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Smoking in the CHARGE Gene-Lifestyle Interactions Working 
Group
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Abstract

Studying gene-environment (GxE) interactions is important, as they extend our knowledge of the 

genetic architecture of complex traits and may help to identify novel variants not detected via 

analysis of main-effects alone. The main statistical framework for studying GxE interactions uses 

a single regression model that includes both the genetic main and GxE interaction effects (the 

‘joint’ framework). The alternative ‘stratified’ framework combines results from genetic main-

effect analyses carried out separately within the exposed and unexposed groups. Although there 

have been several investigations using theory and simulation, an empirical comparison of the two 

frameworks is lacking. Here, we compare the two frameworks using results from GWAS of 

systolic blood pressure for 3.2 million low frequency and 6.5 million common variants across 20 

cohorts of European ancestry, comprising 79,731 individuals. Our cohorts have sample sizes 

ranging from 456 to 22,983 and include both family-based and population-based samples. In 

cohort-specific analyses, the two frameworks provided similar inference for population-based 

cohorts. The agreement was reduced for family-based cohorts. In meta-analyses, agreement 

between the two frameworks was less than that observed in cohort-specific analyses, despite the 

increased sample size. In meta-analyses, agreement depended on 1) the minor allele frequency, 2) 

inclusion of family-based cohorts in meta-analysis, and 3) filtering scheme. The stratified 

framework appears to approximate the joint framework well only for common variants in 

population-based cohorts. We conclude that the joint framework is the preferred approach and 

should be used to control false positives when dealing with low frequency variants and/or family-

based cohorts.

Introduction

Genome-wide association studies (GWAS) and subsequent meta-analyses have successfully 

identified hundreds of genetic variants associated with many disease traits (http://

www.genome.gov), accelerating the progress in the genetic dissection of complex human 

Corresponding author: Dr. Yun Ju Sung, Division of Biostatistics, Washington University School of Medicine, 660 South Euclid 
Avenue, Campus Box 8067, St. Louis, MO 63110-1093, yunju@wubios.wustl.edu, Phone: (314) 362-0053; Fax: (314) 362-2693.
*Members of the writing group.
+Dr. Borecki’s current affiliation is Regeneron Pharmaceuticals, Inc. Work on this manuscript was completed while she was at 
Washington University.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of 
Health.

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2017 July 01.

Published in final edited form as:
Genet Epidemiol. 2016 July ; 40(5): 404–415. doi:10.1002/gepi.21978.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.genome.gov
http://www.genome.gov


traits. Meta-analysis has become a key component of GWAS to increase sample sizes and 

therefore power [de Bakker, et al. 2008; Evangelou and Ioannidis 2013], and most new 

discoveries are now driven by large-scale consortia such as the CHARGE (Cohorts for Heart 

and Aging Research in Genetic Epidemiology) [Psaty, et al. 2009], GIANT (Genetic 

Investigation of Anthropometric Traits) [Shungin, et al. 2015; Willer, et al. 2009], ICBP 

(International Consortium of Blood Pressure) [International Consortium for Blood Pressure 

Genome-Wide Association, et al. 2011], and MAGIC (the Meta-Analyses of Glucose and 

Insulin-related traits Consortium) [Prokopenko, et al. 2009]. The identified genetic variants, 

however, typically have small effects, explaining only a small part of the heritability of most 

complex traits [Manolio, et al. 2009].

Studying gene-environment (GxE) interactions is becoming popular as it can potentially 

identify novel genetic variants not detected via main-effects analysis alone [Manning, et al. 

2012], extend our knowledge of the genetic architecture of complex traits [Hunter 2005], 

and enable “profiling” of individuals at high risk for disease [Le Marchand and Wilkens 

2008; Thomas 2010]. Meta-analysis is more critical for analysis of GxE interactions, as 

identifying GxE interactions requires even larger sample sizes than those needed to identify 

genetic main effects [Thomas 2010]. The main statistical framework for the analysis of GxE 

interactions is using a single regression model that includes both genetic main and GxE 

interaction effects; we call this the ‘joint’ framework. Under this framework, one can use the 

traditional 1 degree of freedom (DF) test of the interaction effect or a 2 DF test that jointly 

tests for both the genetic main and interaction effects [Kraft, et al. 2007]. The 2 DF test has 

been shown to be particularly useful to identify variants with low main effect and moderate 

interaction effects, as such variants would be difficult to detect when using either a marginal 

genetic main effect or the aforementioned 1DF interaction test [Kraft, et al. 2007]. Meta-

analysis approaches for the 2 DF test have been developed by Manning et al [Manning, et al. 

