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Abstract

Dynamics of Quantum Solitons

by

Daniel Ellis Davies

Solitons are a class of solution to equations that appear in the study of physics, partic-

ularly the study of fields and field theory. In the study of quantum field theory, solitons

often present themselves as heavy degrees of freedom, and are therefore approached

from a semi-classical perspective. Traditionally, the soliton is considered as the back-

ground field with which perturbative quantum states are defined with respect to. In

this dissertation, we present the position that this approach is flawed. In particular, we

suggest that using classical solitons as a starting point of analysis only narrowly covers

the scope of the possibilities for solitons to manifest in quantum field theories. We show

that there are classical solitons of infinite mass which in the quantum theory have their

mass rendered finite. We additionally describe circumstances where quantum effects are

large enough to significantly alter the net forces which act upon solitons, compared to

the classical case. The conclusion is simple: quantum field theory generically contains

a much larger space of dynamically accessible field configurations than classical field

theory, and this facilitates the existence of quantum solitons that would not exist in the

classical case.
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Chapter 1

Introduction

To begin, we shall discuss what is meant by the terms “soliton” or “extended

object” within the greater context of field theory. The terms are in a sense interchange-

able, and one can make this precise by using effective field theory. In this chapter,

we will begin with an overview of classical field theories, with example model theories

given that possess and do not possess solitons as solutions to their equations of motion.

Familiarity with classical field theory is assumed.

Then, we shall discuss, in not as many examples, how vibrational modes occur

in the vicinity of solitons. We will emphasize the conditions that these vibrations must

obey to be considered stable. They are of course the result of perturbations to the

equations of motion describing solitons, and therefore relevant to the study of classical

scattering between solitons and waves, or solitons and other solitons. The discussion

will generalize nicely to the quantum theory.
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Before a rigorous approach to the quantum theory of solitons and extended ob-

jects is considered, their relevance to particular quantum field theory models of interest

will be examined. These models will be the quantum descendants of the classical field

theory models discussed prior, but emphasis will be placed on the particular details of

the quantum theory which make the study of their solitons especially interesting and

productive.

Finally in this chapter, we discuss the deceptively simple matter of particles in

quantum field theory, how to construct them as states, and their relation to the classical

wave solutions to the equations of motion. This discussion will make clear the difficul-

ties in formalizing an equivalent construction for the soliton in quantum theory, and

motivate the investigation in the further chapters. We will then discuss the formalism

of the quantum effective action, and how it might be used to study solitons.

1.1 Solitons in Classical Physics

In short, a soliton is a non-dissipative solution to the Euler-Lagrange equations

of motion for some field theory model, and especially one which is physically confined

to a region of space. The term dates to an observation of the behavior of water waves

propagating in a rectangular channel that boats passed through[1]. The speed of wa-
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ter waves (specifically those galled “gravity waves”) that propagate on the surface of a

body of water depends on the frequency of the wave, as well on geometric properties

of the channel. For gravity waves in an unbounded, infinitely deep fluid, the velocity

of wave propagation is U =
√
g/4k, with g the gravitational acceleration and k the

wave number[2]. Thus any wave pulse that is localized in space, and therefore contains

waves of all values k, will at some later time separate and diffuse as the waves of smaller

k ‘outrun’ the waves of larger k, deforming the wave packet. Hence ocean waves are

diffusive: they spread their energy out over time.

When the depth of the waterway h is not approximately infinity ( hk >> 1)

the wave speed formula changes. In fact for long gravity waves, those with hk << 1, the

wave speed becomes exactly U =
√
gh. Thus for sufficiently long wavelength gravity

waves, the wave speed is identical for all k and a wave pulse maintains its shape as

it traverses a channel. The full formula, derived in Fluid Mechanics by Landau and

Lifshitz[2], is

U =

√
g

4k tanh kh

(
tanh kh+

kh

cosh2 kh

)
(1.1)

In this case of water waves of small k flowing in a shallow channel, the wave does not

begin to widen and dissipate (except perhaps by the action of viscous forces). It appears

solitary, unlike ocean waves at sea, or in the harbor. Together from “solitary” and the

Latin suffix “-ion” denoting action or condition, the word soliton is born: that which

has condition of being solitary. In other words, a lone wave or disturbance.
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New meaning has been added to the term since its coinage in 1834. Pulses

of light for example, travel with a speed independent of wave number in linear media,

and are thus localized and non-dissipative. We do not call these solitons. A soliton

has a secondary characteristic, in that it is a stable thing to small perturbations in

shape[3]. There is no reactive force on light pulses in linear media that will bring the

pulse back to some characteristic width if it is disturbed. For the water wave there are:

surface tension and gravitational potential. In what follows we shall investigate these

non-dissapative waves in a relativistic context, and take special care to illustrate that

they have a preferred size.

1.1.1 The Kink

From this point forward we will restrict the discussion to the discussion of

Lagrangian field theories. Of particular importance is the theory of the single scalar

field, denoted φ. The possible Lagrangian density comes in the form

L =
1

2
(∂φ)2 − V (φ) (1.2)

where the potential V (φ) is an even function of φ, and in more than three spacetime

dimensions will be restricted to the form of a quartic polynomial. In lower dimensions

this is unnecessary, e.g. in two spacetime dimensions any form of V (φ) is physically

meaningful in the quantum theory, so long as a global minima exists. These details are

cursory, so we will restrict ourselves to the so-called φ4 model presently:

V (φ) = −µ
2

2
φ2 +

λ

4
φ4 +

µ4

4λ
(1.3)
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In two spacetime dimensions, the equation of motion for this field is

∂2t φ− ∂2xφ− µ2φ+ λφ3 = 0 (1.4)

The trivial, stable, zero-energy “vacuum” solution is φ = ±
√
µ2/λ. Perturbations from

this vacuum spate may be labeled η (i.e. η = ϕ ∓ µ/
√
λ), whose equation of motion

become

∂2t η − ∂2xη + 2µ2η ± 3µ
√
λη2 + λη3 = 0 (1.5)

Assuming the amplitude of η is small compared to µ/
√
λ, the last two terms may be

neglected in a first order approximation. The result is the solution for a massive wave,

for example if A << µ we have

η =
A√
λ
ei(kx−ωt) (1.6)

ω =
√
k2 + 2µ2 (1.7)

Perturbations from this pure wave solution can be studied. Suppose a wave of

amplitude B/
√
λ, frequency ν and wave number q is overlaid on top of solution (1.6).

Supposing B << A << µ, the leading order spectral condition (linear in the amplitude

B) can be derived:

ν =
√
q2 − 6µA (1.8)

Clearly, if the wavelength of the second order perturbation is sufficiently long, ν may

become imaginary and the amplitude B grows exponentially over time. This is actually

not totally accurate, as we have discovered a problem with perturbation theory known as

the secular divergence. Such problems also arise in next-to-leading-order approximations
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of the motion of a simple pendulum[4]. The pendulum motion does not grow over time,

nor does the amplitude of the disturbance η. Secular divergences may be nullified by

assuming the values ω and k to be functions of µ and λ. For more information the reader

is referred to José and Saletan’s text Classical Dynamics: A Contemporary Approach[4].

The point is that all pertubations of the vacuum solution will be sensitive

to the fact that there lies another minima to the potential. Large enough amplitude

waves may even push the field φ from one minima to another in a particular region.

When this happens, we form what are known as “kinks.” They are the first solitons we

shall encounter. The singular kink, which transitions from vacuum solution −µ/
√
λ at

x = −∞ to +µ/
√
λ at x = +∞, is given by the formula

φK(x, t) =
µ√
λ
tanh

(
µ(x− x0)√

2

)
(1.9)

which is a static, finite energy configuration, localized at x = x0, with characteristic

size ∼ µ−1. It satisfies equation (1.4). The total energy of this configuration is

MKink =
µ3

√
8

3λ
(1.10)

The Anti-Kink, which is just the configuration multiplied by −1, has the same mass.

The solution for a moving (Anti-)Kink may be achieved via Lorentz transformation.

About 92% of the total energy is stored within a distance
√
2µ−1 of the position x0.

We see that parametrically, the Kink width is of the same order as the inverse

mass of the wave solutions η described previously, however the kink mass is inversely
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related to the quartic coupling constant λ. This is a generic property of solitons, as we

will see with the next few examples. Naively, this means that for large enough λ (here

λ has the same dimensions as µ2, so we really mean to say µ2/λ << 1), the lowest

energy degrees of freedom in this model will be comprised of kink and anti-kink states,

rather than plane waves. Ultimately, this is due to the potential barrier between the

degenerate vacuua being very low. Of course we have not given the multi-kink solution,

nor described the forces between kinks and anti-kinks at any distance. The equations of

motion are not linear, so we cannot just superimpose the solutions. However if the kink

anti-kink separation is very large compared to µ−1, the superimposed solution becomes

approximately true and the resulting potential energy between the solitons drops off

quite fast. Therefore at large distances, the forces between kinks and anti-kinks are

very weak. They are also attractive[5]. Precisely what happens when a kink and anti-

kink scatter off one another is highly dependent upon the kinematics. There is no simple

description for Kink dynamics in the φ4 model; it is an ongoing area of research, driven

largely by advances in simulation[6].

1.1.2 The Global Vortex/String

The Vortex/String soliton is a solution to the equations of motion for a pair of

scalar fields in three/four spacetime dimensions. The string solution has translational

invariance along the axis of the string; the planar cross section of the string is in fact just

the vortex solution one dimension lower. For this reason we restrict the discussion to the

vortex case, and point out that the only difference between the two cases are the units
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of the constants µ and λ that appear in the potential. The formula for the vortex mass

becomes, in the four dimensional case, the tension of the string, or mass per unit length.

