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ABSTRACT OF THE DISSERTATION

Prediction and Inference

for High-Dimensional Genetic Data

by

Caesar Zexuan Li
Doctor of Philosophy in Biostatistics
University of California, Los Angeles, 2022

Professor Gang Li, Chair

Collection of large amounts of genetic data and advancements in computational genetics over the
recent years provide us with tools to explore epigenetic mechanisms that lead to aging and lifespan.
In the context of continuous DNA methylation data, with a novel cross-species DNA methylation
microarray targeting conserved CpG sites across mammalian species, we are able to leverage
readily available statistical models to extensively study important life history traits such as lifespan,
gestation time, and time to sexual maturity across various species. DNA methylation data are often
high dimensional and require regularized regression frameworks to construct practical prediction
models. Based on an unprecedented mammalian DNA methylation data set, we have developed
methylation-based epigenetic life history traits predictors using regularized linear regressions. The
estimators can accurately predict maximum lifespan using cytosine methylation patterns collected
from over 13,000 samples derived from 348 mammalian species. To extend our future inferential



analyses into diverse data sources such as RNA-seq data, we have proposed an Lo-regularized
Poisson graphical model for exploring gene-to-gene relations. The superior theoretical properties
that the Lo sparse graphical model enjoys will more effectively assist the future work of clustering
and grouping large numbers of DNA methylation sites and genes. Both the applied research and
methodological work will aid in the aging research goals of integrating various layers of

multiomics data.
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Figure 3.1 Scatter plots of Leave-one-species-out (LOSO) cross-validation analysis of epigenetic

Figure

test set predictions. Y-axes show log (base e) transformed estimates of a,b maximum
lifespan (in years), c, gestation time (in days), and d, age at sexual maturity (in years). Each
species is represented by a number whose integer part denotes the taxonomic order. Each
data point number corresponds to a different species and is color-coded according to order
(The silhouettes images of animals were acquired from Phylopic database and are under
Public domain or Creative Commons license). Numeric values can be found in
shorvath/MammalianMethylationConsortium and C. Li et al. (2021). The titles of the
panels report Pearson correlation coefficients, median absolute errors (MAE), and p-values.
Colors represent taxonomic order annotation consistent with those of other figures. Species
appear as designated numbers in scatter plot panels; the corresponding taxonomic orders
are annotated in figure legends; the first whole number (number before the decimal
separator) part of each mammalian number is assigned in accordance to the corresponding
taxonomic order. Red solid line represents the perfect prediction line, and the dotted line
represents the fitted linear regression HNe. .........ccocveeiieie e 21
3.2: DNAm lifespan predictor vs phylogeny-based predictor and sex differences in
predicted lifespan. LOCO, leave-one-clade-out, cross-validation analyses of predictors of
log (base e) transformed estimates of maximum lifespan. We compare prediction
performance between DNAmM elastic net predictors and 1-Nearest-Neighbor predictor
(KNN). 1-Nearest-Neighbor predictor utilizes distances from the Mammalian phylogenetic
TimeTree (Kumar, Stecher, Suleski, & Hedges, 2017). Panels show a, DNAm predictor’s

test set predictions, b, kK-NN predictor’s test set predictions. In addition, due to the fact that
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we imputed a number of species’ missing lifespan observations with neighboring species,
lifespan estimates naturally favor k-NN. Thus, in this analysis only, we use the original
anAge database (de Magalhaes et al.), removing species with no maximum lifespan
estimates. Panels b and ¢ report randomly separated training set comprising 70% of species
and a test set consisting of the rest 30%, respectively. Panel e reports differences between
female and male lifespan final model predictions in species in which they show statistical
significance. Bars are colored by tissue type as indicated in the legend. For panels a and b,
each data point in the panels corresponds to a different species and is color-coded according
to taxonomic order. Red solid line represents the perfect prediction line, and the dotted line
represents the fitted linear regression line. Panel c reports final DNAm lifespan female vs.
male predictions for species in which the predictions differ significantly with a two sample
T-test p-value less than 0.01. Error bars represent the 95% confidence interval of two
SAMPIE MEAN AIFFEIENCES. .....viiviee e re e 26
3.3: Elastic net Predictor Based on Young Samples. Elastic net predictor, Leave-one-
species-out analysis, fitted on a subset of all young samples (species n = 119). Young
samples are defined as samples whose age is both younger than five years and less than the
species’ average age at sexual maturation. Feature filtering and Elastic Net tuning
parameter set-up is the same as those for Figure 3.1. Three panels show predictors for a,
log maximum lifespan (in log years), b, log-transformed gestation time (in log days), and
¢, log-transformed age at sexual maturity (in log years). As with the Figure 3.1, species
appear as designated numbers in scatter plot panels; the corresponding common names and
phylogenetic orders are annotated in figure legends; as indicated by the taxonomic order

legend, the whole number (number before the decimal separator) part of each mammalian
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Figure

number is assigned in accordance to the corresponding taxonomic order. MAE abbreviates
median absolute errors from the regression errors; r and p are Pearson’s correlation and p-
values, respectively. Numbers and colors are the mammalian species number and order
annotation consistent with those of other figures. Numeric values can be found in C. Li et
al. (2021). Red solid line represents the perfect prediction line, and the dotted line
represents the fitted linear regression 1Ne. ... 28
3.4: Correlation between maximum lifespan predictor and sample chronological
ages. Mammalian maximum lifespan predictor, based on averaged species methylation,
was used to predict individual sample lifespans. The predicted values are also stratified by
species and tissues. Only species with >100 sample sizes are shown. Color scale: pink,
female; black, male. To demonstrate natural relations between maximum lifespan and
chronological age, panel a scatter plot shows association between maximum lifespan and
chronological age of corresponding samples. Each of panels b—x show scatter plots of
predicted lifespans in log scales vs. chronological age in specific species. Numbers are the
mammalian species number consistent with those of other figures. Numeric values can be
found in Github repository shorvath/MammalianMethylationConsortium. Shaded areas
represent 95% confidence intervals of the simple linear regression line. Colors represent
male and female anNNOTATION. .........cooiiiiii e 30
3.5: Predictors of Species-Tissue Combinations. A penalized joint linear model used to
predict species lifespan (Elastic net). Same framework as that of Figure 3.1, except that it
distinguishes tissue types. CpG probes are averaged by each species-tissue combination.
Different tissues within the same species share the same maximum lifespan, but retain

different methylation levels. Three panels show predictors for a, log maximum lifespan (in
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log years), b, log-transformed gestation time (in log days), and c, log-transformed age at
sexual maturity (in log years). Designated Mammalian numbers in scatter plot panels and
the figure legend are the same as those of main Figure 3.1. MAE abbreviates median
absolute errors from the regression errors; r and p are Pearson’s correlation and p-values,
respectively. Numbers and colors are the mammalian species number and order annotation
consistent with those of other figures. Numeric values can be found in Github repository
shorvath/MammalianMethylationConsortium. In Figure 3.1, species appear as designated
numbers in scatter plot panels; the corresponding common names and taxonomic orders
are annotated in figure legends; the whole number (number before the decimal separator)
part of each mammalian number is assigned in accordance to the corresponding taxonomic
order. Red solid line represents the perfect prediction line, and the dotted line represents
the fitted linear regreSSION HNE. .........ooviiiii i 32
3.6: Tissue groups differences in predicted mammalian maximum lifespan. Mammalian
maximum lifespan predictor, based on averaged species methylation, was used to predict
individual sample lifespans. The predicted values are grouped by sample tissue annotations.
Panel a shows predicted maximum lifespans (DNAm lifespan) standardized residuals (Res.)
by tissue groups in all species and samples; in order to show viewable scales in different
species, due to their drastically different lifespans, we evaluated residuals standardized by
species (log of predicted maximum lifespan minus log of observed maximum lifespan,
results from which are divided by log of observed maximum lifespan of the species to
which the samples belong); panel b—g show boxplots of predicted lifespans in original
scales (DNAm lifespan) by tissue groups; only species with more than 5 tissue types; due

to the fact that within-species comparisons require no re-scaling, predicted lifespans (in

xii
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Figure

years) are shown in these panels; Tissue type “H.Stem.Progenitor.LSK” stands for “LSK
Progenitor Hematopoietic Stem CelIS™ .......ccuiiiiiiiiiiii i 35
3.7: Overall Comparisons between DNAm lifespan predictors and Phylogeny-based
Predictors. Various training-test validation analyses of predictors of log (base e)
transformed estimates of maximum lifespan. We compared prediction performance
between DNAm elastic net predictors and 1-Nearest-Neighbor predictor (KNN). 1-
Nearest-Neighbor predictor utilizes distances from the Mammalian phylogenetic TimeTree
(Kumar et al., 2017). Results under different training-test separation methods are shown in
panels a, b, DNAm and k-NN predictors test set predictions under leave-one-species-out
(LOSO) training-test separation scheme; ¢, d, DNAm and k-NN predictors test set
predictions under leave-one-family-out training-test separation; e, f, DNAmM and k-NN
predictors test set predictions under leave-one-order-out training-test separation; g, h,
DNAmM and k-NN predictors test set predictions under leave-one-clade-out (LOCO)
training-test separation. LOCO (leave-one-clade-out) is defined as, for orders with more
than 20 species (Rodentia, Artiodactyla, Chiroptera, Primates, Carnivora, and
Eulipotyphla), leaving out all member species except the longest-living and shortest-living
species. MAE abbreviates median absolute errors from the regression errors; r and p are
Pearson’s correlation and p-values, respectively. Numbers and colors are the mammalian
species number and order annotation consistent with those of other figures. Numeric values
can be found in Github repository shorvath/MammalianMethylationConsortium. Shaded
areas represent 95% confidence intervals of the simple linear regression line. E). .......... 36
3.8: Taxonomic order breakdown of DNAm lifespan predictors and Phylogeny-based

Predictors under LOCO. A breakdown of predictor performance in large taxonomic orders
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under LOCO. Panels a and b are identical to those of Figure 3.2c and Figure 3.2d. Panels
c-h show large test set predictions. We compared prediction performance between DNAmM
elastic net predictors and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor
predictor utilizes distances from the Mammalian phylogenetic TimeTree (Kumar et al.,
2017). Panels a, DNAm predictor’s test set predictions leave-one-clade-out (LOCO)
training-test separation scheme; b, k-NN predictor’s test set predictions under LOCO; ¢, d,
DNAm and k-NN predictors, respectively, test set predictions of lifespan for all species
belonging to Carnivora under LOCO; e, f, DNAm and k-NN predictors, respectively, test
set predictions of lifespan for all species belonging to Primates under LOCO; g, h DNAm
and k-NN predictors, respectively, test set predictions of lifespan for all species belonging
to Artiodactyla under LOCO. MAE abbreviates median absolute errors from the regression
errors; r and p are Pearson’s correlation and p-values, respectively. Numbers and colors are
the mammalian species number and order annotation consistent with those of other figures.
Numeric values can be found in Github repository
shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence
intervals of the simple linear regression liNe. ...........cccovivvieeie i 39
3.9: DNAm lifespan predictions on small-sized mammals. DNAm lifespan predictor
trained on mammal species with an average weight over 150 grams (small mammals).
Panels a, observed (log) adult body weight vs. observed (log) maximum lifespan in all
mammalian species within the data set, color-coded by small-size indicator (more than 150
grams); b, test set predictions for the maximum lifespan in small-sized (<150 grams)
mammalian species vs. observed (log) maximum lifespan; c, test set predictions for the

maximum lifespan in small-sized (<150 grams) mammalian species vs. observed (log)
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adult body weight. MAE abbreviates median absolute errors from the regression errors; r
and p are Pearson’s correlation and p-values, respectively. Numbers are the mammalian
species number annotation consistent with those of other figures. Numeric values can be
found in Github repository shorvath/MammalianMethylationConsortium. Shaded areas
represent 95% confidence intervals of the simple linear regression line............c.cccocuo..... 40
Figure 4.1: EWAS of eutherian log-transformed maximum lifespan, gestation time, age of sexual
maturity, and risk of cancer. The figure represents the CpG specific association with
maximum lifespan across n=333 eutherian species. All tissue samples were averaged by
species. The associations with lifespan were examined with or without adjustment for adult
weight of the species. a, Manhattan plots of EWAS results in 28,318 probes that were
experimentally validated to work in both mouse and human genomes. The coordinates are
based on the alignment to the human hg19 genome. The red dotted line corresponds to a
Bonferroni corrected two-sided p value < 1.8x10. Individual CpGs with positive or
negative correlations with maximum lifespan are colored in red and blue, respectively. The
top significant CpGs are labeled by their respective neighboring genes. b, upset plot of the
overlap in the top 1000 (500 per direction) significant CpGs for different EWAS models.
¢, Venn diagrams showing the overlap of CpGs associated with mammalian lifespan and
the top 1000 CpGs that relate to chronological age in mammals (Ake T. Lu et al., 2021).
Overlapping CpGs were labeled by neighboring genes. d, Gene set enrichment analysis of
the genes proximal to CpGs associated with mammalian maximum lifespan, gestation time,
and sexual maturity. We only report enrichment terms that are significant after adjustment

for multiple comparisons (hypergeometric test false discovery rate <0.01) and contain at
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least five significant genes. The top two significant terms per enrichment database are
SNOWN 1N TN PANEL. ..o sre e sre e sre e 51
Figure 4.2: Top CpGs related to log-transformed maximum lifespan in eutherians.Scatter plots of
CpG methylation level (x-axis) versus log-transformed maximum lifespan (y-axis) for a,
b, c the top three positively-correlated CpGs and d, e, f the top three negatively-correlated
CpGs. g-I. Corresponding scatter plots to a—f for weight-adjusted maximum lifespan. The
y-axis reports the residuals resulting from regressing log-transformed maximum lifespan
on log-transformed adult weight. Each observation corresponds to one of 333 different
eutherian species and is colored and labeled by mammalian number as in Figure 3.1. MAE
abbreviates median absolute errors from the regression errors; r and p are Pearson’s
correlation and p-values, respectively. Numbers and colors are the mammalian species
number and order annotation consistent with those of other figures. Red solid line
represents the perfect prediction liNe. .........ccooveiieiiccc i 54
Figure 4.3: Generic Lifespan EWAS in different tissues from Eutherian species. Scatter plot of
CpG Z statistics agreements between tissues, color-coded by human CpG island
annotations (not island: black, island: red). Both x- and y-axes are CpG Z statistics for the
set of EWAS background CpG probes (28,318) consistent with the methods section
(mappable to humans and mice and correlation with calibration exceeds 0.8). Panels show
agreements between a, blood vs. all, b, skin vs. all, c, liver vs. all, d, brain vs. all, e, muscle
vs. all, f, skin vs. blood, g, liver vs. blood, h, brain vs. blood, i, muscle vs. blood, j, liver
vs. skin, k, brain vs. skin, I, muscle vs. skin, m, brain vs. liver, n, muscle vs. liver, o, muscle

vs. brain. Panel titles report r and p as Pearson’s correlation and p-values, respectively. 55
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Figure 4.4: EWAS of significant CpGs related to mammalian maximum lifespan, adjusted by
weight and phylogeny. Panel a are Manhattan plots reporting Manhattan plots of lifespan,
lifespan EWAS adjusted by weight (AdjWeight), lifespan EWAS adjusted by phylogeny
(AdjPhylo), and lifespan adjusted by both weight and phylogeny (AdjPhyloWeight). The
background probes were limited to the set of EWAS background CpG probes (28,318)
consistent with the methods section (mappable to humans and mice and correlation with
calibration exceeds 0.8). b, Location of the top CpGs in each tissue relative to the closest
transcriptional start site. A panel for the top 1000 age related CpGs was added to the figure
for comparison (Ake T. Lu et al., 2021). The changes in gene regions were tested by a
hypergeometric test in proportion to the background. The odd ratios and p-values (* <0.05,
**<(0.01, ***<0.001, ****<0.0001) of changes are reported for each bar. c, Boxplot of
association with mammalian maximum lifespan by human CpG island status. The mean
difference was tested by Student T-test. d, Venn diagram of the overlap in the top 1000
(500 per direction) significant CpGs for different models of EWAS of lifespan from panel
a. The overlap hits were labeled by neighboring genes. e, Overlap of CpGs associated with
mammalian lifespan and the top 1000 CpGs that relate to chronological age in mammals
(Ake T. Lu et al., 2021). Blood and skin specific results are reported in Figure 4.3, Figure
4.4, AN FIGUIE 4.5, ..ottt e e e sre e te e e aneenre s 57

