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Collection of large amounts of genetic data and advancements in computational genetics over the 

recent years provide us with tools to explore epigenetic mechanisms that lead to aging and lifespan. 

In the context of continuous DNA methylation data, with a novel cross-species DNA methylation 

microarray targeting conserved CpG sites across mammalian species, we are able to leverage 

readily available statistical models to extensively study important life history traits such as lifespan, 

gestation time, and time to sexual maturity across various species. DNA methylation data are often 

high dimensional and require regularized regression frameworks to construct practical prediction 

models. Based on an unprecedented mammalian DNA methylation data set, we have developed 

methylation-based epigenetic life history traits predictors using regularized linear regressions. The 

estimators can accurately predict maximum lifespan using cytosine methylation patterns collected 

from over 13,000 samples derived from 348 mammalian species. To extend our future inferential 
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analyses into diverse data sources such as RNA-seq data, we have proposed an L0-regularized 

Poisson graphical model for exploring gene-to-gene relations. The superior theoretical properties 

that the L0 sparse graphical model enjoys will more effectively assist the future work of clustering 

and grouping large numbers of DNA methylation sites and genes. Both the applied research and 

methodological work will aid in the aging research goals of integrating various layers of 

multiomics data. 
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separator) part of each mammalian number is assigned in accordance to the corresponding 

taxonomic order. Red solid line represents the perfect prediction line, and the dotted line 
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test set predictions, b, k-NN predictor’s test set predictions. In addition, due to the fact that 
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we imputed a number of species’ missing lifespan observations with neighboring species, 
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anAge database (de Magalhaes et al.), removing species with no maximum lifespan 
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to taxonomic order. Red solid line represents the perfect prediction line, and the dotted line 
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T-test p-value less than 0.01. Error bars represent the 95% confidence interval of two 
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Figure 3.3: Elastic net Predictor Based on Young Samples. Elastic net predictor, Leave-one-

species-out analysis, fitted on a subset of all young samples (species n = 119). Young 

samples are defined as samples whose age is both younger than five years and less than the 

species’ average age at sexual maturation. Feature filtering and Elastic Net tuning 

parameter set-up is the same as those for Figure 3.1. Three panels show predictors for a, 

log maximum lifespan (in log years), b, log-transformed gestation time (in log days), and 

c, log-transformed age at sexual maturity (in log years). As with the Figure 3.1, species 

appear as designated numbers in scatter plot panels; the corresponding common names and 

phylogenetic orders are annotated in figure legends; as indicated by the taxonomic order 

legend, the whole number (number before the decimal separator) part of each mammalian 
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number is assigned in accordance to the corresponding taxonomic order. MAE abbreviates 

median absolute errors from the regression errors; r and p are Pearson’s correlation and p-

values, respectively. Numbers and colors are the mammalian species number and order 

annotation consistent with those of other figures. Numeric values can be found in C. Li et 

al. (2021). Red solid line represents the perfect prediction line, and the dotted line 
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Figure 3.4: Correlation between maximum lifespan predictor and sample chronological 

ages. Mammalian maximum lifespan predictor, based on averaged species methylation, 

was used to predict individual sample lifespans. The predicted values are also stratified by 

species and tissues. Only species with >100 sample sizes are shown. Color scale: pink, 

female; black, male. To demonstrate natural relations between maximum lifespan and 

chronological age, panel a scatter plot shows association between maximum lifespan and 

chronological age of corresponding samples. Each of panels b–x show scatter plots of 

predicted lifespans in log scales vs. chronological age in specific species. Numbers are the 

mammalian species number consistent with those of other figures. Numeric values can be 

found in Github repository shorvath/MammalianMethylationConsortium. Shaded areas 

represent 95% confidence intervals of the simple linear regression line. Colors represent 
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Figure 3.5: Predictors of Species-Tissue Combinations. A penalized joint linear model used to 

predict species lifespan (Elastic net). Same framework as that of Figure 3.1, except that it 

distinguishes tissue types. CpG probes are averaged by each species-tissue combination. 

Different tissues within the same species share the same maximum lifespan, but retain 

different methylation levels. Three panels show predictors for a, log maximum lifespan (in 
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log years), b, log-transformed gestation time (in log days), and c, log-transformed age at 

sexual maturity (in log years). Designated Mammalian numbers in scatter plot panels and 

the figure legend are the same as those of main Figure 3.1. MAE abbreviates median 

absolute errors from the regression errors; r and p are Pearson’s correlation and p-values, 

respectively. Numbers and colors are the mammalian species number and order annotation 

consistent with those of other figures. Numeric values can be found in Github repository 

shorvath/MammalianMethylationConsortium. In Figure 3.1, species appear as designated 

numbers in scatter plot panels; the corresponding common names and taxonomic orders 

are annotated in figure legends; the whole number (number before the decimal separator) 

part of each mammalian number is assigned in accordance to the corresponding taxonomic 

order. Red solid line represents the perfect prediction line, and the dotted line represents 
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Figure 3.6: Tissue groups differences in predicted mammalian maximum lifespan. Mammalian 

maximum lifespan predictor, based on averaged species methylation, was used to predict 
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by tissue groups in all species and samples; in order to show viewable scales in different 

species, due to their drastically different lifespans, we evaluated residuals standardized by 
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which the samples belong); panel b–g show boxplots of predicted lifespans in original 
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under LOCO. Panels a and b are identical to those of Figure 3.2c and Figure 3.2d. Panels 

c-h show large test set predictions. We compared prediction performance between DNAm 

elastic net predictors and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor 

predictor utilizes distances from the Mammalian phylogenetic TimeTree (Kumar et al., 

2017). Panels a, DNAm predictor’s test set predictions leave-one-clade-out (LOCO) 

training-test separation scheme; b, k-NN predictor’s test set predictions under LOCO; c, d, 
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errors; r and p are Pearson’s correlation and p-values, respectively. Numbers and colors are 

the mammalian species number and order annotation consistent with those of other figures. 

Numeric values can be found in Github repository 

shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence 
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Figure 3.9: DNAm lifespan predictions on small-sized mammals. DNAm lifespan predictor 

trained on mammal species with an average weight over 150 grams (small mammals). 

Panels a, observed (log) adult body weight vs. observed (log) maximum lifespan in all 

mammalian species within the data set, color-coded by small-size indicator (more than 150 

grams); b, test set predictions for the maximum lifespan in small-sized (<150 grams) 

mammalian species vs. observed (log) maximum lifespan; c, test set predictions for the 

maximum lifespan in small-sized (<150 grams) mammalian species vs. observed (log) 
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adult body weight. MAE abbreviates median absolute errors from the regression errors; r 

and p are Pearson’s correlation and p-values, respectively. Numbers are the mammalian 

species number annotation consistent with those of other figures. Numeric values can be 
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represent 95% confidence intervals of the simple linear regression line. ......................... 40 
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maximum lifespan across n=333 eutherian species. All tissue samples were averaged by 

species. The associations with lifespan were examined with or without adjustment for adult 

weight of the species. a, Manhattan plots of EWAS results in 28,318 probes that were 

experimentally validated to work in both mouse and human genomes. The coordinates are 

based on the alignment to the human hg19 genome. The red dotted line corresponds to a 

Bonferroni corrected two-sided p value < 1.8x10-6. Individual CpGs with positive or 

negative correlations with maximum lifespan are colored in red and blue, respectively.  The 

top significant CpGs are labeled by their respective neighboring genes. b, upset plot of the 

overlap in the top 1000 (500 per direction) significant CpGs for different EWAS models. 

c, Venn diagrams showing the overlap of CpGs associated with mammalian lifespan and 

the top 1000 CpGs that relate to chronological age in mammals (Ake T. Lu et al., 2021). 

Overlapping CpGs were labeled by neighboring genes. d, Gene set enrichment analysis of 

the genes proximal to CpGs associated with mammalian maximum lifespan, gestation time, 

and sexual maturity. We only report enrichment terms that are significant after adjustment 

for multiple comparisons (hypergeometric test false discovery rate <0.01) and contain at 
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least five significant genes. The top two significant terms per enrichment database are 
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Figure 4.2: Top CpGs related to log-transformed maximum lifespan in eutherians.Scatter plots of 

CpG methylation level (x-axis) versus log-transformed maximum lifespan (y-axis) for a, 

b, c the top three  positively-correlated CpGs and d, e, f the top three negatively-correlated 

CpGs. g–l. Corresponding scatter plots to a–f for weight-adjusted maximum lifespan. The 

y-axis reports the residuals resulting from regressing log-transformed maximum lifespan 
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CpG Z statistics agreements between tissues, color-coded by human CpG island 
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set of EWAS background CpG probes (28,318) consistent with the methods section 

(mappable to humans and mice and correlation with calibration exceeds 0.8). Panels show 
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weight and phylogeny. Panel a are Manhattan plots reporting Manhattan plots of lifespan, 

lifespan EWAS adjusted by weight (AdjWeight), lifespan EWAS adjusted by phylogeny 

(AdjPhylo), and lifespan adjusted by both weight and phylogeny (AdjPhyloWeight). The 

background probes were limited to the set of EWAS background CpG probes (28,318) 

consistent with the methods section (mappable to humans and mice and correlation with 

calibration exceeds 0.8). b, Location of the top CpGs in each tissue relative to the closest 

transcriptional start site. A panel for the top 1000 age related CpGs was added to the figure 

for comparison (Ake T. Lu et al., 2021). The changes in gene regions were tested by a 

hypergeometric test in proportion to the background. The odd ratios and p-values (* <0.05, 

**<0.01, ***<0.001, ****<0.0001) of changes are reported for each bar. c, Boxplot of 

association with mammalian maximum lifespan by human CpG island status. The mean 

difference was tested by Student T-test. d, Venn diagram of the overlap in the top 1000 

(500 per direction) significant CpGs for different models of EWAS of lifespan from panel 

a. The overlap hits were labeled by neighboring genes. e, Overlap of CpGs associated with 
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Figure 4.5: EWAS of mammalian maximum lifespan in blood. The associations were examined 

with four different models: 1) lifespan: each species as a datapoint in the model regardless 

of evolutionary distance. 2) lifespan adjusted for average species weight. 3) lifespan 

adjusted for evolutionary distance by phylogenetic regression. The evolutionary tree was 

acquired from TimeTree database. 4) lifespan adjusted for both average adult species 
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Fisher’s exact test based on the same background. The odds ratios and p-values (* <0.05, 
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added to the figure for comparison, d, Venn diagram of the overlap in the top 1000 (500 

per direction) significant CpGs for different models of EWAS of lifespan. The Venn 

diagram does not show AdjPhyloWeight because it contains zero CpG probe past the 

significance threshold. ...................................................................................................... 59 

Figure 4.6: EWAS of mammalian maximum lifespan in skin. The associations were examined with 
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from TimeTree database (Kumar et al., 2017). 4) lifespan adjusted for both average adult 

species weight and evolutionary distance. Panel a, Manhattan plots of EWAS of maximum 
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CHAPTER 1 

 

1. Introduction 

In the age of rapidly growing technologies in both data collection and storage tools, the fields of 

statistics and genetics face many opportunities as well as challenges. Data sets with tens of 

thousands of samples and many times more variables are the new norm to statisticians in the field 

of genetics. Many classical statistical methods can be readily and robustly applied to these large 

data sets directly, such as genome-wide association studies (GWAS) for single-nucleotide 

polymorphisms (SNP) array data, and epigenome-wide association studies (EWAS) for DNA 

methylation data. The idea is to evaluate a phenotypical trait against genotypes one locus at a time, 

and then summarize findings after adjusting for multiple hypothesis testing using, most commonly, 

false discovery rates (FDR) or Bonferroni correction (Y. Benjamini, and Hochberg, Y., 1995; C. 

E. Bonferroni, 1935). These methods have been effective in discovering associations between 

individual genotypes and phenotypes, leading to numerous discoveries and remarks (Uffelmann et 

al., 2021; Visscher et al., 2017). Some improvements on GWAS, taking environmental factors into 

account, include Newton’s method and scoring method used for polygenic models, which are 

enabled by linear mixed models (Lange, 2003). For multi-marker analyses in single nucleotide 

polymorphisms (SNPs) data, researchers have aggregated the effects across all loci using a 

modified linear mixed model to include all SNPs simultaneously (J. Yang et al., 2010), or directly 

summing over GWAS effect size results to form a polygenic risk score (PRS) (Dudbridge, 2013; 

Palla & Dudbridge, 2015). For epigenetics, some of the more data-driven multivariate models used 

in recent years include elastic net for DNA methylation data (S. Horvath, 2013; Ake T Lu et al., 

2019; Zou & Hastie, 2005). This dissertation focuses on DNA methylation and RNA-seq data 
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analyses. In Chapters 3 and 4, we describe the applied research that has been done to DNA 

methylation data in the field of aging research, with goals of studying mammalian species life 

history traits, such as species maximum lifespan, gestation time, and time to sexual maturity. In 

Chapter 5, we introduce a novel methodology in the form of a Poisson graphical model for RNA-

seq data. In Chapter 6, we address both the current and new statistical methods and outline possible 

future work that will compare and potentially improve these algorithms. 

 

1.1. DNA methylation data 

DNA methylation is an epigenetic mechanism by which methyl groups are attached to DNA 

molecule. This process can regulate gene expressions from a DNA segment without changing the 

sequence. This is achieved by either preventing transcription factors’ binding to the sequence or 

recruiting proteins that are involved in gene expression (Moore, Le, & Fan, 2013). Most of DNA 

methylation occur on cytosine nucleotide that immediately precedes a guanine. The sites at which 

DNA methylation occur are called cytosine-phosphate-guanine (CpG) sites. Researchers collect 

DNA methylation data by using a methylation array that has thousands of probes designed to detect 

the intensity of each site’s methylation. For example, one of the most efficient and comprehensive 

methylation array for human genome, Illumina 450k, has over 480k CpG probes, providing 

practically whole-genome coverage (Bibikova et al., 2011).  

Raw DNA methylation data are collected as florescent intensity measurements from 

methylated and unmethylated probes. After background adjustment and normalization, both 

methylated and unmethylated intensity measurements at each site are converted to a single value, 

either a beta-value or an m-value. The more common method is the beta-value, which is the ratio 
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of the methylated intensity to the sum of methylated, unmethylated intensities, and a constant of 

100 as an offset for stabilizing sites where both intensities are small (Du et al., 2010), 

(Equation 1.1) 

𝐵𝑒𝑡𝑎𝑖 =
max⁡(0, 𝑦𝑚𝑒𝑡ℎ𝑦,⁡⁡⁡𝑖)

max(0, 𝑦𝑚𝑒𝑡ℎ𝑦,⁡⁡⁡𝑖) + max(0, 𝑦𝑢𝑛𝑚𝑒𝑡ℎ𝑦,⁡⁡⁡𝑖) + 𝛼
. 

 

, where 𝑦𝑚𝑒𝑡ℎ𝑦,⁡⁡⁡𝑖 is the methylated probe intensity, and 𝑦𝑢𝑛𝑚𝑒𝑡ℎ𝑦,⁡⁡⁡𝑖  the unmethylated probe, for i-

th CpG site. 𝛼 is the constant, usually set to 100 (Du et al., 2010). By definition, beta values are 

always between 0 and 1.  

 

 

1.2. Epigenetic clocks and their uses 

It was only recently since researchers started intensely studying the strong relationship between 

human aging and epigenetics (Alisch et al., 2012; Bell et al., 2011; Bocklandt et al., 2011; Boks et 

al., 2009; Bollati et al., 2009; Christensen et al., 2009; Rakyan et al., 2010). The first demonstration 

of an age predictor was built applying a combination of EWAS and Lasso (least absolute shrinkage 

and selection operator) penalized regressions to DNA methylation data from saliva samples 

(Bocklandt et al., 2011). It was also around the same time when robust high-dimensional penalized 

regression models were applied to human epigenetic methylation data in search of accurate 

epigenetic aging clocks. I will discuss the basics of Lasso and the elastic net penalized regressions 

in the following sections. The first of elastic net framework was applied to human blood tissues 

and was subsequently recognized as the “Hannum clock,” which consists of 71 selected CpG sites 

(Hannum et al., 2013). This clock achieved, in test set of a separate cohort, a correlation of 91% 

between age and predicted age, and an error of 4.9 years. It was later demonstrated that aging 
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clocks could be built in almost all human tissues. Horvath lab validified the fact in large multi-

tissue human DNA methylation data sets, and coined what would later become one of the most 

widely recognized human epigenetic aging clocks (S. Horvath, 2013). This multi-tissue epigenetic 

aging clock, selecting more markers than the Hannum clock, is a linear combination of 353 CpG 

sites. Contrary to what the name suggests, the aging clocks have been used to infer individuals’ 

rates of aging and the effect of diseases on such rates, rather than simply predicting one’s age. The 

original research work in this dissertation primarily focuses on a unique data set collected from 

multiple mammalian species. In following chapters, we present prediction and inference models 

built for mammal species life history traits, including species maximum lifespan, gestation time, 

and time to sexual maturity, with emphasis on maximum lifespan. 