The Lagrangian density is best expressed in terms of a complex scalar field

Φ = (φ1 + iφ2)/
√
2:

L = ∂Φ†∂Φ+ µ2Φ†Φ− λ(Φ†Φ)2 − µ4

4λ
(1.11)

As before, the trivial vacuum solution is given by the condition Φ†Φ = µ2/2λ. The key

difference besides factors of 2, is that now there is an infinite degeneracy, described by

a parameter α. All solutions of the form Φ = µeiα/
√
2λ minimize the potential, and

have zero energy density everywhere. α parametrizes the unitary group U(1), and the

selection of a particular value of α is a topic of spontaneous symmetry breaking. The

U(1) parameter is a constant: it cannot vary from place to place, else energy is added

to the system by the derivative terms. Those higher energy excitations are massless,

described by localized perturbations in the parameter α: we call these Goldstone bosons.

The vortex is characterized by a non-trivial configuration for α which now de-

pends on the angular coordinate θ. If we suppose α = nθ for some integer n called the

winding number, and that as the radial coordinate r tends to infinity, the vacuum solu-

tion is satisfied asymptotically, then we have a stable configuration. More specifically,

consider the ansatz

Φ(r, θ) =
µ√
2λ
einθ

(
1− a

r
− b

r2
− c

r3
+ · · ·

)
(1.12)
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we can, order by order in powers of r−1, determine the coefficients a, b, c, . . . . In short,

the function in the parenthesis (1.12), which we call f(r), is to order 1/r2:

f(r) ∼ 1− n2

2µ2r2
+O

(
n4

µ4r4

)
(1.13)

This is an asymptotic solution. There is no exact formula for all r, and at r = 0 the

field must be pushed up the top of the potential barrier: Φ(0) = 0. Hence there is

an energy stored near the origin, with decreasing energy density away from the vortex

“core” (assumed to be of size µ−1). Here we have a problematic development. The total

energy contains a term of the form

MVortex =

∫ ∞

0
drr

πn2µ2f(r)2

λr2
+ · · · (1.14)

which is divergent. If the integral is cut off at some large radius R, the total vortex

mass would scale like

MVortex =
n2µ2

λ
ln (R) + Finite (1.15)

Similarly, the global string tension is divergent. The long range profile of the field may

be altered if a vortex or string of opposite winding number is introduced at some dis-

tance away R. In general if the total winding number of a collection of vortices is null,

the total energy will be finite. The interaction potentials between vortices of various

winding numbers will be complicated. At least for large distances compared to µ−1, we

should expect a logarithmic confining potential between a vortex/anti-vortex pair, and

the total energy to be finite. Over time the pair would attract and ultimately annihi-

late. We may generally conclude that for this classical field theory, the ansatz (1.12)
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corresponds to an infinite energy state, and thus is prohibited.

In fact this occurs even if f(r) = 1 for some finite r. No configuration of this

form is known which satisfies the equations of motion for f , but regardless of this fact

the term in (1.14) still diverges, even if a solution exists. It is worth noting that, just

as the kink, the vortex mass (even the finite parts) will scale like λ−1, but the overall

shape of the soliton depends only on the characteristic distance scale µ−1.

We may upgrade the U(1) symmetry to a gauge symmetry, i.e. we introduce

a vector field Aµ that couples to Φ via

Lgauge = Φ†ΦAµA
µ − 1

4g2
F 2 (1.16)

with F the usual field strength tensor. The lowest energy configuration for Aµ is one

which F vanishes. We call the field “pure gauge” in this limit. It is given by the

derivative of the group element einθ:

Aµ = e−inθ∂µe
inθ =

n

r
δθ,µ (1.17)

The contribution to the total energy of the first term in (1.16) is therefore exactly op-

posite the contribution from the term in equation (1.14). The total mass of this “local”

vortex or string (known as the Nielson-Olesen vortex), is therefore finite. The Goldstone

Bosons are removed from the spectrum by the gauge freedom of the field Aµ. Fluctua-

tions in Aµ interact with the vortex in nearly the same way as fluctuations in α.

10



1.1.3 The Schwarzschild Black Hole

The final example we will give of classical solitons is of the gravitational variety.

Special distinction should be made in this case. By a gravitational soliton, we mean a

stable, localized configuration of the gravitation fields (i.e. metric tensor components)

which is not supported by external sources, in this case meaning components of some

matter stress-energy tensor. This is not a universal definition: we adopt it here only

to make a special point that the gravitational field equations admit unique solutions

which are stable and inhomogeneous. The Gravitational (Einstein) field equations in

the absence of matter are

Rµν −
1

2
gµνR = 0 (1.18)

The solution known as the Schwarzschild metric can be read off from the line element.

For radial coordinate r greater than some free parameter rs:

ds2 =
(
1− rs

r

)
dt2 −

(
1− rs

r

)−1
dr2 − r2dΩ2

2 (1.19)

For an observer in the region r > rs it appears as though a curvature singularity appears

at r = 0, but since there are no timelike paths from the interior of the horizon to the

exterior, an external observer may never verify the validity of this metric for r < rs. We

do not mean to invoke a discussion of the black hole paradox here, only to illustrate that

the Schwarzschild solution is static and inhomogeneous, characterized by a scale rs which

is a free parameter. There is an important distinction between astrophysical black holes,

which formed from the collapse of a body (in which the horizon becomes physical at

some moment in the collapse, but not prior), and primordial black holes. The primordial
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black hole may be thought as a relic of some gravitational phase transition in the early

universe, forming as a result of some unknown quantum gravitational dynamics, and not

due to the collapse of an astrophysical object composed of matter. For the astrophysical

black hole, the parameter rs is related to the total rest energy plus gravitational potential

energy (here labeled as M) of the object which collapsed:

rs = 2GM (1.20)

There is a Hamiltonian formulation in gravitational physics in which one may

assign a “mass” to gravitation fields that are asymptotically flat[7]. This is called the

ADM mass, and for the Schwarzschild solution it is given by the formula (1.20). It is

a philosophical question, at least in the classical Einstein gravitational theory, whether

one wants to distinguish these two objects in one’s mind. Certainly there are no classical

measurements which can distinguish the two black holes, and one can only be certain of

the astrophysical origin of a black hole if one witnesses it emerge from a collapsing star.

However in the studies of quantum gravity, the distinction becomes a well-founded one,

rooted in solutions to quantum equations of motion. The notion of a singularity-free,

matter-free black hole being formed in an early phase transition is within the realm of

possibility, motivating the study of gravitational solitons.

1.1.4 Derrick’s Theorem

Besides relying on brute force calculations to solve non-linear field equations,

is there any way to predict whether stable soliton configurations exist, a priori? In fact

12



there is, and while the approach has its limitations, it is quite informative and may be

applied generally as long as the field theory model admits a Hamiltonian description.

We shall discuss the procedure and its results now, which are collectively referred to as

Derrick’s Theorem[8].

Suppose the existence of a Hamiltonian density for the field or set of fields

Φ, Aµ, etc. that may be separated into a sum of distinct terms, each with their own

tensor components. We’ll label the number of these components as i, and the density

as

H[Φ] = H0 +H1 + · · ·+Hi + · · · (1.21)

For example, the following terms would have i = 2.

∂µΦ∂
µΦ m2AµA

µ g2Φ2∂µA
µ (1.22)

And the following for i = 4.

FµνF
µν Φ∂2Φ FµνA

µ∂νΦ (1.23)

The index i counts the total number of derivatives plus the spin of the field variables.

A scalar potential would have i = 0. It is clear that the index must be even, since

the Hamiltonian density is a scalar variable: all spacetime indices must be contracted.

Calculating the total energy, we have (in d+1 dimensional spacetime)

E =

∫
ddxH = E0 + E1 + · · ·+ Ei + · · · (1.24)

13



We suppose E is a functional of some inhomogeneous solutions to the field

equations. For simplicity, we write this explicitly for a scalar field Φ(x⃗). It stands to

reason that if Φ is a stable solution with some intrinsic scale µ−1, it has lower energy

than the same solution with intrinsic scale λµ−1, for λ a real number in the vicinity

of unity. Stability is reflected in the precise statement that E is a local minima with

respect to λ at λ = 1, or by replacing Φ(x⃗) → Φ(λx⃗):

d

dλ
E[λ]

∣∣∣
λ=1

= 0 (1.25)

d2

dλ2
E[λ]

∣∣∣
λ=1

≥ 0 (1.26)

At first glance it seems one would need to know the actual soliton solution Φ to apply

this reasoning, but this is not accurate. We can, after the rescaling of the solution to

Φ, make a coordinate change of the spatial variables: x⃗ → λ−1x⃗′. It is then clear that

the dependence on λ is constrained by the index i (called the “engineering dimension”

and the space dimension d. From the definition of the engineering dimension we have

the exact result

E[λ] = λ−dE0 + λ−d+1E1 + · · ·+ λ−d+iEi + · · · (1.27)

The matter of stability is reduced to a condition upon the signs of the various terms

Ei and the relative difference i − d for each term. It should be emphasized that this

approach will fail if E[λ] is not finite. Let us see how this works for the kink. We note

first of all that there are only two terms in the energy density.

H0 = V (φ) ≥ 0 (1.28)

14



H2 =
1

2
(∂xφ)

2 ≥ 0 (1.29)

The solution is assumed to be stable so the time derivatives are omitted. It is not hard

to generalize to a case where the field is periodic, and therefore include the frequency

in the conditions (1.25) and (1.26). Here we find

E[λ] = λ−1E0 + λE2 (1.30)

The stability conditions are satisfied if E0 = E2 > 0, and hence we may conclude static,

stable, inhomogeneous solution to the field equations are not forbidden. Determining

the form of the solution is generally a more difficult task. The set of conditions described

here is not guaranteed to support the existence of soliton configurations, though if they

cannot be satisfied, solitons are guaranteed to be absent from the model.

