
UCLA
UCLA Previously Published Works

Title
Epigenomic profiling reveals an association between persistence of DNA methylation 
and metabolic memory in the DCCT/EDIC type 1 diabetes cohort

Permalink
https://escholarship.org/uc/item/27c8j3jw

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
113(21)

ISSN
0027-8424

Authors
Chen, Zhuo
Miao, Feng
Paterson, Andrew D
et al.

Publication Date
2016-05-24

DOI
10.1073/pnas.1603712113
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27c8j3jw
https://escholarship.org/uc/item/27c8j3jw#author
https://escholarship.org
http://www.cdlib.org/


Epigenomic profiling reveals an association between
persistence of DNA methylation and metabolic
memory in the DCCT/EDIC type 1 diabetes cohort
Zhuo Chena,1, Feng Miaoa,1, Andrew D. Patersonb, John M. Lachinc, Lingxiao Zhanga, Dustin E. Schonesa, Xiwei Wud,
Jinhui Wangd, Joshua D. Tompkinsa, Saul Genuthe, Barbara H. Braffettc, Arthur D. Riggsa,2, DCCT/EDIC Research Group3,
and Rama Natarajana,2

aDepartment of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010; bGenetics and Genome Biology,
The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; cThe Biostatistics Center, The George Washington University, Rockville, MD 20852-3943;
dDepartment of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010; and eCase Western Reserve University,
Cleveland, OH 44106

Contributed by Arthur D. Riggs, March 11, 2016 (sent for review January 24, 2016; reviewed by John Cijiang He, Renu A. Kowluru, and Kumar Sharma)

We examined whether persistence of epigenetic DNA methylation
(DNA-me) alterations at specific loci over two different time points
in people with diabetes are associated with metabolic memory,
the prolonged beneficial effects of intensive vs. conventional ther-
apy during the Diabetes Control and Complications Trial (DCCT) on
the progression of microvascular outcomes in the long-term follow-
up Epidemiology of Diabetes Interventions and Complications (EDIC)
Study. We compared DNA-me profiles in genomic DNA of whole
blood (WB) isolated at EDIC Study baseline from 32 cases (DCCT
conventional therapy group subjects showing retinopathy or albu-
minuria progression by EDIC Study year 10) vs. 31 controls (DCCT
intensive therapy group subjects without complication progression
by EDIC year 10). DNA-me was also profiled in blood monocytes
(Monos) of the same patients obtained during EDIC Study years 16–
17. In WB, 153 loci depicted hypomethylation, and 225 depicted
hypermethylation, whereas in Monos, 155 hypomethylated loci and
247 hypermethylated loci were found (fold change ≥1.3; P < 0.005;
cases vs. controls). Twelve annotated differentially methylated loci
were common in both WB and Monos, including thioredoxin-inter-
acting protein (TXNIP), known to be associated with hyperglycemia
and related complications. A set of differentially methylated loci
depicted similar trends of associations with prior HbA1c in both WB
and Monos. In vitro, high glucose induced similar persistent hypome-
thylation at TXNIP in cultured THP1 Monos. These results show that
DNA-me differences during the DCCT persist at certain loci associated
with glycemia for several years during the EDIC Study and support an
epigenetic explanation for metabolic memory.

metabolic memory | epigenetics | DNA methylation | TXNIP |
diabetic complications

The landmark Diabetes Control and Complications Trial (DCCT;
1983–1993) clearly showed that intensive (INT) glycemic control

profoundly reduces the development and progression of microvas-
cular complications in type 1 diabetes (T1D). The DCCT partici-
pants were subsequently followed in the Epidemiology of Diabetes
Interventions and Complications (EDIC) Study (1994 to present),
during which all subjects were advised to practice INT treatment.
Surprisingly, those previously assigned to conventional (CONV)
therapy continued to develop complications, such as nephropathy,
retinopathy, and macrovascular diseases, at significantly higher rates
than the previous INT therapy group, despite nearly similar HbA1c
levels during the EDIC Study (1–3). This persistence of benefit from
early application of INT therapy, called “metabolic memory,” is an
enigma in the field of T1D: recent studies have suggested the in-
volvement of epigenetic mechanisms (4–9).
Epigenetics is the study of mostly heritable changes in gene

expression and phenotype that occur without alterations in the
underlying DNA sequence. Epigenetic states are affected by
environmental factors, such as aberrant nutrition and metabolic

states (4, 6–8, 10). DNA methylation (DNA-me; the classic epi-
genetic mark) and posttranslational modifications (PTMs) of
histone tails in chromatin (e.g., acetylation and methylation) form
an epigenome layer and play key roles in controlling gene ex-
pression (11–14). Promoter DNA-me is usually associated with
gene repression and usually inversely correlated with histone ly-
sine acetylation, which is generally associated with active genes.
Histone lysine methylation can lead to gene activation or re-
pression (14, 15). Abnormal alterations in DNA-me and histone
PTMs at distinct regulatory regions in the genome can eventually
lead to dysregulated gene transcription and disease progression
(13–16). DNA-me levels are controlled by both methylation cat-
alyzed by DNA methyltransferases (DNMTs), and demethylation
caused by oxidation of methylcytosine by the ten-eleven trans-
location (TET) enzymes or deamination by deaminases. DNA-me
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is relatively long-lasting and may function to stably lock in gene
silencing and/or reflect some aspects of cellular history (17–19).
Several laboratories, including our laboratory, using cell and

animal models have suggested roles for key histone PTMs in
high glucose (HG)-mediated effects, diabetic complications,
and metabolic memory (9, 20–31). Histone PTM profiling of
vascular and inflammatory cells cultured with HG vs. normal
glucose (NG) or WBCs from T1D patients vs. healthy volun-
teers or T1D patients with complications vs. those without
depicted significant PTM differences and candidate differen-
tially methylated or acetylated genes relevant to diabetes or its
complications (23, 32–34). Because DNA-me can be inherited
during cell division, persistence of DNA-me changes might
reflect metabolic history. This hypothesis is supported by ex-
perimental models showing persistent DNA-me changes (global or
at specific loci related to complications) in zebrafish with hyper-
glycemia (35), diabetic patient-derived fibroblasts (36), and retinas
from diabetic rats under poor glucose control (37). However, the
cause–effect relationship between epigenetics and human meta-
bolic memory is not yet fully clear.
We recently did histone PTMs profiling (31) in peripheral blood

monocytes (Monos) and lymphocytes collected from 30 former
DCCT CONV group subjects (cases; mean DCCT HbA1c > 9.1%
and progression of retinopathy or macroalbuminuria by EDIC
Study year 10 of follow-up) vs. 30 former DCCT INT subjects
(controls; mean DCCT HbA1c < 7.3% and without progression
through EDIC Study year 10). We showed that Monos from cases
were significantly enriched with histone H3-lysine9-acetylation
(H3K9Ac) relative to controls at promoter regions. Interestingly,
the top 38 hyperacetylated promoters in cases included 15 genes
associated with the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) inflammatory pathway, which is strongly
associated with diabetic complications. Moreover, Monos H3K9Ac,
a mark of gene activation, showed significantly positive association
with mean HbA1c during the DCCT and the EDIC Study. To-
gether, these results suggested the potential mediatory role of
epigenetics in metabolic memory in humans. However, this first
study did not evaluate the persistence of epigenetic marks over
time in the DCCT/EDIC Study cohort.
Although aberrant DNA-me has been reported to be asso-

ciated with cancer progression (13, 16, 38), only a few studies
have examined the role of DNA-me in T1D complications (23,
32–34, 39). Notably, it is unknown if DNA-me persists over
time in people with diabetes and is associated with metabolic
memory. Here, we addressed this issue by using DNA collected
at two different time points (EDIC Study baseline and EDIC
Study years 16 and 17) from the same DCCT/EDIC Study
cohort in which we previously evaluated histone PTMs (31). To
our knowledge, this study is the first one in which two sets of
DNAs collected at least 16–17 y apart from the same partici-
pants are used to show the persistency of DNA-me over time.
Our goal is to provide more direct evidence of a relationship
between epigenetics and metabolic memory in human T1D.