Figure 4.5: EWAS of mammalian maximum lifespan in blood. The associations were examined
with four different models: 1) lifespan: each species as a datapoint in the model regardless
of evolutionary distance. 2) lifespan adjusted for average species weight. 3) lifespan
adjusted for evolutionary distance by phylogenetic regression. The evolutionary tree was

acquired from TimeTree database. 4) lifespan adjusted for both average adult species
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weight and evolutionary distance. Panel a, Manhattan plots (Kumar et al., 2017) of EWAS
of maximum lifespan in the set of EWAS background CpG probes (28,318) consistent with
the methods section (mappable to humans and mice and correlation with calibration
exceeds 0.8). The coordinates are based on the alignment to the human hg19 genome. The
direction of associations with p < 0.001 (red dotted line) is highlighted by red
(hypermethylated) and blue (hypomethylated) colors. Some top CpGs were labeled by the
neighboring genes, b, Location of top CpGs relative to the closest transcriptional start site.
A panel for the top 500 age-related CpGs in each direction was added to the figure for
comparison (Ake T. Lu et al., 2021). The changes in each gene region was tested by
Fisher’s exact test based on the same background. The odds ratios and p-values (* <0.05,
**<(0.01, ***<0.001, ****<0.0001) of changes are reported for each bar. c, Boxplot of
association with mammalian maximum lifespan by human CpG island status. The mean
difference was tested by a Student’s T test. A panel for the top 1000 age-related CpGs was
added to the figure for comparison, d, Venn diagram of the overlap in the top 1000 (500
per direction) significant CpGs for different models of EWAS of lifespan. The Venn
diagram does not show AdjPhyloWeight because it contains zero CpG probe past the
SIgNITICANCE tNFESNOIA. ... 59
Figure 4.6: EWAS of mammalian maximum lifespan in skin. The associations were examined with
four different models: 1) lifespan: each species as a datapoint in the model regardless of
evolutionary distance. 2) lifespan adjusted for average species weight. 3) lifespan adjusted
for evolutionary distance by phylogenetic regression. The evolutionary tree was acquired
from TimeTree database (Kumar et al., 2017). 4) lifespan adjusted for both average adult

species weight and evolutionary distance. Panel a, Manhattan plots of EWAS of maximum
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Figure

lifespan in the set of EWAS background CpG probes (28,318) consistent with the methods
section (mappable to humans and mice and correlation with calibration exceeds 0.8). The
coordinates are based on the alignment to the Human hg19 genome. The direction of
associations with p < 0.001 (red dotted line) is highlighted by red (hypermethylated) and
blue (hypomethylated) colors. The top few CpGs were labeled by the neighboring genes,
b, Location of top CpGs in each tissue relative to the closest transcriptional start site. A
panel for the top 1000 age-related CpGs was added to the figure for comparison. The
changes in each gene region were tested by Fisher’s exact test based on the same
background. The odds ratios and p-values (* <0.05, **<0.01, ***<0.001, ****<(0.0001) of
changes are reported for each bar. ¢, Boxplot of association with mammalian maximum
lifespan by human CpG island status. The mean difference was tested by a student’s T test.
A panel for the top 1000 age-related CpGs was added to the figure for comparison, d Venn
diagram of the overlap in the top 1000 (500 per direction) significant CpGs for different
models of EWAS OF [IFESPAN. ....oiiiiiie e 61
4.7 Generic EWAS agreements between all samples and young samples. Agreements
between EWAS based on young samples and EWAS based on all available samples. Young
samples are defined as samples younger than five years of age and before the age of sexual
maturity. Panels show agreements between, a all tissue all vs. young generic EWAS, b, all
vs. young generic EWAS in blood, c, all vs. young generic EWAS in skin, d, all vs. young
generic EWAS in liver, e, all vs. young generic EWAS in brain, f, all vs. young generic
EWAS in muscle. Panel titles report r and p as Pearson’s correlation and p-values,

FESPECTIVEIY. ..ottt bbb bt 63
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Figure

4.8: Top Significant CpG sites in a phylogenetic independent contrast plot,
Eutherians. Scatter plot of CpG methylation and maximum lifespan, transformed and
scaled to phylogenetic independent contrasts, based on all available samples. In order to
properly visualize sample correlations, phylogenetic independent contrast plots select
parent nodes that are of relatively similar distances to each other (Felsenstein, 1985). We
color-coded these common ancestor nodes as time to present, in millions of years. Panels
show scatter plots of top three CpGs from a—c, all tissues, b—g, top four CpG from blood
tissues, h—k, top four CpGs from skin tissues, I-o, top four CpGs from brain tissues. P-
values reported are based on phylogenetic generalized least squared (GLS) regression.

Panel titles report r and p as Pearson’s correlation and p-values, respectively. ............... 64

Figure 4.9: Phylogenetic EWAS agreement in various tissues, Eutherians. Scatter plot of CpG Z

Figure

statistics between tissues, color-coded by human CpG island annotations (not island: black,
island: red). Both x- and y-axes are CpG Z statistics for the set of EWAS background CpG
probes (28,318) consistent with the methods section (mappable to humans and mice and
correlation with calibration exceeds 0.8). Panels show agreements between a, blood vs. all,
b, skin vs. all, c, liver vs. all, d, brain vs. all, e, muscle vs. all, f, skin vs. blood, g, liver vs.
blood, h, brain vs. blood, i, muscle vs. blood, j, liver vs. skin, Kk, brain vs. skin, |, muscle
vs. skin, m, brain vs. liver, n, muscle vs. liver, o, muscle vs. brain. Panel titles report r and
p as Pearson’s correlation and p-values, respectively. ... 65

4.10: Simple linear regression (generic) and phylogenetic regression EWAS
agreement. Scatter plot of CpG Z statistics across phylogenetic Generic EWAS vs.
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CHAPTER 1

1. Introduction

In the age of rapidly growing technologies in both data collection and storage tools, the fields of
statistics and genetics face many opportunities as well as challenges. Data sets with tens of
thousands of samples and many times more variables are the new norm to statisticians in the field
of genetics. Many classical statistical methods can be readily and robustly applied to these large
data sets directly, such as genome-wide association studies (GWAS) for single-nucleotide
polymorphisms (SNP) array data, and epigenome-wide association studies (EWAS) for DNA
methylation data. The idea is to evaluate a phenotypical trait against genotypes one locus at a time,
and then summarize findings after adjusting for multiple hypothesis testing using, most commonly,
false discovery rates (FDR) or Bonferroni correction (Y. Benjamini, and Hochberg, Y., 1995; C.
E. Bonferroni, 1935). These methods have been effective in discovering associations between
individual genotypes and phenotypes, leading to numerous discoveries and remarks (Uffelmann et
al., 2021; Visscher et al., 2017). Some improvements on GWAS, taking environmental factors into
account, include Newton’s method and scoring method used for polygenic models, which are
enabled by linear mixed models (Lange, 2003). For multi-marker analyses in single nucleotide
polymorphisms (SNPs) data, researchers have aggregated the effects across all loci using a
modified linear mixed model to include all SNPs simultaneously (J. Yang et al., 2010), or directly
summing over GWAS effect size results to form a polygenic risk score (PRS) (Dudbridge, 2013;
Palla & Dudbridge, 2015). For epigenetics, some of the more data-driven multivariate models used
in recent years include elastic net for DNA methylation data (S. Horvath, 2013; Ake T Lu et al.,

2019; Zou & Hastie, 2005). This dissertation focuses on DNA methylation and RNA-seq data



analyses. In Chapters 3 and 4, we describe the applied research that has been done to DNA
methylation data in the field of aging research, with goals of studying mammalian species life
history traits, such as species maximum lifespan, gestation time, and time to sexual maturity. In
Chapter 5, we introduce a novel methodology in the form of a Poisson graphical model for RNA-
seq data. In Chapter 6, we address both the current and new statistical methods and outline possible

future work that will compare and potentially improve these algorithms.

1.1. DNA methylation data
DNA methylation is an epigenetic mechanism by which methyl groups are attached to DNA
molecule. This process can regulate gene expressions from a DNA segment without changing the
sequence. This is achieved by either preventing transcription factors’ binding to the sequence or
recruiting proteins that are involved in gene expression (Moore, Le, & Fan, 2013). Most of DNA
methylation occur on cytosine nucleotide that immediately precedes a guanine. The sites at which
DNA methylation occur are called cytosine-phosphate-guanine (CpG) sites. Researchers collect
DNA methylation data by using a methylation array that has thousands of probes designed to detect
the intensity of each site’s methylation. For example, one of the most efficient and comprehensive
methylation array for human genome, Illumina 450k, has over 480k CpG probes, providing
practically whole-genome coverage (Bibikova et al., 2011).

Raw DNA methylation data are collected as florescent intensity measurements from
methylated and unmethylated probes. After background adjustment and normalization, both
methylated and unmethylated intensity measurements at each site are converted to a single value,

either a beta-value or an m-value. The more common method is the beta-value, which is the ratio



of the methylated intensity to the sum of methylated, unmethylated intensities, and a constant of
100 as an offset for stabilizing sites where both intensities are small (Du et al., 2010),

(Equation 1.1)

max (0» ymethy, i)

max(O, Ymethy, i) + maX(O:Yunmethy, i) +a

Beta; =

, Where y,,.¢ny, i 1S the methylated probe intensity, and y,nmetny, i the unmethylated probe, for i-

th CpG site. a is the constant, usually set to 100 (Du et al., 2010). By definition, beta values are

always between 0 and 1.

1.2. Epigenetic clocks and their uses

It was only recently since researchers started intensely studying the strong relationship between
human aging and epigenetics (Alisch et al., 2012; Bell et al., 2011; Bocklandt et al., 2011; Boks et
al., 2009; Bollati et al., 2009; Christensen et al., 2009; Rakyan et al., 2010). The first demonstration
of an age predictor was built applying a combination of EWAS and Lasso (least absolute shrinkage
and selection operator) penalized regressions to DNA methylation data from saliva samples
(Bocklandt et al., 2011). It was also around the same time when robust high-dimensional penalized
regression models were applied to human epigenetic methylation data in search of accurate
epigenetic aging clocks. I will discuss the basics of Lasso and the elastic net penalized regressions
in the following sections. The first of elastic net framework was applied to human blood tissues
and was subsequently recognized as the “Hannum clock,” which consists of 71 selected CpG sites
(Hannum et al., 2013). This clock achieved, in test set of a separate cohort, a correlation of 91%

between age and predicted age, and an error of 4.9 years. It was later demonstrated that aging



clocks could be built in almost all human tissues. Horvath lab validified the fact in large multi-
tissue human DNA methylation data sets, and coined what would later become one of the most
widely recognized human epigenetic aging clocks (S. Horvath, 2013). This multi-tissue epigenetic
aging clock, selecting more markers than the Hannum clock, is a linear combination of 353 CpG
sites. Contrary to what the name suggests, the aging clocks have been used to infer individuals’
rates of aging and the effect of diseases on such rates, rather than simply predicting one’s age. The
original research work in this dissertation primarily focuses on a unique data set collected from
multiple mammalian species. In following chapters, we present prediction and inference models
built for mammal species life history traits, including species maximum lifespan, gestation time,

and time to sexual maturity, with emphasis on maximum lifespan.

1.3. Dissertation structure

In this introduction chapter, | have briefly described the background of epigenetic aging clocks,
which utilize regularized regressions to predict outcome variable, age. In the following chapters
of this dissertation, | first describe theoretical groundwork of existing regularized regression
models in Chapter 2. Regularized regressions are essential to building mathematical models in
high-dimensional data in which the number of columns greatly exceeds the number of rows. These
introduced regularized regressions are deeply embedded in the applied as well as original
methodology of Chapters 3, 4, and 5 in this dissertation. In Chapter 3, we describe various
mammalian history traits prediction models that are trained on the DNA methylation data. In
Chapter 4, we present marginal inference statistical models for evaluating individual CpGs sites
in relations to the mammalian life history traits. Our analyses place great emphasis on one of such

traits, species maximum lifespan, defined as the maximum innate potential of lifespan given any



animal species. Although naturally correlated, maximum lifespan differs from life expectancy,
which measures the average lifespan in a population, taking into account diseases and accidental
deaths. In Chapter 5, we introduce a novel methodology in the form of a Poisson graphical model
for RNA-seq data. Various genetic data types, such as transcriptome (RNA data), epigenome
(DNA methylation), proteome data, are crucial for future multiomics data integration, in order to
have comprehensive understandings of the species life history traits. In Chapter 6, we address both
the current and new statistical methods and outline possible future work that will compare and

potentially improve these algorithms.



CHAPTER 2

2. Methodology of regularized regressions

As described in earlier sections, DNA methylation data have tens or hundreds of thousands of
variables. Thus, fitting multiple linear regressions using all CpG sites would be overfitting,
yielding poor performance in test data. Furthermore, most data sets have much more variables than
samples (high-dimensional). This property dictates that the standard linear regression framework
would have rank deficiency, producing non-singular solutions. Therefore, in cases of continuous
numerical outcome variables, such as chronological age, researchers have been focusing on
regularized regression frameworks. Regularized regressions serve as appropriate prediction
models, and, for some models, adequate variable selection models. In this section, | will discuss
the Lasso, ridge, broken adaptive ridge (BAR), and elastic net regressions, and some of their

applications that | have implemented in the field of genetics.

2.1. Lasso and ridge regression

Lasso and Ridge regressions are some of the earliest and most well-known regularized regressions.
Lasso was proposed by Tibshirani (Tibshirani, 1996). Lasso imposes an £, -penalty on a standard
multiple linear regression, originally written as,

(Equation 2.1)

. 1 .
min Yz, (v — ] B)* subject to [IBll; < ¢,

where y; is the i-th observation of sample size of N, x! is the vectorized i-th sample of length p,

B is the coefficient vector of all p features (variables), and t is a tuning parameter for the shrinkage.



Here the second constraint term of (Equation 2.1, ||B][; < t, ensures that the £;-norm of all
coefficients are shrunk to no larger than t. In practice, (Equation 2.1 is solved in its well-known
Lagrangian form,

(Equation 2.2)

. 1
min iy i — 2B+ AlBIl; -

Another popular penalization technique, ridge regression (Hoerl & Kennard, 1970), minimizes the
residual sum of squares subject to a bound on the #,-norm of coefficients. The ridge estimator is
directly written as,
(Equation 2.3)

B =[X"X+kII"'X"Y;k >0,
where X is the design matrix, and Y is the outcome variable vector, and k is the tuning parameter
for the ridge estimator. Note that this matrix form solution is equivalent to being written as the
solution for £,-penalized least square loss function,
(Equation 2.4)

, 1
,?éﬁ{% Z?’:lﬁ(}’i —x; B2+ 2Bl .

The significance of (Equation 2.4 is that it provides a closed-form matrix solution. As X7 X + kI
is always symmetrical, and especially in low dimensional data sets much smaller than X, it can be
solved more efficiently via Cholesky decomposition, while Lasso is often estimated by iteratively
solving Karaush-Kuhn-Tucker (KKT) condition. However, in contrast to Lasso, ridge regression
does not shrink variables to zero, undermining its variable-selection purposes. Consequently,
Lasso became widely used in many studies for which ridge penalization is not suited.

Other regularizations have been developed, aiming to achieve an estimation with the oracle
property (Fan & Li, 2001). Briefly, oracle property is defined as an estimator that asymptotically

7



converges to the maximum likelihood estimator (MLE) based on only the true support. In the sense
of the variable selection problems, the true support would be considered the unknow set of
variables that are truly associated with the outcome. To this end, a few additional #,-penalization
methods have been developed, such as adaptive lasso (Zou, 2006), SCAD (Fan & Li, 2001), and
MCP (Zhang, 2010). A more recent regularization method, broken adaptive ridge, aims to improve
on these methods’ grouping properties for correlated variables (Dai, Chen, Sun, Liu, & Li, 2018;
H. Zhao, Sun, Li, & Sun, 2018). | have published a graphical network method paper that utilities
its variable selection and superior grouping properties for a discrete RNA-seq data (C. Z. Li,
Kawaguchi, & Li, 2021). This graphical model offers a Poisson distribution assumption solution
to constructing graphical networks for discrete data sets, such as RNA-seq data. A necessary step
for this sparse graphical modeling is regularization, and BAR penalization fits adequately in this
algorithm. Nevertheless, elastic net remains the most popular framework for epigenetic aging
clocks and a few other DNA methylation predictors, largely due to its speed and robust

performance in p>>n ultra-high dimensions.

2.2. Elastic net regularization

In light of searching for a simultaneous prediction and variable selection model that provides
towards-zero shrinkage, based on earlier sections, one would consider either Lasso or BAR.
However, in practice, Lasso has some pitfalls, including its limitations in p>n cases, variable
grouping properties, and inferiority to ridge regression in n>p cases (Zou & Hastie, 2005). Poor
grouping in Lasso manifests as its tendency to select only one variable from a group in which
variables are highly correlated. This effect could cause Lasso to accidentally drop a true signal

variable in favor of another correlated variable. While BAR enjoys the oracle property, it is



computationally expensive for data sets with over thousands of features, due to its iterative ridge
regression estimations. The elastic net model is a hybrid penalized model between Lasso and Ridge
regressions, and its Gaussian family form is specified as follows,

(Equation 2.5)

1— 2
(o;ﬂwuﬂnl :

N
1
. 1 P
(Bo,,g’r)lé%pﬂyvz(yl Bo—x;B)+ 2
=

where B is the vector of non-intercept variable coefficients, x; € RP? is a vector of i-th observation,
and p is the number of CpG probes used in this framework. A is the Lasso tuning parameter, and
«a is the ridge penalization parameter. One of the biggest advantages of elastic net is that it performs
better than Lasso in p>>n cases (Zou & Hastie, 2005). Furthermore, it handles variable grouping
effects more desirably. When several variables are highly correlated each other, Lasso tends to
select one of them and ignores the rest, while elastic net might include several most relevant
variables from the group. This property is important to our research, as we do not want to leave

out important markers that are potentially associated with outcome variable.

