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Computational fluid dynamics (CFD) is the de-facto method for solving the Navier-Stokes

equations, the set of partial differential equations that describe most laminar and turbulent

flow problems. Solving this system of equations requires extensive computational resources;

hence significant progress for scaling CFD simulations has been made with advancements

in high-performance computing. However, the CFD community has mainly focused on de-

veloping high-order accurate methods instead of designing algorithms that harness the full

potential of the new hardware. Moreover, current CFD solvers do not effectively utilize

heterogeneous systems, where graphics processing units (GPUs) accelerate multi-core cen-

tral processing units. At the same time, deep learning (DL) algorithms, whose training and

inference stages map well to GPUs, have revolutionized the fields of computer vision and

natural language processing. In this dissertation, we explore and propose novel algorithms

to improve the performance and productivity of CFD solvers using DL.

First, we present CFDNet, a new convolutional neural network-based framework that acceler-

ates laminar and turbulent flow simulations. Early works on DL+CFD approaches proposed

surrogates that predict the flow field without any guarantees of satisfying the physical laws.

Instead, we design CFDNet as an accelerator that reaches the same convergence guarantees

as traditional first principles-based methods with fewer iterations. As a result, CFDNet
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achieves 1.9− 7.4× speedups without compromising the quality of the solution of the phys-

ical solver in both laminar and turbulent flow problems for different configurations (such

as channel flow and flow around an airfoil). CFDNet is the first DL-based accelerator for

fluid simulations and presents three advantages: (a) it can be used in tandem with other

acceleration techniques, such as multigrid solvers and parallelization, (b) it is amenable to

any time-marching scheme, and (c) it is a DL module that can be plugged into any existing

physical solver.

Like classical DL algorithms, CFDNet relies on training on large-scale datasets. Hence, it

becomes impractical for high-resolution problems due to computationally prohibitive data

collection and training. To overcome this limitation, we employ the idea of transfer learn-

ing (that is, reusing a model trained with a large number of samples for a task where data

is scarce) and propose SURFNet: a transfer learning-based framework to accelerate high-

resolution simulations. SURFNet performs data collection and training mostly at low resolu-

tion (64× 256) while being evaluated at high resolutions (up to 2048× 2048), improving the

scalability of DL algorithms for CFD. SURFNet achieves a constant 2× acceleration across

different unseen-during-training flow configurations (such as symmetric and non-symmetric

airfoils), and resolutions, showcasing resolution-invariance up to 2048× 2048 spatial resolu-

tions - significantly larger than those attempted in the literature.

SURFNet accelerates fluid simulations based on uniform meshes. However, since different

regions of the domain present different flow complexity, we do not require uniform numerical

accuracy throughout the domain. Adaptive mesh refinement (AMR) is an iterative technique

that refines the mesh only in those regions that require higher numerical accuracy, and CFD

solvers use it extensively for scalability. We propose ADARNet, a DL algorithm that predicts

a non-uniform output and decides the final resolution of different domain regions in a single

shot. Hence, ADARNet marries the advantages of DL (one-shot prediction) and AMR

solvers (non-uniform refinement) to present a novel algorithm that outperforms both. Due
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to ADARNet’s ability to super-resolve only regions of interest, it predicts the same target

1024 × 1024 spatial resolution 7 − 28.5× faster than state-of-the-art DL methods (which

perform uniform super-resolution) and reduces the memory usage by 4.4− 7.7×, showcasing

improved scalability.

CFDNet, SURFNet, and ADARNet are hybrid DL-CFD frameworks that collectively im-

prove the state-of-the-art. First, CFDNet is a DL-based accelerator for iterative numerical

schemes. Second, SURFNet scales CFDNet to high resolutions and allows acceleration of

real-world aerospace design scenarios. Third, ADARNet is a direct method for AMR that of-

fers high-resolution accuracy with significantly less compute and memory resources. The code

for these frameworks is open-source and can be found in: https://github.com/oobiols/staidy.git.
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Chapter 1

Introduction

The Navier-Stokes (NS) equations, a set of second-order, nonlinear partial differential equa-

tions (PDEs) derived from Newton’s second law of motion, describe most laminar and turbu-

lent flows and lie at the core of fluid mechanics research. However, these equations have not

yet been proved to have an analytical solution under all potential situations (for instance,

turbulent 3-D flows). Therefore, the fluid mechanics community has extensively solved these

problems via finite differences, mainly via the finite volume method (FVM). FVM discretizes

the NS equations both in time and space and makes it possible to find a finite (numerical and

approximate) solution to problems that, a priori, do not have an analytical (exact) solution.

One could try to find this numerical solution via pen and paper, but this approach becomes

impractical due to the time complexity of these problems. Instead, we find this numerical

solution via physical solvers: practitioner-generated codes that solve the NS equations nu-

merically. Hence, computational fluid dynamics (CFD) is the set of all numerical schemes

and iterative solvers that solve the discretized version of the NS equations. Nowadays, CFD

is the primary source of fluid mechanics research, results, and analysis. In the last 30 years,

the community has put considerable effort into improving the scalability and performance
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of these solvers.

Direct numerical simulation (DNS) attempts to solve the discretized NS equations accounting

for all turbulence time and length scales [1]. Unfortunately, this leads to very fine meshes

and small timesteps, making DNS computationally intractable for several flows. To ease the

tractability of these problems, Reynolds averaged Navier-Stokes (RANS) equations [2] time-

average the effects of turbulence and often model those effects that are out of the scope of

the average behavior. We describe the RANS equations and subsequent models in Chapter 2

of this thesis.

However, RANS is still computationally too expensive for extensive design space exploration

if approached as-is. Solving the NS equations at every grid cell1 is a daunting task. There-

fore, the latest advances in current acceleration techniques, such as parallelization and multi-

grid solvers, have allowed the resolution of problems that seemed impossible several years

ago [3]. However, it would be completely wrong to think that CFD represents a mature

technology now. There are still many open questions, such as efficient solution techniques

for viscous flows, design optimization/exploration, and the coupling between CFD and other

disciplines [4, 5]. Because of the recent success of deep learning (DL) algorithms in com-

puter vision (CV) and natural language processing (NLP)[6, 7], and because of the increasing

heterogeneity of modern high-performance computing (HPC) systems, we hypothesize that

these algorithms can play a key role in the future development of CFD simulations. In this

thesis, we present new acceleration methods that leverage DL algorithms as a revolutionary

and novel tool to use together with current acceleration techniques such as multigrid and

parallelization [8–11].
1Typical grid sizes for accurate RANS solutions can range 1-20M.
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1.1 The performance challenge of CFD

The ability to simulate turbulent flows using CFD has progressed rapidly over the last

several decades and has fundamentally changed the aerospace design process [4, 12, 13]. The

evolution of physics-based technologies has been crucial in providing advanced simulation

capabilities. However, the last decade has seen stagnation in these capabilities, summarized

by two main factors. First, the most significant challenge faced by the CFD community

is, despite the improvement in the last several years, the inability of current methods to

accurately predict turbulent-separated flows [14]. Second, HPC hardware is progressing

rapidly and leading the community to rethink CFD algorithms and software. Most of the

currently used algorithms and numerical schemes were developed several years ago and were

not designed to exploit an increasing number of heterogeneous proessors [15]. The need for

new algorithms - which is the focus of this research - is critical to harness the potential

of massively parallel, heterogeneous HPC architectures with accelerators such as graphics

processing units (GPUs) and field-programmable gate arrays [16] to explain physical systems

of interest that remain currently unexplored.

While the vast majority of CFD codes (for instance, NASA’s CFL3D [17], OVERFLOW

[18], and FUN3D [19], or others such as OpenFOAM [20]) only run on central processing

units (CPUs), DL algorithms on GPUs constantly outperform CPUs [21] at both training and

inference. Due to its fast-paced growth, technologies that will prevail in HPC are challenging

to predict. However, it is expected to require new algorithms and software to exploit emerging

hardware capabilities. The dominant trend is toward increased parallelism and heterogeneous

architectures, where accelerators, such as GPUs, offer the potential for new advances in

computational capabilities. A coupled CFD - DL framework appears to be a natural way to

harness multicore CPU/GPU systems. In this thesis, we conduct research in this direction

and present new algorithms that are scalable on current and future heterogeneous systems.
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Researchers use CFD in the early, conceptual design of products where it has been previ-

ously calibrated for similar applications, as well as for new configurations where little or no

engineering data is available to guide design decisions. During the conceptual optimization

phase, simplified models are typically used to allow reasonably accurate trades on several

performance measures (for instance, the coefficient of drag, or CD) [22, 23]. Shape design

optimization in airfoils, for instance, relies on minimizing an objective function. After these

early stages, CFD is also a necessary tool for a more detailed design process. For example,

CFD is indispensable in designing cruise wings for commercial airplanes [24]. Finally, in

the validation and certification stages of these designs, practitioners rely on CFD to answer

questions that arise during product testing. Typically, the product configuration evolves

over the testing period. Generally, CFD modeling capability grows to capture the required

scope and physics to answer the questions raised during testing. The expense of responding

to often unplanned technical surprises is a significant motivation for improving the accuracy

and the speed of CFD. For each of these reasons, the performance of CFD is of critical

importance.

As stated above, one of the most common approaches for aerodynamic design is shape

design optimization for airfoils [25–27]. It consists of starting from a given airfoil geometry

(for instance, NACA0012) and slightly modifying it to produce the desired performance

values (for instance, the coefficient of lift or CL). An example is shown in Figure 1.1.

Here, we depict the original NACA0012 [28] shape together with the design variables in the

optimization problem: vertical positions of the control nodes and the angle of attack α [26].

Four control nodes are in locked positions. These four variables can be modified through

the optimization problem and change the original NACA0012 shape. This process lacks

abstraction and generalizability because it relies on a parametrized geometry.

Alternatively, in this thesis we present a methodology that allows for a broader design space

exploration using RANS methods. Even though our approach relies on high-fidelity methods
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Figure 1.1: NACA0012 and its angle of attach α as an optimization variable. Also, the four locked
control nodes. Common setup in airfoil design optimization [26].

rather than optimization problems, it allows us to quickly explore not only variations of one

airfoil geometry but also across considerably different airfoil shapes - for instance, the ones

depicted in Figure 1.2. Moreover, our method accelerates RANS simulations on airfoils from

simulations on simpler geometries such as ellipses or cylinders (where the computational grid

is easier to generate).

!

"

Figure 1.2: Left, the NACA6415 airfoil. Right, the NACA1412 airfoil.

We note that RANS methods have become the high-fidelity method of choice for design

space exploration mostly due to the use of larger meshes, more complex geometries, and

numerous runs afforded by continually decreasing hardware costs [29]. Based on feedback

from the CFD survey and the follow-up workshop in [4], it is clear that the majority of

the engineering and scientific community believes that RANS-based turbulence models, in

conjunction with the expanded use of hybrid RANS-LES methods, will be the norm in

the immediate future. Furthermore, the survey predicted the continued use of RANS with

one and two-equation models, as opposed to the more complex Reynolds-Stress Transport

models. Last bust not least, steady-state CFD currently accounts for the vast majority of

simulations in these design explorations [4] since unsteady flow predictions are inherently
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more expensive and not yet routine in the design process.

We present an in-house experiment to understand current challenges in the performance

of steady-state RANS simulations. HiPer [30] is an in-house multi-block, steady-state, ex-

plicit, and compressible flow solver for structured grids. HiPer supports RANS with the

one-equation Spalart-Allmaras (SA) turbulence model. HiPer incorporates several optimiza-

tions such as cache blocking, vectorization, NUMA-aware parallelization [31] and a hybrid

MPI + OpenMP implementation that can run on supercomputers. HiPer also supports its

own block partitioner [32]. Its large scale performance has been positively tested on sev-

eral supercomputers, such as MIRA at the Argonne National laboratory and Bridges at the

Pittsburgh Supercomputing Center. As acceleration techniques, HiPer includes local time-

stepping, residual smoothing, blocking and parallelization (hybrid MPI+OpenMP). When

simulating turbulent flow around a 3D cylinder with 33 milion computational cells, the total

execution time to convergence was almost 6 hours when using 32 nodes, 24 cores per node

on the Bridges supercomputer. With this baseline estimation, performing design exploration

of (i) different variations of the same geometry or (ii) different flow conditions of the same

geometry still becomes prohibitively expensive for having timely solutions. Moreover, im-

mediate access to these supercomputers is not always the case because of the high demand

for its compute cycles.

The cost (in convergence time) of the previous experiment comes from the inherently iterative

nature of the numerical schemes. In order to meet the convergence constraints of the physics-

based simulation, an approximation of the number of iterations required can range from

1× 103 - 1× 105 [20]. Nowadays, the most common acceleration techniques try to reduce

either the execution time per iteration (parallelization, blocking) or the number of total

iterations required (local time-stepping, residual smoothing, and multigrid). The previous

experiment shows that CFD is still too expensive for extensive aerospace design exploration,

even with the most advanced available accelerators. Since there is still significant room
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for improvement, this thesis explores DL methods as a viable tool for further reducing the

number of iterations and hence reducing current times-to-solution.

1.2 DL for CFD

A general approach for accelerating CFD simulations is the use of surrogates : mathematical

models that approximate the solution of high-fidelity methods at a fraction of the compu-

tational cost. For instance, the presented RANS equations are a surrogate of DNS and are

extensively used in industry for design space exploration.

However, RANS is still an iterative method. Computationally more impactful surrogates

are those that approximate the solution in a single step (one-shot methods), reducing the

computational cost significantly. Early works in this direction are, for example, regression

techniques such as polynomial regressors [23, 33, 34]. However, these models have minimal

predictive capabilities. Their most significant drawback is the assumed relationship (for

example, linear or quadratic) between the independent variables and the predicted values,

hence their inability to predict chaotic systems such as turbulent flows. To overcome this

limitation, Gaussian processes (GP) predict the values that have the highest probability and

a confidence interval in which these values can move - a desirable property for turbulent flows.

However, GPs have a critical disadvantage: the time complexity to calibrate the parameters

is O(N3), where N is the number of samples. Large datasets that cover many different

flow configurations are intractable. Therefore, GPs have been used mainly in shape design

optimization - for example, 2D airfoil sketch exploration - which relies on the minimization

of an objective function. GPs approximate this objective function defined on a specific

geometry parametrization [22]. This parametrization limits its generalizability.

Fluid mechanics has traditionally dealt with massive amounts of data from experiments,
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field measurements, and large-scale numerical simulations. In the past few decades, big data

have been a reality in fluid mechanics research [35] due to HPC architectures and advances

in experimental measurement capabilities. Over the past 50 years, many techniques have

been developed to handle such data, ranging from advanced algorithms for data processing

and compression to fluid mechanics databases [36]. However, the analysis of fluid mechanics

data has relied mainly on domain expertise, statistical analysis, and heuristic algorithms.

The growth of data today is widespread across scientific disciplines. Moreover, gaining

information from data has become a new model of scientific inquiry. Our generation is

experiencing an unprecedented confluence of (a) vast and increasing volumes of data; (b)

advances in computational hardware and reduced costs for computation, data storage, and

transfer; and (c) sophisticated algorithms. These advances have, in turn, fueled renewed

interest and progress in the field of DL to extract information from these data. Inspired by

the remarkable success of DL algorithms in both CV [37] and NLP [38], recent works have

leveraged DL algorithms for accelerating CFD simulations.

DL algorithms for CFD are convenient because their inherent properties overcome the dis-

advantages of polynomial regressors and GP. First, DL does not assume any relationship

between the input and the output, and the model can be as complex as desired by the prac-

titioner. Second, DL training time complexity is O(N), dramatically improving the training

time complexity of GP. As a result, DL can model highly nonlinear and complex relation-

ships between the input and the output if exposed to a sufficiently large number of samples

while maintaining reasonable fitting times. Furthermore, recent advancements in HPC focus

on increasing the number of GPUs which have constantly outperformed CPUs in training

time.

Ideally, mathematical surrogates would provide a 100% accurate solution in a single shot,

a highly challenging task for fluid mechanics, which presents highly nonlinear physical phe-

nomena in a wide range of length scales and even stochastic behavior under several conditions
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- where the solution is given statistically. DL, which achieves deep, abstract mathematical

relationships between input and output, poses a potential candidate for bringing researchers

one step closer to the ideal scenario described before. Hence, it yields a natural research

direction: using DL to predict expensive CFD results and trust its prediction.

Several researchers have leveraged neural networks (NN) to accelerate fluid dynamics sim-

ulations in the past few years. Tompson et al. [39] accelerate Eulerian fluid simulations by

replacing the Poisson solver step in an Eulerian flow iterative solver instead of finding an

end-to-end mapping to calculate the divergence-free velocity. Alternatively, Guo et al. [40]

find a real-time solution to viscous laminar flows around solid objects. However, the above

approaches have elemental constraints. First, Eulerian fluid simulations ignore second-order

velocity derivatives in the NS equations. Second, viscous laminar flow approaches are am-

biguous to expand to turbulent flows - intrinsically chaotic and harder to resolve [1].

There have been recent attempts to find NN-based accelerators for turbulent flows. The

results are promising, but the NN predicts only a subset of the flow variables. Maulik

et al. [41] predict the eddy viscosity field and not other flow properties such as velocity

and pressure fields. Thuerey et al. [42] use a novel input-output representation, but their

approach does not account for the eddy viscosity field. More importantly, the network

prediction is limited to the fluid domain closest to the solid body, so how the network would

perform in the freestream - where the boundary conditions define the problem - remains

unknown.

A fundamental limitation of these early works [40, 42] is that they use the NN as a data-

only, end-to-end surrogate. Therefore, they can not guarantee that the NN prediction will

satisfy the conservation laws because the conservation laws were not part of the optimization

process. Satisfying the conservation laws of the problem at hand is critical for practitioners.

Moreover, even though these works report promising results at test time - a relative mean

error (RME) less than 3% [42] - and the surrogate approach provides real-time solutions, the
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geometries in the training and prediction stages are the same (airfoils). It remains unclear

how the surrogate would perform on different geometries.

Another limitation of the approaches discussed so far is that they require data collection

for training the NN. Often, this data comes from traditional fluid simulations. Hence, these

approaches predict a solution in a domain discretized at the exact resolution used to collect

the data. These approaches target low resolutions, which are insufficient in real-life aerospace

design scenarios. How do we scale these methods to larger resolutions that are the preferred

choice of designers in the aerospace industry? Performing data collection at high resolutions,

such as 2048×2048, is impractical. Early DL-basedmesh-free methods arose as an alternative

to circumvent this limitation.

Raissi et al. [43] introduced physics-informed neural networks (PINNs) - NNs embed the

residual of any physical law in the loss function and respect any physical constraint. PINNs [43–

45] are a promising research direction because they are an end-to-end, physically-consistent

substitute to traditional solvers2 and do not require tedious mesh generation because they

are mesh-free methods. However, this approach comes with challenges. First, for complex

turbulent flow problems, including the conservation laws in the loss function can lead to

stiffer optimizations [47]. Therefore, the majority of the discussed approaches target low to

moderate Reynolds numbers (Re)3 [46]. Second, unless the boundary conditions are input

to the network [48], training a new model is required for every new instance of a distinct

flow configuration, instead of a simple forward pass of the network, severely restricting its

generalization capabilities. Third, even if the boundary conditions are input to the network,

generalizing to significantly different-from-training geometries/domains is challenging and

unexplored in the majority of approaches. Fourth, although the mesh generation step is

avoided, it remains an open question how many collocation points this method requires for
2PINNs are already impactful in industry. NVIDIA’s SimNet solver [46] can query multiple instances of

a heat transfer problem in real-time.
3The Reynolds Number, or Re is a dimensionless quantity of significance in fluid mechanics and quantifies

the flow conditions of the problem.
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accurate solutions of the problems. Finally, there is still a gap of several orders of magnitude

between the residual value achieved by traditional solvers and PINN-based surrogates. While

traditional CFD solvers such as OpenFOAM can reach residual values up to 1× 10−8 (the

lower, the better) and satisfy physical laws up to the machine round-off errors, the majority

of PINN-based residuals struggle to drop below 1× 10−3 or 1× 10−4, even for less complex

problems.

Lu et al. [49] introduced a mesh-free infinite-dimensional operator with NNs, known as neu-

ral operator (NO), that learns the nonlinear operation from PDEs without knowledge of

the underlying PDE – only with data. NO provides a single set of network parameters

compatible with different discretizations. Hence, they are resolution-invariant. However,

these approaches [50–52] train the network with data downsampled from high-resolution

simulations – which is impractical for many practitioners and suffers from the same compu-

tational constraints of traditional solvers. Jiang et al. [53] introduced MeshFreeFlowNet, a

convolutional neural network (CNN) based resolution-invariant approach that satisfies the

underlying PDE. However, it also suffers from the same data-collection limitation as the

former approaches. In this thesis, we present a transfer learning-based approach that uses

limited data collection to scale our DL-based accelerator to high spatial resolutions - up

to 2048 × 2048, significantly larger than those attempted in prior works (421 × 421 [50];

512× 128 [53]; 1024× 1024 [54]).

One fundamental limitation of all the approaches discussed so far is that they perform

uniform super-resolution; that is, they try to predict a high-resolution flow field throughout

the entire domain. Hence, they soon reach the given hardware limits during inference of high

spatial resolution outputs, such as 2048 × 2048. However, very-large outputs might not be

necessary. In CFD, a popular approach to scale to very large resolutions while maintaining

accuracy is adaptive mesh refinement (AMR) [55]. AMR augments the resolution only

in areas that require higher numerical accuracy (such as those close to the solid body)
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while maintaining low resolution in regions that present a smoother behavior (such as the

freestream). Unfortunately, state-of-the-art (SOTA) DL methods for CFD do not attempt

AMR when it could be beneficial given limited hardware resources. This thesis presents a

DL-based method for AMR that allows larger batch sizes during inference at high spatial

resolutions and significantly speeds up DL-based prediction of high-resolution flow fields.