 

1.3. Dissertation structure 

In this introduction chapter, I have briefly described the background of epigenetic aging clocks, 

which utilize regularized regressions to predict outcome variable, age. In the following chapters 

of this dissertation, I first describe theoretical groundwork of existing regularized regression 

models in Chapter 2. Regularized regressions are essential to building mathematical models in 

high-dimensional data in which the number of columns greatly exceeds the number of rows. These 

introduced regularized regressions are deeply embedded in the applied as well as original 

methodology of Chapters 3, 4, and 5 in this dissertation. In Chapter 3, we describe various 

mammalian history traits prediction models that are trained on the DNA methylation data. In 

Chapter 4, we present marginal inference statistical models for evaluating individual CpGs sites 

in relations to the mammalian life history traits. Our analyses place great emphasis on one of such 

traits, species maximum lifespan, defined as the maximum innate potential of lifespan given any 
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animal species. Although naturally correlated, maximum lifespan differs from life expectancy, 

which measures the average lifespan in a population, taking into account diseases and accidental 

deaths. In Chapter 5, we introduce a novel methodology in the form of a Poisson graphical model 

for RNA-seq data. Various genetic data types, such as transcriptome (RNA data), epigenome 

(DNA methylation), proteome data, are crucial for future multiomics data integration, in order to 

have comprehensive understandings of the species life history traits. In Chapter 6, we address both 

the current and new statistical methods and outline possible future work that will compare and 

potentially improve these algorithms. 
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CHAPTER 2 

2. Methodology of regularized regressions 

As described in earlier sections, DNA methylation data have tens or hundreds of thousands of 

variables. Thus, fitting multiple linear regressions using all CpG sites would be overfitting, 

yielding poor performance in test data. Furthermore, most data sets have much more variables than 

samples (high-dimensional). This property dictates that the standard linear regression framework 

would have rank deficiency, producing non-singular solutions. Therefore, in cases of continuous 

numerical outcome variables, such as chronological age, researchers have been focusing on 

regularized regression frameworks. Regularized regressions serve as appropriate prediction 

models, and, for some models, adequate variable selection models. In this section, I will discuss 

the Lasso, ridge, broken adaptive ridge (BAR), and elastic net regressions, and some of their 

applications that I have implemented in the field of genetics.  

 

 

2.1. Lasso and ridge regression 

Lasso and Ridge regressions are some of the earliest and most well-known regularized regressions. 

Lasso was proposed by Tibshirani (Tibshirani, 1996). Lasso imposes an ℓ1-penalty on a standard 

multiple linear regression, originally written as,  

(Equation 2.1) 

min
𝜷∈ℝ𝑝

∑
1

𝑁
(𝑦𝑖 − 𝒙𝑖

𝑇𝜷)2𝑁
𝑖=1   subject to ‖𝜷‖1 ≤ 𝑡, 

where 𝑦𝑖 is the i-th observation of sample size of 𝑁, 𝒙𝑖
𝑇 is the vectorized i-th sample of length 𝑝, 

𝜷 is the coefficient vector of all 𝑝 features (variables), and 𝑡 is a tuning parameter for the shrinkage. 
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Here the second constraint term of (Equation 2.1, ‖𝜷‖1 ≤ 𝑡 , ensures that the ℓ1-norm of all 

coefficients are shrunk to no larger than 𝑡. In practice, (Equation 2.1 is solved in its well-known 

Lagrangian form,  

(Equation 2.2) 

min
𝜷∈ℝ𝑝

∑
1

𝑁
(𝑦𝑖 − 𝒙𝑖

𝑇𝜷)2 + 𝜆‖𝜷‖1⁡
𝑁
𝑖=1 . 

Another popular penalization technique, ridge regression (Hoerl & Kennard, 1970), minimizes the 

residual sum of squares subject to a bound on the ℓ2-norm of coefficients. The ridge estimator is 

directly written as, 

(Equation 2.3) 

𝜷̂∗ = [𝑿𝑇𝑿 + 𝑘𝑰]−1𝑿𝑇𝒀; 𝑘 ≥ 0, 

where 𝑿 is the design matrix, and 𝒀 is the outcome variable vector, and 𝑘 is the tuning parameter 

for the ridge estimator. Note that this matrix form solution is equivalent to being written as the 

solution for ℓ2-penalized least square loss function,  

(Equation 2.4) 

min
𝜷∈ℝ𝑝

∑
1

𝑁
(𝑦𝑖 − 𝒙𝑖

𝑇𝜷)2 + 𝜆‖𝜷‖2⁡
𝑁
𝑖=1 . 

The significance of (Equation 2.4 is that it provides a closed-form matrix solution. As 𝑿𝑇𝑿 + 𝑘𝑰 

is always symmetrical, and especially in low dimensional data sets much smaller than 𝑿, it can be 

solved more efficiently via Cholesky decomposition, while Lasso is often estimated by iteratively 

solving Karaush-Kuhn-Tucker (KKT) condition. However, in contrast to Lasso, ridge regression 

does not shrink variables to zero, undermining its variable-selection purposes. Consequently, 

Lasso became widely used in many studies for which ridge penalization is not suited.  

 Other regularizations have been developed, aiming to achieve an estimation with the oracle 

property (Fan & Li, 2001). Briefly, oracle property is defined as an estimator that asymptotically 
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converges to the maximum likelihood estimator (MLE) based on only the true support. In the sense 

of the variable selection problems, the true support would be considered the unknow set of 

variables that are truly associated with the outcome. To this end, a few additional ℓ1-penalization 

methods have been developed, such as adaptive lasso (Zou, 2006), SCAD (Fan & Li, 2001), and 

MCP (Zhang, 2010). A more recent regularization method, broken adaptive ridge, aims to improve 

on these methods’ grouping properties for correlated variables (Dai, Chen, Sun, Liu, & Li, 2018; 

H. Zhao, Sun, Li, & Sun, 2018). I have published a graphical network method paper that utilities 

its variable selection and superior grouping properties for a discrete RNA-seq data (C. Z. Li, 

Kawaguchi, & Li, 2021). This graphical model offers a Poisson distribution assumption solution 

to constructing graphical networks for discrete data sets, such as RNA-seq data. A necessary step 

for this sparse graphical modeling is regularization, and BAR penalization fits adequately in this 

algorithm. Nevertheless, elastic net remains the most popular framework for epigenetic aging 

clocks and a few other DNA methylation predictors, largely due to its speed and robust 

performance in p>>n ultra-high dimensions. 

 

2.2. Elastic net regularization 

In light of searching for a simultaneous prediction and variable selection model that provides 

towards-zero shrinkage, based on earlier sections, one would consider either Lasso or BAR. 

However, in practice, Lasso has some pitfalls, including its limitations in p>n cases, variable 

grouping properties, and inferiority to ridge regression in n>p cases (Zou & Hastie, 2005). Poor 

grouping in Lasso manifests as its tendency to select only one variable from a group in which 

variables are highly correlated. This effect could cause Lasso to accidentally drop a true signal 

variable in favor of another correlated variable. While BAR enjoys the oracle property, it is 
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computationally expensive for data sets with over thousands of features, due to its iterative ridge 

regression estimations. The elastic net model is a hybrid penalized model between Lasso and Ridge 

regressions, and its Gaussian family form is specified as follows, 

(Equation 2.5) 

min
(𝛽0 ,𝛽)∈ℝ𝑝+1

1

2𝑁
∑(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2
𝑁

𝑖=1

+ 𝜆 [
(1 − 𝛼)‖𝜷‖2

2

2
+ 𝛼‖𝜷‖1] , 

where 𝜷 is the vector of non-intercept variable coefficients, 𝒙𝑖 ∈ ℝ𝑝 is a vector of i-th observation, 

and 𝑝 is the number of CpG probes used in this framework. 𝜆 is the Lasso tuning parameter, and 

𝛼 is the ridge penalization parameter. One of the biggest advantages of elastic net is that it performs 

better than Lasso in p>>n cases (Zou & Hastie, 2005). Furthermore, it handles variable grouping 

effects more desirably. When several variables are highly correlated each other, Lasso tends to 

select one of them and ignores the rest, while elastic net might include several most relevant 

variables from the group. This property is important to our research, as we do not want to leave 

out important markers that are potentially associated with outcome variable. 

 

2.3. Broken adaptive ridge (BAR) regularization 

In addition to Lasso and Elastic net, we describe an alternative multivariate regularization model 

in this chapter, the broken adaptive ridge (BAR) estimator (Dai et al., 2018). Due to the fact the 

framework has only been proposed and tested in the recent year, we are yet to have a highly 

optimized programming package to implement the algorithm at run-times comparable to those of 

Elastic net (R package: glmnet) and Lasso. Nevertheless, the methodological development of BAR 

has been advanced to a greater extent of areas in genetics, such as survival Cox model (Kawaguchi, 
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Suchard, Liu, & Li, 2020), competing risks models (Kawaguchi, Shen, Suchard, & Li, 2021), and 

regularized graphical models (C. Z. Li et al., 2021) to be discussed in Chapter 5. 

BAR estimator takes on an iterative process, which needs to start with initial estimated 

values. These initial estimates are from a standard ridge regression (Hoerl & Kennard, 1970), 

defined here as, 

(Equation 2.6) 

𝜷̂(0)(𝑟𝑖𝑑𝑔𝑒) = argmin
𝜷∈ℝ𝑝

−2𝑙𝑛(𝜷) + 𝜆𝑟𝑖𝑑𝑔𝑒‖𝜷‖2, 

where −2𝑙𝑛(𝜷) can be any objective function, such as a log likelihood function for a generalized 

regression, or least squared formula for a linear regression, ‖𝒚 − 𝜷‖2. For all formula in this 

section, 𝜷  is the coefficient vector of length 𝑝 . Superscript (𝑘)  denotes the 𝑘 -th iteration’s 

coefficient estimate. 

BAR estimator offers flexibility in regularization weighting for different objectives, such 

as fused broken adaptive ridge estimator and broken adaptive ridge trend filter (Dai et al., 2018). 

For simplicity, we focus on variable selection, setting the coefficient weighting vector to 𝒅𝑗 = 𝒆𝑗 , 

where 𝒆𝑗 is the standard basis vector with 𝑗th component equal to one. This yields a variant of 

BAR algorithm that iteratively searches for estimates which regularize by its L2 norm weighted by 

its L2 norm from the last iteration elementwise, formally, 

(Equation 2.7) 

𝜷̂(𝑘) = argmin
𝜷∈ℝ𝑝

{−2𝑙𝑛(𝜷) + 𝜆𝐵𝐴𝑅∑
𝛽𝑗
2

(𝛽̂𝑗
(𝑘−1))2

𝑝

𝑗=1

}. 

In this case the final BAR estimator is then defined as, 

(Equation 2.8) 

𝜷̂(𝐵𝐴𝑅) = lim
𝑘→∞

𝜷̂(𝑘). 
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Heuristically, to complement ridge regression’s non-zero shrinkage, the weighting term in BAR’s 

regularization term’s denominator, 𝛽̂𝑗
(𝑘−1)

 (Equation 2.8), forces the small coefficient estimates to 

become smaller. The numerator acting has to be much smaller than its fixed denominator to satisfy 

the regularization penalty. Asymptotically, BAR shrinks small ridge terms to zero (Equation 2.8). 

Chapter 5 describes an application of BAR estimator in the context of Poisson graphical model for 

discrete high-dimensional data. 
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CHAPTER 3 

3. Joint modeling for DNA methylation data 

This chapter describes a few research objectives achieved in the context of regularized regression 

and classification model applications in DNA methylation data. The general aims are to identify 

epigenetic markers directly involved in lifespan and aging, and to attempt to describe underlying 

mechanisms of these involvements. While the next chapter focuses more on marginal statistical 

model application, this chapter’s joint modeling research relies on multivariate statistical 

frameworks that take into account all variables simultaneously. This includes multivariate 

classifiers such as tissue random forest predictors and multivariate regressions like elastic net. 

Marginal modeling strategies seek to assess marginal effects in individual CpGs sites. Joint models 

do not necessarily trump the benefits of marginal frameworks, depending on the context. For 

example, marginal modeling of markers is valuable to anit-aging intervention studies and possibly 

future human clinical trial studies. They inform researchers with p-values and confidence intervals 

that are necessary for assessing the strength of statistical effects.  

We leveraged a novel DNA methylation data collection from not just human, but more than 

348 mammalian species, enabled by a novel mammalian DNA methylation array (Arneson et al., 

2021). Consequently, my research interests have expanded beyond human aging clocks. With such 

a diverse collection of mammalian species, one is able to directly study the secret to long lifespan. 

Some of the most important response variables in multi-species mammalian epigenetic aging 

studies include species maximum lifespan, organism chronological age, sample tissue type, and 

sample sex annotation. Most importantly, maximum lifespan of a species, in particular, is the 

oldest that individuals can survive, reflecting the genetic limit of longevity in an ideal environment. 

The maximum lifespan of humans and other mammals appears to be fixed and subject to natural 
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constraints (Dong, Milholland, & Vijg, 2016). We recognize that the molecular mechanisms 

underlying these constraints remain poorly understood (Austad, 2010; de Magalhaes, Costa, & 

Church, 2007), despite prior studies correlating maximum lifespan with specific molecular 

processes and life history strategies (Gorbunova & Seluanov, 2009; Harper, Salmon, Leiser, 

Galecki, & Miller, 2007; Tian et al., 2019). Some researchers have suggested that epigenetic 

mechanisms may play a role in controlling lifespan and aging (Booth & Brunet, 2016; de 

Magalhaes, 2012; Lowe et al., 2018; Mayne, Berry, Davies, Farley, & Jarman, 2019; Mitteldorf, 

2016; Rando & Chang, 2012; Sen, Shah, Nativio, & Berger, 2016; Wilkinson et al., 2020; J.-H. 

Yang et al., 2019). The role of epigenetics in mammalian aging is underscored by recent studies 

demonstrating age reversal through (transient) epigenetic reprogramming with Yamanaka factors 

(Gill et al., 2021; Y. Lu et al., 2020; Ocampo et al., 2016; Rodríguez-Matellán, Alcazar, Hernández, 

Serrano, & Ávila, 2020; Sarkar et al., 2020; Takahashi & Yamanaka, 2006).  

 While the data set continues to expand, I will list a few underpinnings discovered in 

maximum mammalian lifespan and other life history traits using DNA methylation profiles from 

348 mammalian species, from 25 taxonomic orders including primates, rodents, bats, cetaceans, 

and marsupials. The life history traits data are from a current of anAge database (de Magalhaes et 

al., 2007). I successfully developed methylation-based predictors of time-related life history traits: 

maximum lifespan, gestation time, and age at sexual maturity across therian mammalian species.  

 

3.1. Methodology 

3.1.1. Data collection 

All data were generated using the mammalian methylation array (HorvathMammalMethylChip40) 

(Arneson et al., 2022) which provides high sequencing depth of highly conserved CpGs in 
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mammals. Out of 37,492 probes (cytosines) on the array, 35,989 probes were chosen based on 

high levels of sequence conservation within mammalian species (Arneson et al., 2022). The 

particular subset of species for which each probe is expected to work is provided in the chip 

manifest file which can be found at the NCBI Gene Expression Omnibus (GEO) as platform 

GPL28271, and on our Github webpage. The SeSaMe normalization method was used to define 

beta values for each probe and to calculate detection p values (Zhou, Triche, Laird, & Shen, 2018). 

DNA methylation data generated by this array can be used to accurately classify sample species, 

sex, and tissue in randomly selected test sets (or random forest out-of-bag sets) (C. Li et al., 2021). 

We analyzed methylation data from 348 mammalian species representing 25 out of 26 taxonomic 

orders. (C. Li et al., 2021). The only order not represented was the marsupial order 

Peramelemorphia. DNA was derived from 59 different tissues and organs including blood, skin, 

liver, muscle, and brain regions (C. Li et al., 2021). Supplementary Information contains details 

on all the data sets that we have used to conduct analyses.  

