHY transmission rates lineadyei@se with the number of
streamsVss from the equation 2.1. We can express the received signdiraesaa sys-
tem, using the channel matri{, the transmitted signal vectai; the received signal
vectory and the noise vectot : ¥ = HZ + 7i. In order to decode the multiple streams,
we need simply to solve this linear system. The transmitigda$ 7 is estimated as

H~'y = ¥+ H~'i. The matrixH will be invertible if the different spatial paths are
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Setting Capacity (bits/sec)

SISO BW - logs(1 + SNR)
Diversity (1xN or Nx1) | BW -logs(1+ SNR - N)
Diversity (NxN) BW -logs(14+ SNR - N?)

Spatial Multiplexing (NxN)| BW - N -log2(1 + SNR)

Table 2.1: Channel capacity of diversity and spatial mudtipig modes.

independently faded, making stream decoding feasible.

The capacities of the wireless link for diversity and SM mefte an ideal channel,
are presented in Table 2.BWV is the channel bandwidth, while SNR is the signal-to-
noise ratio. The number of antennas\is At low SNR locations, diversity is usually

preferred. At high SNR locations, SM allows for faster trarssions.

Channel-bonding IEEE 802.11n can simultaneously use two separate channels
to transmit data, thus doubling the rate in principle. Soilevthe legacy 802.11a/b/g
devices use a single 20MHz channel, 802.11n can operate itGMHz mode over
two adjacent channels, one as the control and the other agtérsion. The upcoming

802.11ac can support up to 160MHz channels.

However, as we can see from Figure 2.2, all the 40MHz chararelgartially
overlapping in the 2.4GHz band, as opposed to the 20MHz @isdn6 and 11, which
are non-overlapping. Thus using 40MHz channels can leduréughput degradation
due to increased interference with neighboring channelseeproposals [62, 63]
seek to dynamically assign channel bandwidths, to addnesmterference problem.

Channel bandwidth assignment is out of the scope of this rtiedm.

Frame aggregation  IEEE 802.11n seeks to amortize protocol overhead over mul-
tiple frames. To achieve this, it packs several data framessingle aggregated frame.
There are two levels of aggregation; a) aggregate MAC pobteervice unit (A-

MSDU) and b) aggregate MAC protocol data unit (A-MPDU). Thaimdifference
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Figure 2.8: IEEE 802.11n frame aggregation.

between an MSDU and an MPDU is that the former correspondsetanformation

imported to or exported from the upper part of the MAC subidxem or to the higher
layers, respectively. Different from the MSDU, the MPDUe$ated to the information
that is exchanged from or to the PHY by the lower part of the MAC.

A-MSDU: MSDU aggregation allows for multiple MSDUs to be sent to tame
receiver concatenated in a single MPDU. This improves thieigfcy of the MAC

layer, especially when there are many small MSDUs, such asat&Rowledgments.

A-MPDU: MPDU aggregation joins multiple MPDU subframes with a saghd-
ing PHY header. We define agygregation levelthe number of MPDUSs in an A-
MPDU. A key difference from A-MSDU aggregation is that, A-lB functions after
the MAC header encapsulation process. The maximum A-MPR&Jisi65,535 bytes.
A successful A-MPDU transmission is acknowledged by a sirgjbckAck frame.
BlockAck includes a bitmap field of 128 bytes, where each MPBlhapped using

two bytes. So the maximum number of MPDUs that a BlockAck cmewledge is
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64.

The two levels of 802.11n frame aggregation are presentédgure 2.8, while
an evaluation of 802.11n frame aggregation can be found9h [This dissertation
provides a study of the A-MPDU aggregation level (ChapteftShows that, although
aggregation can indeed amortize protocol overheads, itrede rate adaptation less

adaptive to fast channel dynamics.

Fast MCS feedback  The 802.11n standard also supports MCS feedback (MFB)
mechanism, which provides channel state feedback fronetteaver to the transmitter.
When the MFB field has a value in the range 0 to 126, it represhat®odulation
Coding Scheme (MCS), that the transmitter can use for trasgmisHowever, MCS
feedback mechanism is optional. When an 802.11n receivedaetaot to provide
MCS feedback, it will set MFB equal to 127. In Chapter 5, we eatdUMCS feedback,

and present its limitations in a practical setting.

2.3 Background on Rate Adaptation

Rate adaptation is a mechanism unspecified by the IEEE 80@idasds, yet critical

to the system performance by exploiting the multi-rate bdpg at the PHY layer. It

selects the best goodput transmission rate based on thiesgirghannel quality. The
challenges that RA needs to overcome are twofold. First, tredegs channel can dy-
namically change because of multipath fading, mobility emerference. Second, RA
has to select the best rate from a wide set of available raiensp As rate adaptation
is the key mechanism to utilize channel capacity, it has lageactive research topic
for more than 15 years. In this section we revisit the sotupace and categorize
the existing designs, while in Chapters 4, 5 we criticallyraige commonly adopted

design guidelines using real experiments.
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2.3.1 Solution space for RA

At its core, each rate adaptation algorithm should posselesast two basic mecha-
nisms.Estimationmechanism either directly estimates the best transmisaterbased
on the current channel (e.g. using SNR), or indirectly intaesbest rate by gauging
how well the currently chosen rate performs (e.g. using &dmss statistics)Action
mechanism decides when and how the transmission rate isagpgiaen the outcome
of channel estimation. Based on how these two mechanismsatemented, we can

categorize rate adaptation designs into several gengredaghes.

Estimation: Rate adaptation algorithms can be classified based on treretff

layers, information units and techniques they use to estitie wireless channel.

Which layer to use?lgorithms can be classified based on the protocol stack laye
they use. PHY-layer approaches can utilize SNR feedback fRBE&®], OAR [20],
CHARM [25], FARA [28], ESNR [33]), bit error rate (BER) informatio(SoftRate
[27]), or other signaling information as signal distortigkccuRate [29]). MAC-layer
approaches use frame transmission successes/ lossesréatigdnfer the channel
quality (ARF [17], AARF [18], ONOE [21], SampleRate [23], Atlter MIMO RA
[32], RRAA[34]). Hybrid approaches combine both PHY and MA@dgrinformation
(HRC [26]).

Which information unit to useross layer designs utilize symbol level informa-
tion to estimate channel quality (SoftRate, FARA, AccuRatdje femaining designs
use MAC-layer frames to measure SNR or loss. These desigisedarther classified
in the designs that use DATA frames as ARF and SampleRate, malsig frames as
RTS/CTS (e.g. RBAR and OAR).

How to estimate BNR-based designs translate the measured SNR into a best tran

mission rate based on pre-defined mappings. Loss-basaghdesitimate the channel
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quality based on the outcome of previously transmitted &snbDeterministic pat-
ternapproaches treat consecutive frame successes/ lossemdgation of good/bad
channel condition (e.g. ARFJptatistical metricapproaches use long-term or short-

term frame statistics to statistically estimate the bessjibe rate (e.g. SampleRate).

Action: There are two main approaches to adjust the rate upon cheastiela-
tion. Sequential RAlesigns, adjust one rate option at a time. So, they move to the
next higher/lower rate when channel becomes good/badctsgy. Best RAdesigns

switch directly to rates which yield the best performance.

2.3.2 An overview of RA designs

We broadly classify RA designs as SNR-based and loss-based.

SNR-based designsRBAR [19], one of the first proposed SNR-based designs
leverages the RTS/CTS exchange to estimate SNR at the reselee CHARM [25]
leverages reciprocity of the wireless channel to estima¢eage SNR at the receiver
using packets overheard from the receiver. So, it avoidevthenead of RTS/CTS, and
enables implementation on commodity cards. FARA [28] usedrpguency SNR
measurements to enable a transmitter to use differentdstecross different OFDM
subbands. ESNR [33] has been designed for Multiple-Inputfiple-Output (MIMO)
802.11n systems and uses Channel State Information (CShdekdavailable from
the receiver to the transmitter only in 802.11n systems. ®E$&ed solutions that
require feedback from the receiver, are not 802.11a/bfydsra-compliant and as a

result they have not been popular in commercial 802.11 sysste

Loss-based designsThis class of algorithms utilizes PHY-layer [27] or MAC-
layer [17,18,23,32,34] loss feedback to decide the negtfaattransmission. This dis-
sertation focuses on practical 802.11a/b/g/n algorithii®H [17], SampleRate [23],
Atheros MIMO RA [32], RRAA [34]), which make decisions solelydsal on the
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MAC-layer ACK frame sent upon successful delivery of a DATANi ARF and
SampleRate arprobing-basedlesigns in which a few data frames are occasionally
transmitted at a rate different from the current onprabethe channel. ARF sends a
probe packet at a rate higher than the current one, upon &theonsecutive transmis-
sion successes or when a timer expires. If the probe packeeeds, it increases the
transmission rate. ARF decreases the rate upon two congetnatnsmission failures.
SampleRate maintains the expected transmission time forrase, and updates it af-
ter each transmission. A frame is transmitted at the ratectivaently has the smallest
expected transmission time. Different from probing badgdréhms, RRAA uses a
short-term loss ratio to assess the channel and opportafigtadapts the runtime
transmission rate to dynamic channel variations. Finditiheros MIMO RA selects
the best goodput rate based on loss statistics, while itrep@ends probing and rate

selection.

A recent proposal [41] seeks to achieve optimal, collisiesitient RA, without
requiring channel state feedback, using rateless codegeSi1] has limitations to
be applied at an 802.11 setting. First, it requires new eextddcoder components
and MAC-layer protocol changes, which are not supported BEIB02.11 standards.
Second, its decoder’s complexity grows with the densityhef modulation scheme.
This poses new challenges for the upcoming 802.11ac, whippasts up to 256-
QAM. Finally Strider has not been designed for MIMO. Thiss#idation focus on the
study of practical, IEEE 802.11 standard-compliant design

2.3.3 Departures from the state of the art 802.11 RAs

The rate adaptation proposals presented in this dissert@diA-RRAA, MIRA), be-
long to the loss-based designs. This decision is based oexperimental study pre-

sented in Chapters 4, 5, which shows the limitations of SNRdbgsoposals to be
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used in real 802.11 settings. However, HA-RRAA and MiRA depaniifthe existing
loss-based designs [17, 18, 23, 32, 34] in the following kaysv First, our proposals
apply history-aware, prioritized probing schemes, to iienhe best goodput rate at
low probing cost. MiRA is able to address the unique loss atarsstics of diversity
and spatial multiplexing MIMO modes, by applying a Zigzaglgng scheme. HA-
RRAA and MIRA are able to eliminate transmissions at rates tbasistently offer
lower goodput, by applying an adaptive time probe inter&ifferent from existing
designs [23, 32, 34], our rate adaptation proposals usesterrigger probing, and

rapidly adapt to channel dynamics.

Although interference detection and reaction mechanismsisually decoupled
from rate adaptation, our study shows a significant impaciodifsion losses on rate
selection process. Different from existing proposals 8723, 32], MiRA and HA-
RRAA integrate mechanisms that, can differentiate chanoeh interference losses,
and react by selectively enabling RTS/CTS. Finally, our edaptation algorithms
utilize the unique features of 802.11 protocols. For exandiRA considers 802.11n

frame aggregation features both in rate selection andsemilidetection process.

2.4 Background on 802.11 Energy Save

IEEE 802.11 energy efficient designs have been widely stidati¢h on the infrastruc-
ture [43—45] and client sides [46-58].

802.11 infrastructure energy save Infrastructure energy save proposals [43—45]
seek to save energy consumed in the 802.11 infrastructumpaaents (i.e., APs, con-
trollers). SEAR [44] and Wake-on-WLAN [45] adopt the resaion demand strategy.
They seek to save energy for idle APs, which do not serve affyctr Specifically, they

strategically power on and off APs to save energy, based ersudemand. SEAR
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forms clusters of APs that are in close proximity. Then,natggically powers on and
off APs that belong to the same cluster, based on the traffitade that the cluster
needs to serve. Different from SEAR, which requires a centratroller, in Wake-on-
WLAN design, each AP independently makes decisions to paiself ioff, when it
does not see any clients in its vicinity. Turn on/off APs s$iolns have been designed
for legacy 802.11a/b/g networks, and they do not considéd® power consumption.

Designing MIMO energy save for the 802.11 infrastructuneas of our future work.

802.11 client power save  On the wireless client side, there are three main direc-
tions to save power in an 802.11 network. First, MIMO 802 fddesl gains come at the
cost of increased power consumption, due to the added caityptd MIMO circuit
blocks. MIMO circuitry power consumption is proportional the number of anten-
nas [64]. MIMO power save seeks to identify the most powecieffit antenna setting.
Second, an 802.11 interface consumes power even when ihdogansmit or receive
any data, while sensing the channel for incoming transomssildle power save seeks
to save 802.11 power consumption during idle times, whemadapter does not trans-
mit or receive any data. Third, power consumed on power digsliis proportional to
the transmit power [60]. Transmit power save, dynamicaliysts the transmit power

in an 802.11 device. We next elaborate on these directions.

MIMO power save: The IEEE 802.11n standard [6] specifies a new Spatial Multi-
plexing Power Save (SMPS) feature to save MIMO power consiompSMPS allows
for a station to operate with only one active receive chairaftarge period of time. It
supports two operation modes. In tB&tic SMP3node, the station retains only a sin-
gle receive chain, and forces the transmitter to send usihgdiversity single stream
rates. In thddynamic SMP®node, the receiver switches to multiple receive chains be-
fore every multiple stream transmission, which is precdaded RTS/CTS handshake.

It switches back immediately to one active chain, when then& sequence ends. In
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Chapter 6, we expose SMPS limitation to save both power andygre practical

settings.

Different from SMPS which only considers MIMO power consump, Snooze
[58] switches antenna settings according to MIMO speetirfarutilization). Specif-
ically, it switches to the next higher receiver antennaaptivhen airtime utilization
is higher than a threshold. By increasing the number of amign8nooze seeks to
increase MIMO speed, and as a result to accommodate thedfégplication data
source rate. Our case study of Chapter 6 shows that, chaictiealsolely based on
speed, can lead to energy sub-optimal antenna setting pEftoen antenna manage-
ment, Snooze schedules the sleep and wake-up intervale ofiénts connected to an

AP.

Idle power save: There are many recent proposals [46,51-53], which seek/to sa
idle power consumption of 802.11 interfaces. In the leg&dyH 802.11a/b/g Power
Save Mode (PSM), clients can sleep adaptively, and wake lypvadmen they intend
to transmit, or expect to receive packets. The access poffarb downlink packets,
and transmits them only when the client wakes up. Differeminfthe legacy PSM,
the 802.11n standard [6] introduces the Power Save MultitPEBMP) feature, which
allows for clients to operate as a group rather than indaliguPSMP schedules both
downlink (DL) and uplink (UL) traffic for multiple PSMP-capée stations in a PSMP
sequence. During a PSMP sequence, a station shall not beableeive and transmit
frames at the times outside its scheduled DL and UL period8MHRP supports two
operation modes. I18cheduled PSMPRhe AP periodically initiates a PSMP sequence,
to serve periodic QoS traffic. Iblnscheduled PSMRhe AP may initiate a PSMP

sequence for PSMP-capable, awake stations, at any time.

Transmit power save: Transmit power control designs [55,56] seek to save power

consumption by decreasing the transmit power. Howevegtimg the transmit power,
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while maintaining the same PHY transmission rate, may t@shligher packet losses
and lower speeds. On the other hand, increasing transmémeowplifies interference.
A joint rate adaptation and transmit power control desigs @en proposed in [55].
Our MIMO energy save study presented in this dissertatisaymes fixed transmit

power. Joint power control and antenna selection is partofudure work.

2.4.1 Departures from the state of the art 802.11 energy save

The 802.11 energy save design proposed in this dissert@M&iES), seeks to save
receiver energy on MIMO 802.11 wireless clients. Differfsatn transmit power con-
trol designs [55,56], MRES assumes fixed transmit power, lvisithe default setting
in the most commodity 802.11 devices. We leave the jointrarg@and transmit power
selection, as a future work. MRES also focuses only on antealeetion, and can
work with any idle power save design, as the new IEEE 802. IM Interestingly,

our study in Chapter 6 shows that, MRES can increase sleep ppertonities and

lead to energy savings, when it works in concert with idle posave solutions.

Recent proposals (SMPS [6], Snooze [58]) apply antennats®do save energy
at 802.11nreceivers. SMPS seeks to save power consumedi@Nrcuit blocks, by
switching from “many” to a “single” antenna setting. Sno¢z8] switches antenna
settings according to MIMO speed (airtime utilization). rexample, Snooze will
switch at a higher antenna configuration to accommodateffaeed application data
source rate. Our case study presented in Chapter 6 showarbexina selection solely
based on MIMO speed, or power consumption can lead to enalggstimal antenna
selection. MRES departs from these proposals by consideotigspeed and power

in antenna management.
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CHAPTER 3

Experimental Methodology

The results presented in this paper are obtained from rearements. We next de-

scribe our experimental platform, setting and methodalogy

Experimental platform The sender for all our experiments is a programmable
AP platform, which uses Atheros AR5416 2.4/5 GHz 802.11&f¢gpable chipset.
The 802.11 MAC is implemented in the FPGA firmware, to whichhvaee access.
The platform has several appealing features that fa@livatr research on rate adap-
tation and energy save. First, we can implement our own igos, and run them
at the AP. Second, we can perform per-frame tracing of varmetrics of interests,
such as frame hardware retries and per-antenna SNR valbed, We can configure
many different parameters in real time on a per-frame bagis as: a) the maximum
retry count, b) RTS option, c) the transmission rate for dagime retry. Finally, the
feedback delay from the hardware layer is small, which iggpthat timely link-layer
information is available to rate adaptation and energy.S@igerepeat our experiments
with various wireless clients, which use Broadcom, Marvet atheros chipsets. For

each experimental setting we describe our wireless cliggmtacteristics.

Our AP supports all the 802.11n new features, presenteddtoBe2.2, besides
MCS feedback. It allows for diversity, single-stream (S apatial multiplexing,
double-stream (DS) modes. It also supports three anteRtashains). Its available

rate options can go up to 130Mbps and 300Mbps for 20MHz andH®®hannels
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MCS | Modulation | Code Rate| Mode | Rate (Mbps) | Rate (Mbps) | A-MPDU Max Size | A-MPDU Max Size
at 40MHz at 20MHz (bytes) at A0MHz | (bytes) at 20MHz
0 BPSK 1/2 SS 13.5 6.5 6684 3216
1 QPSK 1/2 SS 27 13 13368 6434
2 BPSK 1/2 DS 27 13 13360 6430
3 QPSK 3/4 SS 40.5 19.5 20052 9650
4 16-QAM 1/2 SS 54 26 26738 12868
5 QPSK 1/2 DS 54 26 26720 12860
6 16-QAM 3/4 SS 81 39 40104 19304
7 QPSK 3/4 DS 81 39 40080 19300
8 64-QAM 2/3 SS 108 52 53476 25740
9 16-QAM 1/2 DS 108 52 53440 25736
10 64-QAM 3/4 SS 1215 58.5 60156 28956
11 64-QAM 5/6 SS 135 65 66840 32180
12 16-QAM 3/4 DS 162 78 80160 38600
13 64-QAM 2/3 DS 216 104 106880 51472
14 64-QAM 3/4 DS 243 117 120240 57890
15 64-QAM 5/6 DS 270 130 133600 64320
16 64-QAM 5/6 DS 300 148400

Table 3.1: 802.11n rate options for 20/40MHz channels.

respectively. Table 3.1 shows our AP’s rate options and ttieracteristics. Our AP
and all the 802.11n adapters used for wireless clients srdissertation, use MRC for
receive diversity, as described in Section 2.2. The trandiversity algorithm for our
AP is Cyclic-Delay Diversity (CDD). CDD transforms spatial eigity into frequency
diversity. Specifically, the signal is cyclically shiftedavthe available antennas, to

address intersymbol interference.

Frame aggregation with BlockAck (i.e., ACK for A-MPDU) feedikas supported
from both our AP and our 802.11n wireless clients. Upon racgia BlockAck, the
rate adaptation module gets feedback including the numbkHRDUs in the trans-
mitted A-MPDU (called as:F'rames) and the number of MPDUSs received with er-
rors (called asBad). If the entire A-MPDU is lost, the number of hardware retrie
(called asretries) is also available. We can then comp@®&eb-Frame Error Ratas

SFER = nlramesxretriesinBad - AP’s Atheros driver upper-bounds the A-MPDU

(retries+1)xnFrames
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Procedure 1Atheros MIMO RA

1. maxRate— forthHighestRate;

2. probelnterval 50;
3: while truedo

4: on.recv_blockACK(retries, nFrames, nBad);

retriesxnFrames+nBad .
SFER — (retries+1)*nFrames '

5
6: SFERr<« L+«SFERr+ %=SFER;

7. if isProbe&&retries == 0&&2 * nBad < nFrames then
8 maxRate— nexthigherrate (maxRate);

9 probelnterval = probelntervalf

10: else if lisProbe&& SFERgr > 55% then

11: maxRate— nextlower.rate (R);
12: probelnterval 50;

13:  endif

14:

15: maintainmonotonicity(R);
16: R = find_bestthr_rate(maxRate);
17: if probeTimerFires&& R == maxRate then

18: R = nexthigherrate(R);
19: isProbe = true;
20: end if

21:  reduceSFERfor_all_rate(, 50);

22: end while

size, such as the ratio between the A-MPDU size and the tiasgm rate, to be equal
for every rate option. As a result, for the max A-MPDU sizeguarantees equal air-
time for every transmission. The A-MPDU size upper-bourmtotir driver’'s 40MHz

and 20MHz rate options, are presented in the last two colushii@ble 3.1. The

maximum air-time for each rate is approximately 4ms. In Céapt we evaluate rate
adaptation for different A-MPDU sizes. We then uncover ttegl¢off between re-
maining adaptive to channel dynamics and amortizing patogerheads with frame

aggregation.
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The default rate adaptation algorithm for our AP platformi\teeros MIMO RA
[32]. It selects the best goodput rate based on the weightadngy average SFER
performance of each rate. SFER statistics of each rate atateg after transmit-
ting at this rate. There is also an aging mechanism, whiclogieally (50ms) re-
duces SFER statistics for each rate by a 1/8 factor. The datedrates for selection
are upper-bounded byraax Rate. Upon high/low SFER of the current selected rate
R, max Rate can be decreased/increased by one rate option, respgctived pseu-
docode of Atheros MIMO RA algorithm is presented in Procedure Chapter 5, we

evaluate Atheros MIMO RA, and uncover its limitations.