2.3. Broken adaptive ridge (BAR) regularization

In addition to Lasso and Elastic net, we describe an alternative multivariate regularization model
in this chapter, the broken adaptive ridge (BAR) estimator (Dai et al., 2018). Due to the fact the
framework has only been proposed and tested in the recent year, we are yet to have a highly
optimized programming package to implement the algorithm at run-times comparable to those of
Elastic net (R package: glmnet) and Lasso. Nevertheless, the methodological development of BAR

has been advanced to a greater extent of areas in genetics, such as survival Cox model (Kawaguchi,



Suchard, Liu, & Li, 2020), competing risks models (Kawaguchi, Shen, Suchard, & Li, 2021), and
regularized graphical models (C. Z. Li et al., 2021) to be discussed in Chapter 5.

BAR estimator takes on an iterative process, which needs to start with initial estimated
values. These initial estimates are from a standard ridge regression (Hoerl & Kennard, 1970),
defined here as,

(Equation 2.6)

BO (ridge) = argmin —21,(B) + AriggellBll2,
BERP

where —2L, () can be any objective function, such as a log likelihood function for a generalized
regression, or least squared formula for a linear regression, ||y — B||?. For all formula in this
section, B is the coefficient vector of length p. Superscript (k) denotes the k-th iteration’s
coefficient estimate.

BAR estimator offers flexibility in regularization weighting for different objectives, such
as fused broken adaptive ridge estimator and broken adaptive ridge trend filter (Dai et al., 2018).

For simplicity, we focus on variable selection, setting the coefficient weighting vector to d; = e;,
where e; is the standard basis vector with jth component equal to one. This yields a variant of

BAR algorithm that iteratively searches for estimates which regularize by its L2 norm weighted by
its L2 norm from the last iteration elementwise, formally,

(Equation 2.7)

p
B = argmin{ —2L,(B) + ABARZ
BERP

j=1

B2
B 2)

In this case the final BAR estimator is then defined as,

(Equation 2.8)

B(BAR) = lim B,
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Heuristically, to complement ridge regression’s non-zero shrinkage, the weighting term in BAR’s
regularization term’s denominator, ﬁj("_l) (Equation 2.8), forces the small coefficient estimates to

become smaller. The numerator acting has to be much smaller than its fixed denominator to satisfy
the regularization penalty. Asymptotically, BAR shrinks small ridge terms to zero (Equation 2.8).
Chapter 5 describes an application of BAR estimator in the context of Poisson graphical model for

discrete high-dimensional data.
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CHAPTER 3

3. Joint modeling for DNA methylation data

This chapter describes a few research objectives achieved in the context of regularized regression
and classification model applications in DNA methylation data. The general aims are to identify
epigenetic markers directly involved in lifespan and aging, and to attempt to describe underlying
mechanisms of these involvements. While the next chapter focuses more on marginal statistical
model application, this chapter’s joint modeling research relies on multivariate statistical
frameworks that take into account all variables simultaneously. This includes multivariate
classifiers such as tissue random forest predictors and multivariate regressions like elastic net.
Marginal modeling strategies seek to assess marginal effects in individual CpGs sites. Joint models
do not necessarily trump the benefits of marginal frameworks, depending on the context. For
example, marginal modeling of markers is valuable to anit-aging intervention studies and possibly
future human clinical trial studies. They inform researchers with p-values and confidence intervals
that are necessary for assessing the strength of statistical effects.

We leveraged a novel DNA methylation data collection from not just human, but more than
348 mammalian species, enabled by a novel mammalian DNA methylation array (Arneson et al.,
2021). Consequently, my research interests have expanded beyond human aging clocks. With such
a diverse collection of mammalian species, one is able to directly study the secret to long lifespan.
Some of the most important response variables in multi-species mammalian epigenetic aging
studies include species maximum lifespan, organism chronological age, sample tissue type, and
sample sex annotation. Most importantly, maximum lifespan of a species, in particular, is the
oldest that individuals can survive, reflecting the genetic limit of longevity in an ideal environment.

The maximum lifespan of humans and other mammals appears to be fixed and subject to natural
12



constraints (Dong, Milholland, & Vijg, 2016). We recognize that the molecular mechanisms
underlying these constraints remain poorly understood (Austad, 2010; de Magalhaes, Costa, &
Church, 2007), despite prior studies correlating maximum lifespan with specific molecular
processes and life history strategies (Gorbunova & Seluanov, 2009; Harper, Salmon, Leiser,
Galecki, & Miller, 2007; Tian et al., 2019). Some researchers have suggested that epigenetic
mechanisms may play a role in controlling lifespan and aging (Booth & Brunet, 2016; de
Magalhaes, 2012; Lowe et al., 2018; Mayne, Berry, Davies, Farley, & Jarman, 2019; Mitteldorf,
2016; Rando & Chang, 2012; Sen, Shah, Nativio, & Berger, 2016; Wilkinson et al., 2020; J.-H.
Yang et al., 2019). The role of epigenetics in mammalian aging is underscored by recent studies
demonstrating age reversal through (transient) epigenetic reprogramming with Yamanaka factors
(Gilletal., 2021; Y. Luetal., 2020; Ocampo et al., 2016; Rodriguez-Matellan, Alcazar, Hernandez,
Serrano, & Avila, 2020; Sarkar et al., 2020; Takahashi & Yamanaka, 2006).

While the data set continues to expand, | will list a few underpinnings discovered in
maximum mammalian lifespan and other life history traits using DNA methylation profiles from
348 mammalian species, from 25 taxonomic orders including primates, rodents, bats, cetaceans,
and marsupials. The life history traits data are from a current of anAge database (de Magalhaes et
al., 2007). I successfully developed methylation-based predictors of time-related life history traits:

maximum lifespan, gestation time, and age at sexual maturity across therian mammalian species.

3.1. Methodology

3.1.1. Data collection
All data were generated using the mammalian methylation array (HorvathMammalMethylChip40)

(Arneson et al., 2022) which provides high sequencing depth of highly conserved CpGs in
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mammals. Out of 37,492 probes (cytosines) on the array, 35,989 probes were chosen based on
high levels of sequence conservation within mammalian species (Arneson et al., 2022). The
particular subset of species for which each probe is expected to work is provided in the chip
manifest file which can be found at the NCBI Gene Expression Omnibus (GEQO) as platform
GPL28271, and on our Github webpage. The SeSaMe normalization method was used to define
beta values for each probe and to calculate detection p values (Zhou, Triche, Laird, & Shen, 2018).
DNA methylation data generated by this array can be used to accurately classify sample species,
sex, and tissue in randomly selected test sets (or random forest out-of-bag sets) (C. Li et al., 2021).
We analyzed methylation data from 348 mammalian species representing 25 out of 26 taxonomic
orders. (C. Li et al., 2021). The only order not represented was the marsupial order
Peramelemorphia. DNA was derived from 59 different tissues and organs including blood, skin,
liver, muscle, and brain regions (C. Li et al., 2021). Supplementary Information contains details

on all the data sets that we have used to conduct analyses.

3.1.2. Life history traits and anAge database

The high accuracy of the epigenetic estimator of maximum lifespan is a testament to the success
of a decade-long effort of biologists and the anAge database (de Magalhaes et al.) to establish this
elusive phenotype. For several species, maximum lifespan was not available in anAge. In this case,
we updated the results based on literature searches. For select species, we used a K=1 nearest
neighbor predictor to impute values. For this reason, our KNN based predictor of life history traits
is biased. To enhance the reproducibility of our findings we include our updated version of the

anAge database (de Magalhaes et al.) (C. Li et al., 2021).
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3.1.3. Multivariate estimators of maximum lifespan

For most species, relatively few animals informed the determination of maximum lifespan, which
may bias this life history trait (Ronget & Gaillard; Vaupel). To account for the fact that the
maximum lifespan of humans and mice was established on the basis of many studies while the
maximum lifespan of other mammalian species was based on fewer animals, we corrected the
maximum lifespan value of the remaining species by multiplying it by 1.3. This adjustment step
assumes that each maximum lifespan estimate reported in anAge underestimates the true value by
30 percent in all species except for humans and mice. We applied the same adjustment step in our
universal mammalian clock project (Ake T. Lu et al., 2021). In addition, in the final model fitted
to all species as a training set, we calibrated the predictor by the mean and standard deviation,
similar to those of biomarker, to match those of the observed lifespan (Ake T Lu et al., 2019). This
correction was only used for our multivariate estimator of maximum lifespan, e.g. we did not use
it in our EWAS.

We used elastic net regression to build different multivariate predictors of maximum
lifespan, gestation time, and age at sexual maturity (Zou & Hastie, 2005). We chose a more data-
driven and less human-mice-centered method for variable selection, i.e. CpG screening. To build
a model on the basis of CpGs that are present/detectable in most species, we restricted the analysis
to CpGs with significant median detection p-values (false discovery rate<0.05) (Y. Benjamini &
Hochberg, 1995) in 85% of the species. This resulted in a lower-dimensional dataset consisting of
17,032 CpGs.

We employed two strategies for building lifespan predictors. The first strategy ignored
tissue type. Here, all tissue samples from a given species were averaged resulting in a single

observation per species. The second strategy formed average values for each stratum defined by
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tissue type and species. For example, this analysis formed an average value for human blood
(considered as one stratum). The second approach allowed us to study the influence of tissue type
on lifespan predictions. This second strategy shows similar prediction correlations in all three life
history traits. To arrive at unbiased estimates of the predictive accuracy of lifespan and other
predictors, we used a leave-one-species-out (LOSO) cross-validation analysis that iteratively
trained the predictive model on all but one species. Next, the predictor was applied to the
observations from the left-out species. By cycling through the species, we arrived at LOSO
estimates for each species. As a sensitivity analysis, we also conducted a leave-one-clade-out

analysis as described below.

3.1.4. Leave one clade out cross validation

In order to evaluate the taxonomic robustness of the DNAm predictions (section entitled DNAmM-
based predictors out-perform phylogeny-based predictors), we iteratively left out taxonomic
orders as test sets, in addition to conducting leave-one-species out (LOSOQ) analysis. Setting aside
entire orders as test sets serves to validate the predictor’s performance when given taxonomically
(phylogenetically) different species. We could not carry out a leave-one-taxonomic order out cross
validation analysis because of the highly skewed distribution of animals across taxonomic order:
Rodentia contained 27% of all species while many other orders contained fewer than 3% of the
species. To address this challenge, we modified the leave-one-order-out analysis by leaving out all
but two species as a test set (corresponding to the minimum and maximum lifespan) in a few
taxonomic orders with more than 20 species (Rodentia, Artiodactyla, Chiroptera, Primates,
Carnivora, and Eulipotyphla). The two species per large order kept in the training set act as a

“counter-weight”, challenging the predictor to guess the lifespan for the rest of the taxonomic order
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given this limited information. All species in a small order are left out in its entirety as test sets.
For example, taxonomic orders Dasyuromorphia, Microbiotheria, Microbiotheria, Sirenia, and
Tubulidentata were represented by a single species. We refer to the resulting cross validation
scheme as leave-one-clade-out (LOCO) analysis. A predictor too reliant on neighboring species
with similar lifespan in proximity, such as the tree-based KNN, would under-perform in such
training-test separation scheme. In addition, due to the fact that we imputed a number of species’
missing lifespan observations using KNN, lifespan estimates naturally favor k-NN. Thus, in this
analysis only, we use the original anAge database (de Magalhaes et al.) that did not contain any
imputed values. It is evident that KNN lifespan predictor, despite having acceptable prediction
correlation, gives constant and off-center predictions for entire taxonomic orders (C. Li et al.,
2021). For any test set, It tends to find the “nearest” species to be the two species given in LOCO
(or some species in a neighboring order for small test-set orders), resulting in the same estimate
for every member of that taxonomic order. Thus, such an algorithm is undesirable when applied

to dissimilar species or clades.

3.2. Results

3.2.1. Multivariate predictors of life history traits

We fitted three separate penalized regression models to predict log-transformed values of
maximum lifespan, gestation time, and age at sexual maturity for each species. We obtained the
species values for these traits from the current version of the anAge database (de Magalhaes et al;
C. Lietal., 2021). The resulting epigenetic predictors exhibited a high level of accuracy according
to leave-one-species-out (LOSO) cross-validation, e.g., the predicted log maximum lifespans were

highly correlated with those documented in anAge (Pearson’s correlation R = 0.89, Figure 3.1a &
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3.1b). Actual log gestation time, which is easier to measure accurately than maximum lifespan,
exhibited an even higher correlation with predicted log-gestation time (R = 0.96, Figure 3.1c).
Interestingly, the epigenetic estimator of (log-transformed) age at sexual maturity exhibited a
relatively lower correlation of R = 0.85 with documented measurements (Figure 3.1d). This may
partly reflect that age at sexual maturity is far more malleable than gestation time, depending on
food availability and various ecological/environmental factors. An alternative 70%-30% training-
test random separation scheme yields similarly high correlations for log maximum lifespan in both
the training and test sets (training set, R = 0.98, Figure 3.2a; test set, R = 8.8, Figure 3.2b).

We hereafter refer to the predicted maximum lifespan, in units of log years, as epigenetic
maximum lifespan or DNA methylation (DNAm) maximum lifespan. The same nomenclature
applies to other DNAm-based estimates of life history traits. We carried out two analyses to study
the relationship between epigenetic maximum lifespan and chronological age of the individuals of
species sampled. First, we built a separate maximum lifespan predictor using only samples
obtained from animals that were younger than their species' average age of sexual maturity and
younger than 5, and this had acceptable correlation in lifespan prediction (R = 0.68, Figure 3.3),
even though the restriction of age resulted in fewer species (n = 122) being available for this
analysis.

Second, we applied the final lifespan predictor model to individual animal samples. Once
a final model had been fitted to all species-wise averaged data, the regression model coefficients
were frozen. Despite the fact that the predictor was intended for predicting species level lifespan
on a log scale, we applied coefficients in an attempt to predict individual samples’ lifespan. We
show that although predicted maximum lifespans for individual samples can vary and correlate

with chronological age in a few species (e.g. naked mole rat skin, brown rat blood, sheep, human
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blood) (Figure 3.4), the vast majority of the individual sample predictions remain incredibly stable
in most species-tissue strata (Figure 3.4). Epigenetic maximum lifespan also depends on tissue
type (Figure 3.5 and Figure 3.6). In humans, the final epigenetic maximum lifespan estimates are
97.7 years for blood, 94.5 for epidermis, 77.9 for skin, and 49.8 for cerebral cortex (C. Li et al.,
2021).

Considering the high correlation of maximum lifespan and adult weight, we examined the
potential confounding effects of average adult weight on the performance of our model. The LOSO
estimate of log transformed maximum lifespan was moderately correlated (R = 0.54, P < 2.2x10°
16) with the weight adjusted maximum lifespan. A multivariate regression model (dependent
variable log of maximum lifespan) revealed that log adult weight (Wald test P = 1.3x107) is a less

significant covariate than the log transformed epigenetic maximum lifespan (P < 2x107%).
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Figure 3.1 Scatter plots of Leave-one-species-out (LOSO) cross-validation analysis of epigenetic
test set predictions. Y-axes show log (base e) transformed estimates of a,b maximum lifespan (in
years), ¢, gestation time (in days), and d, age at sexual maturity (in years). Each species is
represented by a number whose integer part denotes the taxonomic order. Each data point number
corresponds to a different species and is color-coded according to order (The silhouettes images
of animals were acquired from Phylopic database and are under Public domain or Creative
Commons license). Numeric values can be found in shorvath/MammalianMethylationConsortium
and C. Li et al. (2021). The titles of the panels report Pearson correlation coefficients, median
absolute errors (MAE), and p-values. Colors represent taxonomic order annotation consistent with
those of other figures. Species appear as designated numbers in scatter plot panels; the
corresponding taxonomic orders are annotated in figure legends; the first whole number (number
before the decimal separator) part of each mammalian number is assigned in accordance to the
corresponding taxonomic order. Red solid line represents the perfect prediction line, and the dotted
line represents the fitted linear regression line.

3.2.2. DNAm-based predictors outperform phylogeny-based predictors

Since DNA methylation levels are under strong genetic control, our DNAm-based lifespan
predictor may only be capturing DNA sequence differences driven by phylogenetic relationships
rather than by determinants of lifespan in each individual species. This, however, does not appear
to be the case, as we learned from two separate analyses.

First, we train elastic net regression models of maximum lifespan, our dependent variable,
on the basis of both CpG methylation data and indicator variables for all taxonomic orders (both
used as covariates in a multivariate model). The elastic net model only selected CpG methylation
as significant covariates, suggesting that CpG data explained more of the variation in maximum
lifespan than taxonomic indicator variables.