Results
Experimental Design. Participants from the DCCT/EDIC Study
cohort were selected based on the same criteria as those reported
in our previous histone PTM study (31). Briefly, the case group
included 32 EDIC Study participants from the former DCCT
CONV group who had mean HbA1c > 9.1% (76 mmol/mol)
during the DCCT and significant progression of retinopathy and/or
nephropathy from the DCCT closeout to EDIC Study year 10. The
control group consisted of 31 EDIC Study participants from the
former DCCT INT group. They had mean DCCT HbA1c below
7.3% (56 mmol/mol) and no progression of retinopathy and/or
nephropathy through EDIC Study year 10. The characteristics of
these 63 participants are shown in SI Appendix S1, Table S1, and
they are very similar to those previously reported (31).
Two sets of DNA samples from the same 63 EDIC Study

participants [including all 60 participants from the EDIC Study
histone PTM study (31)] collected at least 16–17 y apart (Table 1)

were used in this study. The first set was comprised of whole-blood
(WB) genomic DNAs collected at the DCCT closeout/EDIC
Study baseline (1991–1993) for genetic studies (40). These sam-
ples were used to examine the DNA-me status in patients when
glucose control, as measured by HbA1c, differed between the two
groups, and microvascular complications were more common in
cases than in controls (SI Appendix S1, Table S1). The second set
of samples analyzed was genomic DNAs isolated from Monos of
61 subjects, including 31 cases and 30 controls (two Monos sam-
ples could not be analyzed because of insufficient DNA). These
Monos samples were collected during EDIC Study years 16 and 17
(2009 and 2010) when histone PTM profiling was conducted (31),
and were used to profile DNA-me 16–17 y later in the same pa-
tients, when diabetic complications in cases became more pro-
nounced during the EDIC Study, despite reduction in the HbA1c
difference (SI Appendix S1, Table S1).
As shown in Fig. 1, all genomic DNA samples from WB and

Monos were subjected to DNA-me profiling using Illumina
Infinium Human Methylation 450 Bead Chip Arrays. The
485,512 probes in the array cover 99% RefSeq genes (including
promoter, body, and 5′/3′ UTRs), 3′-cytosine-phosphate-guanine-
5′ (CpG) islands (CGIs), CpG shores, and shelves. Following
our data analysis pipeline (SI Appendix S1, Fig. S1A), we iden-
tified differentially methylated CpGs (DMLs) between cases and
controls in both WB and Monos, validated several of these using
different platforms, and investigated persistence of DNA-me
changes over time by comparing DMLs identified from the two
sets of samples. Finally, in vitro cell culture experiments were
performed to shed light on the molecular mechanism(s) underlying
DNA-me changes and gene expression differences and further
explore the association of DNA-me with diabetic complications
and metabolic memory.

Identification and Characteristics of DMLs in WB Genomic DNA
Samples. DNA-me at 213,620 probes (after CpG site exclusions)
from 450K arrays (SI Appendix S1, Fig. S1B) were compared be-
tween cases and controls in WB DNAs using multiple linear re-
gression models with and without adjustments for covariates
including age, gender, WBC type composition, and complications
(both proliferative diabetic retinopathy and microalbuminiuria) at
the EDIC Study baseline. As indicated in SI Appendix S1, SI
Methods, because epigenetics is cell-specific, to address the issue
of heterogeneity of DNA inWB, we adopted a data deconvolution
(41) approach to estimate cell type composition in each WB DNA
sample and then, added the estimated cell compositions as cova-
riates in the analysis. The compositions of each cell type in all 63
WB samples were within the expected range (SI Appendix S1, Fig.
S1C). Moreover, there were no significant differences in compo-
sitions for each cell type, except in Monos, between cases and
controls (SI Appendix S1, Table S2). This approach was further
verified by our Monos dataset, showing an estimated average of
84% Monos across 61 Mono samples (SI Appendix S1, Fig. S1D).
These data confirmed the feasibility and reliability of using de-
convolution to estimate cell type composition in WB.
DMLs in WB of cases vs. controls were thus identified based

on fold changes (FCs) ≥1.3 and nominal P < 0.005. As shown in
Fig. 2A, without adjustments for covariates, 131 hypomethylated
loci (hypo-MLs) and 141 hypermethylated loci (hyper-MLs) in
cases vs. controls were identified. After adjustment for covariates,
153 hypo-MLs (Dataset S1) and 225 hyper-MLs (Dataset S2) were
found. In comparing the lists with and without adjustment, about
one in three (51 hypo-MLs and 63 hyper-MLs) were in common,
indicating that these covariates did, to some extent, account for

Table 1. DCCT/EDIC Study genomic DNA sample information

Samples Case Control Time of sample collection

WB DNA 32 31 EDIC Study baseline (1991–1993)
Monos 31 30 EDIC Study years 16–17 (2009–2010)

Chen et al. PNAS | Published online May 9, 2016 | E3003

M
ED

IC
A
L
SC

IE
N
CE

S
PN

A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sd02.xlsx


variation in DNA-me. In silico analyses were subsequently done to
further characterize the DMLs identified with adjustment in WB.
Using unsupervised hierarchical clustering analysis on the