Experimental setting We conduct all our experiments both in a campus setting
and in RF chamber, a RF shielded room isolated from external REesiand interfer-
ences. We perform both controlled experiments and fieltstri®@e perform controlled
experiments at midnight to minimize the impact of exteraakdrs, such as signal in-
terference (as verified by our sniffer) and people walkirapad. Field trials represent
more realistic scenarios, in which various sources of dyosugo-exist in a complex
manner. We conduct both static and mobile client experimyemider interference-free
and hidden terminal settings. The static settings are wsedaluate the stability and
robustness of an algorithm, i.e., whether it can stabiliiad the optimal setting.
The mobility settings evaluate how responsive an algorithin adapting to signif-
icant channel variations perceived by mobile clients. Tluelén terminal settings
assess how an algorithm performs under collision lossesdiMduct each experiment
for more than 8 runs and the results presented are averageslbwns. The frame

(MPDU) size used for our tests is 1.5KB.
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CHAPTER 4

History-Aware Robust 802.11a/b/g Rate Adaptation

This chapter studies rate adaptation (RA) for legacy 802bldasystems. Our ex-
periments with commodity 802.11 testbeds, show that popplactical algorithms
[17, 23, 34] perform poorly even in static client, indoor sagos. The fundamental
problem is that, real-world wireless networks exhibit ridrannel dynamics, includ-
ing random channel errors, mobility-induced channel yamg and contention from
hidden stations. Existing RAs have limitations to captueséchannel dynamics, and

as result they can even perform worse than a fixed-rate scheme

In this chapter, we first conduct a systematic experimettalysand simple anal-
ysis to examine three popular design guidelines followegragtical 802.11a/b/g RA
algorithms. These guidelines includg) the decrease of the transmission rate upon
severe packet los®) the use of PHY metrics to decide new transmission Btie
use of long-term smoothened operation to produce the besige performance. Our
experiments surprisingly show that each of the above treemmgly valid guidelines
has its own Achilles heel. In fact, even under mild link-lagentention, these designs
not only have limitations to facilitate throughput improvent, but also may reduce

the throughput and aggravate channel contention, by jalsggering rate decrease.

We further study the performance variations of the wiretdsannel. We observe
time periods where the channel can accommodate high trassmirates, to be suc-
ceeded by significant channel quality degradation. Pog@@arlla/b/g RA solutions

may have limitations to prevent transmissions at high leséssr upon bad wireless
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channel. They may not also switch fast at higher rates, winamreel quality im-
proves. This can result in up to 29% goodput loss of existingdeaigns over the
fixed best goodput rate. To address these challenges, wgndasd implement a
History-Aware Robust Rate Adaptation Algorit{iHA-RRAA). HA-RRAA builds
upon RRAA [34], and leverages short-term loss ratio to provideonly fresh but
also dependable information to estimate the channel gu#lintroduces novel mech-
anisms which improve RRAA performance under dynamic charemadishidden ter-
minals. HA-RRAA applies an adaptive time window to limit thecegsive number
of transmissions at high loss rates, while remaining resperto intense channel dy-
namics. It also leverages the per-frame RTS option in thel80&tandards and use
a cost-effective, adaptive RTS filter to suppress collidmsses with low overhead.
Our experiments show that HA-RRAA consistently outperforrapusar 802.11a/b/g
standard-compliant RAs, with 51.9% goodput gains in raalfsld trials.

This chapter makes three contributions. It studies thel@sschannel dynam-
ics using 802.11 testbeds, and uncovers their impact itiegiRAs performance. It
proposes HA-RRAA, a new design which can successfully addhese dynamics.
It compares HA-RRAA with state of the art RAs using real expentaen scenar-
ios with static/mobile stations, TCP/UDP flows, with/withidudden stations, and in

controlled/field trial environments.

The rest of this chapter proceeds as follows. Section 4 .drithes our experimen-
tal setting. Section 4.2 examines three key design guielof existing algorithms.
Section 4.3 studies the short-term channel past perforenana its impact on rate se-
lection. Section 4.4 presents the design of our proposeRRAA scheme. Section
4.5 describes our implementation and evaluation effortglly, Section 4.6 concludes

the chapter.
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Figure 4.1: Experimental floorplan.

4.1 Experimental Setting

We conduct all our experiments in a campus setting, predenteigure 4.1. We also
conduct SNR measurements in RF chamber. We place our clrewssious locations
between spots P1 and P6, while our access point located apét? serves in the
most cases as the sender of the wireless traffic. For ourdleatrhidden-terminal
experiments we place an AP at location H, which periodidatlyadcasts frames. Our
experimental methodology and our AP device capabilitiesdmscribed in Chapter
3. At the client side, we use various adapters as Linksys WPIS@R2.11a/b/g/n,
CISCO Aironet 802.11a/b/g and AirPort Extreme, Atheros (81.60x86) adapter.
Finally, we conduct each experiment for multiple runs aral tbsults presented are
averages over all runs. The average standard deviationoftratled performance

(goodput) experiments was smaller than 0.6 Mbps.

4.2 Critique on Existing Design Guidelines

State of the art rate adaptation algorithms have been usugga design guidelines as
discussed in Section 2.3.1. In this section, using caséestuwek show that while such

guidelines are useful in certain presumed scenarios, theybe misleading in other
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cases. In the worst case, they yield unexpected, erronesuks.

4.2.1 Case study 1: Decrease transmission rate upon intensacket loss

A fundamental design guideline which has been widely agphealmost all existing
algorithms (e.g. [17, 18, 21, 23, 26]) says that upon sevacket loss, rate adaptation
should decrease its current transmission rate. The ofiginévation for this rule is
that, whenever the link condition between the sender ancettever deteriorates and
thus incurs significant losses at the current rate, the sevdiches to lower rates to

adapt to the worsening channel condition.

The above rule is easily broken in practice when hidden teaisiexist. Hidden
terminals can cause significant loss at the receiver indkpely of the channel quality.
This subsequently triggers rate adaptation at the sendbrd@ase its rate according
to the stated guideline. However, the sender should noktdserits transmission rate
upon hidden-station induced losses, because this actibnatisolve the contention
problem. In fact, reducing the rate will make channel cotid@neven worse because
it prolongs the transmission time for each packet, whichragges channel collisions

and further reduces the transmission rate.

Our controlled hidden terminal experiments verify the abstatements. In our
hidden station setting, an 802.11a access p@ibroadcasting packets at location P6,
acts as a hidden terminal to an 802.11a client located at BP. tchffic sent from our
AP to client at P2, collides witl#/’s broadcast frames. To change the intensity of the
hidden terminal setting, we vary the data source rate of ithéelm access poir/. In
Table 4.1 we present how the popular ARF algorithm performenitidden terminal
H is disabled, wherf{ data source is set to 2Mbps and when it is set to 4Mbps. In
the modest interference setting of 2Mbps, 59% of the framedransmitted at rates

lower than 36Mbps which results in an 29.65% increase in ¢assparing to non-
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Rates

(Mbps)

ARF

Rate Distribution(%)

ARF HT (2Mbps)
Rate Distribution(%)

ARF HT (4Mbps)
Rate Distribution(%)

6 29 100
9 4

12

18 8

24 10

36 3 9

48 57 8

24
491
47.27

54
Goodput (Mbps)
Loss (%)

40
27.93

0.0015
99.97

17.62

Table 4.1: Hidden terminals’ effect on rate adaptation.

interference case. In the intense interference scenafy @onsiders collisions as
channel losses and it transmits 100% of the frames at 1Mbpgrésent more hidden

terminal results in Section 4.5.2.

The fundamental problem is that rate adaptation may expazienuch richer set
of packet loss scenarios in practice, which are well beybedstmplistic one of only
fading/path loss envisioned by the original designs. Thideajine of decreasing rate
upon severe packet loss does not apply in other loss scenditie RA solution has to

differentiate various losses and react accordingly.

4.2.2 Case study 2: Use PHY-layer feedback to infer new transission rate

There have been many RA proposals [19,20,25-29, 33], whilreuPHY-layer feed-
back to estimate channel quality. However, several of teekgions [19,20,27-29,33]
are not 802.11a/b/g standard-compliant. They requirei@kptedback from the re-
ceiver to the transmitter, which is not available in 802/big systems. Moreover,
fine PHY-layer feedback may not be exposed from the hardveatkeet firmware of
an 802.11 device, where RAs are implemented. PHY-layer te&dis per-bit confi-
dence information in SoftRate [27], SNR of each OFDM subban@ARA [28] and
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symbol level dispersion information in AccuRate [29]. As aui, the above solutions
have been evaluated solely using simulations and softveatie testbeds, rather than

commodity 802.11a/b/g adapters.

Signal-to-noise ratio (SNR) metric calculated from RSSI aodefloor feedback
on the transmitter side in the 802.11a/b/g drivers, cahbailised for channel estima-
tion (CHARM [25]). However, there are significant challengeattthese SNR-based
algorithms need to overcome. SNR measurements in comn@@tyl 1 systems may
be inaccurate due to hardware calibration and interferiagsmissions [25, 30]. To
evaluate the SNR-fluctuations under a stable, interferéleeeehannel, we place an
802.11a client approximately 3 meters from our AP in RF chamidée then create
uplink UDP traffic (from client to AP) and we measure the SNRuga of back-to-
back 1.5Kbyte received UDP frames. We fix the rate at 54Mbpdewve ensure very
small gaps £ 0.6ms) between consecutive frame transmissions. Frame losgis ne
ligible (< 0.003%). From a trace of 550 frames presented in Figure 4.2, we wbser
SNR variations which can go up to 4dB between consecutivisinégssions. The min-
imum, maximum SNR observed, is 33dB, 38dB respectively. TEnge variation can
easily lead to more than one rate option deviation from thera rate, when trans-
lating SNR to transmission rate, based on the goodput v&ilis mappings (Figure
7 of [35]). We come to similar conclusions by experimentingwdifferent transmis-
sion rates and distances between client and AP. Except fidR fiaictuations, SNR-
BER relationship can change with different propagation mments. Specifically,
the SNR measured at the beginning of the packet may not eagbiivariation in SNR
during the frame transmission due to fading. As a result Sidset protocols require

in-situ training to perform efficiently across differenppiagation environments [24].

To evaluate solutions that use PHY-layer feedback, we coarfpaftRate [27] with

our proposed HA-RRAA in Section 4.5.2, using ns-3 simulations
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Figure 4.2:Measured SNR in RF cham- Figure 4.3: Mutual information of two

ber over time. packets separated hyms in time.

4.2.3 Case study 3: Use smoothened long-term operations teaguate perfor-

mance

Another design direction suggests to use long-term smaoetheperation in the pres-
ence of random losses over the channel. The long-term sewathoperation can
refer to eithemrate estimatioror rate changeaction, or both. In rate estimation, this
rule recommends to use long-term statistical informatioestimate the optimal trans-
mission rate. For example, popular algorithms as ONOE [28] @ampleRate [23]

both collect packet-level statistics (in terms of loss am@dughput) over a period of
one to ten seconds. In rate change decision, this rule stsggesnly change rates
infrequently, say once every 1 or 10 seconds. In both cadsesirtderlying hypothesis
is that long-term estimation/action will smoothen out tmpact of random errors and
lead to best average performance. Our experiments andsababsed on information

theory invalidate both rules.

Our experiments first reveal that long-term rate estimagiot rate change action
over large sampling periods will not yield best averagegrenfince. The experiment
is conducted using the ONOE algorithm implemented in MADWBNOE uses one
second as the default sampling interval. It changes itshased on the packet-level

loss statistics collected over each sampling period. Inexyperimental setting, the
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Sampling intervals (ms) 5000| 1000 | 500 | 100
UDP Goodput (Mbps)| 14.9 | 15.3| 16.5| 17.1

Table 4.2: Performance of ONOE with different sampling lingés.
sender located at a sibling to P2 spot of Figure 4.1, uses OtQiend packets to

the AP. We vary the sampling period and the results are giv@iable 4.2. The table
clearly shows that small sampling period of 100ms actualbdpces the best aver-
age performance in the long term. Using large sampling demay lead to 12.9%
throughput reduction. In fact, similar results have alserbeeported in early studies
(Figure 3-5 of [23]). One reason for this performance drotha the algorithm is
unable to exploit the short-terwpportunistic gainover the wireless channel, which

typically occurs at the time scale of hundreds of millised®n

We next apply the concept ahutual informatiori74] to show that long-term rate
estimate over large sampling periods does not help evereipitasence of random
loss. Mutual information indicates the mutual dependerfayvo random variables,
i.e., how much information one random variable can tell aliba other. We treat
the transmission success/failure event at a given time asdom variable and calcu-
late the mutual information for two events at different timstants. For our exper-
iments we disable rate adaptation and the frame retry, asawtdehe time for each
success/failure transmission. We then calculate the rhinticamation for each pair
of packets separated by an intervalwois. Figure 4.3 plots the mutual information
evolution with respect to different. The figure shows that their mutual information
becomes negligible when two packets are separated by mamnelOms over time.
This implies that the success/failure event occurred 15€mniger can barely provide
any useful information for the current rate estimation. W aonduct similar ex-
periments at different locations. All results show that nalinformation diminishes

when the sampling period becomes larger than~12Z8Dms. We can conclude that
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large sampling periods, ranging from a few seconds to tess@inds, do not lead to
more accurate rate estimation. In this case, assigningrdiit weighting factors for

samples over time, becomes a challenging issue.

We finally show that long-term, infrequent rate change degismay also lead to
performance penalty. We set up a mobility scenario wherearil8a client is moving
between locations P1 and P5 at approximately constant pshespeed of 1m/s. The
traffic is UDP from the AP to the client. We next compare ARF aadhfleRate im-
plemented in our AP as in MADWIFi. First, while [23] averaghe transmission time
over a 10-second window, the MADWIFi SampleRate implemémaises exponen-
tially weighted moving average (EWMA) without any window. ceéad, while [23]
suggests per-packet rate decision, the rate is only chagyggg 2 seconds or upon
four consecutive losses in the implementation. Both ARF amdf&Rate use rela-
tively short-term rate estimation. ARF sends a probe paakédter than 15 transmis-
sions. SampleRate implementation uses EWMA with a factor@3,0which implies
that roughly only the recent 50 samples carry major weightbe estimation. How-
ever, the rate change actions in both algorithms are quitereint. ARF allows for
rate change every 10 or 15 packets, while SampleRate takeo@dseto switch to a
new rate (unless four consecutive losses trigger rate deeyeThese different design
directions have a significant impact in performance undemaability scenario. Our
experimental results show that, the average UDP goodpusRé& and SampleRate
are 20.6Mbps and 18.8Mbps, respectively. So ARF perforn ®étter than Sam-
pleRate in the mobile client case, which shows that the ddlegte-change decisions

hurt the responsiveness of SampleRate.
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4.3 The Importance of Learning from Short-Term History

State of the art rate adaptation algorithms do not adequatidize the knowledge of
channel’s short-term past performance. RRAA and ARF decidéd@msmission rate
of the subsequent frames, solely based on the performanites aurrent transmis-
sion rate, without considering the outcome of the past tressons at adjacent rates.
AAREF [18] seeks to fix the above limitation of ARF by doubling th@bing threshold,
when a probe packet fails. RRAA+ [31] enhances RRAA by increddeageasing
a probabilityp[R] of transmitting at a raté?, when transmissions d@ succeed/fail
respectively. Finally, SampleRate seeks to limit samplinggh loss rates by exclud-
ing from selection for 10 seconds (MADWiIFi implementatiprgtes which faced 4
successive failures. However, the mechanisms used from ARRRAA+ and Sam-
pleRate to capture channel’s past performance, do not atddgjaddress the two main

dimensions of the problem.

When does loss happenRRAA+ and SampleRate falsely considate’s and not
channel’s past performande limit transmissions at high loss rates. Specificallyythe
update the performance of a rate only when they transmit @ and not when there
is an indication that the channel has changed. Maintairtizlg sistory about a rate’s
performance, can lead to goodput degradation especiallyeirscenarios of intense

channel dynamics (e.g. mobility).

How severe is the loss?The above history-aware mechanisms adapt probing at
high loss rates, when transmissions at these rates fail.ekenvthey do not consider
how significant was the loss. For example RRAA+ will hapj&] when it moves to
lower rates independently if the loss ratio fBrwas 40% or say 100%. AARF will
double the probing threshold independently if the probm&avas hardware retried 1
or 10 times, while SampleRate does not distinguish casesewinebe frame will face

less or more than 4 successive failures.

41



Rates RRAA RRAA+ SampleRate ARF Fixed Rate | Fixed Rate
Distribution(%) | Distribution (%) | Distribution(%) | Distribution(%) | Goodput (Mbps) Loss (%)

6 5.39 0.64

9 7.74 1.54

12 10.24 0.49

18 14.73 0.80

24 1 1 6 5 18.65 1.96

36 53 96.5 87 65 25.64 3.41

48 46 25 6 29.5 12.49 62.84

54 1 0.5 0 100
Goodput (Mbps, 18.20 25.6 23.87 21.85
Loss (%) 33.13 2.99 9.28 22.03

Table 4.3: Performance of RRAA, SampleRate, ARF at location P3.

We verify the above limitations in the following section migireal experiments.

4.3.1 A case study

We start our study on history-aware rate adaptation byngisivo simple questions.
How important is for RA designs to consider channel’s shemtt historical perfor-
mance? Are the existing RAs history-aware? To systematiealswer these ques-
tions, we conduct fixed rate experiments in many differecatimns and we study on
a per-frame granularity their run-time loss and goodputguerance. To ensure that
our observations are attributed to channel dynamics antbraatllisions from hidden
stations, we switch to 5GHz band on channel 36, which wasference-free during

our experiments, as verified by our sniffer.

Our experiments show that there are time intervals wherargsinission rate’s
performance can be highly dynamic, which can be followedilme tintervals where
a rate’s performance is relatively stable (longer than @sds in our experiments).
This behavior is attributed to intense channel dynamicschvban change in different
environments as stated in [24]. In Figure 4.4 we present set8nd trace of frame
loss evolution of a scenario where client was placed at lmed®3 and the rate was

fixed at 48Mbps. We observe that frame loss presents bigtiargaduring the first 5
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Figure 4.4: Frame loss ratio of 48Mbps over a 13 seconds.tr&eeh point is an

average over 200 milliseconds.

seconds of our trace, while it is relatively stable afterSttesecond. More specifically
during the first 5 seconds, frame loss can vary frafh to 69.4%, while it rapidly
increases after that. From 5.4th to 10th second loss ramgesst% to 91%, while
overall from 5.2th to 13th second loss is greater th2is. The average frame loss of

our trace i$54.9%.

An efficient RA algorithm should be both highly responsive &pid channel
changes and should be able to limit the number of transnmmissad high loss rates.
In the previous example, rate adaptation should switch b when its loss is low
and limit transmissions at this rate when loss is constaseitty high (after 5th second).
But, how do state of the art RAs perform in this scenario? Wedisnsively evaluate
the performance of all 802.11a rates at location P3 and weeptehe results in Table
4.3. From the Table, we observe that rates smaller than 48/ very low frame
loss, while 48Mbps gives a significant average los&2a§%. Second, we evaluate and

study the performance of RRAA, RRAA+, SampleRate, and ARF at ticatilon.

As RRAA and ARF do not keep any state about rates other than tihentune,
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they keep transmitting at high loss rates. From Table 4.3egdlsat RRAA and ARF
transmit 46% and 30% of the frames respectively at low gobd®Mbps and 54Mbps
rates. As a result, RRAA and ARF give 29% and 14.8% goodput |cgsentively,
over the fixed best goodput rate, which is 36Mbps (Table £38mpleRate is proven
slightly more efficient, as it still transmits 7% of the frasnat high loss 48Mbps and
54Mbps rates. This results in 6.7% goodput loss over the fbext goodput rate.
RRAA+ yields the highest goodput among the evaluated alguosgthby transmitting
only 2.5% of the frames at 48Mbps. Although RRAA+ is proven toefffecient in
our case study setting, our extensive experiments praesengection 4.5.2, verify the
limitations of RRAA+ design discussed above. Interestintiigy also show that its
guideline to halven| R] upon failure, can lead to rate under-selection (selectioates

lower than the best goodput rate).

Based on the lessons learned from our case studies, we destgnyFHAware
RRAA, which seeks to limit transmissions at high loss rateslewemaining adaptive

to intense channel dynamics.

4.4 Design History-Aware Rate Adaptation

In this section, we present the design of our History-Aware RRAA-RRAA) al-
gorithm. HA-RRAA builds upon RRAA algorithm presented in [34]. RRAIses a
short-term loss ratido assess the channel and opportunistically adapt thenranti
transmission rate to dynamic channel variations. Shont-tevss ratio allows for
RRAA to be robust against random loss, while remaining resperne fast channel

changes. RRAA calculates the loss ratio in a time estimationlew wnd) as:

# _lost_frames

= 4.1
# _transmitted_frames (4.1)
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It also uses two fixed thresholds to sequentially move todrigin lower rates. RRAA
will increase/decrease the current transmission rate byoption, if the loss rati@ is
lower/higher than a thresholl,r;/ Py, Finally, RRAA leverages the 802.11 RTS

option in an adaptive manner to filter out collision lossethwmall overhead.

HA-RRAA departs from RRAA in the following two key ways. It levei@s an
adaptive time windowo capture short-term channel past performance and avold pr
ing at low goodput rates. It leverages the per-frame RT Sapti the 802.11 standards
and use a cost-effective, adaptive RTS filter to suppresisicol losses with low over-

head. We next elaborate on these mechanisms.

4.4.1 Adaptive time window

Motivated by the 802.11 binary exponential backoff, adeptime window (wnd)
mechanism: a) exponentially increases a timer upon trassom failure, b) resets
the timer upon transmission success, c) bounds the timgr, ),..|. First, an ex-
ponential increase of time window upon failure, allows forr gcheme to eliminate
the rates that consistently offer lower goodput, by tratsmg at these rates less fre-
guently over time. Second, by bounding and reseting apjatay the time window,
our mechanism remains adaptive to fast channel dynamicaptih@ time window is
set asly = T x 2¢°P, The exponent factarrp represents the number of times that
moving from a rateR to the next higher rate fails (results in moving downward?at

It is upper-bounded by 10 in our prototyp&; represents the minimum estimation

window (ewnd).