Second, we compared the accuracy of the DNAm lifespan predictor to that of k-nearest
neighbor (KNN) regression predictors that used a distance measure defined by the branch length
of the phylogenetic tree. The simplest version of the KNN predictor results from a choice of K =
1 which entails that the maximum lifespan of a given species will be predicted by that of its closest

neighboring species in the taxonomy.
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Phylogeny-based k-NN predictor unsurprisingly performs almost as well as DNAm
predictor under leave-one-species-out training-test separation scheme, because the vast majority
of mammalian species in our dataset share similar maximum lifespan with neighboring species
(Figure 3.7a and Figure 3.7b). This is also evident on the taxonomic family level (Figure 3.7c¢ and
Figure 3.7d), as species in the same families have similar lifespan (C. Li et al., 2021). To arrive at
an unbiased comparison between methylation-based predictors and the KNN predictors, we used
a special, more stringent cross-validation scheme, referred to as leave-one-clade-out (LOCO),
analysis (Methods), to challenge the predictors to predict taxonomically different species. A
predictor solely reliant on phylogeny (taxonomy) would yield inferior predictions under this
training-test scheme. Although the KNN predictors were moderately accurate at predicting log-
transformed maximum lifespan (LOCO cross-validation estimate of Pearson correlation R = 0.62
for K =1 NN predictors, Figure 3.2), they are inferior to the methylation-based predictor (R =0.73
Figure 3.7c). A KNN predictor with K = 2 neighbors led to a correlation of R = 0.62 while a value
of K=3 led to R = 0.57. A closer look at the residuals of the breakdown of the test sets reveals k-
NN predictions in large taxonomic orders are constant and off-center, resembling poor guesses
based on taxonomically distant species (Figure 3.8).

Overall, KNN predictors based on phylogeny are clearly inferior to DNAm-based
predictors according to LOCO cross-validation analyses. The fact that DNAm predictors can
predict lifespan in taxonomic orders that were omitted from the training set suggests that DNAmM

captures an aspect of mammalian lifespan that transcends phylogeny.
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3.2.3. Sex differences in predicted lifespan

Once a final model had been fitted to all species-wise averaged data, the regression model
coefficients were frozen. We then applied coefficients in an attempt to predict individual samples’
lifespan, despite the fact that the predictor was trained to predict species level lifespan on a log
scale. The predicted maximum lifespan based on female tissues is highly correlated with that based
on male tissues (on a log scale, R = 0.99). Most species showed consistent epigenetic estimates of
maximum lifespan in female and male samples (C. Li et al., 2021). Stratifying by tissue type, we
observed a significant sex difference in epigenetic maximum lifespan (two-sided Student t-test P
< 0.01) in only 18 species (Figure 3.2e), in which all tissues showed female-male difference
unanimously. Females were predicted to have a longer maximum lifespan than males in 17 of the
18 species, including humans (Figure 3.2e). Across all species, females have a 1.8% longer

predicted epigenetic maximum lifespan than males of the same species.

3.2.4. Lifespan predictor does not simply reflect body mass

We observed that maximum lifespan and average adult weight (body mass) are highly-correlated
across species (Figure 3.9a), a finding consistent with previous studies (de Magalhaes et al., 2007).
We considered the likelihood that the impressive accuracy of epigenetic lifespan predictors may
be due to the confounding effect of average adult weight. This, however, is not the case as the
epigenetic predictor of maximum lifespan remains highly correlated with the observed values
(Pearson correlation R = 0.56, P = 3.3x10°1%, Figure 3.9¢) in small species (defined as average
adult weight <150 grams in our data) even though adult weight is negatively correlated with
maximum lifespan in those species (R = -0.21, Figure 3.9b). Overall, this demonstrates that

epigenetic maximum lifespan captures information beyond adult weight.
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3.2.5. Cross-species classifiers of sex and tissue and other categorical outcomes

We have conducted tissue, species, and sex classification using supervised learning methods,
random forest (Liaw & Wiener, 2002) and logistic elastic net (Zou & Hastie, 2005). For the tissue
and species classification, random forest achieved an out-of-bag accuracy of over 98.2% and
99.9%, respectively (Table 3.1). With a random 70-30% training-test separation, logistic elastic net
regression was able to predict mammalian sample sex with over 98% accuracy in test data (Table
3.1). However, even robust methods such as the random forest is subject to bias, such as favoring
large categorical groups in unbalanced data set. To counter the fact that some species have much
more samples than others, the random forest bootstrap step was slightly modified to draw at a cap
of 100 samples from each species. In general, regardless of which robust classification model to
use, the mammalian array DNA methylation data can be used to effectively classify sample sex,

tissue type, and species.

Table 3.1. Variable Classification bx DNA Methzlation Data

Classification Variable Predictor Framework Method Note Test set / Out-of-bag Accuracy

Tissue Random Forest 100 trees* 98.22%
Species Random Forest 100 trees 99.94%
Sex (Female = yes/no) Elastic Net 98.53%

Note: *100 trees: random forest was calibrated to use this many decision trees for a reasonable run time; random forest
unbiased prediction accuracy estimate is calculated as follows; first, summarize by calculating each category’s out-of-
bag prediction errors, subtracted by unity, across all trees used.

In addition to multi-species sample sex classifier based on the 40K Mammalian Arrays
(Arneson et al., 2022). The classifier has a 10-fold training-test set cross-validation accuracy of
98.6%. We translated this classifier to a new Illumina mouse 320K DNA Methylation array,

yielding an accuracy of 97.5% (Table 3.2).
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Table 3.2: Mammalian Arrax Classifier Performance on 320K Methzlation Arrax

Classification Variable Predictor Framework Probe Screening Acc%rz%:%/ Accuracy 40K
Tissue Random Forest Good quality 1-1 94.01% 97.75%
Species Random Forest Good quality 1-1 Close to 100% 99.95%
Sex (Female = yes/no) Elastic Net Good quality 1-1 97.54% 98.56%

Note: *Good quality 1-1: prior to model fitting, we subset probe (feature) set to the intersection of Illumina 40K and
320K microarray probes, as well as those high quality probes that performed well in mice calibration data set.
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3.3. Additional figures
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Figure 3.2: DNAm lifespan predictor vs phylogeny-based predictor and sex differences in
predicted lifespan. LOCO, leave-one-clade-out, cross-validation analyses of predictors of log (base
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e) transformed estimates of maximum lifespan. We compare prediction performance between
DNAm elastic net predictors and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor
predictor utilizes distances from the Mammalian phylogenetic TimeTree (Kumar, Stecher, Suleski,
& Hedges, 2017). Panels show a, DNAm predictor’s test set predictions, b, K-NN predictor’s test
set predictions. In addition, due to the fact that we imputed a number of species’ missing lifespan
observations with neighboring species, lifespan estimates naturally favor k-NN. Thus, in this
analysis only, we use the original anAge database (de Magalhaes et al.), removing species with no
maximum lifespan estimates. Panels b and ¢ report randomly separated training set comprising 70%
of species and a test set consisting of the rest 30%, respectively. Panel e reports differences
between female and male lifespan final model predictions in species in which they show statistical
significance. Bars are colored by tissue type as indicated in the legend. For panels a and b, each
data point in the panels corresponds to a different species and is color-coded according to
taxonomic order. Red solid line represents the perfect prediction line, and the dotted line represents
the fitted linear regression line. Panel c reports final DNAm lifespan female vs. male predictions
for species in which the predictions differ significantly with a two sample T-test p-value less than
0.01. Error bars represent the 95% confidence interval of two sample mean differences.
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Figure 3.3: Elastic net Predictor Based on Young Samples. Elastic net predictor, Leave-one-
species-out analysis, fitted on a subset of all young samples (species n = 119). Young samples are
defined as samples whose age is both younger than five years and less than the species’ average
age at sexual maturation. Feature filtering and Elastic Net tuning parameter set-up is the same as
those for Figure 3.1. Three panels show predictors for a, log maximum lifespan (in log years), b,
log-transformed gestation time (in log days), and c, log-transformed age at sexual maturity (in log
years). As with the Figure 3.1, species appear as designated numbers in scatter plot panels; the
corresponding common names and phylogenetic orders are annotated in figure legends; as
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indicated by the taxonomic order legend, the whole number (number before the decimal separator)
part of each mammalian number is assigned in accordance to the corresponding taxonomic order.
MAE abbreviates median absolute errors from the regression errors; r and p are Pearson’s
correlation and p-values, respectively. Numbers and colors are the mammalian species number and
order annotation consistent with those of other figures. Numeric values can be found in C. Li et al.
(2021). Red solid line represents the perfect prediction line, and the dotted line represents the fitted
linear regression line.
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Figure 3.4: Correlation between maximum lifespan predictor and sample chronological
ages. Mammalian maximum lifespan predictor, based on averaged species methylation, was used
to predict individual sample lifespans. The predicted values are also stratified by species and
tissues. Only species with >100 sample sizes are shown. Color scale: pink, female; black, male.
To demonstrate natural relations between maximum lifespan and chronological age, panel a scatter
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plot shows association between maximum lifespan and chronological age of corresponding
samples. Each of panels b—x show scatter plots of predicted lifespans in log scales vs.
chronological age in specific species. Numbers are the mammalian species number consistent with
those of other figures. Numeric values can be found in Github repository
shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence intervals of
the simple linear regression line. Colors represent male and female annotation.
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Figure 3.5: Predictors of Species-Tissue Combinations. A penalized joint linear model used to
predict species lifespan (Elastic net). Same framework as that of Figure 3.1, except that it
distinguishes tissue types. CpG probes are averaged by each species-tissue combination. Different
tissues within the same species share the same maximum lifespan, but retain different methylation
levels. Three panels show predictors for a, log maximum lifespan (in log years), b, log-transformed
gestation time (in log days), and c, log-transformed age at sexual maturity (in log years).
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Designated Mammalian numbers in scatter plot panels and the figure legend are the same as those
of main Figure 3.1. MAE abbreviates median absolute errors from the regression errors; r and p
are Pearson’s correlation and p-values, respectively. Numbers and colors are the mammalian
species number and order annotation consistent with those of other figures. Numeric values can be
found in Github repository shorvath/MammalianMethylationConsortium. In Figure 3.1, species
appear as designated numbers in scatter plot panels; the corresponding common names and
taxonomic orders are annotated in figure legends; the whole number (number before the decimal
separator) part of each mammalian number is assigned in accordance to the corresponding
taxonomic order. Red solid line represents the perfect prediction line, and the dotted line represents
the fitted linear regression line.
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Figure 3.6: Tissue groups differences in predicted mammalian maximum lifespan. Mammalian
maximum lifespan predictor, based on averaged species methylation, was used to predict
individual sample lifespans. The predicted values are grouped by sample tissue annotations. Panel
a shows predicted maximum lifespans (DNAm lifespan) standardized residuals (Res.) by tissue
groups in all species and samples; in order to show viewable scales in different species, due to
their drastically different lifespans, we evaluated residuals standardized by species (log of
predicted maximum lifespan minus log of observed maximum lifespan, results from which are
divided by log of observed maximum lifespan of the species to which the samples belong); panel
b—g show boxplots of predicted lifespans in original scales (DNAm lifespan) by tissue groups;
only species with more than 5 tissue types; due to the fact that within-species comparisons require
no re-scaling, predicted lifespans (in years) are shown in these panels; Tissue type
“H.Stem.Progenitor. LSK” stands for “LSK Progenitor Hematopoietic Stem cells”
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Figure 3.7: Overall Comparisons between DNAm lifespan predictors and Phylogeny-based
Predictors. Various training-test validation analyses of predictors of log (base e) transformed
estimates of maximum lifespan. We compared prediction performance between DNAm elastic net
predictors and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor predictor utilizes
distances from the Mammalian phylogenetic TimeTree (Kumar et al., 2017). Results under
different training-test separation methods are shown in panels a, b, DNAm and k-NN predictors
test set predictions under leave-one-species-out (LOSO) training-test separation scheme; c, d,
DNAmM and Kk-NN predictors test set predictions under leave-one-family-out training-test
separation; e, f, DNAmM and k-NN predictors test set predictions under leave-one-order-out
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training-test separation; g, h, DNAm and k-NN predictors test set predictions under leave-one-
clade-out (LOCO) training-test separation. LOCO (leave-one-clade-out) is defined as, for orders
with more than 20 species (Rodentia, Artiodactyla, Chiroptera, Primates, Carnivora, and
Eulipotyphla), leaving out all member species except the longest-living and shortest-living species.
MAE abbreviates median absolute errors from the regression errors; r and p are Pearson’s
correlation and p-values, respectively. Numbers and colors are the mammalian species number and
order annotation consistent with those of other figures. Numeric values can be found in Github
repository shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence
intervals of the simple linear regression line. E).
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Figure 3.8: Taxonomic order breakdown of DNAm lifespan predictors and Phylogeny-based
Predictors under LOCO. A breakdown of predictor performance in large taxonomic orders under
LOCO. Panels a and b are identical to those of Figure 3.2c and Figure 3.2d. Panels c-h show large
test set predictions. We compared prediction performance between DNAmM elastic net predictors
and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor predictor utilizes distances from
the Mammalian phylogenetic TimeTree (Kumar et al., 2017). Panels a, DNAm predictor’s test set
predictions leave-one-clade-out (LOCO) training-test separation scheme; b, k-NN predictor’s test
set predictions under LOCO; ¢, d, DNAm and k-NN predictors, respectively, test set predictions
of lifespan for all species belonging to Carnivora under LOCO; e, f, DNAm and k-NN predictors,
respectively, test set predictions of lifespan for all species belonging to Primates under LOCO; g,
h DNAm and k-NN predictors, respectively, test set predictions of lifespan for all species
belonging to Artiodactyla under LOCO. MAE abbreviates median absolute errors from the
regression errors; r and p are Pearson’s correlation and p-values, respectively. Numbers and colors
are the mammalian species number and order annotation consistent with those of other figures.
Numeric values can be found in Github repository shorvath/MammalianMethylationConsortium.
Shaded areas represent 95% confidence intervals of the simple linear regression line.
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Figure 3.9: DNAmM lifespan predictions on small-sized mammals. DNAm lifespan predictor
trained on mammal species with an average weight over 150 grams (small mammals). Panels a,
observed (log) adult body weight vs. observed (log) maximum lifespan in all mammalian species
within the data set, color-coded by small-size indicator (more than 150 grams); b, test set
predictions for the maximum lifespan in small-sized (<150 grams) mammalian species Vvs.
observed (log) maximum lifespan; c, test set predictions for the maximum lifespan in small-sized
(<150 grams) mammalian species vs. observed (log) adult body weight. MAE abbreviates median
absolute errors from the regression errors; r and p are Pearson’s correlation and p-values,
respectively. Numbers are the mammalian species number annotation consistent with those of
other  figures.  Numeric  values can be found in  Github  repository
shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence intervals of
the simple linear regression line.
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CHAPTER 4

4. Marginal modeling for DNA methylation data

4.1. Methodology

4.1.1. Epigenome-wide association studies (EWAS)

Epigenome-wide association studies (EWAS) is the method of evaluating the marginal effect of
each individual epigenetic biomarker to the outcome variable. It is usually implemented by
regressing each CpG probe (See Section 1.1, a continuous covariate in the data set) to the outcome
variable of interest, which, in the context of this data set, are life history traits such as species
maximum lifespan, sexual maturation time, and gestation time. This constitutes a practice of
multiple hypothesis testing, and is therefore often subject to multiple testing P-values corrections
such as False Discovery Rate (FDR) (Y. Benjamini & Hochberg, 1995) and Bonferroni corrections

(C. Bonferroni, 1936).

4.1.2. EWAS of life history traits
We restricted the EWAS of life history traits to 28,318 CpGs that were shown to work in two
species of great importance in biomedical research: mice and humans. Toward this end, we used
calibration/titration data (correlation with calibration exceeds 0.8) and mappability information as
described in (Arneson et al.).

Since the distribution of maximum lifespan and other life history traits was highly skewed,
we imposed a log-transformation on these phenotypes before conducting EWAS. We carried out
four types of analyses that differ by how they deal with two potential confounders: adult weight

and phylogeny. Our “generic” EWAS corresponds to a marginal correlation analysis where the
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average methylation level of a given CpG per species was regressed on the (log-transformed)
maximum lifespan using ordinary least squares regression. The second EWAS approach removed
the confounding effect of average adult weight. To adjust for adult weight, we first regressed log
maximum lifespan on log weight and formed residuals. Next the residuals become the dependent
variables in the regression models. The third EWAS approach replaced ordinary least squares
regression by phylogenetic regression, the variance-covariance matrix of which modeled
evolutionary distances using branch lengths from the TimeTree project (Grafen, 1989; Kumar et
al., 2017). The fourth EWAS approach adjusted for both average weight and for phylogenetic
relationships. Due to the fact that phylogenetic regression takes into account sample covariance, it
is more appropriate to report a phylogenetic independent contrast (PIC) as opposed to a simple
scatter plot. Instead of using paired tip values from the tree, contrasts are calculated based on each
node. The phylogenetic contrast model assumes that trait divergences occur independently at each
node (Felsenstein, 1985).

We carried out EWAS analyses in the following tissues/organs for which a sufficient
number of species (N>25 species) was available: skin (N = 137), blood (N = 133), liver (N = 147),

skeletal muscle (N = 38), and brain (N = 26).