 

3.1.2. Life history traits and anAge database 

The high accuracy of the epigenetic estimator of maximum lifespan is a testament to the success 

of a decade-long effort of biologists and the anAge database (de Magalhaes et al.) to establish this 

elusive phenotype. For several species, maximum lifespan was not available in anAge. In this case, 

we updated the results based on literature searches. For select species, we used a K=1 nearest 

neighbor predictor to impute values. For this reason, our KNN based predictor of life history traits 

is biased. To enhance the reproducibility of our findings we include our updated version of the 

anAge database (de Magalhaes et al.) (C. Li et al., 2021).  
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3.1.3. Multivariate estimators of maximum lifespan 

For most species, relatively few animals informed the determination of maximum lifespan, which 

may bias this life history trait (Ronget & Gaillard; Vaupel). To account for the fact that the 

maximum lifespan of humans and mice was established on the basis of many studies while the 

maximum lifespan of other mammalian species was based on fewer animals, we corrected the 

maximum lifespan value of the remaining species by multiplying it by 1.3. This adjustment step 

assumes that each maximum lifespan estimate reported in anAge underestimates the true value by 

30 percent in all species except for humans and mice. We applied the same adjustment step in our 

universal mammalian clock project (Ake T. Lu et al., 2021). In addition, in the final model fitted 

to all species as a training set, we calibrated the predictor by the mean and standard deviation, 

similar to those of biomarker, to match those of the observed lifespan (Ake T Lu et al., 2019). This 

correction was only used for our multivariate estimator of maximum lifespan, e.g. we did not use 

it in our EWAS. 

We used elastic net regression to build different multivariate predictors of maximum 

lifespan, gestation time, and age at sexual maturity (Zou & Hastie, 2005). We chose a more data-

driven and less human-mice-centered method for variable selection, i.e. CpG screening. To build 

a model on the basis of CpGs that are present/detectable in most species, we restricted the analysis 

to CpGs with significant median detection p-values (false discovery rate<0.05) (Y. Benjamini & 

Hochberg, 1995) in 85% of the species. This resulted in a lower-dimensional dataset consisting of 

17,032 CpGs.  

 We employed two strategies for building lifespan predictors. The first strategy ignored 

tissue type. Here, all tissue samples from a given species were averaged resulting in a single 

observation per species. The second strategy formed average values for each stratum defined by 
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tissue type and species. For example, this analysis formed an average value for human blood 

(considered as one stratum). The second approach allowed us to study the influence of tissue type 

on lifespan predictions. This second strategy shows similar prediction correlations in all three life 

history traits. To arrive at unbiased estimates of the predictive accuracy of lifespan and other 

predictors, we used a leave-one-species-out (LOSO) cross-validation analysis that iteratively 

trained the predictive model on all but one species. Next, the predictor was applied to the 

observations from the left-out species. By cycling through the species, we arrived at LOSO 

estimates for each species. As a sensitivity analysis, we also conducted a leave-one-clade-out 

analysis as described below. 

 

3.1.4. Leave one clade out cross validation 

In order to evaluate the taxonomic robustness of the DNAm predictions (section entitled DNAm-

based predictors out-perform phylogeny-based predictors), we iteratively left out taxonomic 

orders as test sets, in addition to conducting leave-one-species out (LOSO) analysis. Setting aside 

entire orders as test sets serves to validate the predictor’s performance when given taxonomically 

(phylogenetically) different species. We could not carry out a leave-one-taxonomic order out cross 

validation analysis because of the highly skewed distribution of animals across taxonomic order: 

Rodentia contained 27% of all species while many other orders contained fewer than 3% of the 

species. To address this challenge, we modified the leave-one-order-out analysis by leaving out all 

but two species as a test set (corresponding to the minimum and maximum lifespan) in a few 

taxonomic orders with more than 20 species (Rodentia, Artiodactyla, Chiroptera, Primates, 

Carnivora, and Eulipotyphla). The two species per large order kept in the training set act as a 

“counter-weight”, challenging the predictor to guess the lifespan for the rest of the taxonomic order 
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given this limited information. All species in a small order are left out in its entirety as test sets. 

For example, taxonomic orders Dasyuromorphia, Microbiotheria, Microbiotheria, Sirenia, and 

Tubulidentata were represented by a single species. We refer to the resulting cross validation 

scheme as leave-one-clade-out (LOCO) analysis. A predictor too reliant on neighboring species 

with similar lifespan in proximity, such as the tree-based KNN, would under-perform in such 

training-test separation scheme. In addition, due to the fact that we imputed a number of species’ 

missing lifespan observations using KNN, lifespan estimates naturally favor k-NN. Thus, in this 

analysis only, we use the original anAge database (de Magalhaes et al.) that did not contain any 

imputed values. It is evident that KNN lifespan predictor, despite having acceptable prediction 

correlation, gives constant and off-center predictions for entire taxonomic orders (C. Li et al., 

2021). For any test set, It tends to find the “nearest” species to be the two species given in LOCO 

(or some species in a neighboring order for small test-set orders), resulting in the same estimate 

for every member of that taxonomic order. Thus, such an algorithm is undesirable when applied 

to dissimilar species or clades. 

 

3.2. Results 

3.2.1. Multivariate predictors of life history traits 

We fitted three separate penalized regression models to predict log-transformed values of 

maximum lifespan, gestation time, and age at sexual maturity for each species. We obtained the 

species values for these traits from the current version of the anAge database (de Magalhaes et al.; 

C. Li et al., 2021). The resulting epigenetic predictors exhibited a high level of accuracy according 

to leave-one-species-out (LOSO) cross-validation, e.g., the predicted log maximum lifespans were 

highly correlated with those documented in anAge (Pearson’s correlation R = 0.89, Figure 3.1a & 
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3.1b). Actual log gestation time, which is easier to measure accurately than maximum lifespan, 

exhibited an even higher correlation with predicted log-gestation time (R = 0.96, Figure 3.1c). 

Interestingly, the epigenetic estimator of (log-transformed) age at sexual maturity exhibited a 

relatively lower correlation of R = 0.85 with documented measurements (Figure 3.1d). This may 

partly reflect that age at sexual maturity is far more malleable than gestation time, depending on 

food availability and various ecological/environmental factors. An alternative 70%-30% training-

test random separation scheme yields similarly high correlations for log maximum lifespan in both 

the training and test sets (training set, R = 0.98, Figure 3.2a; test set, R = 8.8, Figure 3.2b). 

We hereafter refer to the predicted maximum lifespan, in units of log years, as epigenetic 

maximum lifespan or DNA methylation (DNAm) maximum lifespan. The same nomenclature 

applies to other DNAm-based estimates of life history traits. We carried out two analyses to study 

the relationship between epigenetic maximum lifespan and chronological age of the individuals of 

species sampled. First, we built a separate maximum lifespan predictor using only samples 

obtained from animals that were younger than their species' average age of sexual maturity and 

younger than 5, and this had acceptable correlation in lifespan prediction (R = 0.68, Figure 3.3), 

even though the restriction of age resulted in fewer species (n = 122) being available for this 

analysis.  

Second, we applied the final lifespan predictor model to individual animal samples. Once 

a final model had been fitted to all species-wise averaged data, the regression model coefficients 

were frozen. Despite the fact that the predictor was intended for predicting species level lifespan 

on a log scale, we applied coefficients in an attempt to predict individual samples’ lifespan. We 

show that although predicted maximum lifespans for individual samples can vary and correlate 

with chronological age in a few species (e.g. naked mole rat skin, brown rat blood, sheep, human 
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blood) (Figure 3.4), the vast majority of the individual sample predictions remain incredibly stable 

in most species-tissue strata (Figure 3.4). Epigenetic maximum lifespan also depends on tissue 

type (Figure 3.5 and Figure 3.6). In humans, the final epigenetic maximum lifespan estimates are 

97.7 years for blood, 94.5 for epidermis, 77.9 for skin, and 49.8 for cerebral cortex (C. Li et al., 

2021). 

 Considering the high correlation of maximum lifespan and adult weight, we examined the 

potential confounding effects of average adult weight on the performance of our model. The LOSO 

estimate of log transformed maximum lifespan was moderately correlated (R = 0.54, P < 2.2x10-

16) with the weight adjusted maximum lifespan. A multivariate regression model (dependent 

variable log of maximum lifespan) revealed that log adult weight (Wald test P = 1.3x10-6) is a less 

significant covariate than the log transformed epigenetic maximum lifespan (P < 2x10-16). 
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Figure 3.1 Scatter plots of Leave-one-species-out (LOSO) cross-validation analysis of epigenetic 

test set predictions. Y-axes show log (base e) transformed estimates of a,b maximum lifespan (in 

years), c, gestation time (in days), and d, age at sexual maturity (in years). Each species is 

represented by a number whose integer part denotes the taxonomic order. Each data point number 

corresponds to a different species and is color-coded according to order (The silhouettes images 

of animals were acquired from Phylopic database and are under Public domain or Creative 

Commons license). Numeric values can be found in shorvath/MammalianMethylationConsortium 

and C. Li et al. (2021). The titles of the panels report Pearson correlation coefficients, median 

absolute errors (MAE), and p-values. Colors represent taxonomic order annotation consistent with 

those of other figures. Species appear as designated numbers in scatter plot panels; the 

corresponding taxonomic orders are annotated in figure legends; the first whole number (number 

before the decimal separator) part of each mammalian number is assigned in accordance to the 

corresponding taxonomic order. Red solid line represents the perfect prediction line, and the dotted 

line represents the fitted linear regression line. 

 

3.2.2. DNAm-based predictors outperform phylogeny-based predictors 

Since DNA methylation levels are under strong genetic control, our DNAm-based lifespan 

predictor may only be capturing DNA sequence differences driven by phylogenetic relationships 

rather than by determinants of lifespan in each individual species. This, however, does not appear 

to be the case, as we learned from two separate analyses. 

First, we train elastic net regression models of maximum lifespan, our dependent variable, 

on the basis of both CpG methylation data and indicator variables for all taxonomic orders (both 

used as covariates in a multivariate model). The elastic net model only selected CpG methylation 

as significant covariates, suggesting that CpG data explained more of the variation in maximum 

lifespan than taxonomic indicator variables.  

Second, we compared the accuracy of the DNAm lifespan predictor to that of k-nearest 

neighbor (KNN) regression predictors that used a distance measure defined by the branch length 

of the phylogenetic tree. The simplest version of the KNN predictor results from a choice of K = 

1 which entails that the maximum lifespan of a given species will be predicted by that of its closest 

neighboring species in the taxonomy.  
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Phylogeny-based k-NN predictor unsurprisingly performs almost as well as DNAm 

predictor under leave-one-species-out training-test separation scheme, because the vast majority 

of mammalian species in our dataset share similar maximum lifespan with neighboring species 

(Figure 3.7a and Figure 3.7b). This is also evident on the taxonomic family level (Figure 3.7c and 

Figure 3.7d), as species in the same families have similar lifespan (C. Li et al., 2021). To arrive at 

an unbiased comparison between methylation-based predictors and the KNN predictors, we used 

a special, more stringent cross-validation scheme, referred to as leave-one-clade-out (LOCO), 

analysis (Methods), to challenge the predictors to predict taxonomically different species. A 

predictor solely reliant on phylogeny (taxonomy) would yield inferior predictions under this 

training-test scheme. Although the KNN predictors were moderately accurate at predicting log-

transformed maximum lifespan (LOCO cross-validation estimate of Pearson correlation R = 0.62 

for K = 1 NN predictors, Figure 3.2), they are inferior to the methylation-based predictor (R = 0.73 

Figure 3.7c). A KNN predictor with K = 2 neighbors led to a correlation of R = 0.62 while a value 

of K=3 led to R = 0.57. A closer look at the residuals of the breakdown of the test sets reveals k-

NN predictions in large taxonomic orders are constant and off-center, resembling poor guesses 

based on taxonomically distant species (Figure 3.8).  

 Overall, KNN predictors based on phylogeny are clearly inferior to DNAm-based 

predictors according to LOCO cross-validation analyses. The fact that DNAm predictors can 

predict lifespan in taxonomic orders that were omitted from the training set suggests that DNAm 

captures an aspect of mammalian lifespan that transcends phylogeny.  
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3.2.3. Sex differences in predicted lifespan 

Once a final model had been fitted to all species-wise averaged data, the regression model 

coefficients were frozen. We then applied coefficients in an attempt to predict individual samples’ 

lifespan, despite the fact that the predictor was trained to predict species level lifespan on a log 

scale. The predicted maximum lifespan based on female tissues is highly correlated with that based 

on male tissues (on a log scale, R = 0.99). Most species showed consistent epigenetic estimates of 

maximum lifespan in female and male samples (C. Li et al., 2021). Stratifying by tissue type, we 

observed a significant sex difference in epigenetic maximum lifespan (two-sided Student t-test P 

< 0.01) in only 18 species (Figure 3.2e), in which all tissues showed female-male difference 

unanimously. Females were predicted to have a longer maximum lifespan than males in 17 of the 

18 species, including humans (Figure 3.2e). Across all species, females have a 1.8% longer 

predicted epigenetic maximum lifespan than males of the same species. 

 

3.2.4. Lifespan predictor does not simply reflect body mass 

We observed that maximum lifespan and average adult weight (body mass) are highly-correlated 

across species (Figure 3.9a), a finding consistent with previous studies (de Magalhaes et al., 2007). 

We considered the likelihood that the impressive accuracy of epigenetic lifespan predictors may 

be due to the confounding effect of average adult weight. This, however, is not the case as the 

epigenetic predictor of maximum lifespan remains highly correlated with the observed values 

(Pearson correlation R = 0.56, P = 3.3x10-10, Figure 3.9c) in small species (defined as average 

adult weight <150 grams in our data) even though adult weight is negatively correlated with 

maximum lifespan in those species (R = -0.21, Figure 3.9b). Overall, this demonstrates that 

epigenetic maximum lifespan captures information beyond adult weight.  
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3.2.5. Cross-species classifiers of sex and tissue and other categorical outcomes 

We have conducted tissue, species, and sex classification using supervised learning methods, 

random forest (Liaw & Wiener, 2002) and logistic elastic net (Zou & Hastie, 2005). For the tissue 

and species classification, random forest achieved an out-of-bag accuracy of over 98.2% and 

99.9%, respectively (Table 3.1). With a random 70-30% training-test separation, logistic elastic net 

regression was able to predict mammalian sample sex with over 98% accuracy in test data (Table 

3.1). However, even robust methods such as the random forest is subject to bias, such as favoring 

large categorical groups in unbalanced data set. To counter the fact that some species have much 

more samples than others, the random forest bootstrap step was slightly modified to draw at a cap 

of 100 samples from each species. In general, regardless of which robust classification model to 

use, the mammalian array DNA methylation data can be used to effectively classify sample sex, 

tissue type, and species.  

 

Table 3.1. Variable Classification by DNA Methylation Data 

Classification Variable Predictor Framework Method Note Test set / Out-of-bag Accuracy 

Tissue Random Forest 100 trees* 98.22% 

Species Random Forest 100 trees 99.94% 

Sex (Female = yes/no) Elastic Net  98.53% 

Note: *100 trees: random forest was calibrated to use this many decision trees for a reasonable run time; random forest 

unbiased prediction accuracy estimate is calculated as follows; first, summarize by calculating each category’s out-of-
bag prediction errors, subtracted by unity, across all trees used. 

 

 

In  addition to multi-species sample sex classifier based on the 40K Mammalian Arrays 

(Arneson et al., 2022). The classifier has a 10-fold training-test set cross-validation accuracy of 

98.6%. We translated this classifier to a new Illumina mouse 320K DNA Methylation array, 

yielding an accuracy of 97.5% (Table 3.2).  
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Table 3.2: Mammalian Array Classifier Performance on 320K Methylation Array 
 

Classification Variable Predictor Framework Probe Screening 
Accuracy 

320K 
Accuracy 40K 

Tissue Random Forest Good quality 1-1 94.01% 97.75% 

Species Random Forest Good quality 1-1 Close to 100% 99.95% 

Sex (Female = yes/no) Elastic Net Good quality 1-1 97.54% 98.56% 

Note: *Good quality 1-1: prior to model fitting, we subset probe (feature) set to the intersection of Illumina 40K and 

320K microarray probes, as well as those high quality probes that performed well in mice calibration data set. 
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3.3. Additional figures 

 
Figure 3.2: DNAm lifespan predictor vs phylogeny-based predictor and sex differences in 

predicted lifespan. LOCO, leave-one-clade-out, cross-validation analyses of predictors of log (base 
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e) transformed estimates of maximum lifespan. We compare prediction performance between 

DNAm elastic net predictors and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor 

predictor utilizes distances from the Mammalian phylogenetic TimeTree (Kumar, Stecher, Suleski, 

& Hedges, 2017). Panels show a, DNAm predictor’s test set predictions, b, k-NN predictor’s test 

set predictions. In addition, due to the fact that we imputed a number of species’ missing lifespan 

observations with neighboring species, lifespan estimates naturally favor k-NN. Thus, in this 

analysis only, we use the original anAge database (de Magalhaes et al.), removing species with no 

maximum lifespan estimates. Panels b and c report randomly separated training set comprising 70% 

of species and a test set consisting of the rest 30%, respectively. Panel e reports differences 

between female and male lifespan final model predictions in species in which they show statistical 

significance. Bars are colored by tissue type as indicated in the legend. For panels a and b, each 

data point in the panels corresponds to a different species and is color-coded according to 

taxonomic order. Red solid line represents the perfect prediction line, and the dotted line represents 

the fitted linear regression line. Panel c reports final DNAm lifespan female vs. male predictions 

for species in which the predictions differ significantly with a two sample T-test p-value less than 

0.01. Error bars represent the 95% confidence interval of two sample mean differences.  
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Figure 3.3: Elastic net Predictor Based on Young Samples. Elastic net predictor, Leave-one-

species-out analysis, fitted on a subset of all young samples (species n = 119). Young samples are 

defined as samples whose age is both younger than five years and less than the species’ average 

age at sexual maturation. Feature filtering and Elastic Net tuning parameter set-up is the same as 

those for Figure 3.1. Three panels show predictors for a, log maximum lifespan (in log years), b, 

log-transformed gestation time (in log days), and c, log-transformed age at sexual maturity (in log 

years). As with the Figure 3.1, species appear as designated numbers in scatter plot panels; the 

corresponding common names and phylogenetic orders are annotated in figure legends; as 
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indicated by the taxonomic order legend, the whole number (number before the decimal separator) 

part of each mammalian number is assigned in accordance to the corresponding taxonomic order. 