History-Aware RRAA applies the adaptive time window to RRAA, itait trans-
missions at the adjacent high loss rates. Our basic adaptieewindow mechanism
also utilizes the short-term loss statistics offered by RRAA&dpture the magnitude

of losses, by linearly increasing time window with loss. Teeised adaptive time
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window is expressed as:
P
Tp=Tc x 297 x max(l, =) (4.2)
Fo
whereP is the short-term loss ratio of the ral&and F, is a loss normalization factor

set to10% in our prototype.

HA-RRAA maintains only one time window for the next higher rdte of the
current transmission rate. Every time that HA-RRAA moves downward from a rate
Ry to R, it will update time window based on the equatidr), while it will increase
exponential by one. HA-RRAA will reset time window for a rage in two cases: a)
When transmissions &t are successful, meaning that they do not trigger HA-RRAA
to move downward at rat®. b) When channel’s further deterioration will trigger HA-
RRAA to move fromR to the next lower rate. HA-RRAA algorithm is presented in

Procedure 2.

4.4.1.1 Handling mobility and hidden terminals

HA-RRAA further improves RRAA in mobility and hidden terminaltgegs as well.

Fast adaptation: To boost RRAAs responsiveness to fast channel deterioration
we enhance HA-RRAA with fast adaptation mechanism. We mairdasmall win-
dow of frames (migewnd,1Q frames in our prototype) and we compute the loss ratio
inside this window. If the loss rati® is greater or equal to a threshat@y,,...,, HA-
RRAA directly moves downward to the next lower rate. WelRgt...,, = 90% for our

implementation.

Cost-effective adaptive RTS filter: RRAA maintains a RTS window (RTSwnd),
in which all frames are sent with RTS on. Initially RTSwnd & $0 0 and then it is
updated as follows. When the last frame is lost without RTSSWid increments by

one because the cause of the loss was probably collisionsieVvén, when the last
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Procedure 2HA — RRAA: Input (ACK Frame),OutputR)
1: R=highestrate;

2: timer=ewnd(R); fastimer=mifewnd(R),1Q;

3: while truedo

4. revtx_status(lasframe);

5. P =updatdossratio();

6:  if timer==0|| (fastimer<0 && P > Prp esn) then
7 if P> Puyrr || P> Praresh then

8: if R'=Rz then

9: reset(expyr);

10: end if

11: Tr =updatetwnd(P,exp);

12: R =R, exp++;

13: R = nextlower.rate(R);

14: else

15: if R==Rr then

16: reset(expT’r);

17: end if

18: if P < Porr andTr==0 then

19: R = nexthigh_rate(R);

20: end if

21: end if

22: timer = ewnd(R); fastimer=mifewnd(R),1Q;
23:  endif

24:.  send(nextrame, R);
25:  timer——; fastimer—; Tp——:
26: end while

frame transmission was lost with RTS, or succeeded withd&, RTSwnd is halved

because the last frame clearly did not experience colksion

HA-RRAA further improves RRAAs adaptive RTS (A-RTS) mechanismad-
dress hidden terminals at a lower cost. Although A-RTS seekwsitigate signal-
ing overhead by selectively turning on RTS, there can bessgjhificant overhead in
the cases where frame’s transmission time is small comp&iRTS/CTS transmis-
sion overhead. HA-RRAA uses a cost-effective adaptive RT8raeh which follows
the general paradigm of A-RTS, but without blindly turning BTS, to avoid sig-
nificant overhead especially observed at high rate optidnstead, it turns on RTS
only when the overhead is outweighed by the potential savikbtA-RRAA first esti-

mates the RTS/CTS overhedb:rs), which is the channel time used for transmitting
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Procedure 3Cost-Effective Adaptive RTS
1: RTSWnd=0;

2: RTScounter=0;

3: while truedo

4 rev_tx_status(lasframe);

5 if IRTSON and !Succeghen
6: RTSWnd++;
7
8

RTScounter=RTSWnd;
else ifRTSOnN xor Succedben

9: RTSWnd=RTSWnd/2;

10: RTScounter=RTSWnd,;

11:  endif

12:  if RTScounter> 0 && Tframe > 1.5 Trors then
13: TurnOnRTS(nexframe);

14: RTScounter—;

15  endif

16: end while

RTS/CTS signaling messages. Second it computes the trasiemisne of the frame
asTirame = TEAME 4 T, 0iheaa Where FRAME is the MAC-layer frame sizeR

is the transmission rate af{,.....q includes the various 802.11 protocols overheads
(SIFS, DIFS, ACK). Finally, HA-RRAA will turn RTS on only if thedilowing con-
dition holds: Tt,4me > k - Trors, Where k is a benefit/cost ratio set to 1.5 in our
prototype. The intuition behind this condition is that, waut RTS/CTS, the frame
may need at least one retry to get through, when collisiomrscclhe pseudocode of

the cost effective adaptive RTS filter is presented in Procz8.

4.4.1.2 Putting everything together

In Figure 4.5 we present the complete architecture of HA-RRBpon the reception
of MAC-layer feedback, loss estimation module updates: s9 hatio estimation for
the selection of the next transmission rate, b) historyrimétion module to set the
adaptive time window and c) mobility fast adaptation modaleandle drastic channel
changes. It also interacts with the cost effective adag®vé filter to update RTS

window, as described in Section 4.4.1.1.
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Figure 4.5: HA-RRAA architecture.

4.5 Implementation and Evaluation

We implement HA-RRAA on a programmable AP platform and we campghem
with RRAA, RRAA+, SampleRate and ARF in controlled testbeds and frels. We

next present our implementation and evaluation efforts.

45.1 Implementation

There are two non-trivial challenges that our implemeatathust address. First, our
AP platform avoids floating point operations, thus the mmetishort-term loss ratio
and the associated two thresholds are not directly appéicdb address this issue, we
count the number of lost frames, rather than calculate thend loss ratio. Specif-
ically, we maintain a counter to record the number of losinia within the current
estimation window, while the loss ratio thresholds aredlaed into the number of

frame losses.

Second we need to incorporate Atheresftware (SW) retrie§32] with the RA

algorithms. SW retries are pairs ofate, number of hardware (HW) retriesWhen
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RRAA RRAA+ SampleRate ARF
Static UDP | (2.2-41.1)%| (0.4-6.7)% | (1.3-83.9)% | (2.4-39.6)%
Static TCP | (1.7-25.1)%| (0.7-41.6)% | (5.2-55.0)% | (0.1-33.6)%
Mobility 4.8% 8.6%
Hidden Terminal| up to 8.4% | (4.7-21.7)% | (15.4-28.5)%| 50.1% -x 1145
Field Trial (1.5-5.8)% | (12.4-24.8)%| (4.9-6.0)% | (3.6-51.9)%

Table 4.4: Performance gains of HA-RRAA over state of the art Rgighs.

the rate selected from RA algorithm fails (ACK is not received¥oftware retry will
re-send the data frame in the next lower rate, in an attemgetohe frame through.
If the rate selected from RA algorithm (say 54Mbps) fails, platform will first HW
retry the frame two times at 48Mbps, two times at 36Mbps amah tlour times at
24Mbps, if the previous attempts fail as well. In our impler@tion we consider that
a failure at a lower rate implies a failure at higher rates alf. w~or example, if the
selected raté (say 54Mbps) fails two times anl_ (say 48Mbps) fails one time, then
the total failed frames considered in RRAA’ loss ratio will theee. A successful

transmission for a rat®, is considered a transmission of zero HW retries.

4. 5.2 Evaluation

In this section we compare the different RAs both in contbfieatic, mobile settings
and field trials, using real experiments. The results areages of multiple back-
to-back runs whose standard deviation varies from 0.004a56 Mbps in controlled
settings and from 0.17 to 2.2 Mbps in the field trials (as shbyrhe error bars in
Figures 4.6-4.11). All the algorithms are implemented oo AP side and traffic is
downlink (from AP to client). HA-RRAA's goodput gains over tbhéher 802.11a/b/g

standard-compliant designs, are summarized in Table 4.4.

To evaluate solutions that use PHY-layer feedback and ate882.11a/b/g
standard-compliant, we compare SoftRate [27] with our pseddHA-RRAA, using
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Figure 4.6:Static 802.11a client at UDP Figure 4.7: Static 802.11a client at high

setting. volume (4 flows) TCP setting.

ns-3 simulations.

Static clients We first compare RA designs in five different locations (P1-P5)
on a 5GHz interference-free channel. In Figures 4.6, 48 ,we present the goodput
performance of the five algorithms for UDP, intense TCP (4 flosrsd sparse TCP
(1 flow) traffic respectively. We observe that HA-RRAA outpenis all the other
algorithms in all the locations. For UDP traffic HA-RRAA givesafput gains up to
41.1% over RRAA, up t06.7% over RRAA+, up ta83.9% over SampleRate and up to
39.6% over ARF. In static TCP setting, goodput gains are significanwell and can
go up to55%.

In static settings, HA-RRAA's goodput gains over other soln$i, can be mainly
attributed to adaptive time window mechanism. Specificél-RRAA gives signif-
icantly lower average losses over the other RAs, in the mosuofstatic UDP and
TCP settings, by avoiding transmission at lossy rates. Cosdpaith the history-
oblivious designs, HA-RRAA presents up 20.7% lower average loss than RRAA
and up t022.4% lower average loss than ARF. Although SampleRate considets pa
performance before sampling higher rates as we discusxtio84.3, it yields higher
up t09.1% average losses than HA-RRAA. For the location P3 of our casky gite-
sented in Section 4.3.1, HA-RRAA gives significant better genance than RRAA,
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Figure 4.8: Static 802.11a client at low Figure 4.9:Mobile 802.11a clientat UDP

volume (1 flow) TCP setting. setting.

SampleRate and ARF (Figure 4.6) by transmitting ah}f% of the total frames at the
lossy 48Mbps rate. Although RRAA+'s performance comes closdA-RRAA in
many of the locations, our experiments show that it may setes lower than the
optimal, in various traffic and location settings for twogeas. First, RRAA+ tends to
be conservative by halving R] upon failure. Second, it suffers from stale probability
p[R] statistics. The negative effects of these two observatmasnost evident in the
multiple- and single-flow TCP experiments at location P3, ieliRRAA+ transmits
on average 40%, 58% of the frames at rates lower than 36 Mbple the average best
goodput rate is 36Mbps. Note that TCP traffic’s bursty or spasture may affect
the channel estimation mvnd and may result in different rate distributions compared

with UDP.

In some scenarios, as in our case study setting presentedtin®4.3.1, ARF per-
forms better than RRAA (20% goodput gains). Although both allgms are history-
oblivious, ARF is proven more conservative in moving to higlesy rates and it may

also move faster to lower rates upon severe frame loss.

Mobile clients In our mobility setting, client is moving between locatioR$
and P5 at approximately constant pedestrian speed of 1rs.cllannel selected is

interference-free and traffic is UDP. From Figure 4.9, weeobs that our adaptive time
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window mechanism does not have any negative effect whentdienoving closer to
AP. So, HA-RRAA performs similar to RRAA and ARF. On the other haRRAA+
does not have any efficient mechanism to reset its stalstatatiwhich makes it less
responsive. As a result HA-RRAA outperforms RRAA+ by%. An ideal setting
to evaluate our proposed fast adaptation mechanism, isiawahnetwork scenario

when client is moving very fast away from the AP. We leave #ss future work.

Hidden terminal In this section we evaluate HA-RRAA in a controlled hidden
terminal setting. In our interference scenario, an 802cli#at broadcasting packets at
P6, acts as a hidden terminal to the 802.11a client at P2 hwhihe receiver of UDP
traffic from the AP. To change the intensity of the hidden teahsetting, we vary the
data source rate of the hidden station. In Figure 4.10 wesptéise performance of the
implemented algorithms in a modest and an intense hiddemrtat scenario. In the
modest setting (1Mbps data source rate), HA-RRAA is the cleanev over the other
designs, with goodput gains up 50.1%. In the low interference level scenario, the
goodput gains of 8.4% of HA-RRAA over RRAA can be attributed todbst effective
A-RTS filter of HA-RRAA compared with the simple A-RTS filter of RRAIn the
very intense hidden terminal scenario, HA-RRAA is slightlyramthan RRAA§.2%)
because its adaptive time window can be increased uposioalliosses, making HA-
RRAA to transmit at lower rates compared with the optimal tnaission rate. Overall
because Adaptive RTS filter, RRAA, HA-RRAA and RRAA+ give signifitpbetter

performance than ARF and SampleRate.

Field trials We also conduct a series of uncontrolled field trials to usiderd
how well the RAs perform under realistic scenarios, in whiahaus sources of dy-
namics co-exist in a complex manner. Our field trial uses taticsclients at locations
P2 and P4 and a third client initially placed at P3, which wequkcally move be-

tween locations P1 and P5. We run four sets of experiment®ackl lasted at least
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half an hour both at 2.4GHz (channel 1) and 5GHz bands (ch&6heTraffic is sin-
gle flow TCP. At 2.4GHz band the channel was heavily loaded asnified 17 APs
from channel 1 to 11. Under this high interference environiht®A-RRAA gives up

to 5.8%, 24.8%, 6%, 51.9%, goodput gains over RRAA, RRAA+, SampleRate and
ARF respectively, as presented in Figure 4.11. At the lesgested 5GHz band the
performance of all algorithms is significantly better. HA-RRAjives up t012.4%

goodput gains over the other algorithms as well.

Simulations We next compare HA-RRAA with SoftRate [27], using ns-3 simu-
lations. SoftRate uses confidence information calculateth®yHY-layer (SoftPHY
hints), which are exported to higher layers to estimate tiamoel BER. Receiver com-
municates this BER estimate to the sender on a per-packes, basch finally picks
the best goodput rate. Authors in [27] use software radiceBawhich specify the
SoftPHY hints that are required for BER computation. As safevradio traces are
not available, we calculate BER based on SINR-BER curves [78krGhat the sim-
ulation propagation environment is fixed and there are ngthemdware calibration
or interference issues that can affect SINR, we argue thasiowrlated SoftRate can

perform similar to the one proposed in [27].

In our evaluation scenario, an 802.11b AP sends TCP traffia 802.11b client.
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Setting HA-RRAA SoftRate
Goodput (Mbps) Goodput(Mbps)

Static 5.56 5.6
Low Mobilty 2.21 3
High Mobilty 2.05 291

Table 4.5: HA-RRAA vs. SoftRate under static, mobile settings.

We compare HA-RRAA with SoftRate under static and mobility sces. In the
mobility case, the AP remains static while the client is nmgvivith 3mph, 80mph for
the low and high mobility setting respectively. The resalts presented in Table 4.5.
Interestingly, in the static case where channel is statdth hlgorithms give similar
goodputs and rate distributions-80% of total frames at 11Mbps). In our mobility
setting, SoftRate can adapt the bit rate on a per-frame badigialds up to 42%

goodput gains over HA-RRAA.

4.6 Summary

This chapter provides our first step towards gigabit wigldsy studying legacy
802.11a/b/g rate adaptation, using 802.11 standard-¢amprogrammable testbeds.
We first critique three popular design guidelines of exgtgorithms, while we also
experimentally study the short-term dynamics of the 802vireless channel. The
key insight learned is that, a RA algorithm has to capturetdieom channel’s per-
formance, to infer different loss behaviors and to take tdapeactions accordingly.
To this end, we design HA-RRAA, which applies adaptive timedeins to capture
the short-term channel dynamics. It also differentiate#igfrom interference packet

loss, by applying a low overhead RTS filter.

HA-RRAA is a practical design in three key ways. First, it is 802 standard-

compliant. Second, it does not require receiver-side faeklbwhich is not supported

55



by 802.11a/b/g standard. Finally, it leverages MAC-layanfe loss feedback, which
is available in any commodity 802.11 driver. Our real expemts show that, HA-

RRAA consistently outperforms popular 802.11a/b/g standardpliant solutions

with goodput gains up to 51.9% in field trials.
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CHAPTER 5

From Legacy 802.11a/b/g to MIMO 802.11n Rate

Adaptation

IEEE 802.11n standard adopts Multiple-Input Multiple-@utt(MIMO) technology to
further enhance its PHY-layer capability. Using multiplantsmit and receive anten-
nas, it supports botBpatial Diversityoriented single-stream (SS) aBgatial Multi-
plexingdriven, multiple-stream (double-stream (DS) in our platipoperation modes.
Together with channel bonding of two adjacent channels,180offers a much wider
range of transmission rate options up to 600Mbps. The widan @nd larger num-
ber of rate options, make MIMO 802.11n rate adaptation (RAj)enoballenging than
legacy 802.11a/b/g RA. MIMO rate adaptation has to adjusbnbtthe Modulation-
Coding Scheme (MCS), but also the MIMO mode at runtime basederchannel
quality.

In this chapter, we identify issues and propose solution®/fid10-based RA in
802.11n systems. Our work started with a simple question.vi@asimply apply RA
algorithms, which have been shown to work well for the leg2@%.11a/b/g networks,
to the MIMO setting? Our experiments on standard-comp@2.11n AP platform
show that, both popular legacy RAs (RRAA [34], and SampleRath @&l MIMO
RAs (Atheros MIMO RA [32], used in 802.11n Atheros chipsetsyehaignificant
limitations. To our surprise, all three algorithms off&% to 44% lower goodput,

defined as effective throughput by excluding protocol ogarh than the best fixed-
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rate scheme.The fundamental problem is that all such algorithms do natpprly
consider the inherent characteristics of SS and DS MIMO moadéich exhibit very

different loss patterns.

Our extensive experiments both in a campus environment i@ chamber
uncover a non-negligible, non-monotonic relation betwkess and rate in 802.11n
MIMO scenarios, when considering all rate options and igigpoperation modes.
That is, although rate increases, loss does not monottngralw with rates in differ-
ent modes due to inherent MIMO characteristics [8—10]. Téswilts in existing RAs
to transmit at rates lower than the best goodput rate. Hawewithin each SS/DS

mode, the monotonic behavior between loss and rate stig¢hatholds.

In this chapter, we first design MiRA, a new practical RA alduntfor 802.11n
networks. MIRA is 802.11n standard-compliant and can beemginted using com-
modity 802.11n hardware. It does not require any channeé $¢edback from the
receiver, and it does not make any assumption about the MIdib rimplementa-
tion. MiRA addresses loss non-monotonicity by applying agh@igzag RA scheme,
which opportunistically zigzags between intra- and interde RA operations. It starts
by sequentially probing rates of the current MIMO mode eitjplg loss monotonicity
across individual modes. When it cannot further improve goibch its current mode,
MiRA performs inter-mode RA by exploring the other DS/SS motteuses a new
adaptive probe interval mechanism to limit probing at lovedjout rates, while it also
exploits 802.11n frame aggregation feature and BlockAckiti@réntiate collision
from channel losses. In addition to MiRA, we design and evalsaveral alterna-
tives to MIMO RA. Window-based rate adaptation (WRA) runs arepehdent RA
in each MIMO mode in parallel, to address loss non-monottynvhile it maintains
and adjusts a rate selection window to identify the best gabaate with limited prob-

ing cost. MIMO-SampleRate uses SNR measurements to diffateibetween SS/DS
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modes.

Our experiments in indoor controlled static/low-mobilggttings and field trials
confirm the performance gains of MIMO-mode aware RAs, undeioua MIMO
configurations. Specifically, MiRA consistently outperfaRRAA, SampleRate and
Atheros MIMO RA with goodput gains up te24.8%, 182.2% for static and mobile
clients, respectively. In the field trials, MiRA and WRA achigy@dput gains up to
73.5% over the other legacy and MIMO RA algorithms.

The rest of this chapter is organized as follows. Sectionrirbduces our experi-
mental setting. Section 5.2 studies a simple case of agpsyiisting RA algorithms in
the 802.11n setting, and Section 5.3 reports the finding$arecteristics of diversity
and spatial multiplexing modes. Section 5.4 presents thigd®f MiRA, and Section
5.5 discusses several MIMO RA alternative solutions. Sedii6é describes our im-
plementation and evaluation, while Section 5.7 reviews¢heted work. Section 5.8

concludes the chapter.

5.1 Experimental Setting

We conduct all the experiments on a programmable AP platfainich uses Atheros
AR5416 2.4/5 GHz MAC/BB MIMO chipset. Our AP supports singleeaim (SS),
double-stream (DS) modes and rates up to 300Mbps. Our testlggoorts frame
aggregation and 20/40MHz channels, as well. For our studyjmplement both
legacy [34], [23] and MIMO RAs [32] on the AP side. We provide r@onforma-
tion about our experimental platform in Chapter 3. We repeatexperiments with
different 802.11n clients; Buffalo WLI-CB-AG300NH 802.11ahi wireless adapter
is based on Marvell 802.11n chipset, Linksys WPC600N 802hld/ar and Airport

Extreme wireless adapters use Broadcom chipset. The resedtsnted in this chapter
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Figure 5.1: Experimental floorplan.

are from Airport Extreme adapter, which supports up to 2708Mtates.

We conduct our experiments in both a campus setting and in Biloér. Figure
5.1 shows the floorplan of the campus building we run the expats. Spots P1 to
P19 represent different locations where the clients areeplaln all the experiments
unless it is explicitly mentioned, we initiate downlink lkaio-back UDP traffic (from
the AP to client) with 1.5KB MPDUs. Channel bandwidth is se4@dHz and aggre-
gation is enabled. We also configure the AP at the interferdree (as verified by the

sniffer) 5GHz band, on channel 36.

5.2 A Case Study

We started our work by examining how well the existing RA aitjons work in the
802.11n MIMO setting. The goal is to understand which fextorthese RA schemes
lead to their performance gain or loss and which MIMO chamastic is the root cause.
To illustrate our findings, we first present a case study,evw#é discuss more compre-
hensive results in Section 5.3. In our case study settieghABhtransmits back-to-back
A-MPDUs at a static client located at P4. We studied threeessgntative RA algo-
rithms. RRAA [34] and SampleRate [23] have been shown to workiwéhe legacy
802.11a/b/g scenarios. Atheros MIMO RA is a new algorithndus&02.11n Atheros
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Rates Atheros| RRAA | SampleRate  Fixed Rate | Fixed Rate|
(Mbps) RA Goodput (Mbps) SFER
MCS2 (40.5SS) 36.23 0.12%
MCS3 (54SS) | 4% 49.08 0.20%
MCS9 (54DS) 48.87 0.12%
MCS4 (81SS) 72.94 0.0%%
MCS10 (81DS) 72.64 0.06%
MCS5 (108SS) | 51% 96.46 0.15%
MCS11 (108DS) 47% 89% 96.31 0.16%
MCS6 (121.5SS 53% 4% 74.01 17.92%

MCS7 (135SS)
MCS12 (162DS)
MCS12 (216DS)

%

36.56
128.46
5.71

54.61%
4.31%
96.73%

Goodput
(Mbps)

71.40

85.36

91.95

SFER

0.5%%

13.24%

7.25%

in 802.11n networks.
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Table 5.1: Rate distribution, goodput and SFER of existing R@r@hms at P4.

chipsets. We also conducted fixed-rate experiments at 8@yl 1n rate option.