1.3 Research approach and contributions

The CFD community finds itself currently at a stagnation point. First, from the HPC

standpoint, clusters are becoming heterogeneous (CPU + GPU), and even when trends are

hard to predict, this heterogeneity is expected in the next 5 to 10 years. Current algorithms

for CFD are old and not adapted to these new hardware systems. Therefore, there is a need

to adapt CFD algorithms to current hardware capabilities. Second, there is still room for

improvement in times-to-solution of current CFD solvers. Due to the impressive results of

DL methods in CV and NLP, but also in early works that predict complex fluid problems

in real-time, we believe DL can further accelerate these systems and provide practitioners

additional tools to speedup high-fidelity aerospace design exploration.

• Contribution 1. A DL-based accelerator that can be used on top of cur-

rent acceleration techniques. We present CFDNet, a DL framework that combines

domain-specific knowledge to meet the same convergence constraints of the physical

solver. CFDNet presents an iterative refinement stage, where the CNN output is fed

back as the initial condition to the physics solver. Therefore, CFDNet satisfies the

conservation laws of physics solvers while accelerating them. We consider several use-

cases to evaluate the accuracy, performance, and generalizability of CFDNet as an

accelerator. These include training and prediction on the same geometry (for instance,

channel flow); training on multiple geometries (ellipses) and predicting on a subset (for
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instance, an ellipse with a different aspect ratio), which is common in DL research;

and finally, training on multiple geometries (ellipses) and predicting the flow around

a new geometry (for instance, airfoil or cylinder), which is challenging. CFDNet ex-

hibits remarkable generalizability to geometries unseen during training while achieving

1.9 − 7.4× speedup on laminar and turbulent flows over a widely used physics solver

in OpenFOAM. CFDNet is a DL module amenable to any time-marching scheme and

discretized domain. Furthermore, CFDNet can be used on top of local time-stepping,

blocking, multigrid, and parallelization - the most popular acceleration techniques in

CFD.

CFDNet’s experiments confirm it as a viable proof of concept for low-resolution CFD simula-

tions. However, it relies on extensive data collection, and hence it becomes computationally

prohibitive for high-resolution simulations. To avoid the need for extensive data collection

and training at high resolutions and to overcome the already exposed limitations of mesh-

free methods, we present SURFNet, a transfer learning-based framework. SURFNet scales

CFDNet to high resolutions with limited high-resolution data collection.

• Contribution 2. A transfer learning-based framework for scaling DL meth-

ods for CFD to high resolutions. We develop SURFNet (SUper-Resolution Flow

Network), a novel approach to reconstruct fine-scale flow physics from coarse grid data

by primarily training the DL model on low-resolution inputs. SURFNet transfer learns

this coarse model to high-resolution turbulent flow solutions, significantly reducing the

overall data collection time and the total size of the training set. We empirically

evaluate SURFNet by solving the RANS equations in the turbulent regime on four

geometries and eight flow configurations unseen during training. SURFNet achieves

a consistent 2× speedup up to 2048 × 2048 spatial resolutions over the OpenFOAM

physics solver independent of the resolution size and test geometry, demonstrating

both resolution-invariance and generalization capabilities. SURFNet eliminates the
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need to collect complete training datasets at high resolutions to account for fine-scale

physical phenomena. This computational efficiency enables SURFNet to achieve oracle

accuracies while significantly reducing the size of the training dataset by 15×, conse-

quently reducing the combined data collection and training time by 3.6× and 10.2×,

respectively at 256× 256 and 512× 512 grid sizes.

SURFNet is a time-efficient framework for the acceleration of high-resolution CFD simula-

tions. However, it does not entirey eliminate the small but tedious data collection at high

resolutions. Moreover, SURFNet reaches the hardware limits - overallocation of memory

and big inference times - when performing inference at 2048 × 2048. To reduce the hard-

ware requirements but still scale to very-large resolutions, we present ADARNet, a novel,

DL-based method for AMR, which uses a novel scorer-ranker NN architecture to increase

the resolution of some areas of the domain - those that require higher accuracy.

• Contribution 3. A DL-based framework for non-uniform super-resolution.

We present ADARNet, a novel DL-based ADAptive mesh Refinement framework for

non-uniform super-resolution. ADARNet takes as input a low-resolution flow field

and outputs, in one single step, its final non-uniform high-resolution solution. Since

ADARNet only increases the resolution in areas that present complex flow phenomena,

it requires less computational resources. It allows larger batch sizes during inference at

high spatial resolutions while reaching the target accuracy compared to SOTA methods

for super-resolution. To enable non-uniform super-resolution, we split the input image

in different regions or patches and present a novel scorer-ranker-decoder DL algorithm.

The scorer finds the spatial score of each patch, the ranker places each patch in its

corresponding bin based on its score (which determines the target resolution of the

patch), and the decoder reconstructs every patch in each bin to its final target resolu-

tion using semi-supervised learning. Due to ADARNet’s ability to only refine specific

areas of the flow and avoid high-resolution inferences in most parts of the domain,
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it achieves a speedup of 7 − 28.5× and reduces the memory usage by 4.4 − 7.7× at

1024× 1024 spatial resolutions compared to SOTA DL methods that perform uniform

super-resolution while reaching SOTA accuracies.

We organize the rest of this thesis as follows. Chapter 2 presents the necessary CFD and DL

background. Chapters 3, 4, and 5 present, respectively, CFDNet, SURFNet, and ADARNet,

discussing their advantages and disadvantages. Finally, we make concluding remarks in

Chapter 6, along with a discussion of future research directions.
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Chapter 2

Background

In this chapter, we introduce the necessary CFD and DL concepts. In Section 2.1, we present

the RANS equations together with the SA model. In Section 2.2 we present an overview of

DL principles for real-time inference of flow fields.

2.1 RANS equations and SA model

The steady incompressible RANS equations provide an approximate time-averaged solution

to the incompressible NS equations. They describe turbulent flows as follows:

∂Ūi
∂xi

= 0 (2.1)

Ūj
∂Ūi
∂xj

=
∂

∂xj

[
− (p̄) δij + (ν + νt)

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)]
(2.2)

where Ū is the mean velocity (a 2D or 3D vector field), p̄ is the kinematic mean pressure, ν
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is the fluid viscosity, and νt is the eddy viscosity resulting from Boussinesq’s approximation

[56]. Typically, turbulence modeling is used for the eddy viscosity (νt). The SA one-equation

model shown below provides a single transport equation to compute a modified eddy viscosity,

ν̃.

Ūi
∂ν̃

∂xi
= Cb1 (1− ft2) S̃ν̃ −

[
Cw1fw −

Cb1
κ2

ft2

](
ν̃

d

2
)

+
1

σ

[
∂

∂xi

(
(ν + ν̃)

∂ν̃

∂xi

)
+ Cb2

∂ν̃

∂xj

∂ν̃

∂xj

]
(2.3)

Then, we can compute the eddy viscosity from ν̃ as νt = ν̃fv1. These equations represent

the most commonly-used implementation of the SA model. The terms fv1, S̃, and ft2 are

model-specific and contain, for instance, first order flow features (magnitude of the vorticity).

Cb1, Cw1, Cb2, κ, and σ are constants specific to the model, calibrated experimentally. The

equations and values of these constants are detailed in [14], the first original reference of the

model.

Equations (2.1), (2.2), and (2.3) form a system of four PDEs in 2D and five PDEs in 3D.

Throughout this thesis, we numerically solve the discretized form of these equations on a

structured grid with its corresponding boundary conditions (that define the physical bound-

aries). The spatial partial derivatives are numerically computed using finite difference meth-

ods. First, the gradients of the flow variables in the grid cell faces are numerically calculated

with a second-order, least-squares interpolation method using the neighboring cells. Then,

for the advection of the velocity and the modified eddy viscosity, we use a second-order, up-

wind, unbounded scheme. Finally, the diffusion terms in Equation (2.2) and Equation (2.3)

are evaluated using Gaussian integration, with a linear interpolation method for the viscosity

calculation. Depending on the non-orthogonality level of the grid, a correction is made to
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ensure second-order accuracy to compute the surface normal gradient, which is required in

the Laplacian calculation.

2.2 DL overview

DL algorithms are a subset of machine learning (ML) algorithms because they are mathe-

matical models that try to fit to the data that is presented to them. The main difference

between DL and other ML algorithms is that it makes use of NN (similar to neurons present

in human brain) to imitate functionality just like a human brain. The reason why DL algo-

rithms can become very complex is because they are based on the concept of a perceptron

or neuron, as depicted in Figure 2.1.

g(f)f1 yp = g(wf1)

predicted value

w

Figure 2.1: Perceptron, input, output, and activation function.

A perceptron takes an input feature f1, it weights the value of the feature with w, and it

passes it through an activation function g(f). To sum up, a perceptron outputs a transfor-

mation of a weighted value of the input feature. For example: let’s imagine that f1 is the

one-dimensional constant acceleration (a) of a car for a period of time. Let’s also assume

g(f) = 1. Then, the output from the perceptron would be yp = wf1 = wa. DL algorithms

fit their parameters (the weights, in particular, w) to the given data. The goal of the

training or learning task of a perceptron is to find the values of w that correctly

predict the given, ground truth data presented to this perceptron. Therefore the
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prediction yp must be compared to ground truth data:

yp − yt = 0 (2.4)

where yt is the ground truth output. In the previous example, we choose yt to be the total

one-dimensional force measured on the car, Ft:

yp − yt = wa− Ft = 0 (2.5)

After training, it would be revealed that w = m where m is the mass of the car (New-

ton’s second law). Now, this calibrated model can predict Ft on the car for any constant

acceleration that the car has, because the perceptron has learned w = m.

This simple example does not take into account that g(f) can be a non-linear function (for

example, the hyperbolic tangent). Also, it does not take into account that two perceptrons

can be aligned forming a more complex output, creating more than one layer of perceptrons:

g1(f)f1 yp = g2(w2g1(w1 f1))

predicted value

w1
g2(f)

w2

Figure 2.2: Two layers of a single perceptron. yp is the output, a complex, non-linear transformation
of the input feature f1. g1 is the first activation function and g2 is the second activation function.

Figure 2.2 shows that the predicted value can be a very complex transformation of the input

feature. Also, there might be more than one feature relevant to the mathematical model as

shown in Figure 2.3
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g1(f)

f2
g2(f) yp = g2(w21g(w11 f1 + w12 f2))

f1
w11

w12

w2

predicted value

Figure 2.3: Two features as input to two layers of a single perceptron. yp is the output, a complex,
non-linear transformation of two input features, f1 and f2. g1 is the first activation function and g2

is the second activation function.

In general, this perceptron layout allows to build complex nonlinearities of multiple features.

If we add as many features as we want, and distribute as many perceptrons or neurons as

desired, it is possible to create a deep NN, as depicted in Figure 2.4.

f1

f3

f2 yp2

how deep…?

yp1

yp3

Input layer hidden layers output layer

Figure 2.4: A basic DNN with several input features. The input layer receives the input features
and performs the first transformation. The hidden layers extract abstract patterns from the input
data, and there can be as many as desired by the practitioner. The final layer, namely the output
layer, outputs the target value or transformed feature.

To sum up, deep neural networks (DNN) allow (a) high-dimensional inputs (as many features

as desired by the practitioner), (b) complex, non-linear relations among these features, and

(c) extensive hyperparameter space exploration for finding the suitable network complexity

(how many neurons per layers? How many layers? What is gn(f)?). So, if sufficient ground

truth data is presented to a DNN, it can become a complex mathematical model. This is

the main advantage of DNNs over traditional ML algorithms and why DL outperforms ML

algorithms for complex problems (for instance, image classification).
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DL refers to the stage of calibrating the weights of a DNN. This calibration is done by

comparing the network’s output (yp) to the ground truth data (yt). However, this is one

of the two options for weight calibration. This process is called supervised learning [57]. It

is supervised because the user tells the network what the ground truth data (for example,

the force must be 3 N ) is and the prediction of the network needs to approximate it. An

alternative to this approach is not comparing the network’s output to any value. Instead,

the user knows that the network’s output needs to satisfy some property (for example, the

user imposes the output to be always 0). In this case, the network’s output does not need to

be compared to any labeled data. In this case, the approach is called unsupervised learning

[58]

CNN. CNNs are a subset of DNNs: a CNN is a DNN where at least one is a convolutional

layer. We define the order of the features (f1, f2 and f3 in Figure 2.4) as follows: the features

f1, f2 and f3 are given as a feature vector, ~f = [f1, f2, f3]T . This vector could also be built

as ~f = [f2, f1, f3]T . These two vectors have a different order of the features.

This definition is important because it plays a crucial role in differentiating a CNN from a

DNN. As it can be seen in Figure 2.4, each perceptron of the initial layer is connected to all

features, with its corresponding weights. Therefore, the perceptron is blind to the order of

the features. It does not care if ~f = [f1, f2, f3]T or ~f = [f2, f1, f3]T , because each perceptron

will have an output such as yp = g
(
~w · ~f

)
= g(w1f1 + w2f2 + w3f3). This is a property of

dense or fully connected layers. Therefore, Figure 2.4 is a fully connected DNN.

CNNs, instead, have at least one non-fully connected layer: a convolutional layer. Here, the

order of the features is critical. Two different orders will lead to two different outputs or yp.

Because the order of the features is important, CNNs work very well on 2D/3D or matrix-like

(image-like) input features. Figure 2.5 shows the operator of a convolutional layer, which is

different from the fully connected perceptron g
(
~w · ~f

)
.

21



1 1 1 0

0 1 1 1

0 0 1 1

0 0 1 1

0

0

1

0

0 1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

0 0 1 1

0

0

1

0

0 1 1 0 0

4 4 3

x1 x1

x1

x1 x1

x0

x0 x0

x0

1 1 1 0

0 1 1 1

0 0 1 1

0 0 1 1

0

0

1

0

0 1 1 0 0

x1 x1

x1

x1 x1

x0

x0 x0

x0

Figure 2.5: The convolving operator. Top: the input 5 × 5 image with the value at each pixel.
Left: applying the 3 × 3 kernel (in red) on the top-left 3 × 3 area of the input image (in green).
Right: moving the kernel to cover all 3× 3 regions of the input image.

The input features can be displayed as a matrix instead of being displayed as a vector

(~f = [f2, f1, f3]T ). In Figure 2.5, that is the blue matrix (or image). Each element of the

matrix is a feature. Let us imagine that the blue matrix is an image of a cat. Each element

of this matrix is the pixel, and the value is the corresponding value of the color (0-255 in

RGB). A convolutional layer convolves these features using a filter of a certain size. The size

chosen in the Figure is a 3× 3 filter. The red numbers are the values of the weights in that

filter, which need to be calibrated. The filter acts on a 3 × 3 portion of the input matrix.

The filter convolves those nine values and outputs the number 4. Then, the filter moves one

column to the right and does the same for the following 3 × 3 set of features. Therefore, a

convolutional layer is excellent at finding correlations in certain parts of the input matrix. If

the convolutional layer observes this correlation in different training samples, it can recognize

patterns. As a result, CNNs are ideal candidates for edge detection. This could also be

achieved with a fully connected NN; however, the CNN shares the weights in different image

locations, whereas a fully connected layer would have independent weights at each location.
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The patterns could be found, but it would take longer training times. CNNs have a spatial

inductive bias in their architecture. As a result, CNNs have shown outstanding performance

in image classification, NLP, and image and video recognition [6, 7].
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Chapter 3

CFDNet: A new acceleration technique

To find the steady-state solution to equations (2.1), (2.2), and (2.3), it is necessary to set the

required boundary conditions and numerically solve them until convergence. For that pur-

pose, we use the semi-implicit method for pressure-linked equations (SIMPLE) algorithm [59]

outlined in Algorithm 1.

The SIMPLE algorithm is a well-known iterative procedure widely used in literature [12, 60,

61] for steady-state problems. In each iteration, the velocity, pressure, and eddy viscosity

fields in the entire grid domain are computed (Lines 2-5) and if the convergence criterion

is met in Line 6 (that is, the residual is less than the user-defined tolerance, ε), these fields

are considered to be final and the flow has converged to steady-state. If not, these fields

are intermediate and the algorithm starts the next iteration from Line 2. Algorithm 1 is

computationally expensive and the goal of this research is to short-circuit the convergence

progress by reducing the number of iterations of the RANS simulation. For the rest of this

Chapter and Chapter 4, Algorithm 1 will be referred as the physics solver.

The goal is to develop a function G that accelerates the convergence of the physics solver.

Let N represent the number of iterations required for convergence with the physics solver
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Algorithm 1 SIMPLE algorithm.
1: Guess p̄∗, an intermediate but incorrect p̄ field
2: Solve Ū∗, an intermediate but incorrect Ū field, from Equations (2.2)
3: Solve p̄′ , a correction value for p̄, from Equation (2.1)
4: Obtain correct Ū and p̄ fields from p̄∗, Ū∗ and p̄′

5: Solve νt from Equation (2.3)
6: if residual < ε then
7: return done
8: else
9: p̄∗ ← p̄
10: goto 2

in Algorithm 1, and I (0 ≤ I ≤ N − 1) represent any intermediate iteration of the solver.

The aim is to create a map such that xN = G
(
xI ; θwl

)
where xN , xI ∈ Rm×n×z represent

the tensors of z flow variables on a m× n grid domain at convergence and any intermediate

iteration, respectively.

Figure 3.1 displays a visual representation of G. Usually, the user is only interested in

the final iteration of a steady-state simulation, which provides the converged steady-state

solution. The intermediate iterations, even though required by the numerical scheme to

reach the final steady-state, are unnecessary/useless from the user’s point of view. The

goal, therefore, is to skip a significant number of iterations by mapping the flow field at any

intermediate iteration - the earlier the better - to the final steady-state flow field.
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�

Figure 3.1: x-velocity residual for flow over an airfoil at Re = 6× 105. G is a function that
maps any intermediate iteration to the final steady-state solution.

The expectation is that if the coefficients of G - θwl - are calibrated with simulations of

several specific flow configurations, G can become generalizable and capable of accelerating

the simulation of a flow configuration not previously seen by G by finding its steady-state

solution from an early intermediate iteration. This approach allows to use the flow field

at intermediate iterations regardless of how they have been computed. For example, the

simulation in Figure 3.1 could be run using parallelization and multigrid as acceleration

techniques, and the approach would still be valid. Finding G provides a new acceleration

technique that can be used on top of the most successful and current ones. The approach

is also independent of the iterative scheme used. Even though in this research the SIMPLE

algorithm is assumed to be the physics solver, this approach is generalizable to any time-

marching scheme, such as explicit Range-Kutta schemes [62].

A DNN, specifically a CNN is the candidate chosen for G (where θwl are the w weights in

layer l that need to be calibrated) due to its ability to map complex functions – yet remain
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domain-agnostic. Let’s now assume that the CNN has calibrated its weights θwl through a

learning task with different finished simulations of several flow configurations and recall that

the CNN is trained to predict the velocity, pressure and eddy viscosity field in the entire fluid

domain at steady-state. Therefore, now it is ready to be integrated in a simulation of a new

flow configuration. The aim is that from an intermediate iteration of this new simulation,

the CNN is able to predict the expected steady-state solution of this particular new flow

configuration in one single inference step, thus dramatically reducing the number of iterations

required. A common approach would be to consider these CNN-inferred fields as the final

solution to the problem if the CNN has good generalization properties. This approach is the

methodology considered in most of the SOTA approaches outlined in Section 1.2.

However, in this work, the output from the CNN is fed back into the physics solver as a

new initial condition, from which the residuals are dropped. This is what we refer as short-

circuiting the convergence process: we expect that the output of the CNN is numerically

closer to the CFD-based steady-state solution so that only few iterations are required to

reach the convergence constraints. This framework, referred as CFDNet, is detailed in this

chapter, from its design to its performance on several case studies.

3.1 CFDNet

CFDNet is a DL framework that combines domain-specific knowledge to meet the same

convergence constraints of the physics solver. The objective with CFDNet is to produce

the same output as the physics solver (that is, respect the convergence constraints) while

accelerating the convergence process using DL. CFDNet is a physics solver-CNN model-

physics solver coupled framework instead of a pure surrogate (that is, considering the output

of the CNN as the final solution). We designed it this way to incorporate domain-specific

knowledge in the model inference and to reach the same convergence as the physics solver.
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Figure 3.2 depicts the CFDNet framework and below is the description of the three main

stages of the framework and the two key ways domain-knowledge is integrated.

physics solver

CFDNet

N iterations

Warmup

physics solver

K iterations

Deep Learning

Inference Refinement

physics solver

M iterations

Figure 3.2: Comparison of the traditional physics solver simulation with CFDNet. CFDNet inte-
grates the domain-specific physics solver for warmup, followed by the NN for inferring the steady
state, and the final iterative refinement stage to correct the solution of the CNN and satisfy the
convergence constraints.

1. Warmup. The first flow field to start the CFD simulation is user-given, therefore it

contains no domain-specific knowledge. So, we let the physics solver carry K initial

iterations so that the fluid parameters adapt to the new flow case through Equa-

tions (2.1), (2.2), and (2.3). K is determined adaptively without user input by assess-

ing the residual drop from the initial conditions which is an indicator of the evolution

of the physics solver. A residual drop of one order of magnitude is sufficient for the

fluid parameters close to the physical boundaries to capture the geometry and flow

conditions of the new problem. This is the warmup stopping criteria.

2. CNN Inference . After warmup, we generate the input to the network, which is an

image (a tensor) containing the values of the flow variables at iteration K (the gener-

ation of the this input image is detailed in the next sections). This input tensor which

now has domain-specific knowledge of the new geometry and/or flow configuration is

used as an input to the trained CNN model for inference. The model predicts the

output tensor at steady state.

3. Iterative Refinement . The output of CNN inference may not satisfy known conser-
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vation laws. To ensure meeting the convergence constraints of the original algorithm,

we feed the output of CNN inference as an input to the physics solver and perform

M iterations till convergence. The expectation is that the overall number of itera-

tions to reach convergence will be less than the physics solver-only simulation (that is,

K +M < N) if the data-driven model is successful in short-circuiting the simulation.