2011], and by combining data from 52 studies and accounting for body mass index as a 

possible interaction variable, MAGIC identified multiple novel loci associated with fasting 

insulin levels [Manning, et al. 2012].

For dichotomous exposure variables, such as yes/no status of smoking or drinking, another 

framework has emerged, which we call the ‘stratified’ framework. Under this framework, 

samples are stratified into two groups: the exposed and unexposed groups. Genetic main-

effect analysis is performed separately in each stratum. These stratum-specific genetic 

effects are subsequently combined to perform a 1DF test [Randall, et al. 2013] or a 2DF test 

[Aschard, et al. 2010]. Although the stratified framework approximates the joint framework, 

because main-effect models are readily available in many software packages, it is easier to 

implement in a large-scale consortium setting. Indeed, the stratified framework has been 

used in several projects of the GIANT consortium including a recent publication [Shungin, 

et al. 2015].

As of today, there is no clear consensus on which framework (joint versus stratified) should 

be preferred. Several papers compared specific aspects of each approach. This includes 

simulation-based studies demonstrating power comparisons [Magi, et al. 2010; Manning, et 

al. 2011], theoretical work demonstrating close equivalence (in large samples) between 

statistical tests from the two frameworks [Aschard, et al. 2010; Magi, et al. 2010], and power 
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computations [Behrens, et al. 2011]. However, no empirical comparison using real data has 

been performed so far. As part of the CHARGE Gene-Lifestyle Interactions Working Group, 

we performed GWAS of systolic blood pressure for 3.2 million low frequency variants (with 

1% ≤ MAF < 5%) and 6.5 million common variants (with MAF ≥ 5%), imputed using 

reference haplotypes from the 1000 Genomes Project [1000 Genomes Project Consortium, 

et al. 2012], across 20 cohorts of European ancestry. Using this unique resource we provide 

a comparison of the two frameworks in several ways. First, to explore the role of the total 

sample size on the extent of agreement between the two frameworks; second, to understand 

the impact of unequal sample size between the two (exposed and unexposed) strata, using 

‘current-smoking’ status, which leads to highly unequal sample sizes in the two strata, and 

‘ever-smoking’ status, which leads to similar sample sizes in the two strata; third, to 

understand the impact of meta-analysis, by comparing cohort-specific GWAS results and 

results from meta-analysis; and fourth, to understand the impact of family-based cohorts on 

meta-analysis by comparing meta-analysis results from1) population-based cohorts only, 2) 

family-based cohorts only, and 3) all cohorts.

Methods

Study Samples, Genotype and Phenotype Data

We used data from 20 studies with participants of European ancestry. Table 1 summarizes 

these studies; a detailed description is provided in the Supplemental Materials. Each study 

obtained informed consent from participants and approval from the appropriate institutional 

review boards. Genotyping was performed using Illumina (San Diego, CA, USA) or 

Affymetrix (Santa Clara, CA, USA) genotyping arrays. To infer genotypes for single 

nucleotide polymorphisms (SNPs), short insertions and deletions (indels), and larger 

deletions that were not genotyped directly on the genotyping arrays but are available from 

the 1000 Genomes Project [1000 Genomes Project Consortium, et al. 2012], each study 

performed imputation using MACH [Li, et al. 2010], Minimac [Howie, et al. 2012], 

IMPUTE2 [Howie, et al. 2009], or BEAGLE [Browning and Browning 2009] software. For 

imputation, all studies used the 1000 Genomes Project Phase I Integrated Release Version 3 

Haplotypes (2010–11 data freeze, 2012-03-14 haplotypes), which contain haplotypes of 

1,092 individuals of all ethnic backgrounds. Information on genotype and imputation for 

each study is presented in Table S1.