Table 5.1 summarizes the results of these experiments.riuntgely, all three RA
algorithms perform worse than the best fixed-rate schemt, 280 to 44% lower
goodput. The goodput at the best fixed raté28.5M bps, while Atheros RA gives
71.4Mbps, RRAA offers 85.4Mbps, and SampleRate givesl.9Mbps. These re-
sults clearly indicate that the existing RA algorithms canipe effectively applied

It turns out that, all three RA algorithms were transmittingrates lower than
the best rate choiceTable5.1 states that the goodput at 162DS 8.5 M bps, while
the goodput at 108SS, 108DS, 121.5SS and 135SS are96mly/bps, 96.3Mbps,
74Mbps and36.6 M bps, respectively. Obviously, a good RA should transmit most of
its frames at 162DS rather than at other rates. Howeveluasgrdted in Tablé.1, the
rate distribution of each RA, which provides the percentdgkata frames transmitted
at a given rate, shows the opposite results. SampleRatenitarg9?% of frames at
108DS, RRAA transmit$3% and47% at 121.5SS and 108SS. The Atheros MIMO
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high cross-mode rates (location P4). same cross-mode rates (location P10).

RA is even worse, transmitingl % at 108SS and9% at 54SS, and not using 162DS

at all.

We next examine what happens at rate 162DS and other ratesexPeriments,
plotted in Figure 5.2, reveal that two factors play a crititde: non-negligible, non-
monotonic relation between Sub-Frame Error Rate (SFER) aed aad frame ag-
gregation. Figure 5.2 shows that, SFER does not monotdyiicerease as the rate
grows from 121.5 to 162 Mbps. The frame loss SFER is dmidy; at 162DS, but is
54.6% at 135SS,17.9% at 121.5SS and.15% at 108SS and 108DS. This finding in
802.11n MIMO settings is clearly different from that in thegacy 802.11a/b/g sys-
tems. Aggregation level is another factor that affects gobdFigure 5.2 states that,
the average aggregation level2s MPDUs at 162DS but i5 MPDUs at 121.5SS.
This (11.3MPDU) larger aggregation level also leads to gobidmprovement as the
amortized per-frame overhead is smaller. With both low SEBR high aggregation

level, 162DS significantly outperforms other rates.

Once we discovered the two factors of non-monotonic SFERfraamle aggrega-
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tion level, we further look into why existing RA designs havficulty in identifying

and staying at the best rate that offers highest goodput. RR®A algorithm [34]
assumes that SFER monotonically increases with rate. idreréRRAA assumes that
higher rates would yield higher losses when evaluating dtee 121.5SS. This is true
for 135SS but not true for 162DS. As a result, it never prol&DES that has smaller
SFER and highest goodput. Atheros MIMO RA also assumes moiitioin that all
rates above the current rakehave no smaller SFER. When probing, it upper bounds
the candidate rates for selection (maxRate) by probing cehigher than the cur-
rent best goodput ratB. By analyzing actual packet traces, we observe that probing
fails at 135SS and maxRate is set at 121.5SS for most tranenssgConsequently,
Atheros MIMO RA transmits almost all of the frames at ratesdothan 121.5Mbps.
SampleRate [23] randomly samples diverse rates via probumgsuffers from stale
statistics on the goodput and SFER at a rate as it updatestissabnly by probing
these rateslt consequently transmits at rates below 135Mbpsshown in Table 5.1.
Moreover, the SampleRate MADWIFi implementation boundssarg to at most 2
rates higher than the current rate. It thus does not updatestttistics for rates greater
than 135Mbps and transmits most data at 108DS. Even whernaxedesSampleRate’s
sampling bound, it may still suffer from stale statisticgl gamobing overhead, as we

discuss in Section 5.6.3.

5.3 Studying MIMO Characteristics in 802.11n Systems

The above case study shows that the fundamental reason fon&&-performance is
the inherent MIMO characteristics [8—10]. We next repeataase study scenario, by
placing the client in various locations of the floorplan ofjiiie 5.1 and we present a

thorough study on 802.11n characteristics.
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Location | SFER91555 (%) | SFER13555 (%) | SFER162ps (%)
SNR (dB) SNR (dB) SNR (dB)
P3 0.39% 7.99% 0.33%
42.97 (dB) 40.64 (dB) 41.53 (dB)
P8 0.27% 11.90% 0.39%
29.69 (dB) 30.80 (dB) 31.22 (dB)
P4 17.92% 54.61% 4.31%
21.67 (dB) 22.41 (dB) 22.15 (dB)
P10 96.29% 98.99% 74.50%
17.38 (dB) 16.75 (dB) 17.79 (dB)

Table 5.2: SFER non-monotonicity w.r.t. rate in cross modes

5.3.1 SFER non-monotonicity in SS and DS

Our experimental results show that, different from the ¢§g&02.11a/b/g systems,
there exhibits a non-negligible, non-monotonic relatia@iveen the rate option and
SFER in 802.11n MIMO settingghen considering all rates in both SS and DS modes.
SFER does not monotonically increase when the transmigsi@nincreases. The
non-monotonicity appears more distinctive under two sgesa (i) in the high-rate
region (e.g.,> 121.5SS) as shown in Figure 5.2, and (ii) at same rates ierdift
modes (e.g., 108SS and 108DS) as shown in Figure 5.3. Refatsemrxamples of
these two cases are illustrated in Tables 5.2 and 5.3. TaBlsHews that the non-
monotonicity in SFER is particularly severe between thidja@ent cross-mode rates
(i.e., 121.5SS, 135SS, 162DS). In four locations P3, P4am@8P 10 (we show a subset
of results due to space constraints), SFER increases ast¢hacreases from 121.5SS
to 135SS, but drops significantly as the rate further moves62DS. SFER drops
50.3% at P4 when switching from 135SS to 162DS. Similar resultsaése observed
in the RF chamber, where 121.5SS and 135SS have up to 6.4%1&adhBher SFER

than 162DS, respectively. Non-monotonicity also exhilmitde same-rate pairs. The
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Location P10 P13 P14 P11 P7
SFER(%) |SFER(%) |SFER(4) |SFER(4) ISFER()
SNR(dB) | SNR(dB) |SNR(dB) |SNR(dB) |[SNR(dB)

MCS1 (27SS) | 0.19% | 0.30% | 0.61% | 4.95% | 10.95%
17.10¢B) |14.93¢B) [12.96(B) [12.34(B) |7.03(B)
MCS8 (27DS) | 0.23% | 0.31% | 0.52% | 17.79% |25.143%
13.40¢B) |14.09¢B) [12.51¢B) [14.09¢B) |7.10¢B)
MCS3(54SS) | 0.25% | 1.41% | 1.19% | 7.44% | 100%
16.1(@B) |12.34¢B) [12.87¢B) [10.60(B)
MCS9 (54DS) | 0.25% | 0.72% | 9.23% | 16.73% | 100%
14.82¢B) |12.16¢B) [12.19¢B) [12.16(B)
MCS4 (81SS) | 0.19% | 10.14% | 25.60% | 27.88% | 100%
17.05¢B) |11.95¢B) [11.58¢B) [11.95(B)
MCS10 (81DS)| 1.54% | 10.03% | 37.04% | 37.15% | 100%
16.59¢B) |12.17¢B) [13.29¢B) [11.79¢B)
MCS5 (108SS)| 34.83% | 99.09% | 97.69% | 97.85% | 100%
16.13¢B) [11.64 (B) [13.15¢B) [11.64(D)
MCS11 (108DS) 6.68% | 82.88% | 93.60% | 98.24% | 100%
15.02 (B) |11.71¢B) [13.47¢B) 11.71(B)

Table 5.3: SFER w.r.t. different cross-mode rate pairs.

SFER difference can be as large2a2% (location P10), as shown in Table 5.3. Note
that this non-monotonic behavior is not caused by SNR vanat Table 5.2 and 5.3

show that the SNR values only exhibit minor differences atarglocation.

The root cause for the behavior is that SS and DS are basedferedi com-
munication approaches [8]. Thus it is unlikely that theyl wihibit similar loss-rate
relations by simply merging them together via the numenedilie of the transmis-
sion rate. In contrast, our extensive experiments revealttie monotonicity between
SFER and rate still largely holds in individual SS and DS nsodegures 5.4, 5.5 and
5.6, 5.7 show that SFER monotonicity is restored for theviddial DS and SS modes,
for the locations P4 and P10, respectively. Although Lanipal.€11] theoretically
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showed that loss monotonicity may not hold for the singleden8ISO case, our ex-

perimental results advocate that loss monotonicity caglysae assumed in a practical

MIMO setting.

The non-monotonicity between SFER and rate has profoundidatipns for
802.11n rate adaptation design. Many existing RA algoritimdicitly assume the
monotonicity between SFER and rate. For example, one poméahanism is to se-
guentially probe upward/downward the rates, and adjustateebased on the probing
result. Its underlying premise is that, the packet erroe gdes higher as the rate
increases, and there is no need to probe/use higher rate dutient one performs

poorly. While this mechanism works reasonably well in theatggsystem, it does not
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work in the dual-mode MIMO settings. An efficient rate adéiptadesign should be

able to handle this non-monotonic SFER behavior.

5.3.2 SS/DS mode selection

The above findings indicate that MIMO RA design should diffetate the two MIMO

modes. The nextissue is to identify possible conditionsumdhich SS underperforms
or outperforms DS. Several theoretical studies [8—10] Iséneal lights on it via exam-
ining the tradeoff between Diversity and Spatial Multiplex gains. Our goal is to

find the answer via experiments in the 802.11n setting.

The comparison between SS and DS mode summarized in Tal2emn8.5.3,
shows that SNR can serve as a coarse-grained indicator itbedehich mode is more
likely to be the winner. In low-SNR regions (say, 13dB in our setting), SS is more
likely to outperform DS. In these low-SNR, far-away locagpBS is the winner over
DS with 5% or more goodput gain i85.7% of locations tested, while its goodput and
loss are similar to DS in the remaining locations. The wigria® rates span the broad
set of 13.5SS, 27SS, 40.5SS, 54SS, and 81SS. The averagriggaih is15.6% but
varies from6% to 40.2%. In high-SNR regions (say; 16dB in our setting), DS is
more likely to outperform SS. In fact, in almost all cases, iD&e winner over SS,
with the average goodput gain beigig}2%. The actual goodput gain varies frar%
to 60.4%. The winning DS rates span the broad set of 108DS, 162DS, 81848DS,
270DS, and 300DS.

One should be cautious in applying the above findings, bectuey simply show
the general trend rather than claim which specific mode isvheer in all cases. In
fact, there is always the gray area where either can be taly Mdnner. Moreover,
there are several non-trivial challenges in finding a goo® $iNeshold to be used to

select between SS and DS modes. We will elaborate on thessissSection 5.6.3.
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5.3.3 On frame aggregation

Our study on frame aggregation reveals interesting findthgsto its interplay with
rate adaptation. Our experiments uncover that not onlfidraburce but also SFER
have a significant impact on aggregation level. When SFERjkgilele, traffic source
determines aggregation level by affecting the number of MBBvailable in software
gueue. Figure 5.9 presents aggregation level evolutioh tréiffic source in a sce-
nario where rate is fixed to 243Mbps and loss is smaller than Bfgwever higher
SFER can have both positive and negative impact on framesggtion. Higher loss
may raise aggregation level, by increasing lost MPDUs actai®d in software queue
for retransmission. To verify this hypothesis, we fix theerad 135SS and we use a
smaller data source (60Mbps). We next vary the SFER by sinijdio different loca-
tions. When the loss is small.3%), medium £9.2%), excessive99.5%), the average
aggregation level i8.0, 10.5, 18.9 MPDUSs, respectively. Loss may have a negative
impact on aggregation as well. Figure 5.8 plots the evatutitaggregation level with
SFER in a setting, where rate was fixed to 81SS and the dateesauas aggressive
enough to ensure full software queue. We see that high SF&pped the average ag-
gregation level fron21 MPDUs to8.7 MPDUs in the experiment. It turns out that, the
limiting factor here is the Block ACK Window (BAW) specified byel802.11n stan-
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RRAA-Limited (%) | Aggr. Bound (#MPDUS)‘

Rates (Mbps) ‘ RRAA (%)

MCSO0 (13.5SS) 2 1 4
MCSL1 (27SS) 3 0.5 8
MCS8 (27DS) 1 0.5 8
MCS2 (40.5SS) 8 14 13
MCS3 (54SS) 23 42 17
MCS9 (54DS) 29 26 17
MCS4 (81SS) 11 1 26
MCS10 (81DS) 23 15 26
MCS5 (108SS) 35

MCS11 (108DS) 35

Goodput (Mbps)|  24.22 35.60

SFER () 46.61 24.83

Avg. Agar. level 19.36 11.81

Table 5.4: Rate distribution and performance for RRAA and RRAAiLed at P6.

dard. BAW moves forward as long as MPDUs with sequence nusibside the BAW
are acknowledged, similar to the sliding window scheme in.Ti@R®vever, if the first
MPDU with sequence numbéfeq within BAW is lost and to be retransmitted, then
all followup A-MPDUs can only aggregate frames within thendow of BAW, i.e.,
with sequence numbers less thésy + 64, where64 is maximum number of frames
aggregated in a single frame in 802.11n. If there are folovalp aggregate frames,
the aggregation level is only6 MPDUs on average. Therefore, the posititwy of the

lost MPDU affects the aggregation level for the followupnfias.

Since higher aggregation can lead to higher goodput due dotened overhead, the
RA designs may naturally try to maximize the aggregationllddewever, our experi-
ments show that this is not always the best strategy. Highegggjon level makes RA
less responsive to fast channel dynamics thus reducingffiaetiee goodput. Table
5.4 presents the performance of RRAA and RRAA-Limited at locaR6. RRAA-
Limited upper-bounds aggregation level in proportion ® ttate (as shown in the last

column of Table 5.4 for 1.5MB MPDUSs). Thus the maximum A-MPBiZe divided
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by the transmission rate (air time) should be equal at edaeh Tais aggregation algo-
rithm is used from Atheros driver. From Table 5.4, the averaggregation level for
RRAA is 7.6 MPDUs larger than RRAA-Limited. However, RRAA-Limited offers
46.9% goodput gain over RRAA, even with smaller aggregation. Owesashow that,
RRAA experience@1.8% higher SFER than RRAA-Limited. Table 5.4 indicates that
RRAA is less responsive to fast channel dynamics and trangafitsof frames at 81
Mbps, which yields36.3% SFER. Higher aggregation at this lossy rate hurts goodput.
So for our experiments, we upper-bound aggregation in ptigmoto rate (similar to
Atheros). We leave the study of aggregation impact on RAgorsiveness to channel

dynamics, as a future work.

5.4 Design

MiRA seeks to identify and set its transmission rate to thd bete option, which
offers the highest goodput under dynamic channel conditiimlike other RA algo-
rithms, MiRA uses a novel zigzag scheme, which opporturallyicwitches between
intra- and inter-mode RA operations, to address the 802.1MVcharacteristics.
When performing probe and rate change, it first stays in iteeotilSS/DS operation
mode and adapts the rate upward/downward. This intra-modeffeatively exploits
the feature of monotonicity between loss SFER and rate irsénee mode. When it
cannot improve further in the same mode, MiRA performs imede RA by switch-
ing its RA operation to the other operation mode. It furthexsusvo-level prioritized
probing to reduce the penalty of excessive probing at baasrafinally, MiRA de-
tects collisions from channel errors based on the lossipd#arned from the 802.11n
frame aggregation and BlockAck, without using the RTS/CTShaasm. We now

elaborate on each operation in detail.

70



A aemmoe A ees .

ndpoo

best_goodput
36Mbps

,i/ 30Mbps

S
DN SS Mode
:

DS Mode initial state
SS Mode
DS Mode

13.5 27 40.5 54 81 108 121.5 135 162 216 243 270 13.5 27 40.5 54 81 108 121.5 135 162 216 243 270

Rate Rate

Figure 5.10: Example for Zigzag RA: Figure 5.11: Example for Zigzag RA:
Rate upward trajectory upon better chanRate downward trajectory upon worse

nel. channel.

5.4.1 Zigzag RA: Intra- and inter-mode RA

MiRA zigzags between SS and DS modes. It favors intra-modeiot&r-mode op-
erations when there is a need to probe and change the rateSigdglen change in
goodput or probe timer expires). It probes upward/downwétldin the current mode
until it sees no further chance for goodput improvement. eAfhtra-mode opera-
tions are completed, it then performs inter-mode RA by prglaind changing rate to
the other mode. As a result, when channel dynamics call feradjustment, MiRA
moves upward/downward in one mode, switches to the otherenaod moves up-
ward/downward until the goodput limit within the mode. Themay switch its mode
back, and continues the process as time goes. In both irgde @nd inter-mode op-
erations, MiRA uses probing-based estimation to identié/libst goodput and adjust
the current rate accordingly. Zigzag RA is illustrated indeure 4, while downward,
upward and cross-mode operations are presented by the saoff-igures 5.10 and

5.11.

Suppose the starting rate is 27SS at tiieagain at location P4. Upon detecting
a better rate, MiRA moves upward in the SS mode. It continugsdbe upward as

long as the estimated goodput keeps on increasing, thug glmiaugh the probing
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Procedure 4ZigZagRA: Input (BlockAck), Output ()

. update-stats( BlockAcks)

. collision-detection-and-reaction( BlockAck)

. llzigzag RA: intra- and inter- probing
. /lisProbe: a variable indicating whether the last frame israfpe
. llprobeSeq: a list of rates already probed
. if isProbe = truethen
update-priority-probing-timer( BlockAck;)
if intra-mode-RA-finished(probeSeq) = fatben
(r, isProbe, probeSeg)- next-intra-ratef, probeSeq)
else if inter-mode-RA-finished(probeSeq) = fatben
(r, isProbe, probeSeg)- next-inter-rate¢, probeSeq)
else
Iffinish probing, select the best rate among the probes
(r, isProbe, probeSeg)- best-rate(, probeSeq)

RPRRR R
wﬁwwﬁg@@\.‘@‘ﬂ%wl\?'—‘

16:  endif
17: return r
18: endif

19:

20: if probe-timer-expired() = trughen

21: /ladaptive probing timer expires

22: (r, isProbe, probeSeg)- timer-expired-rate()
23: elseif Gy (t) < Tr(t) — 2 - on(t) then

24: /Ichannel becomes good

25: (r, isProbe, probeSe@)- next-higher-intra-rate(r)
26: elseifG(t) > Gp(t) + 2 - op(t) then

27: Ilchannel becomes bad

28: (r, isProbe, probeSeg)- next-lower-intra-rate(r)
29: else

30: /Iremain in current rate

31: isProbe— false

32: probeSeg— r

33: endif

34: retun

sequence at rates of 40.5SS, 54SS, 81SS, 108SS. When it pndbes 121.5SS that
gives the goodput4Mbps, it does not see a higher or equal goodput than 108SS
(offering 96.5M bps in Table 5.1). MIRA thus completes the intra-mode RA operation
within SS mode. Subsequently, MiRA zigzags to the DS mode Isy firobing at
108DS, which is the lowest DS rate whose loss-free goodpugiter thard6.5M bps.
Within the DS mode, It further probes upward to 162DS and Z.6Dfinally sets

the transmission rate at 162DS since 216DS delivers lonedgat than 162DS, thus

completing the upward operations.
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When the channel condition worsens at tithésay, the best rate for goodput now
becomes 40.5SS). MiRA detects reduced goodput and high SR &t its current
rate 162DS. It thus probes downward along its current modevi@She sequence
of 108DS, 81DS, and 54DS. Based on the goodput estimate @&iE) at 54DS,
MiRA does not further probe downward at 27DS since the loss-froodput at 27DS
is lower than the current estimated goodput. MiRA then zigzaghe SS mode after
identifying the best goodput rate in the DS mode is 54DS. Uptar-mode probing,
MIRA first probes 40.5SS, since it is the lowest SS rate whoss-leee goodput is
higher than the estimated goodput of the best rate 54DS. dhdpyt estimate at
40.5SS turns out to be the high&st\/bps so far. In SS mode, MiRA further probes
upward at 54SS, which only offers goodput estim2@d/bps. MIRA thus zigzags
through DS and SS modes, and settles down at the best ra&310.5

The zigzag RA scheme in MiRA needs to address two issues: (1)tblalecide
which rates, in the same mode or across the mode, to probéfo(2jo estimate the
goodput based on the probing results while taking into actthe effect of aggrega-

tion? We next elaborate on both issues.

5.4.1.1 Perioritized probing

Different from existing RA solutions, MIRA devises a novel,iguitized probing
scheme to address MIMO related cross-mode characteristiciso applies adap-
tive probing to dynamically adjust the probing interval &é&®n the measured SFER
and recent probing history, in order to reduce excessivbipgoto bad rates. MiRA
addresses four issues in its probing scheme: (1) When tatmigrobing? (2) What
rates to probe? (3) How to probe the candidate rates in bottesfoand (4) How to

avoid excessive overhead?

Probing triggers MiRA triggers probing and subsequent goodput estimation us-

73



ing both event-driven and time-driven mechanisms. It starbbing whenever it ob-
serves significant change in the measured goodput at thentuate. Specifically, it
probes downward (to a lower rate) whéh(t) < G.(t) — 2 - 0,(t), whereG,.(t) is
the measured goodput for ratat timet, G,.(¢) is the moving average of the goodput,
ando,(t) is the moving average of the standard deviation of the goo&imilarly, it
probes upward (to a higher rate) when(t) > G, (t)+2-0,(t). Alternatively, when the
probing timer for a given rate option expires, MiRA initia@®bing at that given rate.
In essence, MiRA uses time-driven probing to update stal@nmition on goodput
statistics, and event-driven probing scheme to quicklskisudden channel variations.
To remain adaptive, MiRA uses a single A-MPDU to probe thecteterate. Given
that there are enough frames in the software queue, an A-M&itarry up to 64

MPDUSs, which are sufficient for the probe to collect accutass statistics [34].