3.1.1 How CFDNet improves SOTA approaches

The primary advancements in scaling CFD simulations have been achieved through algo-

rithmic innovations and computational optimizations. The majority of research has focused

on developing domain-specific optimizations. At the same time, DL algorithms have demon-

strated remarkable improvements in a variety of modeling/classification tasks such as NLP,

CV, and HPC [37, 38, 63]. Several researchers have applied DL algorithms to accelerate

CFD simulations. Table 3.1 summarizes the SOTA methods by comparing them on nine

different features.

Related Work Eulerian
flows

Laminar
Flows

Turbulent
Flows

Viscous
terms

Test
Geometry
Unseen
in Training

Predict
Mean
Velocity

Predict
Pressure

Predict
Turbulent
Viscosity

Meets
convergence
constraints

Tompson et al. [39] 1

Smart-fluidnet [54] 2

Guo et al. [40] 3

TBNN [5] 4

Maulik et al. [41]
Zhu et al. [64] 5

Thuerey et al. [42] 6

Table 3.1: SOTA methods in CFD acceleration using deep learning on nine features. (1)(2)(4)(5)

replace particular steps of the original iterative algorithm with a DNN (find a surrogate of the
Poisson solver(1)(2), estimate the Reynolds stresses(4), estimate the eddy viscosity(5)), and (3)(6)

replace the entire algorithm with a CNN-based surrogate to estimate the final solution of the fluid
variables of interest.

While the current approaches have shown the feasibility and potential of DL for accelerating

fluid flow simulations, they suffer from fundamental limitations. First, some of the current
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approaches do not satisfy the conservation laws. In particular, DL is used to predict the

output variables (such as velocity/pressure) mostly as an end-to-end surrogate. This does not

guarantee meeting the convergence constraints of the traditional physics-based algorithms

which is critical for domain scientists and engineers. Second, most of the current methods

only predict a partial flow field. For example, the NN predicts only a subset of the flow

variables which provide incomplete information about the problem. Others do not support

turbulent flows that are common in most industrial applications. Third, half of the current

approaches lack generalization since the test geometry is the same or a subset of the training

geometry. Generalization using DL is challenging especially for unseen geometries. Overall,

we observe that SOTA approaches satisfy up to six out of the nine features shown in Table 3.1.

CFDNet tackles these limitations and makes the following contributions:

1. One single CNN architecture - as explained later - is used to predict all relevant flow

variables, that is, velocity in each direction, pressure and eddy viscosity of the fluid.

CFDNet is the first DL and physics coupled framework to predict all relevant fluid

variables in the entire fluid domain of a turbulent flow.

2. The iterative refinement stage takes the output from the CNN and feeds it back as

the initial condition to the physics solver to meet the domain-specific convergence

constraints. This circumvents the critical limitation in current approaches where the

NN is modeled as an end-to-end surrogate and there is no guarantee that conservation

laws are satisfied.

3. Several use-cases are considered in the evaluation of the accuracy, performance, and

generalizability of CFDNet as an accelerator. These include training and prediction

on the same geometry (for example, channel flow), training on multiple geometries

(ellipses) and predicting on a subset (for example, ellipse with a different aspect ratio)

which is common in DL research, and finally, training on multiple geometries (ellipses)
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and predicting the flow around a new geometry (for example, airfoil or cylinder) which

is challenging.

3.1.2 Input/Output representation

This section discusses the input/output representation (that is, how the tensors xI and xN

are created, the input and output to the network).

A 2D cartesian and incompressible RANS flow computes z = 4 flow variables – mean ve-

locity’s first component (ū), mean velocity’s second component (v̄), the mean kinematic

relative pressure (p̄), and the modified eddy viscosity (ν̃ 1). At each iteration, these four

flow variables are updated at every cell of the grid. Harnessing the image nature of the com-

putational grid, where each cell can be interpreted as a pixel, to generate the input-output

representation in Figure 3.3 as follows:

1. Compose an image of size m×n, where m×n is the grid size. Every pixel (i, j) of this

image has the corresponding value of a flow variable, say ū in the cell (i, j) as shown

in the figure. The spatial distribution of the pixels needs to respect the logical spatial

arrangement of the fluid domain. Next, augment the rows of this image by appending

the physical boundary values of the variables from the computational grid (that is, the

values at the top and bottom boundaries) leading to an image size of (m+ 2)× n.

2. Repeat the previous step for the other flow variables of interest – v̄, p̄ and ν̃, leading

to four images in total, each of size (m+ 2)× n.

3. Concatenate the previously generated four images to create the final input/output

representation to the CNN which is a tensor of size (m+ 2)× n× 4 (that is, an image
1The SA turbulence model uses the transport equation to solve the modified eddy viscosity, so it becomes

the fourth variable in the input-output representation.

31



!𝑢
�̅�

�̅�

�̃�
(𝑖, 𝑗)

mxn
Grid

!𝑢

m

n

m+2

n

m+2

n z

Figure 3.3: Input-Output Representation in CFDNet. The input and the output are images of
size (m + 2) × n × z because m × n is the grid size, 2 are the top and bottom boundaries, and z
is the number of flow variables (channels). Input image has the grid values of the variables at an
intermediate iteration and the output image has the values in the final steady solution.

consisting of four channels).

Both input and output share the same tensor dimensionality (m + 2) × n × z. The only

difference is that the input tensor contains fluid values of an intermediate iteration while the

output tensor is the final, converged, and steady solution. A critical step in the generation

of the input/output representation is to non-dimensionalize the flow variables, which is

conducted for two key reasons both aimed at improving the learning task of the network. (i)

The z flow variables that represent different physical quantities can have a vastly different

range of values (for example, from 0 to 1 m s−1 for velocity and 1× 10−6 to 1× 10−4 m2/s

for the modified eddy viscosity). Non-dimensionalization rescales the values of the variables

to the same range across all z fluid variables. (ii) It reduces the number of free parameters; if

certain non-dimensionless parameters are significantly smaller than others, they are negligible

in certain areas of the flow [65].
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3.1.3 Network design
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Reconstruction of final field of each flow variable 
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Extraction of spatial correlations within each flow 
variable and among the different flow variables

Figure 3.4: CNN architecture. The CNN is a symmetric 6-layer CNN. The first three layers are
Convolution layers and they are followed by three Transposed Convolution layers. The size of each
filter is outlined in the figure and a striding of the same size as the filter is applied in each layer.

A CNN is the candidate to learn the surrogate model for accelerating the RANS equations.

This network is composed of six layers, three convolution and three deconvolution layers2.

The first three convolution layers reduce the dimensionality extracting an abstract represen-

tation of the input to encapsulate it in the latent space (middle layer colored yellow). From

this abstract representation, which has smaller dimensions than the input, we reconstruct

an output image of the same size as the input. The first and last layers use the Parametric

Rectified Linear Unit activation function (PReLU [66]) to capture any negative value present

in the intermediate flow field and to predict the final, real-valued (R) variables in the fluid

domain. The output is a prediction of all the steady-state flow variables (ū, v̄, p̄, and ν̃) as

shown in Figure 4.2.

The choice of a convolution-deconvolution network is motivated by two main reasons. First,

recent works have successfully leveraged similar architectures for physical system emulation

[67, 68]. Second, the spatial layout of the flow variables in the input tensor is a result of

Equations (2.1), (2.2), and (2.3). The convolution operator is the ideal candidate to extract

the existing spatial correlations in and among the fluid variables (that is, input channels),

while fully connected layers fail to do so.
2More expressive networks (8- and 10-layer CNN) led to overfitting to the training datasets.

33



There is no explicit domain-specific feature in the network’s input and output because the

aim is to learn a model that generalizes to a broad number of design use cases comprising of

both different - interpolated and extrapolated - geometries and flow conditions. Prior works

that embed domain-knowledge in the NN learning task (such as embedding Equation (2.1)

as the loss function in [39]) fail to achieve this generalization limiting its scope.

3.1.4 Convergence criteria and error of CFDNet

If the CNN inference loss is less than the user-defined error tolerance compared to the ground

truth data, CFDNet would return the CNN model’s output tensor as the final steady-state

flow field (that is, the fluid flow parameters would have reached the convergence criterion

defined by the user) bypassing the refinement stage. In this scenario, the CNN model is a

pure surrogate of the RANS equations with the SA one-equation turbulence model. How-

ever, this approach has significant shortcomings.

First, the above-mentioned convergence criterion is based on error metrics found in the

CFD literature [69]. Evaluating the quality of the surrogate through these error metrics is

sub-optimal for two main reasons – (i) they lack physical meaning, and (ii) metrics such as

L1 norm, mean absolute error (MAE), and root mean squared error (RMSE) are ill-defined

if no information about the order of magnitude of the quantity of interest is provided. Sec-

ond, in many approaches, the conservation of mass and momentum is not a constraint in

the optimization problem (this is true for the CNN model as well). Even though this opti-

mization choice makes the model more generalizable (for example, can be easily extended to

support other simulations such as compressible flows), satisfying the conservation laws can

be imperative for CFD practitioners/engineers. Third, ground truth data is typically not

available since the goal is to predict the flow field of cases unseen during training. Therefore,

evaluating the accuracy of the surrogate on error metrics with respect to the ground truth
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data lacks applicability and predictability in real scenarios.

Alternatively, other works [39, 54, 64] have considered finding a DNN-based substitute for

only a single step of the iterative algorithm. For example, finding a surrogate of the Poisson

solver in Eulerian flow simulations [54]. Because this approach modifies the original algo-

rithm, one still needs to evaluate the quality of the result with the error metrics described

above, therefore suffering from the same limitations.

Circumventing the above limitations is achieved with the refinement stage in CFDNet and

define its dual convergence criteria as follows.

1. Convergence is typically achieved when the residual of all the variables has dropped

4-5 orders of magnitude [5] depending on the CFD practitioner. CFDNet is adhered

to the same constraints. Because the residual is referenced to the initial condition,

and the initial condition in the refinement stage is a field close to the final solution,

dropping the residual 4-5 orders of magnitude is sufficient to consider the cases fully

converged. This is the first convergence criterion of CFDNet.

2. In addition to checking for residual convergence, it is a common practice among CFD

engineers to also ensure that the final solution satisfies conservation properties such as

conservation of mass. The author adheres to this convergence constraint and this is

the second convergence criterion of CFDNet.

When both residual convergence and conservation laws are satisfied, CFDNet satisfies the

convergence constraints of the original physics solver and has a solution with 0% RME with

respect the physics solver solution. RME is defined as
∑nc

i=1
|ŷi−yi|
|yi| where nc is the number

of cells, ŷi is the single cell predicted value of the quantity of interest, and yi is the single

cell physics solver value. This metric is range and scale-invariant. Therefore, it is a better
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indicator of the quality of a prediction.

3.2 Experiments

Two types of fluid flows are considered - wall-bounded flows and external aerodynamics -

which aim to stress different aspects of CFDNet:

• For the former, the geometry is kept constant while changing the flow configurations.

This tests the ability of CFDNet to interpolate and extrapolate to new flow conditions

in the same geometry.

• For the latter, the flow conditions are kept constant while changing the geometry. Here,

we evaluate the ability of CFDNet to acclerate simulations of flows around solid bodies

not previously seen by the CNN.

3.2.1 Case studies

Wall-bounded Flows . The first case study is turbulent flow in a 2D channel. Many ef-

forts have been made to understand wall-bounded turbulent flows, especially in confined

geometries (for example, pipe and channel designs). The study of these flow configurations

is relevant for a broad range of Re numbers, on which the final flow regime strongly de-

pends. An application of CFDNet is to rapidly explore the design space for different ranges

of Re(given that Re = UL
ν
, where U is the input velocity to the channel, L is the diameter

of the channel, and ν is the laminar viscosity of the problem).

In channel flow, transitional effects from laminar to turbulent flow occur around Re ≈ 3000

[1]. Therefore, Re = 4000 is the lower bound in the design space to ensure fully developed
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turbulence flows. For Re >15000, a different grid resolution than the chosen one should be

used to have accurate CFD solutions. Hence, the range scoped is 4000 < Re <15000 for the

design exploration. The CNN model is trained on four different configurations: Re = 4200,

6800, 7500, and 12500, labeled as the training dataset A. For testing the interpolation and

extrapolation performance of CFDNet, Re = 5600 and Re = 13750.

Flow around solid bodies . Understanding flow around solid bodies has been an extensive

field of research because of its relevance in aerodynamics design and industrial applications.

It is common practice in aerodynamics design to explore the flow field around variations of

the solid body to end up with one that satisfies the designer’s performance requirements. For

this reason, CFDNet is applied to flows around geometries that have not been seen during

its training phase, in both laminar and turbulent flow conditions.

Training consists of flow around six different ellipses shown in Figure 3.5. The different

ellipses are obtained by changing the aspect ratio (AR), that is, the ratio of the vertical to

the horizontal semiaxis length from 0.1 to 0.7. For the turbulent case, Re is held constant

at 6× 105 for all the experiments which yield a training dataset labeled B. Training dataset

C has the same geometries as B but at laminar flow conditions (Re = 30).

We test CFDNet on flows around an airfoil, cylinder, and an ellipse (AR = 0.3) not seen in

the training phase as shown in Figure 3.6.

𝐴𝑅 =
𝑎
𝑏 = 0.70.550.350.250.150.1

𝑏

𝑎

Figure 3.5: Ellipse geometries used for training in datasets B and C.
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0.35

Figure 3.6: Airfoil, ellipse, and cylinder used for testing the CFDNet framework. Highlighted is
the trailing edge of the airfoil as a new edge not seen by the network in training.

The physics solver in OpenFOAM: The training dataset is generated by solving the

RANS equations together with the SA one-equation model [14]. The grid is 64 × 256, a

proper grid dimensionality for all cases [70]. We use the incompressible solver simpleFoam

from OpenFOAM v6 as the physics solver in this work. The simulations are run till steady

state reaching a residual value of 1× 10−6 for the velocity and pressure and 1× 10−4 for

the modified eddy viscosity in the channel flow cases. For the flows around solid bodies, a

residual value between 1× 10−5 and 1× 10−6 for the velocity and pressure and 1× 10−4 for

the modified eddy viscosity is considered acceptable. These tolerances are extended practice

in CFD simulations [5].

Note that the goal in designing the CFDNet accelerator is to use it in tandem with other ac-

celeration techniques commonly used in PDE simulations. Therefore, we use the GAMG solver

for implicitly computing the pressure at every iteration, with a tolerance 1× 10−8 and the

GaussSeidel smoother from OpenFOAM. The velocity and the modified eddy viscosity are

computed with the smoothSolver and the GaussSeidel smoother with the same tolerance

as the pressure.

Architecture and Libraries. All the OpenFOAM simulations are run in parallel on a

dual-socket Intel Xeon E5-2630 v3 processor (Haswell-EP). Each socket has 8 cores, for a

total of 16 cores and a theoretical double-precision peak performance of 614.4 GFlop/s. We
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use The OpenMPI implementation of MPI integrated in OpenFOAM that is optimized for

shared-memory communication. The grid domain is decomposed into 16 partitions using the

OpenFOAM integrated Scotch partitioner and each partition is assigned to 1 MPI process

that is pinned to a single core. The numactl -localalloc flag is set to bind each MPI

process to its local memory.

3.2.2 Dataset generation

Three distinct datasets are created based on the two case studies. Each dataset has a training

set (used for training the CNN model), a validation set (to ensure the training is not over-

or underfitting) and a test set, used for evaluating the performance of CFDNet. The recipe

for creating the training set is as follows:

1. Perform the OpenFOAM simulation of all training flow configurations. During the

simulation, snapshots of the flow field at every intermediate iteration are taken, Ij

(for flow configuration j) until the flow converges to steady-state. From each of these

iteration snapshots of fluid parameters, we create the tensor image representation of

the inputs to CFDNet as detailed previously. The resulting number of images is Nj,

where the first Nj − 1 are labeled as inputs and the steady-state image at iteration Nj

is labeled as the output. Each of the first Nj−1 iterations is independently mapped to

steady-state Nj (that is, every iteration of the simulation becomes a training sample

whose output is the final steady solution). Therefore, the training set size for each

dataset is
nf∑
j=1

Nj − nf , where nf is the number of flow configurations considered in

training (for example, nf = 4 for dataset A). Now, the initial conditions (iteration 0)

are also added as a sample to the dataset and the training set size then becomes
nf∑
j=1

Nj

for each dataset.

2. Non-dimensionalize all the samples. The fluid variables of all images are non-dimensionalized
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as follows: ū
Ur
, v̄
Ur
, p̄
U2
r
and ν̃

νr
, where subscript r is a reference value. These reference

values are flow configuration-specific and characterize each simulation.

The final training set sizes for datasets A, B and C are 6372, 14953, and 12988, respectively.

3.2.3 Training

Three independent models are trained, one for each dataset A, B, and C. The CNN (shown

in Figure 4.2) is implemented using Keras [71] and training of the CNN is performed on a

Tesla K40c NVIDIA GPU using the TensorFlow 13.0 backend. No specific initialization is

used in training. The batch sizes for training are chosen to be 1, 4, and 4 for the datasets

A, B, and C respectively. The optimizer is RMSProp and the loss function is mean squared

error (MSE). The learning rate is set to 7× 10−5 with no decay for all training. For training

set A, 15 epochs were sufficient to drop the training loss and validation loss to 3.2× 10−6.

For training set B, after 35 epochs the training loss reached 1× 10−4 and the validation loss

2× 10−4. For training set C, the training and validation losses dropped to 2× 10−5 and

5.1× 10−5, respectively after 29 epochs.

The reason for the higher loss in training sets B and C compared to A is because they

contain a different set of geometries that present different flow regimes, even though the

flow conditions are the same. Thicker ellipses (AR = 0.55, 0.7) present a significantly more

complex, more non-linear flow regime. Since the geometry gradients are more accentuated,

flow separation from the solid body occurs at these flow conditions. This causes a depression

in the rear part of the solid body, leading to negative velocities (recirculation). In contrast,

thinner ellipses (AR = 0.1, 0.15) present a smoother flow behavior. Therefore, the network

not only needs to adapt to different grids, but it also needs to adapt to different physical

phenomena. In training set A, the geometry and the flow physics are kept the same, there-

fore the network only has to adapt to a new flow configuration (a new Re number). The
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discrepancy between the losses of training set B and C can be explained through the eddy

viscosity. Because of the different flow regimes among the ellipses, the turbulent intensity

in the rear part of these solid bodies changes dramatically from ellipse to ellipse (higher in

thicker ellipses). This is a physical phenomenon that does not occur in training set C since

there is no turbulence.

3.3 Results and discussion

Once the CNN is trained and validated, to cover the entire spectrum of its predictive ability,

the evaluation of CFDNet is done on three use cases as outlined below.

Observed geometry, different flow conditions (OG-DF). CFDNet aims to acceler-

ate the simulation of a flow on a geometry observed during training but on different flow

configurations. Here, the flow case is channel flow and the CNN model is trained with

dataset A. Two different flow conditions are tested – an input velocity to the channel 3

of 0.56 m s−1 and 1.375 m s−1. With the former, we evaluate CFDNet’s capacity to inter-

polate to a new flow condition, whereas with the latter, we evaluate its ability to extrapolate.

Subset geometry, same flow conditions (SG-SF). The test geometry is a subset of

the training dataset. Here, the aim is to test the ability of the CNN to interpret the edges of

the new geometry which can be formed using a linear combination of the training geometries

(that is, interpolation). In this use-case, the flow conditions are kept the same through-

out the experiment. Here, the flow case is external aerodynamics and the CNN models are

trained with datasets B and C for turbulent and laminar flows respectively. The geometries

used for training are depicted in Figure 3.5 and the test geometry is also an ellipse (with an

3Note that referring to Re number or input velocity to the channel is interchangeable, since Re = UiL
ν ,

where Ui is the input velocity, L is the channel height (constant) and ν is the fluid laminar viscosity (constant).
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unseen-in-training AR) shown in Figure 3.6.

Different geometry, same flow conditions (DG-SF). Test geometry is different from

the training dataset. Here, we test is CFDNet’s capacity for generalization where the edges

of the test geometries have not been seen previously by the CNN. To underscore that, the

CNN models trained for the previous use case SG-SF are reused. The goal is to evaluate the

performance of CFDNet on the NACA0012 airfoil [72], the geometry of which follows the

mathematical definition in [28] and a cylinder shown in Figure 3.6.

The accuracy and performance of CFDNet are evaluated by comparing it against the tra-

ditional physics solver-only simulation. First, the evaluation of the accuracy of the CNN

prediction and the end-to-end CFDNet coupled framework. Then, the evaluation of the

performance of CFDNet and finally examine the importance of the warmup method in ac-

celerating the convergence of CFDNet, especially for new test geometries.

3.3.1 Model and CFDNet accuracy

One of the goals of this work is to accelerate flow simulations using DL without relaxing the

convergence constraints of the physics solver. Since the network is trained to predict the

final steady-state (iteration N), it is hypothesized that the inference is "close" to the final

solution. In this section, this hypothesis is tested by comparing the CNN model’s output

with CFDNet’s output, that is, compare the solution with and without refinement. At the

same time, we also compare both (CNN model and CFDNet) to the physics solver solution

qualitatively and quantitatively.

Figure 3.7 shows the qualitative results for the OG-DF interpolated case. The leftmost

column presents the velocity field after warmup +inference (that is, the CNN model’s out-
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put). We observe the similarity between the output from the CNN and the physics solver

solution in the third column. However, this is not the case for the DG-SF airfoil at Re =

6× 105. It is seen that the CNN predicted pressure field in Figure 3.8 (leftmost column)

qualitatively differs from the physics solver solution (rightmost column) mostly in the front

part of the airfoil. Similiar to the airfoil, it can be visually concluded that the prediction of

the modified eddy viscosity for the DG-SF cylinder in Figure 3.9 with the CNN (leftmost

column) is qualitatively far from the physics solver (rightmost column). This discrepancy

in the quality of the prediction between the OG-DF channel flow case and the DG-SF air-

foil/cylinder case is expected from the training results and the challenge of each test case

individually - interpolate a new flow condition vs. extrapolate to an unseen geometry.

