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Sequencing of 53,831 diverse genomes from 
the NHLBI TOPMed Program

 

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the 
genetic architecture and biology of heart, lung, blood and sleep disorders, with the 
ultimate goal of improving diagnosis, treatment and prevention of these diseases. The 
initial phases of the programme focused on whole-genome sequencing of individuals 
with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed 
goals and design as well as the available resources and early insights obtained from 
the sequence data. The resources include a variant browser, a genotype imputation 
server, and genomic and phenotypic data that are available through dbGaP (Database 
of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected 
more than 400 million single-nucleotide and insertion or deletion variants after 
alignment with the reference genome. Additional previously undescribed variants 
were detected through assembly of unmapped reads and customized analysis in 
highly variable loci. Among the more than 400 million detected variants, 97% have 
frequencies of less than 1% and 46% are singletons that are present in only one 
individual (53% among unrelated individuals). These rare variants provide insights 
into mutational processes and recent human evolutionary history. The extensive 
catalogue of genetic variation in TOPMed studies provides unique opportunities for 
exploring the contributions of rare and noncoding sequence variants to phenotypic 
variation. Furthermore, combining TOPMed haplotypes with modern imputation 
methods improves the power and reach of genome-wide association studies to 
include variants down to a frequency of approximately 0.01%.

Advancing DNA-sequencing technologies and decreasing costs are 
enabling researchers to explore human genetic variation at an unprec-
edented scale2,3. For these advances to improve our understanding of 
human health, they must be deployed in well-phenotyped human sam-
ples and used to build resources such as variation catalogues3,4, control 
collections5,6 and imputation reference panels7–9. Here we describe 
high-coverage whole-genome sequencing (WGS) analyses of the first 
53,831 TOPMed samples (Box 1 and Extended Data Tables 1, 2); addi-
tional data are being made available as quality control, variant calling 
and dbGaP curation are completed (altogether more than 130,000 
TOPMed samples are now available in dbGaP).

A key goal of the TOPMed programme is to understand risk factors 
for heart, lung, blood and sleep disorders by adding WGS and other 
‘omics’ data to existing studies with deep phenotyping (Supplementary 
Information 1.1 and Supplementary Fig. 1). The programme currently 
consists of more than 80 participating studies, around 1,000 investi-
gators and more than 30 working groups (https://www.nhlbiwgs.org/
working-groups-public). TOPMed participants are ethnically and ances-
trally diverse (Extended Data Fig. 1, Supplementary Information 1.1.4 
and Supplementary Fig. 2). Through a combination of race and ethnicity 
information (from participant questionnaires and/or study inclusion 
criteria), we classified study participants into ‘population groups’, 
which varied in composition according to the goals of each analysis. 
In some analyses, these groups were further refined using genetic 
ancestry (see Methods and Supplementary Information for details).

Our study extends previous efforts by identifying and character-
izing the rare variants that comprise the majority of human genomic 

variation7,10–12. Rare variants represent recent and potentially deleteri-
ous changes that can affect protein function, gene expression or other 
biologically important elements11,13,14.

TOPMed WGS quality assessment
WGS of the TOPMed samples was performed over multiple studies, 
years and sequencing centres. To minimize batch effects, we stand-
ardized laboratory methods, mapped and processed sequence data 
centrally using a single pipeline, and performed variant calling and 
genotyping jointly across all samples (see Methods). We annotated each 
variant site with multiple sequence quality metrics and trained machine 
learning filters to identify and exclude inconsistencies that are revealed 
when the same individual was sequenced repeatedly. Available WGS 
data were processed periodically to produce genotype data ‘freezes’. 
The 53,831 samples described here are drawn from TOPMed freeze 5.

Stringent variant and sample quality filters were applied and the 
resulting genotype call sets were evaluated in several ways (Supple-
mentary Information 1.2.2, 1.3, 1.4). First, we compared genotypes 
for samples sequenced in duplicate (the mean alternative allele 
concordance was 0.9995 for single-nucleotide variants (SNVs) and 
0.9930 for insertions or deletions (indels)). Second, we compared 
genotypes to those from previous whole-exome sequencing datasets 
(protein-coding regions from GENCODE15; 80% of variants were found 
with both approaches and overlapping variant calls had a concordance 
of 0.9993 for SNVs and 0.9974 for indels) (Supplementary Tables 1–3). 
Third, we compared genotypes to those obtained using alternative 
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informatics tools (compared to GATK v.4.1.3, TOPMed has lower Mende-
lian inconsistency rates and minimizes batch effects) (Supplementary 
Table 4). These reproducibility estimates indicate the high quality 
of the genotype calls and effectiveness of machine-learning-based 
quality filters.

Batch effects were evaluated by (1) comparing distributions of 
genetic principal components among sequencing centres, which 
are very similar between European American and African American 
individuals (Supplementary Figs. 3–5); (2) comparing alternative 
allele concordance between duplicates among centres, which is high 
(the largest difference being 4 × 10−4), and the patterns of between-  
versus within-centre differences, which indicate random errors rather 
than systematic centre differences (Supplementary Figs. 6–8); and (3) 
performing tests of association between variants and batches, which 
show a very small fraction of variants with genome-wide significance 

(0.004%, Supplementary Figs. 9, 10) (Supplementary Information 1.2). 
We conclude that batch effects appear to be minor, thus enabling 
multi-study association testing.

410 million genetic variants in 53,831 samples
A total of 7.0 × 1015 bases of DNA-sequencing data were generated, 
consisting of an average of 129.6 × 109 bases of sequence distributed 
across 864.2 million paired reads (each 100–151 base pairs (bp) long) 
per individual. For a typical individual, 99.65% of the bases in the refer-
ence genome were covered, to a mean read depth of 38.2×.

Sequence analysis identified 410,323,831 genetic variants 
(381,343,078 SNVs and 28,980,753 indels), corresponding to an aver-
age of one variant per 7 bp (Extended Data Table 4). Overall, 78.7% of 
these variants had not been described in dbSNP build 149; TOPMed 
variants now account for the majority of variants in dbSNP. Among all 
variant alleles, 46.0% were singletons, observed once across all 53,831 
participants. Among 40,722 unrelated participants (see Methods), the 
proportion of singleton variants was higher at 53.1% (Table 1). Down-
sampling analyses show that the proportion of singletons increases 
until around 15,000 unrelated individuals are sequenced and then 
decreases very gradually (Supplementary Fig. 11). The fraction of 
singletons in each region or class of sites closely tracks functional 
constraints. For example, among all 4,651,453 protein-coding variants 
in unrelated individuals, the proportion of singletons was the highest 
for the 104,704 frameshift variants (68.4%), high among the 97,217 
putative splice and truncation variants (62.1%), intermediate among 
the 2,965,093 nonsynonymous variants (55.6%) and lowest among 
the 1,435,058 synonymous variants (49.8%). Beyond protein-coding 
sequences, we found increased proportions of singletons in promoters 
(55.0%), 5′ untranslated regions (54.7%), regions of open chromatin 
(53.4%) and 3′ untranslated regions (53.3%); we found lower propor-
tions of singletons in intergenic regions (53.0%) (Supplementary 
Table 5). Although putative transcription factor binding sites initially 
appeared to show fewer singletons (52.7%) than the remainder of the 
genome (53.1%), this pattern did not hold when we analysed highly 
mutable CpG sites separately. In fact, transcription factor binding sites 
were enriched for singletons in both CpG sites and non-CpG sites, an 
example of Simpson’s paradox16.

We identified an average of 3.78 million variants in each genome. 
Among these, an average of 30,207 (0.8%) were novel and 3,510 (0.1%) 
were singletons. Among all variants, we observed 3.17 million non-
synonymous and 1.53 million synonymous variants (a 2.1:1 ratio), but 
individual genomes contained similar numbers of nonsynonymous and 
synonymous variants (11,743 nonsynonymous and 11,768 synonymous, 
on average) (Extended Data Table 4). The difference can be explained 
if more than half of the nonsynonymous variants are removed from 
the population by natural selection before they become common.

Putative loss-of-function variants
A notable class of variants is the 228,966 putative loss-of-function 
(pLOF) variants that we observed in 18,493 (95.0%) GENCODE15 genes 
(Extended Data Table 5 and Supplementary Fig. 12). This class includes 
the highest proportion of singletons among all of the variant classes 
that we examined. An average individual carried 2.5 unique pLOF vari-
ants. We identified more pLOF variants per individual than in previ-
ous surveys based on exome sequencing—an increase that was mainly 
driven by the identification of additional frameshift variants (Sup-
plementary Table 6) and by a more uniform and complete coverage 
of protein-coding regions (Supplementary Figs. 13, 14).

We searched for gene sets with fewer rare pLOF variants than 
expected based on gene size. The gene sets with strong functional 
constraint included genes that encode DNA- and RNA-binding pro-
teins, spliceosomal complexes, translation initiation machinery and 

Box 1

TOPMed participant consents 
and data access
The TOPMed programme comprises more than 80 participating 
studies, of which 32 are represented in the 53,831 whole genomes 
described here. TOPMed has leveraged existing studies with deep 
phenotyping and longitudinal follow-up data and with varied 
informed consent procedures and options. Consent groups 
range from broad ‘general research use’ and ‘health, medical 
and biomedical’ categories to disease-specific categories for 
heart, lung, blood and/or sleep disorders. Many studies have 
further consent modifiers, such as limiting use to not-for-profit 
organizations or requiring documentation of local IRB approval. 
Participant consents guide the appropriate use of data by TOPMed 
investigators as well; therefore, the set of study-consent groups 
used varies across different analyses reported in this paper 
(Extended Data Table 3).

TOPMed data have been deposited in dbGaP and access is 
adjudicated by a staff committee of the National Institutes of 
Health. The committee verifies that applications are consistent 
with data use limitations and consent groups for each sample. 
Study investigators have no role in the decision, except in a  
small subset of studies that require a letter of collaboration.  
A summary of currently available data and any use restrictions 
is available at https://www.ncbi.nlm.nih.gov/gap/advanced_
search/?TERM=topmed.

Although TOPMed studies have separate dbGaP accessions, 
formats are standardized to facilitate combining data, with all 
variants from the joint genotype call set included in the variant 
call format (VCF) files, unique sample identifiers across all of 
TOPMed and sample attributes with TOPMed-specific variables. 
Notably, cross-study analyses require the identification of a set of 
compatible study-consent groups. In addition to genotype calls, 
CRAM files with aligned sequence reads are also available, hosted 
in commercial clouds and with access managed by dbGaP. The 
dbGaP accession numbers for all TOPMed studies referenced in 
this paper are listed in Extended Data Tables 2, 3.

The TOPMed imputation reference panel is available to users for 
imputation into their own samples via an imputation server. The 
server performs imputation into these samples, while the reference 
panel data themselves are not exposed to the user because they 
derive from multiple studies with variable consent types and other 
data use limitations (Extended Data Table 3).

https://www.ncbi.nlm.nih.gov/gap/advanced_search/?TERM=topmed
https://www.ncbi.nlm.nih.gov/gap/advanced_search/?TERM=topmed
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RNA splicing and processing proteins (Supplementary Table 7). Genes 
associated with human disease in COSMIC17 (31% depletion), the GWAS 
catalogue18 (around 8% depletion), OMIM19 (4% depletion) and ClinVar20 
(4% depletion) all contained fewer rare pLOF variants than expected 
(each comparison P < 10−4).

The distribution of genetic variation
We examined the distribution of variant sites across the genome by 
counting variants across ordered 1-megabase (Mb) concatenations 
of contiguous sequence with a similar conservation level (indicated 
by combined annotation-dependent depletion (CADD score21), and 
in segments categorized by coding versus noncoding status (Fig. 1 
and Extended Data Fig. 2). As expected, the vast majority of human 
genomic variation is rare (minor allele frequency (MAF) < 0.5%)10,11 and 
located in putatively neutral, noncoding regions of the genome (Fig. 1). 
Although coding regions have lower average levels of both common 
(MAF ≥ 0.5%) and rare variation, we identified some ultra-conserved 
noncoding regions with even lower levels of genetic variation22 (Fig. 1 
and Supplementary Fig. 15).

Segments with notably high or low levels of variation do exist. For 
example, one region on chromosome 8p (GRC 38 positions 1,000,001–
7,000,000 bp) has the highest overall levels of variation (Extended 
Data Fig. 2). This is consistent with previous findings, as this region 
has been shown to have one of the highest mutation rates across the 
human genome23.

Although levels of common and rare variation within segments 
are significantly correlated (R2 = 0.462, P ≤ 2 × 10−16) (Supplementary 
Fig. 16), there are outliers. For example, segments overlapping the 
major histocompatibility complex (MHC) have the highest levels of 
common variation but no notable increase in levels of rare variation, 
consistent with balancing selection24–26. A detailed examination of the 
MHC shows peaks of increased variation and nucleotide diversity con-
sistent with assembly-based analyses of the region27 (Supplementary 
Fig. 17). Segments with a high proportion of coding bases feature a 
strong depletion in the number of common variants but only a modest 
depletion in rare variants (Supplementary Fig. 18).

Insights into mutation processes
A hallmark of human genetic variation is that SNVs tend to cluster 
together throughout the genome3,28. Such patterns of clustering con-
tain important information about demographic history29, signals of 

natural selection30 and processes that generate mutations31. To dissect 
the spatial clustering of SNVs, we analysed a collection of 50,264,223 
singleton SNVs ascertained in a subset of 3,000 unrelated individuals 
selected to have low levels of genetically estimated admixture—1,000 
each of African, East Asian and European ancestry32 (see Methods).