We may ask ourselves, does the φ4 theory have such solutions in higher dimen-

sions? The answer is yes, since the kink may be promoted to planar domain walls of

transverse dimension d− 1, but these solutions have infinite energy (they have infinite

area). How about compact domain walls? Considering d ≥ 2, we find

E[λ] = λ2−dE2 + λ−dE0 (1.31)

has a minima only at λ = 0, indicating an absolute instability, in this case due to

contraction of the domain wall to a point. Generally speaking, we can conclude that

for scalar field theories, stability of inhomogeneous field configurations requires there be

at least as many derivatives in the action as the number of spatial dimensions, d. The

15



critical case, where the ‘highest derivative‘ term has i = d, is like the case of the vortex.

Special considerations are to be made, especially regarding the finiteness of the terms

in the series (1.24). As we saw for the global vortex, E2 was infinite, but not in the case

of the Nielson-Olesen vortex. The main conclusion of Derrick’s theorem is this: soliton

solutions may be found only if there are energy costs which scale with positive and

negative powers of λ. For fields with scalar potential energies, this requires having at

least as many derivatives as the number of spatial dimensions. Let’s apply this analysis

to a four-derivative model in d = 3 dimensional space. Consider the Lagrangian density

L = − 1

2M2

(
∂2φ

)2
+

1

2
(∂φ)2 (1.32)

The Hamiltonian density (dropping the time derivatives) is

H =
1

2M2

(
∇2φ

)2
+

1

2
(∇φ)2 (1.33)

Clearly the engineering dimensions of the terms are 4 and 2, respectively. Therefore

in d = 3 we should expect, from (1.25) the condition E4 = E2 to be met. Since both

terms are positive this is possible. Condition (1.26) is met automatically. Thus a stable

soliton exists, even though there is no potential term. The equation of motion for a

radially symmetric soliton is

−φ′′′′ − 4

r
φ

′′′ −M2

(
φ

′′
+

2

r
φ

′
)

= 0 (1.34)

which admits a family of solutions (finite as r → ∞):

φ(r) =
ke−Mr

r
+

c

M2r
(1.35)
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The total energy of this configuration is

E =
2π

M2

(
k2M3 + kc

)
(1.36)

If c = 0 this is just the solution K1/2(Mr)/
√
r, with K1/2(Mr) the modified Bessel

function. For c fixed and non-zero, k may be varied to minimize the total energy. The

actual solution has no physical meaning, but is evidence of the strength of Derrick’s

theorem. We were motivated by the conclusion of scaling arguments to investigate the

equations of motion further, and easily discovered the solution.

The real power of Derrick’s theorem is with regards to non-linear equations

of motion. Scale arguments are immune to the complexities of differential equation

solving, so we know a solution exists to be discovered far before one is actually found.

For example, the Lagrangian density

L =
1

2
∂xψ∂tψ + (∂xψ)

3 − 1

2

(
∂2xψ

)2
(1.37)

yields an equation of motion which is not easily solved. With the variable definition

ϕ = ∂xψ, the equation of motion for ϕ is called the Korteweg–De Vries (KdV) equation,

which describes the gravity wave solitons that propagate in shallow water, as were

discussed at the beginning of the chapter[9]. The conditions for stability are

∫
dx

(
3

2

(
∂2xψ

)2 − 2 (∂xψ)
3

)
= 0 (1.38)

∫
dx
(
3
(
∂2xψ

)2 − 2
(
∂3xψ

))
> 0 (1.39)
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If the first condition is satisfied, the second follows automatically. A thorough analysis

of the equations of motion and integrals of motion reveal that the first condition may be

satisfied when specific spectral conditions are met, relating the mass and total energy

of the soliton. Most importantly, one may not rule out the existence of solitons from

these equations using Derrick’s approach. Thus it is easy to motivate the search for a

localized solution by merely applying Derrick’s theorem. Derivation of the actual solu-

tion is more challenging, but we now know that a solution exists, and satisfies certain

conditions that narrow the scope of the problem significantly.

1.2 Soliton Oscillations

We have discussed a few circumstances where field equations admit static lo-

calized solutions. In reality, these solitons are never truly alone, but accompanied by

waves and other solitons which interfere with the motion. Interactions between these

degrees of freedom may excite vibrations of the soliton, and it is important to study

these vibration, their spectra, and stability.

1.2.1 Amplitude Fluctuations & Bound States

The first of two kinds of fluctuation is the amplitude fluctuation. By this we

mean vibrational modes which change the absolute value of the field from the soliton

solution, in such a way that the fluctuations are superimposed upon the original static

configuration. For simplicity we will restrict this discussion to the kink, as the resulting
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equations have been solved exactly. We write the field variable as

φ(x, t) = φK(x, t) + η(x, t) (1.40)

with η the fluctuations. Inserting (1.40) into (1.2) and (1.3) we find

L[η] = 1

2
(∂η)2 − 1

2
m2η2 − U(x)η2 − 3λ

4
φKη

3 − λ

4
η4 + constant (1.41)

where m2 = 2µ2 and the potential term U(x) is given by

U(x) = −3m2

4
sech2

(
µ(x− x0)√

2

)
(1.42)

In other words, far from the kink, η is the same as in equation (1.5). However, near

x = x0, the equations of motion are modified dramatically. The cubic term changes

sign at x0, and the linearized equations of motion for η become

(
∂2 +m2 − 3

2
m2sech2

(
µ(x− x0)√

2

))
η = 0 (1.43)

Assuming definite energy solutions η = η(x)eiωt we find there are two classes of solution.

Those with ω2 > m2 which we shall call asymptotically free, and those withm2 > ω2 ≥ 0

which are called bound states. ω must be real otherwise the solution is unstable, causing

η(x) to grow in magnitude comparable to φK(x). For this equation of motion, there are

no such solutions. The bound states are easy to find, and there are two of them.

η0(x) =

√
3m

8
sech2

(
m(x− x0)

2

)
(1.44)

η1(x) =

√
15m

8
tanh

(
m(x− x0)

2

)
sech2

(
m(x− x0)

2

)
(1.45)
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The squared frequencies are ω2
1 = 3m2/4 and ω2

0 = 0. The eigenfunction (1.44)

is called a “zero mode” and is a massless state associated with the translational sym-

metry breaking of the collective coordinate x0. It is easy to check that η0 ∝ ∂x0φK .

Both bound states are normalized to unity. Perturbative corrections to the equations

of motion, which are order
√
λ and λ, will modify the formulae here and set bounds on

the size of these fluctuations relative to the other internal parameters. They will not

destabilize the kink, but will however result in the production of asymptotically free

states if the initial amplitude of either bound state is too large. The presence of bound

states affects the overall shape of the soliton, much in the same way that perturbations

from the simple pendulum could be associated with comparatively small corrections to

the pendulum period.

The remaining amplitude oscillations, the free states, are solutions to the lin-

earized equations of motion with ω > m. These are investigated much in the same

manner that electromagnetic waves scattering off a localized potential were studied.

There is an appropriate asymptotic expansion in terms of plane waves with fixed mo-

mentum, and the mixing of different waves via a phase angle. This phase angle, as in

the case of electromagentic wave scattering, is derived by matching conditions near the

soliton core, and is not a trivial process. We currently have no interest in these results,

except to say that they are used to construct a scattering matrix between free states

and solitons in the quantum theory.
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1.2.2 Collective Coordinate Excitations

The second kind of fluctuation a soliton may experience is a variation of its

collective coordinates. These are the variables, like x0 for the kink, which describe the

unconstrained properties of a soliton. The location, orientation, phase, and quantities

of this sort are included in the list of collective coordinates, and are associated with

translationa, rotational, and various other global symmetries. For a string-like object,

the coordinates would include a parametrization of the string core’s embedding in the

larger space. These coordinates are generally functions of time, especially if the soliton

is moving under the influence of external or internal forces.

We may also assume other parameters, such as the thickness/width of a soliton

can be varied. For example, from Derrick’s theorem, we know that a change in scale of

the soliton (changing the width of the kink from µ−1 to λµ−1, for example) increases

the total energy for λ slightly above or below unity. The concavity of this potential

means these kinds of excitations are massive, and we ought to study them further. For

the kink, an ansatz for this behavior is

φK(x, t) =
µ√
λ
tanh

(
(x− x0)

a(t)

)
(1.46)

We may derive an effective Lagrangian for the new degree of freedom a by substituting

this expression into (1.2) and integrating over x. The result is

L[a, ȧ] =

(
γ
ȧ2

a
− 2

3a
− m2a

6

)
× m2

2λ
(1.47)

21



where γ = (π2 − 6)/18. Casting the solution into the form a(t) = 2m−1(1 + δ(t)), we

find the equation of motion for δ(t) to be

δ̈ − δ̇2

2(1 + δ)
+
γ−1m2

12

(
1 + δ − 1

1 + δ

)
= 0 (1.48)

Assuming δ is small, we linearize and find at first order the simple harmonic oscillator

with frequency ω = m/
√
6γ ≈ m × 0.88, which is only about 1.5% larger than the

frequency ω1 of the excited bound state (1.45). The actual total energy of the oscillations

is however (for δ0 the amplitude of oscillation):

Eδ =MKink × δ20

(
γ2 +

1

4

)
≈MKink ×

δ20
3

(1.49)

For δ0 sufficiently small (δ20 ∼ λ/m2), the energy contained in these oscillations is compa-

rable to that contained in the (normalized) excited bound state η1. Given the closeness

of their frequencies, it is a reasonable assumption that these modes would couple to-

gether quite strongly, exchanging energy efficiently and significantly complicating the

dynamics of an excited kink. This conclusion extends to higher dimensional versions as

well, where one might expect excited states bound to φ4 domain walls to mix readily

with propagating waves in the ‘thickness’ parameter of the wall.