4.1.3. Functional enrichment algorithms for life history related cytosines

In order to make connections between identified significant CpG sites and meaningful biological
pathways, one needs a robust statistical framework and large literature annotation database. One
of the most widely used methods is hypergeometric (or sometimes Chi-square) enrichment test.
We first select a certain number of top statistically significant genes. Second, we count the overlap

between these genes and member genes in each pathway or literature collections of genes. These
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counts combined with the overlap of array background genes are used to form a hypergeometric
test. The purpose is to identify whether genes from a pathway are over-represented, accounting for
the bias from the array design. However, EWAS identify significant CpGs instead of genes, and
more than one CpG can be mapped to some genes. Thus we have decided to employ a genomic-
region based enrichment method, using the R package for Genomic Regions Enrichment of
Annotations Tool (GREAT) (McLean et al., 2010b) in hgl9 assembly. One major difference
between GREAT and simple enrichment test is that GREAT uses genomic region overlaps instead
of gene overlaps, more accurately accounting for CpG-to-gene mapping. The extension of gene
regulatory regions was set at 50 kb and the other options were based on default settings. Since our
EWAS focused on 28,318 CpGs that applied to both humans and mice, these probes were used as
the background (Arneson et al., 2021). By specifying the background, GREAT analysis performed
genomic-region based hypergeometric analysis, not confounded by gene sizes and uneven gene
coverage.

In addition to gene set enrichment analyses, we conducted chromatin state enrichments
using a universal annotation of the human genome annotation that is not specific to one cell or
tissue type based on a stacked ChromHMM model recently generated based on over 1000 data sets
from diverse human cell and tissue types (Vu & Ernst, 2020). ChromHMM is a multivariate hidden
Markov model for characterizing and annotating patterns in histone marks, utilizing chromatin
datasets such as ChIP-seq data (Ernst & Kellis, 2012, 2017). For each EWAS enrichment, we
utilized a hyper-geometric test to assess significant overlap between chromatin states and the two
sets of CpGs that are highly significant in either positive or negative correlations with maximum
lifespan. The background set for these hyper-geometric enrichment tests were the 28,318 CpGs

that mapped to both human and mouse.
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4.1.4. Integrating human literature GWAS with mammalian EWAS

Our EWAS-GWAS based overlap analysis related the genomic regions found by our EWAS of
maximum lifespans with the significant gene sets (top 2.5% of genes) found by published large-
scale GWAS of various phenotypes, across body fat distribution, lipid panel outcomes, metabolic
outcomes, neurological diseases, six DNAm based biomarkers, and other age-related traits (Ake
T. Lu et al., 2021). A total of 102 GWAS traits were included in the enrichment database
(Supplementary Note 1). This database includes six DNAm biomarkers based on four epigenetic
age acceleration measures 1) pan-tissue epigenetic age adjusted for age-related blood cell counts,
intrinsic epigenetic age acceleration (IEAA) (Steve Horvath, 2013; Horvath et al., 2016); 2)
Hannum’s blood-based DNAmM age (Hannum et al., 2013); 3) DNAmMPhenoAge (Levine et al.,
2018); and 4) the mortality risk estimator DNAmMGrimAge (Ake T Lu et al., 2019), as well as
DNAm-based estimates of blood cell counts and plasminogen activator inhibitor 1 (PAI1) levels
(Ake T Lu et al., 2019). For each GWAS trait, the MAGENTA software was used to calculate an
overall GWAS P-value per gene. The P-values were calculated taken into account the most
significant SNP association P-value within + 50 kb of the gene adjusted for gene size, number of
SNPs per kb, linkage disequilibrium, and other potential confounders (Segre et al., 2010). The
MAGENTA analysis was performed in MATLAB (2017 version). We restricted the analysis to
genomic regions of GWAS genes present on the mammalian array. For each EWAS result, we
studied the genomic regions from the top 500 CpGs per direction with strong associations with
log-transformed life history traits (same thresholding described above, nominal P < 3.5x1077,
Bonferroni corrected P < 0.05). To assess the overlap with a test trait, we selected the top 2.5%
genes for each GWAS trait and calculated one-sided hypergeometric P-values based on genomic

44



regions. We report GWAS traits that led to a significant hypergeometric test (FDR corrected P <
0.05) for any EWAS of log-transformed life history traits. The number of background genomic
regions in the hypergeometric test was based on the overlap between all genes in the GWAS and
all genomic regions represented by the mammalian array. Enrichment p-values for the overlap
between the genes implicated in EWAS and GWAS were based on genomic region-based

hypergeometric tests as detailed in (C. Li et al., 2021).

4.2. Results

4.2.1. EWAS of maximum lifespan

We carried out epigenome-wide association studies (EWAS) to relate the methylation levels of
individual CpGs to the various life history traits. To reduce biases resulting from different levels
of sequence conservation, our EWAS of life history traits focused on n = 333 eutherian species,
excluding Marsupial species. We performed four types of EWAS analyses adjusting for different
confounders: (1) Lifespan; a direct regression analysis of lifespan (generic EWAS). (2) Weight-
adjusted lifespan (AdjWeight); a regression analysis of maximum lifespan after adjustment for
adult weight, which identifies lifespan-related CpGs that are independent of the body mass of the
species. (3) Phylogenetic-adjusted lifespan (AdjPhylo); a phylogenetic regression model (de
Magalhaes et al., 2007; Grafen, 1989) of lifespan, which adjusts for evolutionary relationships
between species. (4) Phylogeny and Weight-adjusted lifespan (AdjPhyloWeight); a phylogenetic
regression of lifespan after adjustment for average adult species weight. The results of these four
categories of EWAS can be found in C. Li et al. (2021) tables. For brevity, we will focus on
categories 1 and 2 since categories 3 and 4 led to qualitatively similar conclusions (C. Li et al.,

2021).
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Each analysis category is further subdivided by tissue type. The all-tissue analysis (denoted
“All”) ignored tissue type. Within species, mean methylation levels are highly correlated across
tissue types (R > 0.95), but the all-tissue analysis may miss longevity mechanisms that are specific
to tissues and organs. Therefore, we also present EWAS for five tissues for which there were a
sufficiently large number of samples: blood (n = 141 species), skin (n = 146), liver (n = 151),
muscle (n = 46) and brain (n = 34). We observed positive pairwise correlations between the all-
tissue EWAS results and those of tissue-specific EWAS (Figure 4.3a-e): such as blood (Pearson
correlation R = 0.76), skin (R = 0.69), liver (R = 0.69), muscle (R = 0.49), and brain (R = 0.38).
All tissue, Blood and skin lifespan EWAS are summarized in Figure 4.4, Figure 4.5, and Figure
4.6. To assess the robustness of maximum lifespan EWAS, we observed high agreements, in most
tissues, between our generic EWAS (category 1) and a separate maximum lifespan EWAS using
only samples obtained from animals that were younger than their species' average age of sexual
maturity and younger than 5 (Figure 4.7).

We identified the genes that are proximal to CpGs that are statistically most correlated with
maximum lifespan. These are as follows: lifespan was positively-correlated with a CpG in the
distal intergenic region neighboring TLE4 (Pearson R = 0.68, P = 2.9x10¢, Figure 4.2) and two
CpGs near the promoter region of HOXA4 (R = 0.67, Figure 4.2b and Figure 4.2c), and negatively-
correlated with a CpG in an intron of GATA3 (R = -0.65, P = 4.4x10*?, Figure 4.2d), exon in
ZBTB7B (R =-6.1, P = 3.2x10°%, Figure 4.2¢), and the promoter region of C90rf106 (R =-0.6, P
= 4.6x10°%°, Figure 4.2f).

Many of these significant CpGs remain so after phylogenetic adjustment, such as the CpGs
neighboring TLE4, HOXA4, C90rf106, PKNOX2, LMX1B, C150rf41, and ZEB2 (P = 4.2x10°°, P

=4.8x103 P =3.1x103, P =3.6x10%, P = 2.2x103, P = 4.8x10-7, P = 3.5x10°3, respectively, Figure
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4.4) (C. Li et al., 2021). Phylogenetic EWAS (category 3 analysis) top CpGs are reported in the
form of phylogenetic independent contrast (Figure 4.8), and the EWAS Z statistics agreements
with generic lifespan EWAS (category 1 analysis) are summarized in Figure 4.9. Generic EWAS
and phylogenetic EWAS Z statistics agreements are summarized in Figure 4.10.

All of the top-ranking CpGs mentioned above from the category 1 analysis remain in the top 500,
in both directions, of weight adjusted EWAS (category 2 analysis) (Figure 4.4d), which indicates
that these CpGs do not reflect confounding by body mass. But adjustment for adult weight
(category 2) leads to a different set of top ranking CpGs: the top positively lifespan-related CpGs
are in a promoter of PKNOX2 (R = 5.4, P = 5.210'%") and an intron of LMX1B (R = 0.51, P =
4.0x10%*) and the top CpGs negatively related to lifespan are in an intron of C150rf41 (R = -0.55,
P = 8.0x10%") and an intron of ZEB2 (R = -0.5, P = 5.1x10%%). Most of these top lifespan related
CpGs in eutherians do not correlate with maximum lifespan across the 15 marsupial species (C. Li
et al., 2021) which may be due to sequence differences or could reflect the low statistical power in
marsupial species (only n=15 marsupial species).

Mammalian maximum lifespan is correlated with several other traits such as gestational
time, and age at sexual maturity (Figure 4.11). Thus, we examined the degree of overlap between
the EWAS of these evolutionary traits. At a Bonferroni corrected significance threshold of P =
1.8x10% (=0.05/28318), the methylation of 7429, 8218, and 5,962 CpGs were significantly
associated with maximum lifespan, gestation time, and age at sexual maturity, respectively. An
upset plot (generalization of Venn diagram) reveals that 329 CpGs relate significantly to all three
life history traits (Figure 4.1b). Manhattan plots for EWAS of gestation time and age at sexual

maturity are reported in Figure 4.12.
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4.2.2. Gene set enrichment analysis of maximum lifespan

To uncover biological processes potentially linked to lifespan-related CpGs, we identified
functional annotations associated with genes proximal to lifespan-related CpGs using the Genomic
Regions Enrichment of Annotations Tool (GREAT) (McLean et al.,, 2010a). GREAT
automatically adjusts for biases arising from the array platform and biases of uneven coverage of
genes.

The number of significant lifespan-related CpGs per tissue type depends on the underlying
sample size (number of species). We imposed an upper limit of 500 on the number of significant
CpGs and referred to the top 500 CpGs with a positive and negative correlation with lifespan as
lifespan.pos set and lifespan.neg set, respectively. These CpGs are further subject to a Bonferroni
corrected significance threshold (P < 1.8e-6) before the enrichment analysis. Detailed results can
be found in Figure 4.1d, Figure 4.13, Figure 4.14, Figure 4.15, and C. Li et al. (2021).

CpGs that have a positive correlation with maximum lifespan implicate genes that play a
critical role in development including the HOXL gene group (GREAT P = 1.2x10°°, Figure 4.1d,
Figure 4.13) based on the following genes EVX1, HOXA2, HOXA3, HOXA4, HOXA5, HOXB1,
HOXB2, HOXB3, HOXB4, HOXB7, HOXB8, HOXB9, HOXC4, HOXD10, HOXD8, HOXD?9) (C.
Li et al., 2021). More significant enrichment for HOXL genes were obtained after adjusting the
analysis for adult weight (reporting False Discovery Rate p-values as FDR) (GREAT FDR =
1.3x10°%, Figure 4.1d) (C. Li et al., 2021). The EWAS of lifespan implicated embryonic organ
morphogenesis with (category 2) or without (category 1) adjusting for adult weight (generic
EWAS, GREAT FDR = 3.4x10%4, Figure 4.13) (C. Li et al., 2021), weight-adjusted EWAS,
GREAT FDR =2.5x1077, Figure 4.13) (C. Li et al., 2021) and multicellular organism development

(generic EWAS, GREAT FDR = 9x10, Figure 4.1d, (C. Li et al., 2021) weight-adjusted EWAS,
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GREAT FDR = 4.4x10°°, Figure 4.1d) (C. Li et al., 2021). Developmental pathways are even more
enriched in skin samples, such as embryonic organ morphogenesis in generic EWAS (GREAT
FDR = 2.7x10"%, Figure 4.15) (C. Li et al., 2021) and embryonic organ development in weight-
adjusted EWAS (GREAT FDR = 1.4x10%%, Figure 4.15) (C. Li et al., 2021).

CpGs that are directly related to weight-adjusted maximum lifespan are enriched with
genes involved in mouse phenotypes such as abnormal survival (GREAT P = 4.1x104) (C. Li et
al., 2021) and mortality/aging (GREAT P = 7.2x10, Figure 4.13) (C. Li et al., 2021).

The GREAT enrichment analysis revealed that CpGs negatively related to lifespan are
located next to genes that play a role in abnormal eye morphology according to mouse knockout
studies (GREAT FDR = 2.3x104, Figure 4.1d) (C. Li et al., 2021), regulation of gene expression
(GREAT FDR = 2.1x10%, Figure 4.1d) (C. Li et al., 2021) and DNA-templated regulation of
transcription (GREAT P=4.0x10°, Figure 4.1d) (C. Li et al., 2021).

Both negatively and positively lifespan related CpGs are located near genes that play
different roles in mRNA processing (Figure 4.1d,Figure 4.14) (C. Li et al., 2021) and splicing
including (CELF1; CELF2; CELF6; DAZAP1; FAM172A; HNRNPA1; HNRNPK; HNRNPU ;
JMJD6; MBNL1; MBNL2; NOVAZ; QKI; RBFOX1; RBM15; RBM39; SF1; SON; SRPK1; SRPK2;
SRSF12; TRA2A; TRA2B; YTHDC1) (C. Lietal., 2021).

Our transcription factor analysis based on GREAT demonstrates that CpGs positively
related to weight adjusted maximum lifespan are located near binding sites of transcription factors
HOXA4 (GREAT FDR = 1.8x10%, Figure 4.1d) (C. Li et al., 2021), GATA6 (GREAT FDR =
4.2x101), EVI1 (GREAT FDR = 0.001) while CpGs negatively related to lifespan are located
near binding sites of transcription factor ER (GERAT FDR = 1.1x10°° estrogen receptor) and 1K3

(GREAT FDR = 2.7x10%).
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4.2.3. EWAS of cancer risk

Cancer risk has been extensively studied across mammalian species (Vincze et al., 2021). To
obtain insights into cancer-related genes that contribute to epigenetic maximum lifespan, we
regressed cytosines identified by EWAS of species-specific maximum lifespan on cancer risk as
reported in the literature (Vincze et al., 2021). We designated the outcome variable of this analysis
as cancer mortality risk (Vincze et al., 2021). The top hits are summarized in C. Li et al. (2021),
and here we highlight 3 of the most significant CpG-neighboring genes, including tumor
suppressor gene CYLD (P = 4.4x107) (Fernandez-Majada et al., 2016), oncogene USP14 (P =
1.7x10°%) (Zhu, Zhang, Gu, Li, & Wu, 2016), tumor suppressor PRKAR2A (P = 1.3x10)
(Saloustros et al., 2015), and a B-cell lymphoma tumor suppressor PHIP (P = 2.3x10%) (Weber et
al., 2019). Interestingly, these CpGs remain largely significant after adjusting for average adult
weight, placing PHIP as the top gene (P = 1.4x10°) (C. Li et al., 2021). None of these four cancer
related CpGs overlap with CpGs from our EWAS of life history traits. Our EWAS of mammalian
cancer risk implicates several genome-wide significant CpGs and neighboring genes that may
serve as starting points for future studies of evolved cancer resistance. Another cancer outcome,
cumulative incidence rate (Vincze et al., 2021), EWAS are reported in C. Li et al. (2021). This
outcome variable covers less non-missing species. For concerns of statistical power, we focus on

cancer mortality risk.
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4.3. Additional figures

Lifespan
All

HOXI
CLYBL

NG n e BA
Chromosome

Sexual maturity
All

RFPL4B MVB12B CY 1
ARHGAP15  SYNCRIP CPEB3Y .+ AgNa-'

. NFIB-,
IQCJ-SCHIP1 P
JACISCHIPT spsfi2 g

ST

PR S A

e Sratiratete colvnnt
Chromosome
b Overlap of EWAS hits
(overlap >5 CpG)
300
‘é 200
(0]
5 100 I
0 O
Gestation.time 1
oo f [ 11
Sexual.maturity I { 1 l
Lifespan. AdjW I l
Age
EWAS

X B3
HOXB9

5 0. SR AR

c

P SR A T RRSR TR VR

NIRRT R R ey

Lifespan (AdjWeight)
All

Lifespan
(AIWeight) 4215716 peomive

Gestation time

PKNOX2  C150rt41 60- . :l umatm
LMX1B ACIN1 HNRNPK ¥ positive
ST18 pKNOX2 "MAP2K6 HUWE1 KLHL18
gog3 .+ %o NTCFES.RRAS & pgy, SETDS KONIP4 3 5.
S 40
=
@
T

L e

© 0,80 3 OaEAI

Chromosome Chromosome
Cancer Cancer (AdjWeight)
All All
cvLb — LIeE o e e

a

S 4

g

1

2

N s b6 oA D 00N I ONAGERI

Chromosome Chromosome

Lifespan and age related CpGs mainly overlap in opposing direction

Lifespan
(0@")