In total, 79,731 subjects between 18 and 80 years of age with genotype, phenotype and 

covariate information were available in this analysis. Resting SBP was measured on an 

mmHg scale. For subjects taking antihypertensive or BP lowering medications, the SBP 

value was adjusted by adding 15 mmHg [Newton-Cheh, et al. 2009; Tobin, et al. 2005]. This 

medication-adjusted SBP variable is approximately normally distributed. In addition, to 

reduce the effect of possible outliers, winsorising has been applied for this SBP value that is 

more than 6 standard deviations away from the mean. Two smoking exposure variables were 

considered: ‘current smoking’ status (CurSmk), defined as being a smoker at the time of the 

blood pressure measurements, and ‘ever smoking’ status (EverSmk), defined as being a 

smoker at the time of the measurement or else being a former smoker. If subjects had 
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partially missing data for SBP, smoking variable, and any covariates, they were excluded 

from analysis.

Cohort-specific GWAS Analysis

For the ‘joint’ framework, a regression model including both genetic main and GxE 

interaction effects

(Equation 1)

was applied to the entire sample. Y is the medication-adjusted SBP value, E is the smoking 

variable (with 0/1 coding for the absence/presence of the smoking exposure), G is the 

dosage of the imputed genetic variant coded additively (from 0 to 2), and C is the vector of 

all other covariates, which include age, sex, field center (for multi-center studies), principal 

components (to account for population stratification and admixture) and additional cohort-

specific covariates (if any). Each study conducted GWAS analysis and provided the genetic 

main effect βG and the interaction effect βGE and their 2×2 robust covariance matrix. For the 

1 DF test, we used a Wald test statistic that approximately follows a chi-squared distribution 

with 1 DF under H0: βGE = 0. Similarly for the 2 DF test, we used a Wald test statistic, 

which approximately follows a chi-squared distribution with 2 DF under H0: βG = βGE = 0.

For the ‘stratified’ framework, analyses of the genetic main-effect regression models

(Equation 2)

were applied separately to the E = 0 unexposed group and to the E = 1 exposed group. Note 

that C is the same vector of the covariates as used in Equation (1). Each study conducted 

GWAS analysis and provided the stratum-specific effects  and their robust standard 

errors (SE). Robust covariance matrices and robust SEs were sought as a safeguard against 

mis-specification of the mean model [Tchetgen Tchetgen and Kraft 2011; Voorman, et al. 

2011]. To obtain robust covariance matrices and robust SEs, studies of unrelated subjects 

used either the R package sandwich [Zeileis 2006] or ProbABEL [Aulchenko, et al. 2010]. 

To account for relatedness in families, four family studies used the generalized estimating 

equations (GEE) approach, treating each family as a cluster, with the R packages geepack 

[Halekoh, et al. 2006]. The remaining two studies used the linear mixed effect model 

approach with a random polygenic component (for which the covariance matrix depends on 

the kinship matrix) with GenABEL [Aulchenko, et al. 2007] or R (Table S1).

For the 1 DF test in the stratified framework, we used the approach of Randall et al [Randall, 

et al. 2013], who define
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(Equation 3)

where  and  are stratum-specific genetic effects;  and  are their 

respective robust standard errors; and r is the Spearman rank correlation coefficient between 

 and , calculated from the genome-wide results. The statistic Zdiff approximately 

follows a standard normal distribution under H0: βGE = 0. For the 2DF test in the stratified 

framework, we used the test proposed by Aschard et al [Aschard, et al. 2010]:

(Equation 4)

which approximately follows a 2 DF chi-squared distribution under H0: βG = βGE = 0 when 

the two strata are independent. Note that the 1DF test includes the correlation term “r” to 

correct for any relatedness between E = 1 and E = 0 strata, whereas such correction is not 

available for the 2 DF test. Both tests in the stratified framework were computed using the R 

package EasyStrata [Winkler, et al. 2015].