We emphasize that in classical field theory, it is not just the lone soliton config-

urations which are present and stable, but also field configurations of solitons and other

physical excitations in the field. These excitations interact with and even re-shape the

soliton, in a way consistent with their relative amplitudes and total energies. The math-

ematics is complicated, and except in a few cases, must be approached in a systematic,
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perturbative way.

1.3 Particles in Quantum Theory

In quantum theory, the amplitude of an excitation is replaced with the concept

of occupation number, as the excitations themselves are promoted to “particle states.”

Particle number is however an uncertain quantity, and so the physical characteristics of

soliton configurations in quantum theory are effected not only by the real particles with

which it interacts, but also by virtual particles. This is the point of view taken within

the context of renormalized perturbation theory.

1.3.1 The Axiomatic Construction of Single Particle States

The construction of single particle states in quantum field theory begins with

the construction of a zero particle state, the vacuum. We will denote this state |Ω⟩ and

simply state that it exists in a Hilbert Space. We define a four-momentum operator P̂µ

with which the vacuum is an eigenstate. We must have

P̂0 |Ω⟩ = 0 (1.50)

P̂ 2 |Ω⟩ = 0 (1.51)

from which we deduce that the vaccuum is both the lowest energy state of the Hilbert

space, and it is translationally invariant. The vacuum is also fully Poincaré invariant.

For any other state of the Hilbert space, the expectation values of P̂µ are real values
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which lie within the forward light cone.

The particle states are constructed from the field operators, which we will

generically denote as φ̂. These fields are operator-valued distributions, which means the

following. Every field operator has an associated distribution, or test function, f . This

function and all its derivatives are integrable on the entirety of spacetime, and therefore

admits a Fourier transform. For a collection of such operators forming a polynomial

basis, one may associate with each product of operators a unique distribution called a

Wightman function[10]:

⟨Ω| φ̂f1(x1)φ̂f2(x2) · · · φ̂f1(xn) |Ω⟩ =Wf1f2···fn(x1, x2, · · · , xn) (1.52)

The collection of all Wightman functions W signifies all of the local observables of the

quantum field theory. They are used to construct scattering matrices, correlation func-

tions, energy densities, etc. The physical meaning of the distributions f is that of the

profile of a wave-packet for the particle state(s) φ̂f is meant to excite from the vacuum.

In practice, infinite plane wave distributions are used, which while significantly reducing

the computational complexity and making the subject approachable for new graduate

students, introduces normalization and integrability issues.

To construct a single particle state with mass m and momentum p⃗, we require

only that the Fourier transform f̃ has support on the mass shell, and define the state
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as |p⃗,m⟩ ≡ φ̂f (x) |Ω⟩, and note the following spectral conditions.

P̂i |p⃗,m⟩ = pi |p⃗,m⟩ (1.53)

P̂ 2 |p⃗,m⟩ = m2 |p⃗,m⟩ (1.54)

It is sufficient therefore to restrict the choices of f to those which satisfy the classical

equations of motion for the field φ. As we have seen, this is almost certainly done in

the linearized regime, and non-linear terms are treated perturbatively. In this linearized

regime, multi-particle states may be constructed by simply multiplying together differ-

ent operators as in (1.52), so long as the distributions fi satisfy the correct spectral

conditions[11].

1.3.2 Interactions

Actual field theories do not have linear equations of motion, usually. Therefore

the true single particle states are only approximately given by the previous construc-

tion. In the event that the non-linear field equations may be solved exactly, of which

there are only a few known cases in two dimensions, the formulation may proceed as

described. If however this is not the case, complications arise.

Classically, we were justified in using perturbation theory to solve non-linear

equations of motion only if the amplitude were small. Here, the wave amplitude has

been discarded as a feature, and the particle number has taken its place. When par-

ticle number density becomes significant (for example when the wave packet profiles
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f1 and f2 coincide during a scattering event), a systematic perturbative approximation

must be taken which incorporates the non-linearity/interaction terms in the equations

of motion. Indeed, even for a single particle propagating freely, the interaction term

is not zero and modifies the properties of the particle. We alluded to this in section

1.1.1 when discussing secular divergences. Perturbative calculations of Wightman func-

tions also lead to divergent quantities, and the process of removing those quantities

by altering the underlying parameters (such as the mass) of the particle is known as

perturbative renormalization theory.

Strictly speaking, the classical equations of motion are not satisfied exactly

in quantum theory; they are generally dependencies on the field at multiple locations

in spacetime, as we will see in section1.4.2. The renormalization procedure alters the

parameters of the Lagrangian, shifting ground states in field space and the mass of

excitations. In quantum theory, we seek to compute the effective action or effective

potential of a set of fields, then solve the new equations of motion of the system. The

result is that generally, the classical equations of motion are typically not satisfied by

the quantum states. In practice, that one would like to do is assume a form of the

underlying field:

φ = φcl + δφ (1.55)

The classical piece, φcl is assumed to be a function of spacetime variables, and the

fluctuations δφ are promoted to quantum operators. Through some mechanism for cal-

culation of observables, perhaps Wightman functions, one would compute an effective
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action for φcl, in a fashion with the spirit of our approach to calculating L[a, ȧ] in the

collective coordinate discussion, section 1.2.2. The effective equations of motion for the

classical field would then be derived, and solved. This approach can only be done using

perturbation theory, and is fairly challenging. We will discuss the approach and examine

the first few terms in the series for this dissertation, ultimately drawing the conclusion

that there are circumstances where these quantum effects stabilize field configurations

which would not otherwise be stable in the classical theory. In other words, quantum

effects, often in the strongly interacting regime, should be expected to violate the con-

clusions of Derrick’s theorem. For this approach we will use the path integral, as it is

uniquely set up to compute such effective actions.

1.4 Effective Actions for Solitons

In the path integral formulation of quantum field theory, it is made explicit

that field configurations which do not solve the classical equations of motion are relevant.

The path integral, or generating functional, for the field φ is expressed

Z =

∫
Dφ exp

(
i

∫
ddxL[φ]

)
(1.56)

where the integration over the field variable is a functional integration. Strictly speaking,

this is not a well-constructed mathematical object. Almost nothing is finite, and new

ideas must be introduced to derive consistent physical quantities from this generating

functional. The aim described above is to make the replacement (1.55) and compute
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the resulting integral over δφ. We use the result to define the effective action W [φcl].

W [φcl] ≡ −i ln
∫

Dδφ exp

(
i

∫
ddxL[φcl + δφ]

)
(1.57)

In the case that φ is a free, non-interacting field,W is the action of a free, non-interacting

field, plus an infinite constant. In the case of interactions, perturbation theory instructs

us to compute an infinite number of additional terms for W , which are ordered roughly

by the number of internal loops that appear in the Feynman diagrams. The terms in this

effective action are generally integrals of the aforementioned Wightman distributions,

or more often, correlation functions for plane-wave states. There is no general result, as

the details depend largely on the form of L, the number of spacetime dimensions, etc.

1.4.1 The Functional Determinant

In chapter 3, where we calculate these quantum forces for a few explicit exam-

ples, the first term in the series is called the “functional determinant.” Since it appears

first there, we will discuss it now. Suppose that φcl actually obeys the classical field

equations for φ. Then in the expansion of L[φcl+ δφ], the term linear in δφ will vanish.

The resulting Lagrangian for δφ is therefore

L[δφ] = −1

2
δφ
(
∂2 + V

′′
(φcl)

)
δφ+ interactions (1.58)

In the imaginary time formalism, τ = it and the path integral becomes (dropping the

interaction terms and those independent of δφ)

Zδ =

∫
Dδφ exp

(
−1

2

∫
ddx δφ∆δφ

)
(1.59)
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where ∆ is the operator

∆ = −∂2τ −∇2
(d−1) + V

′′
cl (1.60)

We will find other forms of the so-called “fluctuation operator” ∆ for each Lagrangian

and field expansion. The evaluation of (1.59) involves an expansion of δφ into an eigen-

basis of ∆, then preforming the resulting Gaussian integral after moving the exponent

to a Fourier representation of the spacetime integral. If the eigenbasis were finite di-

mensional, the result would be

Zδ ∝ det−1/2∆ (1.61)

Hence the name “functional determinant.” The effective action therefore contains a term

W [φcl] ⊇ −1

2
Tr ln∆ (1.62)

However, the eigenbasis of ∆ is usually infinite dimensional, so if we are to use these

results we must be specific about what is meant by the trace of the log of an operator.

So long as the operator is elliptic[12], we may construct a quantity known as the Zeta

function of the operator, ζ∆(s):

ζ∆(s) =
∑
λ

λ−s (1.63)

where the sum is taken over all eigenvalues of ∆, with complex parameter s. If the

spectrum of ∆ is continuous, the sum is replaced with an integral. The zeta function

is a meromorphic function, and the sum only explicitly converges for Re(s) larger than

some value. To evaluate W , we need the derivative at s = 0:

W [φcl] =
1

2
ζ
′
∆(0) (1.64)
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The meromorphic continuation of ζ is achieved by constructing a quantity

called the Heat kernel of ∆, which is composed of eigenfunctions ψλ of ∆. The details

of this computation, and the formal discussion of the topic of elliptic operators in field

theory can be found in the text Anomalies in Quantum Field Theory by Bertlmann[12].

One defines the functional form of the Zeta function of ∆ as the following.

ζ∆(s) =
1

Γ(s)

∫ ∞

0
dσσs−1

∫
ddx

∑
λ

ψ†
λ(x)ψλ(x)e

−σλ (1.65)

If ψλ(x) are all normalized functions, this equation reduces to (1.63) immediately. Often

this is not the case (e.g. plane waves), and the sum over λ needs to be preformed first.