RBM14-RBM4
LINCO1122

LIN28B
PTCHD4

CCNLT

Enrichment analysis

lifespan.AdjW lifespan gestation sexualMaturity lifespan. AdjW lifespan sexualMaturity
positive positive positive positive negative negative negative
HOXL ==
VSHOXA4 Q2 *
VSER Q6 ® il
VSIK3_01 ) | Pk
VSGATA6_01 ° @ . ms"‘ -
VSEVI1_05 ° 8 Mouse Phenoiype
VSE2F 01 e ) MSiGDB Oncogenic Signatures
VSE2F1_Q6_01 °  Promoter Mots
regulation of gene expression embryonic °
organ morphogenesis ° @ @
animal organ morphogenesis ° ° °
regulation of RNA metabolic process L °
regulation of lymphocyte differentiation °
abnormal survival °
mortality/aging °
abnormal e/ye morphology °
vision/eye phenotype °
cervical vertebral transformation ®
asymmetric rib attachment °
abnormal presacral vertebrae morphology
increased rib number ° °
abnormal sternebra morphology e
abnormal axon guidance °
abnormal ectoderm development @
Waist circumference - all ancestrieg °
Birth length ®
P53 knockdown in fibroblast °
LEF1 overexpression in DLD1 cells ® °
JAK2 knockdown in HEL cells {- @
0 o O O Po O L PO 6 X L PO 6 X & PO 6 O PO 6 OB PO o O e P

~log10(FDR)

Figure 4.1: EWAS of eutherian log-transformed maximum lifespan, gestation time, age of sexual
maturity, and risk of cancer. The figure represents the CpG specific association with maximum
lifespan across n=333 eutherian species. All tissue samples were averaged by species. The
associations with lifespan were examined with or without adjustment for adult weight of the
species. a, Manhattan plots of EWAS results in 28,318 probes that were experimentally validated
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to work in both mouse and human genomes. The coordinates are based on the alignment to the
human hg19 genome. The red dotted line corresponds to a Bonferroni corrected two-sided p value
< 1.8x10°%. Individual CpGs with positive or negative correlations with maximum lifespan are
colored in red and blue, respectively. The top significant CpGs are labeled by their respective
neighboring genes. b, upset plot of the overlap in the top 1000 (500 per direction) significant CpGs
for different EWAS models. ¢, Venn diagrams showing the overlap of CpGs associated with
mammalian lifespan and the top 1000 CpGs that relate to chronological age in mammals (Ake T.
Lu et al., 2021). Overlapping CpGs were labeled by neighboring genes. d, Gene set enrichment
analysis of the genes proximal to CpGs associated with mammalian maximum lifespan, gestation
time, and sexual maturity. We only report enrichment terms that are significant after adjustment
for multiple comparisons (hypergeometric test false discovery rate <0.01) and contain at least five
significant genes. The top two significant terms per enrichment database are shown in the panel.
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Figure 4.2: Top CpGs related to log-transformed maximum lifespan in eutherians.Scatter plots of
CpG methylation level (x-axis) versus log-transformed maximum lifespan (y-axis) for a, b, ¢ the
top three positively-correlated CpGs and d, e, f the top three negatively-correlated CpGs. g-I.
Corresponding scatter plots to a—f for weight-adjusted maximum lifespan. The y-axis reports the
residuals resulting from regressing log-transformed maximum lifespan on log-transformed adult
weight. Each observation corresponds to one of 333 different eutherian species and is colored and
labeled by mammalian number as in Figure 3.1. MAE abbreviates median absolute errors from the
regression errors; r and p are Pearson’s correlation and p-values, respectively. Numbers and colors
are the mammalian species number and order annotation consistent with those of other figures.
Red solid line represents the perfect prediction line.
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Figure 4.3: Generic Lifespan EWAS in different tissues from Eutherian species. Scatter plot of
CpG Z statistics agreements between tissues, color-coded by human CpG island annotations (not

island: black, island: red). Both x- and y-axes are CpG Z statistics for the set of EWAS background

CpG probes (28,318) consistent with the methods section (mappable to humans and mice and

correlation with calibration exceeds 0.8). Panels show agreements between a, blood vs. all, b, skin
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vs. all, ¢, liver vs. all, d, brain vs. all, e, muscle vs. all, f, skin vs. blood, g, liver vs. blood, h, brain



vs. blood, i, muscle vs. blood, j, liver vs. skin, k, brain vs. skin, |, muscle vs. skin, m, brain vs.
liver, n, muscle vs. liver, 0, muscle vs. brain. Panel titles report r and p as Pearson’s correlation
and p-values, respectively.
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Figure 4.4: EWAS of significant CpGs related to mammalian maximum lifespan, adjusted by
weight and phylogeny. Panel a are Manhattan plots reporting Manhattan plots of lifespan, lifespan
EWAS adjusted by weight (AdjWeight), lifespan EWAS adjusted by phylogeny (AdjPhylo), and
lifespan adjusted by both weight and phylogeny (AdjPhyloWeight). The background probes were
limited to the set of EWAS background CpG probes (28,318) consistent with the methods section
(mappable to humans and mice and correlation with calibration exceeds 0.8). b, Location of the
top CpGs in each tissue relative to the closest transcriptional start site. A panel for the top 1000
age related CpGs was added to the figure for comparison (Ake T. Lu et al., 2021). The changes in
gene regions were tested by a hypergeometric test in proportion to the background. The odd ratios
and p-values (* <0.05, **<0.01, ***<0.001, ****<0.0001) of changes are reported for each bar. c,
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Boxplot of association with mammalian maximum lifespan by human CpG island status. The mean
difference was tested by Student T-test. d, Venn diagram of the overlap in the top 1000 (500 per
direction) significant CpGs for different models of EWAS of lifespan from panel a. The overlap
hits were labeled by neighboring genes. e, Overlap of CpGs associated with mammalian lifespan
and the top 1000 CpGs that relate to chronological age in mammals (Ake T. Lu et al., 2021). Blood
and skin specific results are reported in Figure 4.5, Figure 4.6, and Figure 4.7.
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Figure 4.5: EWAS of mammalian maximum lifespan in blood. The associations were examined

with four different models: 1) lifespan: each species as a datapoint in the model regardless of
evolutionary distance. 2) lifespan adjusted for average species weight. 3) lifespan adjusted for
evolutionary distance by phylogenetic regression. The evolutionary tree was acquired from
TimeTree database. 4) lifespan adjusted for both average adult species weight and evolutionary
distance. Panel a, Manhattan plots (Kumar et al., 2017) of EWAS of maximum lifespan in the set

59



of EWAS background CpG probes (28,318) consistent with the methods section (mappable to
humans and mice and correlation with calibration exceeds 0.8). The coordinates are based on the
alignment to the human hgl9 genome. The direction of associations with p < 0.001 (red dotted
line) is highlighted by red (hypermethylated) and blue (hypomethylated) colors. Some top CpGs
were labeled by the neighboring genes, b, Location of top CpGs relative to the closest
transcriptional start site. A panel for the top 500 age-related CpGs in each direction was added to
the figure for comparison (Ake T. Lu et al., 2021). The changes in each gene region was tested by
Fisher’s exact test based on the same background. The odds ratios and p-values (* <0.05, **<0.01,
***<0.001, ****<0.0001) of changes are reported for each bar. ¢, Boxplot of association with
mammalian maximum lifespan by human CpG island status. The mean difference was tested by a
Student’s T test. A panel for the top 1000 age-related CpGs was added to the figure for comparison,
d, Venn diagram of the overlap in the top 1000 (500 per direction) significant CpGs for different
models of EWAS of lifespan. The Venn diagram does not show AdjPhyloWeight because it
contains zero CpG probe past the significance threshold.
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Figure 4.6: EWAS of mammalian maximum lifespan in skin. The associations were examined with
four different models: 1) lifespan: each species as a datapoint in the model regardless of
evolutionary distance. 2) lifespan adjusted for average species weight. 3) lifespan adjusted for
evolutionary distance by phylogenetic regression. The evolutionary tree was acquired from
TimeTree database (Kumar et al., 2017). 4) lifespan adjusted for both average adult species weight
and evolutionary distance. Panel a, Manhattan plots of EWAS of maximum lifespan in the set of
EWAS background CpG probes (28,318) consistent with the methods section (mappable to
humans and mice and correlation with calibration exceeds 0.8). The coordinates are based on the
alignment to the Human hg19 genome. The direction of associations with p < 0.001 (red dotted
line) is highlighted by red (hypermethylated) and blue (hypomethylated) colors. The top few CpGs
were labeled by the neighboring genes, b, Location of top CpGs in each tissue relative to the closest
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transcriptional start site. A panel for the top 1000 age-related CpGs was added to the figure for
comparison. The changes in each gene region were tested by Fisher’s exact test based on the same
background. The odds ratios and p-values (* <0.05, **<0.01, ***<0.001, ****<0.0001) of changes
are reported for each bar. ¢, Boxplot of association with mammalian maximum lifespan by human
CpG island status. The mean difference was tested by a student’s T test. A panel for the top 1000
age-related CpGs was added to the figure for comparison, d Venn diagram of the overlap in the
top 1000 (500 per direction) significant CpGs for different models of EWAS of lifespan.
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Figure 4.7: Generic EWAS agreements between all samples and young samples. Agreements
between EWAS based on young samples and EWAS based on all available samples. Young
samples are defined as samples younger than five years of age and before the age of sexual maturity.
Panels show agreements between, a all tissue all vs. young generic EWAS, b, all vs. young generic
EWAS in blood, c, all vs. young generic EWAS in skin, d, all vs. young generic EWAS in liver,
e, all vs. young generic EWAS in brain, f, all vs. young generic EWAS in muscle. Panel titles
report r and p as Pearson’s correlation and p-values, respectively.
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Figure 4.8: Top Significant CpG sites in a phylogenetic independent contrast plot,
Eutherians. Scatter plot of CpG methylation and maximum lifespan, transformed and scaled to
phylogenetic independent contrasts, based on all available samples. In order to properly visualize
sample correlations, phylogenetic independent contrast plots select parent nodes that are of
relatively similar distances to each other (Felsenstein, 1985). We color-coded these common
ancestor nodes as time to present, in millions of years. Panels show scatter plots of top three CpGs
from a—c, all tissues, b—g, top four CpG from blood tissues, h—k, top four CpGs from skin tissues,
I-o, top four CpGs from brain tissues. P-values reported are based on phylogenetic generalized
least squared (GLS) regression. Panel titles report r and p as Pearson’s correlation and p-values,
respectively.
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Figure 4.9: Phylogenetic EWAS agreement in various tissues, Eutherians. Scatter plot of CpG Z
statistics between tissues, color-coded by human CpG island annotations (not island: black, island:
red). Both x- and y-axes are CpG Z statistics for the set of EWAS background CpG probes (28,318)
consistent with the methods section (mappable to humans and mice and correlation with calibration
exceeds 0.8). Panels show agreements between a, blood vs. all, b, skin vs. all, c, liver vs. all, d,
brain vs. all, e, muscle vs. all, f, skin vs. blood, g, liver vs. blood, h, brain vs. blood, i, muscle vs.
blood, j, liver vs. skin, k, brain vs. skin, I, muscle vs. skin, m, brain vs. liver, n, muscle vs. liver,
0, muscle vs. brain. Panel titles report r and p as Pearson’s correlation and p-values, respectively.
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Figure 4.11: Mammalian life history traits relations. Panels show log-transformed relationships
between observed variables of a, age at sexual maturity and maximum lifespan, b, gestation time
and maximum lifespan, c, sexual maturity time and gestation time, d, cancer risk and maximum
lifespan, e, cancer risk and sexual maturity, f, cancer risk and gestation time. MAE abbreviates
median absolute errors from the regression errors; r and p are Pearson’s correlation and p-values,
respectively. Numbers and colors are the mammalian species number and order annotation
consistent with those of other figures. Shaded areas represent 95% confidence intervals of the
simple linear regression line.
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Figure 4.12: EWAS of significant CpGs related to mammalian life history traits, maximum
lifespan, gestation time, sexual maturity time, and cancer risk. Manhattan plots of tissue-specific
generic EWAS results for gestation, age at sexual maturity, and cancer risk. Red dotted line
represents our Bonferroni-adjusted significance level. Manhattan plots report the set of EWAS
background CpG probes (28,318) consistent with the methods section (mappable to humans and
mice and correlation with calibration exceeds 0.8).
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Figure 4.13: Gene set enrichment analysis of significant CpGs related to mammalian maximum
lifespan. The gene-level enrichment was done using GREAT analysis using human background.
Foreground selection is consistent with the description in the methods section. The background
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probes were limited to the set of EWAS background CpG probes (28,318) consistent with the
methods section (mappable to humans and mice and correlation with calibration exceeds
0.8). Human GWAS enrichment was calculated by a hypergeometric test of the top 2.5% genes
involved in GWAS of complex traits-associated genes with the top lifespan-related gene regions
in our analysis. The biological processes were reduced to parent ontology terms using the “rrvgo”
package (Method). Input: Lifespan negative/positive, 500/500 CpGs; Lifespan (AdjWeight)
negative/positive, 500/500. In each panel, the columns with no significant terms were removed to
simplify the figure. Panels only show entries below a p-value threshold of p<1x10-4.
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Figure 4.14: Gene set enrichment analysis of significant CpGs related to mammalian maximum
lifespan in blood. The gene level enrichment was done using GREAT analysis using human
background. The background probes were limited to the set of EWAS background CpG probes
(28,318) consistent with the methods section (mappable to humans and mice and correlation with
calibration exceeds 0.8). Human GWAS enrichment was calculated by a hypergeometric test of
the top 5% genomic regions involved in GWAS of complex traits-associated genes with the top
lifespan-related gene regions in our analysis. The biological processes were reduced to parent
ontology terms using the “rrvgo” package. Input: Lifespan hypo/hyper, 500/500 CpGs; Lifespan
(AdjWeight) hypo/hyper, 500/500. In each panel, the columns with no significant terms were
removed to simplify the figure. Panels only show entries below a p-value threshold of p<1x10-.
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Figure 4.15: Gene set enrichment analysis of significant CpGs related to mammalian maximum
lifespan in skin. The gene level enrichment was done using GREAT analysis using human
background. The background probes were limited to the set of EWAS background CpG probes
(28,318) consistent with the methods section (mappable to humans and mice and correlation with
calibration exceeds 0.8). Human GWAS enrichment was calculated by a hypergeometric test of
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the top 2.5% genomic regions involved in GWAS of complex traits-associated genes with the top
lifespan-related gene regions in our analysis. The biological processes were reduced to parent
ontology terms using the “rrvgo” package. Input: Lifespan hypo/hyper, 500/500 CpGs; Lifespan
(AdjWeight) hypo/hyper, 500/500; Lifespan (AdjPhylo) hypo/hyper, 12/22; Lifespan
(AdjPhyloWeight) hypo/hyper, 38/13. In each panel, the columns with no significant terms were
removed to simplify the figure. Panels only show entries below a p-value threshold of p<i1x10-.
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CHAPTERS

5. A novel Lo regularized Poisson graphical model for RNA-seq data

This chapter presents a sparse Poisson graphical model. When using high-throughput sequencing
technologies to measure gene expression, researchers are often interested in constructing a sparse
network model. One established approach, Poisson Graphical LASSO (Allen & Liu, 2012), is
implemented by fitting Li-regularized regression models. However, it is well known that Lo-
regularized regressions produce more parsimonious and accurate models, compared to Li-
regularized methods. However, direct Lo norm regularization is difficult to estimate because of
function convexity. Lz-norm penalization, on the other hand, is convex and stable, but in lack of
sparsity. In this research we developed a new Lo based Poisson graphical model, using cyclic
coordinate-wise broken adaptive ridge (BAR) regression. This graphical model combines the
benefits of both L1 and L2 penalization models and achieves an Lo-equivalent penalization.
Performance of the model is evaluated and compared with some existing methods on both
simulated and real data.

This chapter is organized as follows. In Section 5.1, we explain the motivation for a log-
linear graphical model (LLGM) in general. In Section 5.2, we describe the proposed Lo-LLGM
methodology in detail. In this section we also define notations necessary for graphical model
constructions, and review steps of LLGM model. In the Subsection 5.2.3, we introduce a
regularization parameter selection procedure for graphical models based on a stability algorithm.
Then in Section 5.3, we compare performances of our proposed Lo-LLGM and standard model L:-
LLGM by simulating RNA-seq type of data from a few known network structures. Finally, in

Section 5.4, we demonstrate a model application to a real world data set, kidney renal clear cell
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carcinoma (KIRC) micro-RNA (miRNA) data from the Cancer Genome Atlas (TCGA) (Collins

and Barker, 2007).

5.1. Motivations for a new Poisson graphical model
High dimensional analysis in gene expression studies often requires identifying associations
between genes. Scientists are usually interested in a sparse network, which provides biologists
with insights into possible pathways from particular groups of genes (Dobra et al., 2004; J.
Friedman, Hastie, & Tibshirani, 2008; Meinshausen & Buhlmann, 2006). Multivariate Gaussian
graphical models (J. Friedman et al., 2008; Meinshausen & BiihImann, 2006). have been widely
used to model continuous microarray data, since log ratios of the microarray gene expressions are
approximately normally distributed after normalization. More recently, next generation high-
throughput sequencing (RNA-seq) has become a popular data collection method for expression
analysis (Dillies et al., 2013). Because RNA-seq gene expression data consist of counts of
sequencing reads for each gene, researchers sought discrete probabilistic models, in favor of
continuous Gaussian models, to describe the RNA-seq data (Allen & Liu, 2012; Chiquet, Robin,
& Mariadassou, 2019; Choi et al., 2017; Gallopin, Rau, & Jaffrézic, 2013; Imbert et al., 2018;
Srivastava & Chen, 2010; Witten, 2011). Some of these previous studies address zero-inflated
Poisson distributions (Choi et al., 2017), whereas others focus on multivariate Poisson models
(Chiquet et al., 2019).