Meta-analysis of GWAS Results

Variants with minor allele frequency (MAF) below 1% were excluded from each cohort-

specific analysis. Extensive quality control (QC) using the R package EasyQC [Winkler, et 

al. 2014] was performed for all cohort-specific GWAS results. In meta-analysis, to exclude 

unstable cohort-specific results that reflect small sample size and low MAF, variants were 

excluded based on the minor allele count (MAC). In the joint framework, variants were 

included in the meta-analysis if MAC0 (= 2 * MAFE0 * NE0) ≥ 10, (with MAFE0 and sample 

size NE0 for E=0 stratum) and MAC1 (= 2 * MAFE1 * NE1) ≥ 10. In the stratified 

framework, we considered two filtering schemes (schemes A and B). Scheme A applied the 

MAC filter in each stratum separately: variants with MAC0 ≥ 10 (regardless of MAC1 

values) were included in the meta-analysis for E = 0 and variants with MAC1 ≥ 10 were 

included in the meta-analysis for E = 1. Scheme B applied the same filter as the joint 

framework in both strata (E = 0 and E = 1). Variants were further excluded if imputation 

quality measure < 0.5. This value of 0.5 was used regardless of the software used for 

imputations, because imputation quality measures are shown to be similar across imputation 

software (Supplementary Information S3 through S5 from Marchini and Howie [Marchini 

and Howie 2010]).

To compare the two frameworks when using meta-analysis, we first performed meta-analysis 

using the 1 DF and 2 DF tests in each framework. For the 1 DF test in the joint framework, 

inverse-variance weighted meta-analysis was performed on the cohort-specific interaction 

effects βGE, using METAL [Willer, et al. 2010]. For the 2 DF test, the joint meta-analysis of 
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Manning et al [Manning, et al. 2011] was performed using the cohort-specific βG, βGE, and 

their corresponding robust covariance matrix. In the stratified framework, meta-analysis was 

performed separately within each stratum using METAL. These stratum-specific meta-

analysis results for  and  were subsequently combined to perform the 1DF test 

(Equation 3) and the 2DF test (Equation 4) using EasyStrata [Winkler, et al. 2015]. During 

meta-analysis, genomic control correction [Devlin and Roeder 1999] was applied to cohort-

specific GWAS results if their genomic control lambda value was greater than 1. After meta-

analysis was performed, a variant was excluded if the overall sample size, i.e. the sample 

size combined across multiple cohorts, for the variant was below 2,000.

Cohort-specific Results

To compare the performance of the two frameworks for all cohort-specific GWAS results, 

we made scatterplots of −log10P values obtained from the joint framework (x-axis) and the 

stratified framework (y-axis) using both the 1 DF interaction and 2 DF joint tests (Figures 1, 

2, and Figure S1); correlation is shown in Table 2. Cohort-level comparison was restricted to 

variants with MAC0 ≥ 10 and MAC1 ≥ 10. The genomic control lambda values of cohort-

specific GWAS results ranged from 0.98 to 1.15 (Table S2).

Impact of imbalance in exposure groups

Within each cohort, the number of current smokers is smaller than the number of non-

smokers, with percentages of current smokers ranging from 6% to 39% of the cohort sample. 

When considering ever-smoking instead, the two strata are much more balanced, with 

percentages of ever smokers ranging from 29% to 70% within each cohort. When all cohorts 

are combined, current smokers are 18.2% of the entire sample, whereas ever smokers are 

53.6% (Table 1).

For both tests and for almost all studies, we observed a higher correlation of the −log10P 

values between the two frameworks for EverSmk compared to CurSmk. The impact of 

unequal sample sizes in the two strata can be seen from cohorts with small sample sizes. For 

example, for CROATIA-Korcula study (N = 456; 25% CurSmk; 52% EverSmk), the smallest 

population-based cohort, the correlation between the two frameworks for the 1 DF test was 

0.94 and 0.97 for CurSmk and EverSmk, respectively (the first row in Figure 1). The 

scatterplot exhibited many variants that are away from the diagonal line, showing weak 

agreement. The joint framework had higher genomic control values for this cohort (and the 

CROATIA-Korcula cohort) (Table S2). However, this pattern was not consistent across 

cohorts, as the stratified framework had higher genomic control values than the joint 

framework for several other cohorts.