At σ = 0 the summation diverges, and this reflects the ultraviolet divergences present

in the free-space (φcl = constant) vacuum loop diagrams for δφ. Generally, the lower

bound on the σ integral would be cut off and the usual renormalization group procedure

would be employed. On the other hand, there might be a physical cutoff for the field

δφ and in that case the lower bound on the integral is real.

Another approach to evaluating (1.62) and (1.63) is available if there is trans-

lational symmetry in the τ direction (the field configuration φcl is static). We call k

the wave number of ψ in the τ direction and write λ = k2 + ω2
n, where ωn are the

eigenvalues of the time-independent Schrödinger equation in the spatial directions. The

Zeta function becomes

ζ∆(s) =
∑
n

∫
dk

2π

(
k2 + ω2

n

)−s
=
∑
n

ω1−2s
n Γ(s− 1/2)

2
√
πΓ(s)

(1.66)
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or by inserting into (1.64)

W =

∫
dτ

1

2

∑
n

ωn (1.67)

After moving back to real time and isolating the contribution to the total energy at a

given instant, this is the famed Casimir energy, the summation of energy states as if

they were equally occupied. It is obviously divergent, but one may preform meromorphic

continuation (1.66) towards s = 0 and preform any pole subtractions (renormalization)

at the origin if necessary. In deriving the right hand side of (1.66) we made the change

of variables u = kωn, ultimately casting the integral as a B function. This redefinition

is not valid if zero modes (ωn = 0) are present in the spectrum. These modes must be

considered separately.

In the case that φcl obeys the classical equations of motion and is static,

this Casimir energy, and the resulting force, is the first order quantum correction to

dynamics of the soliton. Parametrically, it is of order λ0, with λ the coupling constant

of the microscopic physics. The classical soliton stresses are of order λ−1, so at weak

coupling this effect is small. Further, perturbative corrections toW will be higher order

in λ, and so comparably weaker. For λ order 1 or larger, at strong coupling, one can

generally not trust the perturbative expansion at all. However, if one found that the

Casimir force acted oppositely the classical forces, it would suggest that quantum forces

have the potential to stabilize an otherwise unstable configuration, or even destabilize

one which was classically stable. In other words, a violation of the conclusion of Derrick’s

theorem.
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1.4.2 The Source Terms

If Derrick’s theorem is to be violated, the linear term in the expansion of

L[φcl + δφ] will generally not be zero. The quantum effects manifested in the effective

action generally force this to be true of all measured configurations of the field, but

ordinarily the deviations from zero are assumed to be small, at least of order λ.This

is taken to mean that at small coupling, the classical equations of motion are good

descriptions of the quantum system. However this assumption precludes the event that

these deviations are large and stable. A rigorous approach should assume this is not

the case, and that the linear term cannot be omitted in any perturbative approach.

In fact we may justify this by considering the effect which small quantum

forces may have on the dynamics of φcl. If initially the classical equations of motion

are satisfied, the Casimir force (and others which we have not calculated) will certainly

deviate this linear term from zero. The terms can therefore not be left as zero in

any perturbative expansion. We must investigate the stability of these deviations from

classical motion, and we will begin by supposing a static inhomogeneous classical field

exists. The deviation from zero of the linear term is not zero, and we shall refer to it

as a “source” and give it the label J . For the φ4 theory we have

J [φcl] = −∇2φcl + µ2φcl − λφ3
cl (1.68)

It should be noted that parametrically, J ∼ λ−1/2, just as the field φcl itself. The first

contribution to the effective action will be O(J2) ∼ λ−1 which is the same size as the
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classical contributions. There is however an infinite series in powers of J that all are

non vanishing and of the same parametric size. If one assumed that J vanished or at

least scaled by increasing powers of λ, one would arrive at the conclusion that it could

not possibly account for forces significant in comparison to those of the classical limit.

This should be stated again for emphasis. If one assumes J to be parametrically small,

then they are guaranteeing that no perturbative expansion will support a contrary con-

clusion. We therefore assume the form (1.68) and the resulting contributions to the

effective action may be as large as possible, and look for evidence of a solution which

exists in this framework. If no solution can be found, the assumption of J to be small

is valid. We will quickly observe that we may not generally exclude such possibilities.

The term is referred to as a “source” because of the ability to create quanta of

the field δφ from “nothing.” If we label a quantum state with non-vanishing J by |J⟩

and time evolve it to infinity, we see that the probability to create a 1-particle state is

non-zero.

⟨p⃗,m|U(∞) |J⟩ = ⟨p⃗,m| T ei
∫
ddxδφJ |J⟩ ≈ i

∫
ddx ⟨p⃗,m| δφJ |J⟩ ≠ 0 (1.69)

Hence any linear term in the action of a field δφ may act to produce real quanta of

that field. Exercise 4.1 of Peskin and Schröder’s text asks the reader to show that the

expected number of particles created by this mechanism is

N̄ =

∫
d3p

(2π)2
|J̃(p)|2

2Ep
(1.70)

and that the particle number follows a Poisson distribution. Here, Ep is the energy of
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the quanta with momentum p⃗. The calculation in their text assumes the quanta are free

other than their being sourced by the function J , but in general the sum of the Fourier

modes in (1.70) is taken over discrete and continuous spectra, including of course the

fluctuations which are bound to the background field configuration, as in section 1.2.1.

The first contribution to the effective action W from the source term is

W ⊇ −1

2

∫∫
ddx1d

dx2J(x1)∆
−1(x1, x2)J(x2) (1.71)

with ∆−1 the Green’s function of the fluctuation operator (1.60). If expanded in a

plane-wave basis, this double integral reduces to (1.70), with an extra factor of Ep, and

a leftover time integral. In other words, this term calculates the expected contribution

to the total energy of the system of all the quanta which were generated by the source

J . Note that while the energy of said quanta are order λ0, the expected number of those

quanta, and thus the contribution to the effective action/energy is λ−1, as promised.

The next contribution is cubic in J . It is obtained by computing the connected

component of the 3-point function, where the fields at the 3 coordinates x1,2,3 are

weighted by factors J(x1), etc. These coordinates are thus only taken to be in the

regions where J is non-zero, but the internal vertices of the Feynman graphs are to be

integrated over all space. The 3-point function, for example, requires an insertion of the

cubic term in the action, which is linear in φcl. This argument extends to any n-point
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function. In total, we find

W [J ] =
∞∑
n=2

(−1)n+1

n!

(
n∏

i=1

∫
ddxiJ(xi)

)
G(n)(x1, · · · , xn) (1.72)

The n-point function G(n) is defined perturbatively, with the Feynman graphs. If n is

odd, there must be an odd number of insertions of the cubic interaction term. J is an

odd function of φcl, as are the cubic terms. The effective action is therefore an even

function of φcl, preserving the original symmetry of the classical action.

The cubic interaction terms are order λ1/2, and the quadratic terms order λ.

The tree level contributions to G(n) are therefore order λn/2−1, and thus all terms in

(1.72) are order λ−1 at tree level. Higher order (loop) corrections are all necessarily

higher order in λ, and are thus less important at small λ. The factorial suppression at

large n in (1.72) is overcome by the combinatoric factors in the computation of G(n).

The comparison of the relative size of terms in (1.72) therefore is a purely geometric

consideration, depending on (for example) the volume of spacetime where J is non-zero,

the parametric dependence of J on these geometrical factors, and the mass dependence

in the computation of G(n) at tree level. We will consider an approach to computation

of these terms later in this text, though we emphasize that the ordering of terms by size

is situation-dependent.

If we take only the terms which are potentially of order λ−1, we find the
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complete result is

W [φcl] = S[φcl] +
∞∑
n=2

(−1)n+1

n!

(
n∏

i=1

∫
ddxiJ(xi)

)
G(n)(x1, · · ·xn) +O(λ0) (1.73)

This of course is already assuming φcl ∼ λ−1/2, which we have justified, and is expected

from classical soliton solutions. In principle, one could preform a variational analysis on

this action and derive first order Euler-Lagrange equations of the quantum mechanical

system. However this is easier said than done. The functions G(n)(x1, · · · , xn) involve

integrals of the Greens function ∆−1, which depends not only on φcl, but on all deriva-

tives of φcl. We will demonstrate this now.

Consider the response of the following function to the variation δφcl(y), for

some test function f .

I(y) =

∫
ddxf(x)∆−1(x, y) (1.74)

To compute this quantity (symbolically) we will write the Greens function in an integral

form

I(y) =

∫ ∞

0
dσ exp (−σ∆) f(y) (1.75)

One can verify that ∆I = f by passing ∆ into the integral, equating the resulting

expression to a similar integral with a derivative of σ, and integrating by parts. This

expression comes from the same origin as the Zeta function (1.65). For simplicity, we will

write the fluctuation operator as ∆ = −∇2 + U(φcl), and note that variations of U are

easily calculated. We wish to expand the integrand of (1.75) and calculate separately the

integral of every term. However, U does not commute with −∇2, so many derivatives
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of U are introduced. The result is found by application of the Zassenhaus formula.

e−s∆f = e−s(−∇2)

(
1− σU +

σ2

2

(
∇2U + U2

)
− σ3

6

(
2∇4U + U3

)
+ · · ·

)
f (1.76)

The integration over σ may be preformed now, denoting ∆−1
0 as the inverse of −∇2,

∆−2
0 as the inverse of ∇4, etc, we find

I(y) =

∫
ddx

(
∆−1

0 (x, y)−∆−2
0 (x, y)U(x) + ∆−3

0 (x, y)
(
∇2U(x) + U2(x)

)
+ · · ·

)
f(x)

(1.77)

Not only are there an infinite number of terms in just the simple expression

(1.74), they depend on infinitely high numbers of derivatives of φcl. U is quadratic in

φcl, so other than the very first term in this series, there will be non-vanishing variation

with respect to the underlying field and derivatives of the field in every term. In prac-

tice, the test function f will be replaced with J , further complicating the matter. The

variational calculus of Euler and Lagrange is intractable: we cannot reasonably apply

it to the quantum theory in even the most trivial approximations.