DNA-me at DMLs across 63 patients, a heat map (Fig. 2B) shows
clear DNA-me differences between the two groups. Based on genomic
locations relative to RefSeq genes, each DML was classified to one
of the following eight regions: transcription start site (TSS) 1500
(1,500 bp upstream to 200 bp upstream of RefSeq genes), TSS200
(200 bp upstream to TSS), 5′ UTR, first exon, 3′ UTR, other exon
(excluding first exon), and intron and intergenic regions (Fig. 2C).
No obvious location differences were found between hypo- and
hyper-MLs (P = 0.90; Fisher exact test). In both, about 60% of
DMLs were located within gene bodies. Interestingly, the numbers
of DMLs located in introns were relatively high (37.3% in hypo-
MLs and 39.1% in hyper-MLs), and those in 3′ UTR also
accounted for 6.5% and 7.1% in hypo- and hyper-MLs, respectively.
Moreover, nearly 30% of DMLs were located at intergenic re-
gions, whereas those located in promoter regions (TSS200-proximal
and TSS1500-distal promoters) accounted for only 11.1% and 8.9%
in hypo- and hyper-MLs, respectively. Thus, it is clear that the
majority of the DMLs were located in potential regulatory regions
(including introns, intergenic, and 3′ UTRs) rather than promoters.
Six genomic locations of the hypo- and hyper-MLs relative to CGIs
were also examined (Fig. 2D), including CGIs (island), N_shore and
S_shore (up to 2 kb upstream and downstream of CGIs, re-
spectively), N_Shelf and S_Shelf (2–4 kb upstream and down-
stream of CGIs, respectively), and open sea (remaining genomic
regions). More than 60% of hypo- and hyper-MLs were in open
sea and not related to CGIs or their nearby shores or shelves,
whereas those located in CGIs accounted for only 11.8% and
6.7% in hypo- and hyper-MLs, respectively.
We then focused on DMLs located in RefSeq genes or their

flanking regions. Although the pie charts in Fig. 2C show a high
percentage of DMLs in gene bodies and intergenic regions,
they did not reflect the location “density,” because the genomic
lengths of gene bodies and intergenic regions are much longer
than other regions (including promoters), and the array design
may have bias toward these regions. Thus, we calculated the
percentage of hypo- and hyper-MLs among the CpGs covered
on the array mapping to the same regions across gene bodies
and their 5-kb flanking regions (Fig. 3A and SI Appendix S1, SI
Methods). Compared with the overall percentage among all
213,620 CpG sites (0.07%) (Fig. 3A, dashed line), hypo-MLs
were enriched in gene bodies, 3′ UTRs, and downstream
intergenic regions (Fig. 3A, Left). The hyper-MLs (Fig. 3A,
Right) were also enriched in similar regions plus in upstream
intergenic regions. Both hypo- and hyper-MLs were not enriched
in promoter regions as shown in Fig. 2C.
Next, we used bean plots to examine the distribution of

DNA-me in cases and controls of hyper- and hypo-MLs located
at different locations relative to RefSeq genes, including pro-
moters (up to 1,500 bp upstream of TSS), 3′UTRs, 5′UTRs, gene
bodies, and intergenic regions (Fig. 3B). The DNA-me levels at all

of the CpG sites used in the comparison except DMLs (others in
Fig. 3B) were analyzed as references. Excepting hyper-MLs in
3′ UTR, mean DNA-me levels of CpGs in hyper- and hypo-MLs
were higher than others, especially those in the hypo-MLs (FC
compared with others ranged from 2.46 to 4.29 in different regions,
with P values ranging from 3.72 × 10−3 to 5.32 × 10−15; t tests). The
largest difference between cases and controls was at hypo-MLs in
3′ UTRs (FC = 1.67; P = 1.68 × 10−4; paired t test).
To explore the potential biological functions of these DMLs,

Ingenuity Pathway Analysis (IPA) was conducted on the RefSeq
genes containing either hypo- or hyper-MLs at their promoters
(up to 1,500 bp upstream of TSS) or gene bodies. The ensuing
top network (Fig. 3C) revealed that many of these genes had
connections to NF-κB and PI3K-Akt kinase, which are well-known
to be related to the development of diabetic complications (7, 42).

Identification and Characteristics of DMLs in Monos Genomic DNA
Samples. Similar analyses were performed on Monos. After CpG
site exclusions (SI Appendix S1, Fig. S1B), DNA-me levels at
205,639 CpG sites were compared between 31 cases and 30 controls

Blood Collection (EDIC Baseline)

Cases and Controls

Blood Collection (EDIC Years 16/17)

DNA-me Profiling (Infinium 450K)

Data Analysis Data Analysis

Data Integration (exploration of DNA-me persistence)

Whole Blood Genomic DNA Isolation 
Monocyte Isolation

Monocyte Genomic DNA Isolation 

Validation of Candidates

Potential Link with metabolic Memory 

DNA-me Profiling (Infinium 450K)

Fig. 1. Experimental design. The experiments and related data analyses are
summarized in the depicted pipeline.
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Fig. 2. DMLs between cases and controls identified in WB genomic DNAs
collected at the EDIC Study baseline. DMLs with FC ≥ 1.3 and P < 0.005 in
cases vs. controls were identified. (A) Venn diagrams depicting hypo- and
hyper-MLs in cases with and without adjustment for covariates, including
age, gender, WBC compositions, and complications. (B) Heat map of DMLs in
cases vs. controls. DNA-me levels of each DML (rows) across all of the cases
and controls (columns) after unsupervised hierarchical clustering analysis (SI
Appendix S1, SI Methods) are shown. Green indicates DNA-me below the
average of all of the samples, and red indicates DNA-me above the average
level. (C) Genomic locations of (Left) hypo-ML and (Right) hyper-ML rela-
tive to RefSeq genes. Locations were classified to one of the following
eight regions: TSS1500 (1,500 bp upstream to 200 bp upstream of TSS),
TSS200 (200 bp upstream of TSS), 5′ UTR, the first exon (1st Exon), 3′ UTR,
other exon (excluding the first exon), and intron and intergenic regions.
(D) Locations of (Left) hypo-MLs and (Right) hyper-MLs in regions defined
relative to CGI (Island). These regions include island, N_shore and S_shore
(up to 2 kb upstream and downstream of CGI), N_Shelf and S_Shelf (2–4 kb
upstream and downstream of CGI), and open sea (the remaining genomic
regions). DMLs after adjustment for covariates were analyzed in B–D.
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using multiple linear regression models with and without adjust-
ment for age and gender. As shown in Fig. 4A, 196 hypo- and 226
hyper-MLs were identified without any adjustment, whereas 155
hypo-MLs (Dataset S3) and 247 hyper-MLs (Dataset S4) were
found after adjustment, with FC ≥ 1.3 and nominal P < 0.005.
Comparing the lists with and without adjustment, about 80% (128
hypo-MLs and 175 hyper-MLs) were in common (Fig. 4A). The
Monos DMLs after adjustment were used in the subsequent analyses.
Hierarchical cluster, location, and IPA network analyses of

these DMLs revealed similar results to those found in WB
(SI Appendix S1, Fig. S2), except that Monos hypo-MLs were
enriched in promoters. DNA-me at hypo- and hyper-MLs in

various regions of RefSeq genes (Fig. 4B) did not show the
universal higher DNA-me levels in hyper- and hypo-MLs than
others, which were found in WB DMLs. In Monos, only the
hyper-MLs in gene bodies including 3′ and 5′ UTR showed
higher than average DNA-me. Notably, again, the average
DNA-me differences at DMLs in 3′ UTRs were the largest,
highlighting the importance of DNA-me variation at 3′ UTRs.

