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Abstract

Quantum Simulation of Triangular, Honeycomb and Kagome Crystal Structures using
Ultracold Atoms in Lattices of Laser Light

by

Claire K. Thomas

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

Ultracold atomic gases trapped at the interference of coherent beams of light constitute
an artificial material. This optical lattice material may be used for controlled quantum
simulations of condensed matter theories. The bulk of this dissertation concerns the con-
struction and calibration of an optical superlattice that can form the triangular, honeycomb
and kagome crystal structures. The properties and geometry of this artificial material may
be dynamically changed, allowing for the experiments discussed in this thesis that would be
impossible with real materials.

The use of ultracold atoms in optical lattices for quantitative tests is challenging because
of the novelty of many of the techniques in the field, and because of the myriad experimen-
tal differences between these artificial materials and true materials. This thesis reports the
development of a method to characterize optical lattice potentials using matter-wave diffrac-
tion. We observe an enhancement of inversion asymmetry in matter-wave diffraction from
a honeycomb lattice, which we explain using a time-independent perturbative treatment of
the single-particle band structure of the lattice. Our experiment also provides new insight
into a commonly used detection technique.

This thesis culminates in the development and experimental realization of a quantitative
test of a condensed-matter theory. The test is insensitive to the experimental differences
between artificial materials and real materials. We focus on a prediction from a mean-field
treatment of the Bose-Hubbard model that concerns the difference in behavior of itinerant
particles on lattices that are identical but for their geometry. Using the tunable geometry
of our quantum simulator, we measure the properties of ultracold atomic gases trapped in
the triangular and kagome lattices under otherwise identical conditions and find that they
are consistent with the mean-field scaling prediction.
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Chapter 1

Introduction

1.1 Scene from a physics PhD

It was June of 2013 and I was alone in the lab, monitoring the experiment during a delicate
process (a vacuum bake of the main chamber) while my coworkers attended a nearby con-
ference. The fire alarm was the first sign that it would be a challenging day. The deafening
sound in rhythm with blinding lights affected me less than you might imagine. I flinched but
decided to stay where I was. There had been many building troubles that year, and we’d
had our share of troubles in the lab (a main-chamber vacuum bake is not a good sign). I
was tired of evacuating and bored with monitoring the extremely slow removal of gases from
the heated vacuum chamber that occurs during a vacuum bake.

Time passed. The alarm faded into the background and I sank back into my calculations.
In the periphery of my vision, I noticed a black fluid creeping under the doorway and into
the lab. I looked at it in disbelief; I looked at it as though it were sentient and might crawl
back into the fire sprinkler system it came from. It turns out that the water in fire sprinkler
systems sits up there for a long time, so that when the sprinklers go off you are not on fire,
but you are extremely dirty. There was no fire, but there was a drenched welder in the
workmans closet across the hall from my lab who was having a rough day.

As I asked whether he had a sense of how much more water might be coming, Jonathan
Kohler, who was the newest student in the Stamper-Kurn group, emerged from the neigh-
boring lab. Rather than rush to the building exit, he looked at me and asked, What do we
do? Perhaps no person has ever endeared himself to me so quickly. But alas, there was no
lab protocol for a flood in Berkeley in 2013. (This oversight has been corrected.) I replied,
Email the group and grab some two by fours! We proceeded to lift the most expensive of our
electronics and laser control systems off of the floor and turn off our high voltage electronics.
When we finally ran through the water to evacuate, we passed the firemen on their way
downstairs. They seemed exasperated with our presence in a flooded basement.

Although we prepared for our labs to flood, I did not expect the subsequent two-day
power outage. That delicate process that I had been monitoring would only last a few hours
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without building electricity, and an improper shutoff could be disastrous. The post-doc
and soon-to-be professor, Dr. Gyu-Boong Jo, was the first to return from the conference.
He foresaw the looming power outage and politely pushed past the building managers who
blocked building re-entrance. He properly shut down the vacuum pumps. Ultimately, the
entire system recovered from this unfortunate series of events.

When the flood struck, I was monitoring the system through a bake out. In a bake out,
we wrap the vacuum chamber in heaters and raise its temperature to about 300◦ F, while
using pumps to remove any air or water that gets loose. It’s similar to what happens in a
self-cleaning oven, where food scraps are incinerated and pumped out as gas. We are left
with a vacuum that has almost nothing inside, so that when we put in the atoms that we
use to gain insight into the rules of quantum mechanics, we know that those atoms are alone
in the system.

A bake out, once completed, never has to be done again, and every future experiment
depends on its success. This bake out was my first responsibility as the senior student
in my lab, and I had prepared for it obsessively. (In later chapters I will describe these
preparations.) I thought that I had made contingency plans for every possibility, but a mid-
summer flood in California in 2013 – in the midst of one of the most severe droughts the
state has ever seen – was not on the list of potential disasters I had considered. That day I
learned that I cannot plan for everything, and that I could trust my team for support and
rapid problem-solving when needed.

I remember the flood like it was yesterday and, though it was nearly halfway through my
time at Berkeley, it marked in many ways the beginning of this PhD. I spent many of my
years alone in a basement with just one other graduate student, Thomas Barter, rebuilding
an apparatus that neither of us had expected to rebuild. Later joined by Tsz-Him (Zephy)
Leung, we worked tirelessly to create a machine that can elucidate the underpinnings of the
physical world, and I am proud of what we built together.

With this dissertation I hope to tell you a comprehensible story in which atoms are used
as well-controlled tools to understand quantum mechanics, but more importantly I hope to
share a story of the endeavor of a team of people to understand the fundamental building
blocks of nature and the laws that govern them, a story of the few successes that inspire us
to continue through the many failures.

1.2 Overview

My work has focused on quantum simulation of condensed matter systems using ultracold
atoms in a bichromatic optical lattice. In the following chapters I will discuss the two-
dimensional lattice of tunable geometry in which we have studied physics of triangular,
honeycomb and kagome lattice structures. We followed a prescription for building this
quantum simulator – we worked to build a system that is stable, we worked to understand
it in its simplest limits, and only then did we perform a complex simulation that cannot be
completely described by theoretical treatments.
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The work in this thesis was the subject of two manuscripts. The first involved non-
interacting particles on the lattice. As I will describe, interactions are what makes quantum
problems hard to solve. We performed an experiment in which we suddenly exposed a
stationary cloud of atoms to an optical lattice with a honeycomb geometry. The matter-
wave diffracted, resulting in sensitive crystallography of the optical lattice [1, 2].

In our second manuscript, we introduced and increased interactions among atoms in the
triangular and kagome lattices. The interactions among particles on a lattice site increase as
the barrier height between lattice sites increases, and the depth of an optical lattice is easily
tuned by changing the intensity of the light that interferes to create the lattice. Increasing
interactions of atoms in a lattice drives a phase transition between the superfluid state that
is delocalized over the extent of the lattice, and the Mott insulating state, which has a fixed,
integer number of particles on each site [3–7].

In this introduction, I aim to give an overview of my work that is accessible to enthusiasts,
because I believe that everyone can understand something of what I’ve done, and that
scientific research has a huge and underestimated impact on everyone’s every day lives. I
hope to provide insights and a coherent story that motivates the work that we have done. I
will describe quantum mechanics in the simplest terms, and explain the necessity of quantum
simulation and quantum computing to understand the most complex chemical and material
properties. I will describe a few different approaches to such computation and simulation,
and I will then describe the approach that we have taken in this work, using ultracold atoms
in optical lattices. I will describe the tools that we have for manipulation and detection in
such systems, and the advantages and disadvantages of this sort of simulation as it compares
to other simulators as well as to the materials that we simulate. Finally, I will motivate and
describe the particular lattice geometries simulated in this thesis.

1.3 Quantum mechanics

1.3.1 A quantum particle

Quantum mechanics is a set of rules that is best known for its governance of the behavior
of small particles. There are a lot of misconceptions about these rules; I’ve spoken with
people who are convinced that the particle world is a lawless land where magic abounds and
human consciousness plays a mysterious role. Others have heard that there is a fundamental
uncertainty in a particle’s position or speed, and will suggest to me that I would be more
certain if I measured more carefully. In truth, the land is not lawless, but the uncertainty is
fundamental. We understand many of the rules quite well, and they are unaffected by the
consciousness of the observers.

The confusion about the nature of quantum mechanics arises from our familiarity with
classical mechanics – the rules that govern physics of large things, like us, at the temperatures
we live in. We experience a physical world where a tennis ball is in one place at a time, and if
we wanted we could calculate the trajectory it will take when thrown. You might insist that
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you could not calculate the trajectory, but I maintain that you do it without thinking, every
time someone throws a ball at your face. We humans have an inherent sense of classical
physics, no matter how discouraging our high school courses may have been.

So we try to use that sense of physics and draw a parallel between balls and particles
and we are baffled that the rules to which we have grown so accustomed no longer apply.
Where a ball is described by a point in space and time, a particle is described by a function
that varies in space and time, called a wavefunction. At a given time, the probability of
measuring a particle in a particular place can be calculated from this wavefunction. While
it may seem strange that particles cannot accurately be described as occupying a particular
place at a particular time, there is nothing magical afoot. The laws of quantum mechanics
are unfamiliar, but they are laws all the same. We can write down equations to describe
the behavior of particles, and sometimes we can solve them. When we do solve them, the
particles behave as we predict.

There is a characteristic length of a particle wavefunction, which is larger for particles of
smaller mass or at lower temperature. This helps to explain why we experience a classical
world. We interact with large, heavy things, made up of many many particles at room
temperature. All of the matter with which we interact – marbles, tennis balls, and even
humans – can be accurately described by a quantum wavefunction, but the wavelength is so
small that it quantum effects are imperceptible and irrelevant to our daily experience. So
the question arises, what is small? Electrons are small. In fact, the relative weight of an
electron to a tennis ball is roughly the same as the relative weight of a tennis ball to the
sun. An electron at room temperature has a wavefunction that is long compared to typical
atomic spacings in a material, so we say that the wavefunction is delocalized over the lattice
of atoms. In our work, we create a very large, delocalized wavefunction using more massive
particles (atoms), which are cooled to much lower temperatures, very near absolute zero, so
that their quantum wavefunctions are magnified.

A measurement of the particle will find it in just one location or state, and this is
sometimes referred to as ‘collapsing’ the wavefunction. Many measurements of a particle will
reveal its probability distribution. It is important to note that the measurement doesn’t need
to be recorded by a device or observed by a person in order to collapse the wavefunction. If
anything in the environment interacts with a particle and carries away information about the
particle’s state, this will qualify as an observation and collapse the wavefunction, regardless
of whether a human is there to collect the information. This presents a huge challenge
to experimental studies of quantum mechanics; it is the reason that we carefully bake out
the vacuum chamber in our lab. In this process, we remove nearly all the air from the
environment in which we study the quantum behavior of particles so that nothing in the air
will interact with the particles and measure them when we aren’t looking.

The wavefunction can also describe a particle that exists in two states at the same time.
This is known as quantum superposition. These concepts are the source of the fundamen-
tal uncertainty in a quantum mechanics. In this thesis, we explore an effect that reduces
the uncertainty in a measurement (at the cost of increasing uncertainty elsewhere, because
uncertainty can be moved around but never extinguished in quantum mechanics). In the
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beginning of our experiment, the particles have broad wavefunctions. We introduce a lattice
potential, which is an array of wells, like an egg crate. The broad particle wavefunctions
mean that they are in superpositions of being in many wells of the lattice at the same time.
As a result, there is an inherent uncertainty in the number of particles on any given site.
We then change the conditions of the experiment, so that the uncertainty is forbidden. The
superpositions cease to exist and particles become constrained to just one location. In our
work, it is the interactions among particles that reduces the uncertainty in particle number
on a site. To understand the nature of this reduction in uncertainty, imagine a crowd of
people entering a concert hall. If the people can interact with one another, then each chair
will host either zero or one person, because anyone who tried to fit more than one person in
a chair would interact (badly) with one another. When the concert hall fills up, the number
of people in each chair becomes more and more certain (tending to exactly one per seat).
If, instead, the people did not interact and passed through one another like ghosts, then
presumably they would be fine with sharing a chair. The behavior of many particles that
interact can be difficult to model and understand, and this thesis concerns artificial mate-
rials in which we can specify the amount of interaction that particles have and study their
behavior under different conditions.

Another curious prediction of quantum theory is that physically distinct quantum parti-
cles can be entangled, so that two particles may be linked and an operation on one of them
(say, a detection) will affect the other. Albert Einstein, one of the most outspoken critics of
quantum theory, hated this prediction most of all, calling it “spooky action at a distance.”
His mockery was rooted in the belief that the laws that govern the small should be under-
stood in analogy to those that govern the large bodies of our everyday lives. The discomfort
that we experience when trying to apply the familiar concepts of macroscopic physics to the
smallest particles extended even to one of the most creative minds ever to have worked in
the field.

1.3.2 A material: many particles

Using the laws of quantum mechanics we can write down equations to describe the behavior
of a particle, but when there are many particles together, the equations can become rather
complex and difficult to solve. There are roughly as many atoms in a single gram of a material
as there are grains of sand on Earth, and an atom is made up of positively charged nuclei
(ions) and electrons. If we need to consider all possible interactions among the particles in
a material, the problem becomes very complex. Fortunately, the atoms in a material are
arranged in a regular pattern, like an egg crate. We can simplify the problem by modeling
the materials as electrons from each atom moving around in the egg crate-like potential
created by the periodically arranged ions.

The optical and electronic properties of a material arise not from the details of the atoms
that comprise it, but from the way those atoms are arranged. This is comparable to building
castle walls out of legos. In Fig. 1.1 two different types of walls are shown. On the left, a
wall created by directly stacking legos and lining those stacks next to one another. On the
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Figure 1.1: The way legos are arranged determines the properties of the resulting wall (left
panel), and the way atoms are arranged determines properties of the resulting materials
(right panel). Graphite and diamond are both made of carbon atoms, but the difference in
the arrangement of the atoms leads to very different material properties. The arrangement
of atoms in either material is shown schematically above images of the solids.

right, a wall is created by staggering the legos. The walls have different properties. The
staggered wall will be stronger if the castle is under siege.

Crystalline materials are similar to the lego walls, except that the building blocks of
materials are atoms rather than legos. The arrangement of the atoms determine the physical
properties of the material. It will determine whether the material is conducting or insulating,
whether it is transparent or opaque, and whether it gives rise to any nontrivial quantum states
or quasiparticles. As an example, diamond and graphite are both made of carbon atoms,
but it is quite easy to distinguish the two. The differences arise because of the arrangement
of the carbon atoms.

By modeling materials as itinerant electrons on a crystalline structure, we can write
down equations that are more easily solved, because we need to consider only the electrons
on the crystal lattice structure. Unfortunately, this approximation isn’t enough to make
the problems solvable. There are still many electrons, and if the electrons interact with one
another, there will be many terms. A system of 300 electrons would have 2300 terms in the
equation, which is more than the number of particles in the visible universe. To solve this
equation on a computer would require a computer the size of the known universe, and that’s
only a material with 300 particles.

This problem may seem intractable, but it turns out that we can make some very good
approximations in condensed matter physics and understand the properties of many crys-
talline materials. The equations of many quantum particles (electrons) in a material are
hard to solve, so we make many simplifications and approximations and reductions until we
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find problems that we can solve. We make so many simplifications in understanding basic
materials physics that the most remarkable thing is not that occasionally our predictions are
wrong, but that they work at all.

In the simplest techniques to solving this problem, we make an enormous approximation
– that the electrons do not interact with one another at all. They pass each other without
notice, like strangers on the street, staring at their smartphones. They experience the
periodic potential provided by the ions arranged in a crystal structure as though they were
alone in the crystal. Shockingly, this approximation works quite well to predict many of the
physical properties of materials.

The past century has seen many developments and great successes in quantum theory.
We have described the electronic properties of materials, we have understood the mechanisms
behind chemical reactions, and we have used those solutions to build the technology that we
all use every day – in our pockets and on our desks are billions of components that would
not have been created were it not for our understanding of the laws of quantum mechanics.

1.3.3 What is quantum simulation?

Still, there are problems in both materials physics and chemistry for which particle interac-
tions must be more fully considered. Many methods have been developed to take interactions
into account, with varying levels of computational ease or rigor. There are more sophisticated
approximations in which we consider simplified particle interactions, and there are simple
problems that can be fully solved on a supercomputer without approximations. But, as is
always the case when a problem is simplified, there are times when the approximations don’t
hold. We find materials with unexpected behavior, and it always traces back to something
we have neglected.

Sometimes the problems that cannot be solved relates to the interactions among the
particles, which grow too complex. Other times, the challenge related more fundamentally
to the geometry of the underlying lattice. The challenge for physicists is to find another way
to study these problems that cannot be solved on traditional computers. The solution will
be to use quantum particles to understand quantum interactions. The idea is to build an
artificial material out of individual, well-controlled, quantum building blocks.

In this thesis we do exactly that. We create an artificial, well-controlled material in which
we can tune the interparticle interactions with a very simple experimental knob. Motivated
by the challenge of treating systems with strong interactions, we explore a phase transition
that is driven by increasing interactions of lattice-trapped particles. Furthermore, motivated
by the challenge concerning fundamentally complicated lattice geometries, we experimentally
realize one such crystalline structure, that of the two-dimensional kagome lattice.

The first thing that is needed to perform a well-controlled quantum simulation is is a well-
controlled quantum lego. The challenge is that it must be controllable, but still governed
by the laws of quantum mechanics. This requires careful control over the environment.
Those features that make the quantum world so strange – superposition and entanglement –
break down when the particles interact with their environment. Recall when anything in the
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environment interacts with a particle and carries away information about the particle’s state,
it qualifies as an observation and collapse the wavefunction, regardless of whether a human is
there to collect the information. The quantum coherence is lost, and the system will behave
like any classical system. As quantum simulators and computers grow increasingly large,
the likelihood of interactions with environments grow, so that quantum coherence is hard to
maintain.

1.4 Crystal structures in this thesis

In our lab, we engineer lattices of triangular, honeycomb and kagome geometries, which are
represented in Fig. 1.2. Most experiments with ultracold gases in optical lattices have been
performed in primitive lattices (triangular, square and cubic), which have a single site per
unit cell. Recently, the field has branched out to encompass honeycomb and superlattice
geometries, with multiple sites per cell. Our kagome lattice was the first with three sites per
cell. These multi-site per unit cell lattice geometries introduces a new, low-orbital degree of
freedom that can be explored in optical lattices. It also expands on the number and type of
condensed matter systems that can be emulated with ultracold gases.

The honeycomb lattice is the structure of graphene and its electronic band structure has
linear dispersion at the edges of the first Brillouin zone. The effective mass of the charge
carriers in a material is related to the curvature of the band, and the cusp in the band
structure implies that the charge carriers are massless and can flow without friction through
the material. For this reason, graphene a subject of immense theoretical and engineering
interest.

In contrast, the kagome lattice has an energy band that is completely flat, so that there is
no curvature and the charge carriers have infinite mass. This is no good for conduction, but
represents frustration of a many-body system, where there are many available degenerate
states that the gas can occupy (the density of states is very large and the energy of the quan-
tum gas is low). This represents a manifestation of geometric frustration in the orbital degree
of freedom, where no local order is established. Geometric frustration is a pressing topic of
investigation in many-body physics, and material realizations of the kagome lattice have
been elusive. Candidate materials such as SCGO, jarosites, herbertsmithite and volborthite
have all been studied, but they are not ideal, defect-free realizations of the two-dimensional
kagome geometry.

1.5 Simulating materials with ultracold atoms

In our lab we mitigate the decoherence challenge by storing atoms in a chamber from which
we remove nearly all other particles. To remove them, we bake-out the steel vacuum chamber,
raising it to about 150◦ C (300◦ F), while pumping any particles out with a vacuum pump.
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Figure 1.2: (a) Atoms are arranged in regular, periodic structures. The honeycomb, trian-
gular and kagome lattice geometries are shown schematically, with unit cells indicated by
blue parallelograms in each lattice. Every lattice is formed by repeating this unit cell, like
tiles. The honeycomb has two sites in its unit cell, the triangular lattice has just one, and
the kagome lattice has three. (b) The number of sites per unit cell determines the number
of bands in the lattice band structure. Here we show the band structures of the honeycomb
and kagome lattices, where energy is plotted against lattice momentum along a trajectory
that traces through the lattice Brillouin zone. Tick marks indicate the high symmetry points
in the lattice: Γ,M,K,Γ. The dashed line in the honeycomb band structure marks the K
point, where the upper and lower bands meet and form an x. The linear way that the bands
meet results in unique properties of graphene, a material in which carbon atoms are arranged
in a honeycomb structure.

In the end, our vacuum chamber has roughly the same air pressure as the lunar atmosphere.
This way, our atoms are unlikely to interact with anything outside of our control.

To simulate this situation in a controlled environment requires a delocalized wave function
and a periodic potential. We create crystalline trapping potentials for neutral atoms by
interfering laser beams. The resulting lattice spacings are about 1,000 times larger than
those of a real material. To simulate a real material requires that the wavefunction subjected
to this potential is about 1 micron across, which is huge for a quantum state.

In 2015, we celebrated the 20th anniversary of the creation of a quantum state of matter
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with this large spatial wavefunction [8]. The Bose-Einstein condensate (BEC), when sub-
jected to the periodic potential of an optical lattice, acquires the periodicity of the lattice
and is described by the same physics as that which describes electronic wavefunctions of real
materials.

By loading a BEC into an optical lattice, we can learn what sort of optical or electronic
properties that a material with that lattice structure would have. Moreover, these materials
can be dynamically manipulated, because the crystal lattice is created by laser beams that
can be tuned and because the timescales of the atoms in the lattice are much slower than those
of real materials. In the field of optical lattices, we have produced increasingly complicated
crystal lattice structures, and the kagome lattice reported in this thesis represents one such
step forward in the simulation of materials using ultracold atoms in optical lattices.

1.5.1 Lattices of laser light

Yes, light is both a wave and a particle. And also it is neither. Those are just classical
analogies that help us understand. Sometimes one analogy is more helpful than the other,
sometimes the other is more apt. They are both correct, and anything we understand in one
way can also be understood in the other.

To introduce optical lattices, we consider beams of light as described by waves. Imagine
standing at the bank of a lake, like the one shown on the left of Fig. 1.3. There is no wind,
the water is completely still. Pick up a rock and toss it into the lake– the wave radiates
outward. For your next experiment, use two rocks, and throw them some distance apart.
Now there are two waves, radiating outward. Where the waves meet, their behavior seems
peculiar. They interfere. Where the peaks of the waves meet, they add to a wave that is
taller than either individually was, and where a peak meets a trough, they cancel and the
water is the height of the rest of the lake. After the waves have moved through one another,
when you look out, you will notice a moving checkerboard pattern, like an egg crate.

It is also possible, though admittedly a bit contrived, to make a standing wave on the
water, where every point along the wave vibrates with constant amplitude so that the wave
doesn’t appear to be moving but the peaks become troughs and vise versa. In this case,
if you examine the surface of the lake, you’ll find some locations where the surface of the
water undulates up and down. Here, the wave amplitude is large. Nearby, you’ll find other
locations where the surface of the water is, at least locally, still. The water there remains at
a constant height, so that the wave amplitude is locally zero.

When we interfere laser beams, we can create standing waves of light that have stationary
intensity maxima and minima, examples are shown on the right side of Fig. 1.3. Atoms
exposed to a standing wave of light are trapped in either the maximum or minimum intensity
points, depending on the details of the atom and the color of the light. This interference
pattern acts like an egg crate for the atoms.
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Figure 1.3: Waves on the surface of a calm lake expand outward, and interfere where they
cross. Laser beams form an interference pattern where they cross. Two beams will form a
stripe pattern, and three beams from equal angles form a triangular lattice geometry.

1.5.2 Atoms

In order to create a large quantum wavefunction, we cool a cloud of atoms until it forms a
quantum state called a Bose-Einstein condensate. In our lab we create some of the coldest
gases in the universe. We begin with a pure sample of 87Rb. That we use rubidium doesn’t
particularly matter, the physics that we study is universal and many different atoms have
been used in this sort of experiment, but in this lab we use rubidium. Rubidium is solid
at room temperature (300 Kelvin), and we work with a gas, so first we heat the solid in
an oven with a hole in it. The atoms fly out of the hole and we cool them over the course
of a few seconds by strategically hitting them with lasers [9]. In the end, the atoms reach
∼ 100 nanoKelvin. That is, one billion times colder than room temperature, and less than
one millionth of a degree Fahrenheit above absolute zero.

Temperature is the measure of kinetic energy of the particles around us. At these ex-
tremely low temperatures, we have removed so much of the kinetic energy from the atoms
that you might expect that the atoms would be completely still. But they cannot be com-
pletely still, because if something is completely still, we will be able to know exactly where
it is, and that would violate the fundamental uncertainty of quantum mechanics. Kinetic
energy of a particle is typically large, and it’s energy scale dominates when considering the
motion of a particle, but when it is nearly completely removed, the laws of quantum mechan-
ics become increasingly relevant. The wavefunction that describes the atom, the probability
distribution of finding the atom in a given location, is small at room temperature, but as
the temperature decreases, the spatial extent of the wavefunction grows larger. At 100 nK,
the 100,000 atoms that we started with have wavefunctions that completely overlap and fill
the optical bowl that contains them. The atoms are indistinguishable, so that when the
probabilities overlap, they become described by a single wavefunction.
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In our work, we use a dilute gas of bosons, which undergoes a phase transition to a Bose-
Einstein condensate at these low temperatures due to an effect of bosonic particle statistics.
Upon crossing this phase transition, the coherence length of the particles becomes infinite.
The condensate is a few microns across, large enough to see in a child’s microscope. All of
our experiments begin with a condensate. The atoms that make up the condensate can be
approximated as non-interacting, just like a cloud of electrons in a material. We can impose
a periodic potential on the gas, just like the ions in a material. However, because we create
the condensate, we know exactly what it is made of, and because we impose the periodic
potential, we can manipulate it at will. We thus simulate materials in a highly controlled
environment, allowing controlled quantum simulation of materials physics.

1.5.3 Tools

Manipulation

In a real material, the crystalline structure emerges from the balance of forces within a
strongly correlated electronic material. In an optical lattice, it is specified experimentally.
The lattice is created at the interference of laser beams, and the interference pattern can be
dynamically controlled by tuning properties of the lasers.

The depth of the lattice – the height of the barriers between sites – is controlled by
changing the intensity of the lasers. This height will determine the probability that an atom
will tunnel from one site to the next, as well as the interaction energy that it will experience
when it shares a lattice site with another atom. The lattice depth can be changed slowly, so
that the atoms respond adiabatically, or it can be shifted quickly, freezing the motion of the
atoms. It can also be modulated to create momentum-conserving excitations in the lattice
to upper bands [10].

In our work we create an optical superlattice at the overlap of two distinct lattices, which
provides yet another degree of control. The two lattices that comprise the superlattice can
be shifted relative to one another, which allows for the realization of various metastable
states in upper bands of the superlattice [11].

All of these lattice manipulations can be performed on timescales that are either fast or
slow compared to the tunneling time of atoms in the lattice. The most rapid tunneling events
occur at a rate of about 100 tunneling events per second, where laser beam parameters can
typically be tuned at least an order of magnitude more rapidly. This is a huge advantage of
optical lattices relative to real materials, as electron dynamics are typically on the order of
femtoseconds (1015 events per second) and thus very hard to observe with modern techniques.
Given that coherence times of the ∼ 100, 000 identical particle condensate are typically about
a second, this also means that we can have many tunneling events within a coherence time,
which is an impressive feat when compared to other methods of quantum computing.

Finally, we can tune the entropy and temperature of the atomic gas before imposing the
optical lattice, so that we can choose the thermal occupation of each energy band.
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Detection in momentum space

Releasing atoms from optical confinement and allowing them to expand before imaging leads
to a momentum-space representation of the gas. After they expand, atoms are imaged with
a technique called absorption imaging. A laser beam passes through the atoms and onto a
camera. The atoms absorb light from the lasers and cast a shadow onto the camera. The
depth of the absorption indicates the number of atoms that absorbed light from the photons.
An example of an absorption image after atoms are released from a triangular lattice is shown
in Fig. 1.4.

In a bulk gas, without an optical lattice, atoms expand with a speed that is determined
by their energy, as E = 1

2
mv2, where E is the particle energy, m is its mass and v is

the velocity with which it will expand. However, in an optical lattice, atoms are in a
quantum superposition of states that move at several different velocities. The lattice imparts
momentum to the atoms, because the atom wavefunction takes on the periodicity of the
lattice (Bloch’s theorem again). When atoms are released from optical confinement, they
fly out with momentum imparted by the lattice. The exact distribution of the atomic state
in momentum space is determined by the lattice geometry. Conversely, by examining this
pattern, we can infer the lattice potential.

Equivalently, consider a superfluid in an optical lattice potential which remains phase
coherent across the lattice. When the atoms are released, they expand from each node of the
trapping potential. This expansion from an array of point sources leads to an interference
of the matter-waves that results, in the far field, in an image of the atoms in the Fourier
plane. This is similar to x-ray diffraction, in which coherent light is reflected from a material
where the ions locations act as a point source for the reflected x-rays. In this case, it is the
matter-wave that interferes. In this superfluid limit, an image of the atoms in the Fourier
plane also corresponds to the Wannier state of the ground band of the lattice.

kx

0 2π/a-2π/a

ky

2π/a

-2π/a

0

kx

0 2π/a-2π/a

ky

2π/a

-2π/a

0

(b) (c) Momentum space calculation Momentum space data(a) Real space lattice

a

Figure 1.4: Image in momentum space of a stationary Bose-Einstein condensate in an optical
lattice. This corresponds to the ground-state k = 0 Wannier function, and, more generally,
to the correlation function of the atoms in the lattice.
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Figure 1.5: The first Brillouin zone of the triangular optical lattice. This image is taken
by heating a cloud of atoms until it fills the first Brillouin zone, and then mapping lattice
quasimomentum into real momentum before momentum-space imaging.

Another tool provided by optical lattices is called band mapping, an example for a thermal
gas that fills the first energy band of the triangular lattice is shown in 1.5. The atoms in the
lattice potential experience the band structure of that lattice, and by adiabatically ramping
down the optical lattice, we map the band structure of the lattice into a free-particle band
structure, thus mapping quasimomentum into real momentum. We then take a momentum-
space picture, where now we observe the shape of the occupied Brillouin zone.

1.6 Comparing laser-based materials to real materials

There are many advantages of creating artificial materials rather than directly probing real
materials. The first is that the composition of the artificial material is well-understood.
We create artificial materials in an ultrahigh vacuum chamber using techniques of atomic
physics that ensure that the only atoms involved in our simulations are the ones we put in the
simulation. This means that our materials are without defects, which change the properties
of many real materials (though sometimes in interesting ways). The artificial materials are
made at the interference of laser light, so that all lattice sites are exactly spaced, and those
sites are not mobile relative to one another (i.e. there are no phonon modes).

A second advantage is that the length scale of the artificial materials are magnified relative
to a real material. Optical lattice spacings are hundreds of nanometers, which is thousands
of times longer than the few angstrom spacings of a real material. This means that spatial
features can be directly observed. This magnification has another subtle consequence. The
length scale of the lattice sites determine the timescale of dynamics for particles moving on
the lattice. Where in a real material particles move in a lattice on the femtosecond timescale,
dynamics in an optical lattice occur in milliseconds.

A third advantage of these artificial materials is that the Bose-Einstein condensate and the
crystal lattice structure are independent of one another. The experimentalist may introduce,
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modify or extinguish the crystal lattice structure and measure the response of the condensate
to these changes. The lattice-depth is tuned with the intensity of the laser beams and, in
a bichromatic superlattice, the crystalline structure is tuned with the phase of the laser
beams. Because the dynamics of lattice-trapped particles occur on millisecond timescales, the
material properties may be changed either quickly or slowly relative to particle response. This
means that the condensate can be used to probe the lattice geometry, as in the experiment
of chapter 4, or it can be trapped in the lattice like electrons in a real material, as in the
simulation reported in chapter 5.

1.7 This thesis

I joined the lattice experiment (E5, as it’s called in the Stamper-Kurn group) in the fall of
2010, just as Dr. Jennie Guzman and Dr. Gyu-Boong Jo were working on elegant experiments
concerning the formation of domains in a spinor Bose-Einstein condensate [12]. I was coming
from a background in particle physics, and this made it especially exciting to join a lab
with data to analyze. With Jennie’s help I was able to dive right in to analysis. With
the excellent and careful mentorship of Jennie and Gyu-Boong, I quickly learned both the
experimental techniques and the theoretical underpinnings of atomic physics and quantum
simulation. Jennie was an expert experimentalist, having built the entire apparatus. Gyu-
Boong had joined recently ready to finish up work with spinors to push on the construction of
a bichromatic optical kagome lattice. Together, the three of us constructed the first version
of the optical lattice within just a few months, the publication reporting this achievement
is included in appendix A. With this lattice we learned a lot about the construction and
operation of a bichromatic optical lattice, discussed in chapter 2 and chapter 3. Jennie and
Gyu-Boong left in the fall of 2012, just after we were joined by fellow graduate student
Thomas (Tom) Barter.

Tom and I recovered the experiment after the long series of events that led up to the
flood. We completely rebuilt the optical lattice and this new lattice is the subject of this
dissertation. Among his many contributions, Tom took charge of recovering the BEC, con-
structed the 532-nm lattice, designed and implemented the phase stabilization system for the
bichromatic lattice, and performed data analysis. We were joined by Vincent Klinkhamer
for one year in 2013, who worked hard and had a positive attitude in the face of many big
tasks. He designed, created and tested the coils that produce magnetic bias fields and make
our work possible. Soon after, we were joined by fellow Berkeley grad student Tsz-Him
(Zephy) Leung, who was an excellent addition to our group. Zephy tested and implemented
all of the intensity stabilization circuits in the lab, and worked tirelessly every time we took
data for our experiments. Soon after Zephy joined the lab, we finished construction of the
1064-nm honeycomb lattice and Tom, Zephy and I took diffraction data that showed a large
momentum-space asymmetry and is discussed in chapter 4. At that time we were joined by
another one-year master student, Severin Daiss, who contributed to our understanding of
that asymmetric diffraction data. After Severin’s departure, we began taking data for the



CHAPTER 1. INTRODUCTION 16

final work in this thesis, the superfluid to Mott insulator transition discussed in chapter 5.
We were joined by a post-doc Dr. Masayuki Okano, who performed calculations concerning
the ground state of lattice-trapped gases and who joined us in the many days of alignment
and data taking required for the manuscript of appendix C. Finally, we were joined by an-
other one-year student Luca Bayha, who had an excellent sense for the physics that we were
studying and contributed to many of our discussions of the behavior of particles in lattices
under increasing interactions.

This dissertation discusses the design, construction, testing and use of a quantum simu-
lator of materials in the triangular, honeycomb and kagome crystal lattice structures. The
general technique for creating a bichromatic optical lattice in the triangular, honeycomb and
kagome geometries is described in chapter 2. Important calculations of the properties of
lattice-trapped gases and the technique for their calibrations are also discussed. We con-
structed a lattice that is easy to align and exceptionally stable, and chapter 3 discusses many
technical details concerning the construction, testing and use of the optical lattice.

The work in this dissertation led to two manuscripts, and in this dissertation we aim to
supplement but not repeat the findings in those manuscripts. In the first, included in ap-
pendix B, we developed a sensitive matter-wave diffraction technique to measure precisely an
optical lattice configuration, in analogy to x-ray diffraction from solids. Tuning the interac-
tion time between light and atoms led to strong enhancement of the effects of slight potential
asymmetries. This effect was explained theoretically through time-dependent perturbation
treatment of matter-wave diffraction and also time-independent perturbative treatment of
lattice band structure in the presence of small inversion-symmetry breaking term. The dis-
cussion in chapter 4 provides more detail into the nature of the asymmetric perturbation,
and also describes in more detail the origin of the oscillatory asymmetry signal.

Finally, chapter 5 discusses details concerning a test of the mean-field treatment of the
Bose-Hubbard model that is independent of the temperature and trapping frequency of the
lattice-trapped gas. This test goes beyond previous experimental studies that attempt to
identify critical points in a phase diagram, and tests instead the predictions along an entire
line of the phase diagram. The test required the development of a new method of comparing
optical lattice experiments, and relied on the tunable geometry of our bichromatic optical
lattice. The manuscript is currently in review and is included in appendix C.
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Chapter 2

Triangular, Honeycomb and Kagome
Lattices

This chapter discusses the formation of optical lattices of the triangular, honeycomb and
kagome geometries. The technique was first realized and reported in the following publication
[13]:

• G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-
Kurn, “Ultracold Atoms in a Tunable Optical Kagome Lattice,” Phys. Rev. Lett. 108,
045305 (2012). Included in appendix A.

The work in this dissertation begins with the creation of artificial crystalline lattice struc-
tures for neutral atoms using coherent beams of light. The beams interfere with one another,
giving rise to periodically varying patterns of beam intensity and polarization. Because neu-
tral atoms experience an optical dipole force that depends on intensity and polarization, the
periodically varying intensity structures act as a periodically varying potential energy land-
scape – a crystal lattice structure – with a periodicity that is determined by the wavevector
of the beams. Neutral atoms may be prepared in quantum states where their centers of
mass are delocalized over many sites of an optical lattice so that, together, the atoms and
optical lattice emulate a solid-state material. Bloch’s theorem is applied, as in solid-state,
to determine energy eigenstates and band structure of atoms within such lattices.

This chapter describes the crystal lattices that we create in the lab. We make an optical
superlattice, formed at the overlap of two optical lattices that are created by laser beams
of different wavelength. The resulting pattern is complex – there are multiple sites per unit
cell in the superlattice – and tunable – the lattice structure depends on the overlap of the
two composite lattices. I start by describing the formation of the two lattices of intensity
and then explain how they give rise to lattices of potential energy in which atoms may be
trapped. Although the intensity lattices are patterns of both intensity and polarization, I
neglect the effect of beam polarization in this chapter. This is valid in the potential lattices
formed at intensity minima, but the subject is revisited in chapter 4 where we study a lattice
formed at intensity maxima.
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Figure 2.1: Method for creating triangular lattices of intensity minima. (a) Three coherent
beams of wavelength λ and in-plane polarization are incident from equal angles at the location
of the atoms. For each beam i, the momentum vectors, ki, and polarization vectors, εi, are
indicated. (b) Atoms scattering from one beam into another result in momentum transfer
to the reciprocal-space lattice vectors, gi, with |gi| =

√
3|ki|. The first Brillouin zone is

indicated in pink. (c) The triangular real space lattice with basis vectors ai is derived from
these momentum-space vectors, where |gi| = 2π/|ai|. A unit cell indicated in blue. (d) The
intensity lattice when λ = 532 nm has lattice spacing a = 355 nm. (e) A lattice created with
light at twice the wavelength produces a lattice with twice the lattice spacing. A unit cell
for the 1064-nm lattice is indicated and encompasses four sites of the 532-nm lattice unit
cell.
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2.1 Triangular and honeycomb optical lattices

2.1.1 Intensity lattices

The tunable optical superlattice used in this work is comprised of two triangular lattices
of intensity minima that are formed using the same technique, illustrated in Fig. 2.1(a),
with light of different wavelengths. Each lattice is derived from a single laser, split into
three beams that propagate and have linear polarization in the horizontal plane. They pass
through optics to control intensity and phase and finally intersect, incident from equal angles,
at the location of the atoms. To calculate the resulting interference pattern, we write the
momentum vectors, ki, and polarization vectors, εi, for each beam, which are shown in Fig.
2.1(a). We define the scalar k = 2π/λ:

k1 = k
(√

3
2
,−1

2
, 0
)

ε1 =
(
−1

2
,−
√

3
2
, 0
)

k2 = k (0, 1, 0) ε2 = (1, 0, 0)

k3 = k
(
−
√

3
2
,−1

2
, 0
)

ε3 =
(
−1

2
,
√

3
2
, 0
) (2.1)

The intensity pattern is determined by the time-averaged amplitude squared of the sum
of electric fields from each beam:

I(r) ∝
∫ 2π

ω

0

ω

2π
|
∑

α

Eα(r)|2dt (2.2)

=

∫ 2π
ω

0

ω

2π
|E0 (ε1 cos [k1 · r− ωt] + ε2 cos [k2 · r− ωt] + ε3 cos [k3 · r− ωt])|2dt

=
1

2
E2

0 (3− cos [g1 · r]− cos [g2 · r]− cos [(g1 − g2) · r])

(2.3)

where E0 is the electric field amplitude of a single beam and in the last line I have used the
definition of the reciprocal lattice vectors, indicated in Fig. 2.1(b),

g1 = k2 − k1 (2.4)

g2 = k2 − k3, (2.5)

which correspond to the stimulated absorption and emission of a photon by an atom between
lattice beams. The reciprocal space basis vectors gi and corresponding real space basis
vectors ai are shown in Figs. 2.1(b) and 2.1(c). The length of the momentum-space vectors
is given by |gi| =

√
3|ki| = 2π/|ai|, so that gi,532 = 2gi,1064.
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From the reciprocal lattice vectors we generate the first Brillouin zone, indicated in pink
in Fig. 2.1(b), by bisecting each reciprocal lattice vector. The high symmetry points in the
first Brillouin zone (not labeled) are at lattice quasimomenta q ∈ {Γ,M,K}, which are
defined

Γ =

(
0
0

)
M =

|g|
2

(
1
0

)
K =

|g|
2

(
1

tan (π/6)

)

The intensity lattice of (2.3) is a triangular lattice of intensity minima with lattice spac-
ing a = |ai|, given by Eq. (2.6). The peak-to-peak height of the interference pattern is
proportional to 9/4|E0|2. If one of the three beams is extinguished, the resulting pattern
is a one-dimensional lattice with a peak-to-peak depth proportional to |E0|2. This assumes
that all beams are equal intensity where the lattice is formed. By adding a third beam of
equal intensity, the lattice depth increases by a factor of 9/4. I highlight this comparison be-
cause experiments measuring the response of cold atoms to the imposition of three-beam and
two-beam lattices were performed for the purpose of calibrating the lattice depth precisely.

a = λ/(2 sin2(π/3)) (2.6)

Figures 2.1(d) and 2.1(e) show the calculated intensity pattern for light at two commen-
surate wavelengths, λ = 532 nm and λ = 1064 nm, and identifies the lattice spacing between
sites of intensity minima as a = 355 nm and 2a, respectively. A unit cell of the 1064-nm
lattice contains four sites of the 532-nm lattice, labeled A – D in the figure.