In these data, we observed that 1.9% of singletons in a given indi-
vidual occur at distances of less than 100 bp apart33,34 (Supplementary 
Figs. 19, 20). In coalescent simulations (see Methods), only 0.16% of the 
simulated singletons within an individual were less than 100 bp apart 
(Supplementary Figs. 19, 20). Although demographic history contrib-
utes to singleton clustering (Supplementary Information 1.6), popu-
lation genetic processes alone do not fully account for the observed 
clustering patterns, particularly for the most closely spaced singletons. 
To better understand the latent factors that contribute to the observed 
clustering, we modelled the inter-singleton distance distribution as 
a mixture of exponential processes (see Methods). The best-fitting 
version of this model consisted of four mixture components  
(Fig. 2).

Component 1 represents singletons that occurred an average of 
around 2–8 bp apart and accounted for approximately 1.5% of single-
tons in each sample. These singletons are substantially enriched for A>T 
and C>A transversions (Extended Data Fig. 3a), consistent with the sig-
natures of trans-lesion synthesis that causes multiple non-independent 
point mutations within very short spans35. The density of component 1 
singletons is also associated with CpG island density (Supplementary 
Fig. 21). Component 2 represents singletons occurring 500–5,000 bp 
apart, accounting for around 12–24% of singletons. These singletons 
are enriched for C>G transversions and show prominent subtelomeric 
concentrations on chromosomes 8p, 9p, 16p and 16q36,37 (Extended 
Data Fig. 3 and Supplementary Fig. 22), consistent with the recently 
described maternally derived C>G mutation clusters36,37. The exact 
mechanism that underlies this distinctive clustering pattern is 
unknown, but may involve either hypermutability of single-stranded 
DNA intermediates during the repair of double-stranded breaks36,37 or 
transcription-associated mutagenesis, with increased damage on the 
non-transcribed strand38. Our results are compatible with both these 
mechanisms: component 2 singletons are enriched near regions of 
H3K4 trimethylation, a mark associated with double-stranded break 
response39, and depleted in exon-dense regions (Supplementary 
Fig. 21). Component 3 singletons (occurring approximately 30–50 kilo-
bases (kb) apart) accounted for around 43–49% of all singletons, and 
component 4 singletons (occurring approximately 125–170 kb apart) 
accounted for around 31–37% of all singletons. These latter components 

Table 1 | Number of variants in 40,722 unrelated individuals in TOPMed

All unrelated individuals (n = 40,722) Per individual

    Total     Singletons (%)    Average  5th percentile    Median 95th percentile

Total variants 384,127,954 203,994,740 (53) 3,748,599 3,516,166 3,563,978 4,359,661

SNVs 357,043,141 189,429,596 (53) 3,553,423 3,335,442 3,380,462 4,125,740

Indels 27,084,813 14,565,144 (54) 195,176 180,616 183,503 233,928

Novel variants 298,373,330 191,557,469 (64) 29,202 20,312 24,106 44,336

SNVs 275,141,134 177,410,620 (64) 25,027 17,520 20,975 36,861

Indels 23,232,196 14,146,849 (61) 4,175 2,747 3,145 7,359

Coding variation 4,651,453 2,523,257 (54) 23,909 22,158 22,557 27,716

Synonymous 1,435,058 715,254 (50) 11,651 10,841 11,056 13,678

Nonsynonymous 2,965,093 1,648,672 (56) 11,384 10,632 10,856 13,221

Stop/essential splice 97,217 60,347 (62) 474 425 454 566

Frameshift 104,704 71,577 (68) 132 112 127 165

In-frame 51,997 29,110 (56) 102 85 99 128

Novel variants are taken as variants that were not present in dbSNP build 149, the most recent dbSNP version without TOPMed submissions.
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have nearly identical mutational spectra (Extended Data Fig. 3a) and 
are distributed about uniformly in the genome.

Beyond SNVs and indels
To evaluate the potential of our data to generate even more com-
prehensive variation datasets, we developed and applied a method 
based on de novo assembly of unmapped and mismapped read pairs, 
enabling us to assemble sequences that are present in a sample but 
absent, or improperly represented, in the reference. As the majority of 
non-reference human sequence is present in the assembled genomes 
of other primates40,41, we leveraged available hominid references 
(see Methods) to specifically discover retained ancestral sequences 
that have been deleted in some human lineages, including on the ref-
erence haplotype.

In total, we placed 1,017 ancestral sequences, of which we were able 
to fully resolve 713, ranging in length from 100 bp to 39 kb (N50 = 1,183), 
and accounting for a total of 528,233 bp (Fig. 3a). We partially resolved 
304 events, for which we assembled part of the ancestral sequence but 
could place only one breakpoint on the reference sequence (see Sup-
plementary Information 1.7). Out of all 1,017 events, 551 (54.18%) occur 
within GENCODE v.2915 genes (a proportion that is not significantly 
different from 54.80% of the current reference genome GRCh38 that is 
within genes). The assembled sequences contain repetitive motifs at a 
significantly higher rate than the genome as a whole (58.2% versus 50.1%) 
(Supplementary Tables 8–10). There is a strong overrepresentation of 
simple and low complexity sequences both in the reference breakpoints 
and within the bodies of the non-reference sequences, which could be 
indicative of the instability of these motifs and/or errors in the reference.

Considering only fully resolved events with genotyping rates above 
95% (n = 541), we identified between 232 kb and 418 kb of retained ances-
tral sequence per diploid individual. Allele frequencies of assembled 
retained sequences are greater than those observed for SNVs and 
indels, with 76.7% of the assembled sequences present at allele fre-
quency of more than 5% and only 12% of assembled sequences with 

allele frequency of less than 0.5% (Supplementary Fig. 23). This could 
reflect difficulty in assembling rare haplotypes. Consistent with obser-
vations for SNVs and indels, individuals of African ancestry had, on 
average, more non-reference alleles (Fig. 3b, Supplementary Fig. 24 
and Supplementary Table 11). The overwhelming majority of assem-
bled events are shared by multiple continental groups. We found 58 
genic (5 of which are exonic) and 48 intergenic sequences present in 
a homozygous state in all individuals in the cohort, suggesting that 
the reference sequence may be incomplete at particular loci, directly 
affecting the annotation of common forms of genes, such as UBE2QL1, 
FOXO6 and FURIN (Supplementary Fig. 25).

Comparing our findings to two previous short-read studies on dif-
ferent smaller datasets40,41, 356 sequences (251 kb) are unique to our 
call set. Additionally, we resolved the length and both breakpoints for 
94 events (104 kb) for which only one breakpoint had been reported 
(Fig. 3c). Further investigation of the overlap with insertions called 
using long reads on 15 genomes42, showed that—with a single excep-
tion—all previously described events with an allele frequency of more 
than 12% could be confirmed (Supplementary Fig. 26).

Variation in CYP2D6
A complementary approach to de novo genome assembly is to develop 
approaches that combine multiple types of information—including 
previously observed haplotype variation, SNVs, indels, copy number 
and homology information—to identify and classify haplotypes in inter-
esting regions of the genome. One such region is around the CYP2D6 
gene, which encodes an enzyme that metabolizes approximately 25% of 
prescription drugs and the activity of which varies substantially among 
individuals43–45. More than 150 CYP2D6 haplotypes have been described, 
some involving a gene conversion with its nearby non-functional but 
highly similar paralogue CYP2D7.

We performed CYP2D6 haplotype analysis for all 53,831 TOPMed 
individuals43,46. We called a total of 99 alleles (66 known and 33 novel) 
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representing increased function, decreased function and loss of func-
tion (Supplementary Table 12). Nineteen of the known alleles and all of 
the novel alleles are defined by structural variants, including complex 
CYP2D6-CYP2D7 hybrids and extensive copy number variation, which 
ranged from zero to eight gene copies (Supplementary Figs. 27, 28).

Heterozygosity and rare variant sharing
The TOPMed variation data also present an opportunity to examine 
expectations about rare variation, and to specifically investigate which 
studies show distinct patterns of variation that might be expected to 
provide unique insights. To do this, we grouped TOPMed participants 
by study and by population group, and calculated genetically deter-
mined ancestry components, heterozygosity, number of singletons 
and rare variant sharing (Fig. 4, Supplementary Table 13 and Supple-
mentary Data 1).

As expected, African American and Caribbean population groups 
have the greatest heterozygosity7,47, followed by Hispanic/Latino, 
European American, Amish, East Asian and Samoan groups. This is 
consistent with a gradual loss of heterozygosity tracking the recent 
African origin of modern humans and subsequent migration from 
Africa to the rest of the globe47,48. The Asian population groups have 
among the lowest heterozygosity in our sample (even lower than the 
Amish, a European ancestry founder population with notably low het-
erozygosity49,50), but also the greatest singleton counts (in contrast to 
the Amish, who have the lowest; see Supplementary Information 1.8).

Using rare variation, we are also able to distinguish fine-scale patterns 
of population structure (Fig. 4, Supplementary Fig. 29 and Supplemen-
tary Information 1.9). Broadly, we observe sharing between population 
groups with shared continental ancestry (whether African, European, 
Asian or American). Nevertheless, additional patterns emerge. The 
Amish are unique among the included studies: they exhibit little rare 
variant sharing with outside groups and also the greatest rare variant 
sharing within the study—consistent with a marked founder effect. 
Furthermore, we observe an approximately 4× greater rare variant 
sharing between African American and Caribbean population groups 
than between European American population groups, even after cor-
recting for sample size differences (Supplementary Fig. 30).

Haplotype sharing
A corollary to rare variant sharing is rare haplotype sharing through 
segments inherited from a recent common ancestor (Supplementary 
Figs. 31, 32). The distribution of identical-by-descent segments enables 

estimates of effective population sizes over the past 300 generations 
(Extended Data Fig. 4 and Supplementary Fig. 33). The Amish study 
shows the greatest average levels of within-study identical-by-descent 
sharing, consistent with a founder event 14 generations ago50,51. The 
demographic histories are broadly similar between population groups, 
with the exception of the Amish, who experienced a more extreme bot-
tleneck when moving from Europe to America, and Samoan individuals, 
who have had a smaller effective population size than the East Asian 
populations from which they separated around 5,000 years ago52–54. 
Both non-Amish European ancestry and African ancestry populations 
appear to have experienced a bottleneck around 5–10 generations ago, 
consistent with moving to America, whether through colonization 
or forced migration (82% of TOPMed participants are US residents).

Large samples alleviate the effects of linkage
The relative numbers of singletons, doubletons and other very rare vari-
ants can be used to infer human demographic history11,55,56. Although 
much of demographic inference in past studies focused on fourfold 
degenerate synonymous sites in protein sequences, these sites evolve 
under the influence of strong selection at nearby protein-coding 
sites57,58, which can affect the inferred timing and magnitude of popu-
lation size changes59. WGS enables us to access intergenic regions of 
the genome that are minimally affected by selection. We measured 
how the site frequency spectrum and demographic inference changed 
as a function of sample size and an index of selection at linked sites 
(McVicker’s B statistic60) using TOPMed individuals whose genomes 
suggested mostly European ancestry and low admixture. Estimates of 
effective population size of European individuals based on the 1% of the 
genome with the weakest effect of selection at linked sites consistently 
yielded around 1.1 million individuals (Fig. 5, Supplementary Figs. 34, 
35 and Supplementary Table 14).

Human adaptations
When adaptive mutations arise, they can quickly spread. This process 
generates distinct genomic patterns surrounding the locus, includ-
ing extended regions of low-diversity haplotypes and few singletons. 
We scanned for evidence of very recent ongoing positive selection 
by taking advantage of our WGS data and large samples. We used the 
singleton density score61 to search for regions where positive selec-
tion has occurred or is ongoing in three ancestry groups: European 
(n = 21,196), African (n = 2,117) and East Asian (n = 1,355). Broadly, each of 
these populations showed evidence for adaptation in immune system 
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genes, albeit with a variety of different gene targets, which probably 
reflects historical differences in pathogen exposure.

The European population shows selection signals (Supplementary 
Fig. 36a) in the vicinity of LCT and the MHC locus, reflecting well-known 
signals for adaptation to lactose metabolism and immune system 
function61. We further identify a strong selection signal implicating 
HERC2, a gene that is associated with iris pigmentation62. The African 
population shows a selection signal (Supplementary Fig. 36b) at a locus 
situated among a cluster of antimicrobial alpha- and beta-defensin 
genes63, which has an important role in innate immunity, suggest-
ing a possible adaptive response to environmental pathogens. Other 
regions implicated include a locus 23 kb upstream of NRG3, a previ-
ously identified putative target of selection expressed in neural tis-
sue64,65 and the calcium sensor STIM1. Mutations in STIM1 are known 
to cause immunodeficiency66. The East Asian population shows a 
selection signal (Supplementary Fig. 36c) at GJA5, a gap junction 
protein that forms intercellular channels to allow transport between 
cells, and at PRAG1, a pseudokinase that interacts with cytoplasmic 
tyrosine kinase (CSK), which ultimately affects antibacterial immune 
response67. Combined with a strong signal at the MHC locus, this once 
again suggests adaptation in immune system function. We also find 
evidence of positive selection at two alcohol metabolism genes at 
mutations known to confer protection against alcoholism: the R48H 
polymorphism (rs1229984) in ADH1B68,69 and the E504K polymorphism 
(rs671) in ALDH270,71.