Persistency of DNA-me Differences Between Cases and Controls from
the EDIC Study Baseline to EDIC Study Years 16 and 17. To examine
whether the DNA-me differences in cases vs. controls at one time
point are also present 16–17 y later, the hyper- and hypo-MLs
identified in WB and Monos after adjustment for covariates and
annotated to a gene or its promoter were compared (Fig. 5).
Notably, four hypo-MLs (Fig. 5A, bright green intersection of two
solid green ellipses) and eight hyper-MLs (Fig. 5C, bright red in-
tersection of two solid red ellipses) were similarly differentially
methylated in WB and Monos. The DNA-me differences in cases
vs. controls at each of the hypo-MLs [located in GATA zinc finger
domain containing 1 (GATAD1), bassoon presynaptic cytoma-
trix protein (BSN), protein kinase C epsilon type (PRKCE), and
thioredoxin-interacting protein (TXNIP)] and hyper-MLs [located in
LIM/homeobox protein 6 (LHX6), microtubule-associated protein
(MAP7), cadherin-3 (CDH3), SET and MYND domain containing
1 (SMYD1), chloride channel 7 alpha subunit (CLCN7, two loci),
zinc finger protein 167 (ZNF167), and CUE domain containing
1 (CUED1)] in both sample sets are shown side by side in the
heat map (Fig. 5B, b). For each of these 12 DMLs, Pearson’s
correlation analyses were applied to DNA-me between WB and
Monos collected from each of the same 61 participants. Among
these DMLs, five located at PRKCE, BSN, CUEDC1, and CLCN7
were highly correlated with r > 0.9, whereas five located at TXNIP,
MAP7, LHX6, ZNF167, and CDH3 were moderately correlated
(0.56 < r < 0.79) (Fig. 6). Of note, DNA-me at three DMLs
(PRKCE, BSN, and CUEDC1) formed two or three distinct clus-
ters on scatterplots (Fig. 6A), suggesting that DNA-me at these
three CpGs was likely to be interfered by SNPs. Data from the
1000 Genomes Project Phase 3 (www.1000genomes.org) con-
firmed that all three contain common SNPs (minor allele fre-
quency in European population > 1%) at the CpG sites (SI
Appendix S1, Table S3). Thus, some but not all of the consistent
DNA-me differences identified between the two time points may
be caused by SNP variants.

−2
0

2

4

6

8

10

 TSS upstream 5'UTR Body 3'UTR Intergenic

D
N

A
-m

e 
(M

 v
al

ue
) CasesControls

others
hyper

hypo
others

hyper
hypo

others
hyper

hypo
others

hyper
hypo

others
hyper

hypo

A

C

B
up downgene body

overall%: 0.07%

0.00

0.05

0.10

0.15

0.20

0.25

%
 in

 c
ov

er
ed

 C
pG

s

overall%: 0.11%

TRPV1 CPT1A
TMPOANK1

USP20

TJP2

TNIP1

P38MAPK PRKCE

SNCAPkc(s)

p85(plk3r)

IL1RAPAkt

NFkB(complex) MYH11

PRKCA

PTPRN2*
SMAD6

GLI2

PRKCZ
FCGR2A

Hsp70
NOD2

XRCC5* MUC4
CDX1

KANK2

SRPK2

ATXN7 TRRAP*

TCF12

PI3K(complex)

RAD50CBFA2T3

Hyper-ML

−5.0
kb

Tx
Start

Tx
End

+5.0
kb

Hypo-ML

0.00
0.05

0.10

0.15

0.20

0.25

%
 in

 c
ov

er
ed

 C
pG

s

−2.5
kb

50% +2.5
kb

up downgene body

−5.0
kb

Tx
Start

Tx
End

+5.0
kb

−2.5
kb

50% +2.5
kb
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and plotted (SI Appendix S1, SI Methods). (B) Bean plots of DNA-me levels of
three sets of CpGs including hypo-MLs (hypo), hyper-MLs (hyper), or all other
CpGs after exclusion steps (others) in cases and controls. Based on CpG sites’
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bottom. Body represents the groups located in gene bodies but not in UTRs.
The distribution of DNA-me levels (M values) of each group in cases and
controls is presented by two-sided bean plots (left-side density plot in black is
for controls, and right-side density plot in gray is for cases). The overall average
of DNA-me for each group is depicted as horizontal short lines. (C) Top net-
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genes containing hyper-MLs, whereas green ones represent the genes with
hypo-MLs, and color intensity indicates FC in cases vs. controls. Solid lines in-
dicate direct interactions, and dashed lines refer to indirect interactions.

−2
0

2

4

6

8
10

D
N

A
-m

e 
(M

 v
al

ue
)

CasesControls

others
hyper

hypo
others

hyper
hypo

others
hyper

hypo
others

hyper
hypo

others
hyper

hypo

TSS upstream 5’UTR Body 3’UTR Intergenic

B

A no adjustment adjusted for 
age, gender 

hypo-ML

7251 175

no adjustment

hyper-ML

adjusted for 
age, gender 

2768 128

Fig. 4. DMLs between cases and controls identified in genomic DNAs isolated
from Monos collected in the EDIC Study years 16 and 17. DMLs with FC ≥ 1.3
and P < 0.005 in cases vs. controls were identified by multiple linear regression
models. (A) Venn diagrams depicting hypo- and hyper-MLs in cases identified
with and without adjustment for age and gender. (B) Bean plots for DNA-me
levels of all CpG sites except DMLs (others), hypo-MLs (hypo), and hyper-MLs
(hyper) in cases and controls. Details are in Figs. 2 and 3.

Chen et al. PNAS | Published online May 9, 2016 | E3005

M
ED

IC
A
L
SC

IE
N
CE

S
PN

A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sd04.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.1000genomes.org/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603712113/-/DCSupplemental/pnas.1603712113.sapp01.pdf


The relatively small overlap between WB and Monos could be
because Monos form only a small fraction of WB (∼10%) (SI
Appendix S1, Fig. S1C). To address this issue, we next examined
whether there are DMLs identified at one time point (either the
EDIC Study baseline or years 16 and 17) showing similar trends
of DNA-me difference at the other time point. These DMLs were
defined as hypo-MLs identified in one sample set also displaying
hypomethylation (hypo-me) in cases vs. controls with P < 0.05 in
the other set (dotted green lines in Fig. 5A) or hyper-MLs in one
sample set showing similar trends of hypermethylation in the other
set (dotted red lines in Fig. 5C). Thus, 13 WB hypo-MLs (left in-
tersection in pale green in Fig. 5A) and 11 WB hyper-MLs (left
intersection in light red in Fig. 5C) were found to depict similar
trends of hypo-me and hypermethylation in Monos, which are
clearly shown by the heat map in Fig. 5B, a. Similarly, 15 Monos
hypo-MLs and 22 Monos hyper-MLs depicted similar trends of
DNA-me differences in WB (Fig. 5B, c).
Together, these data show that DNA-me at certain loci depicts

persistence over 16–17 y in blood cells of cases vs. controls and
thus, could play an important role in metabolic memory.