Owing to restrictions in assumptions imposed by some joint models, some seek to build
network models using neighborhood selection (Allen & Liu, 2012; Meinshausen & Bihlmann,
2006). A key advantage of neighborhood selection, in contrast to a joint distribution model, is that

each neighborhood sparse estimation can be done simply by a multivariate log-linear regression,

76



and the regression model can be regularized conveniently by popular regularization methods such
as La-regularized Lasso. Neighborhood network selections assume a pair-wise Markov property
(Lauritzen, 1996): conditional on all other variables, each variable follows a Poisson distribution,
and is estimated locally through neighborhood selection (Meinshausen and Buhlmann, 2006) by
fitting Li-regularized log-linear models (Allen and Liu, 2012). This Poisson graphical model based
on neighborhood selection by Allen and Liu (2012) was recognized as one of the recent studies of
graphical modeling specifically for discrete data with Poisson distributions, and it addresses
conditional variable relationships without the need for a joint discrete distribution (Gallopin et al.,
2013; Choi et al., 2017; Imbert et al., 2018; Chiquet et al., 2019). For the rest of the chapter, we
address this model as L1 log-linear graphical model (L1-LLGM).

However, the L1-LLGM method has some pitfalls because L1 regularization is known to
lack oracle properties and tends to include unwanted noise variables (Zou, 2006; Zou and Zhang,
2009; Zhang, 2010). Consequently, the resulting estimated network is often not sparse enough
when compared with the true underlying network structure. To mitigate this issue, Allen and Liu
(2012) introduced a threshold to filter out small coefficients retained by Li-regularized log-linear
regressions. We demonstrate in simulations that the inferred network is not robust with respect to
the threshold level, and can sometimes have a very poor performance when a suboptimal threshold
level is used. Unfortunately, no practical guidance is available in the literature on how to choose
an appropriate threshold level for a given data set. In subsequent parts of the chapter, we employ
the same assumptions (local Markov property) and settings (normalization, power transformation)
of the L1-LLGM, and propose a more refined estimation method for this model by adopting an Lo-

equivalent regularization.
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We frame the goal of this chapter as an improvement over Li-LLGM. To this aim, we
developed and implemented an approximate Lo-regularized log-linear graphical model (Lo-LLGM)
for constructing sparse gene network from RNA-seq count data. We consider Lo regularization
because it generally yields higher true-positive estimations than L1 regularization and has been
shown to be more accurate for feature selection and parameter estimation (Lin et al., 2010, 2020;
Shen et al., 2012, 2013). Because exact Lo regularization is computationally non-deterministic
polynomial-time hardness (NP-hard) and only feasible for low dimension data, we adapt the
recently developed broken adaptive ridge (BAR) method to approximate {Oregularization. Defined
as the limit of an iteratively reweighted Lo-regularization algorithm, the BAR method is an
approximate Lo-regularization method that enjoys the best of Lo and L2 regularizations with
desirable selection, estimation, and grouping properties (Dai et al., 2018, 2020; Zhao et al., 2018,
2020; Kawaguchi et al., 2020b).

These desirable properties are important to our network analysis, as they offer a theoretical
advantage of Lo regularization in our Poisson graphical model. Similar to L1-LLGM, our proposed
Lo-LLGM assumes a pair-wise Markov property and estimates gene network structures through a
local sparse LLGM that evaluates conditional network correlations to each node. Specifically, at
each step, a regularized Poisson log-linear model is fitted on one node, using BAR regularization
to introduce sparsity. Nonzero coefficients estimate edges extending from the node. The stability
approach to regularization selection (StARS) method (Liu et al., 2010) is used to select the
regularization tuning parameters for the graphical model. Our empirical studies suggest that the
proposed Lo-LLGM generally produces network structures closer to the true structure than those

of L1-LLGM, as measured by receiving operating characteristic (ROC) curves.
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5.2. Methodology of graphical models in the context of gene expression data

5.2.1. Data and notations

We define matrix X as the design matrix, where columns are variables and rows are samples.
Matrix X = (X, ..., Xp,) isn X p, where X;(j = 1, ...p) is the j-th column. Based on this design
matrix, we aim to construct an undirected network model that would reveal conditional
dependence between variables. It applies to count data that are assumed to have Poisson
distributions. We then define the structure of the network as G = {V, E}. V is the set of all vertices
in the network, where each vertex represents a variable (e.g., miRNA), quantified by a vector of
the corresponding counts of aligned sequencing reads from each sample. E represents the set of all

edges connecting certain vertices.

5.2.2. Lo Regularized Log-Linear Poisson Graphical Model
We consider a log-linear Poisson graphical model, which characterizes conditional Poisson
relationships by assuming pair-wise Markov properties (Lauritzen, 1996). Specifically, we assume

that for each j = 1, ..., p, the conditional distribution of column j, X;|x, Vk # j, is

(Equation 5.1)
p(X]-|Xk Vk # j, B) ~ Poisson(eXFfirr)

where the intercept term bj0 is not included in the model, as we assume at this point RNA-seq data
have been adjusted for sequencing depth in normalization steps, and B = (B, Vk # j € V) is a
p X p adjacency matrix with each row vector of off-diagonal elements storing the corresponding
log-linear Poisson regression coefficients.

The first step to neighborhood network selection method is to infer graphical networks by fitting
the mentioned log-linear Poisson regression for every node j, j = 1,...,p. Specifically, at each
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neighborhood selection step j (j = 1, ..., p), we determine only the potential edges connecting
node j to all other nodes in the network. In addition, we couple the neighborhood selection method
with the BAR, an approximate Lo-regularization method, to induce sparsity as detailed in the
following algorithm.
For each j, j = 1, ..., p, we begin with an initial L2-regularized (ridge) estimator of g, ; ;,
(Equation 5.2)
n
B = argmm —Z i (XiejBjj) — exp(XizjBejj) + n Z B
Bzjj =1 k#j

where the first term is the -2log likelihood for the j-th log-linear Poisson regression model, B ; ;
is a vector of p — 1 corresponding regression coefficients, and ¢, is the ridge-regularization
parameter. This initial step tuning parameter serves the purpose of giving iterative step a warm
start. The BAR estimator defined hereunder has been shown to be robust for different choice of ¢,
in various model settings [see, e.g., Kawaguchi et al. (2020)—Figure 1 and N. Li, Peng,
Kawaguchi, Suchard, and Li (2021)—Figure 7]. For a reasonable initial step estimation, we have
set ¢, to log (n), where n is the sample size. We then subsequently update the estimator of g, ; ;
by fitting reweighted L2-regularized regressions with a tuning parameter 4,;:

(Equation 5.3)

,L?Sj)j = argmm —2l(B) + A, Z i ,s=12,..

Bxjj 1)|

The BAR (Kawaguchi et al., 2020a) estimator of b61/4;, j is defined as,

(Equation 5.4)
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The BAR estimator has been shown to possess the oracle properties in the sense that with
large probability, it estimates the zero coefficients as 0’s and estimates the non-zero coefficients
as well as the scenario when the true sub-model is known in advance and a grouping property that
highly correlated variables are naturally grouped together with similar coefficients (Kawaguchi et
al., 2021).

A nonzero element in coefficient estimate vector S ;,j indicates that there is an estimated
network connection (edge) between the corresponding node j and one of the nodes 1, ...,p # j.
The estimators S jj»J =1,..,p,, provide estimates of the off-diagonal elements of adjacency
matrix B. Diagonal elements of B can be set to either missing or unity, since it is not meaningful
to evaluate a node’s relationship with itself. Note that B is also not necessarily symmetric, as
fitting regressions on element i and j does not guarantee the same zero or nonzero coefficient
corresponding to the same node. To deal with this non-symmetric issue, we chose to estimate based
on the union of network edge constructions,

(Equation 5.5)
Ay (p) = max{|sign(§(p)jk)|, |sign(§(p)kj)|} Vj # k.

Theoretically, whether to use the union or intersection of each network edge based on its
two neighborhood selections concerning its two nodes is asymptotically identical (Meinshausen &
Biihlmann, 2006). This less conservative approach of estimating by unions remains consistent with
previous neighborhood selection Poisson graphical model literature (Allen & Liu, 2012). In other
words, if either one of the two local log-linear regressions concerning the two nodes i and j
produces a nonzero estimate, it implies conditional dependency. Consequently, the network

estimate specifies an edge between nodes i and j. Therefore, estimated adjacency matrix is always
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symmetrical. Estimated coefficients, B, is then transformed to an adjacency matrix, A, by simply
changing all nonzero estimates to 1, namely, A = sign|B|.

Lastly, we note that for each j,j = 1, ..., p, the BAR estimator 3¢j,j is defined as the limit
of a sequence of reweighted ridge estimators. In a numerical implementation, one will stop the

BAR iterations for l?ch,j when a prespecified convergence criterion is met. In our implementation,

; 5(s) _ pls—1) 5 _{p® 5(s)
the algorithm stops at step s Whenrlrclff Bix’ — Bjx <a, and we set . ;; = {ﬁjk I(|ﬁ. >

jk Jk

a) Jk #+ j}, where a is the convergence criterion threshold, which can be set to a reasonably small

value, such as 1 x 10718, Our empirical studies indicate that one may use a slightly larger value
to reduce the number of iterations with essentially no difference in the resulting estimator. We set
a = 1 x 10716 as the default value in our R implementation. We emphasize that threshold a is not
a regularization parameter. It is comparable with the stopping rule for a Lasso gradient descent
implementation. It is purely for implementing the computer algorithm, as it serves as a stop
mechanism for numerical convergence. This is not to be confused with the artificial threshold in
L1-LLGM (Allen & Liu, 2012; Wan et al., 2016), which, in the R package, was imposed after
Lasso gradient descent stopping rule, effectively “weeding out” small, but converged, Lasso

coefficients.

5.2.3. Selecting regularization parameters through StARS criterion

The sparsity and performance of the network largely depend on the regularization parameter 4,, in
(Equation 5.3, which directly determines the number of estimated edges that stay in the network.
Note that most of the popular data-driven tuning parameter selection methods such as Akaike’s

information criteria (AIC), Bayesian information criteria (BIC), and cross-validation require
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finding the log likelihood of the joint distribution, which all local neighborhood log-linear Poisson
models do not have. Thus, we opt to select regularization parameters utilizing StARS (Liu, Roeder,
& Wasserman, 2010). The StARS selection criterion selects the regularization parameter based on
given model stability. It does so by subsampling rows, without replacement, into blocks of equal
sizes.

Specifically, let K be the number of subsamples that we draw, and let X* be a subsample
from the design matrix X, where k € {1,...,K}. Liu et al. (2010) suggest that, in order for
assumptions of StARS algorithm to be met, a reasonable choice of the subsample size is b =
[10\/5]. In our case of neighborhood Poisson graphical model, individual full models are fitted on
each subsample. For any edge between two given vertices, we will have obtained K estimates on
the same edge, each from a subsample already mentioned. First, we define an inverse of the tuning
parameter A = 1/4,,. For any edge connecting vertices s and t, let the estimate from subsample

S;, using regularization parameter A, be lpé‘t(Sj). lpé‘t(Sj) = 1 if there is an edge between s and t,

and Y2(S;) = 0 if the model does not estimate that there is an edge at (s, t). The stability of model

predictions on this specific position is then given by

(Equation 5.6)

A potential issue here with estimator 8, (A) is that the measure is not monotonic, rendering
future model assessment and comparisons difficult. The model is stable when estimates from
different subsamples all tend to give a value of 1 or 0. In other words, 8, (A) is the most stable
when it is close to 0 or 1, and the least stable when it is close to 0.5. Therefore, we use a

monotonized stability measure,
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(Equation 5.7)

ést(A) = Zést(A)(l - é\st(A))'

Lastly, an overall stability measure is then calculated by evaluating the mean of all edge-
specific instabilities,
(Equation 5.8)
Ns<t $se(A)
&
2

When A is close to 0, meaning regularization parameter A is large, Lo-LLGM produces an

ﬁst (A) =

empty graph. As all subsample estimates are sparse, the instability shall approach 0. As A increases,
the subsample networks become denser and more volatile. Instability consequently increases till it
peaks. D, (A) will start decreasing as the regularization parameter becomes smaller and the
networks become dense. As the networks become almost fully connected, the instability measure
will again approach 0, since all subsamples give similar estimates. Therefore, instabilities are
expected to have a bell shape when plotted against penalization parameter. Authors who proposed
StARS criterion also suggested a way to select the optimal sparsity given the least instability. Users
first need specify an instability threshold, y. Then the algorithm should select the largest
penalization parameter, that is, the sparsest network, with instability score below or equal to y.
The performance instability criterion is supported theoretically by the Theorem of Partial
Sparsistency (Liu et al., 2010), which states that under suitable regularity conditions, the estimated
set of edges is expected to contain the set of edges in the true underlying model as n approaches
infinity.

We developed an R package for implementing Lo-LLGM, which can be found at repository

https://github.com/caeseriousli/prBARgraph.git.
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5.3. Simulations

In this section, we demonstrate the performance of the BAR Poisson graphical model (Lo-LLGM)
versus L1 Poisson graphical model (Li-LLGM) through simulations. To evaluate model fit, we
measure prediction accuracy by the true-positive rates and false-positive rates. The true-positive
rate is defined as the portion of correctly predicted edge out of total number of edges predicted.
For instance, if a predicted network has a total of 80 edges, out of which 40 exist in the underlying
true network, then the true-positive rate is 40/80 = 0.5 in this case. False-positive rate, however, is
calculated by dividing the number of incorrectly predicted edges by the total number of non-

existing edges in the true network.

5.3.1. Simulating correlated Poisson networks

To generate simulation data for model comparison, we adapt the same method introduced in Allen
and Liu (2012). Again, let n be the number of observations and p the number of elements (genes).
We first generate independent Poisson samples: Y, an X (p + p(p — 1)/2) matrix, whereY;; ~
Poisson(A¢,e). Then we randomly generate a noise term E', an n X p matrix where E;; ~

Poisson(Agye)-
Furthermore, using the underlying true network, we construct a structure matrix,
(Equation 5.9)
V<t S5t ()
&
2

where A is the adjacency matrix corresponding to the network, tri(A) is a vectorized,

ﬁst(A) =

(p X %1) X 1, upper triangular part of adjacency matrix A, and 1, here is a column vector of
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which each element is equal to 1. The purpose of the identity vector is to expand tri(A) into a
p X pT_l matrix, which is used to calculate element-wise product with a permutation matrix, P,

with dimensions (p(p — 1)) X p. The permutation matrix is constructed by permuting indices of
all possible pairs of vertices across its rows. For example, if the first row of the permutation matrix,
P, represents an edge connecting node number 1 and node number 2, then the first two elements
of the first row, which contains a total of p elements, will be 1. The rest of elements in the first
row are 0. Concordantly, P has p(p — 1)/2 rows because a network can potentially have a total of
distinct p(p — 1)/2 edges. Note that the order of permutations in P have to match the order we
expand the adjacency matrix, namely, tri(A4). In addition, denotes the block matrix structure with

the p X p identity matrix on the left. Finally, we simulate the design matrix by X = YB + E.

5.3.2. Model comparison

When compared with nondiscrete models, such as graphical Lasso (J. Friedman et al., 2008), the
L1-LLGM model has already been numerically demonstrated to have as good or better prediction
accuracy for simulated Poisson data (Allen & Liu, 2012). In this chapter, as the major innovation
is an Lo BAR regularization, we will focus on comparing Lo-LLGM with L1-LLGM. We will move
on to adopt simulation setup similar to Allen and Liu (2012). Specifically, we simulated RNA
sequencing data based on two common network topologies, hub and scale free. The data are
randomly generated using methods introduced in Section 5.3.1. For each topology, we have
constructed a network consisting of 50 nodes. For each topology we generate two data sets, with
200 and 500 independent samples, respectively. We further note that, sample sizes no greater than
500 in simulations are common for most RNA-seq studies (Chiquet et al., 2019; Choi et al., 2017;

Gallopin et al., 2013; Imbert et al., 2018).
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For each model, both the Lo-LLGM and Li-LLGM methods are performed on the simulated
data, using StARS criterion to determine the regularization parameters. For Li-LLGM, we
considered a set of four different values for the additional sparsity threshold (“th”), specified by
Li-LLGM implementations as a necessary step (Wan et al., 2016), to investigate its effects on the
resulting estimated network. With both true-positive and false-positive measurements defined in
the beginning of Section 3, we construct ROC curves to compare the performance of Lo-LLGM in
comparison with Li-LLGM. Figure 5.1 shows the ROC curves generated under two different
topologies, scale free (Figure 5.1A) and hub (Figure 5.1D), each consisting of 50 nodes. We
observe that Lo-LLGM consistently outperformed Li1-LLGM, especially in high specificity regions.
The advantage of Lo-LLGM is more evident for hub topology. Furthermore, it is clear that the
performance of Li1-LLGM can vary greatly depending on the choice of its sparsity threshold. The
optimal choice of this threshold depends on the underlying topology and sample sizes. For any
given false-positive rate, Lo-LLGM yields a model with more correctly estimated connections. Li-
LLGM, in contrast, could potentially lose nodes that are important to the structure of the network
shown in Figure 5.1.