Quantitatively, the per-cell absolute error between the CNN prediction and the physics

solver solution can be seen in the rightmost column of Figure 3.7 for OG-DF channel flow

case. The per-cell absolute error is 2 to 3 orders of magnitude lower than the variable value,

yielding a RME less than 2% for all flow variables, which is in line with acceptable RME

reported in the literature, as seen in Table 3.2. This suggests that the CNN (that is, warmup

+ inference) is a promising approach as a pure surrogate when the geometry is the same

(OG-DF) but not otherwise.

Recall from the determination of the convergence criteria of CFDNet that the quantita-

tive analysis through the above error metrics alone is insufficient. Moreover, Table 3.2 shows

that there is no consensus among SOTA approaches on the best error metric to adopt.

Therefore, we conduct the conservation of mass check. Because the flow is incompressible,

the velocity field has to satisfy the conservation of mass Equation (2.1), that is, ∇ · U = 0.

OpenFOAM provides a tool to numerically compute the divergence of the velocity for a

user-given flow field. This tool is applied to the CNN model’s predicted flow field. Table 3.3

compares the result of the tool for the flow fields from CNN model-only (warmup + infer-
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ence), CFDNet (warmup + inference + refinement), and the physics solver-only simulations.

Because analytically the divergence of the velocity needs to be exactly 0, numerically it

should be close to the machine round-off errors. Table 3.3 illustrates how CFDNet and

the physics solver yield a divergence-free field (that is, both satisfy conservation of mass),

whereas the CNN model’s output is far from the expected tolerance. Even with a CNN

model’s prediction - for the channel flow case - yielding a 2% RME, the iterative refinement

becomes necessary to satisfy the conservation laws and meet the convergence constraints of

the original physics solver.

(a) (b) (c) (d)

Figure 3.7: Velocity field in m s−1 for channel flow at Re = 5600 (up). Kinematic mean pressure
in m2/s2 (middle) and Modified eddy viscosity field in m2/s (down). (a) warmup + inference (no
refinement), (b) CFDNet, (c) physics solver in OpenFOAM, and (d) per-cell absolute error between
(a) and (c).
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(a) (b) (c)

Figure 3.8: Velocity field in m s−1 around an airfoil at Re = 6× 105 (up). Kinematic mean pressure
in m2/s2 (middle) and Modified eddy viscosity field in m2/s (down). (a) warmup + inference (no
refinement), (b) CFDNet, and (c) physics solver in OpenFOAM.
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(a) (b) (c)
Figure 3.9: Velocity field in m s−1 around a cylinder at Re = 6× 105 (up). Kinematic mean pressure
in m2/s2 (middle) and Modified eddy viscosity field in m2/s (down). (a) warmup + inference (no
refinement), (b) CFDNet, and (c) physics solver in OpenFOAM.
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Network Metric Best QoI

Guo et al.[40] RME 1.76% Ū
Thuerey et al.[42] RME <3% Ū , p̄
Smart-fluidnet [54] MAE 9× 10−3 ρ
TBNN [5] RMSE 0.08 Reynolds Stresses
Tompson et al.[39] L2 norm 0.872 ∇ · U
Maulik et al.[41] L1 norm <2e-4 νt
CFDNet RME 0% Ū , p̄ and ν̃

Table 3.2: Errors reported in the literature. Different works have considered different metrics -
RME, mean absolute error (MAE or L1 norm), root mean squared error (RMSE), L2 norm. There
is no consensus for an acceptable magnitude of error, and the errors reported as acceptable vary by
work.

Test Case warmup+inference
only

CFDNet physics solver

channel flow Re = 5600 3.12× 10−4 < 1× 10−10 < 1× 10−10

airfoil Re =6× 105 8.15× 10−3 < 1× 10−10 < 1× 10−10

cylinder Re = 6× 105 9.8× 10−3 < 1× 10−10 < 1× 10−10

Table 3.3: Mass local error. The value reported is the average over all the cells. The ML model
does not result in a divergence-free field. This is a major motivation for re-applying the physics
solver after the initial warmup and inference steps. After the final refinement, the field once again
is divergence-free.

3.3.2 Performance analysis

The time to solution of CFDNet is the sum of the warmup, inference, and refinement times

which are defined as follows.

Warmup time, twarmup is the time for the physics solver to drop the error from the ini-

tial condition one order of magnitude (that is, K iterations). The physics solver is run in

parallel as described in Section 3.2.

Inference time, tinfer is the sum of the times spent on each of the following steps: (1)
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MPI_Gather on the master process to get all the flow variables values from each MPI process

after warmup, (2) construction of the input tensor image, (3) CNN inference of the output

(the inference is computed on the CPU whose specifications have been detailed in Section 3.2,

(4) MPI_Scatter to distribute the output tensor image back to the MPI processes.

Refinement time, trefine is the time for the physics solver to further drop the error from

the new initial conditions (that is, the output tensor after inference) four orders of magni-

tude for all variables in test sets B and C. For test set A, the residual is dropped 5 orders

of magnitude for the velocity and pressure fields and 4 orders of magnitude for the eddy

viscosity. Note that different convergence criteria are used for each test set to correspond

to the respective residuals (tolerances) used to create the training sets. Refinement, as the

warmup, is run in parallel.

Figure 3.10 compares the CFDNet time (broken down by twarmup, tinfer, and trefine) to

the time the traditional physics solver implementation takes to drop the residual to the

same user-defined tolerance defined above for each dataset. The values inside the bars are

the number of iterations required by the physics solver in each stage (that is, K for warmup,

M for inference, and N for the physics-only solver). First, we focus on the end-to-end CFD-

Net performance and then, evaluate specifically, the importance of warmup in embedding

domain-knowledge.

CFDNet vs physics solver. The leftmost stacked bar for each test case represents the time

taken by CFDNet and the rightmost bar (colored gray) is the time taken by the OpenFOAM

physics solver to meet the convergence criteria. Across the board, CFDNet accelerates the

simulations by a factor of 1.9 − 7.4×. The highest performance gain is achieved for the

OG-DF test cases followed by SG-SF and DG-SF last. Compared to the physics solver-only
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Figure 3.10: Breakdown of running time to convergence for each test case. Time to convergence of:
(a) CFDNet w/ warmup, (b) CFDNet w/o warmup, and (c) the physics solver. The values inside
the bars are the number of iterations it took for that stage. In parenthesis, the warmup number of
iterations. At the top of each column, the speedup with respect the physics solver.
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simulation which requires 1578 iterations (1588 for extrapolated flow conditions) to drop the

residual to 1× 10−5 for OG-DF, CFDNet only takes one CNN inference and 319 iterations

(426 for extrapolated case) to reach the same convergence constraints. SG-SF and DG-SF

evaluate the framework’s ability to generalize on unseen geometries (where the former uses

a subset geometry while the latter has edges not included in the training datasets). It is

observed that CFDNet outperforms the traditional physics solver on both use cases requir-

ing fewer total number of iterations to drop the residual to meet the convergence constraints.

Recall from earlier that in contrast to the OG-DF channel flow case, the standalone net-

work has difficulty inferring the right flow field around the airfoil and cylinder in the DG-SF

flow cases. This is not surprising since prediction on a different geometry (whether it is inter-

or extrapolated) is much more challenging than when the geometry is kept fixed. However,

it is interesting to note that the network finds the cylinder geometry particularly challenging

to accelerate compared to the flow around the airfoil and interpolated ellipse. Even though

a cylinder is simply a special case of an ellipse from a geometrical perspective, the physics

in the rear part of the cylinder is more non-linear (a large recirculation area) and therefore,

more refinement iterations than the other cases are required. Nevertheless, CFDNet still

outperforms the physics solver by 1.9 − 2.6× for the DG-SF cylinder case. These results

show CFDNet’s potential to generalize to geometries whose fluid flows are significantly dif-

ferent from those in the training set while outperforming state-of-the-art physics solvers.

Importance of warmup. Now, the focus is on comparing the results presented in the pre-

vious section when the inference is done without domain-specific knowledge (no warmup).

The (b) bars in Figure 3.10 show the time taken by CFDNet when the warmup method is

not applied. Without warmup, the speedups drop significantly to 1.2− 2.3×.

In CFD simulations, the domain-specific knowledge is not embedded until the numerical
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scheme interacts with the values in the boundary conditions. For example, the user-given

initial condition is domain-blind. This is the objective of warmup: let the solver carry (K)

initial iterations so that domain-specific knowledge (for example, geometry definition, flow

condition, etc) is embedded in the input tensor.

In the flow around solid bodies case, having the geometry entirely defined in the input

tensor is critical for the network to predict the right flow regime. This is specially true for

the DG-SF turbulent cylinder. Without warmup, the network predicts a field quantitatively4

poor compared to the physics solver solution. The iterative refinement uses a lot of itera-

tions to meet the physics solver convergence constraints. For this reason, even a slowdown

is observed, compared to the physics solver without warmup. To summarize, across all the

flow configurations tested in this work, warmup only takes 1 − 2% of the overall iterations

of the physics solver while yielding significant speedups of 1.9− 4.6×.

3.4 Related work

Accelerating fluid simulations with surrogates. Shape design optimization relies on

the minimization of an objective function. GP approximate this objective function to be

computationally tractable. However, these models rely on a specific geometry parametriza-

tion [22] which limits its generalizability. Other regression techniques, such as MARS and

polynomial regressions [23, 33, 34], only predict the velocity or pressure fields on particular

points on the surface of the solid body, in order to reduce the dimensional complexity of

the problem. With CFDNet, we take an alternate approach with a CNN that predicts the

velocity and the pressure fields for all points in the flow field.

Accelerating fluid simulations with NNs. In the past few years, several researchers have
4The computed RME in this case are 110% for the velocity, 251% for the pressure and 80% for the

modified eddy viscosity
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leveraged NN to accelerate CFD simulations. In [39], the authors accelerate Eulerian fluid

simulations by replacing the Poisson solver step in an Eulerian flow iterative solver instead of

finding an end-to-end mapping to calculate the divergence-free velocity. Alternatively, Guo

et al. [40] find a real-time solution to viscous laminar flows around solid objects. However, the

above approaches have elemental constraints. First, Eulerian fluid simulations ignore second-

order velocity derivatives in the NS equations. Second, viscous laminar flow approaches are

ambiguous if they are to be expanded to turbulent flows which are intrinsically chaotic and

much harder to resolve [1].

There have been recent attempts to find NN-based accelerators for turbulent flows. The

results are promising but the NNs predict only a subset of the flow variables. Maulik et al.

predict the eddy viscosity field and not other flow properties such as velocity and pressure

fields [41]. Thuerey et al. use a novel input-output representation but their approach does

not account for the eddy viscosity field [42]. More importantly, the network prediction

is limited to the fluid domain closest to the solid body, so it remains an unknown how

the network would perform in the freestream, where the boundary conditions are set which

define the flow configuration. Another limitation of [42] is that the network is used as a final,

end-to-end surrogate. Even though the results reported are promising (RME less than 3%)

and the surrogate approach provides real-time solutions, the geometries in the training and

prediction stages are the same (airfoils). It remains unclear how the surrogate would perform

on different geometries. CFDNet injects the NN-based mapping back into the physical solver

to enable both extrapolation and generalization with the same model without relaxing the

convergence constraints.
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3.5 Conclusions

We have shown that coupling RANS fluid flow simulations with a CNN, the CFDNet frame-

work, can significantly accelerate the convergence of the overall scheme. CFDNet speeds the

simulations up by a factor of 1.9× - 7.4× on both steady laminar and turbulent flows on a

variety of geometries, without relaxing the convergence constraints of the physics solver. To

evaluate the model’s capacity for generalization and extrapolation, it has been tested across a

range of scenarios and geometries, including channel flow, ellipses, airfoils, and cylinders. In

general, the model performs well and demonstrates a capacity to make accurate predictions

even for geometries unseen during training.

CFDNet indicates that coupling physical models with data-driven machine learning models

is a promising approach for accelerating the convergence of simulations. However, more work

remains for this method to be a widely used tool for predictive engineering.

First, a 64× 256 grid size is a coarse resolution and needs to be scaled for real-world appli-

cations. We expect that the CNN trained in these case studies performs well for test cases

that use the same grid size as the training set, and declines as we increase to higher reso-

lutions. This is likely because higher resolutions present physical effects absent in meshes

which the network has not learn. Hence, the current approach is not adequate for accelerat-

ing simulations in finer grids; the ones used in design optimization/exploration of real-world

systems. A brute force solution to this limitation is to conduct data collection and training

at higher resolutions. However, data collection times and training times at high resolutions

are computationally intractable. This disadvantage needs to be circumvented to make the

CFDNet approach a viable tool for most engineering systems of interest.

Second, CFDNet might present poor generalization capacity due to more complicated physics

and complex geometries. The same CNN complexity (number of layers/filters/nodes) has

been used to tackle two different case studies: (i) accelerate the simulation of an unseen flow
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condition keeping the geometry constant (channel flow) and (ii) accelerate the simulation of

an unseen solid body - keeping the flow conditions constant throughout all the experiments -

in the external aerodynamics case. Clearly these two cases have very different complexities,

the latter being a more challenging system. The reason is that even though the flow condi-

tions are kept the same the flow regime accross the ellipses is very different. The results show

how CFDNet works significantly better in the channel flow case. Results also show that the

network is not able to distinguish if there is (cylinder) or there is not (airfoil) flow separa-

tion. Therefore, a significant amount of refinement iterations are required to correct these

CNN-inferred flow fields. This indicates that the network needs more complexity to capture

these differences and be more accurate in realistic design cases; for example, determining

when an airfoil is at stall.

These limitations pose a challenge for the scalability and generalizability of this method.

In the next chapter, we present SURFNet, a strategy to extend the scope of CFDNet to

high-resolution flow.
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Chapter 4

SURFNet: A transfer learning

framework for super-resolution of fluid

flows

To account for more aspects of the physical phenomena being modeled, practitioners ne-

cessitate an increase in the resolution of the system resulting in high computational costs.

Figure 4.1 shows the time-to-solution with increasing grid size for a turbulent flow simula-

tion around the NACA0012 airfoil. A dual-socket, 40-core system requires ten seconds at a

resolution of 64× 256, and 100 minutes at 2048× 2048 for a single airfoil shape in one flow

configuration (one test case). In aircraft design, there are typically many airfoil shapes [73],

each of which requires simulations performed across a range of parameters such as Re ,

various angles of pitch, yaw, and roll to account for rotation as well as different angles of

attack, resulting in thousands of test cases. To address this challenge, super-resolution is an

approach to reconstruct fine-scale flow physics from coarse-grid solutions.

Most recent applications of super-resolution employ DL [50–53, 74–77]. Table 4.1 summarizes
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Figure 4.1: Time to convergence for flow around a NACA0012 airfoil at different spatial
resolutions on a dual-socket Intel Xeon Gold 6148 CPU (total 40 cores)
.

the SOTA approaches for DL-based super-resolution and categorizes them across several

features.

First, the majority of CNN-based approaches are finite-dimensional maps and hence lack

resolution-invariance [40, 42, 64, 78, 79]. Mesh-free, resolution-invariant DL methods are

a potential alternative to query fine-scale flow physics [50–52]. However, these approaches

use low-resolution data downsampled from high-resolution solutions to train the network.

As a result, current mesh-free methods suffer from the same limitation as classical CNN-

based approaches that require a large number of computationally expensive simulations to

collect training data at high resolutions. Practical CFD simulations require high spatial

resolutions (such as 1024 × 1024) according to NASA’s FUN3D and CFL3D solvers [70]

making current DL approaches computationally prohibitive (see Figure 1). Second, most

approaches [50–53, 77, 78] lack generalization to unseen geometries where the test geometry

is a subset of the training data – a key limitation for CFD researchers/practitioners. Third,

only a limited number of approaches support super-resolution of turbulent flows that are

significantly more challenging than laminar flows [77] and ubiquitous with a wide range

of applications in aerodynamics, atmospheric science, turbomachinery, and propulsion [42,

53, 64, 79]. Lastly, it’s common to use DL algorithms as a pure surrogate model that
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Related
Work

Target
Flow
(PDE)

Test
Geometry
Unseen
in Training

Meets
convergence
constraints

Resolution
Invariant

Training
data
collected
on
coarse-grids

Highest
Test
Spatial
Resolution

Error
metric

Error
value
(best)

Method

Fourier
Neural
Operator [50]

Darcy 421× 421 RE 1× 10−2 NO

Fourier
Neural
Operator [50]

Navier-
Stokes 256× 256 RE 8.6× 10−3 NO

Graph
Kernel
Network [51]

Darcy 241× 241 L2 3.7× 10−2 NO

MeshFree
FlowNet [53]

Rayleigh-
Bénard 4× 512 NMAE 3.3× 10−3 CNN

Gao et al. [77] Laminar 200× 200 RE 0.025 CNN

TFNet [78] Rayleigh-
Bénard 1792× 256 RMSE 200 CNN

Guo et al. [40] Laminar 128× 256 RME 1.76% CNN

CFDNet [79] Navier-
Stokes 64× 256 RME 0% CNN

Smart-
fluidnet [54] Eulerian 1024× 1024 MAE 9× 10−3 CNN

SURFNet Navier-
Stokes 2048× 2048 RME 0% TL

Table 4.1: Comparing SOTA approaches in DL for 2D CFD simulations on nine different features.
SURFNet is a novel network-based transfer learning (TL) framework that (1) generates accurate
solutions up to 2048 × 2048 spatial resolutions for turbulent flows from low-resolution models, (2)
generalizes to unseen-in-training geometries, (3) meets the original convergence constraints of tra-
ditional CFD solvers, and (4) collects data at low-resolution on coarse grids for training – whereas
prior works target non-turbulent or non-viscous flows [40, 51, 52, 54], only test on geometry do-
mains that were part of the training phase [50, 53, 78], replace partly [54] (left yellow dot) or
entirely [40, 50, 53, 78] traditional solvers with a neural network surrogate not meeting convergence
constraints, and most importantly, train with data downsampled from high-resolution simulations
or are unsupervised (right yellow dot) [50–54]. NO stands for Neural Operator and CNN for Con-
volutional Neural Network.
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entirely replaces the CFD solver, thereby not providing the same convergence guarantees

as the latter. There is a pressing need to design DL based models for super-resolution of

turbulent flows that (a) eliminates the need for extensive data collection at high resolutions,

(b) provides discretization and resolution-independent acceleration, and (c) can generalize

to unseen geometries and flow configurations while meeting the convergence guarantees of

the traditional physics solvers.

To address the above need, in this thesis we present SURFNet (SUper-Resolution Flow

Network), a novel approach to reconstruct fine-scale flow physics from coarse grid data by

primarily training the DL model on low-resolution inputs. Using this coarse-model, SURFNet

transfer learns the model on high-resolution turbulent flow solutions, significantly reducing

the overall data collection time and the total size of the training set. To enable efficient

super-resolution, we propose two variations of transfer learning.

1. One-shot transfer learning (OSTL): learning is conducted from the coarse model to the

target resolution in a single shot.

2. Incremental transfer learning (ITL): learning is done step-by-step incrementally on the

training set of intermediate discretizations up to the target resolution.

To empirically evaluate SURFNet, we again solve the RANS equations (2.1), (2.2), (2.3).

4.1 Transfer learning for super-resolution of flow simula-

tions

Our objective is to accelerate the convergence of high-resolution turbulent flow simulations.

We achieve this by reconstructing fine-grid flow solutions from coarse grid models referred

to as super-resolution with minimum data collection at higher resolutions.
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In this section, we first describe the design of the CNN architecture to train the coarse model

with low-resolution data. Then, we present SURFNet, a novel transfer learning-based super-

resolution approach that relaxes the demand for generating expensive and time-consuming

training data to train accurate models for discretizations at higher resolutions.

4.1.1 Coarse grid network

Recall that one of CFDNet’s disadvantages was its limited generalization capacity to unseen-

during-training geometries. Here, we tackle this limitation and augment the design of the

previous CNN to generalize better to unseen test cases, including unseen geometries and

unseen non-trivial flow conditions. We hence aim to learn a generalizable model that can

predict flow around rotated geometries (that is, varying pitch angle, θ) and changing flow

fields (that is, angle of attack, α) as they are critical features in design exploration and shape

optimization. For instance, it is common practice to simulate the flow field by varying the

angle of the incoming flow and rotating the airfoil geometry [80].

We augment CFDNet’s CNN architecture and design an eight-layer, convolutional - decon-

volutional neural network - 4 convolution layers followed by 4 deconvolution layers. The

number of filters are, in order: 16, 32, 128, 256, and 256, 128, 32, 16. An illustration can be

seen in Figure 4.2. We use a deeper network compared to CFDNet (8- versus 6-layer CNN)

because the training dataset is larger and has more features to learn (for example, rotation).

All layers have a filter size of 5 × 5 and a stride of 1. This overlap captures both the short

and long (spatial) range dependencies between the flow variables while covering all regions

of the flow field present in the input image. We use the LeakyReLU activation function for

all layers because the output image contains real-valued variables.
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Figure 4.2: CNN and its input-output representation. The CNN is a symmetric, fully
convolutional-deconvolutional neural network. The input and the output are , like in CFD-
Net, a 4-channel tensor image: each channel represents one flow variable (x-velocity U ,
y-velocity V , pressure P and modified eddy viscosity ν̃). The difference between the input
and the output tensors is that the former has the flow values of an intermediate iteration
(i), while the latter is the flow field at steady-state (ss).