Validations of DNA-me Variations in Cases and Controls. Notably,
among the DMLs identified in WB or Monos, a CpG site (probe
cg19693031; CpG3) (Fig. 7A) located at chromosome 1:
145,441,552 (hg19) in 3′ UTR of TXNIP was hypomethylated in
cases [P = 2.4 × 10−14; false discovery rate (FDR) = 1.2 × 10−8] in
WB. After adjustments for covariates, this hypo-me remained
significant, with P = 3.03 × 10−11 and FDR = 1.45 × 10−5 (Fig.
7B, left comparison). Of 19 CpGs covered by 450K array in TXNIP
and its promoter, this site was the only one showing DNA-me dif-
ference (SI Appendix S1, Fig. S3 A and B). Furthermore, this CpG3
showed similar hypo-me in Monos with an age- and gender-adjusted
P value of 6.84 × 10−4 (Fig. 7B, right comparison).
Persistence of DNA hypo-me in TXNIP at two time periods

was particularly interesting, because TXNIP is a reported sensor
of glucose stress, a prooxidant, and a proapoptotic protein, with
gene expression that is highly associated with hyperglycemia and
diabetic complications, including retinopathy and nephropathy
(43–45), both of which were prevalent in our case group. TXNIP
expression is highly induced by HG in various cell types (46–48),
which by inhibiting thioredoxin, subsequently causes oxidative
stress and apoptosis. Recently, TXNIP up-regulation in the di-
abetic kidney was reported to be associated with changes in certain
histone PTMs (49). Because hypo-me at TXNIP could likely lead
to increased expression in cases vs. controls and thus, serve as an
epigenetic mechanism for its dysregulation and metabolic mem-
ory, we further validated DNA-me at CpG3.
We first performed DNA bisulfite pyrosequencing in WB of

30 cases and 30 controls and confirmed the hypo-me identi-
fied at CpG3 (Fig. 7A) by 450K array. The average DNA-me
was 68.3% in controls vs. 52.2% in cases (P = 1.95 × 10−10) (Fig.
7C). Interestingly, similar to CpG3, its two adjacent CpG sites
covered by the PCR-amplified DNA bisulfite fragments for
pyrosequencing (CpG1-2, Fig. 7A) also depicted significant
hypo-me in cases vs. controls (Fig. 7C and SI Appendix S1, Fig.
S3B), and their DNA-me levels (including CpG3) were signifi-
cantly correlated within a person (SI Appendix S1, Fig. S3C).
These results show that WB DNAs exhibit significant hypo-me
at the TXNIP 3′ UTR in cases vs. controls.
To expand the scale of validation to several DMLs, we

adopted a targeted DNA bisulfite sequencing approach (ampli-
con-seq) that directly sequences the PCR products of bisulfite-
treated DNA to target multiple candidate regions of interest
from numerous subjects simultaneously using next generation
sequencing (SI Appendix S1, SI Methods). DNA from 18 cases
and 18 controls was randomly selected for validation. We first
examined three CpG sites at TXNIP 3′ UTR in WB samples as a
positive control, and all three exhibited significant hypo-me (Fig.
7D), thus verifying amplicon-seq as an efficient method to vali-
date DNA-me variations in multiple subjects. We further ex-
amined DNA-me at these three CpGs in both Monos and
lymphocytes (key components of WBCs) from the same 36 partic-
ipants (collected in the EDIC Study years 16 and 17) and validated
that, similar to WB, they exhibited significant hypo-me (cases vs.
controls) in both cell types (Fig. 7 E and F).
Analyzing the agreement between DNA-me measured by

450K array vs. validation platform within these participants, high
Spearman coefficient (ρ) was shown at 0.93 (P < 2.2 × 10−16) be-
tween pyrosequencing and array or 0.76 (P < 1.4 × 10−6) between
amplicon-seq and 450K array in WB and 0.85 (P < 6.7 × 10−8)
between amplicon-seq and 450K array in Monos. Bland–Altman
plots (SI Appendix S1, Fig. S4) also showed only small differences
between the two platforms in both WB and Monos. Together,
these results clearly show a persistence (memory) of the TXNIP
hypo-me in cases over 16–17 y in multiple WBCs.
We next used amplicon-seq to validate additional CpGs (Ta-

ble 2) located in CLCN7, cytochrome B5 type B (CYB5B),
PRKCE, membrane bound O-acyltransferase domain containing
7 (MBOAT7), and long intergenic nonprotein coding RNA 649
(LINC00649) and confirmed their differential DNA-me (P <
0.05; Wilcoxon rank-sum test) between cases vs. controls
(36 samples for each DML) in WB and/or Monos, with small
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Fig. 5. Persistence of DNA-me over 16–17 y by comparing DMLs identified
in WB (the EDIC Study baseline) with those in Monos (the EDIC Study years
16 and 17) and vice versa. (A) Venn diagram of hypo-MLs identified in WB
and Monos. Only the hypo-MLs located in RefSeq gene bodies/promoters
were counted. The two solid green ellipses represent hypo-MLs identified in
WB and Monos, and the two dotted green half ellipses represent loci
depicting trends of hypo-me in cases vs. controls at a lower confidence level
(P < 0.05). The overlapping region (bright green) of the two solid lines de-
picts the hypo-MLs found in both WB and Monos, whereas the overlapping
regions (light green) between the solid ellipse of one sample set and the
dotted ellipse of the other sample set represent the hypo-MLs in one sample
set (WB or Monos) with similar trends of hypo-me in the other sample set.
Similar Venn diagrams in red were generated for the hyper-MLs in C. (B) The
mean DNA-me differences between cases and controls at the hypo-MLs or
hyper-MLs similarly modified in WB and Monos (represented in the over-
lapping regions of the Venn diagrams in A and C) are shown in heat maps a–c,
with the corresponding annotated gene symbols depicted on the right side.
Green is used to represent hypo-MLs, and red is used to represent hyper-MLs.
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differences observed between 450K array and amplicon-seq
(SI Appendix S1, Fig. S4). These results also validated similar
variations at DMLs around not only TXNIP but also, CLCN7
and PRKCE in both WB and Monos.
It should be noted that, because of the large number of CpG

sites analyzed (>0.2 million) and relatively low sample size (32
cases vs. 31 controls), identification of DMLs using FDR to
control type I error would be too stringent and cause high type II
error (high false negatives). To avoid missing any true positives,
the criteria for DML identification (FC ≥ 1.3; nominal P <
0.005) were empirically chosen based on these technical valida-
tions on a different platform. Along with TXNIP, these results
show that the DNA-me differences between cases and controls
by 450K array are real and can be validated within this cohort.
They also uncover potential roles for DNA-me at specific sites
important in diabetes complications for additional investigations.