Candidate rates for probing MiIRA opportunistically selects the candidate set
of rates to probe at a given time. When probing upward, it fiistts from the im-
mediate, higher rate option within the same mode. Then teetiplly goes to each
higher rate option, exploiting the fact that SFER in monatawvithin one mode. The
intra-mode probing stops at the highest rate option if ite hegher rate has a goodput
estimate smaller than the highest goodput estimate olotaadar. It then initiates
inter-mode probing, starting from the lowest rate, whicksléree goodput is higher
than the highest goodput estimate so far. This zigzag dparaliows MiRA to handle
SFER non-monotonicity in cross modes. In the example of léigul0, the candi-
date rate set i$40.5SS, 54SS, 81SS, 108SS, 121.5SS, 108DS, 162DS, 216
the upward probing starts from 27SS. Note that in inter-moabing, the goodput
estimate at 108SS is abdtM bps, higher than the loss-free goodput at 81DS. There-
fore, the inter-mode probing in DS mode starts from 108DSIdwnward direction,

probing starts from the immediate lower rate within the sanugle. It sequentially
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goes to each lower rate until its highest goodput estimatarss larger than the next
lower rate. This implies the best goodput estimate so faariger than the loss-free
goodput that the lower rate may offer. In the example of Fedaull, the candidate
rate set is{108DS, 81DS, 54DS, 40.5SS, 54S8hen the downward probing starts
from 162DS. Note that the goodput estimate at 54DS is akidutbps, so MiRA does

not probe 27SS whose loss-free goodput will be lower thargteput estimate at
54DS. Therefore, MiRA initiates inter-mode probing. To thigd, 40.5SS is chosen
first since its loss-free goodput is better ti#d/bps. It then probes upward at 54SS

which offers lower goodput estimate, so it finally identifiee best rate as 40.5SS.

Two-level probing priority MiRA ranks the sequence of rates to be probed within
each mode and across modes using a two-level priority schEnefirst-level priority
addresses intra-mode and inter-mode probing. In MiRA, intoale probing is always
given higher priority and takes precedence over inter-npydbing. Therefore, prob-
ing in MiRA always starts to probe other rates in the same m&®&dr DS). The
second-level priority manages probing order among cateliddes in the same mode.
MiRA always gives higher priority to the rate option closethe current rate. There-
fore, it always probes the adjacent rate first, and then tkehmgher/lower rate in the
same mode when probing upward/downward. In a sense, MiRA stiathe middle
between sequential rate adaptation (e.g., RRAA) and besRate.g., SampleRate):
It differs from RRAA in that it may leap to the best rate nonsediadly; it differs from

SampleRate in that it still probes sequentially among rateliciates.

Adaptive probing interval Similar to HA-RRAA (Section 4.4.1), MiRA applies
an adaptive probing interval to limit transmissions at lowodput rates. It uses two
mechanisms oloss-proportionalandbinary exponential growtlo adaptively set the
probing intervals for three eligible rates; the two adjadetra-mode rates and one

inter-mode rate. These three rates are used for probingrdpaval downward in the
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current mode, and probing in the other mode. The inter-matieis the smallest rate
in the other mode which loss-free goodput is larger than tieelgut at the current rate.
Consider the current rate 54SS at tirpen Figure 5.10, the adaptive probing intervals
are set for three rates: 81SS and 40.5SS used for intra-mod®4DS which loss-free
goodput is larger than the goodput 30Mbps at 54SS. As MiRA ad&gprate upward

or downward, these three rates are also changed accordingly

Whenever the probe to these three rates results in a smatldpgbthan the current
transmission rate, the probing interval for ratés adjusted based on the following
formula:

T(r) =Ty - min(2*,2") - max(1, %) (5.1)
whereTj is the minimum probing interval (say, 2ms in our implemeiotay, /(r) is
the current loss percentage SFER at rgt is a threshold parameter for loss per-
centage (say,0% in our implementation), anél denotes the number of probes to rate
r. The update rule states that, the probing interval incieasproportion to the loss
percentagé(r) once it exceeds the minimum loss threshold. Moreover, asuhe
ber of probes to rate increases over time, the probing interval grows exponkntia
but is upper bounded B3°. The binary exponential growth eliminates the rates that
consistently offer lower goodput by probing to these raéss lfrequently over time.
Together, these two mechanisms effectively reduce theipgdbequency to the bad

rates, thus limiting the associated performance penalty.

Whenever the probe to one of these three rates yields higlodpat, MiRA resets
the probing interval and moves to the new best rate. It sulegdty applies the same

update rule to the three new probe rates.
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5.4.1.2 Goodput estimation

The moving average and deviations of the goodput at proleerra computed as

follows:

Go(t) = (1—a) G(t—1)+a Gt
or(t) = (1=0)-0on(t —=1)+B-|G.(t) — G, ()]

wherea = % and = 1 are two parameters. Note that the instantenous goodput
depends on the aggregation level, which may vary a lot from aggregate frame

to another. Using the aggregation level measured from thremuprobe may lead to
fluctuating and inaccurate estimation. To address thigj3se use the moving average

of the aggregation level:

At)=1-a) At —-1)+a-A()

where A,.(t) is the measured aggregation level (in terms of frames) ferctirrent
probing frame. Based on this aggregation estimate, we cantpatgoodput as:

_ DATA-A.(t)-(1 - SFER)

DATA-A,(t)
Toverhead + - 5

G.(t)

where DAT A is the payload size of a MAC-layer frame, afig.,..q IS the various

802.11n protocol overhead (relatedldd F'S, SIF'S, Block Ack, etc.).

5.4.2 Handling hidden terminals

Recent studies [24, 34] have shown that interference-irdldata losses can adversely
affect the rate adaptation operations. In such cases, irggdtie rate upon losses may
exacerbate collisions since the transmission takes a iomg at lower rates. Thus,
a good RA design should differentiate between channel faltisges and collision

losses. This holds for the MIMO case as well.
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Figure 5.12: Loss patterns w/o inter-Figure 5.13: Loss patterns with inter-

ference. ference.

Collision detection MiRA takes a novel approach to collision detection by ex-
ploiting the unique MIMO features of frame aggregation anddBAck. During
our extensive experiments, we have observed that chargiebféosses and collision
losses tend to exhibit very different patterns (uniform aedr-binary, respectively).
As an illustrative example, Figure 5.12 shows the loss pagtef UDP traffic from
the AP to a client located at P15 without interference, wRitpure 5.13 presents the
loss patterns under a hidden terminal setting. Our hiddsrostis located at P12 and
varies the interference level, by transmitting frames #ednt rates (from 0.5Mbps
to 4Mbps). We categorize the frame losses into three ty@s®don the number of re-
tries and the loss rate in the last retry. These results (amthsones at other locations)

reveal a distinct pattern of collision losses:

Bad
retries >1 AND P 0% (5.2)

nEFrames

That is, the last aggregate frame experienced at least tnyeyet in the last retry, it
was received with very mild subframe loss. The root causé@Bbove interference
loss pattern can be attributed to the corruption of the PHxtileeupon collisions, thus

causing the entire A-MPDU to be lost [75].

These findings provide us a simple heuristic to infer the ipbssccurence of col-

lisions, by checking the above condition against each agdeeframe transmission.
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While this heuristic is shown to be quite effective in our expents (detailed in Sec-
tion 5.6), it may lead to incorrect detection results ocwaaily (categorizing fading
losses as collisions, or vice versa). To improve the detediccuracy, MiRA relies
on repeated collision indications during a short timespather than a single instance.
To this end, MiRA maintains a dynamic interference obseovatvindow ( ' nd),
which is normally set to 0. Whenever an aggregate frame ssi§fondition(5.2),
MiRA suspects collisions and thus initializé$' W nd to a pre-defined value (say, 3
in our implementation). For the subsequéhtilV nd aggregate frames, if any of them
exhibits the collision pattern again, MiRA will confirm thellisions and trigger the
reactions, as described below. OtherwiBBJV nd decrements by one for each frame

not satisfying Conditiori5.2), until / #Wnd reaches O.

Two alternatives to collision detection, using adaptiveSHilter [34] and SNR
[24], both have downsides in the 802.11n MIMO case. An MIM@ide typically op-
erates at much higher rates than the legacy 802.11b/a/gejekius the relative over-
head of RTS/CTS grows much larger. Because the adaptive RTS€E®e turns on
RTS/CTS regardless of date rate or frame size, it introdugesgfisant overhead with
high rates and/or small frames. On the other hand, the SNgBetred approach re-
guires the sender to obtain fine-grained, per-frame ace&&R information from the
receiver, which is not available in current 802.11n systdvisreover, 802.11 systems

only measure SNR for successfully received, not collidadhis at the receiver.

Cost-effective collision reaction Similar to HA-RRAA cost-effective A-RTS fil-
ter (Section 4.4.1.1), MIRA takes a cost-effective approthivhether to turn on
RTS/CTS protection, by enablingahly when the potential gain outweighs the over-
head. It first estimates the RTS/CTS transmission tifg{s) and A-MPDU'’s trans-
mission time as**£2% where an A-MPDU with sizéAM PDU| is transmitted at

rate R. MiRA will turn on RTS/CTS only if 222U > k. Tpg, wherek is a ben-
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efit/cost ratio (say, 1.5 in our prototype). Benefit/costaatrepresents the minimum
number of collisions that need to happen, to compensateti®tenabling RTS/CTS.

If this condition is not met, MiRA resetsF'W nd, without turning on RTS/CTS.

MiRA further amortizes the RTS/CTS overhead over multipleraggte frames.
This is done by setting the NAV (Network Allocation Vectoupported by all 802.11
standards) as the transmission time of multiple back-tklaggregate frames in the
buffer. To reduce the negative impact of stealing fair asdesm other competing
devices, our prototype limits the amortization to two lalggck-to-back aggregate

frames, though more aggressive amortization is feasible.

5.5 Alternative Designs for MIMO 802.11n Rate Adaptation

In this section we discuss alternative designs to MiRA, whadie different approaches
to address SFER non-monotonicity between cross-mode atedirst approach is a
parallel MIMO mode RA scheme, which conceptually runs anjrestielent RA in each
MIMO mode and selects the best goodput rate from all modesal¥dediscuss several
other alternatives, which use SNR, extensive probing at 8l®modes, or 802.11n

fast MCS feedback to overcome SFER non-monotonicity.

5.5.1 Window-based 802.11n RA

Window-based rate adaptation (WRA) seeks to address SFERnnantonicity be-
tween cross-mode rates, by running an independent RA in efdddi®vhode in paral-
lel. To limit probing at low goodput rates, WRA maintains anglats aSliding Rate-
Selection WindoWRSWnd) in each MIMO mode RSWnd includes the current best
candidate transmission rates of each mode. WRA then oppstittally selects at run-

time, the best goodput rate among the best SS/DS candidate ke next elaborate
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WRA design.

5.5.1.1 Sliding window best rate selection

WRA design is based on a rate-selection window, specifiefiriiyRate, maxRate]
RSWnd is introduced to reduce probing overhead based on netertistory. Specifi-
cally, it seeks to prevent transmissions at high loss ratet¢d abovenaxRatédound,
or at low goodput rates located belominRatebound. To achieve this, RSWnd is ad-
justed to the rate set that offers high long-term averagdpgaio WRA then selects the
best goodput rate within this set, that offers highest ofymistic goodput gains ac-
cording to the instantaneous channel variations. To oweecloss non-monotonicity
observed in cross-mode rates, WRA maintains and adjustsatiff@SWnds for both
SS and DS modes. It sequentially moves rate-selection wingwdown for each
mode independently upon low/high frames losses, to accatatadiigher/lower rates
respectively. We then need to answer the following questi¢h) How to decide the
best-throughput rate? (2) When to trigger window movementdWw kbng it will be?

(3) What is the appropriate window size?

Best-throughput rate selection WRA selects the best-throughput ratamong

the rates included in SS and DS RSWnd§'as- (1 — SFER,), based on the moving
average loss statisti&' ER, = L-SFER, +L-SFER,. Th, represents MAC-layer
throughput, while SFER is calculated based on equatiorepted in Section 3. Note
that WRA avoids using long-term aggregation statistics tecteghe best rate. So, it
can remain adaptive to fast channel dynamics. To this eralsa devises an aging

mechanism to periodically reset long-term SFER statisiscee discuss next.

Triggers for window movement WRA uses a time-driven mechanism to trigger

SS and DS windows’ movement. When a timer expires, it first adegpthe highest
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throughput inside each RSWnd. It then moves the window dowshwi&ithe best
throughput is lower than the loss-free throughputoh Rate— 1. Alternatively, WRA
moves RSWnd upward, if its upper bound ratex Rate, yields low SFER (less than
15% for our prototype). Note that the timers for moving upsvand downward may be
different, as we discuss next. To remain responsive updd @yannel deterioration,
WRA also introduces a fast reaction mechanism, which immelgiatoves the SS/DS
window downward, if the last SS/DS transmission has expeed excessive retries,
respectively. Note that fast reaction mechanism only méwesvindow downward, to
embrace lower rate options, without necessarily decrgabmactual rate in use. Thus
it is much more robust than early RA algorithms (e.g., ARF [L&}ich immediately

decrease the rate upon consecutive sub-frame losses.

Length of window movement WRA moves each RSWnd upward or downward
by one rate option at a time. The rationale behind this desfkwice, is that loss
still monotonically increases/decreases when we movegioehnilower rates across an

individual MIMO mode. So WRA, cautiously explores new rateiops one by one.

Impact of window size WRAs RSWnd is fixed to two rate options for each
MIMO mode, based on our experiments. It is interesting terbat, via the choice

of window size, WRA balances between responsiveness to fasnehchanges and
probing overhead. With a window size of one, WRA degeneratesiBAA-like algo-
rithm, which transmits using the same rate for a short-témme tvindow. This design
choice affects responsiveness to channel dynamics hagperiiner time granularity.
With window size ofco, WRA is similar to SampleRate-Unbounded theme described
in Section 5.5.2, which needs to pay a significant probing tm&eep updated the

performance statistics of the big rate span offered by MIMQ.81n.

Adaptability vs. probing overhead To remain responsive to fast channel vari-

ations, WRA applies an aging mechanism that resets periddieatery 50ms in our
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Procedure 5SingleMode RA: Input (BlockAck, MimoMode), Output (r)
getRSWndBounds(MimoMode, &maxRate, &minRate);

1:
2.
3: //Fast Reaction Mechanism

4 if txFailed(MimoMode, BlockAck}hen

5 moveRSWnddown(maxRate, minRate);

6: else if downtimerfired() && maxThr(maxRate, minRate) lossfreeThr(minRate-1hen
7 /[Timer Expired and Channel is Bad

8 move RSWnddown (maxRate, minRate);

9: else ifup_timerfired() && SFER a2 Rate < 15 then

10:  //Timer Expired and Channel is Good

11: moveRSWndup (maxRate, minRate);

12: endif

13:

14: updateprobetimer(BlockAck, r);

15:

16: return bestRSWndrate(maxRate, minRate);

prototype) the loss statistics &' ER, = £ - SFER,, giving the opportunity to high
goodput rates, to be probed again. However, this may inergaasmissions at low
goodput rates, as well. To address this issue WRA uses MiRABtdgrobing in-
terval presented in Section 5.4.1.1. When a transmissicai@t fails (no BlockAck
is received), probing interval is updated with) set toSFER,. Probing interval is
also reset for upon a successful transmission to this rate. So, WRA elimsnizie
rates that consistently offer lower goodput by probing testhrates less frequently

over time.

5.5.1.2 Putting everything together

WRA runs RSWnd operations described in Procedure 5 for each MiM@erand fi-
nally selects the best goodput rate between the best SS arat€3SFor our case study
scenario of Section 5.2, SS, DS RSWnds will be set to [L08SS5%$34l, [108DS,
162DS] respectively and WRA will select 162DS as the best gobdgge. An im-
provement or deterioration in channel quality, will cause windows to sequentially

move to higher or lower rate options respectively.
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We identify two different design philosophies comparing WRAMIRA. First,
WRA seeks to address SFER non-monotonicity between cross-rates by running
in parallel across different MIMO modes. For our case stuetiirgy described in Sec-
tion 5.2, DS RSWnd will include the best goodput 162DS rate. l@ndther hand,
MiRA applies a zigzag mechanism to overcome this issue. $gddiRA will trans-
mit at the selected rate for a short-term time window, uiriktrs expire or events are
triggered. However, upon adjusting rate selection windo¥RA can switch among
different rate options on per-AMPDU basis. This design ce@an be more adaptive
to fast channel dynamics, but it may come at a higher probieghad as we discuss
in Section 5.6.3.

WRA's operations across an individual MIMO mode differ frorgdey RAs. Com-
pared with RRAA, which transmits using the same rate over atgéon window,
WRA chooses among a set of rates on per-AMPDU granularity, pboéxhe intra-
mode channel opportunistic gains. Differently from SarRalee, which applies ran-
dom probing at different rates, WRA probes only inside RSWnd. VBRA stands
in the middle between sequential and best-rate adjustnesigml Inside the RSwWnd,
WRA jumps at the best goodput rate. However, it moves the winsleguentially to

accommodate higher/lower rates upon better/worse channel

5.5.2 Other design options for MIMO RA

Now we discuss several alternative design approaches toOVMRA, which can be
implemented as extensions to legacy 802.11a/b/g RAs. Thafipsoach searches for
the best rate option within a pre-specified range of ratesrgpg all modes. However,
it is nontrivial to properly pre-select the range: the seralhe rate range, the higher
probability the optimal rate is missed; the larger the ratege, the bigger the probing

overhead. We will further examine taned SampleRatdesign in this category in
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Section 5.6.3. The second approach exploits the obsenvataxle in Section 5.3.2
and takes a SNR-based mode selection. When the measured SiNRiigdr higher)

than a threshold, it chooses the SS mode (or DS mode) andhesesriventional RA

within the mode. One challenge for this approach is how tdtreethresholds, which
change with different operation environments, as we detmaesin Section 5.6.3.
The third approach uses the fast MCS feedback mechanismegiy the 802.11n
standard, where the receiver can communicate the bestptta do the sender. In
Section 5.6.3 we discuss implementation limitations argigechallenges, which fast

MCS feedback needs to address in the current 802.11n chipsets

5.6 Implementation and Evaluation

In this section, we describe MiRA's implementation and eatduts performance using

both controlled experiments and field trials.

5.6.1 Implementation

We implemented MIRA in the firmware of a programmable AP platfdabout 900
lines of C code). Compared with other RA algorithms, MiRA poses implemen-
tation challenges. First, its probing mechanism requirasé transmission and rate
control, which are two separate modules in the driver, toymelsronized on a per-
AMPDU basis. We maintain an additional binary state for eadmnt (other states
kept at AP are per-client statistics), which is set uponisiolh losses and checked
for each AMPDU transmission. The second challenge is thatNAV for RTS can-
not be directly set by the transmission module of the drivier.reserve the wireless
channel, we use Athero¥irtual more Fragmeninterface, which consists of a virtual

more-fragment bit{m f) and aburst_duration parameter. Atheros uses this interface
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Atheros RA RRAA SampleRate
Static UDP (3.4-82.3)% | (2.9-7)% | (1.1-104.5)%
Static TCP | (9.1-107.9)% | (5.9-37.5)% | (14.7-124.8)%
Mobility UDP 116.1% 30.2% 182.2%
Mobility TCP 72.5% 4.9% 94%
Hidden Terminall (79.4-1094)% | upt06.5% | (33.8-983)%
Field Trial (46.35-67.4)% | (16-28.9)% | (19.4-73.5)%

Table 5.5: Goodput gains of MiRA over existing RAS.

to enable frame bursts. Upon collision losses, if channsmation is possible we
set thevm f bit as1 andburst_duration as the transmission time of the aggregated
frames that NAV in RTS protects (the reception time of BlockAs also included
in burst_duration). The virtual more-fragment bit goes down to the hardwareugu

together with the burst of aggregate frames.

5.6.2 Performance evaluation

In this section, we compare MIRA with RRAA [34], SampleRate [2B8HaAtheros
MIMO RA [32]. For RRAA, we disabled its adaptive RTS/CTS filter,cept in the
hidden terminal settings, to avoid goodput degradatiorcivhias observed to be up to
12.2% during our experiments. These experiments were conductearious scenar-
ios with static/mobile clients, hidden terminal stationsder different MIMO config-
urations with both TCP and UDP traffic. All the algorithms werglemented on the
AP side. The results show that MiRA consistently outperfoaxisting alogithms in
all scenarios, with goodput improvement uprt5% in field trials. The performance

gains of MiRA over existing RAs are summarized in Table 5.5.
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5.6.2.1 Static clients

We first evaluate the RA algorithms with static clients at mpldt locations. We
conduct these experiments during midnight and, in the 5GkimIrases, we select
interference-free channels, as verified by the sniffer. M& perform tests with various
antennas configurations. The channel bandwidth is set toH#0M all experiments

unless explicitly specified.

UDP/3 x 3 Antennas/5GHz case  Figure 5.14 plots the UDP goodput measured
at 6 different locations (as marked in Figure 5.1) witlx 3 antennas at 5GHz band
and the maximum MiRA goodput gains over the other designs. é&etlsat MiRA
performs better than other algorithms at all locationshwibodput gains up t80.7%
over Atheros RA54.2% over RRAA, ands8.9% over SampleRate. Except from the
closest client-to-AP location where all RAs tend to transamibhigh rates, MiRA de-

livers significant gains which can go up6.7% at location P4.

UDP/2 x 2 Antennas/5GHz case  To assess the impact of antenna configurations,
we also evaluate the system withx 2 antennas, again at 5GHz band. Our exper-
iments show that MiRA still outperforms other algorithms HAtlecations, with the
goodput gains varying from5.2% to 104.5%. In 3 x 3 configuration, in the same

layout (location, RA algorithm), we observe up to 43% highesdput compared with
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the2 x 2 configuration; this gain is attributed to additional sigredundancy offered

by the third antenna.

TCP/3 x 3 Antennas/5GHz case =~ We also conduct experiments with one flow
TCP traffic. Figure 5.15 shows that MiRA gives significant TCP djma gain over
others, up tal07.9% over Atheros MIMO RA,37.5% over RRAA, and124.8% over
SampleRate. Similar to the UDP scenario, MiRA offers high gamall locations,

starting from24.1% (location P5) tol24.8% (location P6).

UDP/3 x 3 Antennas/2.4GHz/40MHz case = We also test 2.4GHz channels. Set-
ting the channel to 40MHz in 2.4GHz results in partially dapping channels. During
this experiment, we set our AP on Channel 1. We sniff many s on other chan-
nels: twelve on Channel 1, two on Channel 4, eight on Channek@rsChannel 9
and nine on Channel 11. The goodput performance and gainsRAMary from9.6%

to 57.7% at five locations, as shown in Figure 5.16. We see that logsgg@odput
degradation are significant compared with the 5GHz band alhéyhly uncontrolled

interference.