4.1.2 Why transfer learning?

The CNN in Figure 4.2 relies on intermediate and final solutions of flow simulations to train

the solution operator, G. The ideal scenario in machine learning is the availability of vast

amounts of labeled training data for supervised models. However, both collection of large-

scale high-resolution data and training with large input sizes are prohibitively expensive (see

Figure 4.1). An alternate approach is to use the convolutional operator calibrated with low-

resolution data to predict high-resolution solutions. Although this is feasible, the accuracy

reduces dramatically, especially for turbulent flows as we show empirically in Section 4.3.

Therefore, CNN-based approaches demand end-to-end re-training for different resolutions

and discretizations to achieve constant error.

The above limitations motivate the use of transfer learning to both solve the problem of

insufficient training data at higher resolutions and to achieve resolution-invariance across

discretizations. Transfer learning is a popular technique that relies on transferring a trained

model across different learning tasks or from one model to another [81, 82]. It has been suc-

cessfully applied to different applications such as drug discovery [83], disease detection [84],

NLP [85], and machine fault diagnosis [86].
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We propose another novel application of transfer learning that leverages the correlations

inherent between low- and high-resolution inputs of turbulent flows. Low-resolution solutions

of fluid simulations contain critical information that can be effectively extracted for high-

resolution flow prediction: low-resolution solutions capture all present flow structures [87],

even complex ones (for instance, the wake region behind solid bodies after flow separation).

However, they do not resolve them, as high-resolution grids do. Therefore, given a pre-

trained CNN model on large datasets at low-resolution (that is, coarse model), our objective

is to transfer the trained model to the target fine-grid discretization to append the unresolved

flow information.

An advantage of our super-resolution transfer learning methodology is that the input is

truly from coarse-grid simulations, not downsampled from high-resolution data as in the

SOTA [50–52]1. This eliminates the requirement for generating computationally demanding

(and in some cases intractable) data to build a high-resolution model. In the rest of this

section, we describe the transfer learning pipeline and how we account for fine-scale physics

and dynamics.

4.1.3 Super-resolution with transfer learning

Given rc : xc × yc where rc is the coarse-grid resolution corresponding to the discretization

xc × yc, the super-resolution task of SURFNet is to recover solutions at fine-scales rf :

xf×yf | f = 1, ..., t where xf×yf is a fine-grid discretization and rf > rc, ∀f . We implement

network-based transfer learning as illustrated in Figure 4.3 and propose two variations for

super-resolution as described below.

One-Shot Transfer Learning (OSTL). In this approach, model weights are transferred
1Data downsampled from higher resolutions is not the same as data generated from coarse-grid solutions.

Low-resolution data downsampled from high-resolution solutions contain information of resolved complex
flow structures, whereas this information is inexistent in coarse-grid solutions.
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Figure 4.3: SURFNet (top) and its inductive transfer learning (bottom) for super-resolution
of turbulent flows. A large dataset is collected at low resolutions to train the CNN and obtain
the coarse model. Small data is collected at higher resolutions and SURFNet transfers the
model weights from the coarse model to train the fine-scale model using either one-shot (red)
or incremental transfer learning (black).
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from the coarse model trained with rc to the target resolution, rt in a single training step.

For example, if we desire to recover high-resolution flow fields at 2048 × 2048, we transfer

learn from 64×256 to 2048×2048 in a single shot. This approach is illustrated in Figure 4.3

with a red, dashed line.

Incremental Transfer Learning (ITL). An alternative approach to OSTL is to train the

CNN with the large-scale low-resolution dataset and perform transfer learning in a step-wise

manner. That is, instead of transfer learning from rc to the target resolution directly, rt, we

pass through intermediate resolutions step-by-step from the low resolution to the target high

resolution (that is, rc-> r1-> r2...-> rt). For example, if we desire to recover high-resolution

flow fields at 512 × 512, we transfer learn from 64 × 256 to 256 × 256, and finally from

256 × 256 to 512 × 512. A step size of 1 allows the model to incorporate new information

from each intermediate discretization. We further discuss the impact of step size on the

predictive accuracy in Section 4.3. The black dashed line in Figure 4.3 shows this variation

of transfer learning. In ITL, the model learns from more data than OSTL without overfitting

while still reducing the overall data collection since we avoid heavy data collection at any

specific high resolution.

To recover the solution at the desired target discretization, we perform the steps outlined

below for both transfer learning approaches (that is, OSTL and ITL).

1. Coarse-grid data collection. The training dataset is created by performing large-scale

simulations at low-resolution discretizations, xc × yc using the physics solver detailed in

Section 3.2.

2. Training. After generating low-resolution training data, the CNN in Figure 4.2 is trained

with this large dataset. By carefully controlling for under- and over-fitting of the network

with a validation dataset, we obtain the coarse model.

3. Fine-grid data collection. Due to the challenge of data acquisition at fine-scale discretiza-
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tions, xf × yf , we limit the number of simulations at high resolutions to the bare minimum

to create the transfer dataset. In Section 4.3, we show that a single geometry is sufficient to

transfer the coarse-grid features and recover the fine-scale physics.

4. Transfer learning. In our approach, we choose to implement inductive transfer learning,

where we reuse the network (including its structure and parameters) that was pre-trained to

learn the source model (that is, coarse model) [88]. Since the source and target domains are

the same, we intuitively expect this technique to preserve the common features extracted

between the two learning tasks. We treat the coarse model as a feature extractor of high-

resolution flow fields. All layers of the CNN use a stride of 1 to not reduce the dimensionality

of the input-to-output map during the low-resolution training phase. However, for high-

resolution input-output pairs, this model is a low-dimensional representation – an extractor

of the prevalent flow features across discretizations (for example, flow effects due to the

boundary conditions, fields’ shape in the free stream, and flow variations due to the change

in α and θ). Since coarse discretizations do not have enough domain points to define accurate

flow field solutions in areas of strong gradients, the features extracted need to be fine-tuned

but not re-learned. The transferred network is updated by fine-tuning the weights as follows

(see Figure 4.3).

a. Re-initialize the transferred network with the weights obtained from the coarse model

for OSTL. For ITL, the transferred network is initialized with the weights from the

largest model pre-trained at resolution rf such that rf < rt.

b. Start training the transferred network with the transfer dataset. At this stage, it

is critical to append the fine-grid flow features. Since we start with a good initial

calibration of the weights from a pre-trained model of the same domain, only fine-tuning

is required to update the weights of the transferred network. Fine-tuning of network

parameters is done with a low learning rate (that is, small updates to the weights) and

for very few epochs (1 or 2 at most) to avoid overfitting to the geometry (or geometries)
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of the small transfer dataset while preserving the generalization capacity of the model.

In summary, SURFNet is a transfer learning-based super-resolution flow network that learns

three distinct CNN models to reconstruct high-resolution turbulent flow fields – (1) the

low-resolution coarse model, (2) the OSTL model, and (3) the ITL model.

4.2 Experiment setup

In this section, we first describe the case study to evaluate SURFNet’s potential for super-

resolution. Then, we describe the low- and high-resolution datasets for training, transfer

learning, validation, and testing and outline the training process of the coarse model.

4.2.1 Case study

We consider the external aerodynamics cases that we introduced in Section 3.2. However,

in real scenarios, the exploration involves different geometries (for instance, airfoil shapes)

simulated under various flow configurations such as rotation of the solid body and wind angle.

Therefore, to apply to a large class of CFD problems, challenges in generalizing to unseen

geometries need to be addressed. We aim to evaluate SURFNet’s ability to accelerate the

flow around solid bodies such as airfoils and cylinder with different rotations. Accordingly,

these geometries are excluded from the training and transfer learning datasets. We resolve

turbulent flow around solid bodies at a Re of 6× 105 using equations (2.1), (2.2), (2.3). This

setup - the flow regime (turbulent flow), the geometries (extrapolating to NACA airfoils),

and the grid resolutions - is representative of real NASA case studies [70].
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4.2.2 Dataset creation

We create a total of 15 distinct datasets and perform the simulations of all flow configurations

with the solver described in Section 3.2. Table 4.2 summarizes the datasets, including the

composition, resolution, and scope of each dataset.

Datasets Low resolution Higher resolutions

Training
NoG 10
NoFC 90
Type ellipses

Transfer
NoG 1
NoFC 6
Type ellipse AR = 0.1

Validation
NoG 3
NoFC 9
Type NACA0012, ellipse AR = 0.22, cylinder

Test
NoG 4
NoFC 8

Type NACA1412, NACA0015,
ellipse AR = 0.3, cylinder

Table 4.2: Summary of datasets. The training dataset is from low-resolution simulations. At all
high resolutions we collect identical transfer, validation, and test datasets. NoG is for the number
of different geometries, and NoFC is for the number of flow configurations (that is, total number of
simulations).

Training dataset. First, we collect a large-scale, low-resolution dataset to train the coarse

model, at a 64× 256 resolution (a common resolution for low-resolution solutions of similar

case studies [70]). The core of this dataset is formed by simulations of flow around 10

different ellipses obtained by changing the aspect ratio AR that is defined as the ratio of the

vertical to the horizontal semiaxis length, as shown in Figure 4.4. The AR’s considered for

the training dataset are: 0.05, 0.07, 0.09, 0.1, 0.15, 0.2, 0.25, 0.35, 0.55, and 0.75. For each

ellipse, we consider 9 flow variations: five different angles of attack, α, and four different

pitch angles, θ, chosen randomly for each ellipse in the range between −2− 6◦ for a total of

90 flow configurations. We choose from thin to thick ellipses and angles of attack to cover a
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wide spectrum of physical phenomena that is commonplace in aerospace design exploration.

For instance, the angle of attack is an important variable in determining the magnitude of the

force of lift. The α angles are obtained by changing the direction of the flow while maintaining

the angle between the chord of the solid body and the cartesian x-direction at 0◦. The θ

angles are obtained by pitching the nose of the solid body up or down and maintaining a flow

direction at a 0-degree angle with its longitudinal axis. These configurations are illustrated

in Figure 4.4.
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Figure 4.4: Geometry configurations used in training. The dotted arrow shows the direction of the
incoming flow and the dashed line shows the chord of the solid body. Sketch of the (i) ellipse aspect
ratio, (ii) angle of attack α, and (iii) pitch angle θ.

Validation dataset. We collect validation datasets to control the under- and over-fitting

of the network during both the pre-training and fine-tuning phases. The validation dataset

consists of flow around three different unseen-in-training geometries: an ellipse AR = 0.22,

a symmetric NACA0012 airfoil, and a cylinder. For each geometry, we consider 3 flow

variations – two α angles and one θ angle, chosen randomly as in the training dataset for

a total of nine flow configurations. Note that we collect the same validation dataset at all

resolutions, from 64× 256 to 2048× 2048.

Test dataset. We collect a new dataset to evaluate SURFNet’s performance in accelerating

high-resolution turbulent flow simulations. The test datasets consist of flow around four

geometries: a non-symmetric NACA1412 airfoil, a symmetric NACA0015 airfoil, an ellipse

AR = 0.3, and a cylinder. The airfoil and cylinder geometries are shown in Figure 4.5.

The test dataset contains geometries unseen during the pre-training or transfer learning

phases. Nonetheless, some geometries are, a priori, more challenging than others. For
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example, the non-symmetric NACA1412 airfoil has three unique features distinct from the

training dataset: the flat trailing edge, the non-symmetry, and the chamber thickness (12%

of the chord of the airfoil). Comparing the airfoil to the ellipse in the test set, the only

feature unseen during the training phase is its chamber thickness (AR = 0.3). Moreover,

even though a cylinder is a special case of an ellipse from a geometrical perspective, the

physics in the rear of the cylinder has a large recirculation area not present in the training

flows. For each geometry, we consider 2 flow variants: one α angle and one θ angle. Table 4.3

summarizes the different test cases. The test dataset is collected at all resolutions.

𝑥

𝑦

Figure 4.5: Non-symmetric NACA1412 airfoil (left), symmetric NACA0015 airfoil (center), and
cylinder (right) as test geometries. The last two digits in the 4-digit NACA denomination represent
the maximum thickness percentage of the chamber of the airfoil with respect to the airfoil’s chord
(dashed line).

4.2.3 Coarse model training

We train the CNN in Figure 4.22 using the training dataset described in Section 4.2.2 using

double precision. We implement the CNN using Keras [71] and perform distributed training

on four Tesla V100 GPUs connected with PCIe, using the TensorFlow 2.4 backend. No

specific initialization is used in training. The batch size is 64, the optimizer is Adam, and the

loss function is MSE. The learning rate is set to 1× 10−4 with no decay for all training. The

training is stopped using the EarlyStopping Keras callback by monitoring the validation loss

with patience of 6 epochs. After 41 epochs, the training loss reaches 7× 10−4 and validation

loss reaches a value of 8× 10−4.
2We also considered a 10- and 12-layer CNN. However, adding additional layers did not improve perfor-

mance.
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4.3 Results and discussion

After pre-training and validating the coarse model, we perform fine-tuning using both trans-

fer learning approaches (that is, OSTL and ITL) and evaluate SURFNet’s ability for super-

resolution at various target high-resolution discretizations. We start by empirically demon-

strating the inefficiency of coarse model without fine-tuning to recover high-resolution tur-

bulent flows, especially at fine-scale discretizations. Then, we evaluate SURNet’s trans-

fer learning and its ability to generalize to geometries unseen during the pre-training and

fine-tuning phases. Finally, we evaluate its performance in reconstructing high-resolution

turbulent flows with respect to the OpenFOAM physics solver. Besides, we also compare

SURFNet against the baseline model (aka oracle), which performs full training with a large

training dataset collected at higher resolutions.

4.3.1 Validation loss

One of our objectives is to maintain prediction accuracy across discretizations to build a

resolution-invariant DL algorithm. Figure 4.6 shows the validation loss of the different

models with increasing resolution size.

Coarse model loss. We observe that the validation loss of coarse model increases sig-

nificantly with increasing resolution size from 1.5× 10−3 at 256 × 256 to 2.1× 10−1 at

2048 × 2048. These results indicate that coarse model trained with low-resolution data

is unable to recover high-resolution flow fields. This lack of fidelity is because coarse dis-

cretizations learned with the coarse model are incapable of capturing sharp gradients and

resolving flow instabilities prevalent at fine discretizations. Hence, the coarse model alone is

inadequate for super-resolution.

OSTL loss. To augment the prediction capabilities of the coarse model, we perform one-
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Figure 4.6: Coarse model (CM), one-shot transfer learning (OSTL), incremental transfer learning
(ITL), and baseline model (BM) losses on the validation dataset at every target resolution.

shot transfer learning from the coarse model to the target high-resolution using the transfer

dataset as discussed in Section 4.1. We set the learning rate to one order of magnitude

lower than the training learning rate for the coarse model (from 1× 10−4 to 1× 10−5), and

train for only one or two epochs. The loss of the fine-tuned OSTL model on the validation

dataset significantly reduces at all target resolutions compared to the coarse model as seen

from Figure 4.6. At 256 × 256, OSTL reduces the validation loss from 1.5× 10−2 for the

coarse model to 9× 10−3, resulting in 60% overall reduction. We observe a similar trend

with subtle improvements at larger resolutions. At 2048 × 2048 the validation loss reduces

from 2× 10−1 for the coarse model to 3× 10−2 for OSTL – almost one order of magnitude.

We make two main observations from the OSTL results. First, the gap in the validation losses

between OSTL and the coarse model increases with the grid size. Coarse discretizations do

not contribute sufficient points in the domain to obtain accurate solutions. In areas of strong

gradients, fine discretizations shape the flow field very differently from coarse discretizations

as seen from Figures 4.7 and 4.8 for the NACA airfoils. The finer the discretization, the

more distinct the resulting flow field is from the baseline low resolutions. Therefore, when
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we transfer from the coarse model to very high resolutions (for example, 2048 × 2048), the

new flow field seen during the transfer phase produces sizable changes to the weights of the

network compared to transferring to mid-resolutions (for example, 256× 256). Second, this

divergence of the flow features between low- and high-resolution discretizations also explains

why the OSTL validation loss increases with the grid size. Although OSTL substantially

improves the accuracy of super-resolution, it still does not achieve resolution-invariance.

To alleviate these limitations, we consider three alternatives. First, to train for more epochs

during fine-tuning. However, this comes with the risk of overfitting to the unique geometry

in the transfer dataset, which is undesirable. Second, to include more geometries in the

transfer dataset. This approach is also detrimental because it would require substantial data

collection at high resolutions. Third, use incremental transfer learning (ITL). This approach

is promising as the model is further fine-tuned with data at intermediate resolutions until the

target discretization. We choose a step size of 1 to avoid the drawbacks of OSTL described

above and improve the accuracy of the network at very high resolutions while still reducing

the overall data collection.

ITL loss. SURFNet does incremental transfer learning using the same approach as in

OSTL. Figure 4.6 plots the error of SURFNet after ITL on the validation dataset at each

target resolution. SURFNet’s OSTL and ITL approaches produce different validation loss

values at every target resolution except 256× 256. ITL improves the generalizability of the

network. The validation loss drops by half at 512 × 512 and 3× at 2048 × 2048 compared

to OSTL. ITL reaches a loss that is invariant to the resolution: the validation loss remains

constant at around 1× 10−2 for every target discretization. Because the transfer dataset at

each resolution is 15× smaller than the training dataset, we still learn incrementally using

far less data. Most importantly, ITL achieves similar accuracy to the baseline model or

oracle trained using a dataset as large as the pre-training dataset for the coarse model at

256 × 256 and 512 × 512. This result is particularly notable because ITL reaches oracle-
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level accuracy without the need for exhaustive training with large input sizes and large-scale

high-resolution datasets. We present a more detailed performance comparison against the

oracle in Section 4.3.3.

4.3.2 Performance analysis

We now study SURFNet’s performance in super-resolution of turbulent flows. Recall that

SURFNet’s pre-training consists of training the base network with a large number of inputs

of low-resolution data. The transfer phase adds a minimum amount of high-resolution data

for fine-tuning the network. Therefore, in addition to performance, we also evaluate the

ability of SURFNet in recovering the same high-resolution turbulent flow solution as the

physics solver.

We test SURFNet in simulations of turbulent flow around 4 unseen-in-training geometries

at 2 flow configurations each, for a total of 8 test cases at all target resolutions. Table 4.3

presents the comparison against the OpenFOAM physics solver. SURFNet creates three

models – (i) low-resolution coarse model, (ii) OSTL model, and (iii) ITL model. Therefore,

at every target resolution, we evaluate the time-to-convergence (TTC) using each model,

namely: C-SURFNet, O-SURFNet, and I-SURFNet. We compare the TTC of each one of

these models with the TTC of the physics solver (PS) and baseline model (BM)3.

The TTC of the PS is computed by using in tandem two popular convergence criteria in the

CFD literature [5]: (1) the residual of each flow variable drops 4 to 6 orders of magnitude and

(2) by monitoring when physical quantities reach steady-state. In contrast, SURFNet reaches

convergence in three stages. First warmup (W), where we start the simulation with the PS

and let the residual drop between one and two orders of magnitude for each variable. This is

sufficient for the fluid parameters close to the physical boundaries to capture the geometry
3A comparison is presented against the BM (or oracle) for only 256 × 256 and 512 × 512 due to the

computational cost of collecting large datasets and training at higher resolutions.
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64× 256 256× 256 512× 512 1024× 1024 2048× 2048

Test case PS C-SN PS C-SNO-SN BM PS C-SNO-SN I-SN BM PS C-SN O-SN I-SN PS C-SN O-SN I-SN

NACA
1412
θ = 5◦

TTC 0.16 0.08 0.4 0.22 0.2 0.2 2.4 1.7 1.3 1.2 1.2 17.2 14.3 10.1 8.6 95 95 59.4 47.5
ITC 1865 825 3636 1874 1672 1669 7273 5018 3864 3460 3473 10118 8259 5779 4887 1233812183 7556 6014
S 1× 2.1× 1× 1.8× 2× 2× 1× 1.4× 1.8× 2× 2× 1× 1.2× 1.7× 2× 1× 1× 1.6× 2×

NACA
1412
α = 6◦

TTC 0.19 0.09 0.53 0.29 0.27 0.25 3.3 2.5 1.9 1.7 1.7 19.3 16.1 12.06 9.7 98.5 89.5 61.6 49.3
ITC 2215 991 4818 2531 2263 2199 10000 7516 5706 4823 4830 11353 9289 6506 5504 1279211474 7840 6241
S 1× 2.1× 1× 1.8× 2× 2.1× 1× 1.3× 1.7× 2× 2× 1× 1.2× 1.6× 2× 1× 1.1× 1.5× 2×

NACA
0015
θ = 3◦

TTC 0.15 0.07 0.34 0.18 0.16 0.17 2.5 1.7 1.4 1.2 1.2 15.8 12.2 8.8 7.9 88.7 88.7 55.4 44.4
ITC 1748 769 3091 1481 1326 1349 7576 4874 4032 3431 3424 9294 6977 4991 4475 1151911365 7045 5605
S 1× 2.1× 1× 1.9× 2.1× 2× 1× 1.5× 1.8× 2.1×2.1× 1× 1.3× 1.7× 2× 1× 1× 1.6× 2×

NACA
0015
α = 0◦

TTC 0.13 0.06 0.32 0.18 0.16 0.16 2.3 1.6 1.3 1.2 1.2 14.5 10.4 8.5 7.3 82.4 82.4 51.5 41.2
ITC 1515 626 2909 1470 1308 1311 6970 4802 3696 3308 3300 8529 5920 4845 4093 1070110546 6533 5196
S 1× 2.2× 1× 1.8× 2× 2× 1× 1.4× 1.8× 2× 2× 1× 1.2× 1.7× 2× 1× 1× 1.6× 2×

Ellipse
AR=0.3
θ = 5◦

TTC 0.22 0.1 0.61 0.36 0.31 0.3 4.1 3.2 2.4 2.1 2.1 20.8 17.3 13.0 10.4 107.2 97.5 67.0 53.6
ITC 2564 1158 5545 3116 2627 2615 12424 9381 7132 6036 6039 1223510024 7475 5946 1392212502 8546 6806
S 1× 2.1× 1× 1.8× 2× 2× 1× 1.3× 1.7× 2× 2× 1× 1.2× 1.6× 2× 1× 1× 1.5× 2×