Association of DNA-me with HbA1c at WB or Monos DMLs. We next
examined the associations between glycemia (HbA1c) and epi-
genetic DNA-me. For each DCCT/EDIC Study participant,
HbA1c was measured periodically at and after entry into the study
as described (31). To facilitate comparisons of the associations
between HbA1c and DNA-me at different time periods, mean
HbA1c levels over three time periods (the DCCT mean, the EDIC
Study mean, and pre-DCCT/DCCT/EDIC Study combined mean)
and at two specific time points (the EDIC Study baseline, when
WB samples were collected, and the EDIC Study years 16 and 17,
when Monos were collected) were used for each subject in the
analysis (SI Appendix S1, Fig. S5A). For each DML identified in
WB or Monos, Spearman correlations between HbA1c over these
different time periods and DNA-me levels in both WB and Monos
were assessed. Because only the time periods earlier than the
sample collection would be used, HbA1c levels at two time periods
(the DCCT mean and the EDIC Study baseline) were used in the
correlation analysis with WB DNA-me, whereas HbA1c levels
at all of the five time periods were included in the analysis of
Monos DNA-me. Thus, two matrices of Spearman correlation
coefficients were generated for DMLs identified in WB or Monos,
which were then subjected to unsupervised hierarchical cluster-
ing analysis and are shown as heat maps in Fig. 8.
For WB DMLs (Fig. 8A, Left), we observed a generally negative

correlation of DNA-me in WB with HbA1c of two time periods at
hypo-MLs (yellow in Fig. 8A, Center) and a positive correlation at

hyper-MLs (blue in Fig. 8A, Center). This result was as expected
because of the differences in HbA1c between cases and controls
by design (SI Appendix S1, Table S1). However, interestingly, some
of these DMLs also show similar trends of associations with
HbA1c in Monos at these WB DMLs (Fig. 8A, Right). Specifically,
negative correlations were observed in Monos at some WB hypo-
MLs (upper red dashed box in Fig. 8A), and positive correlations
were observed in Monos at WB hyper-MLs (lower red dashed box
in Fig. 8A). Similarly, for Monos DMLs (Fig. 8B, Left), as expected,
negative or positive associations with HbA1c can also be observed
in Monos hypo- and hyper-MLs (Fig. 8B, Center). Notably, similar
to our previous observations of associations between H3K9Ac and
HbA1c (31), the associations of DNA-me with long-term HbA1c
(the DCCTmean, the EDIC Study mean, or the pre-DCCT/DCCT/
EDIC Study mean) were higher than the associations with single
HbA1c measured at the EDIC Study years 16 and 17. Furthermore,
some Monos DMLs were also found to have similar trends of as-
sociations with HbA1c in WB as seen in Monos (red dashed boxes
in Fig. 8B). We further identified 50 WB DMLs (SI Appendix S1,
Fig. S5B) or 52 Monos DMLs (SI Appendix S1, Fig. S5C) depicting
similar trends of association between DNA-me and HbA1c in the
other sample set that showed association (P < 0.05) with HbA1c in
at least one time period in the other set.
These data suggest persistence of the association between

DNA-me and HbA1c at certain DMLs over 16 y and again, sup-
port our speculation that DNA-me differences in cases vs. controls
at these DMLs may be introduced by HG during or even before
the DCCT and may play an important role in complications de-
velopment/progression in cases during the EDIC Study.

Induction of TXNIP by HG Is Correlated to TXNIP 3′ UTR Hypo-me in
THP1 Cells. We next addressed the potential underlying mecha-
nism by which these persistent and HbA1c-associated DNA-me
differences in cases vs. controls, might be involved in diabetic
complication progression. For this question, we specifically stud-
ied the most significant DML and its nearby CpGs located in
TXNIP 3′ UTR, due to its significant associations with oxidative
stress, and diabetic complications.
Because only limited RNA from the patients was available,

to understand the relationships between DNA-me, gene ex-
pression, and effect of hyperglycemic exposure, and to explore
the potential links between hypo-me at TXNIP 3′ UTR and
complication progression, we performed mechanistic in vitro
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experiments with human THP1 Monos grown under various
glycemic conditions: NG (5.5 mM), HG (25 mM), reversal, and
restimulation with HG. Briefly, experiments were performed in
three steps. (i) Cells were cultured under NG or HG for 3 d (a and
b, respectively, in Fig. 9). (ii) We continued to culture NG cells
(from step 1) in NG (c in Fig. 9), whereas the cells in HG (from
step 1) were switched to NG (d in Fig. 9), and all cells were cul-
tured for 4 more d. (iii) Cells in NG (from steps 1 and 2) were
maintained in NG (e in Fig. 9), whereas those switched from HG
to NG (at step 2) were returned to HG (f in Fig. 9), and all cells
were cultured for 3 more d. Total RNA and genomic DNAs were
then prepared from these six samples and subjected to RT-PCR
for measuring TXNIP expression (Fig. 9A) and amplicon-seq for
DNA-me at the three CpG sites (CpG1–3) in TXNIP 3′UTR (Fig.
9 B–D). Interestingly, Fig. 9A showed that HG treatment mark-
edly increased TXNIP expression (b vs. a in Fig. 9), which was
clearly attenuated after return to NG (d vs. c in Fig. 9). Subsequent
switch and restimulation with HG produced an even more dra-
matic increase in expression (f vs. e and f vs. b in Fig. 9). Notably,
with respect to DNA-me on the same samples, HG treatment
decreased DNA-me (hypo-me) at all three CpG sites (b vs. a in Fig.
9) from 95.1% to 86.3% (Fig. 9B), from 95.0% to 86.6% (Fig. 9C),
and from 90.8% to 82.0% (Fig. 9D), respectively. Interestingly,
this HG-induced hypo-me remained at 89.5% (Fig. 9B), 89.8%
(Fig. 9C), and 86.7% (Fig. 9D), respectively, in sample d when
the cells were switched from HG to NG, although gene ex-
pression returned to normal under the same condition. More-
over, this HG-induced hypo-me continued to persist when cells
were recultured in HG at step 3, this time with greater magni-
tude at all three CpGs (85.9%, 84.6.1%, and 82.8%, respectively)
(f vs. e in Fig. 9 B–D), and this hypo-me inversely correlated with
the markedly augmented increase in gene expression under this
condition (Fig. 9A, f vs. e).

Overall, these results show a differential response between
TXNIP expression and DNA-me variations induced under the
same NG/HG conditions. TXNIP expression is dynamic and
changes with environmental stimuli (HG), whereas the loss of
DNA-me triggered by the initial HG stimulus does not recover
to the original level, even when cells were returned to NG, at
least within the timeframe studied. Instead, DNA-me seems
to create poised and persistent states through additional re-
duction in DNA-me, which can sensitize cells and augment
gene expression response when restimulated with HG. These
data can explain, at least in part, the connections between
DNA-me and the metabolic memory observed in the EDIC
Study, wherein progression of complications in the CONV
group continued at a greater rate than that in INT, despite
similar glycemic control during the EDIC Study.

Discussion
It is imperative to evaluate the mechanisms underlying metabolic
memory to reduce morbidity/mortality in the diabetic population
and also, identify new therapeutic targets for complications that
progress, despite improved glycemic control. We examined the
DNA methylome of two groups of subjects with T1D from
the DCCT/EDIC Study at two different time points, namely the
EDIC Study baseline and the EDIC Study years 16 and 17. The
case group included former DCCT CONV participants who ex-
perienced progression of complications compared with the control
group, which included former DCCT INT participants with min-
imal complication development. The objective was to gain in-
formation about persistence of epigenetic differences between the
two groups at two time points to determine potential associations
between DNA-me and metabolic memory. During the identifica-
tion of DMLs in cases vs. controls, several confounding variables
were adjusted for in the comparisons. For WB samples (EDIC
Study baseline), these variables included age, gender, and cell type
compositions. Because some of the cases already had developed
complications (proliferative diabetic retinopathy and micro-
albuminuria) at the EDIC Study baseline, the complication sta-
tus was also adjusted to avoid DMLs caused by complications,
although this adjustment might reduce the power. Hence, we
expected that the DMLs identified in WB would be mainly asso-
ciated with the history of high blood glucose in cases vs. controls at
that time, because glycemic separation was the goal during the
DCCT (SI Appendix S1, Table S1). This relationship is also shown
by the association of DNA-me with HbA1c history. Furthermore,
because complications progressed in all of the cases during EDIC
but not in any of the controls, the WB DMLs can also be associated
with future complications progression during the EDIC Study.
However, the DNA-me differences between cases and con-
trols in Monos collected at the EDIC Study years 16 and 17
should reflect the effects of either history of blood glucose
differences (if DNA-me changes persist; discussed below),
consequences of diabetic complications (because cases but not
controls experienced complications progression during the EDIC
Study), or both. Using pyrosequencing and amplicon-seq, we vali-
dated several DMLs in both WB and Monos (Table 2), supporting
our criteria for DML identification.
IPA of DMLs identified in both WB andMonos revealed strong