MAE abbreviates median absolute errors from the regression errors; r and p are Pearson’s 

correlation and p-values, respectively. Numbers and colors are the mammalian species number and 

order annotation consistent with those of other figures. Numeric values can be found in C. Li et al. 

(2021). Red solid line represents the perfect prediction line, and the dotted line represents the fitted 

linear regression line. 
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Figure 3.4: Correlation between maximum lifespan predictor and sample chronological 

ages. Mammalian maximum lifespan predictor, based on averaged species methylation, was used 

to predict individual sample lifespans. The predicted values are also stratified by species and 

tissues. Only species with >100 sample sizes are shown. Color scale: pink, female; black, male. 

To demonstrate natural relations between maximum lifespan and chronological age, panel a scatter 
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plot shows association between maximum lifespan and chronological age of corresponding 

samples. Each of panels b–x show scatter plots of predicted lifespans in log scales vs. 

chronological age in specific species. Numbers are the mammalian species number consistent with 

those of other figures. Numeric values can be found in Github repository 

shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence intervals of 

the simple linear regression line. Colors represent male and female annotation. 
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Figure 3.5: Predictors of Species-Tissue Combinations. A penalized joint linear model used to 

predict species lifespan (Elastic net). Same framework as that of Figure 3.1, except that it 

distinguishes tissue types. CpG probes are averaged by each species-tissue combination. Different 

tissues within the same species share the same maximum lifespan, but retain different methylation 

levels. Three panels show predictors for a, log maximum lifespan (in log years), b, log-transformed 

gestation time (in log days), and c, log-transformed age at sexual maturity (in log years). 
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Designated Mammalian numbers in scatter plot panels and the figure legend are the same as those 

of main Figure 3.1. MAE abbreviates median absolute errors from the regression errors; r and p 

are Pearson’s correlation and p-values, respectively. Numbers and colors are the mammalian 

species number and order annotation consistent with those of other figures. Numeric values can be 

found in Github repository shorvath/MammalianMethylationConsortium. In Figure 3.1, species 

appear as designated numbers in scatter plot panels; the corresponding common names and 

taxonomic orders are annotated in figure legends; the whole number (number before the decimal 

separator) part of each mammalian number is assigned in accordance to the corresponding 

taxonomic order. Red solid line represents the perfect prediction line, and the dotted line represents 

the fitted linear regression line. 
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Figure 3.6: Tissue groups differences in predicted mammalian maximum lifespan. Mammalian 

maximum lifespan predictor, based on averaged species methylation, was used to predict 

individual sample lifespans. The predicted values are grouped by sample tissue annotations. Panel 

a shows predicted maximum lifespans (DNAm lifespan) standardized residuals (Res.) by tissue 

groups in all species and samples; in order to show viewable scales in different species, due to 

their drastically different lifespans, we evaluated residuals standardized by species (log of 

predicted maximum lifespan minus log of observed maximum lifespan, results from which are 

divided by log of observed maximum lifespan of the species to which the samples belong); panel 

b–g show boxplots of predicted lifespans in original scales (DNAm lifespan) by tissue groups; 

only species with more than 5 tissue types; due to the fact that within-species comparisons require 

no re-scaling, predicted lifespans (in years) are shown in these panels; Tissue type 

“H.Stem.Progenitor.LSK” stands for “LSK Progenitor Hematopoietic Stem cells” 
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Figure 3.7: Overall Comparisons between DNAm lifespan predictors and Phylogeny-based 

Predictors. Various training-test validation analyses of predictors of log (base e) transformed 

estimates of maximum lifespan. We compared prediction performance between DNAm elastic net 

predictors and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor predictor utilizes 

distances from the Mammalian phylogenetic TimeTree (Kumar et al., 2017). Results under 

different training-test separation methods are shown in panels a, b, DNAm and k-NN predictors 

test set predictions under leave-one-species-out (LOSO) training-test separation scheme; c, d, 

DNAm and k-NN predictors test set predictions under leave-one-family-out training-test 

separation; e, f, DNAm and k-NN predictors test set predictions under leave-one-order-out 
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training-test separation; g, h, DNAm and k-NN predictors test set predictions under leave-one-

clade-out (LOCO) training-test separation. LOCO (leave-one-clade-out) is defined as, for orders 

with more than 20 species (Rodentia, Artiodactyla, Chiroptera, Primates, Carnivora, and 

Eulipotyphla), leaving out all member species except the longest-living and shortest-living species. 

MAE abbreviates median absolute errors from the regression errors; r and p are Pearson’s 

correlation and p-values, respectively. Numbers and colors are the mammalian species number and 

order annotation consistent with those of other figures. Numeric values can be found in Github 

repository shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence 

intervals of the simple linear regression line. E). 
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Figure 3.8: Taxonomic order breakdown of DNAm lifespan predictors and Phylogeny-based 

Predictors under LOCO. A breakdown of predictor performance in large taxonomic orders under 

LOCO. Panels a and b are identical to those of Figure 3.2c and Figure 3.2d. Panels c-h show large 

test set predictions. We compared prediction performance between DNAm elastic net predictors 

and 1-Nearest-Neighbor predictor (KNN). 1-Nearest-Neighbor predictor utilizes distances from 

the Mammalian phylogenetic TimeTree (Kumar et al., 2017). Panels a, DNAm predictor’s test set 

predictions leave-one-clade-out (LOCO) training-test separation scheme; b, k-NN predictor’s test 

set predictions under LOCO; c, d, DNAm and k-NN predictors, respectively, test set predictions 

of lifespan for all species belonging to Carnivora under LOCO; e, f, DNAm and k-NN predictors, 

respectively, test set predictions of lifespan for all species belonging to Primates under LOCO; g, 

h DNAm and k-NN predictors, respectively, test set predictions of lifespan for all species 

belonging to Artiodactyla under LOCO. MAE abbreviates median absolute errors from the 

regression errors; r and p are Pearson’s correlation and p-values, respectively. Numbers and colors 

are the mammalian species number and order annotation consistent with those of other figures. 

Numeric values can be found in Github repository shorvath/MammalianMethylationConsortium. 

Shaded areas represent 95% confidence intervals of the simple linear regression line. 
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Figure 3.9: DNAm lifespan predictions on small-sized mammals. DNAm lifespan predictor 

trained on mammal species with an average weight over 150 grams (small mammals). Panels a, 

observed (log) adult body weight vs. observed (log) maximum lifespan in all mammalian species 

within the data set, color-coded by small-size indicator (more than 150 grams); b, test set 

predictions for the maximum lifespan in small-sized (<150 grams) mammalian species vs. 

observed (log) maximum lifespan; c, test set predictions for the maximum lifespan in small-sized 

(<150 grams) mammalian species vs. observed (log) adult body weight. MAE abbreviates median 

absolute errors from the regression errors; r and p are Pearson’s correlation and p-values, 

respectively. Numbers are the mammalian species number annotation consistent with those of 

other figures. Numeric values can be found in Github repository 

shorvath/MammalianMethylationConsortium. Shaded areas represent 95% confidence intervals of 

the simple linear regression line. 
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CHAPTER 4 

 

4. Marginal modeling for DNA methylation data 

4.1. Methodology 

4.1.1. Epigenome-wide association studies (EWAS) 

Epigenome-wide association studies (EWAS) is the method of evaluating the marginal effect of 

each individual epigenetic biomarker to the outcome variable. It is usually implemented by 

regressing each CpG probe (See Section 1.1, a continuous covariate in the data set) to the outcome 

variable of interest, which, in the context of this data set, are life history traits such as species 

maximum lifespan, sexual maturation time, and gestation time. This constitutes a practice of 

multiple hypothesis testing, and is therefore often subject to multiple testing P-values corrections 

such as False Discovery Rate (FDR) (Y. Benjamini & Hochberg, 1995) and Bonferroni corrections 

(C. Bonferroni, 1936).  

 

4.1.2. EWAS of life history traits  

We restricted the EWAS of life history traits to 28,318 CpGs that were shown to work in two 

species of great importance in biomedical research: mice and humans. Toward this end, we used 

calibration/titration data (correlation with calibration exceeds 0.8) and mappability information as 

described in (Arneson et al.).  

Since the distribution of maximum lifespan and other life history traits was highly skewed, 

we imposed a log-transformation on these phenotypes before conducting EWAS. We carried out 

four types of analyses that differ by how they deal with two potential confounders: adult weight 

and phylogeny. Our “generic” EWAS corresponds to a marginal correlation analysis where the 
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average methylation level of a given CpG per species was regressed on the (log-transformed) 

maximum lifespan using ordinary least squares regression. The second EWAS approach removed 

the confounding effect of average adult weight. To adjust for adult weight, we first regressed log 

maximum lifespan on log weight and formed residuals. Next the residuals become the dependent 

variables in the regression models. The third EWAS approach replaced ordinary least squares 

regression by phylogenetic regression, the variance-covariance matrix of which modeled 

evolutionary distances using branch lengths from the TimeTree project (Grafen, 1989; Kumar et 

al., 2017). The fourth EWAS approach adjusted for both average weight and for phylogenetic 

relationships. Due to the fact that phylogenetic regression takes into account sample covariance, it 

is more appropriate to report a phylogenetic independent contrast (PIC) as opposed to a simple 

scatter plot. Instead of using paired tip values from the tree, contrasts are calculated based on each 

node. The phylogenetic contrast model assumes that trait divergences occur independently at each 

node (Felsenstein, 1985). 

 We carried out EWAS analyses in the following tissues/organs for which a sufficient 

number of species (N>25 species) was available: skin (N = 137), blood (N = 133), liver (N = 147), 

skeletal muscle (N = 38), and brain (N = 26). 

 

4.1.3. Functional enrichment algorithms for life history related cytosines 

In order to make connections between identified significant CpG sites and meaningful biological 

pathways, one needs a robust statistical framework and large literature annotation database. One 

of the most widely used methods is hypergeometric (or sometimes Chi-square) enrichment test. 

We first select a certain number of top statistically significant genes. Second, we count the overlap 

between these genes and member genes in each pathway or literature collections of genes. These 
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counts combined with the overlap of array background genes are used to form a hypergeometric 

test. The purpose is to identify whether genes from a pathway are over-represented, accounting for 

the bias from the array design. However, EWAS identify significant CpGs instead of genes, and 

more than one CpG can be mapped to some genes. Thus we have decided to employ a genomic-

region based enrichment method, using the R package for Genomic Regions Enrichment of 

Annotations Tool (GREAT) (McLean et al., 2010b) in hg19 assembly. One major difference 

between GREAT and simple enrichment test is that GREAT uses genomic region overlaps instead 

of gene overlaps, more accurately accounting for CpG-to-gene mapping. The extension of gene 

regulatory regions was set at 50 kb and the other options were based on default settings. Since our 

EWAS focused on 28,318 CpGs that applied to both humans and mice, these probes were used as 

the background (Arneson et al., 2021). By specifying the background, GREAT analysis performed 

genomic-region based hypergeometric analysis, not confounded by gene sizes and uneven gene 

coverage. 

In addition to gene set enrichment analyses, we conducted chromatin state enrichments 

using a universal annotation of the human genome annotation that is not specific to one cell or 

tissue type based on a stacked ChromHMM model recently generated based on over 1000 data sets 

from diverse human cell and tissue types (Vu & Ernst, 2020). ChromHMM is a multivariate hidden 

Markov model for characterizing and annotating patterns in histone marks, utilizing chromatin 

datasets such as ChIP-seq data (Ernst & Kellis, 2012, 2017). For each EWAS enrichment, we 

utilized a hyper-geometric test to assess significant overlap between chromatin states and the two 

sets of CpGs that are highly significant in either positive or negative correlations with maximum 

lifespan. The background set for these hyper-geometric enrichment tests were the 28,318 CpGs 

that mapped to both human and mouse. 
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4.1.4. Integrating human literature GWAS with mammalian EWAS 

Our EWAS-GWAS based overlap analysis related the genomic regions found by our EWAS of 

maximum lifespans with the significant gene sets (top 2.5% of genes) found by published large-

scale GWAS of various phenotypes, across body fat distribution, lipid panel outcomes, metabolic 

outcomes, neurological diseases, six DNAm based biomarkers, and other age-related traits (Ake 

T. Lu et al., 2021). A total of 102 GWAS traits were included in the enrichment database 

(Supplementary Note 1). This database includes six DNAm biomarkers based on four epigenetic 

age acceleration measures 1) pan-tissue epigenetic age adjusted for age-related blood cell counts, 

intrinsic epigenetic age acceleration (IEAA) (Steve Horvath, 2013; Horvath et al., 2016); 2) 

Hannum’s blood-based DNAm age (Hannum et al., 2013); 3) DNAmPhenoAge (Levine et al., 

2018); and 4) the mortality risk estimator DNAmGrimAge (Ake T Lu et al., 2019), as well as 

DNAm-based estimates of blood cell counts and plasminogen activator inhibitor 1 (PAI1) levels 

(Ake T Lu et al., 2019). For each GWAS trait, the MAGENTA software was used to calculate an 

overall GWAS P-value per gene. The P-values were calculated taken into account the most 

significant SNP association P-value within ± 50 kb of the gene adjusted for gene size, number of 

SNPs per kb, linkage disequilibrium, and other potential confounders (Segrè et al., 2010). The 

MAGENTA analysis was performed in MATLAB (2017 version). We restricted the analysis to 

genomic regions of GWAS genes present on the mammalian array. For each EWAS result, we 

studied the genomic regions from the top 500 CpGs per direction with strong associations with 

log-transformed life history traits (same thresholding described above, nominal P < 3.5x10-7, 

Bonferroni corrected P < 0.05). To assess the overlap with a test trait, we selected the top 2.5% 

genes for each GWAS trait and calculated one-sided hypergeometric P-values based on genomic 
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regions. We report GWAS traits that led to a significant hypergeometric test (FDR corrected P < 

0.05) for any EWAS of log-transformed life history traits. The number of background genomic 

regions in the hypergeometric test was based on the overlap between all genes in the GWAS and 

all genomic regions represented by the mammalian array. Enrichment p-values for the overlap 

between the genes implicated in EWAS and GWAS were based on genomic region-based 

hypergeometric tests as detailed in (C. Li et al., 2021). 

 

4.2. Results 

4.2.1. EWAS of maximum lifespan 

We carried out epigenome-wide association studies (EWAS) to relate the methylation levels of 

individual CpGs to the various life history traits. To reduce biases resulting from different levels 

of sequence conservation, our EWAS of life history traits focused on n = 333 eutherian species, 

excluding Marsupial species. We performed four types of EWAS analyses adjusting for different 

confounders: (1) Lifespan; a direct regression analysis of lifespan (generic EWAS). (2) Weight-

adjusted lifespan (AdjWeight); a regression analysis of maximum lifespan after adjustment for 

adult weight, which identifies lifespan-related CpGs that are independent of the body mass of the 

species. (3) Phylogenetic-adjusted lifespan (AdjPhylo); a phylogenetic regression model (de 

Magalhaes et al., 2007; Grafen, 1989) of lifespan, which adjusts for evolutionary relationships 

between species. (4) Phylogeny and Weight-adjusted lifespan (AdjPhyloWeight); a phylogenetic 

regression of lifespan after adjustment for average adult species weight. The results of these four 

categories of EWAS can be found in C. Li et al. (2021) tables. For brevity, we will focus on 

categories 1 and 2 since categories 3 and 4 led to qualitatively similar conclusions (C. Li et al., 

2021).  
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Each analysis category is further subdivided by tissue type. The all-tissue analysis (denoted 

“All”) ignored tissue type. Within species, mean methylation levels are highly correlated across 

tissue types (R > 0.95), but the all-tissue analysis may miss longevity mechanisms that are specific 

to tissues and organs. Therefore, we also present EWAS for five tissues for which there were a 

sufficiently large number of samples: blood (n = 141 species), skin (n = 146), liver (n = 151), 

muscle (n = 46) and brain (n = 34). We observed positive pairwise correlations between the all-

tissue EWAS results and those of tissue-specific EWAS (Figure 4.3a-e): such as blood (Pearson 

correlation R = 0.76), skin (R = 0.69), liver (R = 0.69), muscle (R = 0.49), and brain (R = 0.38). 