Ellipse
AR=0.3
α = 1◦

TTC 0.25 0.13 0.64 0.36 0.32 0.33 4.6 3.3 2.6 2.3 2.3 22.3 17.2 13.1 11.2 114.7 104.3 71.7 57.4
ITC 2914 1394 5818 3086 2763 2777 13939 9780 7568 6793 6790 13118 9918 7544 6387 1489613387 9155 7293
S 1× 2× 1× 1.8× 2× 2× 1× 1.4× 1.8× 2× 2× 1× 1.3× 1.7× 2× 1× 1.1× 1.6× 2×

Cylinder
θ = 0◦

TTC 0.30 0.19 0.72 0.42 0.36 0.36 5.2 3.7 2.9 2.6 2.5 30.6 25.5 18.0 15.3 165.4 165.4 103.4 82.7
ITC 4663 2157 6545 3704 3127 3127 1575811079 8578 7702 7691 1800014828104168828 21481213261327010585
S 1× 2.1× 1× 1.7× 2× 2× 1× 1.4× 1.8× 2× 2.1× 1× 1.2× 1.7× 2× 1× 1× 1.6× 2×

Cylinder
α = 1◦

TTC 0.36 0.16 0.68 0.40 0.34 0.34 5.0 3.6 2.9 2.5 2.5 27.1 22.6 16.9 13.6 153.0 139.1 95.6 76.5
ITC 4196 1844 6182 3490 2945 2941 1515210646 8736 7399 7400 1594113112 9791 7799 198701790912264 9780
S 1× 2.2× 1× 1.7× 2× 2× 1× 1.4× 1.7× 2× 2× 1× 1.2× 1.6× 2× 1× 1.1× 1.6× 2×

Table 4.3: Summary of the performance results. TTC is the time-to-convergence and ITC is the
number of iterations-to-convergence of the physics solver (PS), C-SURFNet (C-SN), O-SURFNet
(O-SN), I-SURFNet (I-SN) and the Baseline Model (BM). The speedup of all SURFNet models is
calculated with respect to the physics solver.
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64× 256 256× 256 512× 512 1024× 1024 2048× 2048

Test case W I W I W I W I W I

NACA 1412
θ = 5◦

T 2e-3 3e-3 3e-3 1.3e-2 1.5e-2 0.05 0.11 0.25 0.77 1
NI 25 26 45 65 100

NACA 1412
α = 6◦

T 2e-3 3e-3 3e-3 1.3e-2 1.6e-2 0.05 0.13 0.25 0.85 1
NI 26 26 49 78 110

NACA 0015
θ = 3◦

T 2e-3 3e-3 3e-3 1.3e-2 1.7e-2 0.05 0.122 0.25 0.7 1
NI 25 27 50 72 91

NACA 0015
α = 0◦

T 3e-3 3e-3 4e-3 1.3e-2 2e-2 0.05 0.14 0.25 0.92 1
NI 31 39 60 80 119

Ellipse
θ = 5◦

T 3e-3 3e-3 4e-3 1.3e-2 2e-2 0.05 0.14 0.25 0.85 1
NI 35 38 69 80 110

Ellipse
α = 1◦

T 2e-3 3e-3 4e-3 1.3e-2 1.8e-2 0.05 0.12 0.25 0.76 1
NI 28 32 55 73 99

Cylinder
θ = 0◦

T 3e-3 3e-3 6e-3 1.3e-2 2.5e-2 0.05 0.14 0.25 1.05 1
NI 40 50 75 84 140

Cylinder
α = 1◦

T 3e-3 3e-3 6e-3 1.3e-2 2.5e-2 0.05 0.14 0.25 1.05 1
NI 42 50 76 83 142

Table 4.4: Warmup (W) and inference (I) times (T) and number of iterations (NI) for each test
case at each spatial resolution. Times are reported in minutes.

of the new problem. Next inference (I), where we use these intermediate flow variables as

input to the CNN, which infers the steady-state. Finally, the CNN’s output is constrained

with the PS in refinement to reach the same convergence criteria as the PS [79]. The TTC

of SURFNet is the sum of the time spent in the three stages. The three stages are run in

parallel on the CPU described in Section 3.2 for a fair comparison against OpenFOAM’s

solver (which doesn’t support GPU acceleration). Table 4.4 presents the time spent in W

and I and the number of iterations in W.

C-SURFNet versus physics solver. The first column in Table 4.3 presents the eight cases

in our test dataset. The results of C-SURFNet at 64 × 256 indicate good generalization

capacity at the lowest resolution to unseen geometries. We observe consistent speedups

around 2 − 2.1×, independent of the geometry or flow configuration. On the other hand,

the first row shows the results for the first test case, flow around a NACA1412 at θ = 5◦ at

different spatial resolutions. Although we observe significant speedups at low resolutions and

C-SURFNet exhibits improved TTC compared to the PS, its performance gain also degrades
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consistently with increasing discretizations. The speedup drops from 2.1× at 64 × 256 to

1× at 2048 × 2048, where it’s no better than the PS. We observe a similar trend across all

the test cases. These results are in accordance with the observations in Section 4.3.1, where

the coarse model that has learned from only low-resolution inputs is incapable of predicting

accurate high-resolution solutions.

O-SURFNet versus physics solver. In Table 4.3, all high resolutions have an O-

SURFNet (O-SN) column, and we make three main observations from the results. First,

O-SURFNet outperforms C-SURFNet for all test cases and resolutions. For instance, for

the symmetric NACA0015 at θ = 3◦ at 2048 × 2048, the TTC of the PS is 88.7 minutes.

O-SURFNet reduces this time to 55.4 minutes resulting in a 1.6× speedup (C-SURFNet

achieved no performance gain). Figure 4.7 shows the corresponding qualitative results of O-

SURFNet in the task of super-resolution. It resolves the fields of all fluid variables - velocity,

pressure, and the modified eddy viscosity - at 2048 × 2048 faster than the PS while being

pre-trained with low-resolution data with only fine-tuning at the highest spatial resolution.

Second, O-SURFNet’s performance is better at lower resolutions than higher resolutions.

For the same NACA0015 test case, at 1024 × 1024, 512 × 512, and 256 × 256, the perfor-

mance gains are 1.7×, 1.8×, and 2.1× respectively. We observe a similar trend of decaying

performance with increasing resolutions across all test cases similar to the coarse model, al-

beit not to the same extent. This is in line with the results presented in Section 4.3.1 where

OSTL losses increase the more dissimilar the target flow field is from the low-resolution flow.

OSTL at 256×256 discretization achieves a 2× speedup irrespective of the test case, demon-

strating its potential to generalize to higher resolutions provided the target flow features

have sufficient overlap with the tiny resolution used for pre-training the coarse model from

which it fine-tunes. However, this is also an indication that OSTL is incapable of achieving

resolution-invariance. Third, the speedups achieved by O-SURFNet remain constant and

stable among test cases (for instance, we observe speedups around 1.8× at 512 × 512), in-

dicating that fine-tuning the model did not result in overfitting to the transfer geometry.
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Neither the coarse model nor OSTL yield overfitted models and exhibit stable generalization

capacities.

I-SURFNet versus physics solver. O-SURFNet’s accuracy decreases as the resolution

increases. An ideal solution is one that maintains accuracy (that is, resolution-invariant)

while simultaneously requiring limited computational resources. In Table 4.3, we observe

that across the board (that is, all test geometries and flow configurations unseen during

pre-training and transfer learning), I-SURFNet achieves a 2 − 2.1× speedup against the

PS. Not only does I-SURFNet maintain the performance gain over PS across the differ-

ent test cases but also across all target resolutions demonstrating both generalization and

resolution-invariance. Since ITL incrementally fine-tunes the model, it requires more data

than OSTL. However, fine-tuning is done on the same geometry across resolutions with 15×

lesser data, thereby significantly reducing the overall data collection at high spatial dis-

cretizations (compared to prior approaches that require considerably more high-resolution

data). Figure 4.8 shows the qualitative results of I-SURFNet’s flow solution around the

nose of the non-symmetric NACA1412 airfoil at θ = 5◦. I-SURFNet successfully recovers

high-resolution turbulent flow simulations on a geometry with at least three distinct features

(that is, flat trailing edge, non-symmetry, and different chamber thickness) not present in the

training or transfer datasets. This validates that SURFNet pre-trained with low-resolution

data with only fine-tuning can generalize to unseen geometries. The largest target resolution

studied (that is, 2048× 2048) is 256× the size of the tiny discretization (that is, 64× 256)

used in pre-training the coarse model to stress SURFNet’s ability in super-resolution. It is

guaranteed to converge to a unique solution as long as the problem is well-posed [89].

We additionally explored the effect of the required size of the spatial step size to maintain

accuracy for ITL. By incrementally fine-tuning with a step size of 1 up to 2048× 2048, the

performance gain is consistently 2×. This gain is the best possible achievable as observed by

the results of the oracle or BM that is fully trained at 256× 256 and 512× 512 resolutions.
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Figure 4.7: Velocity in m s−1 (top), kinematic pressure in m2/s2 (middle), and modified eddy viscos-
ity in m2/s (bottom) around the NACA 0015 airfoil at θ = 3◦, Re = 6× 105. Comparison between
the low-resolution (64 × 256) training data to train the coarse model (CM) (left); O-SURFNet’s
output after the refinement phase at 2048 × 2048 (middle), and the ground truth OpenFOAM’s
solution at 2048× 2048 (right).
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Low-Res Training Data Super-Res Ground TruthI-SURFNet

Figure 4.8: Detail of the velocity in m s−1 (top), kinematic pressure in m2/s2 (middle), and modified
eddy viscosity in m2/s (bottom) at the nose of the nonsymmetric NACA 1412 airfoil at θ = 5◦, Re =
6× 105. Comparison between the low-resolution (64× 256) training data to train the coarse model
(left), I-SURFNet’s output after the refinement phase at 2048 × 2048 (middle), and the ground
truth OpenFOAM’s solution at 2048× 2048 (right).
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By incrementally transferring with a step size of 2 up to 2048× 2048, the performance gain

drops to 1.7− 1.8×. So, we conclude that to achieve oracle-level accuracy and performance,

the ideal step size for ITL is 1.

4.3.3 SURFNet versus oracle

We now compare SURFNet with the oracle or baseline model (BM) at 256×256 and 512×512

target discretizations. We define BM as conducting full-scale data collection and training

at the higher resolutions. Specifically, a dataset as large as the training dataset outlined

in Table 4.2 collected at the tiny resolution (64 × 256) for pre-training the coarse model

is collected for training the CNN at the two target discretizations. The CNN is trained

using a learning rate of 1× 10−4 and a batch size of 32 and 16, respectively. Figure 4.6

and Table 4.3 show that the loss on the validation dataset and speedup compared to the

OpenFOAM physics solver achieved by ITL is similar to that of the BM. To understand how

much time SURFNet saves with respect to the oracle, Table 4.5 compares the data collection

and the training time of SURFNet with that of BM. SURFNet’s data collection time is the

sum of the time spent collecting low-resolution training data and the transfer datasets at

higher resolutions. Similarly, the total training time includes pre-training the coarse model

and the time spent fine-tuning at the target higher resolution.

In terms of data collection time, SURFNet takes 0.4 hrs (0.33 + 0.06) versus 1 hr for BM

at 256× 256. At 512× 512, SURFNet’s data collection time is 0.8 hrs (0.33 + 0.06 + 0.41)

versus 3.86 hrs for BM. Training at 256 × 256 and 512 × 512 takes 2.56 hrs and 3 hrs for

SURFNet versus 9.25 hrs and 38 hrs for BM, respectively. Overall, SURFNet reduces the

combined data collection and training time by 3.6× and 10.2×, respectively, while achieving

similar performance gain and accuracy as BM. Note that the computational advantage of

SURFNet increases with increasing resolution size. Moreover, these results highlight the
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impracticability of performing exhaustive data collection and training at 1024 × 1024 and

beyond, underscoring the impact and potential of transfer learning (specifically ITL) in

enabling super-resolution of complex turbulent flows.

SURFNet BM

256× 256 512× 512 256× 256 512× 512

Data collection
time for training 0.33 0.33 1 3.86

Data collection
time for TL 0.06 0.41 - -

Training time 2.5 2.5 9.25 38

TL time 0.06 0.5 - -

Table 4.5: Comparison with the baseline model (BM) on data collection and training for reaching
similar accuracy at 256× 256 and 512× 512 spatial resolutions.

4.4 Related work

Several recent approaches aim to find DL-based accelerators for turbulent flows with promis-

ing results. Maulik et al. [41] predict the eddy viscosity field, but not other flow properties

such as the velocity. Thuerey et al. [42] use an encoder-decoder type of network but their

approach does not account for the eddy viscosity field. Although they present real-time

solutions, the geometry in the training and prediction stages are same (that is, airfoils) mak-

ing the solution less generalizable. Like CFDNet, these early works are feasible only with

low-resolution training data. They do not explore how to scale to larger resolutions. In [39],

the authors accelerate fluid simulations by minimizing the divergence of the velocity field

using an unsupervised method and in [54], the authors show that the proposed method is

resolution invariant up to a 1024× 1024 spatial resolution. Nevertheless, these works target

Eulerian fluid simulations, which ignore viscous effects that are critical for practitioners. The

applicability to turbulent flows remains unexplored.
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There have been recent attempts to perform super-resolution for CFD and predict high-

resolution flow fields. Some works [77, 90, 91] train a CNN as a low-resolution to high-

resolution finite dimensional map. Therefore, they are not resolution invariant and require

to restart the training of the model at each desired target resolution. Mesh-free methods [50,

51, 53, 92] achieve resolution-invariance across several resolutions with a single training of

the NN. In [92], the authors introduced NOs. This class of approaches maintain accuracy

up to 421× 421 [50] and 241× 241 [51]. However, they suffer from two disadvantages. First,

they perform extensive data collection at their target resolution to train the NN. Second, the

coarse-grid input data is downsampled from the collected high-resolution data. It remains

unexplored how the models would perform with coarse-grid data as input. In [53], the

authors achieve resolution-invariance to higher resolutions (such as 512× 128) with a CNN-

based model. Nevertheless, it suffers from the same two disadvantages. SURFNet scales to

a 2048× 2048 spatial resolution via transfer learning, requires 15× less data, and trains the

main model using true coarse-grid data.

4.5 Conclusions of SURFNet

We presented SURFNet, a transfer learning-based framework that can eliminate the need

to collect large training datasets at high resolutions to account for fine-scale physical phe-

nomena. This computational efficiency enables SURFNet to achieve oracle accuracies while

significantly reducing the size of the training dataset by 15×, consequently reducing the

combined data collection and training time by 3.6× and 10.2×, respectively at 256 × 256

and 512 × 512 grid sizes. These promising results show that transfer learning is a valid

technique for model re-use in fluid mechanics.

However, SURFNet suffers from a disadvantage: it still requires high-resolution data, even if

the number of samples is small. Training with large input sizes, such as 1024×1024, impacts
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the scalability of the method. For example, in our SURFNet experiment, the maximum batch

size allowed by the memory limit of the GPU when transfer learning4 at 1024× 1024 was 2

underutilizing the GPU resources.

We observe that a high-resolution solution in the entire domain might not be necessary.

A popular technique in CFD is AMR, which makes use of the fact that high numerical

accuracy is only required in regions of the flow that present complex flow physics, such as

the boundary layer or separated/detached flow. Smoother areas, such as the freestream (that

presents very subtle changes), do not need a higher accuracy than that offered by a coarse

mesh. Hence, this non-uniform approach allows reaching higher mesh resolutions with the

same computational resources than those achieved with uniform super-resolution.

All works presented in Table 4.1 for super-resolution with DL perform uniform super-

resolution. Even though mesh-free approaches can do an imbalanced allocation of collo-

cation points, their methods do not inherently distinguish between different regions of the

domain and target a higher resolution solution in the entire domain. Hence, designing a

DL algorithm that only refines certain domain areas would be beneficial for scalability and

performance.

In the next chapter, we present ADARNet, a DL algorithm for non-uniform super-resolution,

where the network focuses on different regions or patches of the domain via a scorer module.

Then, each region maps to a different target resolution.

4We trained using a mixed-precision strategy, where the forward pass is computed using 16-bit double
precision and the gradients are computed using 32-bit double precision to avoid gradient underflow.
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Chapter 5

ADARNet: DL predicts AMR

SOTA DLmodels for super-resolution, described in Table 4.1, have shown promise as domain-

agnostic models and real-time predictors that generalize to a broad set of flow configurations

and conditions. However, they all suffer from the fundamental limitation of performing

uniform super-resolution, that is, every pixel of the input low-resolution image is refined to

the target high resolution. As a result, SOTA [53, 90, 93] methods for super-resolution need

higher computational resources - increased inference times and memory requirements - since

the target high-resolution solution is output in the entire physical domain. Figure 5.1 shows

the maximum allowable batch size with increasing target spatial resolution of these methods.

On a 16GB NVIDIA V100 GPU, these approaches do not allow more than two samples per

batch during inference at high spatial resolutions, such as 1024×1024, where more aspects of

the physical phenomena can be modeled. This severely limits the deployment of DL methods

for accelerating design space exploration in CFD.

Spatially uniform outputs are computationally inefficient for two other reasons. First, they

can under-resolve areas with complex flow features and over-resolve regions with smooth

fluctuations in the flow properties. It is critical to capture this versatility for complex systems
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Figure 5.1: Maximum allowable batch size during inference at different target spatial resolutions
for SOTA [93] DL super-resolution methods on a 16GB NVIDIA V100 GPU with 16-bit floating
point precision.

with significant variations in their local solutions, such as turbulent flows. Second, current

uniform super-resolution approaches need to know the target resolution a priori. As a result,

they require many high-resolution labels at that specific resolution. Hence, they need to rely

either on publicly available datasets or on performing data collection. Since the resolutions

of the publicly available datasets are very limited, the majority of works [53, 90–92] end up

performing computationally challenging high-resolution data collection.

Due to the large scale of many applications, it is often infeasible to solve the problem on

a uniform mesh to achieve the desired accuracy. For this reason, traditional numerical

solvers do not refine the entire mesh but do so adaptively, refining only regions of strong flow

variability for scalability and performance - a method commonly referred to as AMR [55, 94].

However, traditional AMR methods in CFD suffer from two fundamental limitations. First, a

high degree of user intervention in the refining/coarsening decisions: these decisions are based

on heuristics that require problem-specific knowledge and do not generalize well. Second, the

mesh is refined iteratively, requiring more compute time and memory than direct methods.
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In this chapter, we tackle all these challenges and present ADARNet, a novel DL-based

ADAptive mesh Refinement framework for non-uniform super-resolution. ADARNet takes

as input a low-resolution flow field and outputs, in one-shot, its final non-uniform high-

resolution solution, as seen in Figure 5.2.

uniform super-resolution 
(SOTA)

ADARNet
(This thesis)

low-resolution
field

uniform 
high-resolution 

field

non-uniform 
high-resolution 

field

Figure 5.2: Current DL algorithms for super-resolution output the solution on a uniform fine mesh
(top). Our objective with ADARNet is to predict a spatially non-uniform output where only areas
that require higher accuracy are refined (bottom). Hence, ADARNet requires less compute time
and memory resources while achieving the target accuracy.

Since only regions in areas that present complex flow phenomena are refined, it requires less

computational resources. This enables larger batch sizes during inference at high spatial res-

olutions while reaching the target accuracy compared to SOTA methods for super-resolution.

ADARNet distinguishes between different regions of the domain by dividing the input low-

resolution flow field into fixed-size patches, adaptively increasing or maintaining the spatial

resolution of each patch, and predicting a non-uniform high-resolution flow field. We present

ADARNet as an end-to-end DL-physics solver framework where the non-uniform output field

from the model inference is input to a traditional physics solver that drives the solution to

convergence. As a result, ADARNet meets the same convergence guarantees as AMR solvers

which is critical for practitioners [41, 79, 93].
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5.1 ADARNet: DL for non-uniform super-resolution

Our objective is three-fold. First, to predict fine-grid turbulent flows from their coarse-grid

counterpart only in the regions of interest. Second, to design a DL algorithm for AMR where

these areas to refine are identified with the least possible user intervention. Third, to output

a solution that meets the same convergence guarantees as classical AMR solvers.

In this section, we present ADARNet, a novel DL framework for adaptive super-resolution.

We first describe in detail the NN architecture and then, present our semi-supervised learning

approach that leverages a hybrid loss function. Finally, we outline the end-to-end frame-

work, which reconstructs a non-uniform high-resolution flow field while reaching the same

convergence as SOTA AMR solvers.

5.1.1 NN architecture

We choose a DNN for the task of non-uniform super-resolution. The input to the DNN is a

low-resolution flow field, which is divided into fixed-size regions or patches. The output is a

non-uniform resolution flow field, where high-resolution is given only at specific patches of

the domain. The RANS equations with the SA model predict four main flow variables – mean

x-velocity (U), mean y-velocity (V ), the mean kinematic pressure (p), and the eddy viscosity

(ν̃). Therefore, the input low-resolution flow field consists of a four-channel tensor image

where each channel represents the values of one flow variable in the entire computational

grid. The DNN scores, ranks (or bins), and predicts the target resolution of each patch.

Figure 5.3 illustrates the architecture composed of a scorer network, a ranker, and a decoder

network.

Scorer. The low-resolution flow field is first input to the scorer network. This is a trainable

network whose goal is to score each patch of the low-resolution image via its 2D spatial
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Figure 5.3: ADARNet’s DNN. The input is a four-channel low-resolution image where each channel
represents one flow variable. The low-resolution image is first input to the scorer, which divides it
into patches and outputs the score of each patch. The ranker uses these scores to assign each patch
to a bin, which is subsequently upsampled using a bicubic interpolation to its target resolution.
Then, the upsampled patches are concatenated with their coordinates. Finally, the decoder maps
this upsampled, intermediate representation to the final values of each patch. ADARNet’s DNN’s
output is multiple, consisting of a list of four-channel images at different spatial resolutions.

latent representation, as illustrated in Figure 5.4. This network is inspired by the work of

Cordonnier et al. [95] that use a similar network for finding salient patches from the input

image for classification.