Lastly, we validate the mentioned findings in replications. Owing to limitations of ROC
plot visualizing multiple network fits, we summarize 40 replications in box plots. In Figure 5.2
and Figure 5.3, Lo-LLGM and Li1-LLGM are fitted to 40 randomly generated data sets from scale-
free and hub topologies, respectively. At each replication, both the topology and data set are

randomly generated, and each data set has sample size n=500.
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Figure 5.1: Simulation study for two network topologies: (A) scale free and (B) hub. For each
network structure, we generated two data sets with two different number of observations, 200 and
500. A sequence of £0 or £1 penalization parameters was used to fit the modes on each data set.
Predictions were evaluated by calculating true-positive and false-positive rates. These rates from
both models were plotted for model comparisons (B, C, E, F). (B) and (C) Are two data sets, based
on a scale-free network in (A), with simulated sample sizes equal to 200 and 500, respectively,
while (E) and (F) are the same sample sizes based on a hub network in (D).

5.4. Application of L,-LLGM to KIRC MIRNA-seq data

High throughput sequencing (second generation RNA sequencing) returns millions of short reads
of RNA fragments, which have varying lengths ranging from ~25 to possibly 300bp paired-end
reads (Chhangawala, Rudy, Mason, & Rosenfeld, 2015). These reads are usually mapped to the
genome and the data are in the form of non-negative counts of the RNA fragment reads (Witten,

2011). LLGM models can be applied to any data that are assumed to have Poisson distributions.
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For RNA-seq data specifically, a normalization pipeline is required before data analysis. For
comparison purposes, we follow the same normalization pipeline as Wan et al. (2016); Allen and
Liu (2012), which consists of the following major steps: (1) adjusting for sequencing depth, (2)
biological entities (e.g., genes, miRNAs) with low counts or low variances are filtered out, (3)
vectors with potential over-dispersion are transformed using a power transformation to transform
the data closer to Poisson distribution (J. Li, Witten, Johnstone, & Tibshirani, 2012; Wan et al.,
2016). The normalization steps can be performed by R package XMRF (Wan et al., 2016). We
defer the detailed procedures and justifications of this specific pipeline for RNA-seq Poisson
graphical models to Wan et al. (2016).

We then fitted the proposed method on the KIRC miRNA data set from The Cancer
Genome Atlas. The data set was downloaded from TCGA data portal (https://portal.gdc.cancer.gov)
(Collins & Barker, 2007). It contains 1881 miRNAs and 616 samples. Before the normalization
pipeline, we filtered out miRNAs that have all zero read counts throughout all samples, resulting
in 1502 miRNAs left (20.15% of miRNAs with low counts). Then we normalize the rest of the
data using XMRF package developed for Li-LLGM (Wan et al., 2016). For demonstration
purposes of this chapter, we specify the R package to keep top 100 miRNAs with the most variance
(i.e., look at top miRNAs that vary the most). Minimum read count is set to be no less than 20, the
suggested default (Allen & Liu, 2012; Wan et al., 2016). This keeps ~6.7% of miRNAs. We then
move on to focus on conditional relationships between these 100 miRNAs with the largest variance
and reasonable read counts. We then fit Lo-LLGM using our R package, along with Li-LLGM,
implemented by XMRF (Wan et al.,, 2016), with a StARS instability threshold of y = 0.01
(choosing the largest regularization while maintaining at least “99% stability”). Figure 5.4 and

Figure 5.5 show the resulting L,-LLGM and L,-LLGM network estimates, respectively. Figure 5.5
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contains four panels, each with a different L1-LLGM artificial threshold. Network estimates could
be drastically different depending on the threshold. Table 5.1 provides miRNA annotations for use
of node numbers in Figure 5.4 and Figure 5.5.

Itis observed from Figure 5.4 and Figure 5.5 that the two model results reveal some similar
structures, including the hub surrounding center, mir-10b (node 25). However, Lo-LLGM produces
a less visually “chaotic network, in comparison with L,-LLGM. For instance, Lo-LLGM outlines
a clean scale-free topology with minimal cyclic loops. Li-LLGM, however, frequently exhibits
loops even in sparse network estimates, possibly due to unwanted noises from L1 regularization.
From Figure 5.5, as we increase the “artificial threshold” for L1-LLGM used in XMRF package,
to some extent it helps reducing these noise edges.

However, during this process, we observe that this user-imposed threshold also filtered out
lower degree nodes (weaker signal), such as the hub miRNAs surrounding node 25. For example,
in Figure 5.5A1, with no artificial threshold, L,-LLGM identifies hub center node 25 (mir-10b),
which agrees with L,-LLGM in Figure 5.4. As the threshold increases, plots in Figure 5.5A2-B2
show a decreasing degree in hub center node 25. In Figure 5B2, almost entire hub is filtered out
by this threshold along with noise. This observation parallels to the simulation section (Figure 5.1),
where the true-positive rates can be reduced by the artificial threshold, losing important network
structures. These preliminary observations suggest that L,-LLGM is potentially more capable of
separating signal from noise, which is consistent with our simulation results depicted in Figure 5.1.

Although a graphical model alone is not enough to make any further conclusions on gene
interactions inference, we focus, in particular, on highly connected miRNAs (i.e., hub nodes).
Some of the hub miRNAs revealed by the Lo-LLGM network were previously known to be

associated with each other, and with certain cancers. For example, the center of the largest hub,
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gene mir-10b in Figure 5.4 is known to be associated with cancers such as bladder cancer and
proteoglycans cancer. Based on literature studies, this RNA was known to be highly expressed in
metastatic hepatocellular carcinomas, in contrast to those without metastasis (Ma et al., 2010). Our
network results are based on the data from patients with adenomas and adenocarcinomas from
project KIRC. It is connected to numerous miRNAs, including several cluster centers known to be
associated with cancer suppressing. RNA named hsa-let-7b, for example, identified as a sub-
cluster connected to the hub center mir-10b, a previously known putative cancer suppressor, is
found to play a key role in chemoresistance in renal cells from carcinoma cases (Peng, Mo, Ma, &
Fan, 2015). Together with another cluster center RNA, named miR-126 and hsa-let-7b are both
identified as crucial biomarkers for identifying renal cell carcinoma (Carlsson et al., 2019;
Jusufovi¢ et al., 2012; Yin et al., 2014). Our graphical model successfully identifies important
mMiRNAs that align with published biological findings regarding such miRNAs.

We also performed additional analyses using different StARS instability thresholds y =
0.005 and y = 0.05. The findings are consistent with what have been discussed previously for

y = 0.01 and thus not included here.

5.5. Discussion

We have proposed and implemented an approximate Lo-LLGM for constructing sparse gene
network from RNA-seq count data. This approach uses a neighborhood Poisson graphical model,
which offers a more comprehensive set of predictions, has less constraints on the Poisson
distributions of each element, and is less sensitive to changes of individual genes, than a joint
distribution model. Sparsity is achieved through the BAR penalization, a surrogate Lo

regularization with established oracle properties for selection and estimation. Our simulations in
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Section 3 show that, in general, Lo-LLGM offers theoretically more accurate estimates than L:i-
LLGM. It reaches a high level of true-positive rate faster, without accumulating a high rate of false
estimates. Lo-LLGM also spares users the need of selecting an additional sparsity threshold after
the regularization tuning parameter has already been selected by StARS. This brings more
consistency and reproducibility to the graphical model.

Our simulations considered two types of network topologies, namely scale-free and hub
topologies, and found that both Lo-LLGM and Li1-LLGM tend to perform better under scale-free
topologies as compared with hub. However, because graphical models could potentially give
drastically different results under various topologies, it would be of interest to consider more

topologies in future studies.
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5.6. Additional figures and tables

5.6.1. Figures
Scale-free topoloy simulation summary
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Figure 5.2: Simulation study for scale-free topology with sample size n=500. Topologies and data
sets are randomly generated 100 times for each model. For all repetitions, area under the curve for
true-positive rates and false-positive edge estimation percentages are summarized in box plots.
Area under the curve is defined as the area under true-positive versus false-positive rate curve as
regularization parameter increases, same as that of Figure 5.1. These repeated simulations are
based on randomly generated scale-free topologies with 200 sample sizes and 50 number of nodes,
corresponding to the same specifications in Figure 5.1B. Both the topology and data set are
simulated randomly at each repetition
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Hub topoloy simulation summary
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Figure 5.3: Simulation study for hub topology with sample size n=500. Topologies and data sets
are randomly generated 100 times for each model. For all repetitions, area under the curve for true-
positive rates and false-positive edge estimation percentages are summarized in box plots. Area
under the curve is defined as the area under true-positive versus false-positive rate curve as
regularization parameter increases, same as that of Figure 5.1. These repeated simulations are
based on randomly generated hub topologies with 200 sample sizes and 50 number of nodes,
corresponding to the same specifications as in Figure 5.1E. Both the topology and data set are
simulated randomly at each repetition.
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Figure 5.4: Lo-LLGM KIRC miRNA data: estimated network generated by fitting an Lo-LLGM
model on KIRC miRNA data from TCGA database. The penalization parameter was chosen by
setting a StARS estimation instability threshold of 0.01. KIRC, kidney renal clear cell carcinoma;
Lo-LLGM, Lo-regularized log-linear graphical model; miRNA, micro-RNA; StARS, stability
approach to regularization selection; TCGA, the Cancer Genome Atlas.
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Figure 5.5: Li-LLGM KIRC miRNA data: estimated network generated by fitting an L1-LLGM
model on KIRC miRNA data from TCGA database. The penalization parameter was chosen by
setting an StARS instability threshold of 0.01. In addition, a further artificial threshold (“th”) to
fine tune the Li-LLGM model. This figure shows four network estimates by varying the th
threshold.
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5.6.2. Tables

Table 5.1: Micro-RNA (miRNA) look-up table. Each ID in Figure 5.4 and Figure 5.5 correspond
to an miRNA in this table.

ID mMiRNA ID miRNA 1D miRNA ID miRNA

1 hsa-let-7a-1 26 hsa-mir-1178 51 hsa-mir-124-1 | 76 hsa-mir-126
2 hsa-let-7a-2 27 hsa-mir-1179 52 hsa-mir-124-2 | 77  hsa-mir-1260a
3 hsa-let-7a-3 28 hsa-mir-1180 53 hsa-mir-124-3 | 78  hsa-mir-1260b
4 hsa-let-7b 29 hsa-mir-1181 54 hsa-mir-1243 79 hsa-mir-1262
5 hsa-let-7c 30 hsa-mir-1182 55  hsa-mir-1244-1 | 80 hsa-mir-1263
6 hsa-let-7d 31 hsa-mir-1185-1 56  hsa-mir-1244-2 | 81 hsa-mir-1264
7 hsa-let-7e 32 hsa-mir-1185-2 57 hsa-mir-1245a | 82 hsa-mir-1265
8 hsa-let-7f-1 33 hsa-mir-1193 58 hsa-mir-1245b | 83 hsa-mir-1266
9 hsa-let-7f-2 34 hsa-mir-1197 59 hsa-mir-1246 84 hsa-mir-1267
10 hsa-let-7g 35 hsa-mir-1199 60 hsa-mir-1247 85  hsa-mir-1268b
11 hsa-let-7i 36 hsa-mir-1200 61 hsa-mir-1248 86  hsa-mir-1269a
12 hsa-mir-1-1 37 hsa-mir-1203 62 hsa-mir-1249 87  hsa-mir-1269b
13 hsa-mir-1-2 38 hsa-mir-1204 63 hsa-mir-1250 88 hsa-mir-127
14 hsa-mir-100 39 hsa-mir-122 64 hsa-mir-1251 89 hsa-mir-1270
15  hsa-mir-101-1 40 hsa-mir-1224 65 hsa-mir-1252 90 hsa-mir-1271
16  hsa-mir-101-2 41 hsa-mir-1225 66 hsa-mir-1253 91 hsa-mir-1272
17 hsa-mir-103a-1 | 42 hsa-mir-1226 67  hsa-mir-1254-1 | 92  hsa-mir-1273c
18 hsa-mir-103a-2 | 43 hsa-mir-1227 68  hsa-mir-1254-2 | 93  hsa-mir-1273h
19  hsa-mir-105-1 44 hsa-mir-1228 69 hsa-mir-1255a | 94 hsa-mir-1275
20  hsa-mir-105-2 45 hsa-mir-1229 70 hsa-mir-1256 95 hsa-mir-1276
21 hsa-mir-106a 46 hsa-mir-1231 71 hsa-mir-1257 96 hsa-mir-1277
22 hsa-mir-106b 47 hsa-mir-1234 72 hsa-mir-1258 97 hsa-mir-1278
23 hsa-mir-107 48 hsa-mir-1236 73 hsa-mir-125a 98  hsa-mir-128-1
24 hsa-mir-10a 49 hsa-mir-1237 74 hsa-mir-125b-1 | 99  hsa-mir-128-2
25 hsa-mir-10b 50 hsa-mir-1238 75  hsa-mir-125b-2 | 100  hsa-mir-1281
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CHAPTER 6

6. Concluding remarks and future research considerations

6.1. Remarks for high dimensional inference for DNA methylation data

So far, we have solved the theoretical high dimensional prediction problem with elastic net, but it
lacks some features that come with a standard linear model. It is currently not possible to construct
confidence intervals or compute coefficient p-values for selected variables. The only inference
step we can take is list the CpG sites selected by the models. It is, however, non-trivial to infer
which variable is more or less significant, nor can we construct confidence intervals for the
predicted values. While most machine learning engineers would stop at prediction, my future work
as a statistician will involve some form of inference, to help us better understand the underlying
mechanism of epigenetic aging. Recently, some statisticians have theorized a few models for high-
dimensional inference, including desparsified lasso (Van de Geer, Bihimann, Ritov, & Dezeure,
2014), and a selection-assisted partial regression (SPARES) (Fei, Zhu, Banerjee, & Li, 2019).
Briefly, desparsified Lasso is based on Lasso model. It takes advantage of Karush-Kuhn-Tucker
characterization of Lasso and compute an approximation to the inverse of X7 X /n. This combined
with central limit theorem gives an estimated covariance matrix for estimated coefficients. The
pros of this method include the fact that it does not require any random data splitting step, relatively
easy computation load, and that it is related to Lasso penalization. One disadvantage, however, is
that the method is non-trivial to be generalized to elastic net, inheriting all the flaws of Lasso
discussed in Chapter 1. SPARES involves randomly separating data set into two sub-groups, one
for variable selection and one for inference. In addition, as the algorithm makes inferences on
selected variables, it also assigns p-values to unselected variables by including them to the design

matrix one by one. Then it performs the data splitting iteratively to achieve stable p-value estimates.
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Two major advantages of this method are that it provides unbiased estimates with normality
assumption held, and it is compatible with many different variable selection methods. For example,
one can use elastic net for variable selection step in the half sub-sampled data, and then draw
inference using standard linear model on the other half. Consequently, a drawback of this
algorithm is that it can be computationally expensive for large data sets. In future research, one
may test both of the named methods on the mammalian data and assess the practicality of both
models. The ability to make inference on epigenetic predictors will be crucial to future aging

interventions and possible clinical trials.

6.2. Future research for Lo-regularized Poisson graphical model

It is worth noting that although the method described in Chapter 5 focuses on the p < n
case, the proposed methodology can be easily extended to high dimensional settings where p > n
by coupling the BAR penalization with a sure screening procedure (Barut, Fan, & Verhasselt, 2016;
Fan & Lv, 2008; Xu & Chen, 2014; S. D. Zhao & Li, 2012). Combining the BAR penalization
with a sure screening procedure for high dimensional settings and its statistical guarantees have
been studied for a variety of models including linear model (Dai et al., 2018), generalized linear
models (N. Li et al., 2021), and survival models (Kawaguchi et al., 2020; H. Zhao et al., 2018; H.
Zhao, Wu, Li, & Sun, 2019). Future studies are warranted to further investigate the empirical
performance of the two-step procedure for network inference in high dimensional settings.

We acknowledge that, for model applications in RNA-seq data, the network in itself often
is not enough to draw definitive inference on complex gene interactions. Often a network serves
as a first step in identifying clusters, under the assumptions that genes interact with each other in
hubs (N. Friedman, 2004). One can modularize clustered genes through methods such as dynamic

tree cutting. These modules can subsequently be used for gene enrichment analyses (Langfelder
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& Horvath, 2008). These subsequent procedures would all benefit from a proper graphical model
such as the Lo-LLGM. In addition, as the BAR algorithm optimization progresses, it will become
more feasible to implement an Lo-regularized regression, which possesses theoretical oracle
properties, for DNA methylation data, resulting in superior variable selection and regression

estimates.
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