The TOPMed imputation resource
In addition to enabling detailed analysis of TOPMed sequenced sam-
ples, TOPMed can enhance the analysis of any genotyped samples72. 
To this end, we constructed a TOPMed-based imputation reference 
panel that now includes 97,256 individuals (Extended Data Table 3), 
including 308,107,085 SNVs and indels (Supplementary Table 15). This 
is, to our knowledge, the first imputation reference panel that is based 
exclusively on deep WGS data in diverse samples and greatly exceeds 
previously published alternatives7,8. For example, the average impu-
tation quality r2 for variants with a frequency of 0.001 in genomes of 
individuals with an African ancestry increased from around 0.17 in 
previous panels to 0.96 (Supplementary Fig. 37). Similar improvements 
were observable in all ancestries that we considered except in South 
Asian individuals. The minimum allele frequency at which variants 
could be well-imputed (r2 > 0.3) decreased to around 0.002–0.003% 
(European or African ancestry in TOPMed). This means that 89% of 
the approximately 80,000 rare variants with MAF < 0.5% in an aver-
age genome of African ancestry can be recovered through genotype 
imputation using the TOPMed panel.

To illustrate the possibilities, we imputed TOPMed variants in 
array-genotyped participants of the UK Biobank2 and compared the 
results to exome-sequencing data of overlapping individuals. Of the 
463,182 exome-sequencing variants with MAF > 0.05% in 49,819 partici-
pants of the UK Biobank, the majority (84.86%) were also present in the 
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TOPMed-imputed data with imputation quality >0.3. This proportion 
was lower (52.97%) for 3,587,193 non-singleton exome-sequencing 
variants with MAF ≤ 0.05%. The TOPMed-imputed genotypes were 
highly correlated with the exome-sequencing genotypes—the aver-
age correlation ranged from 0.73 (MAF ≤ 0.05%) to 0.98 (MAF > 25%) 
(Supplementary Fig. 38).

An initial association analysis of 94,081 imputed rare autosomal 
(allele frequency ≤ 0.5%) pLOF variants identified, among other find-
ings, several known rare variant associations with breast cancer: a 
frameshift variant in CHEK2 and a stop gain variant in PALB2 (see Meth-
ods and Supplementary Table 16). We also found that the burden of rare 
pLOF variants in BRCA2 (comprising 35 rare pLOF variants; P = 1.6 × 10−8; 
cumulative allele frequency in cases versus controls, 0.13% versus 
0.05%) was increased among cases. The individually associated pLOF 
variants would not have been detected using previous reference panels 
(Supplementary Table 16). Other examples of rare variant association 
signals included associations with the burden of rare pLOF variants in 
USH2A and retinal dystrophies (47 rare pLOF variants; allele frequency 
in cases versus controls, 3% versus 0.2%), IFT140 and kidney cyst (18 rare 
pLOF variants; allele frequency in cases versus controls, 0.5% versus 
0.1%), and MYOC and glaucoma (14 rare pLOF variants; allele frequency 
in cases versus controls, 0.5% versus 0.1%).

Conclusion and future prospects
We show that TOPMed WGS data provide a rich resource for developing 
and testing methods for surveying human variation, for inference of 
human demography and for exploring functional constraints on the 
genome73,74. In addition to these uses, we expect that TOPMed data 
will improve nearly all ongoing studies of common and rare disorders 
by providing both a deep catalogue of variation in healthy individu-
als and an imputation resource that enables array-based studies to 
achieve a completeness that was previously attainable only through 
direct sequencing.

Members of the broader scientific community are using TOPMed 
resources through the WGS and phenotype data available on dbGaP, 
the BRAVO variant server and the imputation reference panel on 
the TOPMed imputation server. Full utilization of the programme’s 
resources by the scientific community will require new approaches 
for dealing with the large size of the omics data, the diversity of the 

phenotypic data types and structures, and the need to share data in a 
manner that supports the privacy and consent preferences of partici-
pants. These issues are currently being addressed in partnership with 
the NHLBI BioData Catalyst75 cloud-computing programme.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-03205-y.

1. Mailman, M. D. et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. 
Genet. 39, 1181–1186 (2007).

2. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 
Nature 562, 203–209 (2018).

3. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 
285–291 (2016).

4. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 
141,456 humans. Nature 581, 431–443 (2020).

5. Bodea, C. A. et al. A method to exploit the structure of genetic ancestry space to enhance 
case–control studies. Am. J. Hum. Genet. 98, 857–868 (2016).

6. Guo, M. H., Plummer, L., Chan, Y.-M., Hirschhorn, J. N. & Lippincott, M. F. Burden testing of 
rare variants identified through exome sequencing via publicly available control data. 
Am. J. Hum. Genet. 103, 522–534 (2018).

7. 1000 Genomes Project Consortium. A global reference for human genetic variation. 
Nature 526, 68–74 (2015).

8. The Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for 
genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

9. Das, S., Abecasis, G. R. & Browning, B. L. Genotype imputation from large reference 
panels. Annu. Rev. Genomics Hum. Genet. 19, 73–96 (2018).

10. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human 
protein-coding variants. Nature 493, 216–220 (2013).

11. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep 
sequencing of human exomes. Science 337, 64–69 (2012).

12. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 
human genomes. Nature 491, 56–65 (2012).

13. UK10K Consortium. The UK10K project identifies rare variants in health and disease. 
Nature 526, 82–90 (2015).

14. Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease 
through whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010).

15. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. 
Nucleic Acids Res. 47 (D1), D766–D773 (2019).

16. Blyth, C. R. On Simpson’s paradox and the sure-thing principle. J. Am. Stat. Assoc. 67, 
364–366 (1972).

17. Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in 
human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Fr
eq

ue
nc

y 
re

la
tiv

e 
to

 h
ig

he
st

 1
%

 B
 b

in

B percentile bin
(weakest to strongest SaLS)

B percentile bin
(weakest to strongest SaLS)

a

1,000 2,000 3,000 4,000 4,832

Sample Size (2N)

500

650

800

950

1,100

1,250

1,400

N
e 

(×
10

3 )

Weakest SaLS (99–100% B)
Fourfold degenerate sites

b

10
0

4,
83

2
1,

60
0

3,
20

0

Sample size (2N)

100 80 60 40 20 0 100 80 60 40 20 0

Fig. 5 | Relative increase in singletons and doubletons of the site frequency 
spectrum across McVicker’s B and the population size inferred from 
demographic inference using various sample sizes. a, The relative increase 
in the singleton (left) and doubleton (right) bins of the site frequency spectrum 
for decreasing percentile bins of McVicker’s B compared with the highest 
percentile bin of B. The higher percentiles of B indicate weaker effects of 
selection at linked sites (SaLS). These relative increases are plotted for 

different sample sizes. b, Each point corresponds to the population size 
inferred in the last generation of an exponential growth model for Europeans. 
Demographic inference was conducted with different sample sizes for fourfold 
degenerate sites (n = 4,718,653 sites) and the highest 1% B sites (n = 10,977,437 
sites). Error bars show 95% confidence intervals (see Supplementary Table 14 
for parameter values). Ne, effective population size.

https://doi.org/10.1038/s41586-021-03205-y


Nature | Vol 590 | 11 February 2021 | 297

18. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP–trait associations. 
Nucleic Acids Res. 42, D1001–D1006 (2014).

19. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. & McKusick, V. A. Online 
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic 
disorders. Nucleic Acids Res. 33, D514–D517 (2005).

20. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting 
evidence. Nucleic Acids Res. 46 (D1), D1062–D1067 (2018).

21. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human 
genetic variants. Nat. Genet. 46, 310–315 (2014).

22. Katzman, S. et al. Human genome ultraconserved elements are ultraselected. Science 
317, 915 (2007).

23. Nusbaum, C. et al. DNA sequence and analysis of human chromosome 8. Nature 439, 
331–335 (2006).

24. Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility 
complex. Heredity 96, 7–21 (2006).

25. Bernatchez, L. & Landry, C. MHC studies in nonmodel vertebrates: what have we learned 
about natural selection in 15 years? J. Evol. Biol. 16, 363–377 (2003).

26. Black, F. L. & Hedrick, P. W. Strong balancing selection at HLA loci: evidence from 
segregation in South Amerindian families. Proc. Natl Acad. Sci. USA 94, 12452–12456 
(1997).

27. Jensen, J. M. et al. Assembly and analysis of 100 full MHC haplotypes from the Danish 
population. Genome Res. 27, 1597–1607 (2017).

28. Hellmann, I. et al. Why do human diversity levels vary at a megabase scale? Genome Res. 
15, 1222–1231 (2005).

29. Choudhury, A. et al. Population-specific common SNPs reflect demographic histories and 
highlight regions of genomic plasticity with functional relevance. BMC Genomics 15, 437 
(2014).

30. Torres, R., Szpiech, Z. A. & Hernandez, R. D. Human demographic history has amplified 
the effects of background selection across the genome. PLoS Genet. 14, e1007387 
(2018).

31. Carlson, J. et al. Extremely rare variants reveal patterns of germline mutation rate 
heterogeneity in humans. Nat. Commun. 9, 3753 (2018).

32. Kessler, M. D. & O’Connor, T. D. Accurate and equitable medical genomic analysis requires 
an understanding of demography and its influence on sample size and ratio. Genome 
Biol. 18, 42 (2017).

33. Harris, K. & Nielsen, R. Error-prone polymerase activity causes multinucleotide mutations 
in humans. Genome Res. 24, 1445–1454 (2014).

34. Besenbacher, S. et al. Multi-nucleotide de novo mutations in humans. PLoS Genet. 12, 
e1006315 (2016).

35. Waters, L. S. et al. Eukaryotic translesion polymerases and their roles and regulation in 
DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73, 134–154 (2009).

36. Jónsson, H. et al. Parental influence on human germline de novo mutations in 1,548 trios 
from Iceland. Nature 549, 519–522 (2017).

37. Goldmann, J. M. et al. Germline de novo mutation clusters arise during oocyte aging in 
genomic regions with high double-strand-break incidence. Nat. Genet. 50, 487–492 
(2018).

38. Seplyarskiy, V. B. et al. Population sequencing data reveal a compendium of mutational 
processes in human germline. Preprint at https://doi.org/10.1101/2020.01.10.893024 
(2020).

39. Faucher, D. & Wellinger, R. J. Methylated H3K4, a transcription-associated histone 
modification, is involved in the DNA damage response pathway. PLoS Genet. 6, e1001082 
(2010).

40. Sherman, R. M. et al. Assembly of a pan-genome from deep sequencing of 910 humans of 
African descent. Nat. Genet. 51, 30–35 (2019).

41. Kehr, B. et al. Diversity in non-repetitive human sequences not found in the reference 
genome. Nat. Genet. 49, 588–593 (2017).

42. Audano, P. A. et al. Characterizing the major structural variant alleles of the human 
genome. Cell 176, 663–675 (2019).

43. Lee, S.-B. et al. Stargazer: a software tool for calling star alleles from next-generation 
sequencing data using CYP2D6 as a model. Genet. Med. 21, 361–372 (2019).

44. Zhou, S.-F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: 
part I. Clin. Pharmacokinet. 48, 689–723 (2009).

45. Crews, K. R. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for 
cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin. Pharmacol. 
Ther. 95, 376–382 (2014).

46. Lee, S.-B., Wheeler, M. M., Thummel, K. E. & Nickerson, D. A. Calling star alleles with 
Stargazer in 28 pharmacogenes with whole genome sequences. Clin. Pharmacol. Ther. 
106, 1328–1337 (2019).

47. Ramachandran, S. et al. Support from the relationship of genetic and geographic 
distance in human populations for a serial founder effect originating in Africa. Proc. Natl 
Acad. Sci. USA 102, 15942–15947 (2005).

48. Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of 
variation. Science 319, 1100–1104 (2008).

49. .McKusick, V. A. Medical Genetic Studies of the Amish: Selected Papers (Johns Hopkins 
Univ. Press, 1978).

50. Beiler, K. Fisher Family History (Eby’s Quality Publishing, 1988).
51. Lee, W.-J., Pollin, T. I., O’Connell, J. R., Agarwala, R. & Schäffer, A. A. PedHunter 2.0 and its 

usage to characterize the founder structure of the Old Order Amish of Lancaster County. 
BMC Med. Genet. 11, 68 (2010).

52. Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. 
Curr. Biol. 20, 1983–1992 (2010).

53. Lipson, M. et al. Population turnover in remote Oceania shortly after initial settlement. 
Curr. Biol. 28, 1157–1165 (2018).

54. Harris, D. N. et al. Evolutionary history of modern Samoans. Proc. Natl Acad. Sci. USA 117, 
9458–9465 (2020).

55. Gravel, S. et al. Demographic history and rare allele sharing among human populations. 
Proc. Natl Acad. Sci. USA 108, 11983–11988 (2011).

56. Gao, F. & Keinan, A. Inference of super-exponential human population growth via 
efficient computation of the site frequency spectrum for generalized models. Genetics 
202, 235–245 (2016).

57. Schrider, D. R., Shanku, A. G. & Kern, A. D. Effects of linked selective sweeps on 
demographic inference and model selection. Genetics 204, 1207–1223 (2016).

58. Ewing, G. B. & Jensen, J. D. The consequences of not accounting for background 
selection in demographic inference. Mol. Ecol. 25, 135–141 (2016).

59. Ragsdale, A. P., Moreau, C. & Gravel, S. Genomic inference using diffusion models and 
the allele frequency spectrum. Curr. Opin. Genet. Dev. 53, 140–147 (2018).

60. McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread genomic signatures of natural 
selection in hominid evolution. PLoS Genet. 5, e1000471 (2009).

61. Field, Y. et al. Detection of human adaptation during the past 2000 years. Science 354, 
760–764 (2016).

62. Kayser, M. et al. Three genome-wide association studies and a linkage analysis identify 
HERC2 as a human iris color gene. Am. J. Hum. Genet. 82, 411–423 (2008).