UDP/3 x 3 Antennas/2.4GHz/20MHz case = We finally repeat the experiments of
the 2.4GHz band setting using 20MHz channel. For the 20MHmnohl case, MiRA
gives also significant gains which are uBt9% over Atheros RA70% over RRAA,
and80.3% over SampleRate. Even with 20MHz channel the highest goautyérved

was 43Mbps because of the intense interference.
From our experiments, we identify additional aspects tbatrtbute to the perfor-

mance gains of MiRA.

Effective probing Most existing RAs do not have any efficient mechanism
to learn from short-term past channel’'s performance, wic@h lead to significant

amount of transmissions at low goodput rates. For examplication P4 of our
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case study, RRAA sends3% of MPDUs at 121.5Mbps, which exhibits significant
loss SFER215 = 17.9% from Table 5.1). Similar behavior is observed in other
scenarios such as location P10, where RRAA transiiits’% of MPDUs at 108SS
that present84% average loss. Similar to RRAA, SampleRate also uses non-adapti
probing, despite less aggressive than RRAA. In contrastdlagtive probing mecha-
nismof MiRA prevents it from excessively transmitting at lossteia MiRA transmits
only 2% and less tha% of MPDUs at low-goodput rates, at locations P4 and P10,

respectively.

Handling SFER non-monotonicity By zigzagging between MIMO modes,
MiRA avoids to get trapped at lower rates in loss non-monaibnscenarios. In our
case study setting at location P4, MiRA transmit%; of frames at 162Mbps which is
on average the best goodput rate. In contrast, other adigmsitransmit their frames at
rates lower than 162DS. At location P10 where non-monoityrigexhibited between
108SS and 108DS rates, MiRA transmit®s of its MPDUs at 108DS, which is the
average winner (Figure 5.3), differently from other RAs whitansmit at most 1% at
this rate. We also observed that Atheros MIMO RA may occadlipget trapped at
lower rates because of SFER same-rate-pair non-mondatp(saly 54SS/DS) in some

locations. The Atheros algorithenpriori ranks all rates to be probed in the particular
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order, say 54DS has higher ranking than 54SS but lower th&& &1 the implemen-
tation. Consider that the current probe upper-bound ratetias54DS in the Atheros
algorithm. If 54SS gives better performance than 54DS, ld@ghm may get trapped
at 54SS (Table 5.1).

5.6.2.2 Mobile clients

In order to gauge the responsiveness of MIiRA to fast chann&hmycs, we carry a
client and walk from P1 to P6 and then come back at approxisnatsstant speed
of 1m/s. Figure 5.17 plots the goodput of the four RAs for bofbRUand single-flow
TCP traffic. MiRA offers goodput gains up td6.1% over Atheros RA, up t80.2%

over RRAA, and up td82.2% over SampleRate. As discussed in Section 5.4, MiRA
uses (i)moving averagéo detect significant channel changes, (ii) only one AMPDU to
probe, which is transmitted in a relatively short period &puically contains enough
samples, and (iii) resetting statistical history upon tanges. Consequently, MiRA

quickly adapts to channel dynamics due to mobility.
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5.6.2.3 Setting with hidden terminals

We next evaluate whether MiRA can successfully infer calhdiosses and adjust the
rate accordingly in the hidden terminal scenario of Secigh2. We also compare
MiRA with MiRA-basic (MiRA without interference module) to elmte the perfor-
mance of our interference module. In the hidden termindlrggtwe also turn on
RRAASs Adaptive RTS filter. Figure 5.18 presents the gains oRMiat five interfer-
ence levels where we vary the traffic intensity of the hidaeminal. We observe that
MiRA is very effective in intense interference scenarios g and 5Mbps), where
it gives up to 11.9 times higher goodput over Atheros MIMO RAI @ampleRate.
MiRA performs similar to RRAA, without having to pay the RTS/CT#ethead of
RRAA's adaptive RTS filter. Finally, MiRA gains over MiRA-Basicrmge from5.1%

to 599.9%. MIRA big gains are attributed to its selective RTS mechanisrhich
limits collision losses and prevents MiRA from probing downrisinterpreting in-
terference as channel losses. MiRA yields up2é% smaller average loss compared
with Atheros MIMO RA and SampleRate. By avoiding probing dowhigh interfer-
ence scenarios, MiRA still transmits at high rates under yeallisions. With 4Mbps
interference, Atheros MIMO RA transmifd % of frames at the lowest rate 13.5Mbps,
while MiRA only transmits6% at this rate.

5.6.2.4 Field trials

We also conduct uncontrolled field trials under realistiersrios, where various
sources of dynamics coexist in a complex manner. In our fredd] tve use 3 static
clients, at locations P4, P10, and P17, and we move an 802liehhon a regular basis
based on the mobility scenario of Section 5.6.2.2. We use T&#tto evaluate each
RA for about an hour. During our experiments, the physicalrenment was highly

dynamic as people walk back and forth. Figure 5.19 shows dingparison results
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both for 5GHz band and the more dynamic and congested 2.4@htk IMIRA gives
goodput gains up t67.4% over Atheros MIMO RA,28.9% over RRAA, and32.1%

over SampleRate.

5.6.3 Assessing MIMO RA alternatives

We next assess the alternative MIMO RA designs presentedatin8es.5 in a wide
SNR range of controlled settings (from 10dB to 30dB) and figldd, at 5GHz band,
with 40MHz channels and 3x3 antennas. In field trials, we us&c clients, at P15,
P4 and a sibling to P8 location (P8a). We also move a client @galar basis from
location P3a (sibling to P3) to P7 through P4, at pedestpaed. Traffic is UDP, TCP

for controlled, field trial settings, respectively.

Window-based RA Algorithm Our experimental results presented in Figure 5.20
show that WRA can give 5.3% goodput gains over MiRA (location)P18terest-
ingly, we observe that the average SNR at P18 is 14dB and ¢elon13dB, 16dB]
SNR range, in which our experiments have not identified a imgppnMIMO-mode (see
Section 5.3.2). WRA is more adaptive in this setting, as it caiich between rates
of different modes on a per-AMPDU granularity. In the reniagniocations, MiRA is

able to converge to the best rate with less probing overhedgglialds gains from 0.7%
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to 9.2% over WRA. In field trials presented in Figure 5.22, WRA garfs similar to

MiRA, while it gives gains up to 72.5% over the other designs.

Tuned SampleRate Algorithm By upper-bounding sampling up to 2 rates higher
than the current rate, SampleRate has limitations to ad8fSR non-monotonicity as
stated in Section 5.2. To address this issue, we implemenple®ate-4 that enlarges
the sampling bound to 4, and SampleRate-Unbounded thatsaftmmsearch among
all the rates larger than the current rate. Figure 5.20 ihdd®ws that by expand-
ing its search scope, SampleRate-4 achieves goodput gaBPbfoker SampleRate
at P9. However, SampleRate-4 does not perform as well in tier tliree locations.
At P19, SampleRate delivers 21.2% goodput gain over SammeRaSampleRate-
Unbounded is even worse, incurring goodput reduction up/t8%. Trace analysis
reveals that SampleRate transmits 87% of frames at the lugtpit rates (40.5Mbps,
54Mbps), whereas SampleRate-4 transmits only 50% at thésge. r&sampleRate-
Unbounded transmits 9.5% of frames at almost 100% loss. Bamgpf these ex-

panded rates consequently incurs higher probe penalty.

SNR-based Mode Selection RA  Our proposed MIMO-SampleRate selects the
SS/DS mode based on a pre-selected SNR threshold, (14dB implementation)
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measured from the received ACK frames and averaged overtahiaas. This design
exploits the findings of Section 5.3.2, where in low/high SNIRge SS/DS is more
likely to be the winning mode. Once the mode is chosen basesNid, SampleRate

algorithm is used within the selected mode.

MIMO-SampleRate achieves higher or similar goodput contpavéh tuned-
SampleRate, with goodput gains up to 20% in static settinggi(€ 5.20) and 40.4%
in field trials (Figure 5.22). However, MiRA still outperfosyMIMO-SampleRate
with goodput gains up to 30% in statics settings and 23.6%eld frials. These re-
sults indicate that the SNR-based MIMO-SampleRate can azljievd performance,
while retaining its operation simplicity. However, our epnents show that, there
may not be an optimal SNR threshold to give the highest gooidpail the settings.
The best SNR threshold values may also depend on the opeestiironment. Figure
5.21 shows the goodput performance of different SNR thidstad locations P9, P16,
P17, whose average SNRs are 23dB, 16dB, 14.5dB, respectivehhd®ging a high
SNR threshold, say 25dB, at location P9, we exclude DS ratekifling the highest-
goodput rate 162DS), thus incurring goodput degradatioto (3¢.9% compared with
using [13dB, 16dB] thresholds at P9. However, choosing SNB&stiolds in [13dB,
16dB] does not guarantee the best performance in other ¢osatiAt P16 and P17,
25dB threshold outperforms other choices up to 15.3% ar8Pd4espectively. This
is attributed to the algorithm’s fluctuation between SS/D&les when using other
threshold values. For example, at P17, while 25dB threstnatmits more than 98%
of the frames at 81SS (which is the best goodput rate), otiveshold values give

sub-optimal rate distributions.

RA Based on Fast MCS Feedback  Fast MCS feedback (MFB) supported by

the IEEE 802.11n standard, can be used for receiver-idtiedte adaptation based on

LA more sophisticated design that uses two thresholds, givgitar results.
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per-frame feedback [10, 33, 36—38]. Although MFB is morepaigta to fast channel
dynamics compared with MiRA, it faces certain practical tations and design chal-
lenges. First, MFB is an optional feature and its implemigoras vendor-dependent.
Our available APs which use proprietary drivers from Atlsef@R5416 chipset) and
Broadcom (BCM47XX, BCM53XX chipsets) and popular open sourceedsi as In-

tel's iwlagn and Atheros’ ath9k, do not currently implem®&hEB algorithms. As a

result, loss-based, transmitter-side RAs as MiRA are requitgen MCS feedback is
not available. Second, various metrics used in MFB algorithas uncoded bit error
rate or per-subcarrier SNR (a survey can be found in [38]nateavailable in many

commodity 802.11n drivers.

There are also design challenges, which receiver-side Rég teeaddress. Our
experiments in RF chamber reveal large SNR variations, wheER IS calculated from
received signal strength and noise floor. Figures 5.23, pl@4the per-antenna re-
ceived SNR for the control (the primary 20MHz channel) arel éktension channel
in a static3 x 3 setting, when an 802.11n client sends back-to-back UDPB IgR-
DUs at the AP (aggregation is disabled). The rate is fixed &Mlgps and the time

gap between consecutive frames is less than 0.35 millisiscafe observe that SNR
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variations can be up to 5dB between consecutive frames bottohtrol and extension
channel, which can impact the decision of the best goodpat r8NR fluctuations
in commodity 802.11 devices have been verified by indepdanstedies [25, 30, 33],
and can be attributed to multipath and hardware calibratidimore accurate SNR
calculation requires per-subcarrier SNR feedback, whiely ot be available in the
current commodity 802.11n drivers. Finally, SNR-BER relasivary with different

propagation environments. Consequently, SNR-based sodutdgjuire in-situ training

to perform well across different propagation environme¢a4.

Ideally, MFB is communicated on a per-transmission bas@véver, is there any
protocol overhead? What is the impact of delayed MFB in RA perémce? Kant et
al. in [38] show that MFB delays can lead to more than 40% thihput decrease. We

further investigate MFB in our future work.

5.7 Related Work

There have been several rate adaptation proposals [17523%#228, 33, 34] in re-
cent years. Many of them target the legacy 802.11a/b/g nmksM@3-25, 34], or
take a cross-layer approach [27, 28] by using PHY-layerldaekl to select the best
goodput rate. These algorithms are not designed for MIM@esys and they do not
consider MIMO modes and 802.11n frame aggregation. Thg @atk on MIMO
RA[10,33,36—38] takes the receiver-based approach by gixigijohe MCS feedback.
Although, these approaches can be more adaptive to fashehdynamics, they have
not been widely adopted by commodity 802.11n systems, dtietopractical limita-
tions (5.6.3). Transmitter-based approaches have bepoged as well. ARFHT [39]
selects the best MIMO mode based on SNR differences amoaiyesantennas. It as-
sumes MIMO channel reciprocity as it measures SNR at theesdyased on received

frames. ARFHT faces the challenges of using SNR feedback&damsSection 5.6.3.
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Atheros MIMO RA selects the best goodput rate based on SFERt&®, while it

upper-bounds probing and rate selection.

There are also a few experimental studies relevant to thig.wion [33], authors
study packet error rate/SNR relation, without focusinglmgerformance of different
MIMO modes. In [40], experiments are based on a testbed tipgtasts only a limited
set of 802.11n features. Finally, theoretical studies oM®@Icommunications [9, 10],
seek to characterize the theoretical tradeoffs of MIMOayst, often in the limiting
cases. In contrast, our study uses real experiments to egahe behavior of 802.11n

MIMO devices.

5.8 Summary

In this chapter, we empirically study MIMO rate adaptatising an IEEE 802.11n
compliant, programmable AP platform. The key insight leaknis that diversity-
oriented SS mode and spatial multiplexing-driven DS modehaixdifferent features
and cannot be managed indistinctly. Existing RA solutionsdbproperly consider
characteristics of SS and DS, thus suffering from sever®peance degradation. To
this end, we first propose MiRA, a new zigzag RA algorithm thailiekly adapts
to the SS and DS modes in 802.11n MIMO systems. We also desigrealuate
window-based and SNR-based MIMO RA solutions. Our experismgntontrolled
testbeds and field trials show clear gains of MIMO-mode aWs. In a nutshell,
our work is among the first to examine MIMO RA in a practical isgftusing pro-
grammable 802.11n commercial hardware. We expect thatféant will stimulate
more community effort on MIMO RA to exploit the full capacity MIIMO communi-

cation.
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CHAPTER 6

Towards Green MIMO 802.11n Wireless

The recent IEEE 802.11n standard [6] has opened the venutilfgrleveraging
Multiple-Input Multiple-Output (MIMO) technology in widess LANs. An 802.11n
device by supporting 4 spatial streaimsan deliver high rates up to 600Mbps. The
upcoming IEEE 802.11ac standard [7] will allow for higheanh6Gbps rates, by sup-
porting 8 spatial streams. However, do more spatial stréamtennas offer better user

experience?

In our first case study of Figure 1.1 discussed in Chapter h,legacy and MIMO
receivers can accommodate the offered 3Mbps applicatitsnsdaurce rate. However,
legacy receiver saves 30% power over MIMO, providing beitsr experience. Our
study reveals that the cause of MIMO poor user experiencd@/circuitry power
consumption, which grows with the number of active RF chaiSgpecifically, our
measurements with commodity 802.11n devices show that0arl8n receiver can
deplete a smartphone battery in less than two hours, whets albmponents (i.e.,

display) but the 802.11n radio are OFF.

To address this issue, the 802.11n standard specifies a revalSyultiplexing
Power Save (SMPS) feature, which seeks to save power atdb&ee by retaining
only one active RF chain. The rationale behind SMPS is imaigind simple; “Main-

tain only one RF chain to minimize receive power consumptio@ur experiments

The number of available spatial streams determines themaiminumber of antennas supported by
a MIMO device.
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show that, SMPS can indeed achieve its goal, by saving upl@®M\.over multiple

active receive chains, in certain scenarios. However, d4iASsave energy over mul-
tiple active receive chains? Interestingly, our experiteashow that the power hungry
multiple receive chains can yield 78.6% energy savings 8%#PS. This is observed in
scenarios where MIMO speed compensates the additional Mdbi@er consumption.

A realistic gauge of the tradeoff between power consumpimh speed (goodput) is
the per-bit energy consumption (joule/bit). Per-bit egezrgnsumption is defined as
the ratio between the total consumed energy and the dediv@te during any data

transfer.

In this chapter, we experimentally study the tradeoff betw&IMO speed and
power consumption, by uncovering step by step ‘tp@od’, “ugly” and*“bad” of
SMPS feature. We then design and implement MIMO Receivergyrteave (MRES),
which seeks to identify and set the most energy-efficieninchetting for the receiver at
runtime. The core of MRES is a low-overhead sampling scherhighnexcludes those
chain configurations that are highly unlikely to yield enesgvings. Our prototype

experiments show that MRES outperforms SMPS, with energngswp to 37%.

The rest of the chapter is organized as follows. Sectioni6cudses MIMO power
consumption and introduces the 802.11n Spatial Multipig¥Power Save feature.
Section 6.2 presents our experimental platform and metbggo Sections 6.3, 6.4,
6.5, discuss the potential benefits (the “good”), dangédrs ‘(tigly”) and drawbacks
(the “bad”) of SMPS. Section 6.6 presents our proposed MIMCelRer Energy Save
algorithm, while Section 6.7 presents our implementatiod evaluation efforts. Fi-

nally, Section 6.8 discusses the related work and Sect®bodcludes the chapter.
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6.1 |IEEE 802.11n SMPS

The IEEE 802.11n standard uses Multiple-Input Multipletgt (MIMO) technology

to support high date rates up to 600Mbps. It uses multiplestrat and receive RF
chains to support two modes of operatidBpatial Diversitytransmits a single data
stream from each chain, thus leveraging independent faoleg multiple links to
enhance signal diversitySpatial Multiplexing(SM) transmits independent and sep-
arately encoded spatial streams from the multiple chairtsotust throughput. The
performance gains of MIMO are achieved at the cost of ine@@a®wer consumption
due to the added complexity of MIMO related processing arcuids. The power con-
sumption along a signal patB., includes the power consumption of all the amplifiers
Pp 4 and circuit blocksP, [64]:

P.= Pps+ B, (6.1)

where the circuit power consumptid is in proportion to the number of transmiYy)

and receive ;) RF chains.

The IEEE 802.11n standard [6] specifies a new Spatial Meltiply Power Save
(SMPS) mechanism to improve power efficiency. SMPS allows fetation to operate
with only one active receive chain for a large period of tide next describe SMPS

feature and its implementation by popular vendors.

6.1.1 SMPS feature

A station consumes more power on all active receive chauas) though they are not
necessarily required for the actual frame exchange. Thel8aZMPS feature, seeks
to reduce MIMO power consumption at the receiver, by allagniinto operate with

only one active receive chain for a significant portion ofdinit supports two modes
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of operation.

Static mode In the static mode, the station retains only a single recenaen and

forces the transmitter to send using only diversity sirgileam rates. An 802.11n
station may use the SMPS action frame to communicate its SMeP8ave state to
the access point (AP). It may also use the SMPS bits of its &da8on Request to

achieve the same purpose.

Dynamic mode  Inthe dynamic mode, a station enables its multiple recdraens
when it receives the start of a frame sequence addressedlodh a frame sequence
shall start with a single-stream individually addressadie that requires an immediate
response and that is addressed to the station in dynamic.®I&CTS can be used
for that purpose [6]. So in dynamic mode, the receiver swescto multiple receive
chains when it receives a RTS addressed to it and switchésitnacediately to one
active chain, when the frame sequence ends. A drawback afythamic mode is
that a station cannot distinguish between a RTS/CTS sequleatcprecedes a MIMO

transmission and any other RTS/CTS.

We start our work by asking the following questions.

1. Does SMPS achieve its goal, to save power over multipleeatceive chains?

Do power savings come for free?

2. Can SMPS save energy over multiple active receive chaingef® In what

scenarios?

We next elaborate on thgood’, “ugly” and“bad” of SMPS feature.
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6.1.2 SMPS implementation

IEEE 802.11n provides the basic SMPS mechanism and leawspgen questions
for the vendors. When do you send SMPS action frame or RTS/CE@&itoh chain

settings in static and dynamic modes respectively? In oteiver, which uses In-
tel's Wireless WiFi 5100A/G/N adapter and the open sourdagw driver, SMPS can
be enabled manually by the user. Our transmitter, which israncercial AP based
on Atheros chipset, precedes with RTS only multiple-strdeame transmissions.
Whether the transmission rate will be diversity singleatneor spatial multiplexing

multiple-stream, is determined by the underlying rate satagn algorithm.

The second open issue is, what chain setting to select? SMf&s switching
from one to manyactive chains and vice versa, but never defines what is theyma
For example the RTS frame used in dynamic mode, does notcdikpkpecify the
number of chains that should be activated at the receivarré@eiver device switches
to the maximum available chains upon the reception of a Rirflll, it is out of the
scope of the SMPS to determine the number of active chainkeotransmitter side.
The standard configuration of our AP is three active transhains. Our experiments
show that different implementation choices can have a fogmt impact on 802.11n

SMPS performance.

6.2 Experimental Setting

We conduct our experiments using two types of 802.11n dsvid@ur transmitter
is a programmable 802.11n AP platform, which uses AtherosARS2.4/5 GHz
MAC/BB MIMO chipset and has three RF chains. Our receiver usesiteh Wire-

less WiFi 5100A/G/N adapter and a modified version of Intef®n source iwlagn

driver. The receiver has two available RF chains. Both trattemand receiver plat-
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Figure 6.1: Experimental floorplan.

forms allow for both single stream (SS) and double stream) (PMO modes, with
transmission rates up to 300Mbps over 40MHz channels. Wag®anore informa-

tion about our experimental testbed in Chapter 3.

We conduct our experiments in a campus setting shown in &i§ur. Spots P1 to
P7 represent different locations where the receiver issollathe AP is always located
atT. For each experiment, we collect frame loss, aggregationdgut, SNR and
power consumption data. To measure the power consumptithie a&ceiver, we use
Intel’'s PowerTOP running on Linux [42]. We disable all othemecessary applica-
tions and hardware at the laptop to improve accuracy. Thavwexcconsumes 1.18W,
1.61W for one and two active chains, respectively, when neimgidle. This 36.4%
increase in idle power consumption when switching from anémo chains is also

confirmed by another independent study [57].

To single out the impact of idle period on power and energysaorption, we also
compute results for two operation modes of 802.11n adaptddoze OFFmode, the
802.11n adapter remains idle during idle periods, respitnP,;. power consump-
tion. At Doze ONmode, the 802.11n adapter switches to the sleep mode ddiag i
resulting in near-zero power consumption. Doze ON mode map@always feasible

in reality. Fine-grained switching between sleep and actay, between consecutive
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frame transmissions, may not be feasible due to switchirgh®ad and delays which
can degrade application performance [59]. For examplel30RSM, NIC wakes up
at the granularity of beacon intervals (100ms). Howevershav results for Doze ON
mode as a benchmark in our study; they help us to understarichffact of transmis-

sion time on power and energy consumption.