connections with networks associated with diabetic complications.
The locations of these DMLs were also extensively analyzed. Major
changes in DNA-me distribution at promoters are a hallmark of
cancer (13, 16). However, in chronic diseases, such as diabetes and
its complications, increasing evidence suggests the importance of
DNA-me in regulatory regions, including putative enhancer re-
gions in kidney tissues from patients with diabetic kidney disease
(50), intronic enhancers in blood cells type 2 diabetes patients (51),
and gene bodies/intergenic regions rather than promoters in adi-
pose tissues from twins (52). The high percentage of DMLs
in intergenic regions, introns, and 3′ UTRs in our study is in
line with such reports. Furthermore, using ENCODE Monos
ChIP-seq data on Histone H3-Lysine4-monomethylation (a
well-accepted mark of enhancers), 64 (15.92%) of 402 Monos

Table 2. Validation of the DNA-me differences between EDIC
Study case and control groups using amplicon-seq

Gene Cell CpG location*

Case
mean
(%)

Control
mean
(%)

Difference
(%)

P
value†

CYB5B WB 16:69,457,645 91.8 94.7 −2.9 7.9E-03
CYB5B WB 16:69,457,652 88.7 91.5 −2.8 4.7E-02
CYB5B WB 16:69,457,738 86.1 89.1 −3.0 1.4E-02
TXNIP WB 1:145,441,517 55.5 72.4 −16.9 9.2E-05
TXNIP WB 1:145,441,526 56.2 72.7 −16.5 1.3E-04
TXNIP WB 1:145,441,552 58.8 69.7 −10.9 3.3E-05
LINC00649 WB 21:35,320,667 41.0 48.4 −7.4 1.6E-03
LINC00649 WB 21:35,320,677 20.4 28.2 −7.9 1.6E-03
MBOAT7 WB 19:54,677,166 57.7 44.6 13.1 6.6E-03
CLCN7 WB 16:1,510,620 76.7 60.9 15.8 4.4E-04
CLCN7 WB 16:1,510,813 54.1 43.4 10.8 1.3E-02
CLCN7 WB 16:1,510,849 71.1 64.8 6.3 3.2E-02
CLCN7 WB 16:1,510,879 54.6 43.8 10.7 4.4E-02
CLCN7 WB 16:1,510,897 32.3 25.0 7.3 3.4E-02
CLCN7 WB 16:1,510,922 80.2 73.8 6.4 3.7E-02
PRKCE WB 2:46,396,825 73.8 87.8 −14.0 3.2E-02
PRKCE Mo 2:46,396,825 71.8 93.4 −21.6 1.1E-02
CLCN7 Mo 16:1,509,221 62.6 53.2 9.5 4.4E-02
CLCN7 Mo 16:1,509,206 58.2 46.3 12.0 2.7E-02
CLCN7 Mo 16:1,507,865 92.8 83.3 9.5 5.2E-02
CLCN7 Mo 16:1,507,958 23.3 15.8 7.4 1.8E-03
TXNIP Mo 1:145,441,517 60.1 73.1 −12.0 2.9E-05
TXNIP Mo 1:145,441,526 61.7 73.7 −12.0 2.4E-05
TXNIP Mo 1:145,441,552 60.3 67.8 −7.5 2.8E-04

Mo, Monos.
*Chromosome:genomic location.
†Wilcoxon rank-sum test.
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DMLs, including CpG3 in TXNIP, were located in Histone
H3-Lysine4-monomethylation-enriched regions, which are po-
tential regulatory regions (53). However, the functions of
DNA-me at these regions and how they might contribute to
gene expression are not yet clear. Only ∼10% of DMLs were
located in CGI, whereas the majority were in open seas in both
WB and Monos, consistent with findings in WB from mono-
zygotic twins (54), β-cells of type 2 diabetes (55), and WB of
chronic kidney disease patients (56). This result is in the
contrast to high enrichment in CGIs and their shores in cancer
(13, 16). Together, these data suggest functional differences in
site-specific DNA-me in different diseases.
We profiled DNAs from the same DCCT/EDIC Study pa-

tients collected 16–17 y apart, and comparison of both sample
sets allowed us to identify 14 common DMLs (12 annotated).
Among these DMLs, apart from DMLs possibly associated with
genetic variations, DNA-me differences in cases vs. controls
were likely associated with the differences in their history of
blood glucose levels during the DCCT. The persistence of
DNA-me variations at the two time points was validated at
TXNIP (hypo-me) and CLCN7 (hypermethylation) in both
sample sets by pyrosequencing and/or amplicon-seq. Because
Monos constitute only about 10% of blood cells (SI Appendix
S1, Fig. S1C), it is possible we could have identified more
common DMLs (persistency) at two time points if we had
compared the same cell type; however, samples were unavail-
able. We therefore performed analyses using less stringent
criteria, which resulted in the identification of another 28
annotated hypo-MLs and 33 annotated hyper-MLs in WB

or Monos where the same trends of DNA-me changes were
present in the other sample set (Fig. 5). We also identified over
50 WB DMLs and 52 Monos DMLs that showed trends of as-
sociation with HbA1c history and had DNA-me levels that
depicted similar trends of association with HbA1c in the other
sample set (Mono and WB, respectively) (SI Appendix S1, Fig.
S5). In summary, this study allowed us to uncover the persis-
tency of DNA-me variations over several years that may be
associated with metabolic memory and the progression of diabetes
complications.
Among the common DMLs identified in both WB and