All tissue, Blood and skin lifespan EWAS are summarized in Figure 4.4, Figure 4.5, and Figure 

4.6. To assess the robustness of maximum lifespan EWAS, we observed high agreements, in most 

tissues, between our generic EWAS (category 1) and a separate maximum lifespan EWAS using 

only samples obtained from animals that were younger than their species' average age of sexual 

maturity and younger than 5 (Figure 4.7). 

We identified the genes that are proximal to CpGs that are statistically most correlated with 

maximum lifespan. These are as follows: lifespan was positively-correlated with a CpG in the 

distal intergenic region neighboring TLE4 (Pearson R = 0.68, P = 2.9x10-46, Figure 4.2) and two 

CpGs near the promoter region of HOXA4 (R = 0.67, Figure 4.2b and Figure 4.2c), and negatively-

correlated with a CpG in an intron of GATA3 (R = -0.65, P = 4.4x10-12, Figure 4.2d), exon in 

ZBTB7B (R = -6.1, P = 3.2x10-35, Figure 4.2e), and the promoter region of C9orf106 (R = -0.6, P 

= 4.6x10-35, Figure 4.2f).  

Many of these significant CpGs remain so after phylogenetic adjustment, such as the CpGs 

neighboring TLE4, HOXA4, C9orf106, PKNOX2, LMX1B, C15orf41, and ZEB2 (P = 4.2x10-5, P 

= 4.8x10-3, P = 3.1x10-3, P = 3.6x10-4, P = 2.2x10-3, P = 4.8x10-7, P = 3.5x10-3, respectively, Figure 
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4.4) (C. Li et al., 2021). Phylogenetic EWAS (category 3 analysis) top CpGs are reported in the 

form of phylogenetic independent contrast  (Figure 4.8), and the EWAS Z statistics agreements 

with generic lifespan EWAS (category 1 analysis) are summarized in Figure 4.9. Generic EWAS 

and phylogenetic EWAS Z statistics agreements are summarized in Figure 4.10. 

All of the top-ranking CpGs mentioned above from the category 1 analysis remain in the top 500, 

in both directions, of weight adjusted EWAS (category 2 analysis) (Figure 4.4d), which indicates 

that these CpGs do not reflect confounding by body mass. But adjustment for adult weight 

(category 2) leads to a different set of top ranking CpGs: the top positively lifespan-related CpGs 

are in a promoter of PKNOX2 (R = 5.4, P = 5.210-27) and an intron of LMX1B (R = 0.51, P = 

4.0x10-24) and the top CpGs negatively related to lifespan are in an intron of C15orf41 (R = -0.55, 

P = 8.0x10-27) and an intron of ZEB2 (R = -0.5, P = 5.1x10-23). Most of these top lifespan related 

CpGs in eutherians do not correlate with maximum lifespan across the 15 marsupial species (C. Li 

et al., 2021) which may be due to sequence differences or could reflect the low statistical power in 

marsupial species (only n=15 marsupial species). 

 Mammalian maximum lifespan is correlated with several other traits such as gestational 

time, and age at sexual maturity (Figure 4.11). Thus, we examined the degree of overlap between 

the EWAS of these evolutionary traits. At a Bonferroni corrected significance threshold of P = 

1.8x10-6 (=0.05/28318), the methylation of 7429, 8218, and 5,962 CpGs were significantly 

associated with maximum lifespan, gestation time, and age at sexual maturity, respectively. An 

upset plot (generalization of Venn diagram) reveals that 329 CpGs relate significantly to all three 

life history traits (Figure 4.1b). Manhattan plots for EWAS of gestation time and age at sexual 

maturity are reported in Figure 4.12.  
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4.2.2. Gene set enrichment analysis of maximum lifespan  

To uncover biological processes potentially linked to lifespan-related CpGs, we identified 

functional annotations associated with genes proximal to lifespan-related CpGs using the Genomic 

Regions Enrichment of Annotations Tool (GREAT) (McLean et al., 2010a). GREAT 

automatically adjusts for biases arising from the array platform and biases of uneven coverage of 

genes. 

The number of significant lifespan-related CpGs per tissue type depends on the underlying 

sample size (number of species). We imposed an upper limit of 500 on the number of significant 

CpGs and referred to the top 500 CpGs with a positive and negative correlation with lifespan as 

lifespan.pos set and lifespan.neg set, respectively. These CpGs are further subject to a Bonferroni 

corrected significance threshold (P < 1.8e-6) before the enrichment analysis. Detailed results can 

be found in Figure 4.1d, Figure 4.13, Figure 4.14, Figure 4.15, and C. Li et al. (2021). 

CpGs that have a positive correlation with maximum lifespan implicate genes that play a 

critical role in development including the HOXL gene group (GREAT P = 1.2x10-5, Figure 4.1d, 

Figure 4.13) based on the following genes EVX1, HOXA2, HOXA3, HOXA4, HOXA5, HOXB1, 

HOXB2, HOXB3, HOXB4, HOXB7, HOXB8, HOXB9, HOXC4, HOXD10, HOXD8, HOXD9) (C. 

Li et al., 2021). More significant enrichment for HOXL genes were obtained after adjusting the 

analysis for adult weight (reporting False Discovery Rate p-values as FDR) (GREAT FDR = 

1.3x10-15, Figure 4.1d) (C. Li et al., 2021). The EWAS of lifespan implicated embryonic organ 

morphogenesis with (category 2) or without (category 1) adjusting for adult weight (generic 

EWAS, GREAT FDR = 3.4x10-4, Figure 4.13) (C. Li et al., 2021), weight-adjusted EWAS, 

GREAT FDR = 2.5x10-7, Figure 4.13) (C. Li et al., 2021) and multicellular organism development 

(generic EWAS, GREAT FDR = 9x10-4, Figure 4.1d, (C. Li et al., 2021) weight-adjusted EWAS, 
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GREAT FDR = 4.4x10-5, Figure 4.1d) (C. Li et al., 2021). Developmental pathways are even more 

enriched in skin samples, such as embryonic organ morphogenesis in generic EWAS (GREAT 

FDR = 2.7x10-30, Figure 4.15) (C. Li et al., 2021) and embryonic organ development in weight-

adjusted EWAS (GREAT FDR = 1.4x10-15, Figure 4.15) (C. Li et al., 2021).  

CpGs that are directly related to weight-adjusted maximum lifespan are enriched with 

genes involved in mouse phenotypes such as abnormal survival (GREAT P = 4.1x10-4) (C. Li et 

al., 2021)  and mortality/aging (GREAT P = 7.2x10-5, Figure 4.13) (C. Li et al., 2021).  

The GREAT enrichment analysis revealed that CpGs negatively related to lifespan are 

located next to genes that play a role in abnormal eye morphology according to mouse knockout 

studies (GREAT FDR = 2.3x10-4, Figure 4.1d) (C. Li et al., 2021), regulation of gene expression 

(GREAT FDR = 2.1x10-5, Figure 4.1d) (C. Li et al., 2021)  and DNA-templated regulation of 

transcription (GREAT P=4.0x10-5, Figure 4.1d) (C. Li et al., 2021).  

Both negatively and positively lifespan related CpGs are located near genes that play 

different roles in mRNA processing (Figure 4.1d,Figure 4.14) (C. Li et al., 2021) and splicing 

including (CELF1; CELF2; CELF6; DAZAP1; FAM172A; HNRNPA1; HNRNPK; HNRNPU ; 

JMJD6; MBNL1; MBNL2; NOVA2; QKI; RBFOX1; RBM15; RBM39; SF1; SON; SRPK1; SRPK2; 

SRSF12; TRA2A; TRA2B; YTHDC1) (C. Li et al., 2021).  

Our transcription factor analysis based on GREAT demonstrates that CpGs positively 

related to weight adjusted maximum lifespan are located near binding sites of transcription factors 

HOXA4 (GREAT FDR = 1.8x10-10, Figure 4.1d) (C. Li et al., 2021), GATA6 (GREAT FDR = 

4.2x10-11), EVI1 (GREAT FDR = 0.001) while CpGs negatively related to lifespan are located 

near binding sites of transcription factor ER (GERAT FDR = 1.1x10-5 estrogen receptor) and IK3 

(GREAT FDR = 2.7x10-4). 
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4.2.3. EWAS of cancer risk  

Cancer risk has been extensively studied across mammalian species (Vincze et al., 2021). To 

obtain insights into cancer-related genes that contribute to epigenetic maximum lifespan, we 

regressed cytosines identified by EWAS of species-specific maximum lifespan on cancer risk as 

reported in the literature (Vincze et al., 2021). We designated the outcome variable of this analysis 

as cancer mortality risk (Vincze et al., 2021). The top hits are summarized in C. Li et al. (2021), 

and here we highlight 3 of the most significant CpG-neighboring genes, including tumor 

suppressor gene CYLD (P = 4.4x10-7) (Fernández-Majada et al., 2016), oncogene USP14 (P = 

1.7x10-6) (Zhu, Zhang, Gu, Li, & Wu, 2016), tumor suppressor PRKAR2A (P = 1.3x10-6) 

(Saloustros et al., 2015), and a B-cell lymphoma tumor suppressor PHIP (P = 2.3x10-6) (Weber et 

al., 2019). Interestingly, these CpGs remain largely significant after adjusting for average adult 

weight, placing PHIP as the top gene (P = 1.4x10-6) (C. Li et al., 2021). None of these four cancer 

related CpGs overlap with CpGs from our EWAS of life history traits. Our EWAS of mammalian 

cancer risk implicates several genome-wide significant CpGs and neighboring genes that may 

serve as starting points for future studies of evolved cancer resistance. Another cancer outcome, 

cumulative incidence rate (Vincze et al., 2021), EWAS are reported in C. Li et al. (2021). This 

outcome variable covers less non-missing species. For concerns of statistical power, we focus on 

cancer mortality risk. 

 



 

51 

4.3. Additional figures 

 
Figure 4.1: EWAS of eutherian log-transformed maximum lifespan, gestation time, age of sexual 

maturity, and risk of cancer. The figure represents the CpG specific association with maximum 

lifespan across n=333 eutherian species. All tissue samples were averaged by species. The 

associations with lifespan were examined with or without adjustment for adult weight of the 

species. a, Manhattan plots of EWAS results in 28,318 probes that were experimentally validated 
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to work in both mouse and human genomes. The coordinates are based on the alignment to the 

human hg19 genome. The red dotted line corresponds to a Bonferroni corrected two-sided p value 

< 1.8x10-6. Individual CpGs with positive or negative correlations with maximum lifespan are 

colored in red and blue, respectively.  The top significant CpGs are labeled by their respective 

neighboring genes. b, upset plot of the overlap in the top 1000 (500 per direction) significant CpGs 

for different EWAS models. c, Venn diagrams showing the overlap of CpGs associated with 

mammalian lifespan and the top 1000 CpGs that relate to chronological age in mammals (Ake T. 

Lu et al., 2021). Overlapping CpGs were labeled by neighboring genes. d, Gene set enrichment 

analysis of the genes proximal to CpGs associated with mammalian maximum lifespan, gestation 

time, and sexual maturity. We only report enrichment terms that are significant after adjustment 

for multiple comparisons (hypergeometric test false discovery rate <0.01) and contain at least five 

significant genes. The top two significant terms per enrichment database are shown in the panel.  
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Figure 4.2: Top CpGs related to log-transformed maximum lifespan in eutherians.Scatter plots of 

CpG methylation level (x-axis) versus log-transformed maximum lifespan (y-axis) for a, b, c the 

top three  positively-correlated CpGs and d, e, f the top three negatively-correlated CpGs. g–l. 

Corresponding scatter plots to a–f for weight-adjusted maximum lifespan. The y-axis reports the 

residuals resulting from regressing log-transformed maximum lifespan on log-transformed adult 

weight. Each observation corresponds to one of 333 different eutherian species and is colored and 

labeled by mammalian number as in Figure 3.1. MAE abbreviates median absolute errors from the 

regression errors; r and p are Pearson’s correlation and p-values, respectively. Numbers and colors 

are the mammalian species number and order annotation consistent with those of other figures. 

Red solid line represents the perfect prediction line. 
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Figure 4.3: Generic Lifespan EWAS in different tissues from Eutherian species. Scatter plot of 

CpG Z statistics agreements between tissues, color-coded by human CpG island annotations (not 

island: black, island: red). Both x- and y-axes are CpG Z statistics for the set of EWAS background 

CpG probes (28,318) consistent with the methods section (mappable to humans and mice and 

correlation with calibration exceeds 0.8). Panels show agreements between a, blood vs. all, b, skin 

vs. all, c, liver vs. all, d, brain vs. all, e, muscle vs. all, f, skin vs. blood, g, liver vs. blood, h, brain 
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vs. blood, i, muscle vs. blood, j, liver vs. skin, k, brain vs. skin, l, muscle vs. skin, m, brain vs. 

liver, n, muscle vs. liver, o, muscle vs. brain. Panel titles report r and p as Pearson’s correlation 

and p-values, respectively.  
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Figure 4.4: EWAS of significant CpGs related to mammalian maximum lifespan, adjusted by 

weight and phylogeny. Panel a are Manhattan plots reporting Manhattan plots of lifespan, lifespan 

EWAS adjusted by weight (AdjWeight), lifespan EWAS adjusted by phylogeny (AdjPhylo), and 

lifespan adjusted by both weight and phylogeny (AdjPhyloWeight). The background probes were 

limited to the set of EWAS background CpG probes (28,318) consistent with the methods section 

(mappable to humans and mice and correlation with calibration exceeds 0.8). b, Location of the 

top CpGs in each tissue relative to the closest transcriptional start site. A panel for the top 1000 

age related CpGs was added to the figure for comparison (Ake T. Lu et al., 2021). The changes in 

gene regions were tested by a hypergeometric test in proportion to the background. The odd ratios 

and p-values (* <0.05, **<0.01, ***<0.001, ****<0.0001) of changes are reported for each bar. c, 
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Boxplot of association with mammalian maximum lifespan by human CpG island status. The mean 

difference was tested by Student T-test. d, Venn diagram of the overlap in the top 1000 (500 per 

direction) significant CpGs for different models of EWAS of lifespan from panel a. The overlap 

hits were labeled by neighboring genes. e, Overlap of CpGs associated with mammalian lifespan 

and the top 1000 CpGs that relate to chronological age in mammals (Ake T. Lu et al., 2021). Blood 

and skin specific results are reported in Figure 4.5, Figure 4.6, and Figure 4.7. 
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Figure 4.5: EWAS of mammalian maximum lifespan in blood. The associations were examined 

with four different models: 1) lifespan: each species as a datapoint in the model regardless of 

evolutionary distance. 2) lifespan adjusted for average species weight. 3) lifespan adjusted for 

evolutionary distance by phylogenetic regression. The evolutionary tree was acquired from 

TimeTree database. 4) lifespan adjusted for both average adult species weight and evolutionary 

distance.  Panel a, Manhattan plots (Kumar et al., 2017) of EWAS of maximum lifespan in the set 
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of EWAS background CpG probes (28,318) consistent with the methods section (mappable to 

humans and mice and correlation with calibration exceeds 0.8). The coordinates are based on the 

alignment to the human hg19 genome. The direction of associations with p < 0.001 (red dotted 

line) is highlighted by red (hypermethylated) and blue (hypomethylated) colors. Some top CpGs 

were labeled by the neighboring genes, b, Location of top CpGs relative to the closest 

transcriptional start site. A panel for the top 500 age-related CpGs in each direction was added to 

the figure for comparison (Ake T. Lu et al., 2021). The changes in each gene region was tested by 

Fisher’s exact test based on the same background. The odds ratios and p-values (* <0.05, **<0.01, 

***<0.001, ****<0.0001) of changes are reported for each bar. c, Boxplot of association with 

mammalian maximum lifespan by human CpG island status. The mean difference was tested by a 

Student’s T test. A panel for the top 1000 age-related CpGs was added to the figure for comparison, 

d, Venn diagram of the overlap in the top 1000 (500 per direction) significant CpGs for different 

models of EWAS of lifespan. The Venn diagram does not show AdjPhyloWeight because it 

contains zero CpG probe past the significance threshold. 
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Figure 4.6: EWAS of mammalian maximum lifespan in skin. The associations were examined with 

four different models: 1) lifespan: each species as a datapoint in the model regardless of 

evolutionary distance. 2) lifespan adjusted for average species weight. 3) lifespan adjusted for 

evolutionary distance by phylogenetic regression. The evolutionary tree was acquired from 

TimeTree database (Kumar et al., 2017). 4) lifespan adjusted for both average adult species weight 

and evolutionary distance. Panel a, Manhattan plots of EWAS of maximum lifespan in the set of 

EWAS background CpG probes (28,318) consistent with the methods section (mappable to 

humans and mice and correlation with calibration exceeds 0.8). The coordinates are based on the 

alignment to the Human hg19 genome. The direction of associations with p < 0.001 (red dotted 

line) is highlighted by red (hypermethylated) and blue (hypomethylated) colors. The top few CpGs 

were labeled by the neighboring genes, b, Location of top CpGs in each tissue relative to the closest 
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transcriptional start site. A panel for the top 1000 age-related CpGs was added to the figure for 

comparison. The changes in each gene region were tested by Fisher’s exact test based on the same 

background. The odds ratios and p-values (* <0.05, **<0.01, ***<0.001, ****<0.0001) of changes 

are reported for each bar. c, Boxplot of association with mammalian maximum lifespan by human 

CpG island status. The mean difference was tested by a student’s T test. A panel for the top 1000 

age-related CpGs was added to the figure for comparison, d Venn diagram of the overlap in the 

top 1000 (500 per direction) significant CpGs for different models of EWAS of lifespan. 
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Figure 4.7: Generic EWAS agreements between all samples and young samples. Agreements 

between EWAS based on young samples and EWAS based on all available samples. Young 

samples are defined as samples younger than five years of age and before the age of sexual maturity. 