Sample size for asymptotic equivalence

For population-based cohorts, correlation of −log10P values between the two frameworks 

generally increased with sample sizes. Out of 14 population-based cohorts, 8 cohorts had 

excellent agreement between the two frameworks showing correlations over 0.99 for both 

tests and for both smoking measures (Figure S1): the sample size of these population-based 

cohorts ranges from 1,663 to 22,983. For the Women’s Genome Health Study (WGHS, 
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N=22,983, 11.7% CurSmk; 49.1% EverSmk), the largest cohort, both frameworks provided 

almost identical −log10P values, demonstrating the asymptotic equivalence (the last row in 

Figure S1).

Family-based cohorts

For family-based cohorts, we found less agreement between the two frameworks. For 

Health, Risk Factors, Exercise Training and Genetics (HERITAGE; N=499; 15% CurSmk; 

38% EverSmk), the smallest family-based cohort, the correlation between the two 

frameworks for the 1 DF test was 0.78 and 0.88 for CurSmk and EverSmk, respectively (the 

first row in Figure 2). In contrast to population-based cohorts, agreement between the two 

frameworks did not increase with their sample sizes for family-based cohorts. Out of 6 

family-based cohorts, only one cohort GENOA (N = 1,064; 16% CurSmk; 50% EverSmk) 

showed correlations over 0.99 for both tests and for both smoking measures (Figure 2). The 

Framingham Heart Study (FHS; N=8,195; 31% CurSmk; 52% EverSmk) is the largest 

family-based cohort, but the correlation between the two frameworks for the 1 DF test was 

only 0.94 for both smoking measures (the last row in Figure 2). These correlations were less 

than those found for the smallest population-based cohort CROATIA-Korcula (N=456).

The complexity of pedigree structure may have a greater impact on the agreement between 

the two frameworks than sample sizes alone. The GENOA cohort consists of mostly sibling 

pairs without parents and therefore has the simplest pedigree structure. FamHS, HERITAGE 

and HyperGEN cohorts have mostly nuclear families. Two remaining cohorts ERF and FHS 

consist of multi-generation families and therefore have more complex pedigree structures. In 

family-based cohorts, in particular with large extended pedigrees, most families often are 

split into the two strata under the stratified framework (making the strata non-independent). 

Note that the 1 DF test in the stratified framework includes the Spearman rank correlation 

coefficient between stratum-specific genetic effects to correct for any relatedness between E 

= 1 and E = 0 strata in Equation (3). Indeed, we observed higher Spearman rank correlation 

between stratum-specific effects with family-based cohorts (Table 3), ranging from 0.000 to 

0.016 with population-based cohorts, and from 0.017 to 0.105 with family-based cohorts. 

Although the 2 DF test in the stratified framework does not take account for such potential 

relatedness across strata, correlation between two frameworks for the 2 DF test was 

generally higher than correlation for the 1 DF test.

Meta-analysis Results

Meta-analysis was performed under three scenarios: 1) using 14 population-based cohorts, 

2) using 6 family-based cohorts and 3) using all 20 cohorts. For each scenario, meta-analysis 

was performed once for the joint framework and twice (using two filtering schemes) for the 

stratified framework. Figure 4 shows the agreement between the two frameworks when the 

stratified framework used a filtering scheme A. Figure 5 shows the agreement when the 

stratified framework used scheme B. Correlation is shown in Table 4. We observed that 

scheme B improved the agreement between the two frameworks.
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Filtering schemes

Each cohort contributed more variants to meta-analysis with filtering scheme A (applying 

the MAC filter separately to each stratum) (Table S3). This is more noticeable in cohorts 

with small sample sizes with CurSmk variable because of the unbalanced sample sizes 

between the two strata. For example, the CROATIA-Korcula cohort contributed 8.46 million 

variants to E=0 stratum meta-analysis but 6.641 million variants to E=1 meta-analysis under 

scheme A. The difference (roughly 1.82 million) corresponding to the number of variants 

with MAC0 ≥ 10 and MAC1 < 10 arose from highly unbalanced sample sizes in the two 

strata. Under scheme B (applying the same filter to both strata in the stratified framework 

and in the joint framework), a smaller number of variants (6.640 million for CROATIA-

Korcula) were contributed to the meta-analysis as variants needed to have MAC0 ≥ 10 and 

MAC1 ≥ 10.