The scorer network consists of a shallow CNN followed by a maxpooling layer and a softmax

layer. The first three convolutional layers extract an abstract representation of the low-

resolution flow field. Their kernel size is (5, 5) and the stride is 1. This overlap captures the

spatial relationships between and among the input flow variables – a (5, 5) kernel can capture

both short and long-range dependencies and a stride of 1 maintains the spatial dimension-

ality. After the first three convolutional layers, we apply a single-filter convolutional layer

to squeeze and encapsulate the extracted abstract spatial information in a single-channel

image. This image is a 2D latent representation of the spatial dependencies in the vari-

ables of the low-resolution flow field and plays a key role in determining the scores of each

patch. This single-channel image is input to the maxpooling layer that splits the domain into

87



H,W,C
H,W,4 H,W,8 H,W,16 H,W,1

NPx,NPy

NPx,NPy

Per-patch 
scores

Conv2D
k=(5x5), 
s=1

MaxPool
p=(ph,pw)
s=(ph,pw)

Softmax output

Single-channel
2D latent representation

H     input image height
W input image width
C     input-ouput image channels

NPx number of patches in X
NPy number of patches in Y

Figure 5.4: The scorer network. It consists of four convolutional layers followed by maxpool
and softmax layers. The first three convolutional layers extract a single-channel 2D latent spatial
representation from the input low-resolution flow field. This 2D latent representation is used to
obtain the scores of each patch via a maxpooling and a softmax layer. It is also output and
concatenated with the original low-resolution image.

NP x×NP y = N patches – where NP x is the number of patches in the horizontal direction,

NP y is the number of patches in the vertical direction, and N is the total number of patches.

The pool size and the stride are both (ph, pw), where ph is the height of the patch and pw

is the width of the patch. Hence, each value in this image represents the non-normalized

score of each patch. The softmax layer normalizes these scores to a 0− 1 scaled probability

distribution. The scorer network’s output is twofold: the scaled scores and the 2D latent

representation.

Before passing the scores to the ranker, we concatenate the 2D spatial latent representation

with the low-resolution flow field. This is motivated by two reasons. First, the latent repre-

sentation already contains spatial correlations from the low-resolution flow field. Second, it

allows to dynamically change the scores of the patches since the scorer’s weights are propa-

gated during the backward pass of the training process. Hence, the low-resolution flow field

becomes a five-channel image (in Figure 5.3, PC = 5). Finally, we pass the scores from the

scorer to the ranker.
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Ranker. This is a non-trainable module that tracks the score and the ID of each patch. The

ranker locates each patch in the new five-channel low-resolution flow field, isolates it from

the rest of the image, and places it in a bin according to its score. We refer to this process

as binning, and we illustrate in Figure 5.3. Binning consists of splitting the 0 − 1 range of

values of the scores into b bins uniformly.1 For instance, if b = 2, the first bin consists of

patches with scores between 0 − 0.5, and the second bin with scores 0.5 − 1. The ranker

plays a significant role in determining the final resolution of each patch: training consists of

mapping the highest-scored patches to the highest target resolution, and as scores gradually

decrease, so does the target resolution of the patch. The patches with the lowest scores

remain low-resolution.

After the binning finishes, we perform two additional steps before passing the patches to the

decoder. First, we upsample (refine) each patch to its target resolution using bicubic interpo-

lation, as seen in Figure 5.3. Then, we concatenate the 2D coordinates to each patch needed

to compute the gradients of the flow variables using automatic differentiation [96]. This leads

to a seven-channel image (in Figure 5.3, PC + 2). Once we upsample and concatenate the

coordinates to the patches, it is input to the decoder.

Decoder. The goal of this trainable network illustrated in Figure 5.5 is to reconstruct the

high-resolution solution of each patch. Each patch in each bin passes through the same de-

coder, which is shared among resolutions. Note that the patches placed in the low-resolution

bin also passes through the decoder. The choice of a shared decoder is motivated by two

reasons. First, we have a smaller number of learnable parameters compared to a separate de-

coder for each resolution. Thus, we stress ADARNet’s ability to recover different resolutions

for different patches with a lower computational cost. Second, the low-resolution patches

have not been upsampled and the decoder can extract the true spatial correlations between
1Another approach is to bin non-uniformly, which would change each patch’s placement and their final

resolution, giving more or less importance to higher-scored patches. However, in this thesis we only explore
uniform binning.
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the flow variables and coordinates in those patches. We expect this to help in recovering the

true values of the high-resolution patches.

nPH,nPW,8

nPH,nPW,16

nPH,nPW,64

nPH,nPW,64

nPH,nPW,16

nPH,nPW,4

n      refinement level
PH   patch height
PW  patch width
PC patch channels

Conv2D
k=(3x3) 
s=1

Deconv2D
k=(3x3)
s=1
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Figure 5.5: The decoder network. The input to the decoder is the intermediate patch represen-
tation concatenated with the 2D coordinates at its target resolution. This network consists of 3
convolutional layers followed by 3 deconvolutional layers that reconstruct the final values of the
patch at its target resolution. The output is, therefore, a four-channel image, where each channel
is the value of a flow variable.

This network is a 6-layer network; 3 convolutional layers followed by 3 deconvolutional layers.

The number of filters is 8, 16, 64, 64, 16, 4; the kernel size is (3, 3), and the stride is 1. The

choice of this architecture is twofold. First, recent works have successfully leveraged similar

architectures for flow super-resolution [77, 93]. Second, the convolutional layers aim at

extracting a deep, abstract representation used by the deconvolution layers to reconstruct

the high-resolution output. We use a stride of 1 to not lose any spatial information.

The decoder’s output consists of a list of patches. Each patch is a four-channel image, and

each channel represents the values of the four flow variables (U , V , p, and ν̃) at steady-state

at their new spatial resolution. Each patch in the list can have a different spatial resolution.

This list is then passed to the loss function.
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5.1.2 Loss function

Recent DL-based super-resolution approaches have leveraged data-only loss functions [90,

93], where CFD simulations generate the ground truth labels. Other approaches use a com-

bination of data and PDE residual loss function [53, 77], where the governing equations are

imposed in the loss function. We adhere to the latter practice for a couple of reasons. First,

it is physically and numerically inconsistent to merge CFD-originated data from different

spatial resolutions. Second, we do not train with ground truth data from AMR solvers be-

cause that would make the network learn the solver’s heuristics that have a high degree of

user intervention. The goal is for ADARNet to make its own refining decisions to obtain a

DL-based model for AMR. Equation 5.1 shows our loss function.

L =
1

np · nc · fv

np∑
i=1

nc∑
j=1

fv∑
k=1

‖ŷijk − yijk‖2 +
λ

NC · ne

NC∑
i=1

ne∑
j=1

‖Rj(i)‖2 (5.1)

Our loss function L is formed by two parts. The first term in the right hand side of Equa-

tion 5.1 is the data loss. We take the MSE of the prediction of each flow variable (fv) at each

cell (nc) of the low-resolution patches only (np) with the ground truth data obtained with

the physics solver. The second term in the right hand side is the L2 norm of the residual

(R) of each PDE (ne) for all cells (NC) of the output image, belonging to both low- and

high-resolution patches. We impose the continuity equation and the two conservation of

momentum equations (hence, ne = 3), described in Equations (2.1) and (2.2). The gradients

of the variables are computed through automatic differentiation [96]. To constraint the PDE

residual of the high-resolution patches, we downsample them using bicubic interpolation

to the lowest resolution and match the ground truth data in the downsampled space [77].

With this semi-supervised learning formulation, we avoid high-resolution labels, an advan-

tage over SOTA super-resolution methods that require expensive high-resolution training
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data [50, 51, 53, 92].

5.1.3 End-to-end framework

Once the network is trained and calibrated, we use it to predict the non-uniform high-

resolution flow field of a new problem. However, this prediction has an approximation error

and might not satisfy the same convergence constraints as traditional physics solvers with

PDE residual values close to the machine round-off errors, which is critical for many prac-

titioners. We correct this by augmenting the DNN’s prediction with the physics solver [41,

79, 93].

Low-resolution flow field Predicted non-uniform
high-resolution flow field 

Physics solver: non-uniform 
high-resolution 
flow field
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Figure 5.6: Top: Traditional AMR solver simulation. Bottom: ADARNet framework. After
performing non-uniform super-resolution with the DNN, we feed the output field into the physics
solver, which takes the inferred solution to convergence.

Figure 5.6 illustrates ADARNet’s end-to-end framework compared with the traditional AMR

solver. In ADARNet, the low-resolution flow field is input to the DNN. After inference, we

feed the DNN’s non-uniform output into the physics solver, impose the boundary conditions

that well-pose the problem, and let the physics solver drive this inference to convergence.
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Note that the physics solver does not do any further refinement or coarsening. The final

discretization is an output of the DNN.

As a result, we obtain a solution that satisfies the same convergence constraints as traditional

numerical methods. Since we anticipate the DNN’s inference to be close to the final solution,

convergence is accelerated. Section 5.3 empirically evaluates the performance of ADARNet

against both classical AMR solvers and SOTA DL models.

5.2 Experiment setup

In this section, we present the methodology to train and evaluate ADARNet. We first

present the dataset to train and validate ADARNet along with the training/testing setup,

parameters, and results. Then, we describe the physics solver and the traditional AMR

heuristics used for comparison. We use the steady incompressible RANS problems for our

non-uniform super-resolution task.

5.2.1 Dataset overview and flow description

We gather low-resolution data from three well-known canonical flows for training the DNN

in Figure 5.3. The resolution for this dataset is 64× 256, since it is a common resolution for

low-resolution solutions for all our training cases [1].

Turbulent flow in a channel. 2D channel flow has been widely studied in the litera-

ture [97]. A common strategy to evaluate channel flow is to vary the input velocity to the

channel. This is the same as varying the Re since Re = UL
ν
, where U is the input velocity to

the channel, L is the diameter of the channel, and ν is the laminar viscosity of the problem.

Here, we adhere to this practice and vary the input velocity to the channel to collect 10000
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samples. Specifically, we collect 300 samples from Re = 2× 103 (when turbulent effects start

to appear [1]) to Re = 2.3× 103, and then, 9700 more samples from Re = 2.7× 103 to Re =

1.35× 104. We leave Re = 2.5× 103 and Re = 1.5e4 as our test cases. Section 5.3 presents

a more in-depth discussion of the selection of the test cases. The physical domain of the

channel flow is a diameter of 0.1 meters and a length of 6 meters so we find fully developed

flow. The inlet is at the left and the outlet at the right. The top and the bottom are both

walls and hence have the no-slip boundary condition. The velocity boundary conditions

are uniform inlet at the inlet, no-gradient at the outlet, and 0 at the walls. The pressure

boundary conditions are no-gradient at the inlet, 0 uniform at the outlet, and no-gradient at

the walls. The modified eddy viscosity boundary conditions are 3×(laminar viscosity) at the

inlet, no-gradient at the outlet, and 0 at the walls. The laminar viscosity is set to 1× 10−4

m2/s .

Turbulent flow over a flat plate. Flat plate is also a canonical flow, part of the wall-

bounded flows family, used to study the boundary layer in both laminar and turbulent

conditions [1]. By varying the incoming velocity we collect 10000 samples. For flat plate,

incompressible turbulent effects do not appear [1] up until Re = 1.35× 105 and scale up to

Re = 5× 106. We collect 2000 samples from Re = 1.35× 105 to Re = 2× 105 and another

8000 additional samples from Re = 3e5 until Re = 1.1e6. We leave Re = 2.5× 105 and Re =

1.35× 106 as test cases. The physical domain of the flat plate case is a height of 0.2 meters

and a length of 10 meters, as found in different benchmarks. The boundaries are a wall at the

bottom (the flat plate), symmetry at the top, an inlet at the left, and an outlet at the right.

The velocity boundary conditions are uniform inlet at the inlet, no-slip condition at the

bottom wall, no-gradient both at the outlet. The pressure boundary condition is no-gradient

at the inlet and bottom wall, and 0 at the outlet. The modified eddy viscosity boundary

conditions are 3×(laminar viscosity) at the inlet, 0 at the bottom wall, and no-gradient at

the outlet. The laminar viscosity is set to 1× 10−4 m2/s.
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Turbulent flow around ellipses. External aerodynamics simulations are relevant for

aerospace industrial applications. We gather low-resolution solutions from flow around el-

lipses. In real scenarios, different geometries at a variety of flow conditions are explored.

Our training data consists of 10000 samples of flow around different ellipses at different flow

conditions. Figure 5.7 shows these configurations.
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Figure 5.7: Sketch of the (i) ellipse aspect ratio, (ii) angle of attack α, and (iii) pitch angle θ.

The training data is obtained by changing the aspect ratio of the ellipses: 0.05, 0.07, 0.09,

0.1, 0.15, 0.2, 0.25, 0.35, 0.55, and 0.75. Each of these ellipses is simulated under 5 different

flow conditions by changing randomly the angle of attack α and the pitching angle θ between

−2 and 6 degrees. We collect all of these configurations at 200 different Re numbers between

5× 104 and 9× 104. We select flow around a cylinder at Re = 1× 105, flow around a

symmetric airfoil (NACA0012) at Re = 2.5× 104, and flow around a non-symmetric airfoil

(NACA1412) at Re = 2.5× 104. The physical domain of the ellipse/cylinder/airfoil cases

consists of a solid body of chord ( c ) 1 meter, and the far-field limit is located 30c from the

tip and tail of the solid body (O-grid type of mesh). The velocity boundary conditions are

no-slip at the wall and uniform velocity at the far-field; the pressure boundary conditions are

no-gradient at the wall and uniform 0 in the far-field; the modified eddy viscosity boundary

conditions are 0 at the wall and uniform 3×(laminar viscosity) in the far-field, where the

laminar viscosity is 1× 10−4 m2/s uniform in the entire domain.

The total training set size is composed of 30000 samples, 10000 from each canonical flow.

From this training dataset, 27000 samples are used for training the DNN and 3000 samples

are used for validation.
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5.2.2 Training and testing setup

The methodology described in Section 5.1 allows for multiple combinations of parameters

in addition to those in NN optimization. For instance, we can select different patch sizes

or different number of bins (and therefore, different number of target resolutions). In this

section, we explain our training design choices.

First, ADARNet’s DNN’s convolutional kernels of size 5×5 and 3×3 require a minimum input

image size to extract relevant information. Therefore, we fix our patch sizes at ph × pw =

16×16, which leads to N = 64 total number of patches for each train/validation/test sample.

Larger patch sizes (for instance, 32 × 32) do not offer enough granularity to make critical

distinctions between regions of the flow. Second, we choose the number of bins b = 4,

and hence four different target resolutions. Each target resolution refines the original low-

resolution patch by 4(n)×, where n = 0, 1, 2, 3. We choose b = 4 because not more than

4 levels of refinement is an extended practice in the AMR literature [98, 99] to avoid tiny

computational cells. This also allows us to compare ADARNet with SOTA approaches that

attempt 64× super-resolutions. The patch size and the number of bins are the same at test

time and during the evaluation of the results.

We implement the DNN using the Tensorflow 2.4 backend, and perform distributed training

on four Tesla V100 GPUs connected with PCIe. After training the network with a batch size

of 8, a learning rate of 1e− 4, no specific initialization, and using the Adam optimizer [100]

for 350 epochs, the training and validation data and PDE residual loss for all equations

reach a MSE of 9e-6. Note that the training of ADARNet’s DNN is done on the Tesla V100

GPUs. However, ADARNet is implemented entirely on the CPU for a fair comparison with

the AMR solver, which only supports CPU. Hence, both ADARNet and the AMR solver are

executed on the CPU.
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5.2.3 Physics solver and AMR solver

Once the network is calibrated, it is used for inference. Recall that the DNN’s output is

input into the physics solver to drive the flow field from inference to convergence. We use

OpenFOAM’s pimpleFoam [20] solver as the physics solver in this thesis. For the pressure,

we use the GAMG solver, with a relative tolerance of 0.1, and the GaussSeidel smoother

from OpenFOAM. For the velocity and the eddy viscosity, we use the smoothSolver with

a relative tolerance of 0.1. The number of outer and inner correctors are set to 1, and the

time scheme is set to steady-state.

As for the AMR solver to compare ADARNet with, we use the dynamicMeshRefine utility

in OpenFOAM. This utility performs AMR as long as it is used together with pimpleFoam

solver. The combination of the pimpleFoam solver with the dynamicMeshRefine utility forms

the AMR solver used in this thesis. This solver is a feature-based AMR solver, which is the

most popular method in the literature [55]. Therefore, it requires user intervention: for all

of the test cases, we set the AMR solver to refine those areas where the gradients of the eddy

viscosity are the highest, and the maximum level of refinement is set to 4. This heuristic is

popular and works well for a wide range of problems, including our test problems [1].

Architecture and Libraries. All the OpenFOAM simulations are run in parallel on a

dual-socket Intel Xeon Gold 6148 using double precision due to the lack of GPU support.

Each socket has 20 cores, for a total of 40 cores. We use the OpenMPI implementation of

MPI integrated with OpenFOAM v8 that is optimized for shared-memory communication.

The grid domain is decomposed into 40 partitions using the integrated Scotch partitioner

and each partition is assigned to 1 MPI process that is pinned to a single core. We set the

numactl -localalloc flag to bind each MPI process to its local memory.
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5.3 Results and discussion

After training and validating the network, we evaluate ADARNet’s ability for non-uniform

super-resolution on two different use cases, as outlined below:

I Same geometry, different boundary conditions. We use ADARNet to refine the

low-resolution solution of flow on a geometry observed during training but at a different

boundary condition. Here, our test flows configurations are channel flow and flat plate

on interpolated (int) and extrapolated (ext) boundary conditions. For the former, we

test on Re = 2.5× 103 (int) and Re = 15× 103 (ext). For the latter, we test on Re =

2.5× 105 (int) and Re = 1.35× 106 (ext).

II Different geometry, different boundary conditions. We stress the generaliza-

tion capacity of ADARNet by finding the non-uniform high-resolution solution of flow

around geometries unseen during training. We use the same network to predict the

flow around a cylinder at Re = 1× 105, the flow around a symmetric NACA0012 [70]

airfoil atRe = 2.5× 104, and the non-symmetric NACA1412 airfoil at Re = 2.5× 104,

as seen in Figure 5.8.

For the described test cases, we first present the accuracy and correctness of ADARNet

by comparing it, both qualitatively and quantitatively, with the traditional AMR solver

(described in Section 5.2.3). Then, we present the performance analysis of ADARNet by

showing (1) its speedup over the AMR solver and (2) the improved inference time and

memory usage over SOTA NN models that perform uniform super-resolution. The baseline

NN used for comparison is described in Section 5.3.2.
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Figure 5.8: Non-symmetric NACA1412 airfoil (left), symmetric NACA0012 airfoil (center), and
cylinder (right) as test geometries. These test cases stress the generalization capacity of ADARNet
to unseen-during-training geometries.

5.3.1 Correctness and accuracy of ADARNet

Once the DNN is trained, we build the ADARNet framework and study its correctness and

accuracy by comparing it with the traditional AMR solver.

We first conduct a qualitative evaluation by visualizing (a) the refined/unrefined areas and

(b) the final flow field by the two algorithms. Because of the difference in their inherent

heuristics (ADARNet follows an optimization process containing different flow cases while

the AMR solver follows user-given heuristics as explained in Section 5.2.3), we do not expect

the exact same output. However, the qualitative results evaluate whether ADARNet can act

as an AMR surrogate for multiple flow problems resulting from a single training.

After, we present a quantitative comparison between the two using a grid convergence

study [101]. Recall that both ADARNet and the AMR solver solve the same problem.

We impose the same strong-form boundary conditions in the fluid domain, which well-pose

the problem and guarantee uniqueness [89]. The only metric that changes between the two

is the mesh, and therefore, they will present different discretization errors. However, these

discretization errors reduce as we increase the resolution of refinement and global quantities

tend to converged solutions [1]. Hence, to evaluate the quality of ADARNet’s inferred mesh,

we compare the solution from both ADARNet’s mesh and the AMR solver mesh as we in-

crease the required levels of refinement. Both meshes are refined 4n× gradually, from n = 0

to n = 3. Then, we report the value of specific quantities of interest (QoI) at steady-state.

The choice of the QoI follows the CFD literature [1].
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Qualitative results

Figure 5.9 shows the refined/unrefined results for five test cases: channel flow at Re =

2.5× 103, flat plate at Re = 1.35× 106, cylinder, and the two airfoil test cases. Figure 5.9

shows ADARNet’s predicted mesh (left) and the AMR solver’s output mesh (right). ADAR-

Net splits the domain into 64 16×16 patches and we show the output resolution (with respect

to the coarse resolution) of each patch. Because the AMR solver allows more granularity as

it performs mesh refinement on a per-cell basis, the domain is divided into smaller (4 × 8)

patches2. At the borders of each test case, we show the physical boundaries of each case

which play a key role in determining the areas where both algorithms refine the mesh.