63. Ganz, T. & Lehrer, R. I. Defensins. Pharmacol. Ther. 66, 191–205 (1995).
64. Zhang, D. et al. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds 

and activates ErbB4. Proc. Natl Acad. Sci. USA 94, 9562–9567 (1997).
65. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 

(2010).
66. Picard, C. et al. STIM1 mutation associated with a syndrome of immunodeficiency and 

autoimmunity. N. Engl. J. Med. 360, 1971–1980 (2009).
67. Safari, F., Murata-Kamiya, N., Saito, Y. & Hatakeyama, M. Mammalian Pragmin regulates 

Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial 
effectors. Proc. Natl Acad. Sci. USA 108, 14938–14943 (2011).

68. Jörnvall, H., Hempel, J., Vallee, B. L., Bosron, W. F. & Li, T. K. Human liver alcohol 
dehydrogenase: amino acid substitution in the beta 2 beta 2 Oriental isozyme explains 
functional properties, establishes an active site structure, and parallels mutational 
exchanges in the yeast enzyme. Proc. Natl Acad. Sci. USA 81, 3024–3028 (1984).

69. Osier, M. et al. Linkage disequilibrium at the ADH2 and ADH3 loci and risk of alcoholism. 
Am. J. Hum. Genet. 64, 1147–1157 (1999).

70. Hempel, J., Kaiser, R. & Jörnvall, H. Mitochondrial aldehyde dehydrogenase from human 
liver. Primary structure, differences in relation to the cytosolic enzyme, and functional 
correlations. Eur. J. Biochem. 153, 13–28 (1985).

71. Hsu, L. C., Tani, K., Fujiyoshi, T., Kurachi, K. & Yoshida, A. Cloning of cDNAs for human 
aldehyde dehydrogenases 1 and 2. Proc. Natl Acad. Sci. USA 82, 3771–3775 (1985).

72. Kowalski, M. H. et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine 
(TOPMed) Consortium whole genome sequences improves imputation quality and 
detection of rare variant associations in admixed African and Hispanic/Latino 
populations. PLoS Genet. 15, e1008500 (2019).

73. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. 
Nature 586, 763–768 (2020).

74. Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers 
rare variant association analysis of large whole-genome sequencing studies at scale. Nat. 
Genet. 52, 969–983 (2020).

75. BioData Catalyst Consortium. The NHLBI BioData Catalyst. Zenodo https://doi.
org/10.5281/zenodo.3822858 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons license and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

Daniel Taliun1,2,216, Daniel N. Harris3,4,5,216, Michael D. Kessler3,4,5,216, Jedidiah Carlson6,7,216, 
Zachary A. Szpiech8,9,216, Raul Torres10,216, Sarah A. Gagliano Taliun1,2,216, André Corvelo11,216, 
Stephanie M. Gogarten12, Hyun Min Kang1,2, Achilleas N. Pitsillides13, Jonathon LeFaive1,2, 
Seung-been Lee7, Xiaowen Tian12, Brian L. Browning14, Sayantan Das1,2, Anne-Katrin Emde11, 
Wayne E. Clarke11, Douglas P. Loesch3,4,5, Amol C. Shetty3,4,5, Thomas W. Blackwell1,2, 
Albert V. Smith1,2, Quenna Wong12, Xiaoming Liu15, Matthew P. Conomos12, Dean M. Bobo16, 
François Aguet17, Christine Albert18, Alvaro Alonso19, Kristin G. Ardlie17, Dan E. Arking20, 
Stella Aslibekyan21, Paul L. Auer22, John Barnard23, R. Graham Barr24,25, Lucas Barwick26, 
Lewis C. Becker27, Rebecca L. Beer28, Emelia J. Benjamin29,30,31, Lawrence F. Bielak32, 
John Blangero33,34, Michael Boehnke1,2, Donald W. Bowden35, Jennifer A. Brody36,37, 
Esteban G. Burchard38,39, Brian E. Cade40,41, James F. Casella42,43, Brandon Chalazan44, 
Daniel I. Chasman45,46, Yii-Der Ida Chen47, Michael H. Cho48, Seung Hoan Choi17, 
Mina K. Chung49,50,51, Clary B. Clish52, Adolfo Correa53,54,55, Joanne E. Curran33,34, 
Brian Custer56,57, Dawood Darbar58, Michelle Daya59, Mariza de Andrade60, Dawn L. DeMeo48, 
Susan K. Dutcher61,62, Patrick T. Ellinor63, Leslie S. Emery12, Celeste Eng39, Diane Fatkin64,65,66, 
Tasha Fingerlin67, Lukas Forer68, Myriam Fornage69, Nora Franceschini70, 
Christian Fuchsberger1,2,68,71, Stephanie M. Fullerton72, Soren Germer11, Mark T. Gladwin73,74,75, 
Daniel J. Gottlieb76,77, Xiuqing Guo47, Michael E. Hall53, Jiang He78,79, 
Nancy L. Heard-Costa31,80, Susan R. Heckbert37,81, Marguerite R. Irvin82, Jill M. Johnsen36,83, 
Andrew D. Johnson31,84, Robert Kaplan85, Sharon L. R. Kardia32, Tanika Kelly78, 
Shannon Kelly86,87,88, Eimear E. Kenny16, Douglas P. Kiel17,40,89,90, Robert Klemmer1,2, 
Barbara A. Konkle36,83, Charles Kooperberg91, Anna Köttgen92,93, Leslie A. Lange94, 

https://doi.org/10.1101/2020.01.10.893024
https://doi.org/10.5281/zenodo.3822858
https://doi.org/10.5281/zenodo.3822858
http://creativecommons.org/licenses/by/4.0/


298 | Nature | Vol 590 | 11 February 2021

Article

1Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 
USA. 2Center for Statistical Genetics, University of Michigan School of Public Health, Ann 
Arbor, MI, USA. 3Institute for Genome Sciences, University of Maryland School of Medicine, 
Baltimore, MD, USA. 4Program in Personalized and Genomic Medicine, University of 
Maryland School of Medicine, Baltimore, MD, USA. 5Department of Medicine, University of 
Maryland School of Medicine, Baltimore, MD, USA. 6Department of Computational 
Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA. 7Department of 
Genome Sciences, University of Washington, Seattle, WA, USA. 8Department of Biology, 
Pennsylvania State University, University Park, PA, USA. 9Institute for Computational and 
Data Sciences, Pennsylvania State University, University Park, PA, USA. 10Biomedical 
Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, 
USA. 11New York Genome Center, New York, NY, USA. 12Department of Biostatistics, 
University of Washington, Seattle, WA, USA. 13Department of Biostatistics, Boston University 
School of Public Health, Boston, MA, USA. 14Department of Medicine, Division of Medical 
Genetics, University of Washington, Seattle, WA, USA. 15USF Genomics, College of Public 
Health, University of South Florida, Tampa, FL, USA. 16Icahn School of Medicine at Mount 
Sinai, New York, NY, USA. 17The Broad Institute of MIT and Harvard, Cambridge, MA, USA. 
18Massachusetts General Hospital, Boston, MA, USA. 19Department of Epidemiology, Rollins 
School of Public Health, Emory University, Atlanta, GA, USA. 20McKusick-Nathans Institute, 
Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 
MD, USA. 21University of Alabama, Birmingham, AL, USA. 22Zilber School of Public Health, 
University of Wisconsin Milwaukee, Milwaukee, WI, USA. 23Cleveland Clinic, Cleveland, OH, 
USA. 24Department of Medicine, Columbia University Medical Center, New York, NY, USA. 
25Department of Epidemiology, Columbia University Medical Center, New York, NY, USA. 
26The Emmes Corporation, Rockville, MD, USA. 27Johns Hopkins University, Baltimore, MD, 
USA. 28National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 
MD, USA. 29Department of Medicine, Boston University School of Medicine, Boston, MA, 
USA. 30Department of Epidemiology, Boston University School of Public Health, Boston, 
MA, USA. 31Framingham Heart Study, Framingham, MA, USA. 32Department of Epidemiology, 
University of Michigan School of Public Health, Ann Arbor, MI, USA. 33Department of Human 
Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA. 
34South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School 
of Medicine, Brownsville, TX, USA. 35Department of Biochemistry, Wake Forest School of 
Medicine, Winston-Salem, NC, USA. 36Department of Medicine, University of Washington, 
Seattle, WA, USA. 37Cardiovascular Health Research Unit, University of Washington, Seattle, 
WA, USA. 38Department of Bioengineering and Therapeutic Sciences, University of 
California, San Francisco, San Francisco, CA, USA. 39Department of Medicine, University of 
California, San Francisco, San Francisco, CA, USA. 40Department of Medicine, Harvard 
Medical School, Boston, MA, USA. 41Department of Medicine, Brigham and Women’s 
Hospital, Boston, MA, USA. 42Department of Pediatrics, Johns Hopkins University, Baltimore, 
MD, USA. 43Division of Pediatric Hematology, Johns Hopkins University, Baltimore, MD, USA. 
44Department of Medical Genetics, University of British Columbia, Vancouver, British 
Columbia, Canada. 45Division of Preventive Medicine, Brigham and Women’s Hospital, 
Boston, MA, USA. 46Harvard Medical School, Boston, MA, USA. 47The Institute for 
Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist 
Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA. 
48Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s 
Hospital, Boston, MA, USA. 49Department of Cardiovascular Medicine, Heart & Vascular 
Institute, Cleveland Clinic, Cleveland, OH, USA. 50Department of Cardiovascular and 
Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. 
51Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case 
Western Reserve University, Cleveland, OH, USA. 52Metabolomics Platform, The Broad 

Institute of MIT and Harvard, Cambridge, MA, USA. 53Department of Medicine, University of 
Mississippi Medical Center, Jackson, MS, USA. 54Department of Pediatrics, University of 
Mississippi Medical Center, Jackson, MS, USA. 55Department of Population Health Science, 
University of Mississippi Medical Center, Jackson, MS, USA. 56Vitalant Research Institute, 
San Francisco, CA, USA. 57Department of Laboratory Medicine, University of California, San 
Francisco, San Francisco, CA, USA. 58Department of Medicine, University of Illinois at 
Chicago, Chicago, IL, USA. 59Division of Biomedical Informatics and Personalized Medicine, 
Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 
USA. 60Mayo Clinic, Rochester, MN, USA. 61McDonnell Genome Institute, Washington 
University, St Louis, MO, USA. 62Department of Genetics, Washington University, St Louis, 
MO, USA. 63Program in Medical and Population Genetics, The Broad Institute of MIT and 
Harvard, Cambridge, MA, USA. 64Molecular Cardiology Division, Victor Chang Cardiac 
Research Institute, Darlinghurst, New South Wales, Australia. 65Faculty of Medicine, 
University of New South Wales, Kensington, New South Wales, Australia. 66Cardiology 
Department, St Vincent’s Hospital, Darlinghurst, New South Wales, Australia. 67National 
Jewish Health, Center for Genes, Environment and Health, Denver, CO, USA. 68Institute of 
Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of 
Innsbruck, Innsbruck, Austria. 69Institute of Molecular Medicine, University of Texas Health 
Science Center at Houston, Houston, TX, USA. 70Department of Epidemiology, University of 
North Carolina, Chapel Hill, NC, USA. 71Institute for Biomedicine, Eurac Research, Bolzano, 
Italy. 72Department of Bioethics & Humanities, University of Washington School of Medicine, 
Seattle, WA, USA. 73Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, 
University of Pittsburgh, Pittsburgh, PA, USA. 74Pulmonary, Allergy and Critical Care 
Medicine, University of Pittsburgh, Pittsburgh, PA, USA. 75Department of Medicine, 
University of Pittsburgh, Pittsburgh, PA, USA. 76VA Boston Healthcare System, Boston, MA, 
USA. 77Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, 
MA, USA. 78Department of Epidemiology, Tulane University, New Orleans, LA, USA. 79Tulane 
University Translational Science Institute, Tulane University, New Orleans, LA, USA. 
80Department of Neurology, Boston University School of Medicine, Boston, MA, USA. 
81Department of Epidemiology, University of Washington, Seattle, WA, USA. 82Department of 
Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA. 83Bloodworks 
Northwest Research Institute, Seattle, WA, USA. 84Population Sciences Branch, National 
Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA, USA. 
85Albert Einstein College of Medicine, New York, NY, USA. 86Department of Epidemiology, 
Vitalant Research Institute, San Francisco, CA, USA. 87Department of Pediatrics, UCSF 
Benioff Children’s Hospital, Oakland, CA, USA. 88Division of Pediatric Hematology, UCSF 
Benioff Children’s Hospital, Oakland, CA, USA. 89Hinda and Arthur Marcus Institute for 
Aging Research, Hebrew SeniorLife, Boston, MA, USA. 90Department of Medicine, Beth 
Israel Deaconess Medical Center, Boston, MA, USA. 91Division of Public Health Sciences, 
Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 92Department of Epidemiology, 
Johns Hopkins University, Baltimore, MD, USA. 93Institute of Genetic Epidemiology, Faculty 
of Medicine and Medical Center, University of Freiburg, Freiburg, Germany. 94Department of 
Medicine, University of Colorado at Denver, Aurora, CO, USA. 95Brigham and Women’s 
Hospital, Boston, MA, USA. 96Biostatistics and Statistics, Harvard University, Boston, MA, 
USA. 97The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine 
at Mount Sinai, New York, NY, USA. 98The Mindich Child Health and Development Institute, 
Icahn School of Medicine at Mount Sinai, New York, NY, USA. 99Department of Genes and 
Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. 100Beth 
Israel Deaconess Medical Center, Boston, MA, USA. 101Center for Public Health Genomics, 
University of Virginia, Charlottesville, VA, USA. 102Department of Public Health Sciences, 
University of Virginia, Charlottesville, VA, USA. 103Clinical and Translational Epidemiology 
Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA. 104Metabolism 
Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA. 105Department of 
Medicine, Johns Hopkins University, Baltimore, MD, USA. 106Cardiovascular Medicine, 
University of Massachusetts Medical School, Worcester, MA, USA. 107International Health 
Institute, Brown University, Providence, RI, USA. 108Department of Epidemiology, Brown 
University, Providence, RI, USA. 109Department of Anthropology, Brown University, 
Providence, RI, USA. 110Division of General Internal Medicine, Massachusetts General 
Hospital, Harvard Medical School, The Broad Institute of MIT and Harvard, Boston, MA, USA. 
111University of Arizona, Tucson, AZ, USA. 112Geriatrics Research and Education Clinical 
Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA. 113Texas 
Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, USA. 114Department of 
Internal Medicine, Dell Medical School, Austin, TX, USA. 115Human Genetics Center, 
Department of Epidemiology, Human Genetics, and Environmental Sciences, School of 
Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA. 
116Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. 
117Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. 
118Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, 
MN, USA. 119Division of Cardiology, Department of Medicine, Johns Hopkins University, 
Baltimore, MD, USA. 120Department of Health Services, University of Washington, Seattle, 
WA, USA. 121Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA. 
122Division of Biostatistics, Washington University in St Louis, St Louis, MO, USA. 
123Vanderbilt University Medical Center, Nashville, TN, USA. 124Department of Biostatistics, 
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 125University of 
Colorado at Denver, Denver, CO, USA. 126Precision Medicine Center, Seoul National 
University Bundang Hospital, Seongnam, Republic of Korea. 127Macrogen Inc, Seoul, 
Republic of Korea. 128Gong Wu Genomic Medicine Institute, Seoul National University 