The final number of variants resulting from meta-analysis was slightly larger under scheme 

A (9.76 million variants under scheme A vs. 9.68 million variants under scheme B in meta-

analysis combining all cohorts for CurSmk, Table S4). The difference was mostly from low 

frequency variants (with 1% ≤ MAF < 5%) (3.2 million variants under scheme A vs. 3.1 

million under scheme B); there were 6.5 million common variants (with MAF ≥ 5%) under 

both schemes. Because each cohort contributed more variants under scheme A, there were 

more cohorts contributing to each variant, resulting in larger sample sizes under scheme A. 

The difference in the overall sample size, the sample size combined across multiple cohorts, 

was more notable for low frequency variants and for CurSmk (Figure 3).

In meta-analysis, the stratified framework had higher genomic control lambda values for the 

1 DF test, regardless of filtering schemes. The Spearman rank correlation between stratum-

specific effects for the 1 DF test was also slightly increased (0.034) after meta-analysis of 

population-based cohorts (Table 3). The lambda values for the 2 DF test were generally 

similar between the two frameworks (Table S5).

Population-based vs. family-based results

Regardless of the schemes (A and B), we found a surprising reduction of agreement between 

the two frameworks in meta-analysis compared to cohort-specific analyses. For meta-

analysis combining 14 population-based cohorts (with a total sample size of 62,548), the 

correlation between the two frameworks for the 1 DF test was 0.94 and 0.96 with the use of 

schemes A and B in the stratified framework, respectively, for CurSmk (the top left in 

Figures 4 and 5). Note that we had found higher correlations on the cohort-level: for 

population-based cohorts, about 80% of sample (49,450 subjects) was from the 8 cohorts 

that had correlation over 0.999 between the two frameworks for the 1 DF test and for 

CurSmk. Compared to the 1 DF test, using the 2 DF test generally increased the significance 

of p-values, possibly reflecting true main effect associations that are missed by the 1 DF 

tests. The 2 DF test also had higher correlation between the two frameworks compared to the 

1 DF test.

When meta-analysis included family-based cohorts, the level of agreement became even 

less. For meta-analysis combining the 6 family-based cohorts (with sample size 17,183), the 
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correlation between the two frameworks for the 1 DF test was 0.86 and 0.88 with the use of 

schemes A and B in the stratified framework, respectively, for CurSmk (the middle left in 

Figures 4 and 5). Again, these correlation values on the meta-level were lower than those 

observed on the cohort-level. Furthermore, there were a noticeable number of variants that 

had highly discrepant p-values between two frameworks using the 2 DF test with the use of 

the scheme A in the stratified framework (the middle second and fourth columns in Figure 

4).

When all 20 cohorts were combined (with total sample size 79,731), the correlation was 

approximately the average of the two values for the two meta-analysis results (population-

based and family-based). With the use of scheme A in the stratified framework, the 

scatterplot for the 2 DF test still included those variants with highly discrepant p-values 

between two frameworks (the last row of Figure 4).

Low-frequency vs common variants

To examine how the concordance between the two frameworks depends on the MAF, we 

generated two scatterplots for each scatterplot in Figures 4 and 5, one including about 3 

million low frequency variants (with MAF < 5%) and another including 6.5 million common 

variants (with MAF ≥ 5%). The filtering scheme in the stratified framework had a larger 

impact on the concordance of low frequency variants (Supplemental Figures 2 and 4). For 

common variants, the two schemes for the stratified framework provided almost identical 

performance, providing similar agreement between the two frameworks (Supplemental 

Figures 3 and 5). Moreover, when meta-analysis included family-based cohorts (rows 2 and 

3 of Figure 4), those variants that showed highly discrepant p-values between the two 

frameworks were all low frequency variants (Figure S2).