The calculations in Figs. 2.1(d) and 2.1(e) also show that the points of maximum inten-
sity form a honeycomb lattice around each minimum intensity point. The height of these
honeycomb-lattice peaks accounts for just 1/9 of the total peak-to-peak height of the lattice,
and the remaining 8/9 of this height is accounted for by the triangular-lattice troughs.

2.1.2 Potential energy lattices

The potential landscape V (r) of either lattice has the same structure as the intensity land-
scapes I(r) in Eq. (2.3), but the pattern is normalized to V0.

V (r) = V0

(
2

3
− 2

9
(cos [g1 · r] + cos [g2 · r] + cos [(g1 − g2) · r])

)
(2.7)

The sign of V0 depends on the detuning of the light from atomic resonance. The principal
atomic resonances of 87Rb atoms are at wavelengths 780 and 795 nm, so that the 532-nm
lattice is blue-detuned and the 1064-nm lattice is red-detuned from atomic resonance. The
potentials are inverted for the wavelengths of light used in this work. The 532-nm lattice
forms a lattice potential with wells in the triangular geometry and peaks in the honeycomb
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geometry. The 1064-nm lattice forms a lattice potential with peaks in the triangular geometry
and wells in the honeycomb geometry.

V0 > 0 when λ = 532 nm (2.8)

V0 < 0 when λ = 1064 nm (2.9)

In the lab, we refer to the lattice depth as Vλ := |V0|, so that the depth of the 532-nm lattice
is V532 = V0 and of the 1064-nm lattice is V1064 = −V0.

Recoil energies

It is useful to define the lattice recoil energy, Er,lattice, to parameterize the depth of the
potential energy lattice. I am going to be explicit about definitions of recoil energy, because
our conventions are not always consistent. A recoil energy can refer to a single-photon recoil
energy, or to the lattice recoil energy.

Er,light =
~2

2mRb

(
2π

λlight

)2

(2.10)

Er,lattice =
~2

2mRb

(π
a

)2

(2.11)

(2.12)

where λlight is the wavelength with which the lattice is created, a is the spacing of the lattice,
mRb is the rubidium mass and ~ is the reduced Planck constant. These recoil energy terms
are equal in lattices formed by retroreflected beams, but differ in the triangular lattices of
our experiment. In our triangular lattice geometries, the relationship between spacing and
wavelength is in Eq. (2.6), so that the recoil energies are related as Er,lattice = 9/16×Er,light.

Our notation in the lab can be confusing because we refer to the triangular lattices
as the “532-nm lattice” and the “1064-nm lattice”, in reference to the wavelength of light
with which they are created, despite the fact that the lattice spacings a are given by 2a =
λlight/ sin2(π/3). We use the notation Er,532 := Er,lattice.

Er,532/h = 4.5 kHz the lattice recoil energy for the 532-nm triangular lattice (2.13)

Er,λ532/h = 8 kHz the photon recoil energy for the 532-nm light (2.14)

Er,1064/h = 1.1 kHz the lattice recoil energy for the 1064-nm honeycomb lattice (2.15)

Er,λ1064/h = 2 kHz the photon recoil energy for the 1064-nm light (2.16)

where h is Planck’s constant.
In the lab we also use light at λ = 1064 nm to form an additional lattice that is orthogonal
to the plane of the triangular lattices. This vertical lattice is formed by retroreflecting the
beam, so that Er,⊥ = Er,λ1064 .
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2.2 Band structure and Bloch states

We first consider the states of atoms in either triangular lattice of intensity minima. To
solve for the band structure and states in each two-dimensional lattice, we discretize the
Schrödinger equation in reciprocal space. In a periodic potential, we have

(
p2

2m
+ V (r)

)
ψ(N)
q (r) = E(N)

q ψ(N)
q (r) (2.17)

where V (r) = V (r + a), the band index (N) labels the solutions, and the vector q = (qx, qy)
is within the lattice Brillouin zone.

Bloch’s theorem says that (2.17) is solved by wavefunctions that are the product of a
plane wave and a periodic function with the same periodicity as the potential:

ψ(N)
q (r) = eiq·r/~ · u(N)

q (r) (2.18)

u(N)
q (r) = u(N)

q (r + a) (2.19)

where u
(N)
q (r) are the Bloch wavefunctions.

Inserting these solutions functions into the Schrodinger equation gives an equation for
the Bloch functions,

(
1

2m
(p + q)2 + V (r)

)
u(N)
q (r) = E(N)

q u(N)
q (r) (2.20)

Both the potential V (r) and the functions u(r) can be written as discrete Fourier sums:

V (r) =
∑

j,l

Vj,le
i(jg1+lg2)·r (2.21)

u(N)
q (r) =

∑

m,n

c(N)
q,m,ne

i(mg1+ng2)·r (2.22)

Expanding cosine terms of Eq. (2.7) gives

V (r) = V0


2

3
+

1

9

∑

(j,l)∈J

ei(jg1+lg2)·r


 (2.23)

where V0 depends on the lattice depth and beam detuning, as in Eq. (2.9), j and l are
integers and we define the set J = {(0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (−1,−1)}.

Note that another way to understand and derive the potential is to consider the potential
that comes from the second order process where an atom absorbs light from one beam and
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emits into the other beam. The terms of the expression (2.23) correspond to the absorption
and emission involving each possible pair of lattice beams j and l. The first term, 2/3, comes
from absorption from and re-emission back into each beam, i.e. where j = l, and the sum
is over all pairs of beams. For example, absorbing a photon from beam 2 and emitting a
photon into beam 1 results in a momentum transfer g1 = k2 − k1, this term corresponds to
j = 1, l = 0.

We write the potential term of the Hamiltonian:

V (r)u(N)
q (r) =

2V0

3
− V0

9

∑

{j,l}εJ

ei(jg1+lg2)·r
∑

m,n

c(N)
q,m,ne

i(mg1+ng2)·r (2.24)

=
2V0

3
− V0

9

∑

m,n,{j,l}εJ

c(N)
q,m,ne

i[(m+j)g1+(n+l)g2]·r

The kinetic term of the Hamiltonian:

1

2m
(p + q) (p + q)u(N)

q (r) =
~2k2

2m

∑

m,n

|(mg̃1 + ng̃2) + q|2c(N)
q,m,ne

i(mg1+ng2)·r (2.25)

where I define g̃i = gi/k, to pull out the scalar k = 2π/λlight. The kinetic energy prefactor
is thus the single-photon recoil energy, Er,λlight , defined in Eq. (2.10).

Now the Schrödinger equation is

∑

m′n′

E(N)
q cq,m′,n′e

i(m′g1+n′g2) = V0


2

3
− 1

9

∑

m,n,{j,l}∈J

c(N)
q,m,ne

i[(m+j)g1+(n+l)g2]·r


 (2.26)

+
~2k2

2m

(∑

m,n

|(mg̃1 + ng̃2) + q|2c(N)
q,m,ne

i(mg1+ng2)·r

)
(2.27)

(2.28)

which has solutions

E(N)
q c

(N)
q,m′,n′ =

∑

m′,n′

H(m,n),(m′,n′) · c(N)
q,m′,n′ (2.29)

where

H(m,n),(m′,n′) =





2V0
3

+ ~2k2
2m
|(mg̃1 + ng̃2) + q|2 for m = m′, n = n′

−V0
9

for m′ = m+ j, n′ = n+ l, and j, l ∈ J
0 otherwise
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For a given V0, H is an infinite square matrix, where each entry represents a point on
the reciprocal lattice, k ∈ mg1 + ng2, and the vector q spans the first Brillouin zone. To
diagonalize the matrix at a given point q within the Brillouin zone, we truncate the matrix
between (m,n) = (−M,−M) and (m,n) = (M,M), and thus consider wavefunctions with
momenta within this bound. By choosing sufficiently large (M,M), we find an accurate

representation of low-energy states, with eigenenergy E
(N)
q and eigenvector u

(N)
q .

Consider the case where M = 5. Here, the number of points along each axis in discretized
reciprocal space is 11, since an atom at q = (0, 0) may scatter out to +5g1 and −5g1). The
truncated Hamiltonian is an 112 × 112 square matrix. We diagonalize it at q = Γ = (0, 0)

and find 112 eigenenergies E
(N)
Γ . The ground state energy E

(1)
Γ is the lowest of these energies,

and the corresponding Bloch function u
(1)
Γ is a normalized vector in reciprocal states with a

complex number, cm,n, at each of the 112 points k ∈ mg1 + ng2. The amplitude of each of
these complex numbers indicates the probability that atoms will be detected at that point
in momentum space. In the case of low-energy states, the amplitude will be largest at low
momenta. Higher energy states have larger amplitudes at larger momenta. Very high energy
states show nonzero amplitude at momenta near the cutoff momenta k = Mg1 +Mg2, and
their eigenenergies and Bloch functions will not be accurately calculated with this truncated
matrix.

Up until now, our treatment applies to both the triangular lattice, formed by light at
λ = 532 nm and the honeycomb lattice, formed by light at λ = 1064 nm. The honeycomb
lattice has an enlarged unit cell and thus reduced Brillouin zone relative to the 532-nm
triangular lattice (2gi,1064 = gi,532).

Figure 2.2 shows the result of a calculation for the 532-nm triangular lattice using this
112 × 112 Hamiltonian. In Fig. 2.2(a) the band structure is calculated for a lattice of depth
V532 = h × 4.5 kHz = 1Er,532. Here, we parameterize the lattice depth by the lattice recoil
energy of Eq. (2.13). To plot this band structure, we diagonalize the matrix for each point
q along a slice through points of high symmetry in the Brillouin zone – Γ,M,K,Γ – and
plot the four lowest energy solutions, E

(1)
q through E

(4)
q . At this shallow lattice depth,

the band structure is the free-particle dispersion on the triangular lattice Brillouin zone,
E(q) = ~2q2/(2m).

The same calculation is repeated for a lattice that is 10 recoil energies deep, with V0 =
V532 = h × 45 kHz = 10Er,532, and the band structure is plotted in Fig. 2.2(b). In this
deeper triangular lattice, the band structure deviates from the free-particle dispersion. The
energy gap between the ground and first excited energy bands increases as the lattice depth
increases.

Another interesting feature of Fig. 2.2(b) is that the ground band has less curvature
compared to the ground band of the shallower lattice. If we relate the band structure in Fig.
2.2(b) to a free-particle dispersion, this reduction in curvature can be accounted for with an
effective mass that is larger than the true particle mass, m∗ > m.
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Figure 2.2: The band structure of the triangular lattice for lattice depths of 1 Er,532 (a) and
10 Er,532 (b). The inset shows the Brillouin zone as a blue solid hexagon, with a dashed
line through the points of high symmetry. For reference, a yellow dashed line indicates the
reduced Brillouin zone of the 1064-nm lattice. (c) A normal gas of atoms at T ∼ 1.4 µK fill
the lowest Brillouin zone of the triangular lattice shown in (b). A band-mapping procedure
maps quasimomentum q to momentum k, and an absorption image after time of flight
shows a momentum-space representation of the gas filling the lowest band. (d) A stationary,
lattice-trapped Bose-Einstein condensate at T ∼ 0.1 µK occupies only the q = Γ point of
the lowest energy band of the lattice. An absorption image after time of flight shows a
momentum-space representation of the gas. The density distribution has peaks at points
m,n with population determined by the total atom number and the probability |cΓ,m,n|2.
The calculated Bloch function of a single atom is shown next to the image of the condensate
loaded into the optical lattice, where spot size indicates the amplitude of the Bloch function
|cΓ,m,n|.

E(q) = ~2q2/(2m∗) (2.30)

Because there is a large band gap in the deeper lattice, we can load a “hot” cloud of atoms,
with thermal energy kBT/h ∼ 30 kHz, which corresponds to a temperature T = 1.4µK. This
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normal gas fills the first energy band. We then perform a band mapping measurement
in which quasimomentum q is converted to real momentum k and use momentum-space
imaging [14] to get a direct image of the first Brillouin zone of the triangular lattice, shown
in Fig. 2.2(c).

Alternatively, we load the lattice with a stationary Bose-Einstein condensate, which
occupies only the q = Γ point of the first band. Figure 2.2(d) shows the calculated Bloch

wavefunction u
(1)
Γ , where the size of each point on the k-space grid k ∈ mg1 +ng2 represents

the amplitude |cq,m,n|. Also shown is the image in momentum-space of the condensate
wavefunction after it is loaded into the optical lattice. The likeness of these two images
confirms that loading atoms into the lattice primarily puts atoms in the state u

(1)
Γ .

Following the same procedure for the 1064-nm honeycomb lattice, with −V0 = V1064 =
h×25 kHz ∼ 23 Er,1064, where we parameterize the lattice depth by the lattice recoil energy
of Eq. (2.15). The band structure calculation results in the well-known band structure of the
graphene lattice shown in Fig. 2.3(a), where again we slice through each of the symmetry
points of the Brillouin zone. The first and second energy bands have a cusp at the K-point,
which gives rise to the novel electronic properties of graphene, in which the charge carriers
have zero effective mass.

To understand this effective mass, we generalize the concept presented by Eq. (2.30) and
define the inertial effective mass tensor in in the two-dimensional Brillouin zone as

[M−1
eff ]i,j =

1

~2

∂2E

∂qi∂qj
, (2.31)

so that the effective mass of a particle at a point q within a band is related to the inverse
of the curvature of the band at that point. At the K−point of the honeycomb lattice, the
curvature of the lower band is infinite, so the effective mass of particles at the K-point is
zero.

2.3 Bichromatic optical superlattice

This dissertation focuses on the more complex superlattices that result from combining
the 532-nm and 1064-nm lattices, shown in Fig. 2.4. Because the triangular lattices of
intensity minima are formed with commensurate wavelengths, their overlap results in a
periodic superlattice of intensity with the same unit cell as that of the lattice formed by
light with λ = 1064 nm. The geometry of the superlattice depends on the relative phase of
the two patterns, which is controlled by introducing a phase shift along the reciprocal lattice
basis vectors, g1 and g2.

The upper row of Fig. 2.4 shows the overlap of the two optical lattices in three configu-
rations of the bichromatic lattice.

Recall that in either lattice of intensity, the peaks of the honeycomb geometry account for
just 1/9 of the total lattice depth, and the remaining 8/9 of of the potential is accounted for
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Figure 2.3: (a)The band structure of the honeycomb lattice with a lattice depth V1064 =
h × 25 kHz = 23 Er,1064, where the last term is parameterized in units of lattice recoil
energy. (b) The Brillouin zone of the 1064-nm lattice is shown as a solid yellow hexagon, with
symmetry points indicated. For reference, a blue dashed line indicates the larger Brillouin
zone of the 532-nm lattice. (b) The calculated ground state of a condensate in this lattice
at q = Γ.

by the triangular-lattice wells. For this reason, it is possible to overlap the potential lattices
using optical powers for which the prominent effect of each lattice is from its triangular
lattice of intensity minima. The 532-nm lattice sites form a lattice of potential energy wells
in the triangular pattern of Fig. 2.1(d), and the primary effect of the 1064-nm lattice is to
lift the degeneracy of the four site unit cell, thereby introducing an energy offset VA,B,C,D
at the points of intensity minima. The result is the exclusion of one or more of the sites
within a unit cell, so that particles may tunnel to the low-lying sites but the high-energy
sites are forbidden or disfavored. In the kagome configuration, the D-site is raised by energy
∆V = 8/9V1064.

The superlattice potential is the sum of the potentials from each triangular lattice of
intensity minima. The natural choice of basis vector for the superlattice is that of the
enlarged unit cell of the 1064-nm lattice, since k532 = 2k1064. (The requirement on the
precision of this ratio is discussed in chapter 3). We define the vectors Gi := gi|λ=1064, where
the capital indicates we have evaluated gi for the 1064-nm light, and note that absorption
and emission of a photon from the 1064-nm lattice beams will lead to momentum transfer
Gi, while absorption and emission from the 532-nm beams will lead to momentum transfer
2Gi.

We include a phase by which one of the lattices may be shifted relative to the other. In
the lab, we shift the lattices along the reciprocal lattice G1 and G2. Although a phase could
be included on either or both lattices, the relevant quantity is a relative phase shift between
the two lattices, so we include phase shifts only on the 1064-nm lattice, with phase φ12 along
G1 and φ23 along G2. The expression for the potential landscape of the bichromatic lattice
is written in Eq. (2.32).
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Figure 2.4: The optical superlattices are created by overlapping the lattices formed by
light at wavelengths 532 nm and 1064 nm. Shifts of the relative phase between the two
lattices produce different superlattice geometries: (a) Kagome lattice, (b) the decorated
one-dimensional stripe lattice and (c) the decorated triangular lattice. The potential wells
are at the sites of the 532-nm triangular lattice, and the 1064-nm lattice raises the energy
somewhere in the unit cell by energy ∆V = 8/9 × V1064. Lattices in (b) and (c) are called
‘decorated’ lattices because tunneling is mediated by sites that are raised in energy.

V (r) = V532

(
2

3
− 2

9
(cos [2G1 · r+] + cos [2G2 · r] + cos [(2G1 − 2G2) · r])

)

− V1064

(
2

3
− 2

9
(cos [G1 · r + φ12] + cos [G2 · r + φ23] + cos [(G1 −G2) · r + φ12 − φ23])

)

(2.32)

where the capitalized Gi represents the reciprocal lattice vector, gi, for the 1064-nm lattice,
with k1064 = 2π/λ1064, and V532 and V1064 are the depths of the potentials and we have used
the relation Vλ = |V0, λ|.

Note again that this potential could alternatively be derived by considering diffraction
into various orders, with atoms picking up appropriate phases from beams 1 and 3 as they
scatter with 1064-nm lattice beam photons (beam 2 acts as a reference, with no additional
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phase). Here we have defined the phase of beam 1 relative to beam 2 as φ12 and the phase
of beam 3 relative to beam 2 as φ23.

2.3.1 Band structure of the kagome lattice

The numerical solution for band structure and eigenstates of the superlattice follows the same
basic prescription as in section 2.2. Just as before, the potential of Eq. (2.32) is written in
exponential form to solve for the band structure by expanding the cosine terms. The kinetic
term of the kagome lattice Hamiltonian is unchanged from the honeycomb lattice case; it is
parameterized by the 1064-nm photon recoil energy, Er,λ1064/h = 2 kHz (2.16).

Figure 2.5 shows the band structures for the bichromatic lattice in the kagome con-
figuration, where φ12 = φ23 = 0 and the high-energy site of the 1064-nm lattice overlaps
precisely with site D of the 532-nm lattice, so that the potential energy at site D is raised
by ∆V = 8/9 × V1064. The band structures are shown for V532/h = 45 kHz and a range of
increasing V1064. When V1064 = 0, the lattice is the 532-nm triangular lattice, where the four
bands shown represent the first band of the 532-nm triangular lattice (blue hexagon in the
figure), folded into the reduced Brillouin zone of the 1064-nm lattice.

With increasing V1064, the lattice changes from the 532-nm triangular lattice into the
kagome lattice, with the fourth band lifted in energy as the unit cell becomes the three-site
unit cell of the kagome lattice. The two lowest energy levels of the kagome lattice are similar
to those of the honeycomb lattice. The curvature of these bands at the K-point is again
very high (though it may not be infinite), so particles there will have a (nearly) zero effective
mass (2.31) at the K point within the Brillouin zone.

The third energy level is flat across all momenta. Particles in this dispersionless band
will have an infinite effective mass. This can be understood in the simple picture of effective
mass of Eq. (2.30), where the curvature of the free-particle dispersion at q = Γ is reduced by
introducing an increased effective mass. A more complete picture is evident in the effective
mass tensor Eq. (2.31), which is zero for all points in the Brillouin zone.

2.3.2 Ground states of the bichromatic lattices

The superlattice geometries of high symmetry are illustrated in Fig. 2.4. The Hamiltonian
is diagonalized for each of these geometries and the ground state Bloch functions at q = Γ
are shown in Fig. 2.6.

When atoms are loaded into a bichromatic optical lattice, the relative phases of the two
constituent lattices is random, and we analyze the time-of-flight patterns of a condensate
loaded into the lattice to determine their relative phase. chapter 3 describes the process by
which we tune and stabilize the relative phase of the lattices. We find that, once we create
a bichromatic lattice with the desired phase, we are able to stabilize the phase actively and
drift over a few hours is negligible.
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Figure 2.5: Band structure as the superlattice geometry is tuned from 532-nm triangular
lattice to the kagome lattice. The lattice depth of the 532-nm light is held constant at
V532/h = 40 kHz as the depth of the 1064-nm lattice is increased. The first four bands of
the kagome lattice are indicated in the Brillouin zone schematic. The largest Brillouin zone,
indicated in blue, is that of the 532-nm triangular lattice. It is split into four subbands
in the basis of the 1064-nm lattice, Gi. The subbands are distinguished by color. When
V1064/h = 0 kHz, the lowest band of the 532-nm triangular lattice is folded into the reduced
Brillouin zone of the four-site basis. As V1064 increases and the D-site of the kagome lattice
is removed, the fourth energy band is separated from the lower three bands, which tend
towards the tight-binding band structure of the kagome lattice, with a dispersionless third
band.

2.4 Signatures of lattice geometry in k-space data

2.4.1 Signature of kagome lattice geometry

When we create the bichromatic lattice, we determine its geometry by examining the diffrac-
tion data of Fig. 2.6. The similarity between the kagome and decorated triangular lattices
makes this challenging, but careful analysis of the relative weight of the zero- first- and
second-order peaks shows a clear signature of the kagome lattice.

To understand the signature, consider a delocalized, coherent superfluid diffracting from
a real-space lattice. Each lattice site can be treated as a point-source for an expanding
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V532 / h = 40 kHz    V1064 / h = 13 kHz

(a) Kagome lattice (b) Decorated stripe lattice (c) Decorated triangular lattice 

Figure 2.6: The bichromatic lattice geometries. For each, a unit cell of lattices of intensity
(upper left) and potential (upper right) are shown, as are the calculated (lower left) and
experimentally detected (lower right) ground-state wavefunctions at q = Γ. The intensity
lattice unit cell has open circles indicating the intensity minima of the 532-nm lattice and
open stars indicating the intensity minima of the 1064-nm lattice. In the potential lattice
unit cells, red represents potential minima and green represents potential maxima. The
Bloch functions are plotted against against momentum kx, and ky. (a) The kagome lattice
geometry is formed when the intensity minimum of the 1064-nm lattice coincides with one
of the intensity minima of the 532-nm lattice. The resulting potential has three degenerate
sites in the unit cell, and one lifted by an energy ∆V . (b) The decorated stripe lattice
geometry is formed when the 1064-nm lattice intensity minimum is equidistant from just
two of the sites in the unit cell. (c). The decorated triangular lattice is formed when the
1064-nm lattice intensity minimum is equidistant from three of the sites in the 532-nm unit
cell. All three are lifted in energy, and tunneling between low energy sites is mediated by
these high-energy sites.

matter-wave, and we will analyze the population of atoms that is diffracted to the zero-
first- and second-order diffraction peaks. The concept is illustrated in Fig. 2.7.

Consider the diffraction of atoms from the kagome lattice to the first-order peak along
the basis vector, G2, shown in Fig. 2.7(a). The vector G2 is orthogonal to the real-space
vector connecting sites A and D. Sites A and D are equidistant from the point of first-order
diffraction, so that matter-waves expanding from these real-space lattice sites to G2 will have
the same phase at the location of first-order diffraction. The same is true for sites B and C.
The only relative phase, then, for interference at G2 is given by k ·(rB−rA) = G2 ·a2/2 = π.
Similarly, the second order diffraction peak, at 2G2 will have phase 2G2 · a2 = 2π. This
argument holds for scattering along all six directions: ±G1,±G2, and ±G3, where we have
defined the vector G3 = G2 −G1 for convenience.

Consider the real-space unit cell wavefunction, ψ. It is a sum of the Wannier functions
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Figure 2.7: Determining unit cell population by superfluid diffraction images.

w(r− sα) at each site within the unit cell α ∈ {A,B,C,D}.

ψ =
∑

α

ψαwα(r− sα) (2.33)

where |wα(r)|2 = 1 and |ψ|2 = 1. If we assume a Gaussian Wannier state that is cylindri-
cally symmetric, then wα(r) = w, with Fourier components at momentum k of w̃k and the
population of atoms diffracted to momentum k is given by Eq. (2.35).

Pk = |w̃k|2|ψAeik·rA + ψBe
ik·rB + ψCe

ik·rC + ψDe
ik·rD |2 (2.34)

(2.35)

where w̃k have the relation w̃k = w̃0e
−k2/k2

0 , so that the first three peaks are

P0 = |w̃0|2|ψA + ψB + ψC + ψD|2 (2.36)

PGi
= |w̃Gi

|2|ψA − ψB − ψC + ψD|2 (2.37)

P2Gi
= |w̃2Gi

|2|ψA + ψB + ψC + ψD|2 (2.38)
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To identify the kagome lattice by its momentum-space signature, consider normalizing
the ratio of populations in the first- and second- order peaks by their Wannier weights w̃.

P̃i =
PGi

+ P−Gi

2P0

|w̃0|2
|w̃Gi
|2 =

|ψA − ψB − ψC + ψD|2∑
α|ψα|2

(2.39)

=
PGi

+ P−Gi

2P0

( |w̃0|2
|w̃2Gi

|2
)1/4

(2.40)

=
PGi

+ P−Gi

2P0

(
2P0

P2Gi
+ P−2Gi

)1/4

(2.41)

Equation (2.41) allows for identification of the real-space wavefunction by measurements
of the momentum-space wavefunction. In it, we have removed the dependence on the Wan-
nier weights w̃ by recognizing the relation between ratios of first- and second- order Wannier
weights, |w̃0/w̃G1 |2 = |w̃0/w̃G2|2×1/4. The second-order Wannier weight ratio is equivalent
to the ratio of populations in those peaks, which is a measurable quantity.

Consider the value of P̃i in the 532-nm triangular lattice, where we continue to use the
four-site unit cell. Here, all ψα are equal and P̃ = 0. This is what we expect, since Gi are
the basis vectors of the reduced Brillouin zone, and the 532-nm triangular lattice will only
have diffraction at even multiples of Gi, with destructive interference at these intermediate
peaks.

In the decorated 1D stripe lattice, a symmetry is broken and P̃i is either 0 or 1, depending
on i. In the decorated triangular lattice, just one site is occupied and the second-order
diffraction is suppressed by e−4k2/k20 , so that P̃i ∼ 1. In the kagome lattice,

P̃i =
|ψA − ψB − ψC |2
|ψA + ψB + ψC |2

=
|1/3|2
|1|2

= 1/9 (2.42)

Experimentally, it is straightforward to measure the populations in the zero- first- and
second-order peaks and find P̃i as in Eq. (2.41). It increases to 1/9 and saturates when
V1064 increases, assuming that V1064 is sufficiently small to consider cylindrically symmetric
functions w. When V1064 becomes comparable to V532, the assumption of a cylindrically-
symmetric Wannier function breaks down. We can introduce the asymmetry parameter ε,
where ε = 1 for a symmetric wavefunction and ε < 1 when it becomes asymmetric. Then P̃i
is

P̃i =
(2− ε)2

9

(
9

(2 + ε4)2

)1/4

(2.43)
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2.4.2 Signature of honeycomb lattice symmetry

We can define a similar term in the honeycomb lattice, which has two sites in a unit cell
as shown in Fig. 2.7(b). Consider the diffraction in the direction along G3, the vector that
connects the two sites A and B. In this case, Gi · (rA − rB) = 2π/3 and we have

P0 = |w0|2|ψA + ψB|2 (2.44)

PGi
= |wGi

|2|ψA + ψBe
i2π/3|2 (2.45)

P2Gi
= |w2Gi

|2|ψA + ψBe
−i2π/3|2 (2.46)

Here we will exploit the similarity between the diffraction at Gi and 2Gi to define a term

Q̃i =
PGi

+ P−Gi

2P0

|w̃0|2
|w̃Gi
|2 =

|ψA + ψBe
2πi/3|2

|ψA + ψB|2
(2.47)

=
PGi

+ P−Gi

2P0

( |w̃Gi
|2

|w̃2Gi
|2
)1/3

(2.48)

=
PGi

+ P−Gi

2P0

(
PGi

+ P−Gi

P2Gi
+ P−2Gi

)1/3

(2.49)

For a honeycomb lattice with equal population in sites A and B, Q̃i = 1/4, and population
imbalances will result in Q̃i that range between 1/4 and 1.

Characterizing the symmetry of the sites A and B of the honeycomb lattice is important
because the band structure has a cusp at the K-points only when the sites are identical.
chapter 4 describes experiments performed out-of-equilibrium to characterize the symmetry
of a honeycomb optical lattice. The result in Eq. (2.49) provides another signature, which
may be useful when analyzing ground-state wavefunction data.

2.5 Calibration of lattice depths

The depth |V0| of an optical lattice depends on the power, waist and overlap of the lattice
beams. The power of each beam is stabilized actively, and their waists are the same day-
to-day, but the beam positions can drift throughout the day and certainly differ from one
day to the next. To create the same optical lattice for every iteration of the experiment,
we calibrate the ratio of beam power to lattice depth using lattice modulation spectroscopy
[10]. We repeat this calibration regularly throughout the day.

The alignment and stability are discussed further in chapter 3. Our construction of the
optical lattices is robust, and the lattice depths do not change substantially over the course
of a single day. Here I will present the calculations for the calibrations, which depend on the
numerics we have discussed in this chapter.
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2.5.1 Lattice modulation spectroscopy

In lattice modulation spectroscopy, we load a stationary condensate into the ground state
of an optical lattice, so that it occupies q = Γ point of the ground band. Sinusoidal mod-
ulation of the lattice beam power by a few percent with frequency ω promotes atoms to
the q = Γ points of upper bands of the lattice. A band mapping procedure maps lattice
quasimomentum q into real momentum k. This is followed by a time-of-flight image. The
atoms occupying upper bands are detected at the appropriate high-order momenta.

We use the lowest energy excitation, which maps to the first order peaks at±g1,±g2, and ±
g3, where g3 = g2 − g1. We measure the population of atoms

∑
i Pgi to measure the reso-

nance frequency of the excitation. Assuming that the lattice is uniform and that the excited
states are stable to decay, we consider the transition probability due to the perturbation
from a low-amplitude modulation of lattice potential V (r)

P1→n =
V 2

1n

~
sin2 [(ω0 − ω)t/2]

(ω0 − ω)2
(2.50)

where the resonant frequency ω0 is given by the energy gap E1n = E1 − En = h × ω0 and
the matrix element V1n = 〈ψ1|V (r)|ψn〉 is nonzero only for states with the six-fold rotational
symmetry of the optical lattice.

Figure 2.8 shows the wavefunctions of the 532-nm triangular lattice that correspond to
the q = Γ states of the first 10 energy bands, where the area of a point on the momentum-
space grid, k ∈ mg1 + ng2, represents the population of atoms at that momentum, i.e.
|cm,n|2. The color of the points represents the complex phase of the coefficient cm,n. The
phases indicate the expected symmetries of the q = Γ wavefunctions of a two-dimensional
C6 symmetric lattice: the s-band (|ψ1〉), two p-bands (|ψ2〉 and |ψ3〉), and the first d-band
(|ψ4〉).

The states with nonzero matrix element V1n are states |ψ4〉 and |ψ8〉, which have the
six-fold rotational symmetry of the ground-state and symmetry-preserving optical lattice
potential perturbation.

After modulation, atoms are at the q = Γ point of the upper bands, and we perform a
band mapping measurement to determine which band has been populated. The q = Γ point
in any band maps to a point on the reciprocal lattice (k ∈ mg1+ng2). Each point on the grid
represents the q = Γ point of six different bands. This technique does not distinguish, then,
among the six bands that touch at each reciprocal lattice vector. However, in a sufficiently
deep lattice, there is only one symmetry-allowed transition to each point. To experimentally
distinguish the bands that touch at the q = Γ points, one could perform this experiment
with a normal gas or a non-stationary condensate, as the bands touch only at the Γ point,
and sampling any nonzero quasimomentum will distinguish among these bands.
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Figure 2.8: The q = Γ wavefunctions of the low-energy bands of the triangular lattice of 532-
nm light. The center of each figure represents k = 0, and every point in the figure is on the
grid k ∈ mg1 +ng2, where m and n are integers. The point size represents amplitude of the
wavefunction at that momentum, and the color represents phase. The wavefunctions |ψ1〉,
|ψ4〉 and |ψ8〉 have the same symmetry as the lattice, and transitions among these states are
allowed by the parity-symmetric perturbation of intensity modulation of the optical lattice.

Energy gaps and lattice depth

Consider a shallow lattice, with depth comparable to the lattice recoil energy (2.13), the
free-particle dispersion on its Brillouin zone will have an energy gap between states |ψ1〉
and |ψ4〉 of E14/h = 24 kHz. Here, |gi| =

√
3|ki|, and ki is the photon-momentum of

beam i. The smallest possible energy gap between the first state and the next manifold is
3~2k2/(2m) = 3Er,λ532/h = 24 kHz (2.14). The excitation to |ψ8〉 is at the energy E18/h = 72
kHz. The gaps E14 and E18 increase with increasing lattice depth as shown in Fig. 2.9(a).

2.5.2 Experimental calibrations

Experimentally, we first align the lattice beams following a procedure detailed in chapter 3.
After the beam pointing is aligned as well as possible for each beam, the relative beam
powers are modified to ensure that the diffraction of a BEC from the ground state of the
lattice is 6-fold symmetric. Beam 2, is used as a reference, and the other beam powers are
derived from that power to result in a symmetric lattice.

Method: 3-beam triangular lattice modulation without vertical lattice

Figure 2.9(b) shows preliminary lattice modulation taken on 23 March, 2016, from lattice
modulation spectroscopy. The absorption images after lattice modulation and band mapping
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Figure 2.9: Lattice calibration by modulation spectroscopy. (a) The energy gap between
ground and excited bands at q = Γ for allowed transitions by the lattice modulation pertur-
bation. (b) Lattice modulation excites atoms to the Γ points of upper bands, which band
map to distinct momenta. Atoms promoted to the fourth band are mapped to the vectors
gi. Preliminary images taken without a vertical lattice in a triangular lattice of depth near
V532/h = 60 kHz show resonances at their modulation frequency to the fourth band near
ω ∼ 35 kHz and to the eighth band near ω ∼ 78 kHz. (c) The final calibration data rep-
resent the sum of population of atoms that map to the first order peaks,

∑
i Pg. These

atoms occupy the fourth band before the band mapping procedure. In this data there is an
additional deep vertical lattice has been included, so the lattice calibration is performed at
lower lattice depths than are shown in (b).

show that atoms have been promoted from the q = Γ point of the first band, to the q = Γ
point of the fourth and eighth energy bands, with energies E

(4)
Γ and E

(8)
Γ , respectively. The

images shown are for a modulation frequency of ω = 35 and ω = 78 kHz , respectively.
These resonances both indicate a that the lattice depth is V532/h ∼ 60 kHz deep.

To check whether this is roughly what we expect, we consider the beam powers and waists
that form the lattice. More details about the experimental setup are given in chapter 3.
Briefly, there are 200 mW of power in beam 2, which has a Gaussian waist of w0,b2 = 100µm,
and a ∼ 6% modulation of lattice beam power for 6 ms. The power in other beams is
determined relative to the beam 2 power. The maximum possible depth with three perfectly
overlapped beams with w0 = 100 µm is 356 kHz/Watt, so that 200 mW would correspond
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to a 71 kHz deep lattice.
Our measurement of a 60 kHz deep lattice is consistent with this calculation of lattice

depth given perfect overlap of beams at the measured powers and beam waists.

Method: 2-beam stripe lattice modulation without vertical lattice

For another consistency check, we perform lattice modulation spectroscopy measurements
on the one-dimensional stripe lattices formed with each pair of lattice beams. This is not a
reliable measurement of the full, three-beam, triangular lattice depth, but it is an important
consistency check of our system. A one-dimensional lattice formed at the intersection of two
of the 532-nm lattice beams has a lattice spacing a = λ/ sin(π/3), and thus a lattice recoil
energy of Er,532stripe/h = 6 kHz, by Eq. (2.11). To do this calibration, we use the same
powers in each beam as in the three-beam case, but block one beam.

There are three such one-dimensional stripe lattices, formed by blocking each of the three
beams. By convention we label each 1D stripe lattice by the pair of beams that form it, so
the ‘1 & 2 stripe’ has the reciprocal lattice vector g1, the ‘2 & 3 stripe’, has the reciprocal
lattice vector g2 and the ‘3 & 1 stripe’ has the reciprocal lattice vector g2 − g1.

In data from calibration of the three pairs of one-dimensional lattices, we measured
resonance frequencies ω ∼ 26 kHz for both the 1 & 2 stripe and 2 & 3 stripe lattices, and
ω ∼ 30 kHz for the 3 & 1 stripe lattice. In this lattice one-dimensional strip lattice geometry
of 532-nm beams, the allowed excitation is between bands 1 and 3, and a gap of E13/h = 26
kHz corresponds to a lattice depth V532,1D/h = 26 kHz, which, with all three 1D lattices
perfectly aligned, would lead to a 3-beam lattice depth of V532,1D/h× 9/4 = 58 kHz. These
2-beam calibrations are thus also consistent with our measured 3-beam lattice depth.

Note that one-dimensional measurements are not used for final data calibrations.
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Figure 2.10: (a) The energy gap of the allowed transition by intensity modulation, between
states |ψ1〉 and |ψ7〉, of the honeycomb lattice. (b) The measured population of atoms in the
upper band as a function of modulation frequency ω.
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Method: 3-beam lattice modulation with vertical lattice

In the final method of calibrating the optical lattices, we perform modulation spectroscopy
in each three beam in-plane lattice and count the atoms in the upper band. In these data,
we also include the optical confinement of the BEC and a deep one-dimensional lattice
orthogonal to the triangular lattice plane (the vertical lattice), both at the settings they will
have when data is being taken. The vertical lattice is independently calibrated with the
same lattice modulation spectroscopy method.

In this chapter, we have considered very generally the calculations for ideal optical lat-
tices formed by plane waves. In reality, there are additional confining potentials in the
experimental system that must be taken into consideration. These concerns are discussed at
length in chapter 3. Here we simply note that the optical dipole trap and the vertical lattice
are both formed by light at the wavelength 1064 nm, so they add additional confinement to
the system. They may physically move the atomic cloud, which has a radius of ∼ 10 µm,
to a particular position in the blue-detuned 532-nm lattice, which extends for a radius of
∼ 100 µm. The 532-nm lattice beams have curvature, and do not form interference patterns
of uniform depth throughout the entire extent of the interference pattern. Note that the
depth is approximately uniform over the extent of the 10µm cloud, so that our plane-wave
treatment is valid for lattice-trapped atoms.