6.3 “The Good”: SMPS Potential Power Savings

In this section, we seek to answer whether the SMPS featdethsaves power com-
pared with multiple active receive chains. We first condustnaple case study at a
controlled interference-free setting (location P2). Waleate the Doze OFF mode
here, while we elaborate on Doze ON in the following sectigdsr results presented
in Figure 6.2 show that, retaining one active receive chamaiways save power from
0.5W to 1W, compared with multiple receive chains, in DozeFOFherefore, the

static SMPS mode, which retains only one chain to save pasveroven correct. The
dynamic SMPS mode yields smaller up to 0.4W power savings; multiple active

receive chains. Consequently, the next issue to examineathehthe static mode is
always better than the dynamic mode in terms of power consampOur case study
of Figure 6.2 shows that, the dynamic mode always consunoes @.2W to 0.7W

more power than the static mode in Doze OFF.

Our case study reveals the impact of two factors on powengopson: a)humber
of active chainand b)application data source rateTo substantiate our findings, we
conduct extensive experiments with various source ratds\anx N, settings. We

analyze our experimental results by modeling the recei@emep consumption as:

P, =P, + P, (6.2)
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tion (high SNR location P2). P2).

whereF, and P, are the MIMO circuitry and processing power consumptiospee-
tively. P, includes processing in the network protocol stack, and epgutional to
CPU utilizationUcpy. It can be estimated a3, = Ucpy - Py, WhereP; is a system

power coefficient per CPU utilization unit.

Number of active chains  Our extensive experiments show that, for a given source
rate, fixed number of transmit chaing and in Doze OFF mode, power consumption
monotonically increases with the number of receive chainsSpecifically, two active
receive chains, can consume 1.15W more power compared methegeive chain. The
amount of savings depends on source rate as we discuss ihexindrease is mainly
attributed to MIMO circuitry power consumptioR. [64]. As a result, static SMPS
always vyields power savings over multiple chains in Doze d#jFoperating with
one active receive chains for long time intervals. DynanWtPS always gives power
savings up to 0.5W over multiple receive chains, when it afg= in Doze OFF as
well. The fact that dynamic mode activates a single receanconly when idle, or
when transmissions are diversity, single stream, canfyusti smaller power savings

compared with the static mode.

105



The impact of source rate  When the offered traffic volume increases, the differ-
ence in power consumptiaf., betweenV, x 2 and NV, x 1 grows from 0.5W to 1W
when data source increases from 5M to 165M (Figure 6.2).t,Rlie volume of re-
ceived frames can increase with the number of receive chiginsader high sources,
as we show in Section 6.4. This makes the gap between proggssiver consump-
tion P, betweenV, x 2 andN, x 1 to grow. In our case study, the CPU utilization was
approximately 3% higher fol; x 2 over IV, x 1 settings at 165M, while it was sim-
ilar at the low 5M source. Second, the gap between power capison P, increases,
under high volume traffic as well. This is attributed to thetfdhat MIMO circuitry
needs to remain active for a larger fraction of time. We carctale, the gap in power
consumption between two and one receive chain grows wittceaate, in Doze OFF.
As a result, the potential power savings for static SMPS narease at higher source
rates. However, data source may have the complete oppffsiteia dynamic SMPS
power consumption. Increasing data source reduces resatle time and as a result
its opportunities to operate with a single active receiairchThis can reduce dynamic
SMPS potential savings over multiple active receive chalfrem Figure 6.2 we ob-
serve that the gap i®,, betweenV; x 2 and dynamic mode, shrinks from 0.4W to

0.2W when data source increases from 5M to 165M.

Ouir first set of findings can be summarized as:

Finding 1 Regarding power consumption at the receiver,

la. Static SMPS always saves power from 0.5W to 1.15W at the recmiee mul-
tiple active receive chains, in the Doze OFF mode. Its poweirg margin

increases with increasing data source rate.

1b. Dynamic SMPS always saves power from 0.2W to 0.5W at the reasige

multiple active receive chains in the Doze OFF mode. Its pesa®mg margin

106



may increase with decreasing data source rate.

1c. Static SMPS always saves power from 0.1W to 0.7W over dynani& $Mhe
Doze OFF mode. The reason is that dynamic mode can switchhgkeseceive

chain only when idle, or when transmissions are diversityglsilstream.

6.4 “The Ugly”: SMPS Goodput Performance

Unfortunately SMPS power savings do not come for free. Ose ciudy reveals that
the price for saving receive power is a significant decreaspeed. Specifically, 3x2
yields 61.8% goodput gains oveéY; x 1 settings and 22.6% over dynamic SMPS,
at 165M source, as shown in Figure 6.3. We identify three nfegtors that affect
goodput: aMIMO gains b) signaling overheagdc) application data source rate

MIMO gains MIMO gains can be further classified as Spatial Multiplex{&i/)
and Diversity gains, observed at high, low SNR scenarioge@s/ely. SM can in-
crease the rate of communication by sending multiple indéest spatial streams from
the multiple RF chains. Diversity improves the reliabiliyreception, by transmitting

a single data stream from each chain [9].

Spatial multiplexing: Static Spatial Multiplexing Power Save (SMPS) does not
exploit Spatial Multiplexing MIMO gainsMaintaining only one active receive chain
in static SMPS, limits the transmitter to use only SS biesatwhich can go up to
135Mbps, significantly lower than 300Mbps, which is our fdet’s highest DS rate.

In our case study scenario, 3x2 transmits 100% of the taatds at DS rates, which
results in 61.8% goodput gains ovaf x 1 settings. Our experiments at various
high SNR locations (SNR30dB) and various transmit chail, configurations, re-
veal goodput gains from 14.1% to 61.8% &f x 2 over N; x 1 settings, as shown

in Table 6.1. Dynamic mode can still utilize spatial mukixing, by preceding a DS
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Low SNR | Medium SNR| High SNR

3x2 over 3x1| upto 47.9%| upto49% | upto61.8%
2x2 over 2x1 | up to 18.5%| up to 54.8% | up to 58.2%
1x2 over 1x1| uptox3.8 | upto11.3% | upto 14.1%
3x2 over Dyn.| upto 62.7%| upto47.9% | upto 22.6%

Table 6.1: Spatial multiplexing and diversity goodput gain

transmission with RTS.

A monotonic increase in goodput with the number of activarthehas been also
verified theoretically. In spatial multiplexing mode andien perfect channel state
information, capacity has been shown to grow linearly withn(N;, N,) [13, 14].
Although the rate of growth may change for different SNRs|itiesar relation between
capacity and the number of chains still holds [15]. Withoetfpct channels or under
data source rate constraints, there is a saturation poierteyincreasing the number of

active chains does not boost capacity [16].

Diversity: Static SMPS does not exploit receiver Diversity MIMO gaMaintain-
ing only one active receive chain in static SMPS, decredmeetiability of reception.
At low SNR settings (SNR15dB) where diversity gains are maximized, two active
receive chains give from 18.5% up to 3.8 times higher goodputpared with one
receive chain, as shown in Table 6.1. In medium SNR rangeB£SINR<30dB),
goodput gains ofV;, x 2 over N; x 1 settings are mainly attributed to diversity as
well and can go up to 54.8%. Diversity goodput gains of tworaree active receive
chain, for a representative medium SNR location P4 and loR &NMation P7 of our

floorplan, are presented in Figures 6.5, 6.8, respectively.

A monotonic increase in goodput with the number of activarthas theoretically

verified for diversity as well. In diversity mode, the errappability function can be
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Figure 6.4: Receiver's power consump- Figure 6.5:Goodput (medium SNR loca-

tion (medium SNR location P4). tion P4).

expressed aB, = W [9]. Then the goodpufy is given byG = R- (1 — P,) =
R - (1 — gxmww; ), WhereR is the bit-rate andb N R is the signal-to-noise ratio. As
the error probabilityP. decays with the exponent of the diversity gain fadsor- V;,

goodput increases with the number of active chains.

Signaling overhead = Dynamic SMPS is able to exploit spatial multiplexing and
diversity MIMO gains by switching from one to many receiveacts on a per-
transmission basis, but at a high RTS/CTS overhead. For @& staidy scenario,
96.5% of the total frames transmitted at DS rates, need tadimeded by RTS. This
results in 22.6% goodput gains of 3x2 over dynamic SMPS. @pements at var-
ious SNR locations and data source rates, show that 3x2 ¢aevadrom 22.6% to

62.7% goodput gains over dynamic SMPS, as shown in Table 6.1.

Our simple analysis shows that RTS/CTS handshake is proygmsive, when it
precedes every MIMO transmission. We model the transnrigsioe of an 802.11n
aggregate MPDU frame (A-MPDU) &5, = Touerncad + 220280 whereT,yernead
includes the various 802.11n protocol overheads (DIFSSSPFreamble, PLCP,

RTS/CTS, ACK) andR is the transmission rate. Aggregation levi} is the number

109



Preamble

R
Preamble
DIFS s +PLCP

+PLCP |

e

A
Preamble |§ Preamble

+pLep |1 PIFS b op . g
! ! !

I T I
T L — Tt T T = T usecs
34 74 81 97 137142 176 220 261 277 317328

A=

Figure 6.6: 802.11n RTS/CTS frame exchange.

of MPDUs packed in an A-MPDU. If we assume that there is no &aggregation
(Ar=1), R=300Mbps and MPDU is 1.5KBytes, we can observe from Figuretba
43.3% of the total transmission time is allocated for the RIS handshake. Even in
the scenario of full frame aggregation where A-MPDU is 64K&ytRTS/CTS over-

head allocates 28.1% of the total transmission time.

Datasourcerate  Our experiments have revealed significant goodput gaing of
2 over N; x 1 settings and dynamic SMPS. However, these gains are uppeded
by the offered data source rate, as we observe in Figure$&.36.8, at low source

rates.

Our second set of findings can be summarized as:

Finding 2 Multiple active receive chains can give from 11.3% to 3.&#rhigher
goodput compared with SMPS, when data source rate does not-bppad achieved

goodput. These gains can be attributed to:

2a. Spatial multiplexing and diversity gains of multiple oveeactive receive chain

in the static mode.

2b. RTS/CTS overhead, which dynamic mode needs to pay before MG

transmission.
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Figure 6.7: Receiver's power consump- Figure 6.8: Goodput (low SNR location

tion (low SNR location P7). P7).

6.5 “The Bad”: SMPS Potential Losses

We now shift our attention to two potential drawbacks of SMR&ich come from
the interplay between power consumption and goodput. ,Forst study so far has
revealed power savings of SMPS over multiple active recehains in Doze OFF
mode. However, are these savings observed in Doze ON as @ell@nd, our study
has been focused on SMPS receive power consumption. Howe\&¥IPS energy-

efficient?

6.5.1 SMPS power consumption in Doze ON

Interestingly, our experiments reveal that SMPS may no¢ gawer, compared with

multiple active receive chains, when the receiver opeiatB®»ze ON mode.

Dynamic SMPS: For our case study scenario of Figure 6.2, dynamic SMPS con-
sumes from 0.1W to 0.3W more power compared with the otha@natanfigurations
at 5M, Doze ON case. Our traces reveal a significant impacT&&TS overhead on

dynamic SMPS power consumption performance. Dynamic SM&Sinits 96.5% of
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the total frames at spatial multiplexing DS rates, whichpmezeded by RTS/CTS. This
signaling overhead increases the transmission time ofahe samount of data from
5.1% to 7.2% (Table 6.2) compared with the other chain cordigons and as a result
it decreases sleep time opportunities. During this acitive tthe receiver in dynamic
SMPS maintains two active chains to receive DS frames, windéaster chain settings
can save power by switching to Doze ON. Our case study resuérified in various
settings, where dynamic SMPS can require up to 8% more tinmpaced with other
chain settings, to transmit the same amount of data. Theangb&TS/CTS overhead
on idle time, is significant at low source rates. When the daigice rate approaches
or overcomes the effective goodput (e.g. at 165M of our casdy¥ the idle time

between dynamic SMPS and remaining configurations is althestame.

Static SMPS: Although static SMPS can still save power compared with iplelt
active receive chains in Doze ON, its savings drop signiflgafor example at loca-
tion P7 (Figure 6.7)2 x 2 consumes only 0.01W more power thar 1 setting at 1M.
The SMPS power savings drop at P7, becahise 2 settings require up to 10% less

time to transmit the same amount of data, compared Wjtlx 1 configurations.

Our third set of findings can be summarized as:

Finding 3 On power consumption at the receiver,

3a. Static SMPS power savings can drop to 0.01W compared withpileulictive
receive chains, in the Doze ON mode. Receiving with a singlacresults in
10% less sleep time opportunities of static SMPS over nhelliptive receive

chains.

3b. Dynamic SMPS can consume 0.3W more power, compared with latp
tive receive chains in the Doze ON mode. RTS/CTS overheale@guior to

a MIMO transmission, results in 8% less sleep time oppotiemiof dynamic
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3x2 2x2 1x2 3x1 2x1 1x1 Dyn.
Idle Time | 96.6% | 95.1% | 94.8% | 94.5% | 95.2%| 95.3% | 89.4%

Table 6.2: Idle time for 5Mbps source rate, at location P2.

SMPS over multiple active receive chains.

6.5.2 SMPS energy consumption

Our experiments show that saving power does not necessasiliftrin saving per-bit

energyFE,, formulated as:

B, = (6.3)

In our case study setting, although two active receive chaie more power hun-
gry compared with one active chain (Figure 6.2), they yibakllbwest per-bit energy
consumption at 165M, as indicated by the text arrows in FEdu8. Specifically, 3x2
yields energy savings defined as the decrease in per-bigyerensumption, from
12.8% to 24% over static SMP3/( x 1 setting) and from 11.3% to 15.6% over dy-
namic SMPS. The savings can be attributed to the goodpus gdiBx2 over static
(61.8% gains), and dynamic (22.6% gains) SMPS, which cosaterfor its additional

power consumption.

By studying the interplay between power consumption and gopdve end up
with two interesting conclusionskirst, the fastest RF chain setting may not be the
most energy efficientn the scenarios where source rate can be accommodated by a
single receive chainy; x 1 settings are more energy-efficient than the fadigx 2
configurations. This is observed for source rates 5M or @matllocations P2, P4, P7.
Dynamic SMPS can still give higher power consumption in DG2¢ and as a result

higher energy consumption performance, at low source,ratgapared with static
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SMPS and multiple active receive chaidowever, the most power hungry RF chain
setting may not be the least energy effici&dhen source rate does not limit achieved
goodput of multiple active receive chaing, x 2 settings are energy optimal as shown
in Figures 6.9, 6.10, 6.11. In these scenarios, 3x2 can give 12% to 78.6% energy

savings over static and dynamic SMPS.

Our experiments uncover important implementation impigces on SMPS perfor-
mance. For a fixed number of receive chaiis goodput monotonically increases
with the number of transmit chainié;, as well. Activating three chains at the transmit-
ter, can yield up to 5.4 times higher goodput comparing toastere transmit chain.
This goodput gain observed for 3x1 over 1x1 at location Pid significantly affect the

performance of SMPS as it results in 75.5% energy savingsasrsin Figure 6.11.

Our fourth set of findings can be summarized as:

Finding 4 Saving power does not necessarily result in saving energyitipgiéu
active receive chains can give from 12% to 78.6% per-bit@neavings over SMPS.

This is observed when the offered data source rate is equadgjbehthan the maximum
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achievable goodput of multiple receive chains. SMPS nesttsisider both consumed

power and achieved goodput to save energy.

6.6 Design

In this section, we present MIMO Receiver Energy Save (MRERgs®, which seeks
to identify and set the most energy efficient chain settingHie receiver at runtime.
A critical design challenge is to converge to the receivertst energy efficient set-
ting with small sampling overhead. MRES devises a novel, toerhead sampling
scheme, which improves over exhaustive sampling all ptessifains, in Doze OFF
mode. It opportunistically evaluates the receiver chaitioog and excludes those

chain configurations that are highly unlikely to yield enesgvings. We next describe

MRES operations.
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6.6.1 MIMO Receiver Energy Save sampling

Traffic-driven sampling MIMO Receiver Energy Save main component is a low-
overhead sampling scheme. Its main design principal isthigainost energy efficient
is the lowest chain setting, which can accommodate the offeacte rate, in Doze
OFF. It derives from Finding 1, which shows a monotonic increas@ower con-
sumption with the number of receive chaiis in Doze OFF, given a fixed number
of transmit active chaing/;. So MRES traffic-driven samplingequentiallysamples
upward (higher number of active chains), starting from theest chain setting. It

terminates sampling when a chain’s moving-average acthidtweughputl'hr 4., IS

the same as the moving-average source sat®ate (Thichgin > « - srcRate) The
smoothing factory is set to 0.95 in our prototype. The pseudo-code of our scheme
presented in Procedure 6. MRES scheme needs to address twdantgssues: a)
When is sampling triggered? b) How long will sampling last &od will its outcome

be evaluated?

Sampling triggers MRES triggers sampling and subsequent chain evaluation,
using both time- and event-driven mechanisms. To prevegh loverhead from
switching chains on a per-transmission basis (Findings3Bb, it samples periodi-
cally (3 seconds in our prototype) to identify the best-ggazhain. To be adaptive

to MIMO channel and data source rate dynamics, MRES triggemgoBng when-
ever it observes significant change in the measured thraugifghe current chain.
Specifically, it triggers sampling Whebhr,qin (t) < Threhain(t) — 2 - Oenain(t) OF

ThT ehain(t) > Th ehain(t) + 2 - Tcnain(t). ThT chain, Threnain are the moving-average
and current achieved throughput at timeespectively, whiler ., (t) is the through-

put standard deviation. Event-driven sampling is proveticat in dynamic traffic

scenarios (e.g. VoIP, bursty web traffic) to reduce idle gneonsumption.

Sampling should be long enough for RA to first identify the bas¢ ((r4 mil-

116



Procedure 6MRES: Input (chain, doze), Output (bestain)
1: /I Update stats upon the reception of a BlockACK frame

2: update-stat§(hrchain, srcRate, chain);
3:
4:if (event-triggerSthrchain, Thrchain, Tchain)
|| sample-timer-expired()) && isample = falsethen
5:  chain = lowest-chain();
6: init-sample-period(r);
7. is_sample— true;
8: end if
9:
10:if is_sample && sample-period-endedthen
11: (bestchain)« best-energy-chain(beshain, chain);

12  if (Threhain > o - srcRate && doze=0OFF)

|| chain = highest-chain(jhen

13: is_.sample— false;

14: sample-timer-reset();

15: else

16: (chain)« next-higher-chain(chain);
17: init-sample-period(’»);

18: endif

19: end if

20:

21:return bestchain;

liseconds) and then to evaluate its performantg filliseconds). It should be
also short enough to limit transmissions at high-energynchattings. MRES sets
its sampling periodl’» = Tra + Tr, WhereTr, is RA algorithm dependent. It
also updates the measured throughput and source rate oka dgnain setting as
ThY chain = ;él - ThT hain + }L - ThY ehain @nd srcRate = %W—i— }l - srcRate

every 20ms. When the best rate is reached, our prototype ssaaffes to update the

moving averages and séfs to 120ms.

Metric MRES estimates the per-bit energy consumption of a chaimgeising
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Equation(6.3). Instead of goodpuf7, it uses measured throughplitir.,.;, at the

sender. Finally, the chain setting with minimufi, is selected for transmission.

Sampling costreduction ~ MRES limits sampling cost by preventing transmissions
at high-energy chains. Sampling cost is proportional tosmapling time at energy
sub-optimal chain settings which is expressedlgs= Tra + Tr + 2 - Tromm +
T,.:- The time to identify the best rat; 4 is RA specific. For example, RRAA [34]
evaluates every rate option for approximately 15ms. So énvtbrst case scenario
under a stable wireless chanrgl, = 255ms given that all the available rate options
of our platform are 17 for 40MHz channel bandwidth. The te@inpling period is
thenTp = Tra + T = 375ms. After MRES identifies that the sampled chain is
not the most energy efficient one, it requirgs,, time until the receiver hardware
switches to the optimal receive chain (35usecs in our sysaewl’ ..., time for each
of MRES handshake messages in order to commit the new sdttiagdeal scenario
with no interfering traffic,T,.,.,, = 59.7usecs, given that MRES management frame
size is 360bytes and is transmitted at 24Mbps in our platfo8a sampling cost is
375.2ms for each energy sub-optimal sampled receive chain. In teeas® where
the optimal is the lowest receive chain, MRES can excldide- 1 energy-sub-opimal
chains from sampling. Without MRES low-overhead samplinB% would transmit
up to 37.5% of the total time at energy sub-optimal chaingmgihat the RA is set to

RRAA, N, = 4 and sampling interval is 3 seconds.

Traffic-driven Sampling in Doze ON Power consumption monotonic relation-
ship with increasing number of receive chaiis may not hold in Doze ON. Let's as-
sumely, ; is the transmission time @/ bits when: receive chains are active. From our
analysis and experiments discussed in Section 6.3, we fateit), ; = T}, ;11 + Liae,
whereTy. is the idle time of the higher chair-1 upon the completion of its transmis-

sion. The per-bit energy consumption i + 1 receive chains i€, ; = 22+ Tzl
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andE,, ;1 = EptTiait1 C”L'“]j[T’id’”“'P ©2c0% respectively.£, is the processing energy
consumption, which is assumed to be similariar- 1 settings, given that the amount
of bits M to be processed is the sani&,,..oy is the power consumption is Doze ON
mode, which for simplicity is considered negligible. Ouoposed low-overhead sam-

pling holds in Doze ON for chaing i + 1 that can accommodate the offered source

rate, only ifE,, ; < Eypiv1 = Peip1 > TZH P. ;. Although the relatiorP,. ;11 > P.;
is known in advance [64], transmission tifig ;,; depends on ratg and aggregation
level Ag (Section 6.4) which may be different between chaandi + 1. To ensure

that the energy optimal chain setting will be identified, MRt&a8es a conservative

approach and disables traffic-driven sampling in Doze ON.