We are incapable of applying the variational calculus, and we cannot apply

Derrick’s approach reliably. The engineering dimensions of ∆−n
0 are well known, as are

those of ∇2 and the terms in J . However there are infinite terms and the signs are

alternating. In the present configuration, the effective action is hopelessly complicated,

and not in a form amenable for the classical approach to the study of solitons. It should

be clear that what one means by “quantum corrections” are not necessarily insignificant

when compared to the classical pieces. From this perspective, the quantum field theory
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clearly has the potential to admit solutions that are not present in the classical field

theory.

It is unfortunate that no simple analysis exists for the quantum effective ac-

tions, so that we may import the techniques from classical physics. However, the actual

calculations of terms in (1.67) or (1.73) are not too challenging. For highly symmetric

functions, one may simplify these expressions and even discover expansions which may

be ordered by powers of the scales involved, or inversely in powers of the distance from

the soliton core, for example. We will demonstrate how this computation is approached

in chapter 3, especially for spherically symmetric field configurations. Before then, we

will discuss a few known cases of objects existing in quantum theories which are not

described or not stable in the classical field theory counterparts.
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Chapter 2

Known Examples of Stable Quantum

Objects

It is not an original idea that quantum mechanics should upset the rules and

conclusions regarding stability of classical particles and waves. The non-relativistic the-

ory was practically invented for this purpose. Heisenberg’s uncertainty principle and

Schrödinger’s wave equations defy the classical laws in a broad sense: for example, phe-

nomena such as tunneling destabilize and delocalize particles between potential barriers.

Here we will discuss a few examples of field configurations that exist and are stable in

quantum theories, but not in the classical versions of those theories.

The first and most important of these examples is the Hydrogen atom (or any

atom, for that matter). Second, we will move beyond non-relativistic quantum me-

chanics, introducing the Dirichlet branes of string theory: objects which are considered
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solitons. Finally, we return to the discussion of black holes in quantum gravity, but in

a field theoretic point of view, instead of the string theory perspective. We will discuss

Hawking radiation, which drives evaporation of black holes, and scale anomalies, which

have been conjectured to halt the Hawking effect, re-stabilizing the black hole.

2.1 The Hydrogen Atom

The Maxwell equations forbid a stable, localized configuration of point charges.

The vector wave equations can be sourced by any changing dipole charge configuration,

and the energy carried away by radiation of an orbiting electron would cause the orbital

radius to decay to zero very quickly. Assuming the electron orbit is roughly circular, we

may use the Larmor formula[13] to describe the adiabatic decay of the electron orbit.

The power radiated per unit time is

P =
q4

96π3ϵ30r
4m2

e

(2.1)

The total energy of an orbiting electron is half the potential energy, or

E(r) = − q2

4πϵ0r
(2.2)

Taking the derivative of (2.2) and setting it equal to −P we find an equation for the

electron radius over time:

ṙ = − q4

24π2m2
ec

3ϵ20r
2

(2.3)
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which has the solution

r3(t) = r3(0)− q4

8π2m2
ec

3ϵ20
t (2.4)

If the electron begins at a radius of 10−9 meters, in about 10−6 seconds the radius would

drop to zero. For smaller initial radii, like the Bohr radius, more than 10 times smaller,

the decay time is closer to 10−10 seconds.

Needless to say, there are actually atoms in the Universe, and there is evidence

of their formation within the seconds after the Universe cooled below the ionization

energy of Hydrogen. The Hydrogen atom exists because quantum mechanics stabilizes

the classically dissipative charge/current configuration. It does so because electrons

are not point particles, but excitations of an underlying field that is governed by wave

equations. The equation, described by Schrödinger, is a linear equation, but possesses

solutions that are static, inhomogeneous, and localized. The eigenvalue spectrum for

these configurations is discrete and bounded from below, thereby preventing adiabatic

decay into lower and lower energy states.

The language used here is deliberate. With the definitions given for a soliton,

and the framework developed for studying their dynamics, it is a conscious choice, and

an apt one, to describe the bound state configurations of the electron in a proton’s

potential well as such. The states of total positive energy (ignoring rest mass energy)

are asymptotically free states, and are plane waves when measured sufficiently far from

the proton. Those other states, described by the orbital wavefunctions, are solitons in
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the sense that we have been discussing. This is the first example of a soliton which is

only stable due to quantum mechanical effects, and it is stabilized in a system with a

weak coupling constant (the fine structure constant α = q2/4πϵ0ℏc ∼ 1/137).

2.2 Strings & D-Branes

The premise of string theory is that there are one-dimensional objects called

strings which exist in the universe and interact with each other. The theory, when

quantized, turns out to be a theory of quantum gravity. This is apparent from the

string theory action, which comes in many forms. The closed bosonic string is given the

Polyakov action:

S =
T

2

∫
d2σ

√
−hhab(X)gµν∂aX

µ(σ)∂bX
ν(σ) (2.5)

where the worldsheet of the string has coordinates σ, local worldsheet metric h, and the

variables Xµ describe the embedding of the string into the spacetime manifold, which is

given metric g. The dimensionful variable T is the tension of the string. Upon solving

the equations of motion for the string worldsheet metric components hab and substi-

tuting back into (2.5), we find that S = TA, with A the two-dimensional area of the

worldsheet.

Hence, the classical dynamics of string theory, at least those of the Polyakov

action, dictate that strings should decrease their energy by shrinking whenever possible.
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The string clearly interacts with the background metric (or equivalently with a conden-

sate of strings in a particular spin-2 state), so assuming gravitational wave production

is a mechanism for an oscillating string to dissipate energy, it will do so.

2.2.1 S-Duality in the Type IIB Theory

A type of duality which appears in string theory but also throughout quantum

field theory, is the S-Duality. It stands for “strong-weak” duality, and refers to the

exchange of large and small coupling constants, which respectively entitle their theories

with the strong and weak coupling descriptions[14][15].

Before we discuss examples of S-Duality, we should discuss the case of open

strings. These are segments of energy that do not form closed loops like the bosonic

strings of the previous section. They have two end points, and therefore require addi-

tional description of the dynamics of those end points. Denoting the time and space

worldsheet coordinates by τ ∈ R and σ ∈ [0, 1] respectfully, we demand there be some

boundary condition on the embedding functions

Xµ(τ, 0), Xµ(τ, 1) (2.6)

or their derivatives with respect to worldsheet coordinates. The simple case is the

Neumann boundary conditions:

∂aX
µ(τ, 0 or 1) = 0 (2.7)

This ensures the total momentum and energy of the string remains finite. Such strings
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may exist on their own, far from other objects. The string theory with Neumann bound-

ary conditions on open strings and supersymmetry in the worldsheet is called the type

I superstring theory. Type I also contains closed strings. If the string theory is defined

with perturbation theory (the string coupling constant gs << 1), closed strings may

even break open or scatter off each other to produce open strings, conserving energy

and momentum in the process. The open Neumann string contributes to vacuum fluctu-

ations in the same way that any weakly coupled particles would in quantum field theory.

The open Neumann strings are the asymptotically free states. They have the

same spectral properties as closed strings, they exist on their own, they scatter in ac-

cordance with perturbation theory, and they’re mundane. The open Dirichlet strings

are the bound states of string theory. Their ends are fixed in place on the ambient

space, or generally to submanifolds of the spacetime that we call Dirichlet Branes, or

D-Branes[16]. Dirichlet boundary conditions allow the strings to absorb energy from

their surroundings, since the curvature of the end of the string is unconstrained, and

they do this through interaction with the D-Branes that they intersect.

The submanifold where the open strings are fixed in place is a dynamical

object, and therefore posesses an energy density or tension. The tension of the D-brane

scales inversely with the string coupling; we describe the branes with an action, e.g. the

44



Dirac-Born-Infeld action, for a p−dimensional brane:

Sp = −Tp
∫
dp+1ξe−Φ

√
−det (Gab +Bab + T−1Fab) (2.8)

where Φ, G,B and F represent the condensation of particle string states defined in the

perturbative sector[16], and Tp is the tension of the brane.

There may be coefficients that depend on the geometry of the target space, generated

by intermediate open string states connecting the brane to itself, and these coefficients

may diverge[14]. Hence the treatment of these submanifolds as dynamical objects and

the labeling as “branes” (short for membrane). The inverse dependence of the brane

tension on the string coupling is reminiscent of solitons. That there are states (the open

strings) which only exist bound to the branes is also very much like a soliton. The

Dirichlet strings cannot be described as perturbative fluctuations from the vacuum: one

must construct a whole D-Brane with its large tension to see the open strings attached

to it. Solitons are also not perturbative fluctuations from the vacuum.

In the type I and II superstring theories, the D-branes can be objects of var-

ious dimension, up to 11 (the dimension of the target space of the theory). D1-Branes

are heavy string objects, D2-Branes are walls of energy, etc. The physics of D-Branes

opens a deep and thought provoking discussion of dualities between the superstring and

supergravity theories, but this is of little importance to us presently. The duality we

are interested in is the type IIB self-duality, which is an S-Duality. It will suffice to say

45



that there is a coupling constant in the type IIB theory, and there is an equivalence in

the spectrum between the cases where the coupling is small and when it is large. As in

the case of the T-Duality, this requires a relabeling of degrees of freedom, and in the

IIB case, what is swapped is the Branes themselves[17]. In particular, at weak coupling

we have light fundamental strings (F-strings) and heavy D1-Branes (D-strings), but at

strong coupling these one-dimensional objects reverse their roles. The solitons become

light and the perturbative states become heavy. Perturbations from the vacuum are

therefore best described at strong coupling with the solitons, the D-strings, instead of

the F-strings. There is an O(1) coupling where the two objects have the same tension.