Panels show agreements between, a all tissue all vs. young generic EWAS, b, all vs. young generic 

EWAS in blood, c, all vs. young generic EWAS in skin, d, all vs. young generic EWAS in liver, 

e, all vs. young generic EWAS in brain, f,  all vs. young generic EWAS in muscle. Panel titles 

report r and p as Pearson’s correlation and p-values, respectively.  
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Figure 4.8: Top Significant CpG sites in a phylogenetic independent contrast plot, 

Eutherians. Scatter plot of CpG methylation and maximum lifespan, transformed and scaled to 

phylogenetic independent contrasts, based on all available samples. In order to properly visualize 

sample correlations, phylogenetic independent contrast plots select parent nodes that are of 

relatively similar distances to each other (Felsenstein, 1985). We color-coded these common 

ancestor nodes as time to present, in millions of years. Panels show scatter plots of top three CpGs 

from a–c, all tissues, b–g, top four CpG from blood tissues, h–k, top four CpGs from skin tissues, 

l–o, top four CpGs from brain tissues. P-values reported are based on phylogenetic generalized 

least squared (GLS) regression. Panel titles report r and p as Pearson’s correlation and p-values, 

respectively.  
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Figure 4.9: Phylogenetic EWAS agreement in various tissues, Eutherians. Scatter plot of CpG Z 

statistics between tissues, color-coded by human CpG island annotations (not island: black, island: 

red). Both x- and y-axes are CpG Z statistics for the set of EWAS background CpG probes (28,318) 

consistent with the methods section (mappable to humans and mice and correlation with calibration 

exceeds 0.8). Panels show agreements between a, blood vs. all, b, skin vs. all, c, liver vs. all, d, 

brain vs. all, e, muscle vs. all, f, skin vs. blood, g, liver vs. blood, h, brain vs. blood, i, muscle vs. 

blood, j, liver vs. skin, k, brain vs. skin, l, muscle vs. skin, m, brain vs. liver, n, muscle vs. liver, 

o, muscle vs. brain. Panel titles report r and p as Pearson’s correlation and p-values, respectively.  
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Figure 4.10: Simple linear regression (generic) and phylogenetic regression EWAS 

agreement. Scatter plot of CpG Z statistics across phylogenetic Generic EWAS vs. Phylogenetic 

EWAS. Similar to Figure 4.7, panel titles and axes labels report agreements between EWAS 

analyses. Panels show agreements between, a all tissue phylogenetic vs. generic EWAS, b, 

phylogenetic vs. generic EWAS in blood, c, phylogenetic vs. generic EWAS in skin, d, 

phylogenetic vs. generic EWAS in liver, e, phylogenetic vs. generic EWAS in brain, f, 

phylogenetic vs. generic EWAS in muscle. Panel titles report r and p as Pearson’s correlation and 

p-values, respectively.  
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Figure 4.11: Mammalian life history traits relations. Panels show log-transformed relationships 

between observed variables of a, age at sexual maturity and maximum lifespan, b, gestation time 

and maximum lifespan, c, sexual maturity time and gestation time, d, cancer risk and maximum 

lifespan, e, cancer risk and sexual maturity, f, cancer risk and gestation time. MAE abbreviates 

median absolute errors from the regression errors; r and p are Pearson’s correlation and p-values, 

respectively. Numbers and colors are the mammalian species number and order annotation 

consistent with those of other figures. Shaded areas represent 95% confidence intervals of the 

simple linear regression line. 
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Figure 4.12: EWAS of significant CpGs related to mammalian life history traits, maximum 

lifespan, gestation time, sexual maturity time, and cancer risk. Manhattan plots of tissue-specific 

generic EWAS results for gestation, age at sexual maturity, and cancer risk. Red dotted line 

represents our Bonferroni-adjusted significance level. Manhattan plots report the set of EWAS 

background CpG probes (28,318) consistent with the methods section (mappable to humans and 

mice and correlation with calibration exceeds 0.8). 
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Figure 4.13: Gene set enrichment analysis of significant CpGs related to mammalian maximum 

lifespan. The gene-level enrichment was done using GREAT analysis using human background. 

Foreground selection is consistent with the description in the methods section. The background 
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probes were limited to the set of EWAS background CpG probes (28,318) consistent with the 

methods section (mappable to humans and mice and correlation with calibration exceeds 

0.8).  Human GWAS enrichment was calculated by a hypergeometric test of the top 2.5% genes 

involved in GWAS of complex traits-associated genes with the top lifespan-related gene regions 

in our analysis. The biological processes were reduced to parent ontology terms using the “rrvgo” 

package (Method). Input: Lifespan negative/positive, 500/500 CpGs; Lifespan (AdjWeight) 

negative/positive, 500/500. In each panel, the columns with no significant terms were removed to 

simplify the figure. Panels only show entries below a p-value threshold of p<1x10-4. 
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Figure 4.14: Gene set enrichment analysis of significant CpGs related to mammalian maximum 

lifespan in blood. The gene level enrichment was done using GREAT analysis using human 

background. The background probes were limited to the set of EWAS background CpG probes 

(28,318) consistent with the methods section (mappable to humans and mice and correlation with 

calibration exceeds 0.8). Human GWAS enrichment was calculated by a hypergeometric test of 

the top 5% genomic regions involved in GWAS of complex traits-associated genes with the top 

lifespan-related gene regions in our analysis. The biological processes were reduced to parent 

ontology terms using the “rrvgo” package. Input: Lifespan hypo/hyper, 500/500 CpGs; Lifespan 

(AdjWeight) hypo/hyper, 500/500. In each panel, the columns with no significant terms were 

removed to simplify the figure. Panels only show entries below a p-value threshold of p<1x10-4. 

  



 

73 

 

Figure 4.15: Gene set enrichment analysis of significant CpGs related to mammalian maximum 

lifespan in skin. The gene level enrichment was done using GREAT analysis using human 

background. The background probes were limited to the set of EWAS background CpG probes 

(28,318) consistent with the methods section (mappable to humans and mice and correlation with 

calibration exceeds 0.8). Human GWAS enrichment was calculated by a hypergeometric test of 
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the top 2.5% genomic regions involved in GWAS of complex traits-associated genes with the top 

lifespan-related gene regions in our analysis. The biological processes were reduced to parent 

ontology terms using the “rrvgo” package. Input: Lifespan hypo/hyper, 500/500 CpGs; Lifespan 

(AdjWeight) hypo/hyper, 500/500; Lifespan (AdjPhylo) hypo/hyper, 12/22; Lifespan 

(AdjPhyloWeight) hypo/hyper, 38/13. In each panel, the columns with no significant terms were 

removed to simplify the figure. Panels only show entries below a p-value threshold of p<1x10-4. 
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CHAPTER 5 

 

5. A novel L0 regularized Poisson graphical model for RNA-seq data 

This chapter presents a sparse Poisson graphical model. When using high-throughput sequencing 

technologies to measure gene expression, researchers are often interested in constructing a sparse 

network model. One established approach, Poisson Graphical LASSO (Allen & Liu, 2012), is 

implemented by fitting L1-regularized regression models. However, it is well known that L0-

regularized regressions produce more parsimonious and accurate models, compared to L1-

regularized methods. However, direct L0 norm regularization is difficult to estimate because of 

function convexity. L2-norm penalization, on the other hand, is convex and stable, but in lack of 

sparsity. In this research we developed a new L0 based Poisson graphical model, using cyclic 

coordinate-wise broken adaptive ridge (BAR) regression. This graphical model combines the 

benefits of both L1 and L2 penalization models and achieves an L0-equivalent penalization. 

Performance of the model is evaluated and compared with some existing methods on both 

simulated and real data.  

 This chapter is organized as follows. In Section 5.1, we explain the motivation for a log-

linear graphical model (LLGM) in general. In Section 5.2, we describe the proposed L0-LLGM 

methodology in detail. In this section we also define notations necessary for graphical model 

constructions, and review steps of LLGM model. In the Subsection 5.2.3, we introduce a 

regularization parameter selection procedure for graphical models based on a stability algorithm. 

Then in Section 5.3, we compare performances of our proposed L0-LLGM and standard model L1-

LLGM by simulating RNA-seq type of data from a few known network structures. Finally, in 

Section 5.4, we demonstrate a model application to a real world data set, kidney renal clear cell 
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carcinoma (KIRC) micro-RNA (miRNA) data from the Cancer Genome Atlas (TCGA) (Collins 

and Barker, 2007).  

 

5.1. Motivations for a new Poisson graphical model 

High dimensional analysis in gene expression studies often requires identifying associations 

between genes. Scientists are usually interested in a sparse network, which provides biologists 

with insights into possible pathways from particular groups of genes (Dobra et al., 2004; J. 

Friedman, Hastie, & Tibshirani, 2008; Meinshausen & Bühlmann, 2006). Multivariate Gaussian 

graphical models (J. Friedman et al., 2008; Meinshausen & Bühlmann, 2006). have been widely 

used to model continuous microarray data, since log ratios of the microarray gene expressions are 

approximately normally distributed after normalization. More recently, next generation high-

throughput sequencing (RNA-seq) has become a popular data collection method for expression 

analysis (Dillies et al., 2013). Because RNA-seq gene expression data consist of counts of 

sequencing reads for each gene, researchers sought discrete probabilistic models, in favor of 

continuous Gaussian models, to describe the RNA-seq data (Allen & Liu, 2012; Chiquet, Robin, 

& Mariadassou, 2019; Choi et al., 2017; Gallopin, Rau, & Jaffrézic, 2013; Imbert et al., 2018; 

Srivastava & Chen, 2010; Witten, 2011). Some of these previous studies address zero-inflated 

Poisson distributions (Choi et al., 2017), whereas others focus on multivariate Poisson models 

(Chiquet et al., 2019). 

Owing to restrictions in assumptions imposed by some joint models, some seek to build 

network models using neighborhood selection (Allen & Liu, 2012; Meinshausen & Bühlmann, 

2006). A key advantage of neighborhood selection, in contrast to a joint distribution model, is that 

each neighborhood sparse estimation can be done simply by a multivariate log-linear regression, 
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and the regression model can be regularized conveniently by popular regularization methods such 

as L1-regularized Lasso. Neighborhood network selections assume a pair-wise Markov property 

(Lauritzen, 1996): conditional on all other variables, each variable follows a Poisson distribution, 

and is estimated locally through neighborhood selection (Meinshausen and Bühlmann, 2006) by 

fitting L1-regularized log-linear models (Allen and Liu, 2012). This Poisson graphical model based 

on neighborhood selection by Allen and Liu (2012) was recognized as one of the recent studies of 

graphical modeling specifically for discrete data with Poisson distributions, and it addresses 

conditional variable relationships without the need for a joint discrete distribution (Gallopin et al., 

2013; Choi et al., 2017; Imbert et al., 2018; Chiquet et al., 2019). For the rest of the chapter, we 

address this model as L1 log-linear graphical model (L1-LLGM). 

However, the L1-LLGM method has some pitfalls because L1 regularization is known to 

lack oracle properties and tends to include unwanted noise variables (Zou, 2006; Zou and Zhang, 

2009; Zhang, 2010). Consequently, the resulting estimated network is often not sparse enough 

when compared with the true underlying network structure. To mitigate this issue, Allen and Liu 

(2012) introduced a threshold to filter out small coefficients retained by L1-regularized log-linear 

regressions. We demonstrate in simulations that the inferred network is not robust with respect to 

the threshold level, and can sometimes have a very poor performance when a suboptimal threshold 

level is used. Unfortunately, no practical guidance is available in the literature on how to choose 

an appropriate threshold level for a given data set. In subsequent parts of the chapter, we employ 

the same assumptions (local Markov property) and settings (normalization, power transformation) 

of the L1-LLGM, and propose a more refined estimation method for this model by adopting an L0-

equivalent regularization. 
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We frame the goal of this chapter as an improvement over L1-LLGM. To this aim, we 

developed and implemented an approximate L0-regularized log-linear graphical model (L0-LLGM) 

for constructing sparse gene network from RNA-seq count data. We consider L0 regularization 

because it generally yields higher true-positive estimations than L1 regularization and has been 

shown to be more accurate for feature selection and parameter estimation (Lin et al., 2010, 2020; 

Shen et al., 2012, 2013). Because exact L0 regularization is computationally non-deterministic 

polynomial-time hardness (NP-hard) and only feasible for low dimension data, we adapt the 

recently developed broken adaptive ridge (BAR) method to approximate ℓ0regularization. Defined 

as the limit of an iteratively reweighted L2-regularization algorithm, the BAR method is an 

approximate L0-regularization method that enjoys the best of L0 and L2 regularizations with 

desirable selection, estimation, and grouping properties (Dai et al., 2018, 2020; Zhao et al., 2018, 

2020; Kawaguchi et al., 2020b). 

 These desirable properties are important to our network analysis, as they offer a theoretical 

advantage of L0 regularization in our Poisson graphical model. Similar to L1-LLGM, our proposed 

L0-LLGM assumes a pair-wise Markov property and estimates gene network structures through a 

local sparse LLGM that evaluates conditional network correlations to each node. Specifically, at 

each step, a regularized Poisson log-linear model is fitted on one node, using BAR regularization 

to introduce sparsity. Nonzero coefficients estimate edges extending from the node. The stability 

approach to regularization selection (StARS) method (Liu et al., 2010) is used to select the 

regularization tuning parameters for the graphical model. Our empirical studies suggest that the 

proposed L0-LLGM generally produces network structures closer to the true structure than those 

of L1-LLGM, as measured by receiving operating characteristic (ROC) curves. 
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5.2. Methodology of graphical models in the context of gene expression data 

5.2.1. Data and notations 

We define matrix X as the design matrix, where columns are variables and rows are samples. 

Matrix 𝑿 = (𝑿1, … , 𝑿𝑝) is 𝑛 × 𝑝, where 𝑿𝑗(𝑗 = 1,…𝑝) is the 𝑗-th column. Based on this design 

matrix, we aim to construct an undirected network model that would reveal conditional 

dependence between variables. It applies to count data that are assumed to have Poisson 

distributions. We then define the structure of the network as 𝑮 = {𝑽, 𝑬}. 𝑽 is the set of all vertices 

in the network, where each vertex represents a variable (e.g., miRNA), quantified by a vector of 

the corresponding counts of aligned sequencing reads from each sample. 𝑬 represents the set of all 

edges connecting certain vertices.  