Jessica Lasky-Su40,41,48,95, Daniel Levy29,31,84, Xihong Lin96, Keng-Han Lin1,2, Chunyu Liu13, 
Ruth J. F. Loos97,98, Lori Garman99, Robert Gerszten100, Steven A. Lubitz18, 
Kathryn L. Lunetta13, Angel C. Y. Mak39, Ani Manichaikul101,102, Alisa K. Manning40,103,104, 
Rasika A. Mathias105, David D. McManus106, Stephen T. McGarvey107,108,109, James B. Meigs110, 
Deborah A. Meyers111, Julie L. Mikulla28, Mollie A. Minear28, Braxton D. Mitchell4,5,112, 
Sanghamitra Mohanty113,114, May E. Montasser4,5, Courtney Montgomery99, 
Alanna C. Morrison115, Joanne M. Murabito29, Andrea Natale113, Pradeep Natarajan40,63,116,117, 
Sarah C. Nelson12, Kari E. North70, Jeffrey R. O’Connell4,5, Nicholette D. Palmer35, 
Nathan Pankratz118, Gina M. Peloso13, Patricia A. Peyser32, Jacob Pleiness1,2, Wendy S. Post119, 
Bruce M. Psaty36,37,81,120,121, D. C. Rao122, Susan Redline40,41, Alexander P. Reiner81,91, 
Dan Roden123, Jerome I. Rotter47, Ingo Ruczinski124, Chloé Sarnowski13, 
Sebastian Schoenherr68, David A. Schwartz125, Jeong-Sun Seo126,127,128, Sudha Seshadri31,129, 
Vivien A. Sheehan130,131, Wayne H. Sheu132, M. Benjamin Shoemaker123, 
Nicholas L. Smith81,121,133, Jennifer A. Smith32,134, Nona Sotoodehnia37, Adrienne M. Stilp12, 
Weihong Tang135, Kent D. Taylor47, Marilyn Telen136, Timothy A. Thornton12, Russell P. Tracy137, 
David J. Van Den Berg138, Ramachandran S. Vasan29,31, Karine A. Viaud-Martinez139, 
Scott Vrieze140, Daniel E. Weeks141,142, Bruce S. Weir12, Scott T. Weiss40,41,48,95, Lu-Chen Weng18, 
Cristen J. Willer6,143,144, Yingze Zhang73,74,75, Xutong Zhao1,2, Donna K. Arnett145, 
Allison E. Ashley-Koch146, Kathleen C. Barnes59, Eric Boerwinkle147,148, Stacey Gabriel17, 
Richard Gibbs148, Kenneth M. Rice12, Stephen S. Rich101,102, Edwin K. Silverman48, 
Pankaj Qasba28, Weiniu Gan28, NHLBI Trans-Omics for Precision Medicine (TOPMed) 
Consortium*, George J. Papanicolaou28, Deborah A. Nickerson7,149,150, Sharon R. Browning12, 
Michael C. Zody11, Sebastian Zöllner1,2,151, James G. Wilson152, L. Adrienne Cupples13,31 ✉, 
Cathy C. Laurie12 ✉, Cashell E. Jaquish28 ✉, Ryan D. Hernandez38,153,154,155,156 ✉, 
Timothy D. O’Connor3,4,5 ✉ & Gonçalo R. Abecasis1 ✉



Nature | Vol 590 | 11 February 2021 | 299

Bundang Hospital, Seongnam, Republic of Korea. 129Glenn Biggs Institute for Alzheimer’s 
and Neurodegenerative Diseases, University of Texas Health Sciences Center at San 
Antonio, San Antonio, TX, USA. 130Department of Pediatrics, Emory University School of 
Medicine, Atlanta, GA, USA. 131Aflac Cancer and Blood Disorders Center, Children’s 
Healthcare of Atlanta, Atlanta, GA, USA. 132Taichung Veterans General Hospital Taiwan, 
Taichung City, Taiwan. 133Seattle Epidemiologic Research and Information Center, 
Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA. 
134Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 
MI, USA. 135Division of Epidemiology and Community Health, School of Public Health, 
University of Minnesota, Minneapolis, MN, USA. 136Duke University, Durham, NC, USA. 
137Department of Pathology & Laboratory Medicine, University of Vermont Larner College of 
Medicine, Burlington, VT, USA. 138Center for Genetic Epidemiology, Department of 
Preventive Medicine, University of Southern California, Los Angeles, CA, USA. 139Illumina 
Laboratory Services, Illumina Inc, San Diego, CA, USA. 140Department of Psychology, 
University of Minnesota, Minneapolis, MN, USA. 141Department of Human Genetics, 
Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. 
142Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 
Pittsburgh, PA, USA. 143Department of Internal Medicine-Cardiology, University of Michigan, 

Ann Arbor, MI, USA. 144Department of Human Genetics, University of Michigan, Ann Arbor, 
MI, USA. 145Department of Epidemiology, University of Kentucky, Lexington, KY, USA. 146Duke 
Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. 
147University of Texas Health Science Center at Houston, Houston, TX, USA. 148Baylor 
College of Medicine Human Genome Sequencing Center, Houston, TX, USA. 149Northwest 
Genomics Center, Seattle, WA, USA. 150Brotman Baty Institute, Seattle, WA, USA. 
151Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA. 152Department of 
Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. 
153Department of Human Genetics, McGill University, Montreal, Quebec, Canada. 
154Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, 
CA, USA. 155Institute for Human Genetics, University of California, San Francisco, San 
Francisco, CA, USA. 156Bakar Computational Health Sciences Institute, University of 
California, San Francisco, San Francisco, CA, USA. 216These authors contributed equally: 
Daniel Taliun, Daniel N. Harris, Michael D. Kessler, Jedidiah Carlson, Zachary A. Szpiech, 
Raul Torres, Sarah A. Gagliano Taliun, André Corvelo. *A list of authors and their affiliations 
appears in the online version of the paper. ✉e-mail: adrienne@bu.edu; cclaurie@uw.edu; 
jaquishc@nhlbi.nih.gov; ryan.hernandez@mcgill.ca; timothydoconnor@gmail.com; 
goncalo@umich.edu

mailto:adrienne@bu.edu
mailto:cclaurie@uw.edu
mailto:jaquishc@nhlbi.nih.gov
mailto:ryan.hernandez@mcgill.ca
mailto:timothydoconnor@gmail.com
mailto:goncalo@umich.edu


Article
NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium

Namiko Abe11, Laura Almasy157, Seth Ament158, Peter Anderson159, Pramod Anugu160, 
Deborah Applebaum-Bowden161, Tim Assimes162, Dimitrios Avramopoulos27, 
Emily Barron-Casella27, Terri Beaty27, Gerald Beck23, Diane Becker27, Amber Beitelshees158, 
Takis Benos163, Marcos Bezerra164, Joshua Bis159, Russell Bowler165, Ulrich Broeckel166, 
Jai Broome159, Karen Bunting11, Carlos Bustamante162, Erin Buth159, Jonathan Cardwell125, 
Vincent Carey95, Cara Carty167, Richard Casaburi168, Peter Castaldi95, Mark Chaffin169, 
Christy Chang158, Yi-Cheng Chang170, Sameer Chavan125, Bo-Juen Chen11, Wei-Min Chen171, 
Lee-Ming Chuang170, Ren-Hua Chung172, Suzy Comhair23, Elaine Cornell173, 
Carolyn Crandall168, James Crapo165, Jeffrey Curtis174, Coleen Damcott158, Sean David175, 
Colleen Davis159, Lisa de las Fuentes176, Michael DeBaun177, Ranjan Deka178, Scott Devine158, 
Qing Duan179, Ravi Duggirala180, Jon Peter Durda173, Charles Eaton181, Lynette Ekunwe160, 
Adel El Boueiz182, Serpil Erzurum23, Charles Farber171, Matthew Flickinger174, 
Myriam Fornage183, Chris Frazar159, Mao Fu158, Lucinda Fulton176, Shanshan Gao125, 
Yan Gao160, Margery Gass184, Bruce Gelb16, Xiaoqi Priscilla Geng174, Mark Geraci185, 
Auyon Ghosh95, Chris Gignoux162, David Glahn186, Da-Wei Gong158, Harald Goring187, 
Sharon Graw188, Daniel Grine125, C. Charles Gu176, Yue Guan158, Namrata Gupta169, 
Jeff Haessler184, Nicola L. Hawley186, Ben Heavner159, David Herrington189, Craig Hersh95, 
Bertha Hidalgo21, James Hixson183, Brian Hobbs95, John Hokanson125, Elliott Hong158, 
Karin Hoth190, Chao Agnes Hsiung172, Yi-Jen Hung191, Haley Huston192, Chii Min Hwu132, 
Rebecca Jackson193, Deepti Jain159, Min A. Jhun174, Craig Johnson159, Rich Johnston194, 
Kimberly Jones27, Sekar Kathiresan169, Alyna Khan159, Wonji Kim182, Greg Kinney125, 
Holly Kramer195, Christoph Lange196, Ethan Lange125, Leslie Lange125, Cecelia Laurie159, 
Meryl LeBoff95, Jiwon Lee95, Seunggeun Shawn Lee174, Wen-Jane Lee132, David Levine159, 
Joshua Lewis158, Xiaohui Li197, Yun Li179, Henry Lin197, Honghuang Lin198, Keng Han Lin174, 
Simin Liu181, Yongmei Liu136, Yu Liu199, James Luo28, Michael Mahaney200, Barry Make27, 
JoAnn Manson95, Lauren Margolin169, Lisa Martin201, Susan Mathai125, Susanne May159, 
Patrick McArdle158, Merry-Lynn McDonald21, Sean McFarland202, Daniel McGoldrick159, 
Caitlin McHugh159, Hao Mei160, Luisa Mestroni188, Nancy Min160, Ryan L. Minster163, 
Matt Moll95, Arden Moscati16, Solomon Musani160, Stanford Mwasongwe160, 
Josyf C. Mychaleckyj171, Girish Nadkarni16, Rakhi Naik27, Take Naseri203, Sergei Nekhai204, 
Bonnie Neltner125, Heather Ochs-Balcom205, David Paik162, James Pankow206, Afshin Parsa158, 
Juan Manuel Peralta180, Marco Perez162, James Perry158, Ulrike Peters184, 
Lawrence S. Phillips194, Toni Pollin158, Julia Powers Becker125, Meher Preethi Boorgula125, 
Michael Preuss16, Dandi Qiao95, Zhaohui Qin194, Nicholas Rafaels125, Laura Raffield179, 
Laura Rasmussen-Torvik207, Aakrosh Ratan171, Robert Reed158, Elizabeth Regan165, 
Muagututi‘a Sefuiva Reupena208, Carolina Roselli169, Pamela Russell125, Sarah Ruuska192, 
Kathleen Ryan158, Ester Cerdeira Sabino209, Danish Saleheen210, Shabnam Salimi158, 
Steven Salzberg27, Kevin Sandow197, Vijay G. Sankaran211, Christopher Scheller174, 
Ellen Schmidt174, Karen Schwander176, Frank Sciurba163, Christine Seidman46, 
Jonathan Seidman46, Stephanie L. Sherman194, Aniket Shetty125, Wayne Hui-Heng Sheu132, 
Brian Silver212, Josh Smith159, Tanja Smith11, Sylvia Smoller85, Beverly Snively189, 
Michael Snyder162, Tamar Sofer95, Garrett Storm125, Elizabeth Streeten158, Yun Ju Sung176, 

Jody Sylvia95, Adam Szpiro159, Carole Sztalryd158, Hua Tang162, Margaret Taub27, 
Matthew Taylor125, Simeon Taylor158, Machiko Threlkeld159, Lesley Tinker184, 
David Tirschwell159, Sarah Tishkoff213, Hemant Tiwari21, Catherine Tong159, Michael Tsai206, 
Dhananjay Vaidya27, Peter VandeHaar174, Tarik Walker125, Robert Wallace190, Avram Walts125, 
Fei Fei Wang159, Heming Wang95, Karol Watson168, Jennifer Wessel185, Kayleen Williams159, 
L. Keoki Williams214, Carla Wilson95, Joseph Wu162, Huichun Xu158, Lisa Yanek27, Ivana Yang125, 
Rongze Yang158, Norann Zaghloul158, Maryam Zekavat169, Snow Xueyan Zhao165, Wei Zhao174, 
Degui Zhi183, Xiang Zhou174 & Xiaofeng Zhu215

157Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 158University of Maryland, 
Baltimore, MD, USA. 159University of Washington, Seattle, WA, USA. 160University of 
Mississippi, Jackson, MS, USA. 161National Institutes of Health, Bethesda, MD, USA. 162Stanford 
University, Stanford, CA, USA. 163University of Pittsburgh, Pittsburgh, PA, USA. 164Fundação de 
Hematologia e Hemoterapia de Pernambuco–Hemope, Recife, Brazil. 165National Jewish 
Health, Denver, CO, USA. 166Medical College of Wisconsin, Milwaukee, WI, USA. 
167Washington State University, Seattle, WA, USA. 168University of California, Los Angeles, Los 
Angeles, CA, USA. 169Broad Institute, Cambridge, MA, USA. 170National Taiwan University, 
Taipei, Taiwan. 171University of Virginia, Charlottesville, VA, USA. 172National Health Research 
Institute Taiwan, Zhunan Township, Taiwan. 173University of Vermont, Burlington, VT, USA. 
174University of Michigan, Ann Arbor, MI, USA. 175University of Chicago, Chicago, IL, USA. 
176Washington University in St Louis, St Louis, MO, USA. 177Vanderbilt University, Nashville, TN, 
USA. 178University of Cincinnati, Cincinnati, OH, USA. 179University of North Carolina, Chapel 
Hill, NC, USA. 180University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, 
USA. 181Brown University, Providence, RI, USA. 182Harvard University, Boston, MA, USA. 
183University of Texas Health at Houston, Houston, TX, USA. 184Fred Hutchinson Cancer 
Research Center, Seattle, WA, USA. 185Indiana University, Indianapolis, IN, USA. 186Yale 
University, New Haven, CT, USA. 187University of Texas Rio Grande Valley School of Medicine, 
San Antonio, TX, USA. 188University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 
189Wake Forest Baptist Health, Winston-Salem, NC, USA. 190University of Iowa, Iowa City, IA, 
USA. 191Tri-Service General Hospital National Defense Medical Center, Taipei, Taiwan. 192Blood 
Works Northwest, Seattle, WA, USA. 193Ohio State University Wexner Medical Center, 
Columbus, OH, USA. 194Emory University, Atlanta, GA, USA. 195Loyola University, Maywood, IL, 
USA. 196Harvard School of Public Health, Boston, MA, USA. 197Lundquist Institute, Torrance, 
CA, USA. 198Boston University, Boston, MA, USA. 199Stanford University, Palo Alto, CA, USA. 
200University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA. 201George 
Washington University, Washington, DC, USA. 202Harvard University, Cambridge, MA, USA. 
203Ministry of Health, Government of Samoa, Apia, Samoa. 204Howard University, Washington, 
DC, USA. 205University at Buffalo, Buffalo, NY, USA. 206University of Minnesota, Minneapolis, 
MN, USA. 207Northwestern University, Chicago, IL, USA. 208Lutia I Puava Ae Mapu I Fagalele, 
Apia, Samoa. 209Universidade de Sao Paulo, Sao Paulo, Brazil. 210Columbia University, New 
York, NY, USA. 211Broad Institute, Harvard University, Boston, MA, USA. 212UMass Memorial 
Medical Center, Worcester, MA, USA. 213University of Pennsylvania, Philadelphia, PA, USA. 
214Henry Ford Health System, Detroit, MI, USA. 215Case Western Reserve University, Cleveland, 
OH, USA. 



Methods

DNA samples
WGS for the 53,831 samples reported here was performed on samples 
that had previously been collected from and consented to by research 
participants from 33 NHLBI-funded research projects. All studies 
were approved by the corresponding institutional review boards 
(Supplementary Information 4). All sequencing was done from DNA 
extracted from whole blood, with the exception of 17 Framingham 
samples (lymphoblastoid cell lines) and HapMap samples NA12878 
and NA19238 (lymphoblastoid cell lines) used periodically as sequenc-
ing controls. Cell lines were tested for mycoplasma contamination by 
aligning sequence data to the human genome, and authenticated by 
comparison with previous genetic analysis.

WGS
WGS targeting a mean depth of at least 30× (paired-end, 150-bp 
reads) using Illumina HiSeq X Ten instruments was carried out over 
several years at six sequencing centres (Supplementary Table 17). 
All sequencing used PCR-free library preparation kits purchased 
from KAPA Biosystems, equivalent to the protocol in the Illumina 
TruSeq PCR-Free Sample Preparation Guide (Illumina, FC-121-2001). 
Centre-specific details are available from the TOPMed website (https://
www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze
-5b-phases-1-and-2). In addition, 30× coverage WGS for 1,606 samples 
from four contributing studies were sequenced before the start of the 
TOPMed sequencing project and are included in this dataset. These 
were sequenced at Illumina using HiSeq 2000 or 2500 instruments, 
have 2 × 100-bp or 2 × 125-bp paired-end reads and sometimes used 
PCR amplification.

Sequence data processing and variant calling
Sequence data processing was performed periodically to produce 
genotype data ‘freezes’ that included all samples available at the 
time. All sequences were remapped using BWA-MEM76 to the hs38DH 
1000 Genomes build 38 human genome reference including decoy 
sequences, following the protocol published previously77. Variant dis-
covery and genotype calling was performed jointly, across TOPMed 
studies, for all samples in a given freeze using the GotCloud78,79 pipeline. 
This procedure results in a single, multi-study genotype call set. A sup-
port vector machine quality filter for variant sites was trained using a 
large set of site-specific quality metrics and known variants from arrays 
and the 1000 Genomes Project as positive controls and variants with 
Mendelian inconsistencies in multiple families as negative controls (see 
online documentation80 for more details). After removing all sites with 
a minor allele count less than 2, the genotypes with a minimal depth 
of more than 10× were phased using Eagle 2.481. Sample-level quality 
control included checks for pedigree errors, discrepancies between 
self-reported and genetic sex, and concordance with previous geno-
typing array data. Any errors detected were addressed before dbGaP 
submission. Details regarding WGS data acquisition, processing and 
quality control vary among the TOPMed data freezes. Freeze-specific 
methods are described on the TOPMed website (https://www.nhlbi-
wgs.org/data-sets) and in documents included in each TOPMed acces-
sion released on dbGaP (for example, see document phd008024.1 in 
phs000956.v4.p1).

Access to sequence data
Copies of individual-level sequence data for each study participant are 
stored on both Google and Amazon clouds. Access involves an approved 
dbGaP data access request and is mediated by the NCBI Sequence Data 
Delivery Pilot mechanism. This mechanism uses fusera software82 run-
ning on the user’s cloud instance to handle authentication and authori-
zation with dbGaP. It provides read access to sequence data for one or 
more TOPMed (or other) samples as .cram files (with associated .crai 

index files) within a fuse virtual file system mounted on the cloud com-
puting instance. Samples are identified by ‘SRR’ run accession numbers 
assigned in the NCBI Sequence Read Archive (SRA) database and shown 
under each study’s phs number in the SRA Run Selector (https://trace.
ncbi.nlm.nih.gov/Traces/sra/sra.cgi). The phs numbers for all TOPMed 
studies are readily found by searching dbGaP for the string ‘TOPMed’. 
The fusera software is limited to running on Google or Amazon cloud 
instances to avoid incurring data egress charges. Fusera, samtools and 
other tools are also packaged in a Docker container for ease of use and 
are available for download from Docker Hub83.

Sample sets
Several sample sets derived from three different WGS data freezes 
were used in the analyses presented here: freeze 3 (GRCh37 alignment, 
around 18,000 samples jointly called in 2016), freeze 5 (GRCh38 align-
ment, approximately 65,000 samples jointly called in 2017), and freeze 
8 (GRCh38 alignment, about 140,000 samples jointly called in 2019). 
Extended Data Table 3 indicates which TOPMed study-consent groups 
were used in each of several different types of analyses described in this 
paper. Most analyses were performed on a set of 53,831 samples derived 
from freeze 5 (‘General variant analyses’ in Extended Data Table 3) or on 
a subset thereof approved for population genetic studies (‘Population 
genetics’ in Extended Data Table 3). The set of 53,831 was selected from 
freeze 5 using samples eligible for dbGaP sharing at the time of analysis, 
excluding (1) duplicate samples from the same participant; (2) one 
member of each monozygotic twin pair; (3) samples with questionable 
identity or low read depth (<98% of variant sites at depth ≥ 10×); and 
(4) samples with consent types inconsistent with analyses presented 
here. The ‘unrelated’ sample set consisting of 40,722 samples refers 
to a subset of the 53,831 samples of individuals who are unrelated with 
a threshold of third degree (less closely related than first cousins), 
identified using the PC-AiR method84. Exact numbers of samples used 
in each analysis are listed in Supplementary Table 18.

High-coverage whole-exome sequencing in BioMe study
From around 10,000 BioMe study samples present in TOPMed freeze 8, 
we randomly selected 1,000 samples for which whole-exome sequenc-
ing (WES) data were available. These samples were whole-exome 
sequenced using Illumina v4 HiSeq 2500 at an average 36.4× depth. 
Genetic variants were jointly called using the GATK v.3.5.0 pipeline 
across all 31,250 BioMe samples with WES data. A series of quality 
control filters, known as the Goldilocks filter, were applied before data 
delivery to the Charles Bronfman Institute for Personalized Medicine 
(IPM). First, a series of filters was applied to particular cells comprising 
combinations of sites and samples—that is, genotypic information for 
one individual at one locus. Quality scores were normalized by depth 
of coverage and used with depth of coverage itself to filter sites, using 
different thresholds for SNVs and short indels. For SNVs, cells with 
depth-normalized quality scores less than 3, or depth of coverage less 
than 7 are set to missing. For indels, cells with depth-normalized quality 
scores less than 5, or depth of coverage less than 10 are set to missing. 
Then, variant sites were filtered, such that all samples carrying varia-
tion have heterozygous (0/1) genotype calls and all samples carrying 
heterozygous variation fail the allele balance cut-off; these sites were 
removed from the dataset at this stage. The allele balance cut-off, as 
with the depth and quality scores used for cell filtering above, differed 
depending on whether the site was a SNV or an indel: SNVs require at 
least one sample to carry an alternative allele balance ≥ 15%, and indels 
require at least one sample to carry an alternative allele balance ≥ 20%. 
These filters resulted in the removal of 441,406 sites, leaving 8,761,478 
variants in the dataset. After subsetting to 1,000 randomly selected 
individuals, we had 1,076,707 autosomal variants that passed qual-
ity control. We further removed variants with call rate <99% (that is,  
missing in more than 10 individuals), reducing the number of analysed 
autosomal variants to 1,044,517. The comparison results of TOPMed 
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WGS and BioMe WES data are described in Supplementary Informa-
tion 1.3.1.

Low-coverage WGS and high-coverage WES in the Framingham 
Heart Study
Investigators of the Framingham Heart Study (FHS) evaluated WGS 
data from TOPMed in comparison with sequencing data from CHARGE 
Consortium WGS and WES datasets. Supplementary Table 19 provides 
the counts and depth of each sequencing effort. The overlap of these 
three groups is 430 FHS study participants, on whom we report here. 
We use a subset of 263 unrelated study participants to calculate the 
numbers of singletons and doubletons, MAF, heterozygosity and all 
rates, to avoid bias from the family structure. Supplementary Infor-
mation 1.3.2 provides further detail on the sequencing efforts and a 
detailed description of the comparison results.

Identifying pLOF variants
pLOF variants were identified using Loss Of Function Transcript Effect 
Estimator (LOFTEE) v.0.3-beta85 and Variant Effect Predictor (VEP) 
v.9486. The genomic coordinates of coding elements were based on GEN-
CODE v.2915. Only stop-gained, frameshift and splice-site-disturbing 
variants annotated as high-confidence pLOF variants were used in 
the analysis. The pLOF variants with allele frequency > 0.5% or within 
regions masked due to poor accessibility were excluded from analysis 
(see Supplementary Information 1.5 for details).

We evaluated the enrichment and depletion of pLOF variants (allele 
frequency < 0.5%) in gene sets (that is, terms) from Gene Ontology 
(GO)87,88. For each gene annotated with a particular GO term, we com-
puted the number of pLOF variants per protein-coding base pair, L, 
and proportion of singletons, S. We then tested for lower or higher 
mean L and S in a GO term using bootstrapping (1,000,000 samples) 
with adjustment for the gene length of the protein-coding sequence 
(CDS): (1) sort all genes by their CDS length in ascending order and 
divide them into equal-size bins (1,000 genes each); (2) count how 
many genes from a GO term are in each bin; (3) from each bin, sample 
with replacement the same number of genes and compute the average 
L and S; (4) count how many times sampled L and S were lower or higher 
than observed values. The P values were computed as the proportion 
of bootstrap samples that exceeded the observed values. The fold 
change of average L and S was computed as a ratio of observed values 
to the average of sampled values. We tested all 12,563 GO terms that 
included more than one gene. The P-value significance threshold was 
thus ~2 × 10−6. The enrichment and depletion of pLOF variants in public 
gene databases was tested in a similar way.

Sequencing depth at protein-coding regions
We compared sequencing depth at protein-coding regions in TOPMed 
WGS and ExAC WES data. The ExAC WES depth at each sequenced base 
pair on human genome build GRCh37 was downloaded from the ExAC 
browser website (http://exac.broadinstitute.org). When sequencing 
depth summary statistics for a base pair were missing, we assumed 
depth <10× for this base pair. Only protein-coding genes from consen-
sus coding sequence were analysed and the protein-coding regions 
(CDS) were extracted from GENCODE v.29. When analysing ExAC 
sequencing depth, we used GENCODE v.29 lifted to human genome 
build GRCh37. When comparing sequencing depth for each gene 
individually in TOPMed and ExAC, we used only genes present in both 
GRCh38 and GRCh37 versions of GENCODE v.29.