Probably the theory is not well described by any perturbative expansion at this point.

2.3 Black Holes

Our previous description of black holes as solitons gave no mention to stability

or fluctuations of the geometry. This is because gravitational waves cannot be emitted

from a spherically symmetric black hole, or even a rotating one. The waves are pertur-

bations of a rank-two symmetric tensor, and thus the lowest moment which produces

them is an oscillating quadrupole moment. Gravitational waves have been observed

from inspiraling black holes which then collided and merged, but never from the soli-

tary Schwarzschild black holes discussed earlier. In fact no radiation has been observed

of any type originating at the event horizon, besides that from accretion disks. Quantum
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field theory predicts that the event horizon of a black hole should be a source of con-

tinual radiation however, and this effect ought to (slowly) evaporate black holes. This

is known as Hawking radiation, and it draws into question our description of solitary

black holes as permanent objects.

2.3.1 Hawking Radiation

The discussion of Hawking radiation begins with the observation that energy

is not a quantity which can be defined globally in curved spacetime, except in cases

where the spacetime is asymptotically flat [7]. There is no local measurement of energy

that separated observers may agree on. Additionally, an observer in a weak gravita-

tional field will observe a time-dilation for observers in a strong gravitational field. An

object falling into the event horizon of a black hole never appears to reach the horizon,

according to an observer far away, for example. Since the Hamiltonian is the generator

of time translations for local observables, and time is relative, so is the quantity of total

energy, at least for a localized distribution of matter.

It stands to reason, therefore, that the spectral properties of a Poincaré in-

variant vacuum state are not valid and consistent everywhere in spacetime, especially

if a region exists where the gravitational time dilation diverges (relative to a far away

observer). In short, the description of the vacuum near the event horizon of a black

hole is not identical to the vacuum described infinitely far away. This may be traced to

the failure of the spectral relations 1.53 and 1.54 in spacetimes with non-trivial connec-
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tions. In fact, the vacuum near the horizon has non-zero overlap with n−particle states

described infinitely far away:

|Ω⟩BH = b0 |Ω⟩∞ + b1 |1⟩∞ + b2 |2⟩∞ + · · · (2.9)

the coefficients bi are calculated using the Bogoliubov transformations, and describe a

thermal distribution. The temperature of this distribution is proportional to the surface

gravity at the black hole[18], and in SI units is

TBH =
ℏc3

8πGkBM
(2.10)

Equating to a temperature of about 1023 Kelvin for a 1 kg black hole. For astrophysical

black holes, the temperature is orders of magnitude lower than the temperature of the

CMB. Small black holes are hot, and should emit radiation according to the Stephan-

Boltzmann law. For a black hole radiating purely into photons, the radiative power

is

P =
ℏc6

15360πG2M2
(2.11)

A 1 kg black hole should completely evaporate in 10−16 seconds via this mechanism.

The lifetime of a black hole with a mass of 1011 kg comes in just under the current

age of the Universe. The final moments of an evaporating black hole’s life should be

very hot, and the death of primordial (formed before galaxies, from non-astrophysical

origins) black holes should be accompanied by an explosion of high energy, very heavy

particles.
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That is, unless the effects of quantum gravity slow and stop the evaporative

processes at small mass scales, near and above the Planck scale.

2.3.2 Effective Action and Anomaly

The effective action for a field theory generally contains an infinite number

of terms, and these terms can be ordered according to the number of derivatives they

contain. We have seen this explicitly in section 1.4. Generally, these terms include not

only classical background configurations for the field itself, but also geometric invariants

related to the geometry of the target space manifold. The first geometric term supplied

by some quantum field theory dynamics may be of the form

W ⊇ Λ2

∫
d4x

√
−gR (2.12)

with Λ some high energy scale that describes the microscopic field theory degrees of

freedom, and R the Ricci scalar. This is in fact just the Einstein-Hilbert action for

General Relativity. In this context, we think of Einstein gravity as an effective theory

of some high energy quantum theory that is currently unconstrained in form by exper-

iment.

The next most important terms are the four-derivative geometrical scalars. In

a gravitational field sourced by particles with massm, these terms will be less important

than the Einstein-Hilbert action by a factor ofm2G ∝ m2/M2
PL. Higher derivative terms

are further suppressed, except of course in regions with curvature singularities, like the
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center of a black hole. The four-derivative terms are

W ⊇
∫
d4x

√
−g
(
αRµνλσR

µνλσ + βRµνR
µν + γR2 + δCµνλσC

µνλσ
)

(2.13)

with the Riemann, Ricci, and Weyl tensors present, respectively. The coefficients

α, β, γ, δ are dimensionless, but acquire beta functions due to renormalization. They are

not actually independent, but related to each other and the particle content that gen-

erates such terms in an effective action, e.g. the number of scalar, fermionic, or vector

degrees of freedom in the microscopic theory[19]. These terms appear even in theories

which possess conformal symmetry, and will explicitly break the conformal symmetry

of the action. They are thus collectively referred to as the “trace anomaly,” since con-

formal symmetry is characterized by a vanishing trace of the stress-energy tensor.

We should investigate the effects of these terms on the Schwarzschild solution,

and therefore the temperature of Hawking radiation. We will consider a combination

of the coefficients so that the trace anomaly is the Euler density, and call the new

coefficient a. The Euler density is

E(4) = RµνλσR
µνλσ − 4RµνR

µν +R2 (2.14)

We now study the equations of motion for the metric perturbatively. Taking the trace

of the usual Einstein field equations and inserting the anomalous contribution to the

trace of the stress tensor, we find the equations of motion

R

8πG
= aE(4) (2.15)
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The anomaly coefficient a is small when the number of degrees of freedom in the micro-

scopic theory is small, and large otherwise. Allowing for an O(a) perturbation to the

line element (1.19) we find there is a solution asymptotically at large r:

gtt = −1/grr = 1− 2GM

r
+

64πG3M2a

r4
+O

(
a2

r6

)
(2.16)

Thus the location of the event horizon (according to an observer far from it) is

rs ≈ 2GM − 16πa

M
(2.17)

The correction to the event horizon radius is small when M >> MPL
√
a, not a difficult

limit to achieve. The corresponding temperature of the horizon is

TBH =
ℏc3

8πGkBM

(
1− 2πa

GM2

)
(2.18)

Suppose there are a great number of degrees of freedom in the physics gen-

erating this term in the effective action. a is therefore large. This can be obtained if,

for example, there was a weakly interacting scalar field at high energies with a great

number of flavors, perhaps in the thousands. We conclude then that for a black hole

mass 10−100 times larger than the Planck mass, the evaporative effects halt. Of course

near the Planck mass, we cannot omit the higher order derivative terms in the effective

action. Perhaps though, if a cold (not evaporating) 1 kg black hole is discovered, one

now has a working knowledge of a mechanism which stabilized the black hole. One may

also infer there to be a large number of degrees of freedom at the Planck scale.

More realistically, the effect of an anomaly lowering the temperature begs the

question: should we trust any of these results for very small black holes? Most would
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probably say no: a more systematic study of the infinite derivative structure of the

effective action is required. Unfortunately, the exact form of the action eludes us, as do

the tools with which to study its exact solutions.

In addition to the possibility of halting the Hawking evaporation, there are

conjectures that these full quantum mechanical equations of gravity rid us of the sin-

gularity at the center of a classical black hole. These are mostly guesses, some more

educated than others (based, for example, on the description of a black hole as a multi-

brane junction in superstring theory), and ultimately we do not have answers to most

questions about the solutions to the field equations of quantum gravity. It is expected

that at the smallest of scales, they are fundamentally different than the solutions to the

classical Einstein field equations.

52



Chapter 3

Modifications of Forces by Quantum

Effects

We are now prepared to discuss the calculation of quantum forces on the pre-

viously detailed solitons. As already noted, we cannot calculate the exact values of any

of these forces, except for particular cases and in some limiting behavior, e.g. long range

effects order by order in their relevance at large distances. To that end we will begin

this chapter by calculating corrections to the energy density of the global vortex/string

perturbatively in powers of 1/r at distances far from the core of the soliton. The calcu-

lation will assume the classical vortex/string configuration (1.13), and evaluate leading

order terms in the functional determinant[20]. Then, we shall proceed to the discussion

of the functional determinant on spherical geometries, citing past results in odd dimen-

sions, and extending those results to the even, two-dimensional case via computation

of the Zeta function[21]. Finally, we will consider the effect of the source terms for a
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pathological field configuration in the four dimensional φ3 classical field theory. We will

see that quantum corrections cure this disease[22].