Still, we found that a small misalignment can result in a shift in position of the atoms
within the 532-nm lattice that depends on the power in the optical dipole trap and the
vertical lattice (this effect is not as much of a concern with the in-plane 1064-nm lattice
because of the low powers used and because of the in-plane interference). As a result, we
use high powers of optical trapping beams to pin the atoms to one position in the lattice for
calibrations as well as for all experiments.

The deep vertical lattice changes the transport properties of atoms trapped in the in-
plane lattices, reducing the coherence of the atoms at higher lattice depth. Our calibration
technique depends on having strong, coherent signal at the first-order diffraction vectors Gi,
so that including the vertical lattice means that calibrations must be performed at lower
overall lattice depth. We typically find resonances like the one from August 2016 that is
shown in Fig. 2.9(c) near ω = 26 kHz, which corresponds to a lattice depth V532/h ∼ 40
kHz, just above the frequency where the dependence of energy gap on lattice depth begins
to increase.

To calibrate the 1064-nm lattice, we load a two-dimensional honeycomb lattice and per-
form lattice modulation spectroscopy. The transition that preserves the symmetry of the
optical lattice potential is |ψ1〉 → |ψ7〉. Figure 2.10(a) shows the energy gap as it varies
by the full optical lattice potential depth V1064. This curve displays a strong dependence
at low-lattice depth that saturates at higher depth, so that calibrations should always be
performed in lattices with energy gaps lower than E17/h ∼ 15 kHz to maximize sensitivity
to lattice depth. In Fig. 2.10(b) shows a typical calibration curve from August, 2016.

Throughout data taking in the summer of 2016, calibrations were performed roughly
every hour between experimental repetitions. The construction and stability of our optical
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lattice setup is discussed in chapter 3. In a full day of datataking, the 532-nm lattice depth
was stable to within 1% rms of the overall measured depth.

2.6 Calculating U and J

To calculate the tunneling energy and on-site energy of lattice-trapped atoms requires de-
termination of the Wannier functions, wi(r) of atoms on each lattice site, i.

In a three-dimensional lattice, these terms are derived from the Wannier functions as

Ji,j = −
∫
d3r wi(r)

(−~2

2m
∇2 + V (r)

)
wj(r) (2.51)

Ui = g3D

∫
d3r|wi(r)|4 (2.52)

where i and j label sites. The term g3D = 4π~2aRb/mRb, and aRb is the s-wave scattering
length of rubidium, given by aRb ∼ 100a0, where the Bohr radius is a0 = 0.053 nm [15].
Translational invariance of the lattice allows us to drop the subscript on the terms U , which
will be the same for all sites i. We define J as the nearest-neighbor tunneling energy, which
will be the same for all nearest neighbors i and j, so those subscripts are also dropped.

2.6.1 Harmonic well approximation

In a very deep lattice, a well is approximately parabolic, with a trapping frequency that
depends on the particle mass m, lattice spacing a, and the lattice depth sEr,lattice, where s
is the lattice depth in lattice recoil energies, as defined in (2.11)

ωlattice =

√
sEr,lattice/m

2a2
(2.53)

where s is
In our lattice, the overall trapping frequency ω̄ is the quantity

ω̄ = (ωplane × ωplane × ωVL)1/3 (2.54)

where ωplane represents the in-plane lattice trapping frequencies, determined by the in-plane
lattice depth, and ωVL is the trap frequency of a site of the vertical lattice. And we can write
the harmonic oscillator length for a lattice site as

āho =
√

~/mω̄ (2.55)
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Within this approximation, we may write a Wannier function as a Gaussian distribution
centered a lattice site i:

wi(r) =

(
1

πā2
ho

)3/4

e−(r−ri)2/(2ā2ho) (2.56)

and the on-site interaction energy U is given by

U =
~aRb√
π/2

ω̄

āho
(2.57)

2.6.2 Numerical treatments

We calculate the Wannier functions of atoms in our lattices following two approaches. In
the first, we take a very simple numerical approach. We solve for the single particle band
structure of a lattice as in section 2.2. We compute the Wannier functions at each site
by assuming they are real when taking the Fourier transforms of the Bloch states, u

(N)
q (r),

defined in Eq. (2.19). These Wannier functions are used to find the tunneling energy, J and
the on-site interaction energy U of atoms in the optical lattices.

In a second approach, we use a steepest-descent minimization algorithm to generate
maximally localized generalized Wannier states [16]. The calculation finds the Wannier
basis with the global minimum of the spatial spread of the Wannier function, and outputs
the tunneling energy J and on-site interaction energy U . This code was created to calculate
Wannier states in two-dimensional lattices. To apply it to our system correctly, we must
integrate out the dependence of U on the vertical lattice to determine g2D.

g2D = g3D

∫
dz |w(x, y, z)|4 (2.58)

= g3D/(
√

2πaho,z) (2.59)

where aho,z is the harmonic oscillator length of the vertical lattice and the term g2D is used
to compute the on-site energy of the in-plane lattices as a function of their lattice depth, by
integrating over x and y as in Eq. (2.52).

We find that the computed on-site interaction and tunneling energies within and be-
tween the low-energy sites obtained from these two approaches agree. The first method is
computationally very simple, as it doesn’t require a minimization algorithm.

We apply this treatment to both the triangular and kagome optical lattices for varying
depth V532 and a vertical lattice depth V⊥/h = 41 kHz to find U and J as shown in Fig.
2.11(a). In these calculations, the kagome lattice is formed at the overlap of the 532-nm
triangular lattice with a 1064-nm lattice of depth V1064/h = 15 kHz. The results for U and J
are indistinguishable in the triangular and kagome lattice cases, despite the addition of the

https://ccpforge.cse.rl.ac.uk/gf/project/mlgws/
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1064-nm potential in the kagome configuration. This confirms our understanding that the
low powers used in creating the kagome geometry do not significantly change the curvature
at the bottom of the potential wells formed by the remaining 532-nm lattice sites. Equation
(2.60) is the result of fitting the ratio U/J , with V measured in kHz.

U/J ∼ 0.0311 e0.732V 0.521

(2.60)
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Figure 2.11: (a) Calculated on-site repulsion energy, U , and tunneling energy, J , for atoms
trapped in this system for various 532-nm lattice depths, V532. These quantities are equal
for the triangular and kagome lattices, because the addition of the 1064-nm lattice in the
kagome configuration does not distort the bottom of the 532-nm lattice wells, where atoms
reside. In these calculations, the vertical lattice depth is V⊥/h = 41 kHz and the 1064-nm
lattice depth is V1064/h = 15 kHz. (b) The ratio U/J in the lattices.
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Chapter 3

Creating a bichromatic optical
superlattice

Figure 3.1: The optical lattice experiment.

We perform quantum simulations with artificial materials to gain insight into the physics
of materials. The artificial materials are formed at the overlap of a Bose-Einstein condensate
and an optical lattice. The schemes for building the triangular, honeycomb and kagome
lattices were explained in chapter 2.

In section 1.6 we outlined a few advantages that artificial materials have over solid state
materials. Artificial materials created at the interference of coherent light are without de-
fects, their lattice spacings are immutable, their length scales are magnified and their time
dynamics are slowed. The lattice and quantum gas that propagates within it are indepen-



CHAPTER 3. CREATING A BICHROMATIC OPTICAL SUPERLATTICE 44

dent of one another, and can thus be independently controlled. All of these advantages
amount to experimental control over the lattice parameters that determine the behavior of
the lattice-trapped atoms. The sensitivity of the material to experimental controls is also
the central challenge of building this quantum simulator. Any change in the intensity of
the laser light or the structure of the superlattice changes the parameters of the artificial
material, and therefore these changes must be well-controlled.

A single simulation requires creation of a condensate, loading it into a lattice, and extin-
guishing the lattice to measure the properties of the gas. This is a destructive process, and
the simulation is repeated many times. The experimental parameters must be well-controlled
within each simulation, as well as stable over the course of many simulations. We use these
features to set the goals for our quantum simulator.
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3.1 Desired specs of the quantum simulator

In this thesis, the primary goal of the simulator is to quantitatively test a theory about the
ground-state of lattice-trapped bosons in various lattice geometries in the limits U/J ∼ 1
and U/J ∼ 100, as described in chapter 5. To reach these interaction strengths requires
stability in lattice beam power over three orders of magnitude, from about 100 microwatts
per beam, to about 300 milliwatts per beam. This test also requires that the lattice have a
low number of atoms per lattice site, ideally n ∼ 1.

1. Pure Bose-Einstein condensates produced in under 20 seconds

2. Loose optical confinement, ω̄ < 30 Hz to achieve n ∼ 1 atom per site

3. Lattice beam intensities actively stabilized over three orders of magnitude in beam
power

4. Alignment procedure should take less than 1 hour

5. Alignment should last for more than 1 hour; or a full day with minor adjustments

6. Bichromatic lattice beams are commensurate over the spatial extent of the gas

7. Relative phase of the two lattices is stable to within 10 nm and controlled in software

3.2 Early experiments

The machinery necessary to create a Bose-Einstein condensate of rubidium was built by
students and postdocs before my time here and is described in the thesis of Dr. Jennie
Guzman. Figure 3.2 provides photographs and a brief review of some important stages of
our sequence. Further detail can be found in Jennie’s thesis and will be updated in the
forthcoming thesis of Thomas Barter. The main chamber of our vacuum system is at a
pressure below 10−10 Torr and the final BEC, which has 50, 000 < N < 300, 000 atoms at
temperature 50 < T < 100 nK, has a lifetime of τ ∼ 20 seconds.

In my early years of grad school, we performed experiments in this apparatus, studying
the formation of magnetic domains with a spinor rubidium condensate [12], and built the
first version of a bichromatic triangular superlattice described in chapter 2. The successful
realization of the kagome lattice is of interest to the condensed matter physics community,
and the work was published in PRL and is included in appendix A [13].

Unfortunately, though the creation of the kagome lattice geometry was novel, the lattice
described in the publication of appendix A did not meet several of the specifications outlined
in section 3.1. First, the alignment procedure took roughly 6-8 hours. Second, the lattice
beams drifted substantially during data taking, and the lattice geometry was stable for no
more than 30 minutes. Third, the trap geometry was not ideal to reach low lattice filling;
it was tight along one direction and the resulting lattice filling was n ∼ 4. Fourth, upon
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Figure 3.2: The vacuum chamber in which the Bose-Einstein condensate (BEC) is created
and probed. [A] Atoms are heated in an oven, which is wrapped in aluminum foil. They exit
the oven at high velocity through a collimating nozzle. The oven chamber has a pressure
of 10−8 Torr. [B] The atoms are laser cooled as they travel through the Zeeman slower,
which provides differential pumping of the chamber and produces a magnetic field that
increases in strength as the atoms are slowed, so that they are resonant with a counter-
propagating cooling beam. The main chamber has a pressure of < 10−10 Torr. [C] Atoms are
caught in a magneto-optical trap (MOT), which employs optical cooling from all directions
as well as magnetic trapping by a quadrupole field generated by a pair of coils in an anti-
Helmholtz configuration. After a compressed MOT stage (CMOT), atoms are magnetically
transported via displaced pairs of coils in the anti-Helmholtz configuration [D] into the glass
cell [E]. Roughly 108 atoms are magnetically trapped in the glass cell at a temperature of 300
µK. These atoms are cooled by magnetic and optical evaporation to create a Bose-Einstein
condensate.

introduction of a vertical lattice in conjunction with the in-plane lattices reported, the atoms
in the lattice experienced substantial heating due to instabilities in beam intensity and lattice
phase.

Many of these shortcomings stemmed from the same source – the height of the vacuum
chamber. The chamber was mounted just 5 inches above the optical table. In order for
laser beams to propagate horizontally to the location of the atoms, a large breadboard was
mounted four inches above the table. This upper breadboard was nearly touching any table-
mounted optics. The optics table, which hosted elements for the beam shaping of the optical
dipole trap and very little else, was inaccessible. This had two effects. First, it limited the
space for the optics necessary to create the optical lattice. To build the lattice, optics were
mounted on breadboards that were mounted on top of breadboards. This tiered breadboard
system increased sensitivity to drifts in temperature or building vibrations.

Second, the shape of the optical dipole trap was difficult to change. The existing
surfboard-shaped optical trap was ideal for work with a spinor condensate, but the ideal
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trap geometry for a low-filling lattice is a diffuse ball. Since the optics that determined the
shape of the ODT could not be accessed, the lattice was built with the surfboard shaped
trap and had high filling, near n ∼ 4.

We planned to address these challenges incrementally. There was no straightforward
way to re-design the lattice optics so that they could occupy only the table and a single
breadboard. Our plan was to reduce sensitivity of the system on physical drifts of the upper
breadboards, as well as try to make space on the upper breadboard to reshape the ODT.
Still, there were space constraints that stemmed from the height of the vacuum chamber and
the inaccessibility of the entire lower level.

3.3 A failed gate valve

In April of 2013, two weeks before my qualifying exam and roughly halfway through my
graduate school career, we ran out of rubidium in the oven. The protocol for loading rubidium
into an oven is in appendix D. As discussed in Fig. 3.2, the vacuum system is separated into
two regions: the oven chamber at 10−8 Torr and the main chamber at < 10−10 Torr. A gate
valve separates the oven chamber from the Zeeman slower and the rest of the main chamber.
The gate valve can be closed to form a vacuum seal between the two chambers and allow
opening the oven chamber without contaminating the main chamber.

When we opened the oven chamber to replace the rubidium ampule, we discovered that
the gate valve that is supposed to seal the oven chamber from the main chamber was dam-
aged. We suspect that it failed because it used a viton seal, as opposed to an all-metal one.
Viton is a polymer that is possibly not robust against being struck with a few grams of
(pyrophoric) rubidium over the course of a few years. We recommend using all-metal gate
valves for experiments with rubidium.

3.3.1 Oven change

Appendix appendix D contains information and the procedure for changing an oven ampule
in our experiments. In brief, one must first connect the oven chamber to an additional
set of clean vacuum components that contains a turbo pump and a residual gas analyzer
(RGA). To do this, these components are attached to the oven chamber at a right-angle
valve (RAV), and they are pumped down with a turbo pump. Then the RAV that separates
these components from the oven chamber is opened. The turbo pump is then used to fill the
entire oven chamber with nitrogen. The nitrogen flows from a cylinder, through a regulator,
through a vat of liquid nitrogen, which condenses any water vapor that might be mixed with
the gas (so that it is clean and can be put into the vacuum chamber), and finally through
the turbo pump inlet, This slight, positive pressure in the vacuum chamber allows us to
open the oven chamber. When a window or a flange is removed from the chamber, there
is a flow of nitrogen out of the oven, minimizing the amount of atmospheric air that enters
the chamber. This helps to keep the oven clean, and also prevents any trace amounts of
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rubidium from catching fire (rubidium is pyrophoric, meaning that it catches fire on contact
with air or water).

In the oven chamber, there is an oven that contains rubiduim, and a nozzle through
which the rubidium passes when heated. The next element is called a cold catcher. The cold
catcher is a piece of cold copper with a hole in it, and any rubidum that doesn’t make it
through the hole sticks to the cold metal. Once the oven chamber is open and the oven itself
is removed, the next step is to clean the rubidium off of the cold catcher. To do this, we
remove the flange below the cold catcher (the oven shutter, in the case of this experiment),
and spray small amounts of methanol onto it. After the cold catcher is clean, we place a new
ampule of rubidium into the oven. An ampule contains 5 grams of rubidium and is under
vacuum (and must stay that way at all times). In addition to the ampule, we place a small
magnetic ball in the oven, which will be used to break the ampule in the very last step of
this process, i.e. after the oven chamber reaches the desired pressure.

After the chamber is re-assembled, it’s temperature is raised to 150◦ C while a turbo
pump pulls out the residual air and water in the chamber in a process called a bake-out.
To bake-out a vacuum chamber, we put thermocouples on various regions of the chamber
to monitor temperature, bearing in mind that some vacuum components (like a gate valve)
are not robust to large temperature differentials, and other elements (like the RGA) have
limits to the temperature that they can withstand. Next, we wrap the entire chamber in
one layer of aluminum foil. This is then wrapped in heat tapes, which are long fiberglass-
filled belts that are plugged in to high voltage sources to heat the chamber to ∼ 150◦ C.
The temperature is increased slowly throughout a day, until the chamber is hot. The RGA
monitors the amount of air and water that are in the chamber as it is baked. After roughly
two days of baking out the chamber, it reaches the desired pressure. At this point, we unwrap
the tape and foil from the chamber and close the RAV so that the turbo and RGA can be
safely removed. Finally, we break the rubidium ampule using a strong magnet against the
outside of the oven chamber to move the magnetic ball inside the oven until it crushes the
glass of the ampule.

3.3.2 Failed gate valve

During the oven change of 2013, we discovered that the gate valve that separates the two
chambers did not form a vacuum seal. In our procedure, we flushed the turbo and RGA
nitrogen and then tried to slowly open the RAV connecting them to the oven chamber. In
retrospect, we should have opened the RAV first, and then slowly introduced nitrogen to
the chamber, because it is difficult to open a RAV slowly. Due to the damaged gate value,
pressure of nitrogen in the main chamber spiked to ∼ 10−3 Torr when the RAV was opened,
which could have broken the main chamber ion gauge and ion pump. We turned them off
quickly enough and were fortunate that neither broke.

We then used the RGA and found that there was water in the chamber. This was likely
because we had not baked out the additional vacuum components connecting the RGA and
turbo pump to the oven chamber. If the gate valve had formed a seal, only a bake out of the
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Figure 3.3: These pictures are from the oven change of 2013. On the left, Thomas Barter
and I prepare to open the right angle valve that separates the RGA and turbo pump from
the oven chamber. While flowing gaseous nitrogen through the chamber, we remove the oven
from the chamber. The copper cold catcher is visible through the opening. It is covered in
rubidium so that it appears white. We clean the rubidium off of the cold catcher before
replacing the rubidium ampule.

oven chamber would have been necessary to removed the water contamination. However,
the contamination of the main chamber necessitated that we bake out the entire vacuum
system. To prepare the main chamber, we replaced the gate valve with an all-metal one, and
also replaced some filaments in the titanium sublimation pump, which are used for pumping
at very low pressures.

Rather than try to work around the stacks of lattice optics that were very near the
chamber, we decided to remove them. All optics that were on the main table (those used
for trapping and cooling the atoms) were left alone and covered with a thin sheet so as to
prevent them from being covered in fiberglass fragments.

3.3.3 Lifting the chamber

A main chamber bake out necessitated removing all of the tiered breadboards so that we
could access the chamber. This provided an opportunity to consider some changes to the
optics and setup in our lab. We decided to lift the chamber an additional four inches to
allow for improved access to the optical table, addressing many of our previous challenges
in studying physics in a bichromatic lattice described in chapter 2. We also separated the
magnetic trapping coils around the glass cell to increase optical access to the atoms.

Many of our challenges in studying physics in the bichromatic lattice stemmed from the
height of the chamber. After removing the breadboards, we removed all of the clamps that
held the chamber in place and lifted it manually by four inches. The entire Stamper-Kurn
group stood around our optics table, everyone lifting a piece of the chamber and trying to
hold it level and steady, so as not to torque any one part of it. The flange that connects
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Figure 3.4: Before baking out the main chamber, we removed all breadboards and lifted
the chamber by four inches. Group members held the chamber up while posts were slipped
into place to mount the chamber. This photo shows the group replacing one of the raised
breadboards.

the main and oven chambers is 1/4” in diameter, and it somehow survived this brute-force
method of lifting the chamber. I ran around, slipping between my labmates, adding four
inches of post on every mount before instructing everyone to set it down slowly.

The main chamber bake out followed the same procedure as the bake out described
previously. We baked at 150◦ C to remove water from the chamber. The process took about
one week in total, but was interrupted by the flood I described in section 1.1.

3.4 Scheme

We create a quantum simulator of the triangular, honeycomb and kagome crystal lattice
structures. The band structures of these lattices and the general method for creating them
with lasers were described in chapter 2. In this section I will explain the experimental details
of building this quantum simulator.

3.4.1 Overview

Each simulation starts with creating a pure Bose-Einstein condensate of ∼ 100, 000 rubidium
atoms in the |F = 1,mF = −1〉 state in a hybrid magnetic and optical trap. The BEC is then
transferred into a crossed-dipole trap. The optical beams for trapping have a wavelength of
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1064 nm, which is red-detuned from the rubidium atomic resonances, so that the atoms are
attracted to the points of maximum intensity.

The condensate is then loaded into the optical lattices. This includes the bichromatic
in-plane lattice that is composed of two triangular lattices of intensity minima formed with
light at the commensurate wavelengths 532 nm and 1064 nm, as well as a retro-reflected,
one-dimensional vertical lattice that is orthogonal to the plane.

Finally, the atoms are measured by absorption imaging. In-situ images can be taken if
the lattice and trapping potential is kept on; or time of flight images can be taken, where
atoms are allowed to expand in free space or weak magnetic confinement beforehand. Our
system is equipped with multiple imaging axes: along each trapping beam as well as out of
the lattice plane.

3.4.2 Bichromatic lattice concerns

Here I outline a few major experimental concerns in creating a bichromatic superlattice
following the scheme described in chapter 2.

Frequency

We do not need to stabilize the ratio of the frequencies of the 532-nm laser and the 1064-
nm lasers in order for the lattices to be commensurate over the extent of the cloud. The
requirement that they are commensurate – that the wavelength of the 1064-nm light is twice
that of the 532-nm light – is necessary for the overlap of the lattices to produce a periodic
bichromatic lattice with the same unit cell as that of the 1064-nm lattice.

The gas is about 10 µm across. Commensurate beams have k532 = 2k1064, but if our lasers
deviate from this then there is some offset ∆k. A wavelength difference of 1 nm results in a
drift over the extent of the cloud

φ = l ∆k (3.1)

= 6× 10−4 (3.2)

where in the last line I have used a wavelength difference of 1 nm. This means that if the
lattices have wavelengths that differ from λ1064 = 2λ532 by a nanometer, the nodes of the
two lattices that overlap at one end of the gas will be displaced at the other end by 0.05 nm.
This is too small an offset to affect our measurements. We monitor the frequency of both
beams and they are commensurate to within 1 nm.

Frequency noise on the two lasers will differ, because they are not locked relative to
one another. However, our scheme involves independently stabilizing the phase of each
constituent lattice. The resulting superlattice is stable.
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Phase

All three beams of each color have the same path length from the laser source to the atoms,
so that the system is passively phase stable. This is a huge advantage of our system relative
to others that require retro-reflection, where there is inherently a large path length difference.

We estimate that the path length differences among the lattice beams is on the order of
2 cm. Such path lengths would introduce phase noise on a 1064-nm laser beam with a MHz
linewidth of

∆φ = ∆f∆l/c

= 10−5

which corresponds to a difference of 0.01 nm at the atoms. By keeping path lengths similar,
we ensure passive stability of the optical lattices. Without active stabilization, the lifetimes
of the in-plane lattices are about τ = 1 second.

Each three-beam lattice is actively stabilized using two Mach-Zehnder interferometers.
For each lattice, the phase of one of the beams is taken as a reference, and the phases of
the other two beams are locked to it using the interferometric error signals. In this way, we
build two triangular lattices of intensity minima that are stationary in space.

The relative position of the two lattices is experimentally specified using a tunable thick-
ness of glass in one path of each interferometer. Laser light passing through a glass wedge is
phase-shifted by φ = nλkλt, where t is the thickness of the glass. Light at the wavelengths
532 nm and 1064 nm have a different index of refraction in glass (BK7), with

n532 = 1.51947 (3.3)

n1064 = 1.50663 (3.4)

Because of the difference index of refraction, changing the thickness of the glass traversed
along one path of the interferometer changes the relative phase between the two lattices
along the axis defined by those two beams. The interferometer uses a Thorlabs BK7 wedged
window on a translation stage to tune the thickness of glass through which the beams pass.
A second wedged window is included to correct for angular deflection of the beams. The
system is shown schematically in Fig. 3.5(a). The displacement of a lattice in response to
actuating the wedge by some distance x is given by

φ(x) = nλkx sin (3◦)

d(x) =
φ (x)λ

2π
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where nλ is the index of refraction at wavelength λ and k is the wavevector of the light. The
difference in this displacement for 532-nm light and 1064-nm light is plotted in Fig. 3.5(b).
The length of a unit cell translation vector is 710 nm, so moving the wedge by a distance
x = 1 mm will translate the relative lattice position through an entire unit cell.
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Figure 3.5: A pair of wedged windows in one path of the interferometer provide lattice
geometry control. (a) This schematic shows the principle behind our in-loop phase shift
scheme, but is not an exact representation of our experiment. Two points at which beams
interfere are indicated by black dots. The first is the location of the atoms, and the second
is labeled lock and is the point at which the phases are stabilized. The Mach-Zehnder
interferometer has a wedge window on a translation stage in one path, after the atoms and
before the phase is locked. The wedge is actuated along the 3◦ face of the window so that
beams are not differentially deflected as the actuator is shifted. The second window corrects
for differential angular displacement of the two beams after they pass through the wedge.
(b) Plot of relative displacement of lattices in nm as a function of the position of the wedge.
The length of the basis vector of the bichromatic lattice is 710 nm, so a 1 mm shift in wedge
position corresponds to a translation through the entire unit cell.

3.5 Design: the BEC

3.5.1 Magnetic quadrupole trap

Each experiment begins by creating a BEC of rubidium atoms in the |F = 1,mF = −1〉
state. The early stages of cooling produce 108 atoms at 300 µK at the location of the glass
cell. They are confined in a quadrupole field created by the so-called “Feshbach coils” that
are above and below the glass cell in an approximate anti-Helmholtz configuration.

To calibrate the field strength, we measure the point at which the current in the coils
produces a magnetic field that counteracts gravity so that the atoms levitate.
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gmRb =
1

2
µBohrB

′ (3.5)

B′ = 30.5 Gauss/cm

where g is the acceleration due to gravity and µB is the Bohr magneton. To measure this
value, we optically confine atoms and then release them into a weak magnetic potential and
measure the vertical center of the atomic gas as a function of time after release. If they
expand but do not fall, then gravity is being compensated by the magnetic trap. In our
system, gravity is compensated when there are 18.64 amps running through the Feschbach
coils, where the set point voltage is 1.56 V. Thus we measure that in this system, at the
location of the optically trapped atoms, we have a field gradient of

B′Feschbach = 1.64 G/cm/Amp (3.6)

in the z direction.
At the center of the trap, we approximate the field as a quadrupole field, with a linear

slope of 1.64 G/cm/Amp axially, the trapping potential is then

U ∼ 1

2
µBohr 10−4I

√
x2

4
+
y2

4
+ z2 × 1.64G/cm/Amp (3.7)

The effect of gravity is to modify the slope in the z direction by mRbgz. An important
feature of the magnetic trap is the cusp at the origin. Atoms near the cusp may flip from
the trapped mF = −1 state to the other magnetic sublevels that are not trapped in the
quadrupole field. This mechanism is called Majorana loss and its rate increases as the
temperature of the magnetically-confined gas decreases.

3.5.2 Bias fields

Bias fields are generated by three pairs of Helmholtz coils around the glass cell, oriented
along the cardinal directions indicated in Fig. 3.2. Vincent Klinkhamer designed coils on
printed circuit boards, pictured in Fig. 3.6. The circular boards are mounted above and
below the glass cell, providing the ‘Up/Down’ bias field. The long rectangular coils are
positioned along the glass cell and create the ‘East/West’ bias field. The square coils are
used to create the ‘North/South’ bias field. The design of the coils is so that they can be very
close to the glass cell, but minimally block optical access to the atoms. The three bias coils
create bias fields of 7.6 G/A (East/West), 2.8 G/A (North/South) and 3.4 G/A (Up/Down),
respectively, and each has a maximum current of 2 Amps. There is an additional set of bias
coils wrapped inside the large mount that holds the gradient coils. When we separated the
Feshbach mounts to increase the optical access, we also changed these coils so that they form
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a true Helmholtz configuration. They create another Up/Down bias field of roughly 1.6 G/A
and have a maximum current of 10 Amps.

The three bias coils create bias fields of 7.6 G/A (East/West), 2.8G/A (North/South)
and 3.4G/A (Up/Down) respectively.

Figure 3.6: The coils surrounding the glass cell are printed on circuit boards. They were
designed and tested by Vincent Klinkhamer. The bias field coils create a uniform field at
the atoms of 7.6 G/A, 2.8 G/A and 4.4 G/A in the East/West, North/South, and Up/Down
directions, respectively. All have a maximum current of 2 Amps. The boards also contain
gradient and curvature coils, which generate magnetic fields of 0.03 G/cm/A and 0.69 G/A
at the atoms, respectively.

3.5.3 BEC in a hybrid magnetic and optical trap

We make a BEC in a hybrid magnetic/optical trap. We create the condensate in a hybrid
trap because we want to exploit the steep slope in entropy per particle (and thus in phase
space density per particle) from decompressing a magnetic trap into an optical trap. We
follow the prescription in Ref. [9].

We create a magnetic trap with a field gradient at the optical trap of 184.5 G/cm by
running 112.5 amps through the Feshbach coils. We expose the atoms to an optical potential
created by a 6 Watt beam of light with wavelength λ = 1064 nm, focused to 50 micron beam
waist, that is aligned to roughly one beam waist below the field zero of the magnetic trap.
This beam is called ‘ODTa’ in our lab. Without a magnetic potential, this beam forms a
tight trap along two directions, say êj and êk, and is loosely confining along the direction of
propagation, êi, so that its trapping frequencies are (ωi, ωj, ωk) ∼ 2π(4, 920, 920) Hz.

This hybrid trap combines the advantages of each type of trap. Displacing the ODTa
beam along the vertical direction creates a trap that avoids the cusp of the magnetic trap.
The magnetic trap provides confinement along the direction of propagation of the beam, so
that the trap frequencies are (ωi, ωj, ωk) ∼ 2π(83, 920, 920) Hz.
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We make a condensate by first decompressing the magnetic trap by decreasing the mag-
netic field strength to the lowest value that compensates gravity (3.6), and then evaporatively
cooling the atoms in the hybrid trap. Throughout this sequence, the trap center of the mag-
netic confinement must be stationary. We achieve this by tuning the Up/Down bias field as
described in Fig. 3.8.
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Figure 3.7: Hybrid trap parameters. (a) The hybrid trap shape where we overlay cardinal
axes x (red) y (blue) and z (orange) and plot trap depth in temperature. (ωi, ωj, ωk) =
2π(83, 920, 920) Hz (b) Hybrid Trap after evaporation to Bose condensation. The settings
are such that the magnetic field strength just compensates gravity (apparent by the flatness
in the of the orange curve). The trap frequencies are (ωi, ωj, ωk) ∼ 2π(35, 70, 70) Hz.

3.6 Design: optics table

3.6.1 Overview

To create the trapping and lattice potentials, we use just two high-power lasers, one at 1064
nm and the other at 532 nm. The 1064-nm beam is split into six paths: two for the optical
dipole traps, one for a vertical lattice, and three for the in-plane triangular lattice of intensity
minima. The 532-nm beam is split into the three lattice beam paths. We minimize drift
and vibrational noise by building the entire setup on the optics table and a single mounted
breadboard.

To facilitate alignment, we co-propagate as many beams as possible when they enter the
glass cell. The lattice beams are combined using dichroic mirrors. The out-of-plane polarized
ODT beams co-propagate with two of the in-plane polarized lattice beams. The difference
in polarization ensures that the ODT beams do not interfere with the lattice beams.

3.6.2 Optics

Figure 3.9 shows a simplified schematic of the optical table (a) and the upper breadboard (b)
that is at the height of the glass cell. Some advice regarding design of optical tables: leave



CHAPTER 3. CREATING A BICHROMATIC OPTICAL SUPERLATTICE 57

UDHH A UDHH B UDHH C UDHH D

Figure 3.8: The settings of the Up/Down bias field throughout the sequence. The position
of the optical trap is represented by the red star, and the black lines represent the magnetic
quadrupole field. Initially, there is some bias field (UDHHA) that optimizes transport from
the MOT chamber into the glass cell. The ODT is aligned to about one beam waist w0 ∼
50µm below the magnetic field zero, which is the optimal position for transfer of atoms
into the optical trap. When the trap is decompressed, the bias field must change in order
to maintain constant distance between the optical trap and the magnetic field zero, this
is the job of UDHHB. In order to create a BEC in the hybrid trap, we use UDHHC to
bring the field zero closer to the optical trap, to increase confinement along the direction of
beam propagation. After creating the BEC and transferring into an all-optical trap, we use
UDHHD to push the field far away, so that it provides gravity compensation but provides
very little radial confinement. This is used for momentum focused imaging, where atoms are
released into this very weakly confining trap and allowed to evolve for a quarter of a cycle
in this trap (∼ 80 ms) before imaging.

room in the paths to insert power meters, don’t use pellicle beam splitters for applications
requiring phase stability, use pedestals rather than posts to mount optics, and use a washer
when bolting forks down to the optics table. Using a washer allows you to remove a fork
without significantly moving the optic it’s holding. If you bolt down a fork without a washer,
or with forks with built-in washers and bolts, like Thorlabs part number CF125C, then you
will move the optic when you unscrew the bolt.

For our 1064 nm laser, we use a homemade ECDL with a Thorlabs diode M9-A64-0300.
We fiber couple about 100 mW of power into a Nufern amplifier, part numbers SUB-1151-62
or NUA-1064-PD-0015-C0. We always have two Nufern amplifiers, so that when one breaks
we don’t have to wait for the repair, we just switch to the ‘spare’. In the past five years,
approximately four Nufern amplifiers have failed and the group is now switching to a new
high power 1064-nm laser source.

The output beam from the Nufern has roughly 12 watts of power (this is below the
specified output power by a few watts). The beam is split into six paths: two for the optical
dipole traps, one for a vertical lattice, and three for the in-plane triangular lattice of intensity

https://www.thorlabs.com/thorproduct.cfm?partnumber=M9-A64-0300
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Figure 3.9: Lattice optics. (a) The 1064-nm laser outputs roughly 15 watts of power and is
split into six beam paths: the first two are for the optical dipole traps, the four lattice beams
split off after that. All beams are picked off using λ/2 waveplates and polarization beam
splitting plates. The first two waveplates are controlled by software, so that power can be
shifted among ODTa, ODTb and the lattices, but the power division among the lattices are
fixed (and optimized so that each in-plane lattice beam has equal power). The lattice beams
are fiber coupled, and the ODTs propagate in free space to the upper breadboard. The
vertical lattice and the top-down imaging paths are not shown. (b) The upper breadboard
contains optics for the 532-nm light from the Coherent Verdi source. The beams are separated
by waveplates and polarization beam splitting plates. They are combined with the 1064-nm
lattice beams with dichroic mirrors before being focused onto the atoms. The ODT beams
are also combined at the location of a high power PBS just before the focusing optics. Not
shown are the paths of imaging beams that also co-propagate with ODTa and ODTb. One
of the two interferometer paths is shown: interferometer 2-3. The combined 1064-nm and
532-nm lattice light is picked off from beam 2 before the atoms, and beam 3 after the atoms.
The beam 2 path travels through actuated wedged windows, labeled Act 2-3, to allow for
bichromatic geometry control. The two beams are combined with a 50-50 beam splitter.
After the splitter, the colors are separated and the beat signal for each color is measured on
a photodiode.

minima. When we account for loss throughout the setup, we have roughly 10 watts of optical
power to work with.

Transferring atoms from a magnetic trap to an optical trap requires a deep trap and
thus high optical power. Our experiment uses about 6 watts in one of the trapping beams,
dubbed ‘ODTa,’ which has gaussian beam waists at the atoms of roughly w0 ∼ 50 µm. The
rest of the power is split among the second ODT beam, ‘ODTb,’ with waists w0 ∼ 55 µm,
the three in-plane beams, with waists w0 ∼ 100 µm and the vertical lattice beam waists
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w0 ∼ 200 µm.
Each path is split from the main path using a waveplate and a high power polarization

beam splitting (PBS) plate from CVI. We can move power between ODTa, ODTb and the
in-plane lattices during the experiment by rotating two waveplates that are controlled by
Labview, which communicates with our sequence generator via RS232.

The power in each beam is controlled by passing the beam through an acousto-optic
modulator (AOM) and using a first-order diffracted peak. Figure 3.10 shows the frequency
shifts for each 1064-nm beam.

+107 MHz

+100 MHz

-108 MHz

-110 MHz

Nufern beam, 1064 nm

in-plane lattice

ODTa

vertical lattice

ODTb

~ 282 THz

AOM shifts

Figure 3.10: Frequency shifts for the 1064 nm beams. All optical intensities are controlled
by acousto-optic modulators that impart a small frequency shift on the beams. This scheme
ensures that the ODTs do not interfere with one another. We use AOMs from Crystal
Technologies, part number 3110-197, with a maximum drive power of 2.5 watts.

The ODT beams propagate in free-space from the optical table, to the upper breadboard,
and finally intersect at the location of the atoms. The three 1064-nm in-plane lattice beams
travel in fibers from the table to the upper breadboard. We use 1 m PM fibers, Thorlabs part
number P3-1064-PM-FC-1, and output couplers from Schafter Kirchoff to produce beams
with 2.15 mm waists on the upper breadboard. The fibers have a damage threshold of 500
mW. We use output couplers at both the input and output of the optical fibers and find
that we get > 80% fiber coupling efficiency using two mirrors, and occasionally a lens on
a translation stage, before a fiber. The many degrees of freedom provided by, for example,
Thorlabs input coupler PAFA-X-4-C are unnecessary and difficult to work with, though some
of them remain in the system. Alignment of the polarization of the input beam along the
fast axis of the fibers can be challenging and is important to minimize phase noise in the
lattice. The last optic before each fiber is a PBS on a rotation mount, which is used in
conjunction with a waveplate to fine-tune the alignment.

After each fiber, a beam passes through a dichroic that combines it with the 532-nm light,
and then the combined beams are reflected from two mirrors, pass through a PBS cube and
are focused to the atoms by a lens with f = 250 mm. The cubes are high-power, broadband
PBS cubes from Advanced Thin Films, model number PBS1005-SBB. The original table was
designed using CVI beam splitters, part number PBSH-450-1300, but those cubes grossly
distorted the beam profiles.

http://sites.fas.harvard.edu/~phys191r/Bench_Notes/D4/AO_Modulator3000_appnote.pdf
http://sites.fas.harvard.edu/~phys191r/Bench_Notes/D4/AO_Modulator3000_appnote.pdf


CHAPTER 3. CREATING A BICHROMATIC OPTICAL SUPERLATTICE 60

The ODT beams are polarized out of the plane, and the lattice beams are polarized in
the plane, and the two are combined on the high power PBS cubes from Advanced Thin
Films. At the atoms, the gaussian beam waists of the ODT beams are w0 ∼ 50 µm and
of the lattice beams are ∼ 100 µm. Because there are so few optical elements between the
fibers and the atoms, the beams do not drift and require alignment only every few days. The
intensities of all 1064-nm beams are measured after the atoms (and thus after the fiber and
the PBS), and stabilized via feedback to drive power of the AOMs.

For convenience, the lattice beams are numbered 1 through 3 as indicated in Fig. 3.9.
Beam 2 is normally incident on the glass cell and passes through the entire chamber, emerging
near the MOT optics. The other two beams pass through the cell at 60◦ angles and the output
beams are used for stabilization.

By keeping all in-plane lattice beam paths from the laser source to the atoms the same
length to within a few cm, we achieve passive stability of the lattice – without active feedback,
we have a lifetime in the lattices of τ ∼ 1 second – though the lattice phase slowly drifts,
resulting in displacement of the lattice by about a 300 nm in 10 minutes, depending on
whether the laser curtain is open or closed.

The three-beam lattice is stabilized in space using two Mach-Zehnder interferometers.
Beam 2 is the reference beam and is modulated with a modulation depth of ∼ 1% using an
electro-optic modulator (EOM). Coated BK7 windows are used to pickoff ∼ 1% of the light
in two places along the beam 2 path before it is focused onto the atoms. The other two
beams have pickoffs after they pass through the atoms, each of which is aligned to interfere
with a pickoff from beam 2 onto a photodiode. The beat signal is demodulated and sent
to a homebuilt lock box with a proportional and an integral gain stage. The signal is then
sent to the modulation ports on the function generators (Agient 33600A series) that drive
the AOMs. The phase stabilization is achieved by frequency modulation of the output of
these function generators to correct the phase of beams 1 and 3, so that they each match
the phase of beam 2. In this way, we build a triangular lattice of intensity minima using
1064-nm light that is stationary in space.