Novel genetic variants in unmapped reads
Analysis of unmapped reads was performed using 53,831 samples from 
TOPMed data freeze 5. From each sample, we extracted and filtered all 
read pairs with at least one unmapped mate and used them to discover 
human sequences that were absent from the reference. The pipeline 
included four steps: (1) per-sample de novo assembly of unmapped 

reads; (2) contig alignment to the Pan paniscus, Pan troglodytes, 
Gorilla gorilla and Pongo abelii genome references and subsequent 
hominid-reference-based merging and scaffolding of sequences pooled 
together from all samples; (3) reference placement and breakpoint 
calling; and (4) variant genotyping. The detailed description of each 
step is provided in Supplementary Information 1.7.

Identification of CYP2D6 alleles using Stargazer’s genotyping 
pipeline
Details of the Stargazer genotyping pipeline have been described previ-
ously43. In brief, SNVs and indels in CYP2D6 were assessed from a VCF 
file generated using GATK-HaplotypeCaller89. The VCF file was phased 
using the program Beagle90 and the 1000 Genomes Project haplotype 
reference panel. Phased SNVs and indels were then matched to star 
alleles. In parallel, read depth was calculated from BAM files using 
GATK-DepthOfCoverage89. Read depth was converted to copy number 
by performing intra-sample normalization43. After normalization, struc-
tural variants were assessed by testing all possible pairwise combina-
tions of pre-defined copy number profiles against the observed copy 
number profile of the sample. For new SVs, breakpoints were statisti-
cally inferred using changepoint91. Information regarding new SVs was 
stored and used to identify subsequent SVs in copy number profiles. 
Output data included individual diplotypes, copy number plots and a 
VCF of SNVs and indels that were not used to define star alleles.

Genome-wide distribution of genetic variation
Contiguous segment analysis. We excluded indels and multi-allelic 
variants, and categorized the remaining variants as common (allele 
frequency ≥ 0.005) or rare (allele frequency < 0.005), and as coding or 
noncoding based on protein-coding exons from Ensembl 9492. Variant 
counts were analysed across 2,739 non-empty (that is, with at least one 
variant) contiguous 1-Mb chromosomal segments, and counts in seg-
ments at the end of chromosomes with length L < 106 bp were scaled 
up proportionally by the factor 106 × L−1. For each segment, the coding 
proportion, C, was calculated as the proportion of bases overlapping 
protein-coding exons. The distribution of C is fairly narrow, with 80% of 
segments having C ≤ 0.0195, 99% of segments have C ≤ 0.067 and only 
3 segments having C ≥ 0.10. Owing to the significant negative correla-
tion between C and the number of variants in a segment, and potential 
mapping effects, we use linear regression to adjust the variant counts 
per segment according to the model count = β × C + A + count_adj, where 
A is the proportion of segment bases overlapping the accessibility mask 
(Supplementary Information 1.5). Unless otherwise noted, we present 
analyses and results that use these adjusted count values.

Concatenated segment analysis. Distinct base classifications were 
defined by both coding and noncoding annotations (based on En-
sembl 9492) and CADD in silico prediction scores21 (downloaded from 
the CADD server for all possible SNVs). For each base, we used the 
maximum possible CADD score (when using the minimum CADD score, 
results were qualitatively the same). Bases beyond the final base with 
a CADD score per chromosome were excluded. This resulted in six 
distinct types of concatenated segments: high (CADD ≥ 20), medium 
(10 ≤ CADD < 20) and low (CADD < 10) CADD scores for coding and 
similarly for noncoding variants. Common (allele frequency ≥ 0.005) 
and rare (allele frequency < 0.005) variant counts were then calculated 
across these concatenated segments. Multi-allelic variants and those 
in regions masked due to accessibility were excluded. Counts in seg-
ments at the end of chromosomes were scaled up as in the contiguous 
analysis.

Singleton clustering analysis
Data. From the TOPMed freeze 5 dataset, we selected a subset of 1,000 
unrelated individuals of African ancestry, 1,000 unrelated individuals 
of East Asian ancestry and 1,000 unrelated individuals of European 
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ancestry, with the ancestry of each individual inferred across 7 global 
reference populations using RFMix93. In each of these subsamples, 
we recalculated the allele counts of each SNV and extracted SNVs that 
were singletons within that sample, then calculated the distance to 
the nearest singleton (either upstream or downstream from the focal 
singleton) occurring within the same individual. Note that a singleton 
defined here is not necessarily a singleton in the entire TOPMed freeze 
5 dataset. We chose to limit the size of each population subsample to 
n = 1,000 for three reasons: first, to ensure the different population 
subsamples carried roughly a similar number of singletons; second, 
to ensure homogeneous ancestry within each subsample so that our 
analysis of singleton clustering patterns was not an artefact of admixed 
haplotypes; third, to limit the incidence of recurrent mutations at hy-
permutable sites, which can alter the underlying mutational spectrum 
of singleton SNVs in large samples94. Although the TOPMed Consortium 
sequenced individuals from several other diverse population groups 
(for example, Samoan, Hispanic/Latino individuals), the majority of 
these individuals were of admixed ancestry and the singletons from 
these smaller samples reflected mutations that have accumulated 
over a longer period of time, so the mutation spectra and genome-wide 
distributions of these samples would be more susceptible to distortion 
by other evolutionary processes such as selection and biased gene 
conversion31.

Simulations. To quantify the effects of external branch length het-
erogeneity on singleton clustering patterns, we used the stdpopsim 
library95 to simulate variants across chromosome 1 for 2,000 Euro-
pean and 2,000 African haploid samples, using a previously reported 
demographic model10. Simulations were performed using a per-site, 
per-generation mutation rate96 of 1.29 × 10−8, and using recombination 
rates derived from the HapMap genetic map97. Because our aim was to 
compare these simulated singletons to unphased singletons observed 
in the TOPMed data, we randomly assigned each of the 2,000 haploid 
samples from each population into one of 1,000 diploid pairs, and 
calculated the inter-singleton distances per diploid sample, ignoring 
the haplotype on which each simulated singleton originated.

Mixture model parameter estimation. The distribution of singletons 
suggest an underlying nonhomogeneous Poisson process, where the 
rate of incidence varies across the genome. In other areas of research, 
it has been shown that the waiting times between events arising from 
other nonhomogeneous Poisson processes, such as volcano eruptions 
or extreme weather events, can be accurately modelled as a mixture 
of exponential distributions98,99. Taking a similar approach, we model 
the distribution of inter-singleton distances across all Si singletons in 
individual i as a mixture of K exponential component distributions  
(fk(di;θi,k)), given by:

∑f d λ θ λ f d θ( ; , ) = ( ; )i i i
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where θi,1 < θi,2 < … < θi,K and λi,k = Si,k/Si is the proportion of singletons 
arising from component k, such that λ∑ = 1k
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We estimate the parameters of this mixture (λi,1, …, λi,K, θi,1, …, θi,K) 
using the expectation–maximization algorithm as implemented in the 
mixtools R package100. Code for this analysis is available for download 
from the GitHub repository101. To identify an optimal number of mixture 
components, we iteratively fit mixture models for increasing values 
of K and calculated the log-likelihood of the observed data D given the 
parameter estimates λ λ θ θ( ˆ , ..., ˆ , ˆ , ..., ˆ )i i K i i K,1 , ,1 , , stopping at K compo-
nents if the P value of the likelihood ratio test between K − 1 and K com-
ponents was >0.01 (χ2 test with two degrees of freedom). The 
goodness-of-fit plateaued at four components for the majority of 
individuals, so we used the four-component parameter estimates from 
each individual in all subsequent analyses.

Now let ki,j indicate which of the four processes generated singleton 
j in individual i. We calculated the probability of being generated by 
process k as:
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We then classified the process-of-origin for each singleton according 
to the following optimal decision rule:

k p k dˆ = arg max ( | ).i j k i j, ∈{1,...,4} ,

Identification of mixture component hotspots. After assigning sin-
gletons to the most likely mixture component, we pooled singletons 
across individuals of a given ancestry group and counted the number 
of occurrences in each component in non-overlapping 1-Mb windows 
throughout the genome. We defined hotspots as the top 5% of 1-Mb bins 
containing the most singletons in a component in each ancestry group.

Modelling the relationship between clustering patterns and genom-
ic features. In each 1-Mb window, we calculated the average signal for 
12 genomic features (H3K27ac, H3K27me3, H3K36me3, H3K4me1, 
H3K4me3, H3K9ac, H3K9me3, exon density, DNase hypersensitivity, 
CpG island density, lamin-associated domain density and recombina-
tion rate), using the previously described source datasets31. For each 
mixture component, we then applied the following negative binomial 
regression model to estimate the effects of each feature on the density 
of that component in 1-Mb windows:

Y β β X β Xlog( ) = + + ... +a k w w w, , 0 1 1, 12 12,

Where Ya,k,w is the number of singletons in ancestry subsample a of 
mixture component k in window w and X1,w, …, X12,w are the signals of 
each of the 12 genomic features in corresponding window w.

Evolutionary genetics of individuals with diverse ancestry
Rare variant sharing. In these analyses, we used 39,722 unrelated in-
dividuals that had provided consent for population genetics research. 
Each individual was grouped into their TOPMed study, except for in-
dividuals from the AFGen project, which were treated as one study 
(Extended Data Tables 1, 2). Individuals from the FHS and ARIC projects 
individuals, which overlapped with the AFGen project, remained in 
their respective studies and were not grouped into the AFGen pro-
ject. Individuals for whom the population group was either missing 
or ‘other’ were removed from the analysis. We then removed all indels, 
multi-allelic variants and singletons from the remaining 39,168 individu-
als. Each study was then split by population group. We excluded studies 
that had fewer than 19 samples from the analysis; however all 39,168 
samples were used to define singleton filtering. We used the Jaccard 
index102, J, to determine the intersection of rare variants (2 ≤ sample 
count ≤ 100) between two individuals divided by the union of the rare 
variants of that pair, where the sample count indicates the number 
of individuals with either a heterozygote or homozygote variant. We 
then determined the average J value between and within each study.

To confirm that J is not biased by sample size, we randomly sampled 
500 individuals from each of two studies with European (AFGen and 
FHS) and African (COPDGene and JHS) population groups in TOPMed 
freeze 3, without replacement. We then recalculated J between and 
within these randomly sampled studies, considering alternative allele 
counts between 2 and 100 within these 2,000 individuals.

Haplotype sharing. We used the RefinedIBD program103 to call seg-
ments of identical-by-descent (IBD) sharing of length ≥ 2 cM on the 
autosomes using passing SNVs with MAF > 5%. All 53,831 samples were 
included in this analysis, and we used genotype data phased with 



Article
Eagle281. As IBD logarithm of odds (LOD) scores are often deflated in 
populations with strong founding bottlenecks, such as the Amish, we 
used a LOD score threshold of 1.0 instead of the default 3.0. To account 
for possible phasing and genotyping errors, we filled gaps between 
IBD segments for the same pair of individuals if the gap had a length 
of at most 0.5 cM and at most one discordant genotype. As a result of 
the lower LOD threshold, regions with a low variant density can have 
an excess of apparent IBD segments. We therefore identified regions 
with highly elevated levels of detected IBD using a previously described 
procedure104 and removed any IBD segments that fell wholly within 
these regions.

We divided the data by study and by population group within each 
study. In the analyses of IBD sharing levels and recent effective size, 
we did not include studies without appropriate consent or population 
groups with fewer than 80 individuals within a study. We calculated the 
total length of IBD segments for each pair of individuals, and we aver-
aged these totals within each population group in a study and between 
each pair of population-by-study groups. We also estimated recent 
effective population sizes for each group using IBDNe104.

Demographic estimation under selection at linked sites. We se-
lected 2,416 samples from the TOPMed data freeze 3 that (1) had a high 
percentage of European ancestry; (2) were unrelated; and (3) gave 
consent for population genetics research. More detailed information 
about ancestry estimation and filters is provided in Supplementary 
Information 1.10.

We performed several steps to filter the genome for high-quality 
neutral sites, which were based on a previously described ascertainment 
scheme30 (Supplementary Information 1.10). After filtering, positions 
in the genome were annotated for how strongly affected they were by 
selection at linked sites using the background selection coefficient, 
McVicker’s B statistic60. We used all sites annotated with a B value for 
performing general analyses. However, when performing demographic 
inferences, we limited our analyses to regions of the genome within the 
top 1% of the genome-wide distribution of B (B ≥ 0.994). These sites 
correspond to regions of the genome inferred to be under the weakest 
amount of background selection (that is, under the weakest effects of 
selection at linked sites). Sites in the genome were also polarized to 
ancestral and derived states using ancestral annotations called with 
high-confidence from the GRCh37 e71 ancestral sequence. After keep-
ing only polymorphic bi-allelic sites, we had 20,324,704 sites, of which 
191,631 had B ≥ 0.994. We also identified 91,177 fourfold degenerate 
synonymous sites (irrespective of B) that were polymorphic (bi-allelic) 
and had high-confidence ancestral and derived states.