 

5.2.2. L0 Regularized Log-Linear Poisson Graphical Model 

We consider a log-linear Poisson graphical model, which characterizes conditional Poisson 

relationships by assuming pair-wise Markov properties (Lauritzen, 1996). Specifically, we assume 

that for each 𝑗 = 1, … , 𝑝, the conditional distribution of column 𝑗,  𝑿𝑗|𝒙𝑘 ⁡∀𝑘 ≠ 𝑗, is  

(Equation 5.1) 

𝑝(𝑿𝑗|𝑿𝑘 ⁡∀𝑘 ≠ 𝑗, 𝑩) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒∑𝛽𝑗𝑘𝑥𝑘) 

where the intercept term bj0 is not included in the model, as we assume at this point RNA-seq data 

have been adjusted for sequencing depth in normalization steps, and 𝑩 = (𝛽𝑗𝑘 , ∀𝑘 ≠ 𝑗 ∈ 𝑉) is a 

𝑝 × 𝑝 adjacency matrix with each row vector of off-diagonal elements storing the corresponding 

log-linear Poisson regression coefficients.  

The first step to neighborhood network selection method is to infer graphical networks by fitting 

the mentioned log-linear Poisson regression for every node 𝑗, 𝑗 = 1,… , 𝑝. Specifically, at each 
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neighborhood selection step 𝑗⁡(𝑗 = 1,… , 𝑝), we determine only the potential edges connecting 

node j to all other nodes in the network. In addition, we couple the neighborhood selection method 

with the BAR, an approximate L0-regularization method, to induce sparsity as detailed in the 

following algorithm.  

For each 𝑗, 𝑗 = 1, … , 𝑝, we begin with an initial L2-regularized (ridge) estimator of 𝛽≠𝑗,𝑗 , 

(Equation 5.2) 

𝛽̂≠𝑗,𝑗
(0)

= argmin
𝛽≠𝑗,𝑗

{
1

𝑛
∑[𝑋𝑖𝑗(𝑿𝑖,≠𝑗𝛽≠𝑗,𝑗) − exp(𝑿𝑖,≠𝑗𝛽≠𝑗,𝑗) + 𝜁𝑛∑𝛽𝑗𝑘

2

𝑘≠𝑗

]

𝑛

𝑖=1

} 

where the first term is the -2log likelihood for the j-th log-linear Poisson regression model, 𝛽≠𝑗,𝑗 

is a vector of 𝑝 − 1  corresponding regression coefficients, and 𝜁𝑛  is the ridge-regularization 

parameter. This initial step tuning parameter serves the purpose of giving iterative step a warm 

start. The BAR estimator defined hereunder has been shown to be robust for different choice of 𝜁𝑛 

in various model settings [see, e.g., Kawaguchi et al. (2020)—Figure 1 and N. Li, Peng, 

Kawaguchi, Suchard, and Li (2021)—Figure 7]. For a reasonable initial step estimation, we have 

set 𝜁𝑛 to log⁡(𝑛), where n is the sample size. We then subsequently update the estimator of 𝛽≠𝑗,𝑗 

by fitting reweighted L2-regularized regressions with a tuning parameter 𝜆𝑛: 

(Equation 5.3) 

𝛽̂≠𝑗,𝑗
(𝑠) = argmin

𝛽≠𝑗,𝑗

{−2𝑙(𝜷) + 𝜆𝑛∑
𝛽𝑗𝑘
2

|𝛽̂𝑗𝑘
(𝑠−1)|

2

𝑛

𝑖=1

} , 𝑠 = 1,2,… 

The BAR (Kawaguchi et al., 2020a) estimator of b61⁄4j‚ j is defined as, 

(Equation 5.4) 

𝛽̂≠𝑗,𝑗 = lim
𝑠→∞

𝛽̂≠𝑗,𝑗
(𝑠)

⁡. 
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The BAR estimator has been shown to possess the oracle properties in the sense that with 

large probability, it estimates the zero coefficients as 0’s and estimates the non-zero coefficients 

as well as the scenario when the true sub-model is known in advance and a grouping property that 

highly correlated variables are naturally grouped together with similar coefficients (Kawaguchi et 

al., 2021).  

A nonzero element in coefficient estimate vector 𝛽̂≠𝑗,𝑗  indicates that there is an estimated 

network connection (edge) between the corresponding node j and one of the nodes 1, … , 𝑝 ≠ 𝑗. 

The estimators 𝛽̂≠𝑗,𝑗 , 𝑗 = 1, … , 𝑝,, provide estimates of the off-diagonal elements of adjacency 

matrix 𝑩. Diagonal elements of 𝑩 can be set to either missing or unity, since it is not meaningful 

to evaluate a node’s relationship with itself. Note that 𝑩 is also not necessarily symmetric, as 

fitting regressions on element 𝑖 and 𝑗 does not guarantee the same zero or nonzero coefficient 

corresponding to the same node. To deal with this non-symmetric issue, we chose to estimate based 

on the union of network edge constructions,  

(Equation 5.5) 

𝐴̂𝑗𝑘(𝑝) = 𝑚𝑎𝑥{|𝑠𝑖𝑔𝑛(𝑩̂(𝑝)𝑗𝑘)|, |𝑠𝑖𝑔𝑛(𝑩̂(𝑝)𝑘𝑗)|}⁡∀𝑗 ≠ 𝑘. 

Theoretically, whether to use the union or intersection of each network edge based on its 

two neighborhood selections concerning its two nodes is asymptotically identical (Meinshausen & 

Bühlmann, 2006). This less conservative approach of estimating by unions remains consistent with 

previous neighborhood selection Poisson graphical model literature (Allen & Liu, 2012). In other 

words, if either one of the two local log-linear regressions concerning the two nodes 𝑖  and 𝑗 

produces a nonzero estimate, it implies conditional dependency. Consequently, the network 

estimate specifies an edge between nodes i and j. Therefore, estimated adjacency matrix is always 
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symmetrical. Estimated coefficients, 𝑩̂, is then transformed to an adjacency matrix, 𝐴̂, by simply 

changing all nonzero estimates to 1, namely, 𝐴̂ = 𝑠𝑖𝑔𝑛|𝑩̂|.  

 Lastly, we note that for each 𝑗, 𝑗 = 1,… , 𝑝, the BAR estimator 𝛽̂≠𝑗,𝑗 is defined as the limit 

of a sequence of reweighted ridge estimators. In a numerical implementation, one will stop the 

BAR iterations for 𝛽̂≠𝑗,𝑗 when a prespecified convergence criterion is met. In our implementation, 

the algorithm stops at step 𝑠 whenmax
𝑘≠𝑗

|𝛽̂𝑗𝑘
(𝑠)

− 𝛽̂𝑗𝑘
(𝑠−1)

| < 𝑎, and we set 𝛽̂≠𝑗,𝑗 = {𝛽̂𝑗𝑘
(𝑠)
𝐼 (|𝛽̂𝑗𝑘

(𝑠)
| >

𝑎) , 𝑘 ≠ 𝑗}, where 𝑎 is the convergence criterion threshold, which can be set to a reasonably small 

value, such as 1 × 10−18. Our empirical studies indicate that one may use a slightly larger value 

to reduce the number of iterations with essentially no difference in the resulting estimator. We set 

𝑎 = 1 × 10−16 as the default value in our R implementation. We emphasize that threshold a is not 

a regularization parameter. It is comparable with the stopping rule for a Lasso gradient descent 

implementation. It is purely for implementing the computer algorithm, as it serves as a stop 

mechanism for numerical convergence. This is not to be confused with the artificial threshold in 

L1-LLGM (Allen & Liu, 2012; Wan et al., 2016), which, in the R package, was imposed after 

Lasso gradient descent stopping rule, effectively “weeding out” small, but converged, Lasso 

coefficients.  

 

5.2.3. Selecting regularization parameters through StARS criterion  

The sparsity and performance of the network largely depend on the regularization parameter 𝜆𝑛 in 

(Equation 5.3, which directly determines the number of estimated edges that stay in the network. 

Note that most of the popular data-driven tuning parameter selection methods such as Akaike’s 

information criteria (AIC), Bayesian information criteria (BIC), and cross-validation require 
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finding the log likelihood of the joint distribution, which all local neighborhood log-linear Poisson 

models do not have. Thus, we opt to select regularization parameters utilizing StARS (Liu, Roeder, 

& Wasserman, 2010). The StARS selection criterion selects the regularization parameter based on 

given model stability. It does so by subsampling rows, without replacement, into blocks of equal 

sizes.  

Specifically, let 𝐾 be the number of subsamples that we draw, and let 𝑋𝑘 be a subsample 

from the design matrix 𝑋 , where 𝑘 ∈ {1,… ,𝐾} . Liu et al. (2010) suggest that, in order for 

assumptions of StARS algorithm to be met, a reasonable choice of the subsample size is 𝑏 =

⌊10√𝑛⌋. In our case of neighborhood Poisson graphical model, individual full models are fitted on 

each subsample. For any edge between two given vertices, we will have obtained 𝐾 estimates on 

the same edge, each from a subsample already mentioned. First, we define an inverse of the tuning 

parameter Λ = 1/𝜆𝑛. For any edge connecting vertices 𝑠 and 𝑡, let the estimate from subsample 

𝑆𝑗, using regularization parameter Λ, be⁡𝜓st
Λ (𝑆𝑗). 𝜓st

Λ (𝑆𝑗) = 1 if there is an edge between 𝑠 and 𝑡, 

and 𝜓st
Λ (𝑆𝑗) = 0 if the model does not estimate that there is an edge at (𝑠, 𝑡). The stability of model 

predictions on this specific position is then given by 

(Equation 5.6) 

𝜃̂𝑠𝑡(Λ) =
1

𝑁
∑𝜓st

Λ (𝑆𝑗)

𝑁

𝑗=1

. 

A potential issue here with estimator 𝜃̂𝑠𝑡(Λ) is that the measure is not monotonic, rendering 

future model assessment and comparisons difficult. The model is stable when estimates from 

different subsamples all tend to give a value of 1 or 0. In other words, 𝜃̂𝑠𝑡(Λ) is the most stable 

when it is close to 0 or 1, and the least stable when it is close to 0.5. Therefore, we use a 

monotonized stability measure, 
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(Equation 5.7) 

𝜉̂𝑠𝑡(Λ) = 2𝜃̂𝑠𝑡(Λ)(1 − 𝜃̂𝑠𝑡(Λ)). 

 

Lastly, an overall stability measure is then calculated by evaluating the mean of all edge-

specific instabilities,  

(Equation 5.8) 

𝐷̂𝑠𝑡(Λ) =
∑ 𝜉̂𝑠𝑡(Λ)𝑠<𝑡

(𝑝
2
)

. 

When Λ is close to 0, meaning regularization parameter 𝜆 is large, L0-LLGM produces an 

empty graph. As all subsample estimates are sparse, the instability shall approach 0. As Λ increases, 

the subsample networks become denser and more volatile. Instability consequently increases till it 

peaks. 𝐷̂𝑠𝑡(Λ)  will start decreasing as the regularization parameter becomes smaller and the 

networks become dense. As the networks become almost fully connected, the instability measure 

will again approach 0, since all subsamples give similar estimates. Therefore, instabilities are 

expected to have a bell shape when plotted against penalization parameter. Authors who proposed 

StARS criterion also suggested a way to select the optimal sparsity given the least instability. Users 

first need specify an instability threshold, 𝛾 . Then the algorithm should select the largest 

penalization parameter, that is, the sparsest network, with instability score below or equal to 𝛾.  

The performance instability criterion is supported theoretically by the Theorem of Partial 

Sparsistency (Liu et al., 2010), which states that under suitable regularity conditions, the estimated 

set of edges is expected to contain the set of edges in the true underlying model as n approaches 

infinity.  

 We developed an R package for implementing L0-LLGM, which can be found at repository 

https://github.com/caeseriousli/prBARgraph.git.  
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5.3. Simulations 

In this section, we demonstrate the performance of the BAR Poisson graphical model (L0-LLGM) 

versus L1 Poisson graphical model (L1-LLGM) through simulations. To evaluate model fit, we 

measure prediction accuracy by the true-positive rates and false-positive rates. The true-positive 

rate is defined as the portion of correctly predicted edge out of total number of edges predicted. 

For instance, if a predicted network has a total of 80 edges, out of which 40 exist in the underlying 

true network, then the true-positive rate is 40/80 = 0.5 in this case. False-positive rate, however, is 

calculated by dividing the number of incorrectly predicted edges by the total number of non-

existing edges in the true network.  

 

5.3.1. Simulating correlated Poisson networks 

To generate simulation data for model comparison, we adapt the same method introduced in Allen 

and Liu (2012). Again, let 𝑛 be the number of observations and 𝑝 the number of elements (genes). 

We first generate independent Poisson samples: 𝑌, a 𝑛 × (𝑝 + 𝑝(𝑝 − 1)/2) matrix, where𝑌𝑖𝑗 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡𝑟𝑢𝑒) . Then we randomly generate a noise term 𝐸 , an 𝑛 × 𝑝  matrix where 𝐸𝑖𝑗 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡𝑟𝑢𝑒).  

Furthermore, using the underlying true network, we construct a structure matrix,  

(Equation 5.9) 

𝐷̂𝑠𝑡(Λ) =
∑ 𝜉̂𝑠𝑡(Λ)𝑠<𝑡

(𝑝
2
)

. 

where 𝐴  is the adjacency matrix corresponding to the network, 𝑡𝑟𝑖(𝐴)  is a vectorized, 

(𝑝 ×
𝑝−1

2
) × 1, upper triangular part of adjacency matrix 𝐴, and 𝟏(𝑝) here is a column vector of 
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which each element is equal to 1. The purpose of the identity vector is to expand 𝑡𝑟𝑖(𝐴) into a 

𝑝 ×
𝑝−1

2
 matrix, which is used to calculate element-wise product with a permutation matrix, 𝑷, 

with dimensions (𝑝(𝑝 − 1)) × 𝑝. The permutation matrix is constructed by permuting indices of 

all possible pairs of vertices across its rows. For example, if the first row of the permutation matrix, 

𝑷, represents an edge connecting node number 1 and node number 2, then the first two elements 

of the first row, which contains a total of 𝑝 elements, will be 1. The rest of elements in the first 

row are 0. Concordantly, P has 𝑝(𝑝 − 1)/2 rows because a network can potentially have a total of 

distinct 𝑝(𝑝 − 1)/2 edges. Note that the order of permutations in P have to match the order we 

expand the adjacency matrix, namely, 𝑡𝑟𝑖(𝐴). In addition, denotes the block matrix structure with 

the 𝑝 × 𝑝 identity matrix on the left. Finally, we simulate the design matrix by 𝑿 = 𝒀𝑩 + 𝑬.  

 

5.3.2. Model comparison 

When compared with nondiscrete models, such as graphical Lasso (J. Friedman et al., 2008), the 

L1-LLGM model has already been numerically demonstrated to have as good or better prediction 

accuracy for simulated Poisson data (Allen & Liu, 2012). In this chapter, as the major innovation 

is an L0 BAR regularization, we will focus on comparing L0-LLGM with L1-LLGM. We will move 

on to adopt simulation setup similar to Allen and Liu (2012). Specifically, we simulated RNA 

sequencing data based on two common network topologies, hub and scale free. The data are 

randomly generated using methods introduced in Section 5.3.1. For each topology, we have 

constructed a network consisting of 50 nodes. For each topology we generate two data sets, with 

200 and 500 independent samples, respectively. We further note that, sample sizes no greater than 

500 in simulations are common for most RNA-seq studies (Chiquet et al., 2019; Choi et al., 2017; 

Gallopin et al., 2013; Imbert et al., 2018). 
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 For each model, both the L0-LLGM and L1-LLGM methods are performed on the simulated 

data, using StARS criterion to determine the regularization parameters. For L1-LLGM, we 

considered a set of four different values for the additional sparsity threshold (“th”), specified by 

L1-LLGM implementations as a necessary step (Wan et al., 2016), to investigate its effects on the 

resulting estimated network. With both true-positive and false-positive measurements defined in 

the beginning of Section 3, we construct ROC curves to compare the performance of L0-LLGM in 

comparison with L1-LLGM. Figure 5.1 shows the ROC curves generated under two different 

topologies, scale free (Figure 5.1A) and hub (Figure 5.1D), each consisting of 50 nodes. We 

observe that L0-LLGM consistently outperformed L1-LLGM, especially in high specificity regions. 

The advantage of L0-LLGM is more evident for hub topology. Furthermore, it is clear that the 

performance of L1-LLGM can vary greatly depending on the choice of its sparsity threshold. The 

optimal choice of this threshold depends on the underlying topology and sample sizes. For any 

given false-positive rate, L0-LLGM yields a model with more correctly estimated connections. L1-

LLGM, in contrast, could potentially lose nodes that are important to the structure of the network 

shown in Figure 5.1.  