The 532-nm laser is an 18 Watt Verdi from Coherent, the Diode-Pumped Solid-State
Lasers, High-Power CW Output at 532 nm, which has a quoted linewidth of 5 MHz.

The output of the Verdi is split into four paths using λ/2 waveplates and plate polarization
beam splitters. The first goes into a power dump, and the remaining three interfere at
the atoms to form the in-plane triangular lattice. Each beam intensity is stabilized using
deflection from a high power AOM from IntraAction, part number AOM-402AF1.

The beams are combined with the 1064 lattice beams before the PBS and focusing lens.
Though the goal was for all beams to have gaussian waists of 100 µm, there is thermal lensing
in the AOMs that changes the beam divergence. The measured gaussian beam waists are
70, 100 and 60 µm for beams 1, 2 and 3, respectively. Currently, the experiment is being
upgraded with better AOMs that have less thermal lensing.

The phases of the 532-nm light are stabilized with the same Mach-Zehnder interferometer
paths as was used in the 1064-nm lattice. Figure 3.9 illustrates one of the two paths. The
entire path of the interferometer, from the intensity pickoffs to the 50:50 cube, is common

 https://www.coherent.com/lasers/laser/lasers/verdi-v-series
 https://www.coherent.com/lasers/laser/lasers/verdi-v-series
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to both the 1064 nm light and the 532 nm light. Any phase noise from motion of the
breadboard or optics elements will be on both the 1064 nm light and the 532 nm light. The
in-loop actuated wedge window scheme that was described in Fig. 3.5 is used to shift the
relative phase of the two lattices along the 2-3 interferometer is labeled in Fig. 3.9 as Act
2-3.

All beams are equidistant to the atoms, but not equidistant to the interferometer. Beams
1 and 3 pass through the atoms before being picked off and sent to an interferometer with the
pickoff from beam 2. The interferometer pickoffs for beam 2 are before the atoms, because
beam 2 continues to travel back through the MOT chamber after passing through the atoms.

We elected to use the light of beams 1 and 3 after passing through the atoms, because
the final optic before the atoms is a mirror on a long lever-like mirror post, shown near the
glass cell in Fig. 3.9. These mirror posts are likely to vibrate and add phase noise to the
system and so they should be included in the interferometer loop.

A shortcoming of this design is that, though the distance between the source and the
atoms is the same, the distance between the source and the photodiodes are not. The early
pickoff of beam 2 results in a path length difference to each interferometer of ≤ 20 cm relative
to both other beams. This may be the reason that the phase stabilization does not improve
the lifetime of atoms in the lattice, although it is effective at maintaining a stable bichromatic
lattice geometry. In a future upgrade, lengthening the beam 2 paths to the interferometers
would likely improve the stability of the system.

3.6.3 Power, beam waists and lattice depths

The ODT beams have gaussian beam waists at the atoms of roughly w0 ∼ 50 µm, and all six
in-plane beams, have waists w0 ∼ 100 µm. The vertical lattice beam has waists ∼ 200µm.

Because of our wide variety of lattice geometries and spacings, we always quote our lattice
depths in kHz, rather than the commonly used parameterization of recoil energies. A recoil
energy can refer to a single-photon recoil energy, or to the lattice recoil energy. This was
discussed in chapter 2 and results are shown in the Table below.

Er,light =
~2

2mRb

(
2π

λlight

)2

Er,lattice =
~2

2mRb

(π
a

)2

3.7 Design: active stability

3.7.1 Intensity stabilization

When working with a Bose-Einstein condensate, it is important to minimize fluctuations in
the intensity of the lasers that are used for optical trapping. Laser intensity fluctuations
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532 nm Triangular 1064 nm Honeycomb 1064 nm Vertical
Vλ/h 356 kHz/Watt 907 kHz/Watt 806 kHz/Watt

Table 3.1: Calculated (ideal) relationship between beam power and peak-to-peak lattice
depth, Vλ, for the lattices in our system, assuming beam waists w0 = 100 microns. Depths
assume beams of equal power and full interference depth. These numbers are used to get a
sense of the power needed for each lattice, true lattice depths are calibrated using modulation
spectroscopy of atoms in lattices. The triangular and honeycomb lattices have a depth
Vλ = 9/2×V0, the potential depth of a single beam. To find the depth of the one-dimensional
lattice formed at the interference of just two of the three beams, we would multiply the depth
listed by 4/9.

promote atoms into excited states, which leads to heating of the ensemble. When an optical
lattice is imposed, the number of low-energy excited states to which atoms may be promoted
increases, giving more opportunity for unwanted heating of the atomic ensemble. Ideally, in
an optical lattice, the beam powers would be absolutely stable throughout the full range of
beam power that are used in a quantum simulation, in our case up to 1 watt per beam. We
specify and stabilize beam powers actively, which entails setting a voltage on a computer
that is sent to a feedback loop that controls the beam power.

Creating and holding a Bose-Einstein condensate in an optical dipole trap requires some
minimum beam power, on the order of milliwatts in our experiment, below which the atoms
are no longer trapped (so fluctuations in power have no effect). While high beam powers are
used in the experimental sequence, their stability is not typically relevant for the experiments
performed on the final condensate. To create the lowest entropy condensates, with entropy
per particle of S/N ∼ 0.001kB, feedback parameters are optimized for the beam power of
the final trap [17].

In our optical lattice, however, the atoms are trapped in an optical dipole trap regardless
of the lattice beam power, so even the lowest beam powers can be a source of heating. Our
goal is to stabilize beam power over three orders of magnitude, between 1 mW and 1 W
per beam, a significantly larger dynamic range than necessary in typical experiments on
Bose-Einstein condensates.

The feedback loop

The scheme for intensity stabilization is shown in Fig. 3.11. The feedback loop involves both
optical and electronic elements. A set point voltage is sent from a computer and controls
the amplitude of a high frequency (∼ 100 MHz) RF source. The amplitude-controlled RF is
sent into an acousto-optic modulator (AOM), and the power of the RF signal determines the
optical power that is deflected into the stabilized beam. The beam travels to the atoms, but a
small fraction (∼ 0.1%) of the beam power is picked off of the main beam and directed into a
photodiode. The photodiode voltage is sent to an electronic feedback circuit that compares
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Figure 3.11: Schematic of generic intensity stabilization scheme. The feedback electronics
compare a set point voltage, Vset, to the voltage measured on a photodiode, VPD. The
output controls the power of a radio frequency signal generated by a voltage controlled
oscillator (VCO) that drives an acousto-optic modulator (AOM). The power of the RF
signal controlling the AOM determines the amount of optical power in the deflected beam
that is sent to the atoms. The closed loop system controls the power in the deflected beam.

the set point voltage with the detected voltage and corrects differences by changing the
voltage that controls the amplitude of the RF signal.

To design and optimize the feedback circuit requires a measurement of the open-loop
response function of the system without feedback. The open-loop response is measured by
sending a voltage into the system and measuring its output, in this case that entails varying
the setpoint and measuring the voltage on the photodiode. Figure 3.12(a) shows the DC
response of a system, where we measure the optical power as a function of input voltage.
Figure 3.12(b) shows the open-loop response a function of frequency in a Bode plot of the
transfer function of the open-loop system. Here we plot both gain |G| and phase φ of the
output signal relative to the input signal. When the phase offset is −π/2, the output is
completely out of phase with the input.

The feedback circuit corrects differences between the input set point voltage and the
output voltage of the system. It has its own transfer function, and the multiplicative effect
of the two transfer functions should have maximum gain at DC and unity gain once the
signals are π/2 out of phase, because any feedback at higher frequencies would drive the
system away from the desired set point.

Analog feedback systems are linear systems, meaning that they have the same transfer
function regardless of the input voltage. This means that stabilizing a system that responds
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linearly in voltage is possible for all input voltages. However, if the response of the system
isn’t linear, then optimal feedback is only achieved in a limited range of set voltages, limiting
the dynamic range of the system. The feedback circuit uses integral feedback, and the circuit
design and PCB are included in appendix E. An integrator loop is maximum at DC and
drops by 10 dB per decade in power, and 20 dB per decade in voltage.

Open loop system

In the feedback loop I have described, the beam passes through an acousto-optic modulator
(AOM), which does not respond linearly in voltage. The deflected intensity is

I/I0 = sin2
(
π/2
√
P/P0

)
(3.8)

∼ π2P/(2P0)− ... (3.9)

where I is the deflected intensity, I0 is the incident intensity, P is the RF drive power and
P0 is a parameter that depends on the wavelength of light and properties of the crystal. The
efficiency is roughly linear in drive power, and thus quadratic in voltage.

The open-loop system can be built using a mixer from Minicircuits to combine the input
signal with the RF signal that drives the AOM. The intensity is then measured on a photo-
diode, which produces a current that is linear in optical power, so that the measured voltage
scales linearly with the optical intensity. The transfer function of this system is shown in
Fig. 3.12(a) and 3.12(b). Every element in the system responds linearly in input voltage
except the AOM, so the result is a DC response that is quadratic in input voltage. The
feedback system can’t be optimized at both 1 mW beam power and 1 W beam power.

This is always a problem when using an AOM to control beam intensity, for both ODTs
and lattice beams. The typical solution for an ODT is to optimize feedback at the final
trapping beam power, at the cost of beam power fluctuations throughout optical evaporation
used to create the condensate. While this is a reasonable method to create a high number,
low temperature condensate, it is not ideal for our experiment.

We elected to linearize the signal in analog for two reasons. The first is that our lab has
expertise in analog feedback systems, and we were concerned about adding electronic noise
to the system with an arbitrary VGA. The second is that we were bolstered by successes in
another experiment in our group, E4, where they created a condensate with a record low
entropy per particle shortly before we started working on this project [17]. Their success
required only a Hamamatsu IR-enhanced Si PIN photodiode (S11499-01) and a strong signal
of atoms with which they could determine the optimal feedback parameters at the very low
powers used to hold their BEC. They compromised feedback parameters at higher power,
and swept through particularly noisy regions of intensity rapidly enough to reduce atom loss.

Our detector is designed with the same enhanced silicon photodiode, but connected it to
a logarithmic amplifier (Analog Devices AD8304), so that the voltage out of the photodiode
is proportional to log V 2 = 2 log V . The error signal is then proportional to the log of the
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Figure 3.12: Open loop response functions of the feedback systems. (a) The DC response of
an open-loop system that uses a mixer, an AOM and a linear photodiode. (b) Because the
optical power is not linear in set point voltage, the transfer function differs at high and low
optical powers. This means that a feedback circuit can only be optimized in one of these
two limits. (c) The DC response of an open-loop system that uses an exponential amplifier,
AOM and logarithmic photodiode. The open-loop response is linear across a broad range of
optical powers. (d) The optimal feedback parameters are the same at high and low optical
powers.

power in the beam. It is combined, not with a mixer, but with an exponential amplifier
(Analog Devices ADL 5330) with the RF signal from the VCO, so that the signal going into
the AO is proportional to V . The result is plotted in Fig. 3.12(c), where the optical power
is linear-in-log over approximately three orders of magnitude in beam power. This means
that the open-loop gain and phase of the system is the same at high or low optical power,
as shown in Fig. 3.12(d).
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Figure 3.13: Images of logarithmic photodiode during and after construction. Left: The
logarithmic amplifier is surface mounted to a PCB in a toaster oven. The circuit design is
detailed in appendix E. Right: The photodiode in use after construction.

The photodiode circuit required surface mounting the AD8304, which we did in a toaster
oven in the lab. The left image of Fig. 3.13 shows the circuit as it toasts, just before the
solder is wicked, and the image on the right shows the constructed photodiode used in our
system.

Finally, we calibrate the photodiodes by measuring beam power as a function of set point.
This must be repeated regularly, after alignment, because the prefactor changes based on
the amount of light that is picked off or going into the photodiode. The exponential slope for
a given photodiode is given by its construction. Calibrations for the 532-nm lattice beams
are shown in Fig. 3.14.

Closed-loop system

The requirements for the new photodiode and amplifier system necessitated modification of
our analog feedback boards. Circuit diagrams and technical details for the photodiode and
feedback boards are included in appendix E.

To test the closed-loop feedback system, we monitored the closed-loop system and looked
at amplitude noise suppression while driving it with ‘artificial noise’ across a broad band
of frequencies with the spectrum analyzer. We measured 10 dB suppression up to 30 kHz.
Next, we setup a “spy photodiode” to monitor noise on the closed-loop system. This test is
sensitive to any electronic noise added to the system by the new photodiode. The laser we
used had very low intensity noise, except for at low frequencies, where we measured 20 dB
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Figure 3.14: Calibrating the photodiodes. Each photodiode is calibrated by disabling in-
tensity stabilization, sending a control voltage directly into the exponential amplifier, and
measuring the voltage on the photodiode. This is compared to a measurement of the
optical power in the lattice beam (not the pickoff), Popt. The signal is fit to the curve
Popt = Pz10Vout/Vy to determine the slope Vy and intercept Pz of each photodiode. The value
of Pz depends on the pickoff percentage and the alignment into the photodiode. The design
value for Vy is 400 mV/decade. Once calibrated, the slope of the circuit will not change,
but the intercept is alignment-dependent and should be checked regularly to ensure precise
knowledge of the correspondence between beam power and photodiode voltage.

suppression on the spy photodiode.
This system works effectively over at least three orders of magnitude in beam power, and

this dynamic range can be extended by modifying the circuitry as explained in appendix E.
The bandwidth of the system can be high, up to 100s of kHz, but the slew rate is fairly
slow. The AD8304 has a slew rate of 15 V/µs, so that it takes 100 ns to respond to a ramp
over three orders of magnitude in optical power. This is comparable to the AO response
time, given by the speed of sound through the crystal and the size of the beam. Feedback for
small fluctuations in voltage is limited by the bandwidth, where large changes in voltages are
limited by the slew rate. As such, we cannot change the lattice beam power from minimum
to maximum in less than a few hundred nanoseconds.

3.7.2 Phase

For all four interferometers, beam 2 is the reference beam and is modulated at high frequency
with a modulation depth of ∼ 1% using an electro-optic modulator (EOM). The beat signal
measured on each of the four photodiodes is demodulated at the modulation frequency to
measure the phase difference between bean 2 and the other beam. The error signal is fed
back into the AOM modulation frequency to correct the phase of beams 1 and 3, so that
they each match the phase of beam 2 and each of the lattices is stationary in space. The
phase of each lattice is determined by the interferometer. The wedge window in the path
of the interferometer provides a differential phase shift for the 532nm light relative to the
1064nm light, so that the relative phase of the lattices is tunable.
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The feedback scheme is similar to that described in section 2.2.2 of the thesis of Daniel
Greif from ETH Zurich, and the specifics of our setup will be explained in more detail in the
forthcoming thesis of Thomas Barter.

3.8 Using the quantum simulator

The steps to align the system are outlined in this section and are performed daily.

3.8.1 Bose-Einstein condensate

The early stages of cooling produce 108 rubidium atoms in the |1,−1〉 state at a temperature
of 300 µ K at the location of the glass cell that are confined by a magnetic quadrupole trap
generated by the Feschbach coils. When we align our system, we start by creating the ‘ODTa
condensate’ in the hybrid trap shown in Fig. 3.7(b).

The procedure for aligning the trap is as follows. We first take an image of the gas from
the top, in ‘top-down imaging’, to ensure that ODTa crosses through the magnetic trap center
after the atoms are transported into the glass cell. During decompression the magnetic trap
center will move slightly. We tune the bias field in all directions in order to maintain a
constant relative position between the beam and the magnetic trap. We have found that if
everything is well aligned, the gas does not move substantially in the North-South direction.

We align the optical trap to optimize the number of atoms in the final BEC. We generally
find that this optimal location is below the magnetic field zero by roughly one to two beam
waists, where w0 = 50 µm.

We then decompress the magnetic trap, lowering it until it just compensates gravity. We
use forced RF evaporation to cool the atoms until they experience the optical trap. To reach
Bose condensation, we tighten the confinement along the direction of beam propagation by
tuning the Up/Down bias field, bringing the quadrupole zero closer to the optical trap.

3.8.2 Transfer into crossed dipole trap

The next step is to transfer the BEC into a crossed dipole trap.
We take an in-trap image of the ODTa condensate and mark its position. We align

ODTb so that it crosses that point. To fine tune the ODTb alignment, we transfer atoms
from ODTa to ODTb, by reducing the ODTa power while increasing the power in ODTb.
We measure and optimize the number of atoms transferred into ODTb.

After alignment is complete, the BEC can be transferred into the crossed dipole trap
formed at the intersection of ODTa and ODTb beams. If the Up/Down bias field is not
properly handled during transfer into the crossed dipole trap, it is possible to have a compe-
tition between the hybrid trap and the crossed dipole trap, which makes for confusing trap
frequencies and data in two nearly-overlapping traps.

A complete description of the up-down Helmholtz coils is shown in Fig. 3.8.

http://e-collection.library.ethz.ch/view/eth:7605
http://e-collection.library.ethz.ch/view/eth:7605
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Optical dipole trap parameters

Ultracold atoms at the bottom of an optical dipole trap are modeled as a harmonic oscilla-
tor. To measure the trap frequencies, we pull the atoms away from the center and release
them, then measure their position as a function of time. We move them using a sudden
change in the magnetic bias field, which moves the zero of the quadrupole field. Figure 3.15
shows measurements of the trapping frequency for different settings of the optical trap. In
Fig. 3.15(a), we measured the trap frequency in the x direction ωx = 18 Hz at the lowest
power of our ODTs. In Figs. 3.15(b) and 3.15(c) we simultaneously measure both in-plane
trap frequencies for the gas with and without the vertical lattice. To measure both trap
frequencies, we move and measure the position at an angle relative to the x̂ and ŷ directions.
These data show the trap frequencies when the ODT power is increased to a power near the
one used in our experiments. They also show the increase of the in-plane trap frequencies
when the vertical lattice is imposed.

To measure the trapping frequency in ẑ, we reduce the magnetic field gradient for a
short time, thereby releasing the atoms from the trap. We measure the oscillation in the
ẑ direction by imaging from the side. We repeat this procedure for many different values
of the Setpoint of the ODTs, and the results of these measurements are datapoints shown
in Fig. 3.16(a). The curves represent the expected scaling of trapping frequency given the
calibration of the ODT photodiodes.

These trapping frequencies correspond to a central filling in the lattice potential that is
shown in 3.16(b) as a function of total atom number. Our experiments of Mott insulator
physics that are described in chapter 5 were performed with atom number ∼ 105, and an
ODT setpoint of 2.2V, so that our central filling was ∼ 1.5, which is the tip of the n = 2
Mott lobe.

3.8.3 Align the vertical lattice

After the ODTs are aligned, we align the vertical lattice. The vertical lattice is a one-
dimensional lattice formed by a retro-reflected beam of 1064-nm light propagating along ẑ.
The beam passes through and EOM, an AOM, an optical fiber, and a telescope before it is
focused onto the atoms. There are mirrors in the path of the telescope that should not be
used for alignment. There are mirrors before and after the telescope that should be used to
align the beam to the atoms.

To align the vertical lattice, we first use the recorded in-situ position of the crossed dipole
trap that was taken with top-down imaging. We block the retroreflecting mirror to align the
first pass of the beam through the atoms. We create a diffuse cloud of atoms and shine the
vertical lattice beam onto the cloud. The focus of the beam acts as a weak optical-dipole trap,
and an increased density of atoms is detected at the location of the beam. This is aligned
to the recorded in-situ position of the crossed dipole trap. The beam then travels through
the glass cell, and onto an upper breadboard, where it is retro-reflected and refocused onto
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Figure 3.15: Trap Frequencies are measured by moving the atoms away from the trap center
by moving the magnetic quadrupole trap center using bias fields. After the displacement
the gas is held in the trap for a variable amount of time, during which it oscillates in space.
Atoms are released from the trap before imaging with absorption imaging. The displacement
is measured as a function of time. (a) Trap frequency measurement data along x̂ for the BEC
in a crossed optical dipole trap with magnetic compensation against gravity. The trapping
frequency in x̂ of ωx = 18 kHz. In the future, this trap can be used to create a low-density
optical lattice. (b) Trap frequency measurements after moving the field in both the x̂ and ŷ
directions, and measuring the position at an angle to the cardinal axes of the trap provides a
measurement of both ωx and ωy in one measurement. These data show the trap frequencies
when the ODT power is increased to a power near the one used in our experiments. They
also show the increase of the in-plane trap frequencies when the vertical lattice is imposed.

the atoms. This second pass interferes at the atoms with the first pass, forming a vertical
lattice that can be aligned using Kapitza-Dirac diffraction.

To align the second pass of the vertical lattice, we switch imaging systems and image
the cloud from the side. We expose the Bose-Einstein condensate to the retro-reflected
lattice for a short time τ , which leads to Kapitza-Dirac diffraction of the atoms. During this
pulse, atoms exchange momentum with the lattice photons. Atoms are then released from
the trap and they expand with the momentum they have acquired before they are imaged
with absorption imaging. We detect the atoms that have exchanged momentum with lattice
photons. The Kapitza-Dirac effect is discussed further in chapter 4. For a short pulse, a
deeper lattice results in higher population of diffracted atoms. To align the lattice, we tune
the retro-reflecting mirror to maximize the number of atoms diffracted by the Kapitza-Dirac
pulse. Finally, we return to top-down imaging to ensure that the vertical lattice has not
distorted the optical trap, which would indicate a problem with alignment that likely stems
a misalignment of the first pass of the vertical lattice.

After the vertical lattice is aligned, we return to side-imaging to calibrate the lattice as
described in chapter 2. In brief, we load atoms into the vertical lattice and modulate the
intensity of the beams to promote atoms to a higher energy level. We then ramp the lattice
down in a few ms, which maps the quasimomentum of the atoms to real momentum, and
take an absorption image in momentum space. By varying the frequency of modulation and
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Figure 3.16: Measured trapping frequencies (circles) for different ODT setpoints, and their
expected scaling (curves), with an exponential slope of 2.5. (b) Expected central filling in
the lattice as a function of trapping frequency as a function of total atom number.

finding a resonance, we determine the level-spacing of the lattice. This spacing is lattice
depth dependent, so that we can determine the correspondence between laser beam power
and lattice depth.

In our two-dimensional lattice experiments, we work with a vertical lattice depth V⊥/h =
41 kHz, which typically corresponds to a setpoint of 2.88 V. The gas is thus divided into
two-dimensional planes with a single-atom tunneling rate of 5 Hz.

3.8.4 Align in-plane lattices

Next, we align the triangular lattices.

1064 nm lattice

The 1064-nm lattice is easy to align because the ODTs, which are already aligned, co-
propagate with two of the lattice beams. We overlap lattice beam 1 with ODTa at the
location of the focusing lens, and at the location of the atoms (using the side-imaging cam-
era). We repeat this process for beam 3 and ODTb. Beam 2 propagates through the vacuum
chamber, and its position is recorded on a camera. The 1064-nm beams rarely require align-
ment because they are fiber coupled and have few elements between the fiber output and
the atoms.

After they are aligned, we load atoms into the honeycomb lattice with roughly the same
optical power in each beam and release them from the trapping potentials in time-of-flight
imaging. To load the lattice, we ramp on all three lattice beams with a base-ten exponential
increase in beam power by increasing the set point voltage to the logarithmic photodiode by
about 0.6 V at a rate of 5 mV/ms, so that the total load time is roughly 100 ms. We measure
the symmetry of the diffraction pattern, comparing the number of atoms diffracted to each of
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Figure 3.17: The number of atoms diffracted along each lattice vector is determined by the
lattice depth along that axis. The three beams of each constituent lattice are indicated by
red (1064 nm light) and green (532-nm light) arrows. Any two beams alone form a one-
dimensional stripe lattice along the vector sum of the lattice beams. For example, beams 1
and 2 alone will create peaks indicated by purple stars. Well-aligned lattice beams create a
diffraction pattern that is nearly six-fold symmetric. Small misalignments or differences in
beam profiles are adjusted by tuning the power in each beam so that the number of atoms
diffracted in each of the three directions is equal. The process is the same in the honeycomb
lattice formed by light at the wavelength 1064 nm (a), and in the triangular lattice formed
by light at wavelength 532 nm (b). The percentage of first-order diffracted atoms along each
one-dimensional stripe direction is measured. In either lattice, after following this procedure
and averaging data for ten images, 33% ± 0.03% of the number of atoms in the first-order
peaks are diffracted along each of the three stripe directions, where the error quoted is the
standard error in the mean.

the six diffraction peaks. To balance the diffraction of atoms to each of the momentum space
basis vectors, and thus balance the tunneling rates along each real-space lattice vector, we
follow a procedure described in Fig. 3.17(a). Each pair of beams is responsible for diffraction
along one of the basis vectors. If there is an imbalance in population of atoms diffracted
along one axis, it is due to an imbalance in lattice depth along two real-space lattice vectors.
The difference may be due to a slight misalignment of the beams, or due to a small difference
in beam-waists and thus lattice depths. The imbalance is adjusted by changing the relative
powers in each of the beams. For example, if diffraction along the direction formed by the
interference of beams 1&2 is weak relative to the other two directions, then the power in
beam 3 can be reduced so that the population of atoms diffracted in all directions is equal.
We typically achieve symmetry of 33±0.03% over 10 datasets, where the error is the standard
error in the mean.

Finally, we load atoms into the honeycomb lattice formed by the 1064-nm light and
calibrate the depth by modulating the intensity of the beams to promote atoms to upper
bands. This procedure is detailed in chapter 2.
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532 nm lattice

Though they follow the same paths, the 532-nm lattice beams don’t exactly co-propagate
with the 1064-nm beams because as they experience differential dispersion when they travel
through optical elements (namely the glass cell). Beams 1 and 3 enter the glass cell at 60◦

angles, so the 532-nm beam is displaced from the 1064-nm beams. Beam 2 enters the cell at
a normal angle of incidence, so it can be aligned to co-propagate with the 1064-nm beam 2
for preliminary alignment.

We have cameras and have recorded the displacements between the 1064-nm beams and
the 532-nm beams. Aligning the 1064-nm lattice first and then aligning the 532-nm lattice
to these displacements has had limited success.

Rubidium atoms are repelled from the focus of a 532-nm laser beam. To align the lattice,
we align each beam to the location of the crossed-dipole trap (i.e. the in-trap BEC). We take
an in-trap image of a cloud of atoms filling one of the two ODT beams, shown in Fig. 3.18.
Then we impose a single beam of 532-nm light, which repels atoms from one point of the
trap. A deficit of atoms in an in-trap image indicates the location of the intersection of
the 532-nm beam with the ODT. The 532-nm beam is then aligned to the in-plane position
of the in-trap BEC, and the out-of-plane (up/down) position of the beams are aligned by
maximizing the contrast of the cuts.

After aligning each 532-nm lattice beam to the correct position, we load atoms into the
532-nm triangular lattice and check the balance of the beams as shown schematically in Fig.
3.17(b). We achieve the same symmetry of the triangular lattice as we did for the honeycomb
lattice, where 33± 0.03% of atoms are diffracted along each of the three k-vectors. Finally,
we calibrate the depth of the 532-nm lattice as described in chapter 2.

Bichromatic lattice

Finally, with both constituent lattices aligned and calibrated, we load the bichromatic lattice
by ramping on the vertical lattice and both in-plane lattices simultaneously. The displace-
ment of the two in-plane lattices is determined by the thickness of the glass wedge that is
in the path of the interferometers. We scan along either path until we create the desired
bichromatic lattice structure.

The glass wedges allow us to scan along the one-dimensional lattices formed by beams 1
and 2 and beams 3 and 2. In each interferometer, beam 2 passes through a pair of wedged
windows. One wedge is mounted on a translation stage, and the actuator is controlled in
software. The actuators determine the thickness of glass traversed by the beams, which
determines the relative phase shift of the two lattices, as described in Fig. 3.5.

Actuator 1-2 changes the balance of number of atoms diffracted to the one-dimensional
stripes that involve beam 1: the 1-2 stripe and the 1-3 stripe. This data shows a scan along
actuator 1-2 as the bichromatic lattice is tuned between a 1&3 stripe lattice and a 1&2 stripe
lattice. Actuator 1-3 interchanges the number of atoms diffracted to beams involving beam
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ODTb & 532 B1 ODTa & 532 B2 ODTa & 532 B3

Figure 3.18: Aligning the 532-nm lattice. Atoms are loaded so that they fill an optical dipole
trap, and one beam of the 532-nm lattice is imposed before an in-trap absorption image.
Atoms are repelled from the focus of the 532-nm beam, and the cut in the cloud indicates the
overlap of the 532-nm beam and the ODT. The in-trap position of the crossed-dipole trap is
recorded, and is indicated by the crosshairs in these images. The 532-nm beam is aligned to
cut the cloud at the position of the cross of ODTa and ODTb. Beam 1 (left image) travels
along the same direction as ODTa, so atoms must first be transferred into ODTb in order to
cut the cloud. Similarly, beam 3 (right image) is used to cut ODTb. Beam 2 (center image)
can be used with either trap.

3: the 1-3 stripe and the 2-3 stripe. To create the kagome geometry, we balance populations
along all three directions to create a six-fold symmetric lattice.

The procedure is as follows. We first scan Actuator 1-2 until we create a lattice that is
balanced in the direction of the lattice formed by beams 2 and 3. From that point, we scan
Actuator 2-3 until we form the kagome lattice. From the kagome lattice, we can scan either
interferometer to shift between the kagome lattice and the decorated stripes, as in [13].

Note that the diffraction pattern of the kagome lattice has the same symmetry as that of
the decorated triangular lattice. After we find the kagome lattice, we check the ratio of zero-,
first- and second-order diffraction (see chapter 2 and appendix A) to ensure that P̃i ∼ 1/9 and
the diffraction is from the kagome lattice configuration, rather than the decorated triangular
configuration.

3.9 Stability

3.9.1 Hourly stability after warmup

Currently the biggest challenge in the setup is a drift of beams over the course of the first
few hours of the day. The timescales indicate that the problem relates to the temperature
in the room, which increases in the first four hours after turning on the oven and lasers. If a
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Figure 3.19: Scanning the bichromatic lattice. (a) Images of the bichromatic lattice when the
relative position of the underlying lattices is slightly offset from the kagome configuration can
be helpful when the lattice is nearly aligned. (b) Three lattice beams, indicated by deep red
arrows, intersect at equal angles to form the bichromatic lattice. Any two of the three beams
will form a one-dimensional stripe lattice, along the vector sum of the lattice beams. To shift
the relative position of the lattices along the axis of the one-dimensional stripe formed by
beams 1 and 2 (purple stars), we actuate a wedge window that is the beam 2 path of the
Mach-Zehnder interferometer with beam 1. Actuator 2-3 controls the phase along the yellow
triangles. These two actuators span the full lattice space. (c) Data represent the fraction of
atoms along each lattice axis, normalized to the total population of first-order peaks, and
are plotted as a function of the setting of actuator 1-2, measured in mm. The data show
that translating the wedge by 0.5 mm shifts the diffraction asymmetry from being dominant
along the beams 1&3 stripe axis and the beams 1&2 stripe axis. The observed half-period
oscillation represents a translation through half of the unit cell, which is consistent with the
calculation of wedge displacement in Fig. 3.5.

beam of one of the in-plane lattices drifts after the alignment procedure, the shift will affect
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the lattice depth along the two lattice directions relevant to that beam. The result is an
imbalance in lattice depths, and thus an imbalance in the diffraction peak populations. This
can be corrected either by realigning the beam, or by re-balancing the power in each beam
to compensate for slight misalignments.

The problem is that, after we balance the diffracted population of each individual lattice
using beam powers, we balance the bichromatic lattice using the wedge windows. If a
constituent lattice is not balanced in power, there is no setting of the wedge windows that
will result in a diffraction pattern with the proper symmetry. We have wasted hours trying
to create a symmetric kagome lattice diffraction pattern only to realize that the underlying
lattices are not properly balanced because of this slow morning drift of the beams. After the
beams have settled, we must re-balance and re-calibrate each lattice.

Because it happens in both lattices, and the 1064-nm lattice pointing is very stable, we
suspect that the ODTs are drifting. ODTb has been fiber coupled very recently. ODTa has
very high power and cannot be fiber coupled. ODTa should be aligned to the 1064-nm beam
1, rather than the other way around.

This drift manifests as a shift in lattice geometry. If we are looking at the bichromatic
lattice signal, we have often suspected a relative drift in the two color lattices as responsible
for the apparent shift in geometry. This leads to a lot of time wasted trying to balance the
lattice by shifting the lattices relative to one another, when really there is an imbalance in
one or both of the constituent lattices.

We find that this drift stabilizes after the first two hours of working with the lattice.
Every hour throughout datataking we check the symmetry of the diffraction pattern of each
constituent lattice as well as the bichromatic lattice. We find that they do not require
re-balancing or re-alignment for 5-6 hours of data taking.

We measure the balance of diffraction into the three directions with a method similar
to that described in Fig 3.19(b) for both the kagome lattice and the triangular lattice, but
here we use the outer peaks to measure the balance. After the lattices are aligned and
balanced, we measure the fraction of atoms diffracted into each of the three directions.
Superfluid images from throughout the night are analyzed, and the RMS deviation from
33% population in each direction is 2.6% in both the kagome and the triangular lattices.
This indicates that, not only are the lattice beams stable in pointing, but also the phase
offset between the two lattices is stable enough that a population imbalance due to their
offset is below the resolution of this measurement. If we ascribe the full 2.6% deviation to a
drift in geometry, it would mean that the nodes are overlapped to within 18 nm.

We re-calibrated the lattice depths every hour and found that they were stable to within
0.7% over the course of data taking.

3.9.2 Heating and lifetime of trapped atoms

We achieve a BEC lifetime of ∼ 20 seconds with our intensity stabilization system. The
lifetime in the vertical lattice is 4.5 seconds. The lifetime in the in-plane lattices is 1 second
with or without active phase stabilization.
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Figure 3.20: Calibrations throughout an evening of taking data. The lattice depth is stable
over the course of hours. Data indicate the measured resonance frequency, and error bars
indicate width of the resonance. Data from 08/02 are particularly stable, the spread in
the resonance frequencies is consistent with the width of the measured resonances. The
calibrations that night have a standard error of just 0.7 %. The measured resonances on
08/05 were broader and less stable.

We measure heating of atoms in the two-dimensional lattices by loading a Bose-Einstein
condensate into a lattice, holding them there for 30 ms, and then reducing the in-plane lattice
potentials to measure the reduction in condensate fraction due to heating in the lattice. When
loaded into a shallow optical lattice, the condensate returns to the initial condensate fraction.
When we load into the deepest optical lattices used for our experiments, where V532 = 100
kHz, we find that atoms that were held in the kagome lattice return to 90%±6% of the initial
condensate fraction, where atoms in the triangular lattice return to 92%±8%. The likeness of
these heating measurements indicates that our phase feedback system effectively stabilizes
the two lattices relative to one another, and the bichromatic lattice does not experience
significantly more heating than the monochromatic 532-nm lattice.

3.10 Revisiting the specs

1. Pure Bose-Einstein condensates produced in under 20 seconds

a) The hybrid trap enables rapid (for our system) condensate production

b) Tilt evaporation gives fine control over final atom number

2. Loose optical confinement, ω̄ < 30 Hz to achieve n ∼ 1 atom per site
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a) Our measured trapping frequencies and atom numbers allow for filling in the
lattice of either n = 1 or n = 2.

b) We performed experiments with n ∼ 1.5

c) The challenge in performing experiments with n = 1 related to thermal lensing in
the AOMs used for 532-nm light. Moving to lower fillings will be straightforward
now that the AOMs have been exchanged for others with less thermal lensing,
but careful calibrations of trapping frequencies will be required to ensure that the
trap frequency is constant at all lattice depths.

3. Lattice beam intensities actively stabilized over three orders of magnitude in beam
power.

a) This is achieved using logarithmic photodiodes and exponential amplifiers in the
intensity stabilization of all beams.

4. Alignment procedure should take less than 1 hour

a) By co-propagating the ODT beams, fiber coupling the 1064-nm lattice beams,
and having cameras to monitor the beam positions, alignment of the 1064-nm
lattice system takes fewer than 20 minutes

b) The 532-nm lattice alignment can take more than 1 hour. We had inconsistent
success in using cameras for this alignment, and had to fall back on using the
atoms. This will be easier with larger 532-nm lattice beams.

5. Alignment should last for more than 1 hour; or a full day with minor adjustments

a) At the beginning of the day, the ODT beams, which propagate in free space, drift,
leading to an imbalance in the lattice diffraction.

b) That drift requires minor adjustment after a few hours of running.

c) After this drift, the system is stable for more than 5 hours of data taking.

6. Bichromatic lattice beams are commensurate over the spatial extent of the gas

a) This is easily achieved without frequency referencing the lattices relative to one
another.

7. Relative phase of the two lattices is stable and controlled in software

a) The lattices are passively stable because of the optics design. Without phase
stabilization the lifetime of atoms trapped in the in-plane lattices is τ ∼ 1 second.
The vertical lattice reduces this lifetime.

b) The relative phase is controlled with two Mach-Zehnder interferometers where
one lattice beam acts as a reference for the other two.



CHAPTER 3. CREATING A BICHROMATIC OPTICAL SUPERLATTICE 79

c) The relative phase of the two lattices is controlled by passing the beams through
a variable thickness of glass, where they acquire a differential phase shift. The
thickness of wedge traversed is controlled in software.

3.10.1 Summary of recommended machine improvements

There were a few major drawbacks of the system as of the last experiment described in this
thesis. The first is the drift of the laser beams that occurs in the first few hours of use. It
took us a long time to realize that it is the ODT that drifts. Before we realized that, we
would recommence the alignment procedure, aligning everything to the atoms (ie. to the new
ODT position), rather than aligning the ODT beams to the already overlapping positions
of all of the other 9 beams. We know that it is the ODT that drifts because the 1064-nm
lattice beams are fiber coupled, and we see the same imbalance in either lattice after the
drift.

The second drawback is the thermal lensing in the AOMs used for the 532-nm lattice
beams. The beam waists were much tighter than planned at the location of the atoms.
Originally, we planned to have 532-nm beams with gaussian waists that were twice the
waists of the ODT beams. This would enable work with low trapping frequencies for the
full range of lattice depths. We could compensate the change in trap curvature from the
532-nm beams by increasing the power in the red-detuned ODT beams. To mitigate the
problems posed by tight 532-nm lattice beams, we tightened the trapping potential from the
ODT. Effectively, the ODT beams pin the atoms at a given position and are tight enough to
dominate the curvature of the trap for all powers of the 532-nm lattice beams. This meant
that we didn’t need to worry about the delicate balance of powers in compensating trapping
frequencies, but also resulted in a higher than originally desired central filling.

Third, the in-plane lattices are passively stable because of the care that was taken to
equalize the beam path lengths between the laser source and the atoms. However, the path
lengths to the interferometer detection differs because the pickoff that sends beam 2 to the
interferometers is before the atoms. The beam 2 path is ∼ 20 cm shorter than the other
paths. I think this is why our phase feedback does not lengthen the lifetime of atoms in the
lattice. We find that phase stabilization with high gain heats the atoms, and this is likely
because we are mapping phase noise detected at the photodiode onto the atoms. Currently
we use very low gain to stabilize the lattices relative to one another, but it does not provide
added stability and longer lifetime of atoms in the lattices.

Fourth, the vertical lattice doesn’t have a robust phase stabilization system, so that the
lifetime of atoms in the lattice is sometimes limited by the vertical lattice lifetime.

Finally, the Nufern amplifier used for the 1064-nm light regularly died and needed to
be replaced with a spare. We are very good at replacing the Nufern, and are now able to
recover the lattice within 2 days of replacing the Nufern. As impressive as it is, this is not
a skill I want to have.

Several of these issues have already been addressed in the lab. The lower power, ODTb
beam, has been fiber coupled, so that the only beam that can drift is ODTa. ODTa will
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henceforth be aligned to the lattice beam position. The AOMs for the 532-nm light have
been replaced with new ones that have substantially less thermal lensing. The 532-nm beams
are also likely to be fiber coupled. Finally, after the most recent death of a Nufern, it will
very soon be replaced with a Mephisto source.
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Chapter 4

Characterizing an optical honeycomb
lattice

This chapter supplements the publication included in Appendix appendix B in which we de-
veloped a sensitive matter-wave diffraction technique to characterize a honeycomb optical
lattice with a small offset in energy among the two sites in a unit cell. The technique is
analogous to x-ray diffraction from solids, except we may tune the interaction time between
the matter-wave and the lattice. We find that tuning this time leads to strong enhancement
of the effects of a slight lattice asymmetry, which we explain theoretically using two different
perturbative treatments:

• C. K. Thomas, T. H. Barter, T.-H. Leung, S. Daiss and D. M. Stamper-Kurn, “Sig-
natures of spatial inversion asymmetry of an optical lattice observed in matter-wave
diffraction,” Phys. Rev. A 93, 063613 (2016).