We performed demographic inference with the moments105 pro-
gram by fitting a model of exponential growth with three parame-
ters (NEur0, NEur, TEur) to the site-frequency spectrum. This included 
two free parameters: the starting time of exponential growth (TEur) 
and the ending population size after growth (NEur). The ancestral 
size parameter (that is, the population size when growth begins),  
NEur0, was kept constant in our model such that the relative starting size 
of the population was always 1. We applied the inference procedure 
to either fourfold degenerate sites or sites with B ≥ 0.994. The site 
frequency spectrum used for inference was unfolded and based on 
the polarization step described above. The inference procedure was 
fit using sample sizes (2N) of 1,000, 2,000, 3,000, 4,000 and 4,832 
chromosomes. To convert the scaled genetic parameters output by the 
inference procedure to physical units, we used the resulting theta (also 
inferred by moments) and a mutation rate106 of 1.66 × 10−8 to generate 
corresponding effective population sizes (Ne). To convert generations 
to years, we assumed a generation time of 25 years. The 95% confidence 
intervals were generated by resampling the site frequency spectrum 
1,000 times and using the Godambe information matrix to generate 
parameter uncertainties107. A more detailed description is available 
in Supplementary Information 1.10.

Selection. We started with 39,649 unrelated individuals selected from 
the TOPMed data freeze 5 for which we had consent for population 
genetic analyses (Extended Data Table 3). As the singleton density 
score (SDS) requires thousands of samples and a baseline demographic 
history, we subset our data by population group and limited our popula-
tion analysis to those population groups for which we had well-studied 
demographic histories: broadly European, broadly African and broadly 
East Asian. To avoid potential problems introduced by admixture, we 
required that our samples had more than 90% inferred European,  
African or East Asian ancestry as inferred by a seven-way ancestry in-
ference pipeline (Supplementary Information 1.11). This left n = 21,196  
European samples, n = 2,117 African samples and n = 1,355 East Asian 
samples. We specifically excluded Amish samples from the European 
group as they are a unique founder population. We analysed each popu-
lation separately. Only bi-allelic sites with an unambiguous ancestral 
state, inferred using the WGSA pipeline108, were used. Sites near chro-
mosome boundaries, near centromeres and in regions with poor acces-
sibility were excluded. We used the previously published R scripts61 to 
perform all demographic history simulations and SDS computations 
in each population. We then normalized raw SDS scores within 1% fre-
quency bins and treated the normalized scores as Z-scores to convert 
them to P values as described previously61. Raw and normalized SDS 
scores are included in Supplementary Data 2.

TOPMed imputation panel
Construction. We divided each autosomal chromosome and the  
X chromosome into overlapping chunks (with chunk size of 1 Mb each 
and with 0.1 Mb overlap between consecutive chunks), and then phased 
each of the chunks using Eagle v.2.481. We removed all singleton sites and 
compressed the haplotype chunks into m3vcf format109. Afterwards, 
we ligated the compressed haplotype chunks for each chromosome 
to generate the final reference panel.

Evaluation of imputation accuracy. For all TOPMed individuals, ge-
netic ancestries were estimated using the top four principal compo-
nents projected onto the principal component space of 938 Human 
Genome Diversity Project (HGDP) individuals using verifyBamID2110. 
For each TOPMed individual, we identified the 10 closest individuals 
from 2,504 individuals from the 1000 Genomes Project phase 3 based 
on Euclidean distances in the principal component space estimated 
by verifyBamID2. If all of the 10 closest individuals from the 1000 Ge-
nomes Project phase 3 belonged to the same super-population—among  
African, admixed American, East Asian, European and South Asian pop-
ulations—we estimated that the TOPMed individual also belonged to 
that super-population. Among the 97,256 reference panel individuals, 
90,339 (93%) were assigned to a super-population, with the following 
breakdown: African, 24,267 individuals; admixed American, 17,085 in-
dividuals; European, 47,159 individuals; East Asian, 1,184 individuals; 
South Asian, 644 individuals. We randomly selected 100 individuals 
from each super-population in the BioMe TOPMed study, and selected 
markers on chromosome 20 present on the Illumina HumanOmniEx-
press (8v1-2_A) array. The selected genotypes were phased with Eagle 
2.4.181, using the 1000 Genomes Project phase 3 (n = 2,504), Haplotype 
Reference Consortium (HRC, n = 32,470) and TOPMed (n = 96,756) refer-
ence panels, excluding the 500 individuals from the TOPMed reference 
panel. The phased genotypes were imputed using Minimac4111 from 
each reference panel, and the imputation accuracy was estimated as 
the squared correlation coefficient (r2) between the imputed dosages 
and the genotypes calls from the sequence data. The allele frequencies 
were estimated among all TOPMed individuals estimated to belong 
to the same super-population, and the r2 values were averaged across 
variants in each MAF category. Variants present in 100 sequenced in-
dividuals but absent from the reference panels were assumed to have 
r2 = 0 for the purposes of computing the average r2. The minimum MAF 



to achieve r2 > 0.3 was calculated from the average r2 in each MAF cat-
egory by finding the MAF that crosses r2 = 0.3 using linear interpolation. 
The average number of rare variants (MAF < 0.5%) and the fraction of 
imputable rare variants (r2 > 0.3) were calculated based on the number 
of non-reference alleles in imputed samples above and below the mini-
mum MAF, assuming Hardy–-Weinberg equilibrium.

Imputation of the UK Biobank to the TOPMed panel and associa-
tion analyses. After phasing the UK Biobank genetic data (carried out 
on 81 chromosomal chunks using Eagle v.2.4), the phased data were 
converted from GRCh37 to GRCh38 using LiftOver112. Imputation was 
performed using Minimac4111.

We compared the correlation of genotypes between the 
exome-sequencing data released by the UK Biobank (following their 
SPB pipeline113) and the TOPMed-imputed genotypes. The comparison 
assessed 49,819 individuals and 3,052,260 autosomal variants that were 
found in both the exome-sequencing and TOPMed-imputed datasets 
(matched by chromosome, position and alleles, and with an imputa-
tion quality of at least 0.3 in the TOPMed-imputed data). We split the 
variants into MAF bins for which the MAF from the exome data was 
used to define the bins, and computed Pearson correlations averaged 
within each bin.

We tested single pLOF, nonsense, frameshift and essential splice-site 
variants85,86 for association with 1,419 PheCodes constructed from com-
posites of ICD-10 (International Classification of Diseases 10th revision) 
codes to define cases and controls. Construction of the PheCodes has 
been previously described114. We performed the association analysis in 
the ‘white British’ individuals, which resulted in 408,008 individuals 
after the following quality control metrics were applied: (1) samples 
did not withdraw consent from the UK Biobank study as of the end of 
2019; (2) ‘submitted gender’ matches ‘inferred sex’; (3) phased autoso-
mal data available; (4) outliers for the number of missing genotypes or 
heterozygosity removed; (5) no putative sex chromosome aneuploidy; 
(6) no excess of relatives; (7) not excluded from kinship inference; 
and (8) in the UK Biobank defined the ‘white British’ ancestry subset. 
To perform the association analyses, we used a logistic mixed model 
test implemented in SAIGE114 with birth year and the top four principal 
components (computed from the white British subset) as covariates. 
For the pLOF burden tests, for each autosomal gene with at least two 
rare pLOF variants (n = 12,052 genes), a burden variable was created in 
which dosages of rare pLOF variants were summed for each individual. 
This sum of dosages was tested for association with the 1,419 traits 
using SAIGE. The same covariates used in the single-variant tests were 
included. For both the single-variant and the burden tests, we used 
5 × 10−8 as the genome-wide significance threshold.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
A detailed description of the TOPMed participant consents and data 
access is provided in Box 1. TOPMed data used in this manuscript are 
available through dbGaP. The dbGaP accession numbers for all TOPMed 
studies referenced in this paper are listed in Extended Data Tables 2, 3. 
A complete list of TOPMed genetic variants with summary level infor-
mation used in this manuscript is available through the BRAVO variant 
browser (bravo.sph.umich.edu). The TOPMed imputation reference 
panel described in this manuscript can be used freely for imputation 
through the NHLBI BioData Catalyst at the TOPMed Imputation Server 
(https://imputation.biodatacatalyst.nhlbi.nih.gov/). DNA sequence 
and reference placement of assembled insertions are available in VCF 
format (without individual genotypes) on dbGaP under the TOPMed 
GSR accession phs001974.

Code availability
All code for TOPMed data quality checks and variant calling is avail-
able at https://github.com/statgen/topmed_variant_calling. Code 
for the WGS and WES data comparisons is available at https://github.
com/statgen/sequencing_comparison. Code for modelling the sin-
gleton distance distribution is available at https://github.com/carjed/
topmed_singleton_clusters. Code for identifying novel genetic vari-
ants in unmapped reads is available at https://github.com/nygenome/
topmed_unmapped. Code for gene-burden association tests using 
rare pLOF variants is available at https://github.com/sgagliano/Gen-
eBurden. Code for the imputed and genotype UK Biobank WES data 
comparisons is available at https://github.com/sgagliano/UKB_WES_
vs_TOPMed_IMP.
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Extended Data Fig. 1 | Principal components of the genotypic data from 
freeze 5 pooled across studies. a, Three-dimensional plot of principal 
components (PC) 1, 2 and 3. b, Parallel coordinate plot colour-coded by 
categories defined according to race, ancestry and/or ethnic information 

provided by the study participants and/or by study investigators according to 
study inclusion criteria. Individuals with missing values for ancestry or 
ethnicity are excluded.
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Extended Data Fig. 2 | Distribution of genetic variants across the genome. 
After filtering to focus on regions of the genome that are accessible through 
short-read sequencing, most contiguous 1-Mb segments show similar levels of 
common (5,141 ± 1,298 variants with MAF ≥ 0.5%) and rare variation 
(120,414 ± 19,862 variants with MAF < 0.5%). From top to bottom, panel 1 shows 

the levels of variation across the genome for common coding variants, panel 2 
for rare coding variants, panel 3 for common noncoding variants and panel 4 
for rare noncoding variants. Variation levels are represented by the Z-score 
(X-mean/s.d.) of the adjusted variant counts per 1-Mb contiguous segment for 
each variant category.



Extended Data Fig. 3 | Characteristics of singleton clustering patterns.  
a, Mutational spectra of singletons assigned to each of the four mixture 
components, separated by population. b, Density of mixture component 2 
singletons in 1-Mb windows across the genome. Windows with mixture 

component 2 singleton counts above the 95th percentile (calculated 
genome-wide per population subsample) are classified as hotspots and are 
highlighted in green.
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Extended Data Fig. 4 | Estimates of recent effective population size by 
population group. Each line represents the estimate from a single study, 
considering only individuals with an annotated population group. The 
included studies are the same as those in Supplementary Fig. 31. The Amish and 

Samoan results are individually identified due to their distinct recent 
population size trajectories. Ne, effective population size. The overlay view is 
shown in Supplementary Fig. 33.



Extended Data Table 1 | TOPMed projects and participating parent studies included in genotype data freeze 5

See Supplementary Information 1.1.2 for definitions of TOPMed projects and parent studies. AF, atrial fibrillation; CAC, coronary artery calcification; HLB, general heart, lung and blood;  
VTE, venous thromboembolism. Note, some case-only collections are included. See Extended Data Table 2 for study abbreviations and additional study information. 
*Primary phenotype focus for TOPMed samples. 
†Some TOPMed studies participate in more than one project.
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Extended Data Table 2 | Studies that contributed to the freeze-5 genotype call set

Each study has a dbGaP accession for the TOPMed sequence data and genotypes, although some also have pre-existing parent study accessions. Phenotypic data are mainly in the parent 
accessions, although some are in the TOPMed accessions. See also Supplementary Figs. 39 and 40 for information about the ancestral and/or ethnic and sex composition of each study.  
The relationships between these studies and their TOPMed project(s) are summarized in Extended Data Table 1. All of the TOPMed and parent study accessions in this table have been released 
on dbGaP (see https://www.ncbi.nlm.nih.gov/gap/?term=TOPMed and https://www.nhlbiwgs.org/group/project-studies?field_is_this_a_value=sub). 
*Study name as it appears in dbGaP, with ‘NHLBI TOPMed:’ prepended. 
†Approximate sample size for freeze-4 and freeze-5 releases combined.

https://www.ncbi.nlm.nih.gov/gap/?term=TOPMed
https://www.nhlbiwgs.org/group/project-studies?field_is_this_a_value=sub


Extended Data Table 3 | TOPMed study-consent groups used in analyses and tools

Consent group data use limitations are defined as follows: GRU, general research use; HMB, limited to health, medical and/or biomedical purposes; DS, use of the data must be related to 
specified disease. Consent group data use limitation modifiers include the following: IRB, requestor must provide documentation of local IRB approval; PUB, requestor agrees to make results 
of studies using the data available to the larger scientific community; COL, requestor must provide a letter of collaboration with the primary study investigator(s); NPU, use of the data are 
limited to not-for-profit organizations; MDS, use of the data includes methods development research; GSO, use of the data are limited to genetic studies only. AF, atrial fibrillation; ASC-RF, 
arteriosclerosis and its risk factors; CVD, cardiovascular disease; CS, chronic obstructive pulmonary disease (COPD) and smoking; DHD, diabetes and heart disease; FDO, focus disease only (in 
JHS, FDO is blood pressure, heart/CVD, obesity, diabetes, kidney disease, or lung disease and risk factors); HCR, high blood pressure and related cardiovascular-renal disease; HLBS, heart, lung, 
blood and sleep disorders; ILD, interstitial lung disease; LD, lung disease; PFIB, pulmonary fibrosis; PUL, pulmonary, interstitial lung disease; RD, related disorders; SAR, sarcoidosis; SCD, sickle 
cell disease.
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Extended Data Table 4 | Coverage, sequencing depth and number of variants

*Variant was not present in dbSNP build 149, the most recent dbSNP version without TOPMed submissions.



Extended Data Table 5 | pLOF variants in 53,831 individuals
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