We make three main observations. First, ADARNet can distinguish between boundary

conditions. For the channel flow case (first row in Figure 5.9), ADARNet refines the fluid

areas close to both the upper and the lower wall, whereas, for the flat plate case (second

row), it refines the areas close to the wall but leaves the outer regions (outlet/freestream)

at low resolution. Second, ADARNet respects the symmetry of the problem, as we observe

in the channel flow case (first row of Figure 5.9) and in the symmetric airfoil case (fifth

row in Figure 5.9). Third, ADARNet’s fine/coarse regions are in excellent agreement with

those of the AMR solver for the channel flow, flat plate, and airfoil cases. This agreement

in the cylinder case is also notable. For instance, ADARNet refines the region of the flow

from the back of the cylinder to the outlet (that is, the wake behind the cylinder). However,

we observe some discrepancy in the back-bottom-front-top region. The front-bottom-back

and front-top-back regions (which refer to the entire solid boundary of the cylinder) require

a higher resolution from ADARNet. This difference, together with the channel flow and

flat plate results, indicates that the DNN is refining those areas with higher values of the

gradients for all fluid variables, which take place in solid wall boundaries [1]. This is opposed
2We do not show per-cell refinement as too many cells are created to offer good visualization. However,

4 × 8 patch sizes have been found optimal for both gathering cells with equal levels of refinement and
visualization quality.
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Figure 5.9: Per-patch fluid domain and the level of refinement of each patch for all our test cases.
First row: channel flow at Re = 2.5× 103. Second row: flat plate at Re = 1.35× 106. Third row:
cylinder at Re = 1× 105. Fourth row: symmetric NACA0012 airfoil at Re = 2.5× 104. Fifth row:
non-symmetric NACA1412 airfoil at Re = 2.5× 104. We compare ADARNet’s prediction (left)
versus AMR solver’s output (right). Both axes are in meters.
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to the AMR solver’s heuristic, that focuses only on areas with high gradients of the eddy

viscosity.

During the calibration of the DNN, it is key to balance both components of the loss function

- the data loss and the PDE residual loss (described in Section 5.1.2) so neither dominates

the other. In our experiments, we observe the best predictive results at λ = 0.03, which

yields a balanced contribution of each component of the loss. The data and PDE residual

loss reached a value of 9× 10−6 for both the training and the validation samples. During

training, we scale the value of the variables between 0 and 1 for learning stability purposes.

However, we can not scale the value of the gradients found by automatic differentiation

because this would result in inconsistent PDE residual loss. These gradients reach higher

absolute values than those of the data, especially in areas of the flow with higher variability,

and hence get the attention of the MSE loss function. Moreover, this also allows ADARNet

to refine the back-outlet area, where the wake region of the flow after the cylinder meets the

freestream (outlet) and we find a high gradient of the eddy viscosity. The difference in the

refining patterns between the cylinder and the airfoil case is that the former presents flow

separation from the wall boundary that generates a wide wake region, whereas in the airfoil

case the flow remains attached to the solid.

Figure 5.9 also shows that in the channel flow, flat plate, and airfoil test cases, the AMR solver

reduces the refinement level gradually as we increase the distance from the wall boundary.

Instead, ADARNet infers the maximum level of refinement in the patches close to the wall

and does not show this gradual reduction. This is due to the maxpooling layer in the design

of ADARNet’s scorer network (see Section 5.1.1). Recall that the maxpooling layer chooses

the highest score present in the 16× 16 region defined by the patch. Choosing a maxpooling

layer over an average pooling is a desired conservative approach. Since an entire patch shares

a resolution in ADARNet, it is advantageous to choose the highest required resolution even

if only few cells within a patch require it for accuracy. Figure 5.9 shows that ADARNet and
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the AMR solver have inherently different heuristics for mesh refinement/coarsening and do

not produce the same mesh - as expected. However, both are in excellent agreement in their

steady flow field prediction, as we qualitatively observe in Figures 5.10, 5.11, 5.12, 5.13, 5.14.

ADARNet AMR solver

Figure 5.10: Velocity in m s−1 (top), kinematic pressure in m2/s2 (bottom), and modified eddy
viscosity in m2/s (middle) for channel flow at Re = 2.5× 103. Comparison between ADARNet’s
result (left) and the AMR solver result (right) for b = 4 levels of refinement.
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ADARNet AMR solver

Figure 5.11: Velocity in m s−1 (top), kinematic pressure in m2/s2 (bottom), and modified eddy
viscosity in m2/s (middle) for flat plate at Re = 1.35× 106. Comparison between ADARNet’s result
(left) and the AMR solver result (right) for b = 4 levels of refinement.
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ADARNet AMR solver ADARNet AMR solver

Figure 5.12: Velocity in m s−1 (top), kinematic pressure in m2/s2 (bottom), and modified eddy
viscosity in m2/s (middle) for flow around a cylinder at Re = 1× 105. Comparison between ADAR-
Net’s result and the AMR solver result for b = 4 levels of refinement.
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ADARNet AMR solver ADARNet AMR solver

Figure 5.13: Velocity in m s−1 (top), kinematic pressure in m2/s2 (bottom), and modified eddy
viscosity in m2/s (middle) for flow around a symmetric NACA0012 airfoil at Re = 2.5× 104. Com-
parison between ADARNet’s result and the AMR solver result for b = 4 levels of refinement.
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ADARNet AMR solver

Figure 5.14: Velocity in m s−1 (top), kinematic pressure in m2/s2 (bottom), and modified eddy
viscosity in m2/s (middle) for flow around a non-symmetric NACA1412 airfoil at Re = 2.5× 104.
Comparison between ADARNet’s result and the AMR solver result for b = 4 levels of refinement.
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Quantitative results

We present a quantitative comparison between ADARNet and the AMR solver using a grid

convergence study. We report, for the flat plate test cases, the coefficient of friction (Cf ) at

x = 0.95L, where L is the length of the flat plate. For the channel flow test cases, we also

report the Cf on the lower wall at x = 0.95L. For the cylinder and airfoil test cases, we

monitor the coefficient of drag or CD. Figure 5.15 shows the value of the QoI for each test

case with increasing refinement level n.

Figure 5.15: Value of the QoI versus refinement level n for ADARNet (blue) and the AMR solver
(black) for each test case. Cf refers to coefficient of friction, and CD to coefficient of drag. The red
dot is the experimental value for the cylinder case found in [102]. Both algorithms converge as we
increase the mesh refinement level from the original coarse mesh.

We make two main observations from the plots in Figure 5.15. First, we observe a good

agreement between the QoI reported by ADARNet and the AMR solver at all levels of

refinement. At n = 0, the value of the QoI is the same because they start with the same

coarse mesh. Second, we observe how ADARNet’s and the AMR solver’s reported QoI show

a notable convergence trend after n = 1. The plot referring to the cylinder case in Figure 5.15
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shows, in red, the experimental value of CD reported in Hoerner [102], which is 1.108, while

ADARNet reports 1.0835, a 2.2% deviation, and the AMR solver reports 1.085, a 2.1%

deviation. These errors are in line with those in the literature when comparing experimental

results with RANS simulations using the SA model [103].

5.3.2 Performance analysis of ADARNet

In this section, we evaluate ADARNet’s performance. We first compare its time-to-convergence

(TTC) with the AMR solver’s TTC in obtaining the results in Figure 5.15 at n = 3. Re-

call that ADARNet’s TTC is the sum of the inference time and the time the physics solver

takes to drive the solution from inference to convergence. Table 5.1 shows these times and

reports the iterations-to-convergence (ITC) taken by both the physics solver and the AMR

solver. For the channel flow case, ADARNet achieves a 4.3× speedup for the interpolated

boundary condition case. For the flat plate, we obtain a 5.5× (interpolated case) and a 4.7×

speedup (extrapolated case) over the AMR solver. ADARNet obtains an impressive 3.2×

speedup for a flow around a cylinder, which is an unseen-during-training geometry. The

cylinder case is the most challenging test case for ADARNet since accurately predicting the

wake region behind the cylinder (as seen in Figure 5.12), a region with highly nonlinear,

complex flow behavior, is challenging. Therefore, the physics solver spends a significant

amount of time fixing that region and its speedup is the lowest among all test cases. Overall,

ADARNet refines regions of interest such as near-wall areas (channel flow and flat plate) and

the wake behind the solid body (cylinder), shows excellent grid convergence properties, and

significantly accelerates the traditional AMR solver by 3.2− 5.5×.

Next, we evaluate ADARNet’s performance by comparing it with a baseline NN and present

our results in Table 5.2. Recall that one of the goals of this thesis is to perform non-

uniform super-resolution to avoid high-resolution inference in areas that do not require it.
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AMR solver ADARNet

ITC TTC ITC TTC
inf + ps speedup

channel flow Re = 2.5× 103 3369 3 2261 1.2× 10−2 + 0.7 4.3×
channel flow Re = 15× 103 4940 3.1 2022 1.1× 10−1 + 0.8 3.8×
flat plate Re = 2.5× 105 3389 2.7 1364 8× 10−3 + 0.5 5.5×
flat plate Re = 1.35× 106 5000 2 2214 9× 10−3 + 0.4 4.7×
cylinder Re = 1× 105 11155 4.8 4598 6.3× 10−3 + 1.5 3.2×
N0012 Re = 2.5× 104 2267 2 1150 5× 10−3 + 0.6 3.5×
N1412 Re = 2.5× 104 2637 2.1 1720 5× 10−3 + 0.6 3.3×

Table 5.1: Comparison of the time-to-convergence in minutes (TTC) and iterations-to-convergence
(ITC) of ADARNet and the AMR solver. For ADARNet, we report separately the time spent in
inference (inf) and the time spent by the physics solver (ps) driving the solution from inference to
convergence, together with the speedup over the AMR solver.

We hypothesize that ADARNet is advantageous over SOTA methods that perform uniform

super-resolution [53, 77, 90, 93] because these methods require 64× larger labels for 64×

super-resolutions. To test our hypothesis, we build the SURFNet [93] framework and use

it as our baseline. We compare ADARNet with SURFNet using two metrics. For a 64×

super-resolution, we report, first, the time to achieve the same accuracy. The SURFNet’s

framework also consists of a DNN inference followed by a physics solver that guarantees

convergence requirements. Hence, we compare both end-to-end frameworks and report both

the inference time and the physics solver time. Second, we compare the memory consumption

at inference. Because both ADARNet and SURFNet perform inference on a CPU, we report

these metrics on the CPU described in Section 5.2.3.

Table 5.2 shows that ADARNet significantly outperforms SURFNet for a 64× super-resolution

for all test cases. Specifically, we observe 7 − 28.5× speedups over SURFNet. We observe

the same behavior with the memory usage at inference. SURFNet requires almost 4 GB

whereas ADARNet significantly reduces the memory consumption, realizing 4.4 − 7.5× re-

duction factors. Note that ADARNet’s inference time and memory usage is not consistent

through the test cases because the fine/coarse regions change, as opposed to SURFNet that
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Memory usage Time
inf + ps

SURFNet ADARNet rf SURFNet ADARNet speedup

cf Re = 2.5× 103 3.9 0.88 4.4× 0.25 + 14 1.2× 10−2 + 0.7 20.6×
cf Re = 15× 103 3.9 0.82 4.8× 0.25 + 14.5 1.1× 10−2 + 0.8 18.2×
fp Re = 2.5× 105 3.9 0.62 6.3× 0.25 + 11 8× 10−3 + 0.5 23×
fp Re = 1.35× 106 3.9 0.68 5.7× 0.25 + 12 9× 10−3 + 0.4 28.5×
cyl Re = 1× 105 3.9 0.52 7.5× 0.25 + 10.2 6.3× 10−3 + 1.5 7×
N0012 Re = 2.5× 104 3.9 0.54 7.2× 0.25 + 8.4 5× 10−3 + 0.6 15.5×
N1412 Re = 2.5× 104 3.9 0.51 7.7× 0.25 + 8.6 5× 10−3 + 0.6 14.1×

Table 5.2: Comparison of ADARNet with SURFNet. Left column compares the GB of memory
consumed at each test case’s inference and shows the reduction factor (rf) achieved by ADARNet.
Right column compares, in minutes, the inference time (inf) and the time to convergence by the
physics solver (ps) of both approaches and shows ADARNet’s speedup over SURFNet. cf = chan-
nel flow, fp = flat plate, cyl = cylinder, N0012 = NACA0012 (symmetric airfoil), and N1412 =
NACA1412 (non-symmetric airfoil).

performs uniform super-resolution.

5.4 Related work

AMR. AMR is a popular technique that makes it feasible to solve problems that are in-

tractable on uniform grids and it has been widely applied in traditional finite volume-based

solvers. When PDEs are solved numerically, they are often limited to a pre-determined

computational grid or mesh. However, different areas of the domain can require differ-

ent precisions where non-uniform grids are better suited. AMR algorithms adaptively and

dynamically identify regions that require finer resolution (such as discontinuities, steep gradi-

ents, shocks, etc.) and refine or coarsen the mesh to achieve the target accuracy. Therefore,

AMR can scale to resolutions that would otherwise be infeasible on uniform meshes resulting

in increased computational efficiency and storage savings. Moreover, the adaptive strategy

offers more control over the grid resolution compared to the fixed resolution of the static

grid approaches.
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The most popular AMR techniques apply to traditional finite volume/finite element based

numerical solvers. Even though recent approaches have notably pushed the scalability bound-

aries of these systems [55, 94, 104] their core strategy results from the early work of Berger

and Oliger [98], who introduced local adaptive mesh refinement. This algorithm starts with

a coarse mesh from which certain cells are marked for refinement according to either a user-

supplied criterion or based on the Richardson extrapolation [105]. The principle of marking

cells for refinement is widespread. Two main approaches exist for identifying cells for re-

finement. First, adjoint-based AMR [106], which estimates the discretization error in each

cell and adapts the mesh for lowering these errors. However, the optimal rationale for er-

ror estimation remains unknown [107]. Second, feature-based AMR [99], where the user

supplies the variables (or features) to track and refines the computational cells that meet

a user-defined value of those variables. Feature-based AMR is the most popular approach

due to less challenging implementations and accurate results in a wide range of problems.

However, feature-based AMR approaches require both a high degree of user intervention and

expert, domain, and even specific knowledge of the problem at hand, and therefore have

poor generalization properties. Existing AMR methods are based on a handful of heuristics

whose long-term or general optimality remains unknown. To overcome this limitation, Yang

et al. [108] designed the AMR procedure as a Markov Decision Process. However, the training

is done with ground truth data generated from analytical solutions and can not be extended

to turbulent flows.

There have been recent attempts to perform DL-based AMR. In [109], the authors increase

the number of solution points in those areas where the residual is highest. However, this

mesh-free method imposes the same refinement heuristics as traditional physical solvers and

hence suffers from the same limitations. In [110], the authors develop AMRNet, a CNN-

based model that performsmulti-resolution, where the network outputs a uniform flow field at

different resolutions. Since the output is uniform there is no discrimination between different

areas of the flow. As opposed to the above approaches, we design a DL algorithm for AMR,
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where the output is non-uniform and we do not impose any heuristic during the optimization

process of the network. Instead, the training is guided by the governing equations of the

problem that inform refining decisions

Super-resolution. DL algorithms have shown impressive results for super-resolution. We

find super-resolution techniques applied to both CV and CFD problems. Two main re-

search directions exist in CV: single-image super-resolution (SISR) and reference-based

super-resolution (RefSR). However, both SISR and RefSR have a target resolution that

is both known a priori and uniform [111–113]. In [113], the authors present the texture

transformer, where the query, key, and value of their attention module are formed by up-

sampled and downsampled images of the input image together with a reference image from

which textures are extracted. In [95], the authors provide a differentiable module that selects

the most salient patches of the input image for image classification. However, the unselected

patches are unused. In this thesis, we are interested in super-resolution, and therefore we

keep all patches that cover the entire domain.

In CFD, we also find successful super-resolution attempts. Recent works use CNNs as finite-

dimensional maps [77, 90, 91]. However, these approaches know the target resolution a

priori, perform uniform super-resolution, and require large amounts of high-resolution labels.

We presented SURFNet in Chapter 4 to eliminate the need of extensive data collection at

high resolutions. However, SURFNet is also limited to uniform super-resolution. Mesh-free,

resolution-invariant methods [50, 51, 53, 92] are a potential alternative to finite-dimensional

maps because they can query the solution at any point in the domain and hence are prone

to perform non-uniform super-resolution. Nevertheless, these methods do not intrinsically

discriminate between different regions of the flow and hence end up yielding uniform output

resolutions. Moreover, they also suffer from the limitation of extensive high-resolution data

collection.

In this thesis, we present a semi-supervised DL algorithm that adaptively refines the input
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mesh and outputs a non-uniform high-resolution flow field, improving both inference times

and memory requirements for scaling to large problem sizes. ADARNet does not require

knowledge of the target resolution a priori, hence eliminates both the need of collecting

extensive high-resolution training data and the dependence on existing datasets that are

limited to specific resolutions.

5.5 Conclusions of ADARNet

We presented ADARNet, a DL algorithm that predicts AMR. ADARNet is an end-to-end

framework for non-uniform super-resolution of turbulent flows that predicts high-resolution

accuracy only in specific regions of the domain while keeping areas with less complex flow

features in the low-precision range for scalability and performance. ADARNet is trained with

low-resolution data from three different canonical flows and predicts non-uniform flow fields

for flow cases that have boundary conditions/geometries unseen during training. ADARNet

shows excellent discerning properties in all test cases, producing higher resolution outputs

in regions with complex flow features, such as near-wall areas or the wake region behind

a cylinder, and keeping low-resolution patches in those areas that have smooth variations,

such as the flow freestream.

ADARNet reaches the same convergence guarantees as traditional AMR solvers, shows ex-

cellent quantitative agreement with their heuristics (defined in Section 5.2.3), and accelerates

them by 3.2 − 5.5× in all test cases. Due to its ability to super-resolve only regions of in-

terest, it reduces the end-to-end time and the memory usage by 7− 28.5× and 4.4− 7.7×,

respectively, over SOTA DL methods that perform uniform super-resolution.

The dynamic allocation of patches during training enables non-uniform super-resolution

without any imposed and non-generalizable refinement heuristic. However, this impacts the
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time-per-epoch, which increases significantly with respect to CFDNet and SURFNet.
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Chapter 6

Concluding remarks

6.1 Summary

This dissertation has presented three novel hybrid DL-CFD frameworks for the acceleration of

CFD simulations. We have shown that coupling a RANS solver with DNNs can significantly

accelerate the convergence of the overall scheme.

First, CFDNet speeds the simulations up by a factor of 1.9− 7.4× on both steady laminar

and turbulent flows on a variety of geometries, for small grid sizes, without relaxing the

convergence constraints of the physics solver. To evaluate the framework’s capacity for gen-

eralization and extrapolation, we tested CFDNet across various scenarios and geometries,

including channel flow, ellipses, airfoils, and cylinders. In general, the framework performs

well and demonstrates a capacity to make accurate predictions even for geometries unseen

during training. CFDNet could be successfully applied, for instance, to Large Eddy Simu-

lations (LES). In principle, any discretized field of inputs should be amenable to CFDNet.

Moreover, a wide variety of domains in scientific computing, such as molecular dynamics

and material science, could be considered.
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Second, to scale CFDNet to large-grid simulations, we presented SURFNet, a super-resolution

flow network that accelerates high-resolution turbulent CFD simulations. SURFNet is pri-

marily trained on low-resolution simulation data and applies this information (via transfer

learning) to high-resolution inputs. We presented two variations, one-shot transfer learning

(OSTL) and incremental transfer learning (ITL). Both approaches yield consistent speedups

across test geometries unseen during the training or transfer stages and exhibit good general-

ization capacities. We demonstrated resolution-invariance with ITL on domains up to 256×

larger than the tiny discretization used in training and a uniform 2× speedup across target

resolutions and test geometries compared to the OpenFOAM CFD solver. SURFNet can

recover high-resolution flow features with 15× fewer data at high resolutions and reduce the

combined data collection and training time by 3.6× and 10.2× at 256× 256 and 512× 512

grid sizes, respectively.

To overcome SURFNet’s limitation of uniform super-resolution and reach high-resolution in-

ferences with less computational resources, we presented ADARNet, a DL-based framework

for AMR. ADARNet is an end-to-end framework for non-uniform super-resolution of turbu-

lent flows. ADARNet predicts high-resolution accuracy only in specific domain regions while

keeping areas with smoother complex flow features in the low-precision range for scalability

and performance. ADARNet reaches the same convergence guarantees as traditional AMR

solvers, shows excellent quantitative agreement with their heuristics, and accelerates them

by 3.2− 5.5× in all test cases. Due to its ability to super-resolve only regions of interest, it

reduces the end-to-end time and the memory usage by 7−28.5× and 4.4−7.7×, respectively,

over SOTA DL methods that perform uniform super-resolution.
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6.2 Future directions

6.2.1 Improving the accuracy of DL for CFD

CFDNet, SURFNet, and ADARNet demonstrate that the training and validation losses are

far from reaching the accuracy of traditional finite volume-based solvers. We also observe

this trend in this dissertation’s related work. This gap of several orders of magnitude is

due to the complexity of the loss function and the inability of current gradient descent

algorithms to reach better local minima. This is incredibly complex when adding not one,

but several second-order, non-linear PDEs in the loss function. Current DL algorithms

need to improve to become valid surrogates of expensive finite volume solvers. A potential

research direction is to perform the optimization of the PDE residual in its Fourier or Laplace

space, which can smooth out the landscape of the loss function and help reach better local

optima. Moreover, it is also worth studying more optimizations in the network, such as new

batch/layer normalization layers that can help reach lower training and validation losses.

6.2.2 A DL algorithm for multigrid

This thesis has shown that coupling traditional methods with DL is a promising approach.

A natural research direction is to find a domain-agnostic approximator for multigrid (MG).

MG algorithms successfully accelerate CFD simulations because they reduce the required

iterations-to-convergence. However, MG algorithms have a fundamental limitation: each

iteration is more expensive than the non-MG iteration. A promising research direction is

to couple the best of both worlds: fast DNN inferences and a reduced number of iterations

from MG. MG is an iterative method itself, and hence expensive. We propose a DL model

to replace the iterative nature of the MG algorithm and provide the next iteration of the

physical system in one step. A hybrid framework (for instance, the solver returns to the
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traditional MG algorithm if too much error is accumulated) could also be explored. This

model would deliver fewer iterations-to-convergence and reduce the time per iteration while

being physically consistent. As a result, we would significantly speedup the overall scheme

and generalize to new problems for which the DNN does not require prior knowledge.
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