The first lattice that we built was the 1064-nm triangular lattice of intensity minima. As
discussed in chapter 3, we aligned the lattice first co-propagating lattice beams 1 and 3 to the
appropriate trapping beams that form the crossed dipole trap that holds the atomic cloud,
ODTa and ODTb, respectively. Beam 2 was then positioned so that it passed through the
center of the glass cell and out of the center of the window on the other side of the vacuum
chamber. To check whether we had effectively aligned the optical lattice, we created a Bose-
Einstein condensate in the |F = 1,mF = −1〉 state of rubidium and exposed it to honeycomb
lattice with depth V1064/h = 87 kHz ∼ 80 Er,lattice for a short pulse-time τ = 70 µs.

During a pulse of the optical lattice, the atoms undergo stimulated absorption and emis-
sion of photons into each of the optical lattice beams. This process results in momentum
transfer from the lattice beams to the atoms by the vector sums and differences of integer
multiples of the reciprocal lattice vectors Gi, where we use capital letters to indicate the
reciprocal lattice vectors of the 1064-nm lattice light. By measuring atoms in momentum-
space imaging, we separate atoms based on the momentum they have acquired during the
interaction time τ .
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Figure 4.1: A matter-wave exposed briefly to an optical lattice potential and then released
from optical confinement before absorption imaging produces a diffraction image (left). The
matter-wave plays the role of x-rays in characterizing the crystal lattice potential. In this
image, the underlying honeycomb lattice has a small inversion asymmetry (∼ 2% of the
lattice depth), but the settings for the experiment reveal a large inversion asymmetry in the
population of atoms diffracted to Gi and −Gi, indicated in diagram on right.

We perform this experiment after alignment to test two aspects of the optical lattice.
First, trigonal symmetry of the diffraction pattern indicates that the intensities of all the
lattice beams are equal at the location of the atoms. Second, high order diffraction indicates
a deep optical lattice. In a well-aligned lattice, each lattice beam will have its maximum
intensity at the location of the atoms, and in a well-balanced lattice, each of those intensities
is equal.

The first time-of-flight image that we took after preliminary alignment is shown in Fig.
4.1. It shows diffraction out to many orders, indicating that our alignment technique that
takes just ∼10 minutes is very effective, where alignment of previous lattices in our lab had
required use of the atoms and had taken hours. It also shows trigonal (C3) symmetry –
the image is unchanged under rotation by 2π/3. However, we were puzzled by the apparent
inversion asymmetry in the diffraction image. The first-order diffraction peaks show a clear
asymmetry in the number of atoms diffracted to Gi and −Gi, indicated in Fig. 4.1. 1

The visiting master’s student, Severen Daiss, suggested that this asymmetry may be due
to the spin-dependence of the lattice for atoms in the |F = 1,mF = −1〉 state of rubidium.
The honeycomb lattice constructed using our technique (Fig. 2.1), with in-plane polarized
beams, has opposite circular polarization at the location of each of the two sites in a unit
cell, which we label A and B. Atoms in the |F = 1,mF = −1〉 state of rubidium are sensitive
to this difference in polarization via the ac Stark effect, but the resulting offset in energy
at each site is very small, < 2.3% of the total lattice depth V1064. Because the asymmetry
is so small, weinitially rejected the explanation that such a small asymmetry could give rise

1This chapter changes labeling of basis vectors relative to other chapters.
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to such a large asymmetric signal, and we searched for other problems in our experimental
setup to try to explain the apparent breaking of C6 symmetry, i.e. rotations by π/3.

We quantified the first-order asymmetry with the parameter A of Eq. (4.1), and experi-
mented with changing the interaction time τ . Our observations, plotted in Fig. 4.2, were even
more puzzling. The asymmetry of the data is oscillatory, and described by multiple frequen-
cies. We now understand this oscillation of asymmetry in momentum-space as arising from
the interference of the Bloch states of an inversion-symmetric honeycomb lattice with a small
inversion-asymmetric perturbation. The theory curve, with no fit parameters and only the
lattice depth as an input parameter, is plotted in blue. For some pulse times in these data,
the slight real-space inversion-asymmetry produces an enhanced signal in momentum-space.

A =

∑
i p(Gi)− p(−Gi)∑
i p(Gi) + (−Gi)

(4.1)

and report a theoretical description of non-interacting particles diffracted by the pulse of the
optical lattice, where the matter-wave acts as a sensitive probe of the optical lattice. We
observe an oscillatory signal in the asymmetry A as we vary the pulse time τ . The data and
the result of our theoretical treatments are plotted in Fig. 4.2, where the solid, blue theory
curve has no free parameters and takes only the lattice depth as an input parameter, which
was calibrated by other means.

Highlighted in grey are regions of our data where the theoretical treatment does not cap-
ture the signal and Fig. 4.2(b) shows the source of the discrepancy. The discrepancy is an
artifact of the definition of the parameter A that we use to quantify our observations, which
is normalized to the total first-order peak population. Our measurement A is thus least
sensitive at points where the wavefunction has minimal population in the first order, and
these are the points of maximum discrepancy between our theoretical treatment and exper-
imental observations. This experiment represents a sensitive probe of the precise geometry
and depth of the optical lattice to which the atoms are exposed.

We also believe that our theoretical description explains data published in other works
in which a momentum-space asymmetry was observed in a Bose-Einstein condensate of two
spin states of 87Rb in the ground state of a honeycomb lattice potential formed by this same
method. The data was interpreted as evidence of a “twisted superfluid” ground state of the
optical lattice [18, 19], but we suggest that it was an artifact of the detection technique in
which, effectively, the atoms were exposed to a pulse of an inversion-asymmetric lattice with
an asymmetry and pulse time comparable to the parameters that result in the maximum
observed momentum-space asymmetry in our data. This pulse was the result of the transient
honeycomb lattice that repulsion from one atomic spin state creates for the second spin state
just after the condensate is released from trapping potentials to expand in time-of-flight
imaging.

This chapter describes how we came to understand the process by which a large asymme-
try in the momentum-space signal emerges from a small asymmetry in the real-space lattice.
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This work is published and is included in appendix B, and here the aim is to supplement
the publication rather than repeat its findings.
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Figure 4.2: The asymmetry in momentum-space data is measured as a function of pulse
time τ and the result of a calculation with no free parameters is shown in blue. The result
of a simpler treatment, that does not take into account any kinetic energy of the particles
during the pulse, is shown (green, dashed) and also agrees quantitatively with the short
time behavior where this approximation is valid. The points of largest discrepancy between
theory and experimental data occur near 30, 58 and 70-85 µs, where the total population
of atoms in the first order peaks (the denomenator of A) is at its minima. The lower plot
shows total population in the first-order peaks as a percent of the total number of atoms in
an image, and the theory curve is from the same calculation that predicts the oscillations of
A.

4.1 Circular polarization and Zeeman splitting

First, let us discuss the origin of the real-space asymmetry in the honeycomb optical lattice.
The in-plane polarization of 1064 nm beams that interfere to create the honeycomb lattice
can be decomposed into left- and right- circularly polarized light (σ+ and σ−, respectively)
relative to the vertical axis. The intensity pattern of each circular polarization of light
is a triangular pattern of identical form, except that the intensity pattern of one circular
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polarization is offset spatially from that of the other circular polarization. We write the
two intensity patterns I±(r) in Eq. (4.2), where Gi are shown in Fig. 4.2. I+(r) (I−(r))
correspond to the intensity pattern and lattice potential created by σ+(σ−) light, and the
sum I+(r) + I−(r) is the balanced honeycomb intensity lattice of Eq. (2.3) and Fig. 2.1(e).

I±(r) =
3

2
+ cos [G1 · r± 4π/3] + cos [G2 · r∓ 2π/3] (4.2)

+ cos [G3 · r± 2π/3]

In the ac Stark effect, circular polarization lifts the degeneracy of the magnetic sublevels
of the trapped atom, which in our system is equivalent to imposing a spatially-varying
‘fictitious magnetic field’ on the atoms [20]. We also impose a dominant external magnetic
field B0, oriented at an angle θ from the vertical axis, which is orthogonal to the lattice
plane. In the magnetic field, the atoms experience a linear Zeeman shift that is proportional

to |B0 + B(r)| = B0

√
1 + B(r)

B0
cos θ ∼ B0 + 1

2
B(r) cos θ.

This effective field leads to a potential for atoms in the |F = 1,mF 〉 state that depends
on the polarization of the lattice [21], with

V±(r) =
~
8

Γ2

∆

I±(r)

Isat

(
1± 1

3 · 2
∆fs

∆
gFmF cos θ

)
(4.3)

where Γ is the spontaneous decay rate, ∆fs is the fine structure splitting, ∆ is the detuning
of our 1064 nm lattice beams from the D-line doublet of Rubidium at 780 and 795 nm and
|∆| � ∆fs.

The full honeycomb lattice potential is V1064(r) = V+(r) + V−(r), which can also be
expressed as a sum of scalar and vector components of the ac Stark shift.

V1064(r) = V+(r) + V−(r) (4.4)

=
~
8

Γ2

∆Isat

[
(I+(r) + I−(r))− 1

6

∆fs

∆
(I+(r)− I−(r)) gFmF cos θ

]

= Vs(r) + Va(r) (4.5)

Consider the inversion operation, which takes r→ −r and thus interchanges the two lattices
V+(r) and V−(r). The first term Vs(r) is symmetric, Vs(−r) = Vs(r), and the second term
Va(r) is antisymmetric, Va(−r) = −Va(r), under inversion.

For alkali atoms, Va(r) is suppressed with respect to Vs(r) owing to the large optical
detuning from the atomic resonance. For the wavelength of light used in our lattice, the
ratio 2|Va(r)/Vs(r)| is at most 2.3%, so that Va(r) adds only a small inversion-symmetry-
breaking potential atop a graphene-like, inversion-symmetric honeycomb lattice.



CHAPTER 4. CHARACTERIZING AN OPTICAL HONEYCOMB LATTICE 86

4.1.1 Inversion symmetry

The honeycomb lattice has two sites in its unit cell, A and B, shown as different colors in
Fig. 4.3. In the lattice, sites A form a triangular lattice, as do sites B. The potentials V+(r)
and V−(r) correspond to the triangular lattices of A sites and B sites, respectively. If the two
lattice sites are equivalent, then it has twelve plane symmetries, and if they are inequivalent,
then it has six plane symmetries. The twelve symmetry operations are illustrated in Fig.
4.3.

(a)  Between-site mirror (b)  Through-site mirror (c)  π/3 rotation (d)  2π/3 rotation

A B ABA B A BB AB

Figure 4.3: To assess the symmetry group of the two-dimensional honeycomb lattice, we
consider twelve symmetry operations: (a) Three mirror symmetries along the through-site
planes, indicated by grey dashed lines. These mirror operations exchange sites A and B
and any honeycomb lattice in which sites A and B differ will be antisymmetric under these
operations. (b) The three mirror operations along the between-site planes map A sites to A
sites, and any honeycomb geometry is symmetric under these operation. (c) Three rotations
by π/3 exchange sites A and B. (d) Three rotations by 2π/3 map the lattice back onto
itself and any honeycomb lattice is symmetric under this operation. A lattice is in the C6

symmetry group if it is symmetric under all six of these rotations, and in the C3 symmetry
group if it symmetric under only the three rotations by 2π/3.

The potential Vs(r) is symmetric under all twelve operations in Fig. 4.3, because sites
A and B are equivalent. The potential Va(r) lifts the degeneracy between sites A and B,
thereby breaking half of the lattice symmetries. The honeycomb lattice with an offset in
energy between the sites is left with only the three through-site mirror symmetries and three
rotational symmetries (it is in the C3 symmetry group). The broken symmetries all involve
operations that exchange sites A and B. We can identify these operations by defining the
parity operator, which exchanges sites A and B.

P̂ :=
r→ −r

k→ −k
P̂ 2 = 1 (4.6)
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4.2 Raman-Nath regime

We first treat the problem in the Raman-Nath regime, where the optical lattice is analo-
gous to a phase grating for the Bose-Einstein condensate, a coherent matter-wave, and we
neglect the motion of the atoms during the pulse, and thus the kinetic energy term in the
Hamiltonians. The atoms in the condensate are exposed to the lattice potential V1046(r) for
time τ , during which they acquire a phase that is potential-dependent, and thus spatially-
dependent. When the atoms are subsequently released in time of flight, the spatially varying
phase results in an interference pattern with peaks at integer multiples of the reciprocal
lattice vectors Gi. In the Raman Nath regime, we can consider the pulse time τ to be a
small parameter, so that ψ(τ) ∼ (1− iV (r)τ − 1

2
V (r)2τ 2)ψ(0).

We consider only the effect of atoms scattering in the symmetric and antisymmetric
potentials and find that an asymmetry in the first-order diffraction peaks at p(Gi) and
p(−Gi) should arise even in this simplistic treatment. We consider scattering in k-space,
where both the scalar and vector Stark shift optical lattice potentials, Vs(r) and Va(r) are
characterized in momentum space by their Fourier components βs,a(±Gi) at the wavevectors
±Gi. Because both potentials are real, we know that βs,a(Gi) = β∗s,a(−Gi). C3 rotational
symmetry requires that all i are equivalent. The dominant term Vs is inversion-symmetric,
so that and the Fourier components Vs(±Gi) = βs are real. The symmetry breaking term
Va will have Fourier components of equal magnitude and opposite sign, so that they must
be pure imaginary and Va(±Gi) = ±iβa where βs and βa are both real.

We now consider the probability amplitudes p(±Gi) for atoms diffracting from their
initial zero momentum to a final wavevector ±Gi within a time τ . As discussed in the
paper, such diffraction can be achieved by one first-order process, with amplitude −i(βs ±
iβa)τ/hbar, and by two second-order processes, which sum to an amplitude (−i)2(βs ∓
βa)

2τ 2/~2. Summing the first- and second-order amplitudes, we observe the probabilities for
diffraction into opposite wavevectors differ from one another.

Let Bs,a = βs,aτ/~ to calculate the asymmetry parameter A at short times at for small
lattice asymmetry (|βa| � |βs|), neglecting terms of order O(τ 4).

P (±Gi) =|−i(βs ∓ iβa)τ
~

− τ 2(βs ± iβa)2

~2
|2 (4.7)

= | ∓Ba − (B2
s −B2

a)
2 + i(−Bs ∓ 2BsBa)|2

= ±2Ba(B
2
s −B2

a) +Bs ± 4B2
sBa (4.8)
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A =

∑
i p(Gi)− p(−Gi)∑
i p(Gi) + p(−Gi)

(4.9)

=
12BaBs − 4B3

a

2Bs

(4.10)

≈ 12BaBs

2Bs

= 6βaτ/~ (4.11)

This shows that even in the Raman-Nath regime, exposing a spin-polarized gas to an
inversion-asymmetric lattice, even when the antisymmetric component is very small com-
pared to the symmetric term, will give rise to an inversion asymmetry in the momentum-space
picture. This describes only an initial rise of A, which is still small within the Raman-Nath
regime.

4.3 Hamiltonians and symmetries

A more sophisticated understanding of the experiment is that rapidly introducing the lat-
tice potential projects the initial state into the eigenbasis of the lattice Hamiltonian. The
stationary Bose-Einstein condensate has momentum k = (0, 0), so when it is exposed to the
lattice it is projected into the q = Γ Bloch states, |ψn〉 =

∑
l bn,l e

ilgl·r, that have nonzero
populations |b0|2. The Bloch states were defined in Eq. (2.19), and here the subscript n is
the band index and l represents a point in momentum-space. 2 During the pulse time τ each
eigenstate evolves as in Eq. (4.13). After the pulse we measure the state |Φ(τ)〉, with

H |ψn〉 = En |ψn〉 (4.12)

|Φ(τ)〉 =
∑

n

|ψn〉 e−iEnτ/~ (4.13)

where |ψn〉 are the Bloch states with energy En, the subscript n identifies the energy band,
with indexing so that n = 1 is the ground state, and we drop the label q, which is zero for
the states of interest.

Note that the effect of inversion on the unperturbed Hamiltonian, and the perturbation:

[P̂ ,H0] = 0

{P̂ ,Ha} = 0

P̂H0P̂ = H0

P̂HaP̂ = −Ha

The parity operator indicates the inversion-symmetry of the lattice. The Hamiltonian
H0 is inversion-symmetric, and the perturbation Ha is inversion-antisymmetric.

2In this notation, l corresponds to each pair of integers m,n on the momentum-space grid defined by
k ∈ mG1 + nG2, with l = 0 corresponding to m = n = 0.
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Figure 4.4: The ground state and first excited state of the Hamiltonians in the Bloch basis.
The area of each spot represents the complex coefficient |bn,l|2 and color represents phase.
Axis labels on the far left image apply to all images. (a) The ground state (left) and first
excited state (right) of the unperturbed Hamiltonian H0, where all coefficients have phases 0
or π. (b) The ground state (left) and first excited state (right) of the perturbed Hamiltonian
H0 +Ha. The perturbation shifts the eigenenergies and hybridizes the eigenstates, so that
both states are asymmetric under inversion and have some population at k = (0, 0).

4.3.1 Bloch states and energy spectrum at q = Γ

To find the Bloch states and energies of the q = Γ = (0, 0), we follow the prescription detailed
in section 2.2 for both the symmetric Hamiltonian, H0, and the asymmetric Hamiltonian,
H0 +Ha, using the potentials defined in Eq. (4.4). Note that solutions for the unperturbed
Hamiltonian, H0, were presented in section 2.2.

We solve the Schrödinger equation for H0 and find eigenenergies, E
(0)
n , and the Bloch

states, |ψ(0)
n 〉, where the superscript indicates the order of the perturbation. The ground

state and first excited state are shown in Fig. 4.4(a), where the area of each spot represents
the amplitude squared of each coefficient, |bn,l|2, and color represents its complex phase. The
probability that the condensate at k = (0, 0) is projected into an eigenstate is proportional
to |bn,0|2, so in these states it is clear that the BEC will be projected into into ground state
but not the first excited state. Note that there are other excited states, |ψn〉, that have
nonzero coefficients bn,0. Because of the symmetry of the Hamiltonian, the complex phases
of the coefficients bn,l only take on the values 0 and π. The coefficients of the ground state
have six-fold rotational symmetry, but those of the first-excited state have only three-fold
rotational symmetry. We can identify the symmetry of the eigenstates of the unperturbed
Hamiltonian using the parity operator. Examining the eigenstates in Fig. 4.4(a), we see that
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〈ψ(0)
1 |P̂ |ψ(0)

1 〉 = +1 (4.14)

〈ψ(0)
2 |P̂ |ψ(0)

2 〉 = −1 (4.15)

We label the eigenstates ofH0 by their parity expectation value, with inversion-symmetric
states labeled |ψ(0)

i,+〉 and inversion-antisymmetric states labeled |ψ(0)
j,−〉, where i and j indicate

the band index.
We also diagonalize the asymmetric HamiltonianH0+Ha at q = Γ to find the eigenstates,

|ψ(1)
n 〉, and eigenenergies E

(1)
n , and plot them in 4.4(b). The ground and first-excited states

are shown in the right panel of Fig. 4.4. Here we see that the effect of the perturbation is
to hybridize these two states, so that the eigenstates both have nonzero coefficients b0, and
the complex phases of both states have only three-fold rotational symmetry. These states
are inversion-asymmetric, with expectation values of P̂ that can be between −1 and +1.

4.3.2 Inversion asymmetry and time evolution

The asymmetry signal can be predicted by examining the states of the unperturbed Hamil-
tonian, H0. During the pulse, the wavefunction evolves in each eigenstate at a frequency
determined by its eigenenergy. When the momentum-space wavefunction is measured, the
populated asymmetric states – those with nonzero |bn,l|2 – interfere with one another and
with the rest of the symmetric states in the system, leading to the oscillatory signal of A(τ).

The initial state is a zero-momentum condensate that can be written in the basis of
inversion-even eigenstates as |Φ(0)〉 =

∑
i ci|ψ

(0)
i,+〉, where the coefficient ci is the k = 0

coefficient of the Bloch function for the ith band, i.e. ci = bi,0. Considering the asymmetric
perturbation out to second order in perturbation theory (see appendix B for details), this
initial state evolves in time during the pulse time as

|Φ(t)〉 =
∑

i

cie
−iωi,+t

(
|ψ(0)
i,+〉+

∑

j

αj,i |ψ(0)
j,−〉
)

+
∑

j,k

−αj,kcke−iωj,-t |ψ(0)
j,−〉 (4.16)

where ωi,+ = Ei,+/~ and ωj,- = Ej,−/~ and αj,i =
〈ψ(0)
j,−|Ha|ψ

(0)
i,+〉

E
(0)
j,−−E

(0)
i,+

.

In Eq. (4.16), the sum on i represents the incorporation of inversion antisymmetry into

the even eigenstates |ψ(0)
i,+〉 of the unperturbed Hamiltonian. The last term of Eq. (4.16)

represents fully antisymmetric states |ψ(0)
j,−〉 for which the perturbation introduces population

at zero momentum.
To calculate the expected inversion asymmetry of |Φ(t)〉 using the eigenstates of H0, we

define a 6× 6 diagonal matrix, where each entry along the diagonal represents a wavevector
corresponding to a first-order diffraction peak. The matrix, M̂ , has matrix element ±1 for
the wave vectors ±Gi, and 0 at all other momenta. The expectation value 〈Φ|M̂ |Φ〉 =
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∑
i P (Gi)−P (−Gi) is is the numerator of the asymmetry metric A. By definition, M̂ is an

inversion-antisymmetric operator. The expectation value of any antisymmetric operator is
nonzero only for states of opposite inversion symmetry:

〈ψ(0)
i,+| M̂ |ψ(0)

k,+〉 = 〈ψ(0)
i,+| P̂ (P̂ M̂P̂ )P̂ |ψ(0)

k,+〉 (4.17)

= 〈ψ(0)
i,+| (−M̂) |ψ(0)

k,+〉 (4.18)

= 0

〈ψ(0)
i,+| M̂ |ψ(0)

j,−〉 = 〈ψ(0)
i,+| P̂ (P̂ M̂P̂ )P̂ |ψ(0)

j,−〉 (4.19)

= 〈ψ(0)
i,+| M̂ |ψ(0)

j,−〉 (4.20)

We thus consider only terms of opposite inversion symmetry in Eq. (4.16) to write down
M = 〈Φ(t)|M̂ |Φ(t)〉, which we split into two terms

M = M1(t) +M2(t) (4.21)

M1(t) =
∑

i

c∗i e
iωi,+t

(
〈ψ(0)

i,+|+
∑

j

α∗j,i 〈ψ(0)
j,−|
)
M̂
∑

k

cke
−iωk,+t

(
|ψ(0)
k,+〉+

∑

l

αl,k |ψ(0)
l,−〉
)

=
∑

i,k,l

c∗i ckαl,ke
−i(ωk,+−ωi,+)t 〈ψ(0)

i,+|M |ψ(0)
l,−〉+

∑

i,k,j

c∗i ckα
∗
j,ie
−i(ωk,+−ωi,+)t 〈ψ(0)

j,−|M |ψ(0)
k,+〉

=
∑

i,k,l

(
c∗i cke

−i(ωk,+−ωi,+)tα∗j,iMj,k + c.c.
)

(4.22)

M2(t) =
∑

i,j,k

(
c∗kcie

−i(ωj,−−ωk,+)t (−αj,i)M∗
j,k + c.c.

)
(4.23)

where i, j, and k identify band indices and we have consistently used notation where i and
k label inversion symmetric states |ψ(0)

+ 〉 and j and l label inversion antisymmetric states

|ψ(0)
− 〉.

Consider M(t) in the case that two states of H0 of opposite inversion-symmetry, |ψ(0)
i,+〉

and |ψ(0)
j,−〉, are close in energy so that αj,i is large and the states are strongly mixed. The

newly asymmetric states interfere with all remaining symmetric states |ψ(0)
i,+〉, as described by

both M1(t) and M2(t), and these oscillations will have equal amplitude. They also interfere
with one another, as described by M2(t) when k = i.

These equations show that, simply by analyzing the eigenstates of the unperturbed Hamil-
tonian, we can identify the relevant states in developing an asymmetry, and predict the
oscillation of A(τ).
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4.3.3 Identifying relevant eigenstates

In our publication we identified the criteria that states of the unperturbed Hamiltonian H0

must meet to significantly contribute to the signal of A after the perturbation. Beyond the
requirement that they are non-degenerate, the criteria can be clearly read off of Eqs. (4.21)
– the coefficients c, α and M must be large. Otherwise stated, the overlap of the symmetric
states with the initial condensate, ci and ck, must be large, the symmetric |ψi,+〉 and an-
tisymmetric |ψj,−〉 states must be close in energy so that αi,j is large, and the symmetric
|ψk,+〉 and antisymmetric |ψj,−〉 states must have large amplitude in the first order peaks, so
that Mj,k is large. Note that these can be met for either i = k or i 6= k.

Eigenstates of our system that satisfy the criteria are plotted in Fig. 4.6. In our lattice
there is just one pair of states whose hybridization dominates the asymmetry signal. The
ground state (i = 1) and first excited state (j = 2) are close in energy, separated by just 2
kHz, so that αji is large and they are strongly mixed by the perturbation. Being low-energy
states, they have high population at the first-order momenta ±Gi, and the ground state has
a large population at k = (0, 0), so that ci is large and they satisfy all of our criteria. Their
oscillation with one another at 2 kHz is the strongest contributor to the asymmetric signal,
with amplitude |c1|2M1,2, followed by their oscillation with other high energy states, |ψ(0)

k,+〉
with amplitude c1ckM2,k. The most relevant states |ψk,+〉 are the non-degenerate states of
H0 that have highest population at k = 0 and k = ±Gi, so that ck and M2,k are large. The
states |ψk,+〉 are nearly unaffected by the perturbation, and contribute to the oscillation in
A just through their oscillation with the lowest energy states.

The lower panel of Fig. 4.6 shows the eigenstates of the perturbed Hamiltonian H0 +Ha.
We do not include ± subscripts to indicate symmetry under inversion, because the perturbed
states are neither symmetric nor antisymmetric, but asymmetric as indicated by color in the
low-energy states in the grey box of Fig. 4.6. The eigenenergies En/h are indicated by
horizontal lines, the thickness of which indicate the value of cickM2,k and thus the amplitude
of oscillation with states |ψ1〉 and |ψ2〉.

Our paper demonstrated that we could account for the experimentally observed asym-
metry signal A(τ) with the calculation of M(t) by considering the complete eigenbasis of the
Hamiltonian H0 and calculating the time evolution during the pulse as in Eq. (4.21). The
results of this calculation are plotted as a grey line in Fig. 4.5.

We also showed that the dominant oscillation in A(τ) was accounted for by considering

oscillation among just three states, |ψ(0)
1,+〉, |ψ(0)

2,−〉, and |ψ(0)
31,+〉. The results of this three-state

calculation are plotted in the red dotted line of Fig. 4.5.
Figure 4.5 also shows that by considering just a few more states, the remaining states

shown in Fig. 4.6, we account for the entire oscillation signal. We plot the calculated signal
that results from including the next states that satisfy our criteria and are plotted in Fig.
4.6. By including states |ψ(0)

25,+〉 and |ψ(0)
14,+〉 in addition to the three states already considered,

we produce the blue dot-dashed curve, which closely approximates the full calculation. By
including the remaining states of Fig. 4.6, we produce the black dashed curve. This cal-
culation considers only eight states of the symmetric Hamiltonian H0 and nearly perfectly
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overlaps with the calculation that considers all states in the eigenbasis.

1

0

0.5

0 20 40 60 80 100

225 states

8 states
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Figure 4.5: Considering just eight of the 225 eigenstates calculated very closely represents
the complete treatment. The result of the asymmetry calculation considering only three, five
or all eight states of Fig. 4.6. All calculations involve states |ψ(0)

1,+〉 and |ψ(0)
2,−〉 and the third

state |ψ(0)
31,+〉; the five-state calculation includes states |ψ(0)

25,+〉 and |ψ(0)
14,+〉, and the eight-state

calculation involves all states shown in the figure.
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Figure 4.6: Eigenstates and energies of the perturbed and unperturbed Hamiltonians, where
the primary source of asymmetry at the vectors Gi is from the hybridization of the lower
two states |ψ(0)

1,+〉 and |ψ(0)
2,−〉. They oscillate with upper states |ψk,+〉 that are unaffected by

the asymmetric perturbation. Eigenenergies of each state are indicated along the center of
the figure, with line thickness indicating the amplitude of oscillation.
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Chapter 5

Increasing Interactions

This chapter discusses the phase transition between the superfluid and Mott insulating phases
of a lattice-trapped gas under strengthening particle-particle interactions in two configurations
of the bichromatic lattice. The transition is studied under the same conditions in the trian-
gular and kagome lattices, and the effect of geometry on the phase transition is examined.
This work was reported in the following manuscript that is currently in review and included
in appendix C.

• C. K. Thomas, T. H. Barter, T.-H. Leung, M. Okano, G. B. Jo, J. Guzman, I. Kimchi,
A. Vishwanath and D. M. Stamper-Kurn, “Mean-field scaling of the superfluid to Mott
insulator transition in a 2D optical superlattice,” arXiv: 1702.04433 (2017).

5.1 Summary of the experiment and results

We take advantage of the tunability and repeatability of our optical superlattice to perform a
quantum simulation of the Bose-Hubbard model that is insensitive to many of the experimen-
tal parameters that often plague optical lattice simulations [3, 4, 22]. The Bose-Hubbard
Hamiltonian that describes bosonic quantum gases trapped in periodic lattices is written
(5.1) by indexing each lattice site and considering the behavior and associated energy scales
of atoms on the lattice: atoms can tunnel among neighboring sites, with energy J , or they
can share a single site, in which case they repel one another with energy U .

HBH = −J
∑

〈i,j〉

â†i âj +
∑

i

U

2
n̂i(n̂i − 1) (5.1)

where 〈i, j〉 indicates a sum over all nearest neighbor lattice sites. The bosonic creation and
annihilation operators on site i are â†i and âi, respectively, so that the number of particles
on site i is given by the number operator n̂i = â†i âi.

In Eq. (5.1), the energies J and U are of opposite sign, so that there is a competition
between them in determining the lowest energy state of the Hamiltonian. When the ratio
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U/J is small, the ground state of the lattice is delocalized and phase coherent – a superfluid.
In the limit of large U/J , the ground state is the number-squeezed Mott insulating state,
wherein each lattice site hosts exactly the same integer number of particles.

A lattice-trapped gas at zero temperature undergoes a phase transition between the su-
perfluid and Mott insulating states that is driven by long-range quantum fluctuations. As
inter-particle interactions grow stronger, U/J increases and long-range fluctuations allow
the system to sample the full extent of the lattice to find the state that minimizes the
free energy of the Hamiltonian. Mapping out the phase diagram of Eq. (5.1) necessitates
treatment of strong interactions and long-range quantum fluctuations, which can be com-
plicated to describe theoretically, but fairly straightforward to realize experimentally with a
low-temperature gas.

In an optical lattice, the ratio U/J increases with lattice depth, which is determined by
laser beam intensity and is thus straightforward to control. The values of U and J for a
particular calibrated lattice depth are determined from the ground-state Wannier functions
as described in section 2.6. Roughly speaking, increased lattice depth leads to narrower
Wannier functions, which decreases the tunneling rate and increases the on-site repulsion.

In this work, we propose and implement a quantitative test of the phase diagram of the
Bose-Hubbard Hamiltonian that is valid at non-zero temperature and in the presence of the
inhomogeneity introduced by the trapping potential. We focus on a mean-field treatment
of Eq. (5.1), which predicts that all system properties are determined by the characteristic
system energies once they are scaled by the product of the lattice coordination number, z, and
the tunneling energy, J , irrespective of the specific geometry of the lattice in which the bosons
propagate. We perform a direct test of the mean-field scaling prediction using our optical
superlattice, with which we can engineer two identical experiments that differ only in lattice
coordination number. We compare the loss in coherence along the entire trajectory of the
transition between the superfluid and Mott insulating phases in the kagome and triangular
lattices, with z = 4 and z = 6, respectively. This is a test of mean-field predictions that
does not depend on comparing the phase transition point to a theoretical model that must
take into account all experimental parameters. Our test allows for systematic experimental
or measurement errors that are common to both experiments.

In our Gutzweiller mean-field treatment of Eq. (5.1), we show that even when distinct
quantum simulation experiments differ in any particular parameter – atom number, external
trapping frequency, lattice spacing, unit cell volume or number of cites per unit cell – these
differences are accounted for if a generalized characteristic density N/K is held constant.
The argument is related to one presented in Rigol et. al. [22] that is discussed in section 5.5
and shows that any experiments performed with an optical square-lattice can be described
by a characteristic density, ρ̃, which determines the system properties and the critical point
of the superfluid-Mott insulating phase transition. This has far-reaching consequences in
using ultracold atomic systems as quantum simulators, because it means that simulations
with different experimental parameters can be compared with one another and their results
extrapolated to the systems they aim to emulate.

We find that scaling the ratio U/J of the kagome lattice dataset by ζ = 1.6± 0.1 results
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in optimal collapse of the phase transition data with the triangular lattice dataset, where
the quoted error is a Monte Carlo statistical estimate. The analysis of scaling behavior
shown in Fig. 5.1 was carried out by Thomas Barter. We compare our scaling measurement
to the mean-field prediction of ζmf = ztri/zkag = 1.5. While this scaling is consistent with
mean-field predictions, it does not necessarily rule out the more sophisticated treatments
of the transition. For example, a quantum Monte Carlo treatment of a gas with thermal
energy kBT = τ = 0 in a homogenous lattice predicts critical points for the triangular and
kagome lattices of (U/Jtri)

∗ = 50 and (U/Jkag)
∗ = 29, which have a ratio of 1.7. This

ratio of critical points indicates that a deviation from mean-field scaling may be small in
the τ = 0, homogenous lattice treatment. However, it cannot be directly compared to our
measurement, which tests scaling throughout the transition.

This experiment is a quantum simulation of condensed matter systems that differ in
their lattice geometry under otherwise identical experimental parameters, and the ability to
engineer such a scenario is unique to quantum simulation with ultracold atoms. Moreover,
by comparing phase transition data in these systems, we circumvent many challenges that
arise when trying to use ultracold atoms in optical lattices to perform quantitative tests of
theoretical treatments of Hamiltonians relevant to condensed matter problems.

C
o

h
e

re
n

t 
F

ra
c
ti
o

n

(a)   Spline fit (c)   Monte Carlo(b)   Minimization
C

o
u

n
ts

U/J

Triangular

Kagome

S
S

E
 (

C
F

)

0

1000

2000

0.8 1.0 1.81.61.41.2 2.0

0

0.1

0.2

0.3

0.4

0.5

100 101 102
-0.1 0

0.2

3.52.51.5

0.1

Figure 5.1: (a) The data are interpolated with a smoothing spline fit, which enables a
comparison of the two datasets. (b) The x-axis of one smoothed curve is scaled by a scaling
parameter ζ, and the sum of squared errors between the two curves is minimized. (c) This
minimization is repeated many times for datasets generated from the statistical fluctuations
in the coherent fraction data. The scaling analysis was carried out by Thomas Barter.

This chapter presents a mean-field treatment of an ultracold gas with finite temperature in
an optical lattice with external harmonic confinement and the mean-field scaling prediction
that results in section 5.2. In section 5.3, we describe the experimental techniques and
the method of measuring the coherent fraction of atoms in a lattice. More sophisticated
theoretical treatments of the Bose-Hubbard Hamiltonian are discussed in section 5.5. Finally,
section 5.6 discusses experiments in which we drive the phase transition by changing the
lattice geometry. In these experiments, we study the state of the lattice after tuning from
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the triangular lattice, with z = 6, to the kagome lattice, with z = 4, and also to the decorated
triangular lattice configuration of the superlattice, where again z = 6 but all tunneling events
are second-order and mediated by sites that are raised in energy by ∆, so that the tunneling
energy is given by J ′ = J2/∆.

5.2 Mean-field theory with finite temperature gas

and harmonic confinement

A mean-field treatment of the Bose-Hubbard model predicts that thermodynamic quantities
like number, superfluid number, and entropy per lattice site are functions only of the scaled
interaction strength, U/zJ , temperature, τ/zJ , and chemical potential, µ/zJ , where z is
the lattice coordination number and τ = kBT . Aside from the inclusion of z, the mean-field
theory is insensitive to the geometric structure of the lattice [23].

A mean-field treatment of the Bose-Hubbard model neglects non-local correlations, so
that the ground state solution to Eq. (5.1) is separable and can be written as a product state
of identical states on each lattice site [23–25]. For a sample with τ = 0, each site i hosts an
identical wavefunction |φ〉i, whereas when τ > 0, each site hosts the density matrix ρi. The
translationally invariant states |Ψ〉, for τ = 0, and P , for τ > 0, are written as

τ = 0 |Ψ〉 =
∏

i

|φ〉i (5.2)

τ > 0 P =
∏

i

ρi (5.3)

We want to use the assumptions of mean-field theory to write the Bose-Hubbard Hamilto-
nian on the lattice system as a Hamiltonian on a single site i. Consider the τ = 0 expectation
value of the Hamiltonian,

Emf = 〈Ψ|HBH |Ψ〉 (5.4)

= 〈Ψ|
∑

i

(
−J/2

z∑

j=1

(
â†i âj + â†j âi

)
+
U

2
n̂i(n̂i − 1)

)
|Ψ〉 (5.5)

Here, we have written the Hamiltonian as a sum over terms on site i, each of which will
be identical, so that the sum results in an overall multiplicative term N , the total number
of particles. The sum on j is a sum over all of the nearest neighbors of site i, up to the
lattice coordination number, z. Again, translational invariance implies that the term being
summed will be the same for all bonds, so that



CHAPTER 5. INCREASING INTERACTIONS 99

Emf = 〈Ψ|N
(
−zJ/2

(
â†i âj + â†j âi

)
+
U

2
n̂i(n̂i − 1)

)
|Ψ〉 (5.6)

In a Gutzwiller approach to solving this Hamiltonian, we treat the kinetic term pertur-
batively to write a mean-field Hamiltonian on a single site i. We approximate the tunneling
operator

â†j âi ' 〈φj|â†j|φj〉âi + 〈φj|âj|φj〉â†i − 〈φj|â†j|φj〉〈φi|âi|φi〉 (5.7)

= ψ∗âi + ψâ†i − ψ∗ψ (5.8)

where we have defined a complex number ψ = 〈φj| âj |φj〉 that represents the superfluid
amplitude on site j. Translational invariance implies that ψ is the same on every lattice site.
We can now write a mean-field Hamiltonian on a single site i.

Emf/N = 〈φi|
(
−zJ

(
ψ∗âi + ψâ†i − |ψ|2

)
+
U

2
n̂i(n̂i − 1)

)
|φi〉 (5.9)

= 〈φi|Hmf |φi〉 (5.10)

To find the ground-state of this Hamiltonian, we minimize the free energy with respect to
superfluid amplitude ψ and on-site wavefunction |φi〉 subject to the constraint that particle
number is conserved.

H(c)
mf = −zJ(ψ∗âi + ψâ†i ) + zJψ∗ψ +

U

2
n̂i(n̂i − 1)− µn̂i (5.11)

where the superscript (c) indicates that the Hamiltonian is constrained.
The mean-field solution for |Ψ〉 is now determined by minimizing the constrained, single-

site Hamiltonian H(c)
mf with respect to the wavefunction, |φ〉, and the superfluid amplitude,

ψ. In practice, we perform this minimization by first minimizing H(c)
mf with respect to |φ〉

for many different chosen values of superfluid amplitude ψ, and then finding the minimum
of all such solutions. To map out the phase diagram, we repeat this procedure at each value
of µ and J .

When τ > 0, we must consider the full eigenspectrum of the Hamiltonian and write the
thermal density matrix on a site as

H(c)
mf |φγ〉 = Eγ |φγ〉 (5.12)
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with level-occupancy that depends on temperature β = 1/τ .

Z =
∑

γ

e−βEγ (5.13)

ρi =
1

Z
e−βH

(c)
mf (5.14)

In this case, the superfluid amplitude is simply ψ = Tr[âρi], and again we minimize the
energy with respect to ψ and ρ.