Monos, hypo-me in cases vs. controls at TXNIP 3′ UTR was
highly significant in WB, suggesting potential association with
prior history of HG at the EDIC Study baseline. This finding
was further validated in WB by pyrosequencing and amplicon-
seq. Interestingly, association of TXNIP hypo-me at the same
CpG3 with type 2 diabetes and related traits (including fasting
glucose, HbA1C, and insulin resistance) (57–60), serum metabo-
lites related to diabetes (61), and high blood triglycerides (62) in
WB DNA from various cohorts was recently reported. Because
Txnip was associated with lipids in a mouse model (63), we rean-
alyzed methylation differences in cases vs. controls at CpG3 after
adding triglycerides at the EDIC Study baseline as a covari-
ate. The resulting hypo-me (log2 FC = −0.95) remained highly
significant (P = 2.46 × 10−9) in WB, indicating that blood
glucose (HbA1c) is still a significant factor associated with
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presented by five values: the DCCT mean, the EDIC Study baseline, the EDIC
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mean (details are in SI Appendix S1, Fig. S5A). The matrix of Spearman
correlation coefficients (ρ) was subjected to unsupervised clustering and is
shown as heat maps, in which each row represents one DML and each col-
umn represents ρ at a specified time period as shown at the top of the heat
map. Yellow represents negative correlation, and blue represents positive
correlation. Mean DNA-me differences between cases and controls in WB are
shown in Left, with green for hypo-MLs and red for hyper-MLs. (B) A similar
figure was generated for Monos DMLs. The red dashed boxed areas high-
light the DMLs depicting similar trends of association between DNA-me and
HbA1c in both WB and Monos.
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TXNIP hypo-me in our cohort. Moreover, the same trend of
associations in our WB dataset (SI Appendix S1, Table S4) at all
five top blood glucose-associated CpG sites (including TXNIP
CpG3) previously reported (57) also indicates the reliability of
our data. Notably, whereas these previous findings were in WB,
in our study, the case TXNIP hypo-me was further validated in
specific white cell types, namely CD14+ Monos and lympho-
cytes, which is important because of the cell type-specific na-
ture of DNA-me. These findings also suggest potential common
mechanisms of inducing DNA-me changes at specific loci (such
as activation of TETs) in different cell types in peripheral blood
or hematopoietic stem cells, which continue to divide and dif-
ferentiate into various blood cells.
The functions of 3′ UTR DNA-me are not fully clear. A few

studies showed that 3′ UTRs DNA-me is related to gene ex-
pression, with either positive or negative correlations (64–66),
thus supporting connections between TXNIP hypo-me and its
gene expression. Importantly, our experiments with THP1 cells
cultured under various HG/NG conditions revealed an asso-
ciation between persistent DNA-me triggered by prior history
of HG exposure and enhanced TXNIP expression in response
to HG in vitro. We, thus, speculate that transient hyperglyce-
mic episodes during the EDIC Study would induce more TXNIP
overexpression and cellular dysfunction in cases vs. controls be-
cause of TXNIP hypo-me, which is in line with the reported ad-
verse cellular roles of TXNIP (43–45, 48). This type of cellular
response to episodic HG provides mechanistic information to-
ward understanding the connections between persistent DNA
hypo-me at TXNIP and its gene expression and hence, metabolic
memory of diabetic complications.
We noticed that 3 of 12 annotated DMLs identified in both

WB and Monos contain a common SNP at their CpGs (SI
Appendix S1, Table S3), which might account for the observed
DNA-me persistency at these three sites. To explore DNA-me
changes possibly associated with genetic variations, we ex-
panded our search of common SNPs (minor allele frequency in
European population > 1%; 1000 Genomes Project Phase 3)

near these DMLs. We found that 23 (6.08%) WB DMLs and 14
(3.48%) Monos DMLs contain common SNPs at CpG sites,
whereas 81 (21.43%) WB DMLs and 77 (19.15%) Monos
DMLs contain common SNPs in the probes. However, not all
SNPs in CpGs or probes would result in DNA-me changes. By
examining DMLs where the DNA-me levels can be classified
into two to four distinct clusters (implying possible interference
by nearby SNPs) (SI Appendix S1, SI Methods), 5.31% WB
DMLs (SI Appendix S1, Fig. S6A) and 3.50% Monos DMLs
(SI Appendix S1, Fig. S6B) were identified. The majority of
them (16 of 19 in WB and 13 of 14 in Monos) have common
SNPs at the CpG sites, which is in line with a previous report
that genetic variations more distal to CpGs are unlikely to
influence DNA-me at the site (57). Hence, we would not ex-
pect many more of our DMLs to be associated with genetic
variation than the estimated rate in our cohort. Detailed in-
formation related to SNPs is included in Datasets S1 and S2
for WB and Datasets S3 and S4 for Monos.
As mentioned previously (31), cases and controls also dif-

fered in other clinical characteristics, such as blood pressure
and lipids (SI Appendix S1, Table S1), which may have con-
tributed to some of the observed DMLs between cases and
controls. Because of the relatively small sample size, we did
not adjust for these additional factors. In addition, DMLs not
covered by the 450K array may have been missed. DNA-me
profiling of a bigger DCCT/EDIC Study cohort using high-
throughput sequencing can address these issues. It is clearly ideal
to study DNA-me related to diabetic complications in relevant
affected tissues. However, quite often, obtaining such tissues
requires invasive approaches, and there is a paucity of such tis-
sues. Because most diabetic complications are associated with
inflammation, WBCs, including inflammatory Monos, which
exhibit similar DNA-me changes as those in specific tissues, are
good and easily accessible “surrogates” (56).
This study provides the first evidence, to our knowledge, of

persistence of differential methylation at several loci over more
than 16–17 y in the same cohort. Based on our data, DNA-me at
key DMLs, especially 3′ UTR of TXNIP, in peripheral blood
cells can be used as a biomarker for glycemia and metabolic
memory along with other epigenetic factors and nonepigenetic
factors, like oxidative stress. These findings together with our
previous data on promoter histone PTMs support an epigenetic
explanation for metabolic memory.

Methods
The human study protocols were approved by the Institutional Review
Board at the City of Hope Medical Center and the participating EDIC clinics.
Genomic DNA samples from WB and Monos were used to profile DNA-me
using Infinium Human Methylation 450 Bead Chip Arrays (WG-314-1002).
Multiple linear regressions with or without adjustment for covariates were
performed to identify DMLs between cases and controls. Cell composition
of each sample was estimated by deconvolution (41). Validation of DNA-
me at specific sites was performed by pyrosequencing or amplicon-seq.
Details are in SI Appendix S1, SI Methods.
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Fig. 9. TXNIP expression and DNA-me levels at the three CpG sites in
TXNIP 3′ UTR induced by HG in cultured THP-1 Monos. TXNIP expression
and DNA-me at three TXNIP 3′ UTRs in six samples were measured by RT-
PCR and amplicon-seq, respectively. The six THP1 samples labeled a–f are a,
cultured in NG for 72 h; b, cultured in HG for 72 h; c, sample a retained in
NG for 96 more h; d, sample b switched from HG to NG and cultured in NG
for 96 more h; e, sample c continued to be cultured in NG for 72 more h;
and f, sample d switched from NG to HG and kept in HG for 72 more h. (A)
TXNIP expression measured by RT-PCR in samples a–f. Details of RT-PCR are
described in SI Appendix S1, SI Methods. Data shown are the averages of
samples run in triplicates. Statistically significant increase in TXNIP ex-
pression (P < 0.0001; t test) was found in b vs. a and f vs. e. (B–D) DNA-me
levels at three CpG sites (CpG1–3), respectively, in TXNIP 3′ UTR were
obtained by amplicon-seq (details are in SI Appendix S1, SI Methods). The
DNA-me levels (β-values) at each CpG site are the average from two sep-
arate experiments generated based on at least 10,000 sequences obtained
by amplicon-seq in each of two experiments.
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