6.6.2 MIMO Receiver Energy Save mechanism

MRES introduces a new management frame, as neither the SMiB8 trame nor the
RTS/CTS of SMPS modes can be used without modifications., et have not been
designed to support chain setting exchange informatiorcor8k they do not com-
municate power consumption, which is necessary informdto computing energy
consumption. To address these issues we propose a new maragaction frame
presented in Figure 6.12. Tikergy Save Enablduit is set to 1 to enable the energy
save mechanism. Usiryailable ChainsandActive Chaindits, the receiver informs
the transmitter for the number of its available and curyeattive chainsChain Feed-
backbits are only set by the transmitter to activate the appabpmumber of receive
chains. Two bits can accommodate four spatial streamsad@iin 802.11n. Finally,
the optionalPower field PWW, is used to communicate receiver power consumption
information. Itis a 15 bit unsigned integer, which reprdseéhe power consumption
of a single active chain in milliwattsPW I, PW I,, PW I3, are 11 bit unsigned inte-

gers, which represent the additional power consumptionilimratts of 2, 3, 4 active
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bo bl b2 b3 b4 b5 b6 b7 b8..b22  b23..b33 b34..b44  b45..b55

Energy Save | Available | Active Chain
Enabled Chains Chains | Feedback PW ‘ PWI1 ‘ PWI2 ‘ PWI3 ‘

Reserved

Octets: 1

Category Action ‘ MR Energy Control

Figure 6.12: MRES frame format.

receive chains over 1, 2 ,3 chains respectively. For exathglgpower consumption
of IV, active receive chains is calculated A8/ + Zéﬁ;l PW ;. The difference in

power consumption between adjacent chain settings doesexceed 1.15W in our
experiments, and can be represented by 11 bit®if field is not used, transmitter

needs to estimate receiver chains’ power consumption.

When the transmitter receives a MRES action frame, it set$vexteenergy save
status, active, available chains and power consumptiamnrdtion if available, while
it ignoresChain Feedback The MRES frame sent by the receiver, does not require
any response. When transmitter requires from the receivewiich chains, it sends
a MRES action frame with th€hain Feedbackits set to the selected chain setting.
Upon the reception of the MRES frame, the receiver commita¢wechain setting and
it forms a new MRES frame with all buthain Feedbackield set to the new values.
Only when the transmitter receives the MRES response, it atthe new receiver’s

chain setting.

6.7 Implementation and Evaluation

In this section, we first describe the implementation of MRERen, we compare it
with static, dynamic SMPS and our system’s 3x2 default camétion, using both real

experiments and trace-driven simulations.
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6.7.1 Implementation

We implement MRES in approximately 400 and 200 lines of codéertransmitter,

receiver side, respectively. Due to hardware constrammsipport the Doze ON, we
only evaluate the OFF mode in our experiments. An issue tacowvee is the estimation
of the data source rate, which can accurately be measurgdvbeh it does not exceed
the effective throughput. In the case where source rategisenithan the effective
throughput, MRES checks for buffer overflows. Buffer overflamplies that source

rate cannot be accommodated by the current chain setting.

Besides our proposed traffic-driven sampling, we also applgdaptive sampling
scheme, which seeks to eliminate chain settings that dendig incur high energy
consumption. Our scheme keeps a separate timer for the avialale receive chains
of our testbed. MRES samples and updates the energy consunopth given setting
only after its timer expireés After sampling a setting yields higher energy consumption
than the current best one, its timer is exponentially ineeda MRES prevents a chain
setting from being completely excluded by a) upper bounthiegimer to 8 seconds, b)
resetting the timer when sampling a chain setting resul®mer energy consumption

than the current lowest one.

6.7.2 Performance evaluation

We now compare MRES with SMPS implemented as described ind8egil.2 and
with our system’s default 3x2 configuration. We first condexperiments with one
transmitter and one receiver, in the campus setting of EBigut. We evaluate the
proposed solutions in terms of receiver per-bit energy eonion, in static, mobil-

ity scenarios, with various 802.11n configurations andedéht RAs, with low, high

2Timers are considered only for time- and not event-driveng@img.
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Static Dynamic 3x2
SMPS SMPS
Static UDP| (1-36.8)% | (0.7-32)% | (0.4-34.2)%
Static TCP| (10.1-11.7)%| (9.7-21.3)%)| (11.3-20.8)%
Mobility 14.4% 9.1% 14.9%

Simulation| upto 12.2% | (15-60.5)% | (7.4-35.4)%

Table 6.3: Energy savings of MRES over alternative designs.

volume UDP and TCP traffic. The experimental results showMRES consistently
outperforms alternative solutions in all scenarios, witlergy savings from 0.7% to
36.8% and from 0.4% to 34.2% over SMPS and 3x2 configurati@spectively. It

also offers goodput gains up to 67.5% in all the examinedawes over static mode
and goodput gains up to 37.6% in 70% of the tested scenarmsdynamic mode.
Finally, MRES consumes from 0.02W to 0.6W less power in 83.3%h@tested sce-
narios over dynamic mode. It also never consumes more ti&WOcompared with

static SMPS in 95% of the examined scenarios.

We also run simulations for two reasons. First, they allonufto compare the de-
signs in larger network topology. Second, they enable usgess the Doze ON mode,
which is not available in our platforms. Simulation resdtow up to 60.5% energy
saving of MRES over SMPS in both infrastructure and ad-howot scenarios. The

MRES energy savings are summarized in Table 6.3.

6.7.2.1 Static clients

We first evaluate MRES for static clients, over both intenfieefree 5GHz channels
verified by our sniffer and the highly congested 2.4GHz bdark channel bandwidth

is setto 40MHz and rate adaptation to MiRA in all experimemigss explicitly stated.

UDP/5GHz case  Figure 6.13 plots the per-bit energy measured at high-, unedi
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Figure 6.13:Receiver’s energy consump- Figure 6.14:Receiver's energy consump-

tion (UDP/5GHz - Log-scale). tion (TCP/5GHz).

and low-SNR locations (marked in Figure 6.1), over the 5GHizcband for high and
low UDP traffic sources. MRES consistently outperforms akléve algorithms, with
energy savings up to 36.8% over static SMPS, 32% over dynaiieS and 34.2%
over 3x2. Its savings come from its ability to identify the shenergy-efficient chain

setting for the receiver at low sampling cost.

Figure 6.15 plots the chain distribution along with the reeepower consumption
and goodput for locations P2, P5, P6. For our case studyidtocBR, we observe that
MRES gives close to optimal distribution, by transmittingnakt 100% of its frames at
3x1, 3x2 settings, for the low- (5M), high- (165M) volume UBBurces respectively.
For locations P5, P6, MRES selects the average energy o@kthaletting, for the low
volume UDP traffic. Under higher traffic volume and intenséWll channel dynamics
observed usually at low SNRs, MRES can switch between one amddtive receive
chains. MRES is able to identify the most energy efficient mlsatting, with low
sampling overhead. It gives from 10.6% to 59.6% goodputgauer static SMPS in
the examined locations, while it outperforms dynamic SMPB2 P6, as well. The
goodput gain of dynamic SMPS over MRES at location P5, isoaiteid to the fact that

MRES selects 3x1 for 92.7% of its transmissions and not taitgsing cost.
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Figure 6.15: MRES chain distribution.

TCP/5GHz case  We also conduct experiments with four TCP flows. Figure 6.14
shows that, MRES produces energy savings up to 11.7% ovierSMPS, up to 21.3%
over dynamic SMPS, and up to 20.8% over 3x2.

UDP/2.4GHz case = We then switch to the congested 2.4GHz band (channel 11),
where we sniff more than 20 APs on channels 1 to 11. We chargenehwidth to
20MHz to mitigate interference caused by overlapping 40Mhkemnels [61]. The per-

bit energy consumption of different algorithms for locatd®2 and P4 is presented in
Figure 6.16. The higher per-bit energy consumption contpasth the 5GHz settings
can be attributed to lower goodput, which does not exceedMigps. MRES still
outperforms SMPS and 3x2 designs with savings up to 36.8%284d06 respectively.

Impact of rate adaptation We finally evaluate the various strategies using both
legacy 802.11a/b/g RAs (RRAA [34], SampleRate [23]) and MIMO .202 RAs
(MiRA, Atheros MIMO RA [32]), which we have prototyped on ousstbed. Figure
6.17 plots per-bit energy at the medium SNR location P3 udiigbps UDP source.
MRES consistently outperforms SMPS and 3x2 with savings Ug2ébh and 12.8%
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Figure 6.16:Receiver’s energy consump- Figure 6.17:Receiver’s energy consump-

tion (UDP/2.4GHz - Log-scale). tion. MRES over various RAs.

respectively, independently of the underlying RA scheme.t@ges reveal that chain
distributions and as a result receiver power consumptiorMBES, are almost the
same for all RA algorithms. What varies among the tested RABgisdte distribution
and as a result the goodput. The maximum energy savings of MiRESstatic and

dynamic SMPS are observed over Atheros (29.8%) and MiRA (32%pectively.

6.7.2.2 Mobile clients

To gauge the responsiveness of MRES upon MIMO channel dysamwe carry a
client and walk from P1 to P7 through P3, P5 and then come blaag@oximately
constant, pedestrian speed of 1m/s. Figure 6.18 plots thbipenergy consump-
tion of our four schemes using 100Mbps UDP source. MRES oftdr4%, 9.1%
of energy savings over static, dynamic SMPS respectivelly1ah9% over 3x2 con-
figuration. Our event-driven sampling is fairly responsiweour pedestrian mobility
scenaro, without incurring high sampling overhead or lowdput. Characteristically,

3x2 gives only 7.9% goodput gains over MRES, which cannotebf8x2 setting’s

higher power consumption.
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Figure 6.18:Receiver’s energy consump- Figure 6.19:Network’s energy consump-

tion under mobility. tion. Infrastructure and ad-hoc settings.

6.7.2.3 Trace-driven simulations

We next use trace-driven simulations to assess MRES in larffastructure and ad-
hoc networks. We collect real channel and power consumgtaees, by placing
the AP atT but moving the client across multiple locations in the campatting

of Figure 6.1. For each location, we measure the goodpuhdriss, aggregation,
SNR and power consumption. To extend our simulation to theeeive chains, we
estimate a) power consumption of three chains based onffeeetice between power
consumption of two and one chain, b) goodput to be similan® $etting. We test

various traffic volume scenarios.

We feed the traces to a customized 802.11a/g/n simulattewin C++. In the in-
frastructure setting, the AP is locatediatwhile clients are randomly deployed in our
campus setting. We vary the number of clients from 9 to 15uf€id.19 plots the per-
bit energy for a 9-client topology and for both Doze ON and @kdtles. The network
energy consumption is calculated based on the total poweucoption of all nodes
and the network’s aggregate goodput. MRES performs sinalatdtic SMPS, while
it outperforms dynamic SMPS and 3x2 with energy savings%4afd 28.2% respec-
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tively. In the ad-hoc scenario, we randomly deploy 50 nodesli000m x 1000m area.
We vary the number of traffic flows from 10 to 30 among randorelgsted transmit-

ter and receiver pairs. To emulate the MIMO channel usingt@aes, we map the
distance between two communicating nodes with an SNR vahlreesponding to a
given goodput, frame loss and aggregation performanceur&i§.19 plots the net-
work’s per-bit energy for a 10-flow setting. MRES outperfor8MdPS and 3x2 with

energy savings up to 30.6% and 16.1%, respectively.

6.8 Related Work

Energy efficient algorithms have been widely studied in #gaty 802.11 wireless
networks [43—49,52]. However, the problem remains largelyxplored in the MIMO
802.11n systems. Recent proposals (SMPS [6], Snooze [58]) aptenna selection
to save energy at 802.11n receivers. SMPS seeks to save pomsrmed in MIMO
circuit blocks, by switching from “many” to a “single” antea setting. Snooze [58]
switches antenna settings according to MIMO speed (airtititization). However,
our study shows that, RF chain selection solely based on MIpE2d, or power con-
sumption can lead to energy sub-optimal chain setting. MR&Sads from these

proposals by considering both speed and power in chain neamaagj.

There have been several theoretical studies focused ogyeefficient MIMO
systems [64—67]. They seek to find a theoretical transitioimtp where the most
energy-efficient MIMO setting changes. The crossover poamt be expressed as the
tradeoff between MIMO gains, which come at the cost of inseglgpower consump-
tion. While [64, 66] focus on the system’s energy consumpiieb] considers uplink
energy-efficient transmissions. Different from theserfove focus on experimental

studies, while proposing new energy save solutions for @&18.n receivers.
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Early experimental work on identifying factors that affé@fi2.11n energy con-
sumption on commodity hardware has been reported in [5Tief@nt from our study,
the authors do not consider the impact of data source ratBanel OFF, ON modes in
their per-bit energy and power consumption measuremehisy @o not propose new

designs as well.

6.9 Summary

In this chapter, we discuss the tradeoff between MIMO powesamption and speed,
by presenting a critique on the newly proposed 802.11n &pisttiltiplexing Power
Save feature. Our experiments with standard-compliantl8®2devices uncover two
important insights. First, the fastest RF chain setting n&thle least energy efficient.
Second, the most power hungry RF chain setting may be the mesjyeefficient. To
this end, we propose a MIMO receiver energy saving schemghvwgeeks to iden-
tify the energy optimal antenna setting at a low cost. We acneRES with two
design philosophies. The first seeks to increase perforenlapturning all the anten-
nas on. The second philosophy switches from “many” to a ‘lsingntenna setting to
save MIMO power consumption (SMPS). MRES gives 37% energygawver both

philosophies for a 2-antenna receiver.
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CHAPTER 7

Conclusion

Multiple-Input Multiple-Output (MIMO) offers significanpromise in making Gbps
wireless links a reality. However, our experimental studihiIMO 802.11n com-

modity devices reveals that, the current MIMO is low speed @mergy hungry. The
root cause is the use of legacy (single antenna) designsttozarew MIMO (multi-

ple antenna) setting. This dissertation advocates for ¢éweel of novel designs over
the MIMO setting, by illustrating the MIMO unique charadsgtics and their impact
on current network speed and energy performance. We canthisl dissertation by
summarizing the key insights learned from our study, anddayrening the remaining

challenges.

7.1 Lessons Learned and Departures

The current MIMO 802.11 wireless networks are designed gudime legacy
802.11a/b/g wireless networks as the blueprint. The exjstesigns abstract the wire-
less channel as a 2-dimensional (frequency and time) conaation link, and graft
the legacy wireless protocols onto the new MIMO setting. Assiudy shows, MIMO
wireless channel is fundamentally different from legaay.tfiis end, this dissertation
seeks to answer two questions. a) Why should we consider nesijns over the

MIMO setting? b) What are some of these novel design ideas?

The insights gained using experiments with commodity 8D@evices can be sum-
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marized as follows.

¢ MIMO modes exhibit different characteristics Our experimental study
with commodity MIMO 802.11n devices uncovers that the diitgrand spatial
multiplexing MIMO modes exhibit different loss characgigs. Different from
legacy, loss is not monotonic with respect to transmissade over the MIMO
setting. State of the art rate adaptation solutions argydedithough by assum-
ing loss monotonicity, and as a result they have limitatitmglentify the best

goodput transmission rate.

e MIMO speedis expensive  Our experimental study with commodity MIMO
802.11n devices uncovers that MIMO speed comes at a costrefased power
consumption. MIMO power consumption is proportional toluenber of active
antennas. Designs that either seek to boost performancetivatang all the
antennas, or to reduce MIMO power consumption by turningatifbut one

antenna (SMPS) can be energy sub-optimal.

e 802.11 channel exhibits rich dynamics  Our experimental study with com-
modity 802.11 devices reveals intense short-term chanyrdics for both
legacy and MIMO settings. These dynamics are attributedutipath fading
and interference from neighboring nodes. The additiongieks of freedom of a
MIMO 802.11n radio make these dynamics even more intensginggthe num-
ber of active antennas and spatial streams can drastidalyge MIMO gains.
Changing the channel bandwidth has a double impact on speétkr \bhan-
nels allow for higher PHY transmission rates, while at thesdime, they can
increase interference. 802.11 channel dynamics can as@at in a complex
manner with the new 802.11n standard features, as framegaggyn. Existing
designs have limitations to address 802.11 channel dymsanvigich results in

significant performance degradation.
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Based on our findings we revise rate adaptation and energy wéneh lay the
foundations for gigabit and green wireless. Our proposepsad from state of the art

designs in the following key ways.

¢ Differentiate MIMO modes The fundamental departure of our MIMO rate
adaptation proposal is that, it manages diversity andapatiltiplexing modes
in a distinct manner. First, it classifies the transmissaies in different MIMO
modes based on the number of streams. Then, by applyingrea@nd zigzag
probing, it can identify the optimal (best goodput) rate ale individual mode
and the optimal mode, respectively. This allows for MiRA teemome loss

non-monotonicity observed in cross MIMO mode rates.

e Consider new metrics  The focus of MIMO is higher speed over wireless.
However is speed the right metric? Our study shows that, MId4@ lead to
poor user experience because its higher speed comes athadditional power
consumption, proportional to the number of antennas. OwM®receiver en-
ergy save proposal considers both the MIMO speed and powsuagption of
a MIMO 802.11 device. It seeks to improve user experienceebgcting the

antenna setting with the lowest per-bit energy consumption

e Learn from history Our proposed designs seek to avoid selecting sub-
optimal settings by analyzing the short-term network pannce. This involves
a) learning and b) differentiating events. Both rate adapiadnd energy save
use adaptive channel learning to avoid transmissions atpkerfiormance set-
tings. Learning requires classification and independemiagement of different
events. For example, our rate adaptation designs seekféwetifiate channel
fading from interference losses, and appropriately enB3I8/CTS. Our rate
adaptation and energy save proposals classify goodputioens to trigger the

selection of a new setting.
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This dissertation integrates the above ideas into prdcti8@2.11 standard-
compliant solutions. Specifically, it integrates rate adapn and energy save within
the current device drivers and provides prototype impldeatens of the proposed
designs. It also presents testbed evaluations that sh@® [grformance gains in
comparison with the state of the art algorithms. Thus, wesbelthat this work is a

significant step towards the future gigabit and green wsefeetwork.

7.2 Open Issues and Future Work

The systems presented in this dissertation are a signifftahstep towards gigabit
and green wireless networks. Our experimental findingswercalso novel problems,
whose solution is of major importance for the future highesheenergy efficient, se-

cure networks. We next elaborate on these new directions.

Rate adaptation Our MIMO rate adaptation proposal is able to identify thetbes
goodput rate at a low probing cost by applying a prioritizddgtive probing scheme.
First, sequential probing allows for MiRA to identify the bg®odput rate? across a
single MIMO mode, and prunes all the remaining rate optiddm/a R . Zigzag RA
prevents probing the rates, whose loss-free goodput islantabn the current best
goodput performance. Finally, adaptive probing intervavpnts MiRA from trans-
mitting at rates, which continuously offer low performanddowever, probing may
still have limitations to adapt to very fast channel dynas{ie.g. vehicular mobility
scenarios), where the channel can change in microsecotes§24]. In our future
work, we plan to examine rate adaptation that utilizes faGSMeedback provided by
IEEE 802.11n and 802.11ac standards. The key challengesattiis direction is to
overcome a) interference, b) multipath, c) hardware catiibns, which can poisson

the SNR measurements (Section 5.6.3).

132



Fixed Number of Antennas (3 Ant.)
~1200 ‘

800 i
600 i
400 A
200 A

3 Streams 2 Streams 1 Stream

H
o
S
o)

Power Consumption (mW

o

Figure 7.1: Receiver’s energy consumption as a function atialstreams.

Energy save  Our MIMO Receiver Energy Save design seeks to save energy at
the client side by selecting the energy optimal receiveeram setting. However,
our experiments reveal that saving energy at the receideraalls for collaboration
between the transmitter and the receiver. From Figure$6l9, 6.11 we observe that
the energy optimal antenna setting for the receiver alwagsires 3 active antennas

at the transmitter side. However, activating all the traihamtennas can result in high
transmit energy consumption. As a future work, we examirerggnsave solutions

for both infrastructure and mobile device sides. To achibag we need to select the

energy optimal system (transmitter and receiver) anteetimg.

Putting speed and energy together  In this dissertation we design rate adaptation
and energy save as two independent MAC-layer componentsMOJ® energy save
solution can work independently of the underlying rate &alagn algorithm and vice
versa. However, our experiments with commodity 802.11wl\ware reveal that rate
adaptation has a profound impact on energy consumptiomuréig1 shows a mono-
tonic increase in receiver power consumption with the nunolbepatial streams, for

a fixed number of antennas. As a result, rate adaptationeéleftsd4o maximize speed
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may lead to high energy consumption. Designing joint ratgéation and energy save

algorithms is part of our future work.

7.2.1 From single-user to system view

The focus of this dissertation is to optimize speed and gniergthe single-user case
(single transmitter-receiver scenario). Our ongoing ardré work seeks to extend
our findings to the Multi-user (MU) MIMO case, which allowsexrinal to transmit
(or receive) signal to (or from) multiple users in the samedyaimultaneously. The
problem of rate adaptation in multi-user case is signifigatitferent for two reasons.
First, MU-MIMO requires channel state information at thensmitter (CSIT). CSIT
while not-essential in SU-MIMO channel, is of critical impance to most downlink
multi-user precoding techniques. Acquiring and utilizitigely CSIT feedback in
a practical setting remains an open problem. Second, MU-®lidllows for spatial
sharing of the channel by many users. The scheduling proeedisociated with the
selection of a group of users that will be served simultasgpadds more complexity

to the problem.

7.2.2 Beyond the gigabit radio

The key insight gained from this dissertation is that, wednedepart from the sim-
plistic view of MIMO as a pure physical layer technology. Tostend, we design
MIMO rate adaptation and energy save, which seek to optispezd and energy at
the MAC-layer. In our future work, we are planning to go beytimel MAC and exam-
ine how we need to revise the upper protocol layers. Speltyfioge seek to answer
two questions. What should routing look like over MIMO? Is MIMyigabit network

secure?

The tradeoffs between diversity (transmission range) gratiad multiplexing
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(speed) modes, and the speed impact on power consumptidumnciementally change
the way that we forward packets and design routing metri¢hofigh, spatial multi-

plexing can provide the fastest links from a source to a dastin node, diversity can
be used along with opportunistic routing [76] and netwogkinding [77] architectures
to allow for reliable and high performance end-to-end comication. Moreover, the
fastest MIMO routing path may not be the most energy efficoeret, because of addi-

tional MIMO power consumption. Designing green routingtié an open challenge.

MIMO multipath environment amplifies existing security marabilities by gen-
erating a richer link signature space. Signal from autlearidevices will spill over
longer distances from devices’ domain, allowing for malics parties to overhear and
interfere with existing transmissions. In the next generatvireless, the norms in
network security for Authentication, Authorization, Corgidiality, Integrity need to

be revised.
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