5.2.1 Scaling

If we scale all energy terms by the product zJ , the states and density matrix are unchanged.

ρi =
1

Z
e−(βzJ)(H(c)

mf/zJ) (5.15)

=
1

Z
e−βH

(c)
mf (5.16)

Therefore, the equation of state for atoms in the lattice must also be invariant to this
scaling, so that per-site system properties such as particle number, n, superfluid number,
nsf, and entropy, s, must also be invariant to the scaling of system energies by the product
zJ . We write

f

(
µ

zJ
,
U

zJ
,
τ

zJ

)
= f

(
µ̃, Ũ , τ̃

)
(5.17)

with f ∈ {n, nsf , s}.
In the local density approximation, we account for the harmonic confining potential

of the atoms with a local shift in the chemical potential, µ (r). The bulk properties of
the harmonically-confined, lattice-trapped gas are calculated by integrating over the spatial
extent of the system,

F
(
µ̃, Ũ , τ̃

)
=

∫ ∞

0

d3r f
(
µ̃ (r) , Ũ , τ̃

)(α
v

)
(5.18)

where F is a property of the bulk gas, such as atom number, superfluid number or entropy,
and where harmonic confinement leads to a spatial dependence of the chemical potential,
α is the number of sites in a unit cell of the lattice and v is the volume of that cell. This
approximation ignores correlations across the trap.

We can remove the r-dependence of the equation by a change of variable, using the
relation µ (r) = µ0 − 1/2mω̄2r2, where m is the atomic mass, ω̄ is the harmonic trapping
frequency, and µ0 is the chemical potential at the center of the trap.
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µ = µ0 − 1/2mω̄2r2 r =

√
2 (µ0 − µ)

mω̄2

dµ = −mω̄2rdr

d3r = 4πr2dr

= 4π

√
2 (µ0 − µ)

mω̄2

(
− dµ

mω̄2

)

=
−4
√

2π

(mω̄2)3/2

√
(µ0 − µ) dµ

so that Eq. (5.18) becomes

F
(
µ̃0, Ũ , τ̃

)
=

4
√

2π

(mω̄2)3/2

(α
v

)∫ µ̃0

−∞
dµ̃
√

(µ̃0 − µ̃) f
(
µ̃, Ũ , τ̃

)
(5.19)

= K

∫ µ̃

−∞
dµ̃′ f(µ̃′, Ũ , τ̃). (5.20)

Where F ∈ {N,Nsf, S}, f ∈ {n, nsf, s} and the tilde indicates an energy scaled by zJ .
The effective number of occupied lattice sites is given by

K =
πα

v

(
2zJ

mω̄2

)3/2

(5.21)

where α is the number of equivalent sites in the unit cell, v is the unit cell volume, m is the
atomic mass, and ω̄ is the geometric mean trapping frequency. The quantity N/K generalizes
the “characteristic density,” as defined by Rigol et al. [22], to non-square lattices.

This is to say that, though optical lattice experiments may differ in any particular pa-
rameter – N , α, v, ω̄ – any such differences are accounted for if the generalized characteristic
density N/K is held constant. This has been discussed in the specific case of a single-site
unit cell, where the characteristic density ρ̃ = Nad(V/J)d/2, where V is the trap volume
and d the dimensionality, determines system properties, and the superfluid-Mott insulator
critical point has been measured for a variety of system parameters and also of ρ̃, confirming
that system properties depend only on ρ̃ [6].

Specific to our experiment, Eq. (5.21) means that we can account for a change in α with
a corresponding change in the overall trapping frequency of the harmonic confinement ω.

Example: a superfluid at τ = 0

Eq. (5.19) applies everywhere within the Bose-Hubbard phase diagram, which means that
we do not have to know the chemical potential or the temperature of the gas in order to
perform a valid test of the mean-field scaling prediction.
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We know only a zero-temperature approximation to the chemical potential, and only
have an analytic expression in the superfluid limit. In this limit, where τ = 0 and in the
deep superfluid regime, we can explicitly write down the number density n to find the total
number N according to Eq. (5.19).

n (µ (r) , U, 0) =
1

U

(
µ0 −

1

2
mω2r2

)
=

zJµ̃

U
(5.22)

So that

N =
α

ω3

4
√

2π

m3/2v
(zJ)3/2 zJ

U

µ̃0∫

−∞

dµ̃ µ̃
√

(µ̃0 − µ̃) (5.23)

=
α

ω3

4
√

2π

m3/2v

(zJ)5/2

U
µ̃

5/2
0 (5.24)

and

µ̃0 =

(
15

16

vm3/2ω3UN√
2πα

)2/5
1

zJ
(5.25)

µ0 = zJµ̃0 (5.26)

= µ′
(
U0

U

v

α

)2/5

(5.27)

where in the last line we relate this quantity to the chemical potential, µ′, of a harmonically
confined gas without an optical lattice. In Eq. (5.27) the dependence on zJ has dropped
out, and the chemical potentials will be the same in any lattice if αU/ω3 is held constant.

This example assumes a specific form of n(µ, U, τ), which is valid in the τ = 0 and deep-
superfluid limit. However Eq. (5.19) applies everywhere within the Bose-Hubbard phase
diagram.

5.2.2 Numerics

We follow the minimization procedure to calculate the expected superfluid fraction as a
function of the ratio U/zJ , and plot it in 5.2 for two different values of system entropy. In
this calculation we assume adiabatic increase of the lattice depth, so that τ/J is constant.
As the lattice depth increases, J decreases so that the temperature τ also decreases [26]. An
important note is that our blue-detuned lattice does not lead to the compression temperature
runaway that is of concern in other lattice works.

In the low entropy case shown, S/N = 0.4 kB, the temperature of the gas starts lower
than the Mott melting temperature τ ∗ ∼ 0.2 U/kB, and decreases to near τ ∼ 0.04 U [27]. In
the high entropy case, S/N = 1kB, the initial temperature is τ ∼ 0.3 U . This is consistent
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with our calculations of per site particle number as a function of radius, where, in the low
entropy case, there is a Mott insulating shell with n = 1, but in the high entropy case exhibits
no such plateau.

(a) (b)
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Figure 5.2: The predicted superfluid fraction as a function of U/zJ by finite temperature
mean-field theory. We show calculations when considering two values of total entropy. The
low-entropy case (dark blue, solid line) results in a local Mott insulator, as indicated by the
plateau at n = 1, where s = 0. The high-entropy case undergoes the transition between the
superfluid and normal phases. Our data of coherent fraction are consistent with the low-
entropy calculation of superfluid fraction here, the difference in these metrics is discussed in
section 5.4.

5.3 Experimental test of the mean-field hypothesis

5.3.1 Experimental sequence and parameters

We start every iteration of the experiment with a Bose-Einstein condensate of N ∼ 100, 000±
10% atoms with no discernible thermal population. We find that using tilt evaporation results
in a stable number and temperature, so that N and S are the same in every iteration. All
experiments are randomized, so that there is no systematic bias between the two geometries
or among lattice depths. We then increase the harmonic confinement of the trapping beams
while loading the atoms into a vertical lattice of depth V⊥/h = 41 kHz. The trapping
frequencies from all red-detuned beams are (ωx, ωy, ωz) = 2π (34, 64, 49) Hz, so that ω̄ =
2π × 47 Hz.

Finally, we ramp the in-plane lattice beams, in either the triangular or kagome lattice
geometry, with a base-10 exponential increase of beam intensity. Using a base-10 increase
rather than base-e further slows the initial ramp of beam intensity and improves the likeli-
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hood of an adiabatic ramp, which may mitigate the challenges identified in adiabaticity of
loading an optical lattice [28].

In the final lattices, for a given depth of the green lattice V532, U and J are the same to
within 1%, regardless of the lattice geometry. This is because the power in the 1064-lattice
beams is low enough that it does not affect the curvature of the wells in which atoms reside,
so that the Wannier functions are the same in either lattice.

In our experiment, for technical reasons, we did not change ω̄ to account for the difference
in α, so that K of Eq. (5.21) was not held constant.

η = Ktri/Kkag ∼ 1.43 (5.28)

This means that in the kagome lattice, the total entropy and particle number are scaled
by a factor of η = 1.43 relative to the triangular configuration. Figure 5.3 shows that the
deviation in the mean-field treatment between the datasets due to this scaling is minimal.
We do not expect this to be a large contribution error in the scaling measurement.

We consider the effect that this would have in mean-field treatment we have already
described. Here we consider two lattices and plot superfluid fraction against the scaled
parameter U/zJ for two lattices. The first that we consider, shown as green triangles in Fig.
5.3, represents a lattice with a constant number and entropy, consistent with the data in
our experiment. For the second lattice, we scale the number and entropy by η = 1.43, and
plot as purple six-pointed stars to represent the kagome lattice. The effect of this scaling
in the mean-field treatment is shown in Fig. 5.3 and is smaller than the error bars in our
experiment.
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Figure 5.3: A mean-field treatment of a 2-dimensional lattice that includes external harmonic
confinement and nonzero temperature, for experiments in which the total number, N, and
entropy, S, differ by a factor of η = 1.43. This represents the difference in the experimental
parameters for our kagome (filled purple stars) and triangular (open green triangles) lattices,
and shows that though we have a deviation in lattice parameters, we do not expect it to
have a strong influence on our scaling result.
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5.4 Analysis

In this work we chose to measure the coherent fraction of atoms diffracted from the lattice.
This amounts to a correlation function of lattice-trapped gas. It is representative of the
superfluid fraction of atoms in the lattice, though the two parameters differ.

5.4.1 Superfluid fraction vs. measured coherent fraction

Coherent fraction offers a representation of the theoretically predicted superfluid fraction,
but the two parameters differ throughout the phase transition. Here we highlight two major
reasons for the difference. The first is quantum depletion, which causes part of the superfluid
to turn up in the tail of the momentum distribution, leading to under-estimation of superfluid
number. The second is related to the method of extracting data from the lattice-trapped gas.
Atoms are released from the lattice and imaged in the far field, but during the expansion from
the lattice they may collide with one another. In chapter 4 we showed that such collisions
can lead to misinterpretation of data. In this experiment, collisions among superfluid atoms
will result in their appearance at points in k-space other than the superfluid peaks, leading
to under-estimation of superfluid number [29].

As interactions grow stronger, the width of the condensate grows and atoms are effectively
pushed out of the condensate and into the higher quasimomentum states. These atoms,
which are part of the superfluid fraction of the gas, will show up in the higher momentum
tails of the distribution, so that they are counted as thermal population in our analysis.
This picture of quantum depletion is simplistic. It turns out that there is a regime in which
nonzero temperature and interactions can lead to a coherent fraction that is larger than the
superfluid population [30].

5.4.2 Quantifying the coherent fraction

The measurement procedure is shown in Fig. 5.4 in the case of a superfluid in the kagome
lattice, to fully illustrate the procedure. This same procedure, with the same analysis regions,
is used for both the kagome and triangular lattice configurations.

After releasing the atoms from optical trapping, we allow them to expand for a quarter
cycle in a weakly confining magnetic trap [31]. This procedure, known as “momentum
focusing”, allows for nearly 100 ms of expansion and thus ensures that the image is taken in
the far-field and represents the ground-state of the initial lattice. It also produces a sharp
image in momentum-space, so that the peaks that represent coherence are sharp.

After acquiring an image, as shown in the first image in Fig. 5.4, we block out all sharp
peaks to fit the thermal distribution in the center of the cloud (at k = 0), and subtract
that fit to produce the second image. The number of atoms remaining at k = 0 are the
coherent contribution, and are summed. In the superfluid regime, this procedure yields the
same coherent number as performing a parabolic fit to the coherent peak, but such fits don’t
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make sense in the Mott insulating regime, and our goal was to have an analysis procedure
that is exactly the same for all data.

The next step is to count the coherent atoms in the satellite peaks. In theory, each
satellite peak is a smaller copy of the zeroth order peak, so that the thermal background
on each satellite peak should be the same, only scaled, relative to the zeroth order peak.
However, the signal at the satellite peaks is small, so that the thermal regions are difficult
to fit reliably. In order to quantify the superfluid in the satellite peaks, we consider two
regions around each peak. First, the background region, shown in the third image of Fig.
5.4. These rings represent a region around each peak that contains thermal atoms associated
with each peak. They are near the coherent peaks, and the thermal fit at the zeroth order
in this data is broad enough that the signal in these rings represents the peak of the thermal
distribution. We then sum the data within each satellite peak, shown in the final image of
Fig. 5.4. This sum represents both the number of coherent atoms within the regions, on top
of the thermal background. The thermal background is then subtracted, using the data from
the background rings.

We found this metric to be robust to changes in the size of the analysis regions, so long
as the regions encompass only one satellite peak.

(a) (b) (c) (d)

Figure 5.4: Analysis procedure. An absorption image is taken after releasing the atoms into
a weakly confining magnetic trap and allowing them to evolve for a quarter-cycle, resulting
in a momentum-focused image in the far-field. The second image shows the result after
we fit the central thermal cloud and subtract it from the image. This 2 dimensional fit is
performed by blocking out the central condensate peak as well as the satellite peaks. The
number of condensed atoms in the central peak is counted after the subtraction. The third
and fourth images indicate measurements of the satellite condensate number. The satellite
peaks don’t have enough signal for full bimodal fits. We measure the coherent number
by summing population at each coherent peak and subtracting the thermal background
measured in the rings. We sampled many different ring sizes to ensure that this was a
consistent representation of the thermal background.
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State determination by other means

Our measurement of the coherent fraction is performed with a single image. Another more
sensitive approach is to take two images, one in which the peak is saturated, so that the
non-condensed atomic population is emphasized, and another that is not saturated so that
the coherent population can be counted or fit [28, 32]. The method is otherwise comparable
to our work. Coherent fraction is also sometimes measured with bimodal fits to the satellite
peaks [6].

The most commonly used metric for the state of a lattice-trapped gas is the visibility V
[33]. We think of the measurement in momentum-space as a measurement of the correlation
function of lattice-trapped atoms. They scatter from the lattice, resulting in a diffraction
pattern on the camera, where the atomic density is spatially varying as n(r) ∼ |w̃(k)|2S(k),
where

S(k) =
∑

i,j

eik·(ri−rj)〈â†i âj〉 (5.29)

where ri labels the position of site i, w̃ is the Fourier transform of the Wannier function
w(ri). The correlation function 〈â†i âj〉 determines the sharpness of the interference peaks.
The visibility, defined as

V =
nmax − nmin
nmax + nmin

=
Smax − Smin
Smax + Smin

(5.30)

is then used to quantify the extent of correlations in the lattice-trapped gas. The claim in
the second equality is that because the Wannier envelope is the same for nmin and nmax, it
cancels and results in a direct measurement of the contrast in structure factor S. The claim
is that this measurement is not sensitive to saturation of the image or mean-field broadening
of the individual peaks.

In a square lattice, it is fairly straightforward to define regions of the image to use for
the maximum and minimum interference peaks, as illustrated in Fig. 5.5(a). Generally, the
maximum density is measured at the location of first-order diffraction, and the minimum
density is measured at a point that is equidistant from the zeroth order peak and maximally
distant from neighboring first-order peaks. This minimum is at the center of the second
Brillouin zone.

The main challenge in applying this metric to our work is that to test the mean-field
scaling hypothesis requires an analysis technique that is identical for the triangular and
kagome lattices. In both lattices, the location of nmax is the same, at the location of the first-
order diffraction of the triangular lattice (and second order of the kagome lattice). However,
the number of atoms diffracted to that position differs, even when the superfluid fraction in
each lattice is identical. The visibility metric generally emphasizes signal of coherence, but
is not a very quantitative measurement of the state of a lattice-trapped gas.
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(a)   Visibility in a square lattice (b)   Kagome and Triangular

 lattice diffraction

Figure 5.5: (a) The visibility measurement, defined in a square lattice, is hard to define
in a lattice with multiple sites in a unit cell and impossible to define consistently for the
triangular and kagome lattices in a way that does not systematically change the visibility
between the lattices. (b) By definition the visibility will differ in a triangular and kagome
lattice that have the same coherent fraction, as indicated by spot-sizes in these calculations
deep in the superfluid regime of both lattices.

The central peak width is often cited in conjunction with the visibility V [34]. Experi-
ments that can resolve independently each site of the optical lattice in real-space have been
used to identify the transition by measuring, for example, the string-order parameter that
arises due to correlated particle-hole pairs at the transition point [35], or the closing of the
Higgs-mode energy gap [7]. A more direct metric for the state of a lattice-trapped gas would
be to directly measure its compressibility as the system undergoes the phase transition.

5.5 Sophisticated theoretical treatments

Quantum Monte Carlo data [22, 36] has shown in general that mean-field calculations, which
do not include any quantum fluctuations, typically predict a more robust superfluid and thus
overestimate the value of U/J at which the superfluid phase will become Mott insulating. A
variety of analytical approaches have been developed and compared to the quantum Monte
Carlo simulations for simple lattices, and these analytical approaches can be more easily
applied than full quantum Monte Carlo simulations when considering complex lattices like
the ones reported in this work.

In the mean-field treatments like the Gutzwiller treatment, a lattice system is assumed to
be described by a product of density matrices at each lattice site [23–25]. Thermodynamic
quantities such as the total density, the superfluid density, and the entropy per particle are
then functions only of the scaled interaction strength U/zJ , temperature τ/zJ and chemical
potential µ/zJ where z is the lattice coordination number. These treatments thus predict
mean-field scaling as well as critical value U/J c at which a phase transition will occur. In the
Gutzwiller calculation presented in this chapter, we treated the tunneling term as a small
parameter in Eq. (5.8) to write a separable Hamiltonian.

Many different forms of high-order perturbation theory also depend on a strong-coupling
assumption, which is valid because the phase transitions take place at a relatively low values
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of J/U [25, 37–39]. We will discuss some results from various perturbative treatments that
have been performed for our lattice geometries in the limit of a τ = 0 gas in an infinite and
homogenous optical lattice. We then show results from a quantum Monte Carlo treatment
in a homogenous lattice for the triangular and kagome geometries, in the case of finite
temperature and with a per-site filling of n = 3 (in contrast to our experiments, which were
performed in a harmonically confining trap with a central filling of n = 2). This calculation
was performed by Itamar Kimchi during his time here at Berkeley but is unpublished. The
results indicate that in a homogenous lattice, when τ ∼ .03 U , the kagome and triangular
lattices do not deviate significantly from the mean-field scaling prediction, but their deviation
from scaling increases with rising temperature.

Finally, we discuss quantum Monte Carlo calculations for a sample with realistic experi-
mental parameters for an ultracold optical lattice experiment [22]. This data shows that the
external harmonic confinement reduces the sensitivity of the phase transition to the tem-
perature of the gas, while leading to an increase in critical point at nearly all characteristic
densities ρ̃ relative to a homogenous treatment. This prediction is confirmed in experiments
performed in a 2-dimensional square lattice [6], but has not been performed for our optical
lattice geometries. Many experimental studies find transition points that are in accord with
homogenous quantum Monte Carlo treatments, which is curious given their experimental
parameters indicate that they should be sensitive to the effects of external confinement and
nonzero temperature [7, 35].

5.5.1 Zero temperature gases in homogenous lattices

First we discuss perturbative treatments of the Bose-Hubbard Hamiltonian in the strong-
coupling limit that have been applied to lattice geometries relevant to this work. Treating
the Hamiltonian in this limit of small J/U is valid because the transition while J/U remains
relatively small, and this is the same limit in which we solved the mean-field Hamiltonian
above.

Both methods employ an effective potential method, which modifies the Hamiltonian by
adding on-site source and drain terms η and η∗, so that the tunneling term that is treated
perturbatively is no longer simply

∑
〈i,j〉 â

†
j âi as in (5.8), but is now

∑

〈i,j〉

â†j âi +
∑

i

(
η∗âi + ηâ†i

)
(5.31)

This treatment results in a Kato formula for the energy correction due to the perturbation
that is solved diagrammatically.

Process chain approach: triangular, cubic and honeycomb

The process-chain approach to solving the equations from the effective potential treatment
yields high-precision computations of phase boundaries that are in strong agreement with
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full quantum Monte Carlo calculations [40, 41]. This approach has been applied to the
three-dimensional cubic lattice (z = 6), as well as to the two-dimensional lattices of square
(z = 4), triangular (z = 6), and honeycomb (z = 3) geometries. Table 5.5.1 compares the
calculated critical points with those from other methods.

The published results from this method enable comparisons of critical points (U/J)∗

among various lattice geometries, which will give a sense for the scale of any expected
deviations from mean-field scaling, but this ratio is not equivalent to the mean-field scaling
ratio ζ that is measured in our manuscript. The mean-field scaling prediction applies to all
thermodynamic quantities of lattice-trapped gases, at all interaction strengths, whereas here
we are able only to compare the critical points (U/J)∗.

In this method, the ratio of determined critical points for two-dimensional triangular
to honeycomb lattice is (U/J)∗tri/(U/J)∗honey ∼ 2.3, which is comparable to the mean-field
scaling prediction of ζ = ztri/zhoney = 2. However, a treatment of the triangular and cubic
lattices, which have the same coordination number (z = 6) but differ in dimensionality,
predicts critical points that differ by about 10%, with the cubic lattice exhibiting a phase
transition at a smaller value of U/J . Such a large deviation from the mean-field scaling
prediction would be evident in our experiment.

This result suggests that it would be interesting to use our superlattice to compare the
transition in the two-dimensional triangular lattice with a three-dimensional kagome lattice,
where we introduce tunneling along the vertical axis thereby increasing the number of nearest
neighbors at a site by two. These lattices would have the same coordination number, z = 6,
and differ in dimensionality, so that they might show the same deviation of critical point
(and thus deviation from mean-field scaling).

Another significant finding of this work is that, though the critical point for the first Mott
lobe differs from the mean-field prediction for a two-dimensional lattice, the relationship
between it and the critical points of higher Mott lobes is well-captured by a mean-field
treatment.

Line-dot diagrams: triangular and kagome

Lin et. al. [37] use the same effective potential method, this time solving with a line-dot
diagram representation to find critical points (U/J)∗. This method overestimates the critical
point when compared to the more accurate treatments (Table 5.5.1), but has been applied
to two-dimensional lattices of both triangular and kagome geometry.

This treatment predicts a critical point for the transition between the superfluid phase
and Mott insulating phase with filling n = 2 of a τ = 0 gas in a homogenous, two-dimensional
lattice of the triangular (z = 6) and kagome (z = 4) geometries of (U/J)∗tri,n=2 = 50 and
(U/J)∗kag,n=2 = 29.4. These values are comparable to the points in our data at which coherent
fraction goes to zero (see Fig. 2 of appendix C, though our data are more consistent with
the higher predictions of mean-field theory. As we will discuss, including external harmonic
confinement in a quantum Monte Carlo treatment increases the prediction of U/J∗ relative
to the homogenous case.
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These are the only published results of predictions in the kagome lattice, for which z = 4,
and they are similar to predictions by other means of a two-dimensional square lattice, which
also has z = 4. Again, we can compare the ratios of critical points (U/J)∗, which will give
a sense for the scale of any expected deviations from mean-field scaling, but this ratio is
not equivalent to the mean-field scaling ratio ζ that is measured in our manuscript. Though
this treatment does not depend on mean-field scaling arguments, the critical points exhibit
only a small modification to a mean-field scaling prediction. In this treatment, the ratio
(U/J)∗tri/(U/J)∗kag ∼ 1.7, which we compare to the mean field scaling ratio ζ = ztri/zkag =
1.5. This ratio is within error of our scaling measurement of ζ = 1.6 ± 0.1, though we
emphasize that the scaling measurement is performed along the entire trajectory of loss in
coherence, so it cannot be directly compared with the ratio above.

Summary of calculated critical points

A summary of predictions from a few theoretical treatments for a zero temperature gas
in an infinite lattice without external harmonic confinement. We show a variety of lattice
geometries and treatments to give a sense of how the predicted critical points compare
amongst themselves.
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Lattice structure QMC [36] Strong-coupling, U/J � 1
Mean-field Effective potential

square (z = 4) 17 23 17
n = 1 cubic (z = 6) 29 35 29

triangular (z = 6) 35 27 29
square (z = 4) 40 28

n = 2 cubic (z = 6) 60 50
triangular (z = 6) 60 45 50

Process-chain [40, 41] Line-dot [37]

Table 5.1: Predicted Critical Values (U/J)∗ for a Homogenous Lattice with τ = 0. Generally,
the mean-field treatment overestimates the critical point relative to quantum Monte Carlo
calculations, whereas high-order perturbation theory treatments using the effective potential
method give more accurate estimates. Where they can be compared, the process-chain
method of solving the effective potential Hamiltonian perturbatively yields critical points
that agree with those from qMC data. The predictions from a line-dot approach deviate
from those of the process-chain method, suggesting that they may be less reliable, but they
have been performed for the triangular and kagome lattices and are thus relevant to our
work in these lattices, where we have a central filling of n = 2. Not shown are the results
of the line-dot approach for the kagome lattice, which predicts an n = 1 transition at
(U/J)∗ ∼ 18 and n = 2 at (U/J)∗ ∼ 30 [37], and the results of the process-chain approach
for a honeycomb lattice (z = 3), which finds, for example, a transition in the n = 1 case
of (U/J)∗ ∼ 12. The high-order perturbation treatment results can be compared among
lattices with different z to give a sense for deviations of critical points from mean-field
scaling. However, mean-field scaling is a prediction of thermodynamic properties for all
values of U/J , and here we can compare only the critical points. This table shows that
critical points in two-dimensional lattices tend to have a ratio near that predicted in mean
field scaling parameter ζ = z/z, but there is a discrepancy in lattices of the same coordination
number and different dimensionality.

5.5.2 Nonzero temperature gases in homogenous lattices:
kagome and triangular

Itamar Kimchi performed quantum Monte Carlo calculations for the homogenous kagome
and triangular lattices considering nonzero temperatures and a filling of n = 3 atoms per
site. This is not directly applicable to our experiments, which are performed with a central
filling of n = 2, but can give qualitative data of the expected deviations from mean-field
scaling in the system that is treated.

These calculations show that in the low temperature limit, where τ < 0.03 U , homoge-
nous qMC does not predict a large deviation from the mean-field scaling prediction. As
temperature increases to near the melting temperature of the Mott insulator, τ = 0.3 U , the
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deviation from mean-field scaling grows and in the high temperature limit, where the loss in
coherence is due to a transition between the superfluid and normal phases, there is a large
difference between the coherent fraction in the kagome and triangular lattices after scaling
the interaction energy U by the mean-field scaling parameter zJ .
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Figure 5.6: Quantum Monte Carlo simulation for a homogenous gas with nonzero tempera-
ture in the kagome and triangular lattices. At very low temperature, where our experiments
are performed, there is very little deviation from the mean-field scaling prediction in the
two lattices. As temperature increases, the separation between superfluid fraction in the
two lattices increases, note that these transitions correspond to a transition between the
superfluid and normal gas.

5.5.3 Nonzero temperature gases in harmonically confined
lattices

Finally, we highlight the results of a quantum Monte Carlo calculation that considers a
finite temperature gas in a harmonically confined trap that has been performed for the
square lattice and discuss its implications to our work [22]. When the lattice-trapped gas
draws near the critical point where Mott insulating domains are formed, the particle-particle
correlations diverge and the local density approximation fails. In this region, finite-size effects
should play an important role that is neglected by all previously discussed homogenous lattice
treatments.

In this quantum Monte Carlo treatment it was shown that experimental details like
particle number and harmonic confinement are accounted for by just one parameter, the
characteristic density ρ̃ = Nad(V/J)d/2 of the lattice-trapped gas. A trapping potential
leads to a higher critical value than for the homogenous system, for nearly all values of ρ̃,
especially in the case where n = 1. This is a powerful statement for two reasons. First, it
means that the critical point of a phase transition will vary based on the trapping frquency,
lattice spacing, number of atoms, and dimensionality of the optical lattice system. This
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seems to indicate that any quantum simulation will only give information that is specific to
the apparatus. However, the identification of the parameter ρ̃ means that all such systems
may be compared to one another on a single phase diagram, and that their findings can be
generalized to the material systems that they aim to emulate. The superfluid-Mott insulator
critical point has been measured for a variety of system parameters and also of ρ̃, confirming
that system properties depend only on ρ̃ [6]. Intriguingly, this seems to hold true even in
cases where the local density approximation is not valid [22]. In our work, we generalized this
concept to non-square lattices, which may have multiple sites per unit cell. The generalized
characteristic density N/K, where K is defined in (5.21), also allows for the comparison of
critical points in lattices of different geometry.

This work also finds that in two dimensions, the effect of nonzero temperature is miti-
gated by the harmonic confinement, for τ ≤ J/2 the critical value at which Mott insulating
regions form is changed only by a few percent. This likely impacts the nonzero temperature
predictions of deviations between the kagome and triangular lattice that are apparent in Fig.
5.6.

5.6 Geometry-tuned phase transitions

As a quantum simulator, our experiment explores the effect of lattice geometry on the
superfluid to Mott insulator transition of a lattice-trapped Bose gas. In several solid-state
materials, the analogous phase transition in fermionic matter, between metal and Mott
insulating phases, is observed coincidently with structural transitions of the crystalline lattice
[42]. Distinguishing cause from effect in such simultaneous transitions is complicated by the
strong mutual influence between the electronic and lattice structures [43, 44], and by the
limited quality and tunability of crystalline samples [45, 46]. In our work, because the
optical lattice is imposed externally and independent of the state of the trapped atoms,
we may explore cleanly the causal influence of structural crystalline changes on transport
properties. In the publication we showed the transition from Mott insulator to superfluid
driven by change in geometry from kagome to triangular.

5.6.1 Transient dynamics

In the experiments reported in our manuscript, we showed that a rapid quench from the
Mott insulating state of the kagome lattice to the superfluid regime of the triangular lattice
resulted in rapid heating of the gas. This introduction of empty sites is an analog to “hole-
doping” in condensed matter physics.

We explored quenching between the lattices in both directions, in the superfluid and
Mott insulating regimes of both lattices. The timescales that we observed for a rapid early
increase in P̃i were similar (50-150 µs) for a variety of different lattice depths, all of which
are much faster than the characteristic timescales h/zJ .
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Figure 5.7: Geometry-induced superfluid to Mott insulator transition for constant U and
J . Images revealing the momentum distribution of the atoms in the lattice. We show
distributions after atoms are released from the triangular (left) and decorated triangular
(right) geometries for V532 = 65 and 85 kHz. The central plot shows coherent fraction, which
decreases as atoms are expelled from three of every four sites, causing a phase transition
between the superfluid triangular lattice and the Mott insulator in the decorated triangular
lattice.

Such timescales within the ground band of the lattice represents dynamics of strongly-
interacting superfluid. However, projection of superfluid atoms into higher bands would lead
to single-particle oscillations at high frequency, similar to that reported in chapter 4.

To distinguish these two possibilities, we immediately followed the quench with bandmap-
ping measurements to find which bands were occupied after the quench. We found that when
we “hole-dope” the triangular lattice by introducing vacant sites, the increase in population
at the 1064-nm peaks appears in the ground-band of the triangular lattice, and there is
no discernible population of atoms in upper bands. This means that the rapid motion of
atoms in momentum-space images represent ground-band physics of a strongly interacting
superfluid rapidly redistributing within the unit cell of the lattice. At all lattice depths in
bandmapping measurements we observed the same increase in population at the 1064-nm
peaks within the triangular ground band, and no occupation in higher bands.

5.6.2 Scanning ∆V in the decorated triangular lattice

This data has not been published and shows a transition between the Mott insulator of the
decorated triangular lattice (with spacing 2a) to the superfluid of the triangular lattice (with
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spacing a).
The procedure for these experiments is the same as the one described in the manuscript

in appendix C, except that here we work in the decorated triangular lattice configuration
of our bichromatic superlattice. We prepare a nearly pure 87Rb Bose-Einstein condensates
of between 0.5 and 3 × 105 atoms in the |F = 1,mF = −1〉 hyperfine state with a negli-
gible thermal fraction in a red-detuned crossed optical dipole trap, characterized by trap
frequencies of (ωx, ωy, ωz) = 2π × (34, 64, 49) Hz. We then impose a one-dimensional lattice
with Vpp = ~ × 41 kHz formed by a retroreflected 1064-nm-wavelength beam propagating
vertically. The gas is thus divided among approximately 17 two-dimensional planes with
a tunneling rate of 5 Hz, so that they are effectively decoupled over the timescale of our
experiments. Finally, we adiabatically load the atoms into the bichromatic lattice with a
simultaneous exponential increase of the six lattice beam intensities to the final trap depths
shown in Fig. 5.7.

After allowing 30 ms for the lattice-trapped gas to equilibrate, the atoms are released from
the lattice, allowed to expand, and then probed by absorption imaging. The vertical lattice is
ramped off about 150 µs prior to the turn-off of the superlattice and optical traps, as this was
observed to reduce the s-wave scattering out of the vertical lattice in the momentum-space
measurements, resulting in more accurate measurements of condensate fraction.

In Fig. 5.7, we characterize the superfluid to Mott insulator transition with the coherent
fraction of atoms in an image, which we calculate as the coherent population Nc, obtained
by summing the coherent signal in all peaks of the momentum distribution, divided by the
total atom number Ntot, determined by summing over the entire image. Data shown in Fig.
5.7 are averages over 3 - 5 experimental repetitions, and error bars are statistical.

In Fig. 5.7 (a), we compare the time-of-flight images obtained for atoms expanding from
the bichromatic lattice at two different values of V532 (and thus U/J). The coherent peaks in
the upper panels show the change in lattice geometry from triangular to decorated triangular.

The reduction of coherent fraction with the increase of ∆V is indicative of a change in the
transport properties of itinerant particles due to a structural change of the lattice potential in
which they propagate. To ensure that the loss in superfluidity is due to the change in lattice
geometry and not heating from the increased intensity of the 1064-nm lattice we performed
round trips between the two lattices, wherein we tune ∆V to its final value, hold, and then
return to the initial value of 0.5 kHz and observe minimal heating.

We have observed a geometrically-tuned transition from the superfluid triangular lattice
to the Mott insulating decorated triangular lattice, while holding the tunneling and on-site
interaction energies constant. The chemical potential µ increases with ∆V by 12%, which
slightly increases the central filling of the trapped gas. We performed these experiments at
a variety of triangular lattice depths, and observe increase in Mott insulating signal (loss in
coherence) for triangular lattices near the transition point. At the deepest triangular lattice
we observe the complete phase transition into the decorated triangular Mott insulating phase.
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Chapter 6

Conclusion

6.1 Overview

This thesis describes the construction and testing of a quantum simulator using ultracold
atoms in a bichromatic optical superlattice of tunable geometry. Optical lattices take a
bottom-up approach to studying the physics of crystalline materials. In an optical lat-
tice experiment, the crystal structure is specified experimentally and it is distinct from the
itinerant particles that propagate within. Individual properties of either the lattice or the
quantum gas may be adjusted without modification of other physical properties of the ma-
terial. These artificial crystals allow for ideal realizations of Hamiltonians and thus have the
potential to test the many condensed matter theories that attempt to describe properties of
real materials [47, 48].

However, interpreting data from optical lattice experiments to make quantitative state-
ments about condensed matter theories is challenging. In this thesis, we developed a variety
of experimental and theoretical techniques to make straightforward, quantitative statements
using optical lattices. This conclusion discusses the implications of our work to the fields of
both atomic and condensed matter physics, as well as future directions in our lab.

6.2 Theoretical motivations for this work

The work in this thesis is motivated by two central challenges in condensed matter theory.
First, we built a lattice that may take on the two-dimensional kagome lattice geometry,
paving the way for exploration of geometric frustration in a well-controlled optical lattice
simulation. Second, we studied a phase transition that is driven by strong inter-particle
interactions, which often make exact numerical solutions challenging
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6.2.1 Geometric frustration in the kagome lattice

A central motivation for creating the bichromatic optical lattice was realization of the two-
dimensional kagome lattice. The structure of the kagome lattice gives rise to a high degree of
geometrical frustration [49, 50]. This frustration is apparent when there is antiferromagnetic
ordering on the lattice. The ground state of the kagome antiferromagnet may be a quantum
spin liquid or valence bond solid, but its nature remains uncertain despite decades of work
[51–58].

The geometrical frustration is also apparent in the band structure of the kagome lattice.
The three sites in the unit cell generate three connected s-orbital bands. The frustration
besetting antiferromagnetic interactions implies that one of these bands be non-dispersing.
Such flat bands accentuate the role of interparticle interactions, leading possibly to crys-
talline ordering [59] and supersolidity [60] for scalar bosons, and ferromagnetism of itinerant
fermions [61].

The kagome lattice is an ideal system to simulate using ultracold atoms in optical lat-
tices, because studying the geometrical frustration of the kagome magnet in real materials
is complicated by their significant magnetic disorder [62, 63]. Our experimental apparatus
is well-suited to study physics in the flat band of the kagome lattice. The flat band is the
second excited band, and in this conclusion I will describe techniques by which we plan to
populate the flat band band with a degenerate Bose gas of rubidium. Flat-band physics has
also been recently studied in an optical Leib lattice [64, 65].

6.2.2 Interaction-driven phase transition

A lattice-trapped gas undergoes a phase transition between superfluid and Mott insulating
states under increasing particle-particle interactions. Mapping out the phase diagram neces-
sitates treatment of strong interactions and long-range quantum fluctuations, which can be
complicated to describe theoretically. Quantum Monte Carlo calculations may be applied to
specific lattice structures, but they are computationally difficult and require precise inputs
of experimental parameters [22, 36]. A variety of approximate analytical treatments have
also been developed citeDosSantos2009, Lin2012, Wei2016, Freericks1996.

Each of these treatments predicts a different trajectory of the change in coherence of the
lattice-trapped gas as interparticle interactions increase. The theoretical treatments may be
compared to quantum Monte Carlo treatments in systems for which quantum Monte Carlo
calculations have been performed, but these are limited. To distinguish them experimentally
remains an outstanding challenge, because of the assumptions they make about tempera-
ture and external confinement, and because those parameters change the critical point in a
quantum Monte Carlo treatment.

In chapter 5, we increased the strength of interactions in two distinct lattice geometries
– triangular and kagome – and measured the correlation function of lattice-trapped atoms
as they underwent the interaction-driven phase transition between the superfluid and Mott
insulating phases. By examining the relative behavior of identical gases trapped in lattices
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that were identical but for their geometry, we were able to make a quantitative measurement
concerning the phase transition that was insensitive to many experimental parameters.

6.3 New tools

To address these challenges required both technical and theoretical advances.

6.3.1 Engineering developments

Construction of a triangular superlattice

The design, construction and operation of our experiment are detailed in chapter 2 and
chapter 3. Our experiment was the first non-square optical superlattice and is the first
realization of the kagome lattice, which has also been realized in a photonic system [66].

The design of our optical lattice hinged on the recognition that the kagome lattice is a
triangular lattice with one out of every four sites omitted. In our design, triangular lattices
of intensity minima are formed with light at commensurate wavelengths, one of which is
blue-detuned (λ = 532 nm) from the rubidium atomic resonances, and the other of which is
red-detuned (λ = 1064 nm). This enabled us to create a kagome lattice simply by overlaying
two lattices of intensity minima, as the atoms are attracted to the minima of the lattice
formed by the blue-detuned light and repelled from the minima of the lattice formed by red-
detuned light. The scheme also depends on the fact that triangular intensity lattices formed
at the intersection of three beams incident from equal angles and with in-plane polarization
will form a lattice in which the influence of the triangular pattern is stronger than that of
the honeycomb pattern. This enabled us to form an optical kagome lattice and neglect the
influence of the honeycomb lattice sites of the 1064-nm lattice. The three sites in the kagome
lattice unit cell are nearly identical to the four sites in the triangular lattice unit cell. This
enabled us to compare the properties of itinerant particles on the two lattices.

Geometry and stability

In creating a lattice with independent beam paths, rather than using retroreflected lattice
beams, we were able to significantly relax the constraints on the stabilization of the two
triangular lattices relative to one another. We recognized that by maintaining equal path
lengths between the laser source and the atomic sample, we could create a passively stable
lattice. Our data show that lifetimes of atoms in our lattices are roughly 1 second without
active stabilization.

The scheme for stabilizing the lattices involves stabilizing each lattice independently, and
tuning their position using a piece of glass in one path of each interferometer. This results
in two lattices that are absolutely stable in space, with a phase determined by the amount of
glass through which the beams pass. The lattices may be repositioned with respect to each
other over essentially arbitrary trajectories, and under closed feedback control. This will be
interesting for realizing artificial gauge fields in the optical lattices, because the lattice can
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be tuned through arbitrary trajectories and even non-periodic paths under feedback control.
It also makes possible experiments on topological effects such as a Thouless pump [67], or
interferometry experiments that measure band curvature [68–70]. These experiments will be
interesting to pursue in the future.