To further understand this discrepancy for low frequency variants, we examined the variants 

from the meta-analysis of the 6 family-based cohorts for the CurSmk measure (the middle 

second in Figure 4). The three selected variants are presented in Table 5. For all variants, 

meta-analysis for the E=1 stratum is identical regardless of filtering schemes. The difference 

came from meta-analysis of the E = 0 stratum. For example, with the first variant 

(2:48619812, MAF = 1.2%), the meta-analysis for E = 0 stratum used 3 cohorts under 

scheme A but one cohort (FamHS) under scheme B. When two remaining cohorts were 

included, the final 2 DF p-values were changed dramatically. The second variant shared this 

feature although all 6 cohorts contributed to the scheme A meta-analysis for E=0 stratum. 

However, the 2 DF p-values for both schemes were similar for the third variant. It appears 

that the use of the generalized estimating equations (GEE) approach for the analysis of the 

family-based cohorts may lead to spurious results for low frequency variants. This finding is 

consistent with the recent publication [Sitlani, et al. 2015]. The variants that showed highly 

discrepant p-values from meta-analysis combining all cohorts (the third row in Figure 4) also 

shared this feature.

Discussion

Gene-environment interactions play important roles in the pathobiology of disease traits, 

improving our understanding about which combinations of genes and environments may be 
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predisposed to unfavorable health outcomes. Modeling gene-lifestyle interactions may 

discover more trait loci through context dependent (or “refined”) main effects as well as true 

interactions. To actively investigate the role of such interactions on cardiovascular traits, we 

have established a Gene-Lifestyle Interactions Working Group within the CHARGE 

Consortium. The working group includes over 50 cohorts from around the world, spanning 

four race/ethnic groups (European, African, Hispanic, and Asian ancestry). This offers us an 

opportunity to compare and contrast two analysis frameworks for studying gene-

environment interactions.

Using actual results from 20 cohorts of European ancestry, we empirically compared the two 

frameworks. In cohort-specific analyses, we observed that agreement between the two 

frameworks were generally good and depended on 1) balance between sample sizes of the 

two strata, 2) total sample size, and 3) whether the cohort is population-based or family-

based. In meta-analyses, agreement between the two frameworks was less than that observed 

in cohort-specific analyses, despite the increased sample size. In meta-analyses, agreement 

depended on 1) the minor allele frequency, 2) inclusion of family-based cohorts in meta-

analysis, and 3) filtering scheme. The discrepancy was more notable for low frequency 

variants.

The joint framework that considers the genetic main and interaction effects jointly in a 

single linear model has been the main statistical approach for studying interactions. It 

utilizes the entire sample and works well whether environmental exposures are categorical or 

continuous. The stratified framework has emerged because main-effect models are readily 

available in many software packages and easier to implement in a large-scale consortium 

setting. However, the stratified framework, appropriate for population-based cohorts, was 

developed to approximate the joint framework. Our findings from cohort-specific results 

support the equivalence between the two frameworks for population-based cohorts. For 

family-based cohorts, however, we found less agreement between the two frameworks. Most 

family-based cohorts, in particular large extended pedigrees, include both exposed and 

unexposed members within each family. The stratified framework is unable to fully account 

for family structures across strata. The Spearman rank correlation coefficient in the 1 DF test 

may partly correct for any correlation between the strata (that may arise from family data). 

In contrast, the 2 DF test does not take into account any relatedness across the strata: the null 

distribution of the 2 DF test holds when the exposed and unexposed groups are independent. 

We observed that the stratified framework was less suitable for approximating the joint 

framework for family studies with complex pedigree structures (such as the Framingham 

heart study).

To increase the sample sizes, most large scale consortia include both population-based and 

family-based studies. It is also becoming standard to perform analysis of low frequency 

variants imputed using the 1000 Genomes project. In our meta-analysis, we had about 3 

million low frequency variants. However, with inclusion of family-based studies in meta-

analysis, disagreement between the two frameworks was more pronounced for low 

frequency variants. With the use of stratum-specific filters, we observed less agreement and 

a notable number of variants that had highly discrepant p-values between the two 

frameworks, where 20% of subjects were from family-based cohorts. If the stratified 
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framework is already in use, then using a consistent filter for both strata may improve the 

agreement, thereby providing a similar inference as the joint framework.