 Lastly, we validate the mentioned findings in replications. Owing to limitations of ROC 

plot visualizing multiple network fits, we summarize 40 replications in box plots. In Figure 5.2 

and Figure 5.3, L0-LLGM and L1-LLGM are fitted to 40 randomly generated data sets from scale-

free and hub topologies, respectively. At each replication, both the topology and data set are 

randomly generated, and each data set has sample size n=500.  
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Figure 5.1: Simulation study for two network topologies: (A) scale free and (B) hub. For each 

network structure, we generated two data sets with two different number of observations, 200 and 

500. A sequence of ℓ0 or ℓ1 penalization parameters was used to fit the modes on each data set. 

Predictions were evaluated by calculating true-positive and false-positive rates. These rates from 

both models were plotted for model comparisons (B, C, E, F). (B) and (C) Are two data sets, based 

on a scale-free network in (A), with simulated sample sizes equal to 200 and 500, respectively, 

while (E) and (F) are the same sample sizes based on a hub network in (D). 

 

5.4. Application of L0-LLGM to KIRC MIRNA-seq data  

High throughput sequencing (second generation RNA sequencing) returns millions of short reads 

of RNA fragments, which have varying lengths ranging from ~25 to possibly 300bp paired-end 

reads (Chhangawala, Rudy, Mason, & Rosenfeld, 2015). These reads are usually mapped to the 

genome and the data are in the form of non-negative counts of the RNA fragment reads (Witten, 

2011). LLGM models can be applied to any data that are assumed to have Poisson distributions. 
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For RNA-seq data specifically, a normalization pipeline is required before data analysis. For 

comparison purposes, we follow the same normalization pipeline as Wan et al. (2016); Allen and 

Liu (2012), which consists of the following major steps: (1) adjusting for sequencing depth, (2) 

biological entities (e.g., genes, miRNAs) with low counts or low variances are filtered out, (3) 

vectors with potential over-dispersion are transformed using a power transformation to transform 

the data closer to Poisson distribution (J. Li, Witten, Johnstone, & Tibshirani, 2012; Wan et al., 

2016). The normalization steps can be performed by R package XMRF (Wan et al., 2016). We 

defer the detailed procedures and justifications of this specific pipeline for RNA-seq Poisson 

graphical models to Wan et al. (2016).  

We then fitted the proposed method on the KIRC miRNA data set from The Cancer 

Genome Atlas. The data set was downloaded from TCGA data portal (https://portal.gdc.cancer.gov) 

(Collins & Barker, 2007). It contains 1881 miRNAs and 616 samples. Before the normalization 

pipeline, we filtered out miRNAs that have all zero read counts throughout all samples, resulting 

in 1502 miRNAs left (20.15% of miRNAs with low counts). Then we normalize the rest of the 

data using XMRF package developed for L1-LLGM (Wan et al., 2016). For demonstration 

purposes of this chapter, we specify the R package to keep top 100 miRNAs with the most variance 

(i.e., look at top miRNAs that vary the most). Minimum read count is set to be no less than 20, the 

suggested default (Allen & Liu, 2012; Wan et al., 2016). This keeps ~6.7% of miRNAs. We then 

move on to focus on conditional relationships between these 100 miRNAs with the largest variance 

and reasonable read counts. We then fit L0-LLGM using our R package, along with L1-LLGM, 

implemented by XMRF (Wan et al., 2016), with a StARS instability threshold of 𝛾 = 0.01 

(choosing the largest regularization while maintaining at least “99% stability”). Figure 5.4 and 

Figure 5.5 show the resulting L0-LLGM and L1-LLGM network estimates, respectively. Figure 5.5 
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contains four panels, each with a different L1-LLGM artificial threshold. Network estimates could 

be drastically different depending on the threshold. Table 5.1 provides miRNA annotations for use 

of node numbers in Figure 5.4 and Figure 5.5.  

It is observed from Figure 5.4 and Figure 5.5 that the two model results reveal some similar 

structures, including the hub surrounding center, mir-10b (node 25). However, L0-LLGM produces 

a less visually “chaotic” network, in comparison with L1-LLGM. For instance, L0-LLGM outlines 

a clean scale-free topology with minimal cyclic loops. L1-LLGM, however, frequently exhibits 

loops even in sparse network estimates, possibly due to unwanted noises from L1 regularization. 

From Figure 5.5, as we increase the “artificial threshold” for L1-LLGM used in XMRF package, 

to some extent it helps reducing these noise edges.  

However, during this process, we observe that this user-imposed threshold also filtered out 

lower degree nodes (weaker signal), such as the hub miRNAs surrounding node 25. For example, 

in Figure 5.5A1, with no artificial threshold, L1-LLGM identifies hub center node 25 (mir-10b), 

which agrees with L0-LLGM in Figure 5.4. As the threshold increases, plots in Figure 5.5A2–B2 

show a decreasing degree in hub center node 25. In Figure 5B2, almost entire hub is filtered out 

by this threshold along with noise. This observation parallels to the simulation section (Figure 5.1), 

where the true-positive rates can be reduced by the artificial threshold, losing important network 

structures. These preliminary observations suggest that L0-LLGM is potentially more capable of 

separating signal from noise, which is consistent with our simulation results depicted in Figure 5.1.  

Although a graphical model alone is not enough to make any further conclusions on gene 

interactions inference, we focus, in particular, on highly connected miRNAs (i.e., hub nodes). 

Some of the hub miRNAs revealed by the L0-LLGM network were previously known to be 

associated with each other, and with certain cancers. For example, the center of the largest hub, 
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gene mir-10b in Figure 5.4 is known to be associated with cancers such as bladder cancer and 

proteoglycans cancer. Based on literature studies, this RNA was known to be highly expressed in 

metastatic hepatocellular carcinomas, in contrast to those without metastasis (Ma et al., 2010). Our 

network results are based on the data from patients with adenomas and adenocarcinomas from 

project KIRC. It is connected to numerous miRNAs, including several cluster centers known to be 

associated with cancer suppressing. RNA named hsa-let-7b, for example, identified as a sub-

cluster connected to the hub center mir-10b, a previously known putative cancer suppressor, is 

found to play a key role in chemoresistance in renal cells from carcinoma cases (Peng, Mo, Ma, & 

Fan, 2015). Together with another cluster center RNA, named miR-126 and hsa-let-7b are both 

identified as crucial biomarkers for identifying renal cell carcinoma (Carlsson et al., 2019; 

Jusufović et al., 2012; Yin et al., 2014). Our graphical model successfully identifies important 

miRNAs that align with published biological findings regarding such miRNAs.  

 We also performed additional analyses using different StARS instability thresholds 𝛾 =

0.005 and 𝛾 = 0.05. The findings are consistent with what have been discussed previously for 

𝛾 = 0.01 and thus not included here.  

 

5.5. Discussion  

We have proposed and implemented an approximate L0-LLGM for constructing sparse gene 

network from RNA-seq count data. This approach uses a neighborhood Poisson graphical model, 

which offers a more comprehensive set of predictions, has less constraints on the Poisson 

distributions of each element, and is less sensitive to changes of individual genes, than a joint 

distribution model. Sparsity is achieved through the BAR penalization, a surrogate L0 

regularization with established oracle properties for selection and estimation. Our simulations in 
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Section 3 show that, in general, L0-LLGM offers theoretically more accurate estimates than L1-

LLGM. It reaches a high level of true-positive rate faster, without accumulating a high rate of false 

estimates. L0-LLGM also spares users the need of selecting an additional sparsity threshold after 

the regularization tuning parameter has already been selected by StARS. This brings more 

consistency and reproducibility to the graphical model.  

Our simulations considered two types of network topologies, namely scale-free and hub 

topologies, and found that both L0-LLGM and L1-LLGM tend to perform better under scale-free 

topologies as compared with hub. However, because graphical models could potentially give 

drastically different results under various topologies, it would be of interest to consider more 

topologies in future studies.  
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5.6. Additional figures and tables 

5.6.1. Figures 

 

Figure 5.2: Simulation study for scale-free topology with sample size n=500. Topologies and data 

sets are randomly generated 100 times for each model. For all repetitions, area under the curve for 

true-positive rates and false-positive edge estimation percentages are summarized in box plots. 

Area under the curve is defined as the area under true-positive versus false-positive rate curve as 

regularization parameter increases, same as that of Figure 5.1. These repeated simulations are 

based on randomly generated scale-free topologies with 200 sample sizes and 50 number of nodes, 

corresponding to the same specifications in Figure 5.1B. Both the topology and data set are 

simulated randomly at each repetition 
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Figure 5.3: Simulation study for hub topology with sample size n=500. Topologies and data sets 

are randomly generated 100 times for each model. For all repetitions, area under the curve for true-

positive rates and false-positive edge estimation percentages are summarized in box plots. Area 

under the curve is defined as the area under true-positive versus false-positive rate curve as 

regularization parameter increases, same as that of Figure 5.1. These repeated simulations are 

based on randomly generated hub topologies with 200 sample sizes and 50 number of nodes, 

corresponding to the same specifications as in Figure 5.1E. Both the topology and data set are 

simulated randomly at each repetition. 
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Figure 5.4: L0-LLGM KIRC miRNA data: estimated network generated by fitting an L0-LLGM 

model on KIRC miRNA data from TCGA database. The penalization parameter was chosen by 

setting a StARS estimation instability threshold of 0.01. KIRC, kidney renal clear cell carcinoma; 

L0-LLGM, L0-regularized log-linear graphical model; miRNA, micro-RNA; StARS, stability 

approach to regularization selection; TCGA, the Cancer Genome Atlas. 
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Figure 5.5: L1-LLGM KIRC miRNA data: estimated network generated by fitting an L1-LLGM 

model on KIRC miRNA data from TCGA database. The penalization parameter was chosen by 

setting an StARS instability threshold of 0.01. In addition, a further artificial threshold (“th”) to 

fine tune the L1-LLGM model. This figure shows four network estimates by varying the th 

threshold. 
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5.6.2. Tables 

Table 5.1: Micro-RNA (miRNA) look-up table. Each ID in Figure 5.4 and Figure 5.5 correspond 

to an miRNA in this table. 

ID miRNA ID miRNA ID miRNA ID miRNA 

1 hsa-let-7a-1 26 hsa-mir-1178 51 hsa-mir-124-1 76 hsa-mir-126 

2 hsa-let-7a-2 27 hsa-mir-1179 52 hsa-mir-124-2 77 hsa-mir-1260a 

3 hsa-let-7a-3 28 hsa-mir-1180 53 hsa-mir-124-3 78 hsa-mir-1260b 

4 hsa-let-7b 29 hsa-mir-1181 54 hsa-mir-1243 79 hsa-mir-1262 

5 hsa-let-7c 30 hsa-mir-1182 55 hsa-mir-1244-1 80 hsa-mir-1263 

6 hsa-let-7d 31 hsa-mir-1185-1 56 hsa-mir-1244-2 81 hsa-mir-1264 

7 hsa-let-7e 32 hsa-mir-1185-2 57 hsa-mir-1245a 82 hsa-mir-1265 

8 hsa-let-7f-1 33 hsa-mir-1193 58 hsa-mir-1245b 83 hsa-mir-1266 

9 hsa-let-7f-2 34 hsa-mir-1197 59 hsa-mir-1246 84 hsa-mir-1267 

10 hsa-let-7g 35 hsa-mir-1199 60 hsa-mir-1247 85 hsa-mir-1268b 

11 hsa-let-7i 36 hsa-mir-1200 61 hsa-mir-1248 86 hsa-mir-1269a 

12 hsa-mir-1-1 37 hsa-mir-1203 62 hsa-mir-1249 87 hsa-mir-1269b 

13 hsa-mir-1-2 38 hsa-mir-1204 63 hsa-mir-1250 88 hsa-mir-127 

14 hsa-mir-100 39 hsa-mir-122 64 hsa-mir-1251 89 hsa-mir-1270 

15 hsa-mir-101-1 40 hsa-mir-1224 65 hsa-mir-1252 90 hsa-mir-1271 

16 hsa-mir-101-2 41 hsa-mir-1225 66 hsa-mir-1253 91 hsa-mir-1272 

17 hsa-mir-103a-1 42 hsa-mir-1226 67 hsa-mir-1254-1 92 hsa-mir-1273c 

18 hsa-mir-103a-2 43 hsa-mir-1227 68 hsa-mir-1254-2 93 hsa-mir-1273h 

19 hsa-mir-105-1 44 hsa-mir-1228 69 hsa-mir-1255a 94 hsa-mir-1275 

20 hsa-mir-105-2 45 hsa-mir-1229 70 hsa-mir-1256 95 hsa-mir-1276 

21 hsa-mir-106a 46 hsa-mir-1231 71 hsa-mir-1257 96 hsa-mir-1277 

22 hsa-mir-106b 47 hsa-mir-1234 72 hsa-mir-1258 97 hsa-mir-1278 

23 hsa-mir-107 48 hsa-mir-1236 73 hsa-mir-125a 98 hsa-mir-128-1 

24 hsa-mir-10a 49 hsa-mir-1237 74 hsa-mir-125b-1 99 hsa-mir-128-2 

25 hsa-mir-10b 50 hsa-mir-1238 75 hsa-mir-125b-2 100 hsa-mir-1281 
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CHAPTER 6 

6. Concluding remarks and future research considerations 

6.1. Remarks for high dimensional inference for DNA methylation data 

So far, we have solved the theoretical high dimensional prediction problem with elastic net, but it 

lacks some features that come with a standard linear model. It is currently not possible to construct 

confidence intervals or compute coefficient p-values for selected variables. The only inference 

step we can take is list the CpG sites selected by the models. It is, however, non-trivial to infer 

which variable is more or less significant, nor can we construct confidence intervals for the 

predicted values. While most machine learning engineers would stop at prediction, my future work 

as a statistician will involve some form of inference, to help us better understand the underlying 

mechanism of epigenetic aging. Recently, some statisticians have theorized a few models for high-

dimensional inference, including desparsified lasso (Van de Geer, Bühlmann, Ritov, & Dezeure, 

2014), and a selection-assisted partial regression (SPARES) (Fei, Zhu, Banerjee, & Li, 2019). 

Briefly, desparsified Lasso is based on Lasso model. It takes advantage of Karush-Kuhn-Tucker 

characterization of Lasso and compute an approximation to the inverse of 𝑋𝑇𝑋/𝑛. This combined 

with central limit theorem gives an estimated covariance matrix for estimated coefficients. The 

pros of this method include the fact that it does not require any random data splitting step, relatively 

easy computation load, and that it is related to Lasso penalization. One disadvantage, however, is 

that the method is non-trivial to be generalized to elastic net, inheriting all the flaws of Lasso 

discussed in Chapter 1. SPARES involves randomly separating data set into two sub-groups, one 

for variable selection and one for inference. In addition, as the algorithm makes inferences on 

selected variables, it also assigns p-values to unselected variables by including them to the design 

matrix one by one. Then it performs the data splitting iteratively to achieve stable p-value estimates. 
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Two major advantages of this method are that it provides unbiased estimates with normality 

assumption held, and it is compatible with many different variable selection methods. For example, 

one can use elastic net for variable selection step in the half sub-sampled data, and then draw 

inference using standard linear model on the other half. Consequently, a drawback of this 

algorithm is that it can be computationally expensive for large data sets. In future research, one 

may test both of the named methods on the mammalian data and assess the practicality of both 

models. The ability to make inference on epigenetic predictors will be crucial to future aging 

interventions and possible clinical trials.  

 

6.2. Future research for L0-regularized Poisson graphical model 

It is worth noting that although the method described in Chapter 5 focuses on the p < n 

case, the proposed methodology can be easily extended to high dimensional settings where p > n 

by coupling the BAR penalization with a sure screening procedure (Barut, Fan, & Verhasselt, 2016; 

Fan & Lv, 2008; Xu & Chen, 2014; S. D. Zhao & Li, 2012). Combining the BAR penalization 

with a sure screening procedure for high dimensional settings and its statistical guarantees have 

been studied for a variety of models including linear model (Dai et al., 2018), generalized linear 

models (N. Li et al., 2021), and survival models (Kawaguchi et al., 2020; H. Zhao et al., 2018; H. 

Zhao, Wu, Li, & Sun, 2019). Future studies are warranted to further investigate the empirical 

performance of the two-step procedure for network inference in high dimensional settings.  

 We acknowledge that, for model applications in RNA-seq data, the network in itself often 

is not enough to draw definitive inference on complex gene interactions. Often a network serves 

as a first step in identifying clusters, under the assumptions that genes interact with each other in 

hubs (N. Friedman, 2004). One can modularize clustered genes through methods such as dynamic 

tree cutting. These modules can subsequently be used for gene enrichment analyses (Langfelder 
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& Horvath, 2008). These subsequent procedures would all benefit from a proper graphical model 

such as the L0-LLGM. In addition, as the BAR algorithm optimization progresses, it will become 

more feasible to implement an L0-regularized regression, which possesses theoretical oracle 

properties, for DNA methylation data, resulting in superior variable selection and regression 

estimates. 
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