We also recognized that the constraint that the two lasers the form the bichromatic
optical lattice are commensurate is not a very stringent one. The extent of the Bose-Einstein
condensate is small, and the requirement that one laser have a wavelength that is twice that
of the other over the extent of the quantum gas is not a strong constraining on the frequency
of the laser sources. Any frequency noise in either laser is irrelevant to the other, because of
the technique by which we stabilize the lattices in real space.

Layout

This system requires that many optical beams overlap at the location of the ∼ 10 µm
spot size of the atomic sample. We achieve ease of alignment by co-propagating as many
optical beam paths as possible. Moreover, most of our alignment is achieved without use of
atoms for diagnostics, which considerably expedites the alignment process.

Calibration

The optical lattice in this work has many components, which must all be stable and
regularly calibrated. We used the most precise calibration technique – lattice modulation
spectroscopy – regularly throughout each day while taking data for our experiment in which
we made a quantitative test concerning the ground-state of a bosonic gas in an optical
lattice. We found that the lattice is stable over the course of five hours. This implies that
our alignment techniques are effective and our lattice design is stable.

6.3.2 Experimental and theoretical developments

Characterization of optical lattices

Precise quantum simulations require precise lattice characterization. We developed a new
technique for characterizing optical lattices, discussed in chapter 4 and included in ap-
pendix B. Matter-wave diffraction was developed to measure precisely an optical lattice
configuration, in analogy to x-ray diffraction from solids. Tuning the interaction time be-
tween light and atoms led to strong enhancement of the effects of slight potential asymme-
tries.

We developed a perturbation theory to explain the enhanced signal of momentum-space
asymmetry from an inversion-asymmetric honeycomb lattice potential using a single-particle
band structure of the unperturbed, symmetric honeycomb lattice. In this work, we identi-
fied criteria by which one can identify the states of the unperturbed Hamiltonian that will
contribute to the momentum-space asymmetry when an asymmetric perturbation is intro-
duced. This work provides an explanation for previously poorly-understood observations in
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time-of-flight data in another experiment [18]. Together, these works have implications in
how time-of-flight data from optical lattices must be interpreted.

In section 2.4, we developed an analysis of momentum-space data to determine the real-
space superfluid population in each site within a unit cell. This was originally developed to
distinguish the two C6 symmetric superlattices in our bichromatic lattice system, the kagome
lattice and the decorated triangular lattice. In this thesis it is also discussed as another test
of the inversion symmetry of the honeycomb optical lattice.

Calculating Wannier functions

Another advance presented in this thesis was the calculation of tunneling and on-site inter-
action energies in an optical lattice using Wannier functions calculated simply as the Fourier
transform of the single-particle Bloch states with the correct choice of phase so that the Wan-
nier functions are real, as outlined in section 2.6. This effort was spearheaded by Prof. Dan
Stamper-Kurn and Dr. Masayuki Okano, who calculated and compared this simple treat-
ment to that of a full-scale minimization technique and found that there was no difference
between the two calculations for the low-energy states.

Quantitative tests with an optical lattice

In our work, we take a new approach to using ultracold gases in optical lattices to test a
condensed matter theory. Although the Bose-Hubbard model has been realized in many lab-
oratories with ultracold bosons in optical lattices, using these systems to make quantitative
statements about the model has remained a major challenge in the field. This is because
there are many experimental parameters that shift the critical point of the phase transition
between superfluid and Mott insulating ground states of the optical lattice, so that every
optical lattice experiment should measure a different critical point [6, 22, 28]. Identifying the
critical point of the phase transition in an optical lattice system in an attempt to distinguish
various theoretical treatments of the Bose-Hubbard model is an extremely challenging task.

We developed a method to compare lattices of different geometry, with different trapping
frequencies and with gases at nonzero temperature, which is distilled in Eq. (5.21). We use
the tunable bichromatic lattice and the characteristic density to compare the phase transition
in two lattices. Rather than test the theories at a single critical point, we test a prediction
of the mean-field treatment of the Bose-Hubbard model that holds for the entire trajectory
of loss in coherence as the atoms undergo the phase transition between superfluid and Mott
insulating states. This is a straightforward quantitative test of a condensed matter treatment
of the Bose-Hubbard model.

Extending this test to other theories

We developed a technique of using the characteristic density and multiple similar optical
lattices to circumvent the many experimental challenges in testing particular condensed
matter theories. This technique may be applied to increasingly complex theories.



CHAPTER 6. CONCLUSION 122

Imagine two numerical methods that make different predictions of properties of lattice-
trapped gases. Direct comparisons of these methods may require precise measurements
of system properties that are beyond the capacity of a given optical lattice experiment.
However, we might consider applying both methods to two distinct lattices. Each numerical
method will predict a difference in the properties of the lattice trapped gas for the two lattice
geometries. This difference is straightforward to detect in an experiment, and in this way
the two numerical methods may be distinguished. This type of relative experimental test
allows for more quantitative tests of theory.

6.4 Future directions in this apparatus

6.4.1 Probing the flat band

The study of geometric frustration in the kagome lattice requires populating the flat band
with atoms. Loading a bosonic condensate into the flat band of the kagome lattice is a
prominent goal in this lab. The flat band is an excited state of the kagome lattice, and the
condensate occupies the ground state of the lattice. Loading atoms into the flat band will be
achieved either by promoting the atoms to the flat band or by inverting the band structure.

In either case, loading atoms into the flat-band states results in substantial direct in-
teractions between atoms in neighboring lattice sites [60]. At low fillings of the lattice,
below n = 1/3 per unit cell, this long-range repulsive interaction can be accommodated by
Wigner crystallization, with each boson in an isolated, single-particle Wannier state. At
higher fillings, interactions must come into play. Huber and Altman predict the existence
of a supersolid at intermediate filling (superfluid atop the Wigner crystal) giving way to a
uniform superfluid at higher filling.

Here we introduce the methods by which we may load a condensed gas into the flat band
of the kagome lattice.

Inverting the band structure

The first method is to shake the phase of the lattice to invert the tunneling parameter
and thus invert the entire kagome band structure. This has been discussed extensively in
experiments on imposing artificial gauge fields with optical lattices [47]. In our geometry
it will also be interesting to consider the imaginary second-order tunneling that arises from
shaking non-square optical lattices [71]. However, heating is often a problem in such shaking
experiments and in the case of the flat band the signal might be hard to separate from
heating.

Promoting atoms to the flat band state

Promoting atoms to the flat band will result in a metastable state, but the lifetime in this
state may be quite long. By energy conservation, collisional relaxation into one of the lower
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s-bands requires an atom be excited by an energy on the order of J . However, the spectrum
of single particle states above the at band is gapped by several recoil energies, precluding
such relaxation. The lifetime of these flat band atoms may be sufficient to allow for the
study of interaction-driven correlations.

Intensity modulation

Likely the technically simplest method of populating the flat band will be by intensity
modulation at the frequency of the energy gap between the first and third s-bands. We
expect that an overall modulation of the lattice strength cannot drive excitations at quasi-
momentum q = 0 from the ground-state to the touching point of the second and third bands
of the kagome lattice: at q = 0, the three-fold rotational symmetry of the kagome lattice
is reflected in the energy eigenstates, which are eigenstates of the C3 rotation operator; a
modulation respecting that symmetry (like intensity modulation) preserves the eigenvalues,
which differ for the ground and the next two excited states.

This has two significant implications. The first is that the transition probability to the
third band at q = 0 is strongly dependent on lattice geometry. By tuning the geometry
while modulating at the q = 0 band gap, we should observe a dip in transition probability
that indicates the frustration of the flat band of the lattice. The second is that, when
in the kagome geometry, even a small displacement of the initial condensate will enable
excitation into the flat band. We can fully map out the band structure of the lattice, either
by displacing the condensate before modulation, or by using a thermal gas that occupies
many momenta. The response of the gas may be monitored by Bloch-state analysis of time-
of-flight measurements, band-mapping measurements, or quantifying the energy absorbed
by the gas via the atom loss or temperature increase.

Non-adiabatic changes in lattice geometry

The additional degrees of freedom available in a superlattice have been used to create
artificial gauge fields and p-band band superfluids [11, 47, 72]. Non-adiabatic shifts of the
two constituent lattices relative to one another can lead to population in arbitrary bands of
the lattice, by the technique shown schematically in Fig. 6.1.

The procedure involves first loading atoms into one site of the four-site unit cell of the
bichromatic lattice. This configuration is the decorated triangular lattice in which one site
is deeper than the other three, and in the figure the D sites are the occupied sites. After
the atoms are loaded into the D-site, the lattice is rapidly deformed by moving the intensity
minimum of the 1064-nm lattice within the unit cell. Note that in our lattice this can be done
by shifting the phases in-loop, so that the phases remain stable throughout the experiment.
In Fig. 6.1(b), the D-site becomes the third-deepest well, with two deeper sites, sites A and
B in the figure, and one shallower, site C in the figure. The occupied site now corresponds
to the third band of a lattice. To illustrate the point, we show band mapping data from this
lattice, which shows that atoms are occupying the third band. From here, the task will be to
adiabatically deform the lattice to the kagome configuration by bringing the occupied atoms
of site D into resonance with the two low-energy sites, A and B. This effectively flattens the
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occupied band until it becomes that of the kagome lattice. The atoms in this upper state are
metastable, so the lattice must be deformed slowly with respect to band gaps, but quickly
compared to collisions that would cause relaxation into the lower bands.

A CB D

A

C

B

D

Intensity overlap

Potential cut through

A CB D A CB D

(a) (b) (c)

qx

qy

|G|

-|G|

0

|G|-|G| 0

Band mapping

data

qx

qy

|G|

-|G|

0

|G|0

qx

qy

|G|

-|G|

0

|G|-|G| 0 -|G|

A CB D

Figure 6.1: Loading atoms into upper bands of a bichromatic lattice. (a) Schematic of the
bichromatic unit cell and illustration of a slice through the sites. Loading atoms into the
decorated triangular lattice in which site D is lower in energy than any other sites. Ground
state atoms occupy only site D. Band mapping of a thermal cloud in this lattice is shown
in the lower panel. (b) Rapidly deforming the lattice so that site D corresponds to the
third band of a bichromatic lattice (left). Band mapping image shows that the third band
of a lattice is populated. This is not the kagome lattice, and the band has curvature, but
adiabatically moving to the kagome lattice shown schematically on the right would flatten
the third band where the atoms reside. (c) Alternatively, after loading atoms into site D,
one can rapidly deform the lattice, exchanging all upper and lower sites. The result is an
inverted triangular lattice, in which tunneling among D sites is mediated by the lower energy
bands. This metastable state relies on second-order tunneling, which is negative.

6.4.2 Chiral state in an upper band triangular lattice

An alternative lattice deformation is shown in Fig. 6.1(c). Here, we would load atoms into
the D-site as in Fig. 6.1(a) and then completely invert the lattice structure. This changes
the lattice geometry the D-site decorated triangular lattice to the kagome lattice in which
the D-site is raised in energy. The result is a metastable state occupying an upper-band
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D-site decorated triangular lattice. Tunneling in this metastable lattice is mediated by the
neighboring low energy sites, so that it is second order and negative, J ′ ∼ −J/∆, where J is
the tunneling parameter of the kagome lattice and J ′ represents the second order tunneling
in this metastable triangular lattice configuration.

The upper band decorated triangular lattice formed by the method in Fig. 6.1(c) may
host a chiral Mott insulating state. The phase diagram is calculated in Ref. [73]. While
a conventional Mott insulator has a wavefunction that is a product of uncorrelated Fock
states on each lattice site, a chiral Mott insulator maintains quantum correlations among
neighboring sites despite the small value of U/J .

Procedure

To make the chiral superfluid we load atoms into the D-site triangular lattice and quickly
shift the phases along both interferometers to reach the kagome lattice. In this way, atoms are
prepared in the upper band of the kagome lattice, and can be described as a LW triangular
lattice with negative, second-order tunneling.

The ground state of the low-depth, negative tunneling triangular lattice is the chiral
superfluid, with flow in either clockwise or counter-clockwise direction, which spontaneously
breaks the K − K ′ symmetry of the bands. Superfluid peaks should appear at one or the
other of those points. After establishing a chiral superfluid in a lattice of tubes, we will
load the vertical lattice, so that every pancake has the same chirality and the signal will be
unambiguous.
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Appendix A

Ultracold Atoms in a Tunable Optical
Kagome Lattice

This appendix includes the following paper [13], discussed in Chapter 2:

• G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-
Kurn, “Ultracold Atoms in a Tunable Optical Kagome Lattice,” Phys. Rev. Lett. 108,
045305 (2012).
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We realize a two-dimensional kagome lattice for ultracold atoms by overlaying two commensurate

triangular optical lattices generated by light at the wavelengths of 532 and 1064 nm. Stabilizing and tuning

the relative position of the two lattices, we explore different lattice geometries including a kagome, a one-

dimensional stripe, and a decorated triangular lattice.We characterize these geometries usingKapitza-Dirac

diffraction and by analyzing the Bloch-state composition of a superfluid released suddenly from the lattice.

The Bloch-state analysis also allows us to determine the ground-state distribution within the superlattice

unit cell. The lattices implemented in this work offer a near-ideal realization of a paradigmatic model of

many-body quantum physics, which can serve as a platform for future studies of geometric frustration.

DOI: 10.1103/PhysRevLett.108.045305 PACS numbers: 67.85.!d, 03.75.Be, 37.10.De, 68.65.Cd

Geometrically frustrated systems with a large degener-
acy of low-energy states are of central interest in
condensed-matter physics [1,2]. The kagomenet—apattern
of corner-sharing triangular plaquettes—presents a particu-
larly high degree of frustration. Such frustration impacts the
kagome quantum antiferromagnet, for which the ground
state, proposed to be a quantum spin liquid or valence
bond solid [3–10], remains uncertain despite decades of
work. Resolving such uncertainty by experiments on solid-
state kagomemagnets [11,12] is complicated by the signifi-
cant magnetic disorder or anisotropy of such materials. For
this reason, more faithful realizations of quantum many-
body physics in the kagome lattice are needed.

Ultracold atoms trapped within optical lattices offer
clean realizations of exotic phases of matter in
condensed-matter physics [13]. Recently, nonprimitive op-
tical lattices with multiple lattice sites per unit cell have
been realized in the honeycomb [14] and checkerboard
[15] geometries, and double-well superlattices [16,17],
revealing nontrivial ordering and dynamics arising from a
low-energy orbital degree of freedom [18]. The kagome
lattice with ultracold atoms has attracted significant inter-
est in this context as well [19,20], but it has not been
experimentally demonstrated to our knowledge.

In this Letter, we present the realization of the kagome
geometry in a two-dimensional optical superlattice for
ultracold 87Rb atoms. The kagome lattice is obtained by
eliminating every fourth site from a triangular lattice of
spacing a=2, with the eliminated sites forming a triangular
lattice of spacing a. The remaining sites generate three
connected s-orbital bands within a bandwidth on the order
of the intersite tunneling energy. Intriguingly, the frustra-
tion besetting antiferromagnetic interactions also implies
that one of these bands be nondispersing. Such flat bands,
distinguishing the kagome configuration from other non-
primitive lattices [14–17], accentuate the role of interpar-
ticle interactions, leading possibly to crystalline ordering

[21] and supersolidity [22] for scalar bosons, and ferro-
magnetism of itinerant fermions [23]. Furthermore, geo-
metric frustration of the kagome lattice shows macroscopic
degeneracy of lowest-energy classical states with XY-type
antiferromagnetic interactions in contrast to the triangular
lattice [24]. Our work therefore opens the door to inves-
tigations of how geometric frustration affects both orbital
and magnetic properties of materials.
Our kagome lattice is formed by overlaying short-

wavelength (SW) and long-wavelength (LW) triangular
lattices, formed with light at the commensurate wave-
lengths of 532 and 1064 nm, respectively [25]. In a
single-wavelength lattice, formed by three plane waves
of light of equal intensity I and wave vectors (and linear
polarizations) lying in a plane and intersecting at equal
angles, one obtains a triangular lattice of points with zero
intensity, and a honeycomb lattice of points with maximum
intensity 9

2 I separated by a triangular lattice of intensity
saddle points with intensity 4I. Our SW-lattice light is blue
detuned from the principal atomic resonances of rubidium,
so that atoms are attracted to the triangular lattice of
zero-intensity sites with a lattice spacing of a=2 ¼
ð2=3Þ % 532 nm ¼ 355 nm. The LW lattice is red-
detuned, so that its zero-intensity points are potential-
energy maxima for rubidium atoms. A unit cell of the
LW lattice contains four sites of the SW triangular lattice,
labeled A, B, C and D in Fig. 1. Aligning the positions of
the LW potential maxima to coincide with sites D lowers
the potential energies VA;B;C at the other sites by equal
amounts !V ¼ VD ! VA;B;C ¼ 8

9VLW,where VLW is the
maximum scalar potential depth of the LW lattice (we
ignore the &1% vector shift in this lattice [26]). As !V
is increased, atoms are excluded from sites D, while the
remaining sites form the kagome optical lattice. The ka-
gome geometry persists until VLW > 9VSW, at which point
atoms become preferentially confined in the LW honey-
comb lattice.
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Compared with previous proposals [19,20], our simpler
approach to creating a kagome lattice allows one to tune
the lattice geometry, thereby controlling its degree of
frustration. Aligning the LW potential maxima with the
SW-lattice saddle points disfavors population in two sites
of the four-site unit cell (e.g., VB;C < VA;D) producing a
one-dimensional (1D) stripe lattice [Fig. 1(c) or Fig. 3(a)].
Aligning the LW potential maxima with the SW potential
maxima disfavors population in three sites of the unit cell
(e.g., VA;B;D > VC), producing a decorated triangular lat-
tice with lowest-energy sites forming a triangular lattice
while the remaining sites form a kagome lattice of local
potential minima.

Experiments were conducted with scalar Bose-Einstein
condensates of!3" 105 87Rb atoms produced at tempera-
tures of 80 nK in a red-detuned crossed optical dipole
trap with trap frequencies of ð!x;!y;!zÞ ¼ 2!"
ð60; 30; 350Þ Hz, with !z applying vertically. The large
!100 "m beam-waist diameters of the lattice beams en-
sured that the lattice potential modified the trapping fre-
quencies by less than 10%. Laser alignments and relative
intensities were tuned to produce sixfold symmetric dif-
fraction patterns of condensates released from LW- and
SW-only lattices. The relative displacement of the LWand
SW lattices was measured using two two-color Mach-
Zehnder interferometers, one for beams 1 and 2 and the
other for beams 1 and 3, and stabilized using piezo-
actuated mirrors in the optical paths [27]. A tilted glass
plate within each interferometer introduced a relative shift
between the two lattice colors that, following stabilization,
was imparted onto the optical lattice.

We employed atom optics to characterize the lattice as it
is tuned between various geometries. The atom-optical
tools presented in this work may be useful for the charac-
terization of other superlattices and for superlattice-based
atom interferometry. The first of these tools is Kapitza-
Dirac diffraction [28,29], for which the lattice potential is
suddenly pulsed on for a duration #, after which the con-

densate is imaged after a time of flight. Neglecting kinetic
energy during the brief pulse, the condensate wavefunction
acquires an imprinted phase &VðrÞ#=@ proportional to the
potential VðrÞ.
The corresponding momentum-space distribution is sen-

sitive to the relative displacement of the LW and SW
lattices. To exhibit this sensitivity we blocked one of the
incident bichromatic lattice beams and examined the re-
sulting one-dimensional superlattice, with potential energy
given as VðxÞ ¼ VLW sin2½qðxþ $xÞ=2) & VSW sin2ðqxÞ
where 2!=q ¼ 614 nm is the 1D LW-lattice spacing, and
$x is the distance between the LW and SW intensity
minima. The atomic populations at wave vectors *q are
given as

P*q / j* iJLW*1 J
SW
0 þ JLW+1 J

SW
*1 e

+i2q$xj2; (1)

where Jn is the nth-order Bessel function evaluated at
%LW;SW ¼ VLW;SW#=2@, and where we consider terms up
to second order in%LW;SW. The lack of inversion symmetry
of the lattice produced by an incommensurate value of $x
appears as a left/right momentum asymmetry in the dif-
fracted matter wave (Fig. 2).
A second method to characterize the optical superlattice

is the momentum-space analysis of a superfluid occupying
the ground state of the lattice potential. Here, the optical
lattice potential depth was ramped up from zero over 90ms,
held constant for 100 ms, and then suddenly switched off to
allow for time-of-flight expansion of the trapped gas. For
the momentum-space analysis, the maximum SW potential
depth was kept constant at VSW=h ¼ 40 kHzð¼ 8:8ERÞ,
where ER is the recoil energy of the SW triangular lattice.
We observed no significant decay of the diffraction peak
holding up to 150 ms in the optical superlattices.
Varying the relative position of the two lattices we

identify the three high-symmetry lattice configurations
[Fig. 3(a)]. Given that the scalar condensate occupies the
ground state of the lattice potential, its wave function
can be taken as real and positive; thus, its momentum

FIG. 1 (color). Three bichromatic light beams intersecting at 120, form a kagome optical lattice for ultracold 87Rb atoms, with the
two-dimensional potential VðrÞ shown in (a). Profiles of the potential of the SW, LW, and combined lattices are shown in (b). SitesD of
the SW lattice are emptied as !V exceeds the chemical potential, so that the remaining sites A, B and C form the kagome geometry.
(c) Different lattice geometries are created for intermediate LW-lattice depths (VLW < 9VSW) by displacing the potential maxima of the
SW lattice to the high-symmetry points X, Y or Z within the unit cell. For higher LW-lattice depths, a honeycomb geometry prevails.
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distribution is symmetric under inversion. Expansion from
both the kagome and the decorated triangular lattices
shows the threefold rotational symmetry of the optical
superlattice. In the 1D stripe geometry, one expects equally
weak occupation of two sites (e.g., A and D), and equally
strong occupation of the other two sites (B and C) of the
superlattice unit cell. Such a distribution is (nearly) invari-
ant under displacements of a=2 along the A-D axis, and
condensate diffraction along that axis should reflect the
shorter periodicity of the SW lattice. The momentum
distribution should also be symmetric under reflection
about the A-D axis. Both traits are observed
experimentally.

The Bloch-state momentum distributions allow one to
quantify the ground-state wave function within a unit
cell of the superlattice, which we express as c ðrÞ ¼P

!c !w!ðr$ s!Þ, where w!ðrÞ is the normalized
Wannier state wave function, s! the position, and jc !j2
the fractional atomic population of site ! 2 fA; B;C;Dg of
the unit cell. At low VLW=VSW, we approximatew! ¼ w as
cylindrically symmetric, Gaussian, and identical for all !.
From the momentum-space populations PGi

(i 2 f1; 2; 3g)
in the three first-order diffraction peaks of the LW lattice
[30]—corresponding to the inner hexagon of peaks in time-
of-flight images—and that at zero wave vector P0, one
determines the distinct quantities

~P i ¼
PGi

þ P$Gi

2P0

j ~wð0Þj2
j ~wðGiÞj2

¼ jc " þ c # $ c $ $ c %j2
jP! c !j2

;

(2)

where ~wð0Þ and ~wðGiÞ are now Fourier components of the
Wannier function, and ", #, $ and % label the four sites

so that Gi & ðs" $ s#Þ ¼ 0. The Wannier state Fourier
components in Eq. (2) are determined from the second-
order diffraction populations as j ~wð0Þj2=j ~wðGiÞj2 ¼
½2P0=ðP2Gi

þ P$2Gi
Þ(1=4. Together with the normalizationP

!jc !j2 ¼ 1 these quantities determine the atomic distri-
bution in the unit cell [31].
We measured the population ratios ~Pi as the superlattice

geometry was gradually tuned. Translating the relative
position of the two lattices [Fig. 3(b)], one advances
from the kagome geometry, with equal population in the
three ratios, to the 1D stripe geometry, with two identically
small ratios, and then to another kagome-geometry lattice.
Our data agree with a calculation of the single-particle
ground-state for the known lattice depths.

FIG. 2 (color). Atom diffraction patterns, formed by a & ¼
8 's pulse of the lattice potential (with VSW=h) 80 kHz and
VLW=h) 50 kHz) followed by 26 ms time of flight, exhibit left/
right momentum asymmetry [defined as ðPþq $ P$qÞ=
ðPþq þ P$qÞ] that varies with the displacement $x between
the LW- and SW-lattice intensity minima, in close agreement
with the predicted behavior (solid line).

FIG. 3 (color). The real- and momentum-space composition of
a superfluid for various lattices. (a) The kagome and decorated
triangular lattices maintain threefold rotational symmetry in
configuration and momentum space, while the symmetry of
the 1D stripe lattice is reduced to a parity symmetry (left-right
in the images). For each setting, a schematic distinguishes
between sites of high (green) and low (red) atomic population.
The expected momentum distribution for measured values of
VSW=h ¼ 40 kHz and !V=h ¼ 14 kHz is shown with the area
of the black dot reflecting the fractional population.
(b) Translating the LW-lattice potential maxima (marked as a
star in the schematic) along the A-D axis tunes the lattice
between kagome and 1D stripe geometries, as revealed by the
population ratios ~Pi identified according to the inset. The data
(averages of 4–5 measurements) agree with calculations of the
single-particle ground state (solid lines) with the lattice depth
used in the experiment. Interaction effects are neglected since
!V was higher than the chemical potential ') h* 3:5 kHz of
the condensate in the SW-only lattice.
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We focus finally on the kagome-geometry lattice align-
ment, and examine the transition between the triangular
and kagome geometries (Fig. 4). At zero VLW, the atoms
are confined in a SW triangular lattice, and the first-order
LW-lattice diffraction orders are absent, indicating a
unit-cell population of ðA; B;C;DÞ ¼ ð14 ; 14 ; 14 ; 14Þ. As the
LW-lattice depth is increased, the population ratios ~Pi

increase and the kagome geometry is achieved by gradu-
ally expelling atoms from one site of the unit cell. The
population ratios tend toward a limiting value of 1=9 that is
a hallmark of diffraction from a kagome lattice wherein the
atoms are distributed as ðA; B; C;DÞ ¼ ð13 ; 13 ; 13 ; 0Þ.

Here, the ground state of the kagome lattice does not
suffer from frustration. In the future, effects of frustration
may be explored by transferring bosons into the excited
s-orbital flat band, or by changing the sign of the hopping
energy [32] so that the flat band becomes the lowest in
energy. The present choice of wavelengths also yields
kagome lattices for the fermionic isotopes 6Li and 40K.
Introducing fermions into the lattice at the appropriate
fillings would place the Fermi energy within the flat
band, allowing for studies of flat-band ferromagnetism
due to repulsive interactions [23] or enhanced Cooper
pairing for attractive interactions [33]. Also, the demon-
strated tunability of the superlattice opens new possibilities
to emulate both ideal and deliberately distorted kagome
lattices, potentially stabilizing the various candidate
ground states of the kagome quantum antiferromagnet.
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Appendix B

Signatures of spatial inversion
asymmetry of an optical lattice
observed in matter-wave diffraction

This appendix includes the following paper [74], discussed in Chapter 4:

• C. K. Thomas, T. H. Barter, T.-H. Leung, S. Daiss and D. M. Stamper-Kurn, “Sig-
natures of spatial inversion asymmetry of an optical lattice observed in matter-wave
diffraction,” Phys. Rev. A 93, 063613 (2016).
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Signatures of spatial inversion asymmetry of an optical lattice observed in matter-wave diffraction
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The structure of a two-dimensional honeycomb optical lattice potential with small inversion asymmetry is
characterized using coherent diffraction of 87Rb atoms. We demonstrate that even a small potential asymmetry,
with peak-to-peak amplitude of !2.3% of the overall lattice potential, can lead to pronounced inversion asymmetry
in the momentum-space diffraction pattern. The observed asymmetry is explained quantitatively by considering
both Kapitza-Dirac scattering in the Raman-Nath regime and also either perturbative or full-numerical treatment
of the band structure of a periodic potential with a weak inversion-symmetry-breaking term. Our results have
relevance for both the experimental development of coherent atom optics and the proper interpretation of
time-of-flight assays of atomic materials in optical lattices.

DOI: 10.1103/PhysRevA.93.063613

In x-ray crystallography, the diffraction of light is analyzed
to determine the exact crystalline structure of a material.
Similarly, with the availability of ultracold sources of coherent
matter waves of atoms, one can use atomic diffraction to
characterize potentials experienced by the atoms. Of particular
interest are the optical lattice potentials produced by periodic
patterns of light intensity and polarization, formed by the
intersection of several coherent plane waves of light or by
direct imaging. Lattice potentials of various geometries and
dimensionalities, some incorporating atomic-spin dependence
and gauge fields, have been produced or proposed for the
purpose of creating synthetic atomic materials by placing
quantum-degenerate atoms within them [1–3]. Just as in
condensed matter, the characteristics of such synthetic atomic
materials derive from the nature of the optical crystal upon
which they are based. Matter-wave crystallography therefore
becomes a vital tool in the study of such synthetic quantum
matter [4].

A key first step in determining the structure of a lattice is
the assignment of its point-group and space-group symmetries.
The violation of a symmetry is identified in x-ray crystallog-
raphy by a difference in the intensities of diffraction spots [5].
Following such work, here we detect the inversion asymmetry
of an optical lattice by observing significant asymmetries in the
diffraction of a coherent matter wave from the potential. For
this, we produce a spin-polarized 87Rb Bose-Einstein conden-
sate at rest, and then impose for a variable pulse duration the
two-dimensional honeycomb optical lattice potential produced
by three light beams intersecting at equal angles [6]. The
resulting Kapitza-Dirac diffraction is quantified by imaging
the gas after it is allowed to expand freely. By tuning the
pulse time and working with a deep optical lattice, we produce
highly visible (over 50% contrast) inversion asymmetry in
the populations of the first-order diffraction peaks even while
the inversion-asymmetric part of the potential is !2.3%
of the overall lattice potential. This observation highlights

*dmsk@berkeley.edu

the extreme sensitivity of coherent matter-wave scattering in
revealing features of a potential landscape under investigation.

Aside from demonstrating sensitive optical-lattice crys-
tallography, our observation also has implications for the
development of atom optics. Matter-wave interferometers for
several applications have employed brief pulses of light to split
and recombine atomic beams coherently [7,8]. Kapitza-Dirac
diffraction, i.e., the diffraction of atoms from standing-wave
rather than traveling-wave optical potentials, has the advantage
that it is technically simple to implement, requiring only
light waves at a single optical frequency [9,10]. However,
as compared with Bragg or Raman diffraction, it has the
disadvantage of being less efficient and less selective [11].
The technical simplicity has inspired modifications of Kapitza-
Dirac diffraction employing several pulses of light so as
to diffract atoms to selected diffraction orders with high
efficiency [12], although the diffraction remained inversion
symmetric, with as many atoms diffracted to the wave vector
+G as to the wave vector −G. We show that this last constraint
can be lifted to produce inversion-asymmetric Kapitza-Dirac
diffraction of matter waves in two dimensions. Similar to the
previous demonstration in one dimension [13], we explain how
this asymmetry arises from the interference between different
diffraction pathways to the same final momentum state.

We begin by describing the optical lattice potential charac-
terized in this work. As in Ref. [6] and illustrated in Fig. 1(a),
we form a two-dimensional honeycomb lattice using three
beams of light at the wavelength λ = 1064 nm, with equal
intensity, propagating horizontally and intersecting at equal
angles, with each beam linearly polarized in the lattice plane.
We define a quantization axis orthogonal to the lattice plane
and show in Fig. 1(b) that the beams produce a periodic pattern
of varying intensity and optical polarization.

Rubidium atoms exposed to this optical lattice experience
an ac-Stark shift that can be divided into scalar, vector,
and tensor terms acting on the atomic hyperfine spin [14].
The tensor light shift is negligible in our experiment owing
to the large detuning of the lattice light from the atomic
transitions. Figure 1(d) shows the lattice potentials that result
from the scalar and vector parts of the ac-Stark shift. The

2469-9926/2016/93(6)/063613(5) 063613-1 ©2016 American Physical Society
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FIG. 1. Three 1064-nm beams interfere at 120◦ with in-plane polarization to create a honeycomb lattice of intensity maxima. We identify
the unit cell of the lattice potential (solid line). A dashed line within the unit cell runs through the two potential minima, which are marked with
ticks and labeled A and B. One-dimensional profiles of the light intensity (b) and optical potentials (c) and (d) along this line are shown. The
star symbol, located at a minimum-intensity location, serves as a center for the spatial inversion operation that exchanges the A and B sites of
the lattice. (b) We define a quantization axis orthogonal to the lattice plane and show that the light is predominantly σ+ at site A and σ− at site
B. (c) The atoms are polarized by a uniform magnetic field B0 at an angle θ from the quantization axis. We show the lattice potential for extreme
values of cos θ , where the potential depth at sites A and B maximally differ. (d) The lattice potential is the sum of an inversion-symmetric
potential Vs(r) that arises from the scalar Stark shift and an inversion-antisymmetric potential Va(r) that comes from the vector Stark shift.

scalar light shift is proportional to light intensity and produces
a honeycomb lattice potential Vs(r) with two sites of equal
depth per unit cell, labeled A and B in the figure. The vector
light shift in the presence of a dominant external magnetic
field produces a potential Va(r) that is approximately diagonal
in the Zeeman basis defined by the field direction. Va(r) is
proportional to both intensity and the dot product of helicity
and atomic spin [14]. The helicity in the lattice is staggered so
that Va(r) is of opposite sign at each of the two sites in the unit
cell.

The scalar and vector light shift potentials differ in their
inversion symmetry, with Vs(r) being symmetric and Va(r)
being antisymmetric under spatial inversion. Figure 1(a) shows
one of the zero-intensity locations within the optical lattice as
an example of the center of the inversion operation. The result
of this operation is to switch sites A and B.

For alkali atoms, Va(r) is suppressed with respect to Vs(r)
owing to the large optical detuning from the atomic resonance.
For the wavelength of light used in our lattice, the ratio
2|Va(r)/Vs(r)| is at most 2.3%, so that Va(r) adds only a small
inversion-symmetry-breaking potential atop a graphenelike,
inversion-symmetric honeycomb lattice. Within this limit, we
control the magnitude and sign of Va(r) by tilting the dominant
external magnetic field B0 by an angle θ with respect to
the (vertical) axis defined by the optical helicity. For atoms
spin polarized along B0, the asymmetric potential is then
Va(r) ∝ cos θ . Figures 1(c) and 1(d) show that the resulting
lattice potential has a small, state-dependent offset in energy
between sites A and B.

To characterize this lattice using matter waves, we create
a nearly pure, optically trapped Bose-Einstein condensate
of 3 × 105 87Rb atoms that is spin polarized in the |F =
1,mF = −1⟩ state along the axis defined by a ∼0.5 G
applied magnetic field. We then introduce a three-beam lattice
potential with |Vs(r)|max = h × 87 ± 4 kHz for a pulse time
τ between 10 and 100 µs. This lattice depth is calibrated
with independent measurements of the diffraction produced

by the one-dimensional lattices formed by pairs of the lattice
beams [15]. After the pulse, we simultaneously switch off
the optical lattice and optical trapping potentials and allow
the atoms to expand freely for a 20-ms time of flight. We
finally take an image of the density distribution in which the
various diffraction orders, generated at the reciprocal lattice
vectors by exposure to the lattice potential, are seen as separate
peaks.

The first-order diffraction peaks in Figs. 2(a) and 2(c)
show a pronounced inversion asymmetry. To quantify this
asymmetry, we identify three reciprocal lattice vectors that
describe first-order diffraction as G1 = k3 − k2 and its cyclic
permutations, where k1,2,3 are the wave vectors of the incident
beams that form the lattice. We define an asymmetry parameter
A as

A =
∑

i(PGi
− P−Gi

)∑
i(PGi

+ P−Gi
)
, (1)

i.e., as the contrast between the diffraction intensities at wave
vectors Gi and −Gi , the two sets of wave vectors being
related by inversion. This measure is robust against variations
in the total atom number and against residual center-of-mass
motion of the condensed atoms with respect to the lattice
potential. We note that imaging aberrations introduce a slight
offset in A (of about 0.1) in our experiment, seen in Figs. 2
and 3.

We confirm that the momentum-space inversion asymmetry
is caused by the real-space inversion asymmetry of the lattice
potential by varying the magnitude and sign of the inversion-
symmetry-breaking potential Va(r). We tune Va(r) by rotating
the orientation of the magnetic field from the vertical axis by
the polar angle θ before exposing the condensate to the lattice
potential.

Our data emphasize the fact that even an asymmetry in the
lattice potential of !2.3% can lead to highly visible asymmetry
in the matter-wave diffraction pattern. The evolution of the
momentum-space asymmetry A vs pulse time is portrayed in
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FIG. 2. An asymmetry parameter A is defined as the first-order
population imbalance and measured for data taken as a function of θ

with a pulse time of 50 µs. (a) Time-of-flight image for θ = 0.44
shows an asymmetry in the first-order diffraction peaks. (b) We
highlight the first-order peaks with circles (at Gi) and triangles (at
−Gi). (c) Time-of-flight image for θ = 2.2 shows reversal of the
observed asymmetry. (d) A is computed for each of five images and
the mean and standard error of these data are plotted. The solid line
shows the expected dependence on θ .

Fig. 3. The asymmetry grows from small values at early times
to over 50% at τ ∼ 50 µs, and also displays clear modulation
in time reflecting the coherent dynamics of matter waves within
the imposed lattice potential. Throughout these dynamics,
reversing the sign of the inversion asymmetry of the lattice
reverses the observed inversion asymmetry of the diffracted
atoms.

We present two physical pictures that explain the origin
of the observed momentum-space inversion asymmetry. First,
we consider how the momentum-space asymmetry originates
from low-order diffraction in the lattice. This description,
shown schematically in Figs. 4(a) and 4(b), is valid in the limit
of a shallow optical lattice and in the Raman-Nath regime,
where we can ignore the kinetic energy of the diffracting
atoms [16]. Both the scalar and vector Stark shift optical
lattice potentials, Vs(r) and Va(r), can be characterized in
momentum space by their Fourier transforms Vs,a(±Gi) at the
wave vectors ±Gi , where the relation Vs,a(Gi) = V ∗

s,a(−Gi)
is valid because both potentials are real. Considering the
C3 rotational symmetry of both lattices and their respective
inversion symmetries we have Vs(±Gi) = βs and Va(±Gi) =
±iβa , where βs and βa are both real.

We now consider the probability amplitudes p(±Gi) for
atoms diffracting from their initial zero momentum state to a
final wave vector ±Gi within a time τ . Figure 4(a) illustrates
that such diffraction can be achieved by one first-order process,
with amplitude −i(βs ∓ iβa)τ/!, and by two second-order
processes, which sum to an amplitude (−i)2(βs ± iβa)2τ 2/!2.
We ignore higher order terms. Interference between the first-
and second-order scattering amplitudes results in an imbalance
of probability for diffraction into opposite wave vectors.

FIG. 3. Oscillations in A as a function of the Kapitza-Dirac pulse
time τ , shown for θ = 0.38 radians (circles) and θ = 2.8 radians
(triangles). The data represent the mean and standard error of five
experimental runs at each pulse time. A numerical calculation (solid
line) with no free parameters closely reproduces the time dependence
of A, while perturbation theory (dashed line) captures the short time
behavior. Inset time-of-flight images for τ of 8, 50, 59, and 77 µs
show directly the evolution of the first-order asymmetry. We note that
discrepancies between theory and experiment, e.g., at times around
30, 60, and 80 µs, appear when the total population in the first-
order peaks is small, causing a systematic reduction in the measured
magnitude of A.

Calculating the asymmetry parameter A at short times and for
small lattice asymmetry (|βa| ≪ |βs |) we obtain A ≃ 6βat/!,
which is plotted as a gray dotted line in Fig. 3 and describes
the data well for small τ .

While the model above provides a simple analytic expres-
sion for A, its assumptions are violated under the conditions
of our experiment. For one, our experiments are performed
with a deep lattice that leads to diffraction to high order,
as exemplified by the many diffraction peaks in our images.
Second, the measurements are performed with pulse times that
are long enough to be outside the Raman-Nath regime, which is
shown by the high kinetic energy of the large momentum states
produced in our experiment. Therefore, the diffraction pattern
produced in our measurement is better described as resulting
from coherent dynamics governed by the band structure of the
optical lattice.