To our knowledge, this is the first report comparing the joint and stratified frameworks using 

real data. The stratified framework appears to approximate the joint framework well only for 

common variants in population-based cohorts. We conclude that the joint framework is the 

preferred approach and should be used to control false positives when dealing with low 

frequency variants and/or family-based cohorts. As our findings were based on an empirical 

evaluation using one phenotype, they may not be generalized to all situations. Even though 

we focused on a continuous outcome, the methods are generally applicable to dichotomous 

outcomes under the logistic regression framework [Aschard, et al. 2010; Magi, et al. 2010]. 

With dichotomous outcomes, we expect similar conclusion but may require more stringent 

MAC thresholds to produce valid logistic regression results [Ma, et al. 2013]. A more 

comprehensive investigation covering the various scenarios with both continuous and 

dichotomous outcomes, among others, would strengthen our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatterplots of cohort-level −log10(p) values for the 6 select population-based cohorts 

showing the weakest correlations. Each point shows −log10(p) value from the joint 

framework (x-axis) and the stratified framework (y-axis) at a variant. Cohorts are ordered 

with respect to sample sizes (shown in Table 1). The remaining 8 population-based cohorts 

that had correlation over 0.99, which are shown in Figure S1.
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Figure 2. 
Scatterplots of cohort-level −log10(p) values for the 6 family-based cohorts. Each point 

shows −log10(p) value from the joint framework (x-axis) and the stratified framework (y-

axis) at a variant. Cohorts are ordered with respect to sample size (shown in Table 1).
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Figure 3. 
Violin plots of sample sizes arising from meta-analysis under two filtering schemes. Cyan 

color under scheme A (a stratum-specific filter) and magenta color under scheme B. Row 1 

shows results for meta-analysis including the 14 population-based cohorts (with total sample 

size 62,548), row 2 for meta-analysis including the 6 family-based cohorts (with sample size 

17,183), and row 3 for meta-analysis including all 20 cohorts (with total sample size 

79,731).
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Figure 4. 
Scatterplots of meta-level −log10(p) values using a scheme A in the stratified framework. 

The joint framework used a filtering scheme B. Row 1 shows results for meta-analysis 

including the 14 population-based cohorts, row 2 for meta-analysis including the 6 family-

based cohorts, and row 3 for meta-analysis including all 20 cohorts.
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Figure 5. 
Scatterplots of meta-level −log10(p) values using a scheme B in the stratified framework. 

The joint framework used a filtering scheme B. Row 1 shows results for meta-analysis 

including the 14 population-based cohorts, row 2 for meta-analysis including the 6 family-

based cohorts, and row 3 for meta-analysis including all 20 cohorts.
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Table 3

Spearman rank correlation coefficients between the two stratum-specific genetic effects calculated from the 

genome-wide results used for the 1 DF test in the stratified framework

Cohort CurSmk EverSmk

Cohort-level for population-based cohorts CROATIA-Korcula 0.000 −0.003

CROATIA-Vis 0.014 0.005

BioMe 0.001 0.002

CARDIA 0.000 −0.002

HealthABC 0.007 0.010

RS2 0.003 −0.001

AGES 0.016 0.014

MESA 0.012 0.044

RS3 0.006 0.006

CHS 0.001 0.004

RS1 0.013 0.005

GS:SFHS 0.003 0.006

ARIC 0.012 0.012

WGHS 0.014 0.027

Cohort-level for family-based cohorts HERITAGE 0.105 0.076

GENOA 0.017 0.030

HyperGEN 0.052 0.093

ERF 0.053 0.066

FamHS 0.071 0.078

FHS 0.091 0.112

Meta-level Population-based cohorts 0.034 0.045

Family-based cohorts 0.090 0.095

All cohorts 0.055 0.065
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