We performed numerical calculations that trace the evo-
lution of a noninteracting gas, produced initially at zero
momentum, within the lattice band structure. The numerical
results shown in Fig. 3 are for θ = 0.44 radians and a lattice
depth of 87 kHz with no free parameters. The calculation
matches well with the observed time dependence of the
diffraction asymmetry.

To provide an intuitive description of the coherent dynamics
in A that we both observe and calculate, we consider the
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FIG. 4. (a) Atoms at zero momentum are coupled to wave vectors
±Gi by the asymmetric Fourier components of the potential. (b)
Interference between first- and second-order processes creates a
population imbalance at ±Gi . (c) We treat the inversion asymmetric
potential as a perturbation Ha on the inversion-symmetric lattice
Hamiltonian H0 and show momentum-space amplitudes (spot size)
and phases (color) of the two lowest energy eigenstates. In our
experiment α2,1 is large and Ha strongly mixes the symmetric ground
state |ψ (0)

1,+⟩ and the antisymmetric excited state |ψ (0)
2,−⟩. Both perturbed

states are asymmetric and overlap with a stationary condensate. (d)
Much of the oscillatory behavior observed in A can be attributed
to the beating of three states, identified in the eigenspectrum of
H0 as |ψ (0)

1,+⟩, |ψ (0)
2,−⟩, and |ψ (0)

31,+⟩. We show state |ψ (0)
31,+⟩, which is

the excited state that best satisfies the criteria described in the first
scenario of the text. The energy differences among these states define
three frequencies (2, 65, and 67 kHz) that dominate the signal of
A. Our numerical calculations show that this three-state description
(dotted line) captures most of the physics in the full signal of A (solid
line).

effect of a small inversion-symmetry-breaking perturbation to
the band structure of an inversion-symmetric lattice potential.
The unperturbed Hamiltonian H0, which includes the kinetic
energy and the inversion-symmetric lattice potential Vs(r), has
eigenstates |ψ (0)

i,±⟩ that are either even (labeled by +) or odd
(labeled by −) under the action of the spatial inversion. The
perturbation Ha results from the small antisymmetric lattice

potential Va(r) and mixes the even and odd eigenstates. To first
order in Ha , the zero quasimomentum eigenstates become

∣∣ψ (1)
i,+

〉
≈

∣∣ψ (0)
i,+

〉
+

∑

j

αj,i

∣∣ψ (0)
j,−

〉
, (2)

∣∣ψ (1)
j,−

〉
≈

∣∣ψ (0)
j,−

〉
+

∑

i

−α∗
j,i

∣∣ψ (0)
i,+

〉
, (3)

where αj,i = ⟨ψ (0)
j,−|Ha |ψ (0)

i,+⟩
E

(0)
j,−−E

(0)
i,+

.

The initial state is a zero-momentum condensate that can be
written in the basis of inversion-even eigenstates as |ψ(0)⟩ =∑

i ci |ψ (0)
i,+⟩. During the lattice pulse time τ this initial state

evolves in time as

|ψ(t)⟩ =
∑

i

cie
−iωi,+t

⎛

⎝∣∣ψ (0)
i,+

〉
+

∑

j

αj,i

∣∣ψ (0)
j,−

〉
⎞

⎠

+
∑

j,k

−αj,kcke
−iωj,-t

∣∣ψ (0)
j,−

〉
, (4)

where ωi,+ = Ei,+/! and ωj,- = Ej,−/!.
The first term of Eq. (4) represents the incorporation of

inversion antisymmetry into the initially even eigenstates, and
the second term represents fully antisymmetric states for which
the perturbation introduces population at zero momentum.
Figure 4(c) illustrates each of these effects on two states
at zero quasimomentum that are heavily influenced by the
perturbation Ha: the initially symmetric ground state and
antisymmetric first excited state.

The numerator of the inversion-asymmetry parameter A is
the expectation value of an inversion-odd operator M that is
diagonal in the basis of reciprocal lattice momenta, with matrix
element ±1 for the wave vectors ±Gi . Using the first-order
expression above for |ψ(t)⟩, we obtain ⟨M⟩ = M1(t) + M2(t)
with

M1(t) =
∑

i,j,k

(c∗
i cke

−i(ωk,+−ωi,+)tα∗
j,iMj,k + c.c.),

(5)
M2(t) =

∑

i,j,k

(c∗
kcie

−i(ωj,−−ωk,+)t (−αj,i)M∗
j,k + c.c.),

and Mj,i = ⟨ψ (0)
j,−|M|ψ (0)

i,+⟩.
These expressions identify two generic scenarios that lead

to a large momentum-space asymmetry. The first results in
oscillations described by both M1(t) and M2(t) and involves a
trio of eigenstates of the unperturbed Hamiltonian H0 at zero
quasimomentum: two inversion symmetric, |ψ (0)

i,+⟩ and |ψ (0)
k,+⟩,

and one inversion antisymmetric, |ψ (0)
j,−⟩. These states can be

identified by three key features. First, the symmetric states have
significant population at zero momentum so as to overlap with
the stationary condensate, giving large ci and ck . Second, the
inversion-antisymmetric state is close in energy to one of the
inversion-symmetric states, say |ψ (0)

i,+⟩, so that αj,i is large and
they are strongly mixed by the perturbation Ha . Finally, the
inversion-antisymmetric state and at least one of the inversion-
symmetric states, say |ψ (0)

k,+⟩, have large population in the
first-order diffraction momenta, so that Mj,k is large. When
these criteria are satisfied, we expect modulations of equal
strength in M (and thus in A) at frequencies ωk,+ − ωi,+ and
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ωj,− − ωk,+. The second scenario is described by M2(t)
when k = i and involves just two states – |ψ (0)

i,+⟩ and |ψ (0)
j,−⟩.

These states are again characterized by large ci and αj,i , and
must both have large population in the first-order diffraction
momenta so that Mj,i is large. This scenario results in a
modulation of A at frequency ωj,− − ωi,+.

In Fig. 4(d) we show that just one trio of states in this
perturbation picture explains most of the dynamical variation
in A. Figure 4(c) shows that the state |ψ (0)

1,+⟩ has large
population in the zero and first-order diffracted momenta, that
|ψ (0)

2,−⟩ has large population in the first-order momenta, and
that these states are heavily mixed by the perturbation, i.e.,
that α2,1 is large. As a result, these two states are dominant
contributors to oscillation in A as in the second scenario
described, and also couple with a third state |ψ (0)

k,+⟩ as in the
first scenario. In Fig. 4(d) we isolate the symmetric excited
state with the largest population in the zero and first-order
diffracted momenta, |ψ (0)

31,+⟩. The energy of these three states
define three frequencies that dominate the time evolution of
A. The large momentum-space asymmetry is observed when
the Kapitza-Dirac pulse time is tuned so that these temporal
oscillations interfere constructively. We note that there are
several other symmetric excited states besides |ψ (0)

31,+⟩ that
also play the role of |ψ (0)

k,+⟩ in the scenario we have outlined,
and provide somewhat smaller contributions to the overall
dynamics.

The observations and theoretical descriptions offered in
this work illustrate how matter-wave diffraction can be made
highly sensitive to, and strongly manipulated by, fine features
of an optical lattice. Our work also suggests an explanation for
the momentum-space asymmetry observed in the diffraction
of a Bose-Einstein condensate of two spin states of 87Rb
and released from a spin-dependent optical lattice reported in
Ref. [17] (see also Ref. [18]). The asymmetry was interpreted

as evidence of a ground-state superfluid that forms with a
spatially dependent phase in the superfluid order parameter.
A later theoretical study [19] found no evidence for such
a “twisted superfluid” state, which is consistent with naive
expectations given that the optical lattice and mean-field
interaction potentials experienced by the atoms are both real
valued.

We suggest that the inversion-asymmetric diffraction pat-
terns observed in the experiment [17] may have resulted
from matter-wave diffraction from the inversion-asymmetric
transient honeycomb lattice that repulsion from one atomic
spin state creates for the second spin state. Such a transient
lattice potential would have an interaction-energy asymmetry
between the A and B sites of the honeycomb lattice that
is on the order of the superfluid chemical potential (around
h × 1 kHz). This potential would persist for a time somewhat
less than the recoil time (i.e., around 100 µs). The strength
and duration of this asymmetric potential are comparable
to those studied in the present work. The interaction-driven
diffraction of one matter wave off another can be described
equivalently as nonlinear coherent wave mixing induced by
interatomic interactions [20]. The observation in Ref. [17] that
the sign of the asymmetry parameter A was consistent between
experimental repetitions supports our view that the asymmetry
resulted from deterministic matter-wave dynamics rather than
by spontaneous symmetry breaking at a phase transition.
Moreover, in a recent experiment with the same system as
in Ref. [17], the diffraction was modified by eliminating one
spin population from the lattice just before the atoms were
released [21]. The consequent elimination of the asymmetry
signal is consistent with our suggested explanation.

This work was supported by the NSF and the AFOSR
through the MURI program.
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Appendix C

Mean-field scaling of the superfluid to
Mott insulator transition in a 2D
optical superlattice

This appendix includes the following manuscript, discussed in Chapter 5:

• C. K. Thomas, T. H. Barter, T.-H. Leung, M. Okano, G. B. Jo, J. Guzman, I.
Kimchi, A. Vishwanath and D. M. Stamper-Kurn, “Mean-field scaling of the superfluid
to Mott insulator transition in a 2D optical superlattice,” arXiv: 1702.04433 (2017).
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The mean-field treatment of the Bose-Hubbard model predicts properties of non-zero temperature
lattice-trapped gases to be insensitive to the specific lattice geometry once system energies are scaled
by the lattice coordination number z. We test this scaling hypothesis directly by driving identically-
prepared 87Rb gases through the superfluid–Mott insulator phase transition in two-dimensional
lattices of either kagome (zkag = 4) or triangular (ztri = 6) geometry. At comparable interaction
and tunneling energies throughout the transition, the measured coherent fraction of atoms is lower
in the kagome lattice than in the triangular lattice and this di↵erence is accounted for quantitatively
by the scaling hypothesis. We also study the response of the gas to a change in lattice geometry,
and observe out-of-equilibrium dynamics when the kagome-lattice Mott insulator is suddenly “hole-
doped” by introducing the additional sites of the triangular lattice.

The Bose-Hubbard model describes bosons confined to
a lattice, which undergo a low-temperature phase transi-
tion between superfluid and Mott insulating states that
is driven by strong on-site interactions [1]. A mean-field
treatment of this model neglects non-local correlations
and predicts that system properties such as particle num-
ber, n, superfluid number, nsf, and entropy, s, per lattice
site depend on the values of the system’s characteristic
energies – the chemical potential, µ; on-site interaction
energy, U ; and thermal energy, ⌧ = kBT – once they
are scaled by the product zJ , where z is the number of
nearest neighbors or coordination number of the lattice
and J is the tunneling energy. Aside from the inclusion
of z, the mean-field theory is insensitive to the geometric
structure of the lattice. More sophisticated treatments
consider non-local correlations and account for the spe-
cific lattice geometry and find deviations from mean-field
predictions, particularly in low-dimensional systems [2–
9].

Ultracold atomic gases trapped in optical lattices
experimentally realize the Bose-Hubbard Hamiltonian
[10, 11] and have allowed for quantum simulations that
identify the zero-temperature critical point with moder-
ate precision by measuring either the fraction of atoms at
zero quasimomentum [12, 13] or the closing of the Higgs-
mode energy gap [14] in two-dimensional square lattices.
The observed critical interaction strengths range between
the mean-field prediction and the higher value predicted
by a Quantum Monte Carlo calculation [2]. Interpreta-
tion of these measurements is complicated by the non-
zero temperature and external harmonic confinement of
the gases [15].

Here, we propose and pursue a direct test of the mean-
field scaling prediction that does not require identifying
the precise critical point and applies regardless of the
non-zero temperature or external confinement of the sam-
ple. This test compares properties of trapped gases that
are prepared identically, with the same total number N
and entropy S, and loaded into optical lattices with dif-
ferent coordination numbers. Under the hypothesis that
system properties are determined locally, i.e., using both
the local density and mean-field approximations, global
system properties such as the total particle number N ,
total superfluid population Nsf, and total entropy S are
determined by integrating over a three-dimensional har-
monically trapped sample as

F = K

Z µ̃

�1
dµ̃0 f(µ̃0, Ũ , ⌧̃). (1)

Where F 2 {N, Nsf, S}, f 2 {n, nsf, s} and the tilde in-
dicates an energy scaled by zJ . The e↵ective number of
occupied lattice sites is given by

K =
⇡↵

v

✓
2zJ

m!̄2

◆3/2

(2)

where ↵ is the number of equivalent sites in the unit cell,
v is the unit cell volume, m is the atomic mass, and !̄
is the geometric mean trapping frequency. The quantity
N/K generalizes the “characteristic density,” as defined
by Rigol et al. [15], to non-square lattices.

According to the equations above, if samples prepared
with the same total atom number and entropy are con-
fined to lattices that di↵er in z, but have the same K and
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Ũ , then they will have the same µ̃, ⌧̃ , and, consequently,
Nsf. This statement is insensitive to the specific form of
f(µ̃0, Ũ , ⌧̃), so that it is valid both at zero and non-zero
temperature.

We test this prediction by preparing quantum degen-
erate gases of 87Rb with a constant total atom number
and entropy, and exploring the phase transition between
the superfluid and Mott insulating states in the trian-
gular and kagome geometries, which have coordination
numbers ztri = 6 and zkag = 4. We quantify Nsf with
measurements of the coherent fraction of atoms in each
lattice and test the scaling hypothesis by comparing these
measurements over a range of identical Ũ . In this test,
the phase diagram of the Bose-Hubbbard model for dif-
ferent lattice geometries is compared not just at a critical
point, but along a line in the µ̃ � ⌧̃ plane. Our results
agree quantitatively with the mean-field scaling predic-
tion at all values of Ũ .

Finally, in this work we explore the response of the
quantum gas to a change in lattice geometry. We pre-
pare a Mott insulator in the kagome lattice and then
change the lattice structure to the triangular lattice while
holding U and J constant. Slow changes induce a near-
equilibrium phase transition from the Mott insulator in
the kagome lattice to superfluid in the triangular lattice.
Rapid changes, in which the insulator is suddenly “hole-
doped” by the introduction of vacant lattice sites, result
in transient oscillations of the strongly-interacting super-
fluid that damp out and lead to heating.

We create an optical superlattice by overlaying two
triangular lattices of intensity minima, each formed at
the intersection of three beams of light of equal inten-
sity that propagate horizontally with in-plane polariza-
tion and intersect at equal angles [16]. We use light at
wavelengths 532 nm and 1064 nm, resulting in lattices
with spacings a = 355 nm and 2a, respectively. A unit
cell of the 1064-nm lattice contains four sites of the 532-
nm lattice, labeled A – D in Fig. 1. The 532-nm lattice,
formed with light that is blue-detuned from the principal
87Rb atomic transitions, attracts atoms to its intensity
minima. The resulting triangular lattice potential has a
depth V532 that determines the atomic interaction and
tunneling energies, U and J , where U also depends on
the depth V? of an additional vertical lattice.

The overlapping 1064-nm lattice primarily introduces
an energy o↵set VA,B,C,D among the four sites in the unit
cell and has little influence on U or J [17]. Positioning the
1064-nm intensity minima to coincide with 532-nm inten-
sity minima (sites D in Fig. 1) raises the D-site energy
by �V = VD � VA,B,C = 8/9 ⇥ V1064 and leaves a unit
cell with three degenerate low-energy sites. When �V
exceeds the relevant energies of low-temperature atoms
in the ground band of the lattice (µ and J), the atoms
become restricted to the kagome lattice. In this work,
kagome lattice data were taken with �V/h = 13 kHz,
which satisfies the stated criteria as the chemical poten-

(a)
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(b) (c)

a = 355 nm 2a

∆V

μ
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C

B

D

V532

0

0

8/9 × V532

A CB D
A

C

B

D

FIG. 1: Method for producing triangular and kagome opti-
cal lattices. (a) Triangular lattices created by light at wave-
lengths 532 nm (left) and 1064 nm (right) whose intensity
– indicated by color saturation – has minima separated by
lattice spacings a = 355 nm and 2a, respectively. (b) The
kagome lattice potential results when the the two lattices are
overlapped such that the 1064-nm optical intensity minimum
coincides with a minimum of the 532-nm lattice, as in the
D-site here. (c) A one-dimensional slice through the sites of a
unit cell, where atoms are trapped in the 532-nm triangular
lattice potential and the e↵ect of the 1064-nm lattice is to
raise the potential at site D by an amount �V . The atoms
are confined to the kagome geometry when �V > µ, J , the
chemical potential and tunneling energies.

tial ranges between µ/h = 1.5 and 2.9 kHz, and super-
fluid di↵raction from this lattice showed the distinct sig-
nature of coherent atoms released from the kagome ge-
ometry [16]. The relative position of the commensurate
lattices is measured interferometrically and stabilized ac-
tively [18].

For our experiments, we prepare nearly pure 87Rb
Bose-Einstein condensates of between 0.5 and 3 ⇥ 105

atoms in the |F = 1, mF = �1i hyperfine state in a red-
detuned crossed optical dipole trap, characterized by trap
frequencies of (!x,!y,!z) = 2⇡⇥(34, 64, 49) Hz. We then
impose a one-dimensional lattice with potential depth
V?/h = 41 kHz formed by a retroreflected 1064-nm-
wavelength beam propagating vertically. The gas is thus
divided among approximately 17 two-dimensional planes
that are e↵ectively decoupled (with a single-atom tunnel-
ing rate of 5 Hz). Finally, we adiabatically load the atoms
into the two-dimensional triangular superlattice with a
simultaneous increase of the in-plane lattice beam inten-
sities to the final trap depths [19]. All lattice potential
depths are calibrated independently at regular intervals
using lattice-modulation spectroscopy in the superfluid
regime [18, 20].

After allowing 30 ms for the lattice-trapped gas to equi-
librate [21], we release the atoms from the lattice into a
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FIG. 2: The phase transition between the superfluid and Mott
insulating states in two lattices with the same values of U and
J and di↵erent coordination numbers, z. (a) Images of atoms
released from the triangular (upper panel) and kagome (lower
panel) lattices for V532/h = 38, 54 and 78 kHz show correla-
tions in the lattice-trapped gas. The superfluid portion of a
gas coherently di↵racts during expansion, resulting in sharp
peaks at the reciprocal lattice vectors. The inner peaks in
the kagome-lattice images indicate the larger primitive unit
cell, and their rotational symmetry and relative population
compared to the peak at k = 0 indicates proper alignment
of the superlattice. On-site interactions drive the phase tran-
sition from the superfluid to the Mott insulating states, as
indicated by loss of coherence with increasing lattice depth.
(b) We measure coherent fraction by summing the number of
coherent atoms at all peaks and dividing by the total number
of atoms in an image. Data is shown as a function of 532-nm
lattice depth (lower axis) and U/J (upper axis). Each data-
point represents 3-5 iterations of the experiment and standard
error is shown.

loosely horizontally confining magnetic potential in which
they undergo a quarter-cycle of motion before we probe
them by absorption imaging in the horizontal plane for a
momentum-space characterization of the lattice-trapped
gas [22]. The vertical lattice is ramped o↵ about 150 µs
prior to the turn-o↵ of the superlattice and optical traps
in order to reduce the rate of vertical expansion of the
gas and thereby reduce the collisional transfer of vertical
to transverse momentum.

Figure 2(a) shows typical momentum-space distri-
butions for atoms expanding from the triangular and
kagome lattices at several values of V532. In the super-
fluid regime, at low V532, the distribution of atoms in
the kagome lattice shows the additional di↵raction peaks
associated with the larger unit cell of the 1064-nm lat-
tice. As either lattice is deepened, coherent di↵raction

peaks diminish in strength and give way to a di↵use
momentum-space distribution that represents both the
incoherent portion of the gas and the incoherent momen-
tum transferred by elastic scattering during expansion.
We quantify the coherent fraction by counting the num-
ber of atoms in each sharp di↵raction peak above the
di↵use background and dividing by the total number of
atoms in an image and show the results in Fig. 2(b).

The momentum-space images and resulting coherent
fraction measurements show the influence of lattice ge-
ometry on the lattice-trapped Bose gas. At all lattice
depths, the superfluid is less robust in the kagome lattice
than in the triangular lattice, as expected owing to the
lower coordination number. We found that the suppres-
sion of coherence upon increasing �V was reversible, i.e.
that increasing and decreasing �V back to zero caused
the coherent fraction to return nearly to the value ob-
served with atoms loaded only into the 532-nm lattice.
This finding confirms that any extraneous heating of the
gas from the addition of the 1064-nm lattice was negligi-
ble.

Given our experimental parameters, we expect to form
an n = 2 Mott insulator at the center of our gas. We
observe the coherent fraction becoming negligible near
U/J = 60 for the triangular lattice and U/J = 40 for the
kagome lattice, consistent with the mean-field prediction
that the n = 2 Mott lobe of a low-entropy sample forms
at Ũ = 9.9. However, as in previous studies, trap inho-
mogeneity and non-zero temperature influence measure-
ments of the critical point, making these measurements
di�cult to interpret as precise tests of theoretical models.

By performing the same experiment in lattices that
di↵er only in their geometry, we circumvent the need to
isolate a transition point and instead use our measure-
ments for a quantitative test of the mean-field scaling
hypothesis. In Fig. 3 we compare the coherent fraction
of atoms in the triangular and the kagome geometries
with identical Ũ . We observe that scaling the experi-
mental U/J by z�1 leads to very good overlap between
the two datasets.

To test the scaling hypothesis quantitatively, we ap-
ply a simultaneous spline fit to the two datasets and
then determine the factor ⇣ by which the U/J axis of
the kagome-lattice dataset should be scaled to best fit
the triangular-lattice dataset by a least-squares measure.
We obtain the optimal scaling factor ⇣ = 1.6±0.1, where
the mean-field prediction is ⇣ = ztri/zkag = 1.5. Our re-

sults are consistent with mean-field scaling for all Ũ , but
how a more sophisticated treatment would a↵ect the pre-
dicted scaling and functional form of these data remains
an open question.

We note two imperfections in our approach. First, for
technical reasons our experiments were performed with
a constant harmonic trapping frequency !̄. As a result,
the relative e↵ective site number K in the two lattices
was around Ktri/Kkag ' 1.4. Therefore, the triangular-
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FIG. 3: A test of the mean-field scaling hypothesis in which
the coherent fraction of atoms measured in the triangular and
kagome lattices under the same conditions (Fig. 2(b)) are plot-

ted against the scaled interaction energy Ũ = U/zJ . The

overlap of the two data sets at all Ũ indicates agreement with
the mean-field scaling prediction.

lattice experiments were performed with lower µ̃ and ⌧̃
than the kagome-lattice experiments. In the mean-field
picture, data for di↵erent K can be described as experi-
ments performed in the same lattice geometry, but with
N and S both scaled by K�1, i.e. at the same total
entropy per particle. We performed numerical calcula-
tions based on the mean-field and local density approx-
imations, and found that scaling both N and S by this
amount produced only negligible changes in the super-
fluid fraction for gases with small S/N as are used in
this experiment.

Second, owing to collisions between atoms after their
release from the lattice, and also to the challenge of quan-
tifying the population in coherent peaks above their in-
coherent backgrounds, the coherent fraction determined
from our images is an imperfect measure of the superfluid
fraction of the gas. For example, the measured coherent
fraction of ' 0.4 at low lattice depths is much lower than
expected given the high condensate fraction of the gas
before the lattice potentials are imposed, and given the
agreement with mean-field theory for the appearance of
the n = 2 Mott lobe. Our test of the mean-field scaling
hypothesis is predicated on the assumption that the sys-
tematic underestimation of the coherent fraction from
absorption images is identical for di↵raction out of the
two di↵erent lattice geometries.

Finally, we study the evolution of our lattice-trapped
gas in response to changes in the structure of the optical
lattice while U and J remain constant [17]. We create
a Mott insulator in the kagome lattice, with V532/h =
55 kHz and �V/h = 15 kHz, so that J/h ⇠ 106 Hz and
U/h ⇠ 1.2 kHz. We then deform the lattice into the tri-
angular geometry by reducing �V/h to a minimal value
of 0.5 kHz in a ramp time Tramp. We allow the atoms
to equilibrate in the triangular lattice before releasing
them from their optical confinement and measuring the
coherent fraction. The experimental sequence and data

are shown in Figs. 4(a) and 4(b). All data presented
in Fig. 4 were taken under the same experimental con-
ditions, but with longer hold time, lower image quality,
and higher temperature than those in Figs. 2 and 3.

Figure 4 shows that introducing the additional lattice
sites in a time that is long compared to h/6J ⇠ 1.6 ms
restores coherent fraction nearly to the value reached in
an adiabatically prepared triangular lattice, despite the
non-zero final value of �V . As such, the gas undergoes a
phase transition between the Mott insulating and super-
fluid states that is driven not by variations of U/J as in
most previous works, but by a structural change of the
lattice potential.

More rapid ramps result in a lower asymptotic coherent
fraction after equilibration. Quenching from one lattice
geometry to the other initiates transient dynamics in the
newly formed superfluid that are damped and lead to
a higher-temperature, lower-coherence gas after allowing
for equilibration. Through band mapping measurements
[23], we determined that these dynamics arise not from
excitation to higher bands, but from excitation of the
strongly interacting superfluid within the ground band
of the triangular lattice. Such non-equilibrium dynamics
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FIG. 4: Response of a degenerate Bose gas to a structural
lattice change. (a) The experimental sequence. (b) Coherent
fraction as a function of ramp time after the gas equilibrates in
the final lattice. The coherence increases to nearly that of the
adiabatically loaded triangular lattice when Tramp ⇠ h/6J .
Faster ramps lead to heating. (c) Images of the gas at short
times after the fastest ramp show a rise of the coherent in-
ner peak population at 0.15 ms. This rapid momentum-space
redistribution indicates motion of the strongly-interacting su-
perfluid within the unit cell. This signal decays and by 0.3
ms the total coherent fraction is reduced.
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due to rapid “hole-doping” by the addition of one lattice
site per unit cell are analogous to investigations of phase
transitions triggered in solid-state systems by ultrafast
optical pulses, where the evolution on di↵ering timescales
helps one disentangle the separate e↵ects of electronic
and structural phase transitions [24].

Images in Fig. 4(c) show the state of the gas at short
times after the quench. We observe an increase in co-
herent population of the inner-peaks after 0.15 ms, while
the total coherent fraction remains near-constant. This
inner-peak population decays, and by 0.3 ms after the
quench the total coherent fraction is significantly re-
duced. The rapid redistribution of strongly-interacting
superfluid indicates motion of coherent atoms within the
unit cell that is much faster than the tunneling rate. Fu-
ture experiments might focus on manipulating the su-
perlattice potential to characterize these non-equilibrium
dynamics spectroscopically, or on exploring possible new
phases in this superlattice at fractional fillings per lattice
site [25–27].
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Appendix D

Replacing the Oven in E5

Refilling rubidium in the oven chamber involves removing the oven, placing a fresh vacuum
sealed ampule containing 5 grams of rubidium. Opening the oven must be done with care,
as contaminants in the chamber could damage the effectiveness of the machine. First, all
parts needed should be collected and cleaned to UHV standards.

D.1 Supplies

1. Main Supplies

a) ion pump

b) roughing pump

c) two turbo pumps

d) new oven

e) new oven nozzle

f) Rb and K ampules for new oven

g) heater strips

h) heating clamps for oven

i) micromega temperature controllers

j) cylinder of nitrogen

k) clean tubing for dry nitrogen

l) dewar of liquid nitrogen

m) RGA: residual gas analyzer

n) vacuum tubes and valves for connecting pumps to machine

o) pressure monitor
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2. Replacements

a) any new vacuum parts, cleaned to UHV standards

b) spare blank flanges, these are used in place of parts that must be cleaned during
process

c) new ion gauge

3. Safety Supplies

a) mineral oil

b) many glass or metal containers for mineral oil

c) lame-resistant lab coats

d) flame-resistant gloves

e) goggles

f) face mask

4. Cleaning Supplies

a) instructions on cleaning UHV parts

b) simple green

c) acetone, methanol

d) deionized water

D.2 Replace rubidium

D.2.1 Prepare chamber

1. Turn off oven (6 hours before breaking vacuum)

2. Turn off cold catcher (30 minutes before breaking vacuum)

3. Make sure the gate valve to main chamber is securely closed

4. Move cold catcher thermistor setup upwards away from the oven. Clean the thermal
goop extremely well so that it does not fall into the chamber when we open the 6 in
valve.

5. Turn off ion pump (10 minutes before)

6. Pump new arm down with roughing pump, to ∼ 1 mTorr
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7. Flush new arm and tubing with dry nitrogen. This cleans out the new region. The
nitrogen flows from a cylinder, through a regulator, through a vat of liquid nitrogen to
condense any water and finally through the turbo pump inlet. The gauge on nitrogen
regulator should be lower than 5 psi.

8. Stop nitrogen flow and pump down with roughing pump and turbo pump. Should take
20 minutes to get down to vacuum pressure. In that time, make sure the thermistor
setup is well out of the way and the exterior of the oven chamber is as clean as possible.

9. Open valve

10. Flush oven chamber with nitrogen

11. Monitor main chamber pressure, an increase in pressure would indicate gate valve
malfunction.

D.2.2 Remove parts from chamber

1. Close valve to roughing pump

2. Turn off the turbo pump, continue to vent dry N at slightly above 0 psi (don’t over
pressurize the chamber)

3. Fill the glass or metal buckets with mineral oil

4. Remove the oven cup. Dump contents into mineral oil. Spray methanol into the cup
while holding the oven with fire-resistant glove over the vat of mineral oil.

5. The copper cold catcher is likely coated in Rb and appears white. Clean it by spraying
small amounts of methanol onto the cold catcher. This will react with the Rb and you
will be able to clean off the cold catcher and most of the inside of the chamber in this
way.

6. Remove the 6 inch flange. Wrap in UHV foil to be cleaned. Replace with a cleaned
blank

7. Remove the ion pump.

8. Install the new ion pump while all of the parts that were removed and dunked in oil
are cleaned to UHV standards.

9. Continue cleaning inside the chamber with the new hole you just made, now you can
reach more parts of Rb covered cold catcher. Spray.

10. Remove the lower flange and the oven shutter feedthrough. As always, have a piece of
UHV foil ready to wrap the part in when it comes out.

11. Remove the cold catcher. Submerge into mineral oil.
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D.2.3 Replace vacuum parts

All vacuum flanges should be bolted down in a star pattern to ensure that the copper gasket
is uniformly compressed for an effective vacuum seal.

1. Remove the flange that is below the oven shutter and cold catcher.

2. Cover the opening with a clean closure (UHV foil)

3. Continue flowing nitrogen while cleaning the chamber with wipes and methanol. The
wipes should go directly into mineral oil. There should be many containers of mineral
oil in which to put the Rb covered wipes.

4. Install the rotary feedthrough.

5. Install the clean oven shutter.

6. Install the new cold catcher.

7. Wipe clean an ampule of Rb using methanol. Put it in the oven with the magnetic
ball on top.

8. Install the new oven. Be sure the magnet will be on top of the ampule when it is
installed.

9. Replace the ion pump. When you remove the one that is there nitrogen will flow
through. The pump will be very heavy- have a plan for that. Put the new ion pump
into place.

10. Pump down.

D.2.4 Bake the chamber

1. Put thermocouples on selected regions of the chamber. Label the ends.

2. Wrap everything that will be baked in one layer of light weight foil (not UHV foil)

3. Wearing appropriate safety gear (including masks to protect from fiberglass), wrap the
chamber with fiberglass-filled heater strips. We use 3 for the oven area and 1 on the
main chamber addition. They should not cross over themselves. Label them.

4. Wrap that with 2-3 more layers of foil

5. Plug the thermal tapes into voltage transformers.

6. Slowly ramp up the voltage and monitor the temperature until you get to 150◦C

7. Pump until pressure is low enough to turn on RGA
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8. Monitor water and nitrogen in chamber as they are pumped out

9. After reaching desired pressure, slowly decrease temperature of chamber

10. Wearing appropriate safety gear, unplug and remove heater strips and foil
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Appendix E

Circuit designs and tips

The best advice I ever got about debugging circuits is that when your circuit doesn’t work,
there are three potential reasons:

1. It was incorrectly soldered

2. One of the elements is broken

3. The design is flawed

The potential culprits should be checked in that order. This sounds like obvious advice,
but over the years I’ve returned to the list with many students. Pro-tip: it’s almost always
the first one. There is most likely a cold solder joint or missed connection. I’ve never made
it to the third item on the list; it turns out the designer has put a lot of thought into it
before sending it off to to be printed and in our years of experience with Sunstone Circuits,
we have never had a print error.

In this appendix I’ll describe the circuits that I’ve designed and how they can be used
and tuned for various purposes. I’ll also share some warnings and tips I’ve learned along
the way. Before designing a new circuit, I recommend leafing through Texas Instruments
technical notes SLLA057: A Survey of Common-Mode Noise and SLOA035B: Amplifiers
and Bits.

E.1 Logarithmic photodiode

We use a Hamamatsu IR-enhanced Si PIN photodiode (S11499-01) for our photodioes. The
enhanced signal of these photodiodes is sufficient at 1064 nm for stabilization. The photodi-
ode outputs ρ = 0.6 Amps/Watt, so that the photodiode current is IPD = ρPopt, where Popt
is the optical power into the diode.

A bipolar transistor can be used as a logarithmic converter, with Vout = VT log10(Ic/Is),
where VT = kT/q and Is is a saturation current that is process and device-dependent. In the

http://www.sunstone.com/
http://educypedia.karadimov.info/library/slla057.pdf
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logarithmic converter chip AD8304, the bipolar transistor has VT = 25.69 mV at 25◦ C. The
temperature-dependence is problematic if the chip is to be used as a consistent logarithmic
converter.

In the AD8304, a second bipolar transistor is used as a reference, and the resulting
signal, Vout = Vy log10(Ipd/Iz), is temperature-stable. Here, Vy is a slope that defaults to 200
mV/decade = 10 mV/dB and Iz is the intercept at 100 picoamps. Both of these parameters
are tunable with external resistors in the circuit design shown in Fig. E.1.

Combining the Hamamantsu photodiode with the factory settings of the AD8304, we
have an output signal

Vout = 0.2 log10(Popt/178 pW) (E.1)
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Figure E.1: Logarithmic photodiode. (a) Circuit design (b) PCB by Sunstone Circuits, after
soldering surface mount components in a toaster oven. (c) Completed photodiode in use.

E.1.1 Modifying slope and intercept

Increasing the slope of the response helps with precision, but comes at the cost of reducing
the output range of the converter. The default output range is over 7 orders of magnitude,
and we aim to stabilize power over at least 3 orders of magnitude. As such, the circuit
is designed increase of the slope of the response. To increase the slope of the signal, one
uses the internal buffer amplifier shown in the lower right of the circuit diagram within the
AD8306 chip. Resistors RA and RB are used to increase the gain, where G = RA/RB. In
our experiment we use G = 2, resulting in a slope of 400 mV/decade.
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To reduce the slope, one would a shunt resistor, Rs, between Vlog (pin 8) and ground.
The pin is trimmed to 5 kΩ, so Vy = VyRs/(Rs + 5 kΩ). For example, if Rs = 3kΩ, then
Vy = 86 mV/decade. Our PCB is not designed to reduce the slope.

The intercept is set by a reference voltage, Vref , on pin 12 of the chip.

E.1.2 Adaptive biasing

The AD8304 chip has an option to adaptively bias the photodiode based on how much light
is on the photodiode. The voltage on pin 6, ‘VPDB,’ varies from 0.6 V when IPD = 100 pA
(applying a reverse bias of 0.1 V), to 2.6 V when IPD = 10 mA (applying a reverse bias of
1V).

E.1.3 Board design

The AD8304 is a surface mounted chip. Sunstone circuits offers an option to surface mount
components. We opted to follow instructions from a Youtube video on soldering surface
mount components in a toaster oven. The most important thing I learned in the design of
the circuit is that it is incredibly important to get filtering capacitors as close as possible to
the active element in the circuit, here the AD8304. This allows for the effective reduction of
noise on the input signal. Figure E.1(b) shows that we surface mount both the chip and the
0.1 µF filtering capacitor C3.

Table E.1: Elements in our photodiode circuit (Fig. E.1)

C1 1 nF
C2 10 nF
C3 0.1 µF
C4 100 nF
C5 10 nF
C6 10 µF
R1 750 Ω
RA 20.4 kΩ
RB 10.2 kΩ
RC open

Capacitor and resistor values used in our photodiodes. The capacitor C3 is surface
mounted to improve filtering of the voltage that powers the chip. Note that RA and RB

should be tuned to modify the slope of the response.
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E.1.4 Possible improvements

Analog Devices also produces a high side current mirror chip, the ADL5315, which can be
used to further reduce the noise of the logarithmic photodiode signal. We have found it to
be unnecessary for our purposes thus far, but it may be useful in the future. Analog Devices
Circuit Note CN-0056, entitled Interfacing the ADL5315 High Side Current Mirror to a
Translinear Logarithmic Amplifier in a Photodiode Power Detector Application describes its
use.

E.1.5 Exponential amplifier

The logarithmic current amplifier circuit is a part of a feedback loop, and is used in series
with an exponential RF power amplifier. There is an element between them that responds
quadratically in voltage. The output voltage of the three elements is linearly related to the
input voltage. For our exponential amplifier we use the eval board of the Analog Devices
element ADL5331. It has an internal temperature reference for stability, just as the AD8304
does.

E.2 Analog feedback in the log photodiode system

There are many helpful resources to learning about analog feedback systems. I strongly
recommend the Review of Modern physics entitled Feedback for physicists: A tutorial essay
on control [75], and a more technical review, Schaum’s Outline of Theory and Problems of
Feedback and Control Systems [76]. Here I will just describe the particulars of the feedback
circuit that we use in this experiment.

There are three stages to the analog feedback board, shown on the following page. The
first is a buffer stage. It is not an instrumentation amplifier or a subtractor circuit. Conven-
tional wisdom would suggest that subtracting the input signal from the input ground would
be ideal as an input to the feedback electronics. However, we found that this increased
the noise in the system because the ground of the photodiode differs from the ground of
the feedback board. This was the case even when we tried to ground the two to the same
optics table. The problem is at least partially because the feedback electronics are spatially
distant from the photodiode (by 1-3 meters), which is a limit of our experiment. We find
that grounding the input SMA cable ground to the stabilization board ground solves this
problem and doesn’t introduce further complications.

The second stage is the integrator stage. The buffer output, which is −Vin, is added
to the setpoint to produce an error signal. This feedback stage determines the voltage that
should be sent to the control system so that the input voltage and setpoint voltage are equal.

There is a manual switch on the integrator portion of the circuit that allows switching
between a few capacitors. The integrator feedback is maximum at DC, and decreases in
voltage by 20 dB/decade. The point at which the integrator gain is zero is determined by
the capacitor. When building the board, you first measure the open loop response of the
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system to which you’ll be applying feedback and choose a range of appropriate capacitors.
This is a useful option, as we find that it is often necessary to change the feedback parameters
when optimizing the system using the response of atoms.

The integral gain also has a bypass switch, which enables us to turn it off so that the DC
gain is determined by the proportional feedback. The proportional gain is determined by the
values of R3 and RI = R13 = R11 as |G| = R3/RI . The switch is necessary to enable smooth
switching of the laser light. If the integrator is on while there is no light on the photodiode,
then the capacitors are charged and will output maximum gain as soon as there is a small
signal. The circuit will quickly correct for this spike, but it can still be harmful in an optical
lattice, where beam intensities must be carefully controlled even at low optical power. The
switch enables us to bypass the integrator whenever the lasers are off, and switch it on when
the beams are on. The switch has also enabled us to adapt the board for other purposes.

The final stage is a rectifier, which limits the output voltage of the feedback circuit. The
exponential amplifier accepts a limited range of input voltages, between 0 and 1.4 Volts.
Voltages outside of that range will damage the sensitive circuitry that allows for appropriate
stability and base of the exponential. Here we limit the voltage to between 0 and 1.2 V.

The board shown is connected to a second board that is not shown, which contains basic
circuitry to power the board, buffer the setpoint, and enable override of the entire feedback
circuit, so that the setpoint is sent directly to the exponential amplifier. This last option
is useful when we need to work on optics, block beam paths and measure optical powers.
We use Texas Instruments part number REF102 as a voltage reference to power the board
with regulated 10 V. When building a circuit board, always be sure to use the appropriate
regulator, and don’t ever try to reduce it with a voltage divider.
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