3.1 The Mass/Tension of the Global Vortex/String

We will restrict the discussion of this section to the case d = 4, i.e. the

global string, which when stretched uniformly along the z axis, may be considered an

extension global vortex in the x-y plane. The usefulness of studying this soliton in

the four-dimensional case is that the quartic coupling constant λ is dimensionless, and

the dimension of any term may be read off easily from the powers that appear of the

quadratic coupling µ. The Lagrangian density is

L = (∂Φ)2 + µ2Φ†Φ− λ
(
Φ†Φ

)2
+
µ4

4λ
(3.1)

The field will be expanded around the solution (1.12), and we will consider fluctuations

in the phase angle of the field Φ (these are the Goldstone bosons, which we call α):

Φ = Φne
iα =

µ√
2λ
einθ+iα(xµ)

(
1− n2

2µ2r2
+O

(
n4

µ4r4

))
(3.2)

The heavy fluctuations, those in the modulus of the field Φ, are not of any importance

to us, as they will generally produce forces that are only relevant on distance scales of

µ−1. The field α is massless, and therefore produces long-range forces which will most

significantly impact the large r asymptotics of the effective action. The action for α is
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easily derived:

S[α] = −
∫
d4x α∂µ

(
Φ†
nΦn∂

µ
)
α (3.3)

Upon computing the path integral, we see that the effective action for Φn due to the

field α is equal to the functional determinant component. This however is only valid up

to the scale at which the Goldstone bosons couple with the massive fluctuations in the

modulus field. This occurs at a scale ∼ µ, so in the following analysis we will consider

any high frequency limits to be in reference to this value. According to (1.62), we must

have (in the case of Φ̇n = 0)

ECas[Φn] ∝W [Φn] ⊇
1

2
Tr ln∆ (3.4)

where the operator ∆ is

∆ = − 1

r2
∂r
(
r2f2(r)∂r

)
(3.5)

and f(r) the radial profile of the soliton (1.13). Note that the coordinate r here is

the polar radius in the cylindrical coordinate system {r, θ, z}, not the spherical radial

coordinate. We now introduce the connection ωµ, covariant derivative Dµ, and potential

U :

ωµ = ∂µ ln f (3.6)

Dµ = ∂µ + ωµ (3.7)

U = ∂2 ln f + (∂ ln f)2 (3.8)

using these definitions, the log of the fluctuation operator may be written

ln∆ = ln f2 + ln
(
−D2 + U

)
(3.9)

55



The connection is singular at the origin, as is the potential, but the effective action may

only contain geometric invariants associated with these objects, which will be integrable.

We will return to the second logarithm in a moment, but first let’s evaluate the ln f2

term.

3.1.1 Another Log Divergence

The contribution to the effective action is the trace of (3.9), which involves an

integration over spacetime, as well as an integration over four-dimensional momentum

space. This must be the case as the action is to remain dimensionless. The term of

interest is not momentum-dependent, so a constant cutoff Λ is to be introduced. From

previous discussions it is clear that Λ ∼ µ. Hence we have

Tr ln f2 = Λ4

∫
dz

∫ 2π

0
dθ

∫ ∞

0
drr ln f2 (3.10)

Expanding the integrand at large r and simplifying, we find a familiar result: the integral

is divergent.

ECas ⊇ −πn
2Λ4

µ2

∫
dz

∫
dr

r
+ constant (3.11)

Compare this with the contribution to the vortex mass (1.14), which when translated

to a classical string tension, becomes

Tstring, cl =
πn2µ2

λ

∫
dr

r
(3.12)

Both quantities diverge with the logarithm of some large radius R, but have opposite

signs. (Note: the integration bounds are assumed to be taken at some finite radius to
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infinity, since the asymptotic expansion is not valid near the origin. There is no problem

at r = 0). Therefore, the total divergent contribution to the global string tension is

Tstring ∼
πn2µ2 ln(R)

λ

(
1− λΛ4

µ4

)
+ constant (3.13)

We have already made the point that Λ ∼ µ, as any frequency modes for the field α

above this value will couple to the massive excoriations and therefore be suppressed

at long distances. Therefore, one expects that for λ ∼ 1 (recall that in d = 4 this is

a dimensionless quantity) the divergent contribution can be made to change sign or

even cancel. Of course what one means by λ ∼ 1 must be put into the context of the

renormalization group flow, and is generally scheme-dependent. In d = 3 however the

parameter λ is in fact not renormalized, and takes on a fixed value that defines the

model. µ is renormalized, but then so is the physical Λ. There is actually no reason

one cannot take Λ << µ. This corresponds to preforming the path integration only for

the very lowest momentum modes of α, well below the scales that they begin to couple

with the massive excitations. For a sufficiently large λ, it stands to reason that even

the lowest of the low frequency modes of the quantum theory may significantly alter the

mass/tension of the global vortex/string, and therefore compromise the approximations

appropriated from classical physics.

3.1.2 The Spectral Approach to the Log Divergence

Another equivalent method may be employed to arrive at the result (3.13).

This will justify the use of the parameter Λ, and will make contact with methods
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explored in a pertubative approach to quantum theory. We may consider a spectral

approach to computing the trace of ln∆. Suppose the eigenvalues of ∆ are labeled ξ,

and at large distances these are perturbed from their base values by the 1/r corrections

to the operator. In the four-dimensional Euclidean spacetime we have (still in cylindrical

coordinates)

∆ =
(
−∇2

(4)

)
− n2

µ2r2

(
−∇2

(4) +
2

r
∂r

)
+O

(
1

r4
∂2r

)
(3.14)

the eigenvalues ξ are defined by

∆ψξ = ξψξ (3.15)

and we may use perturbation theory to compute deviations from the “free space” eigen-

states ψ
(0)
ξ0

:

−∇2
(4)ψ

(0)
ξ0

= ξ0ψ
(0)
ξ0

(3.16)

The first order corrections, ξ1 are given by

ξ1 = −
∫
d4x

n2

µ2r2
ψ
†(0)
ξ0

(
−∇2

(4) +
2

r
∂r

)
ψ
(0)
ξ0

(3.17)

and the Casimir energy by

ECas ∝
1

2

∑
ξ

ln(ξ) ≈ 1

2

∑
ξ0

ln(ξ0) +
1

2

∑
ξ0

ξ1
ξ0

(3.18)

The functions ψ
(0)
ξ0

are easily derived, as are their eigenvalues ξ0:

ψ
(0)
ξ0

= Jℓ(kr) exp (iωτ + iqz + iℓθ) (3.19)

ξ0 = q2 + k2 + ω2 (3.20)
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It is clear then that the the summations in (3.18) ought to be replaced with integrals over

k, q, ω and a summation over integers ℓ, and that the first term on the right hand side

of (3.18) is divergent. This does, in fact, correspond to an infinite, homogeneous energy

density that is present in all quantum field theories. It is dealt with by renormalization

of the constant term in (3.1), but is otherwise not associated with an observable quantity.

The second term in (3.18) may now be expanded. We will group the momentum integrals

into one four-dimensional integral with measure d4k.

W ⊇ −
∞∑

ℓ=−∞

∫
d4k

(2π)4

∫
d4x

n2

2µ2r2(k2 + q2 + ω2)
Jℓ(kr)

(
k2 + q2 + ω2 +

2

r
∂r

)
Jℓ(kr)

(3.21)

We now employ an important identity of Bessel functions of the first kind:

∞∑
ℓ=−∞

J2
ℓ (kr) = 1 (3.22)

The term with the linear derivative in r thus vanished when the ℓ summation is pre-

formed, and the factors of ξ0 cancel in the remaining integrand. The result is

W ⊇ − n2

2µ2

∫
d4k

(2π)4

∫
d4x

1

r2
(3.23)

The momentum integral is clearly some constant cutoff, which we call Λ4. Going back

to the real time formalism, dropping the time integrals and the z integral (being care-

ful with negative signs), we derive the contribution to the tension from the Casimir

effect/functional determinant to be exactly as found before.

Tstring, Cas ⊇ −πn
2Λ4

µ2

∫
dr

r
(3.24)
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3.1.3 Higher Order Terms in the Functional Determinant

We now focus on the remainder of equation (3.9), i.e. those terms involving

the covariant derivative Dµ and the potential U . To do so we recall equation (1.65), in

a new form:

ζ∆(s) =
1

Γ(s)

∫ ∞

0
dσσs−1

∫
ddxK∆(σ|x, x) (3.25)

where K∆(σ|x, y) is called the “heat kernel” of ∆, and solves the corresponding heat

equation[19][12] (
d

dσ
+∆

)
K∆(s|x, y) = 0 (3.26)

with boundary condition

lim
σ→0

K∆(σ|x, y) = δ(d)(x− y) (3.27)

We will solve for the heat kernel perturbatively in powers of U , DµU , etc. The approxi-

mation is known as the Seely-DeWitt expansion, and it involves perturbing the solution

to the Green’s function for the heat equation in d dimensions:

K∆(σ|x, y) =
1

(4πσ)d/2
exp

(
−|x− y|2

4σ

) ∞∑
n=0

σnan(x, y) (3.28)

Where a0(x, y) = 1, and the remaining terms are recursively derived by solving the

differential equation

(n
2
+ (xµ − yµ)∂µ

)
an(x, y) + ∆an−1(x, y) = 0 (3.29)

In the coincidence limit y → x, which is relevant for the functional determinant, the

recursion relation reduces to a simple functional form that can be solved explicitly for
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all n:

an(x, x) =
(−1)n

n!
∆n1 (3.30)

Thus, we find the integrand of (3.25) to be

K∆(σ|x, x) =
1

(4πσ)d/2
e−σ∆1 (3.31)

It is however easier to analyze the terms as a power series in σ, preforming the integra-

tion over σ before the summation over n. One of course encounters divergences when

exchanging the order of operations for an expression that is (probably) not finite, but

we will ignore these as they are the same infinities that have been dealt with by the

theory of perturbative renormalization. Integrating over σ will give divergent term if

(as s = 0 eventually) 2n ≤ d. Thus we introduce a cutoff Λ−2 for the lower bound of the

σ integral. Because the field α is massless, there is a large σ divergence for 2n > d, and

thus we cut off the upper bound of the integral with some large distance scale R2. In

principal one must compute every term in the series with these parameters, then re-sum

them, and pray to a higher power that the limit exists (and is finite) as R → ∞. We

will do no such thing, only remark on the asymptotic form of the functions an(x, x).

Ultimately the result is (for some coefficients cn that depend on R,Λ):

ζ∆(s) =
1

Γ(s)(4π)d/2

∫
ddx

(
c0 + c1∆1 + c2∆

21 + · · ·
)

(3.32)

The functions ∆1,∆21, etc. are typically geometric invariants, such as the potential U ,

derivatives of U , the Ricci scalar, derivatives of the Ricci scalar, the curvature tensor

for connection ω, etc. In this case we have explicitly

∆1 = U(x) ∼ 1

r4
(3.33)
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∆21 = U2(x)−D2U(x) ∼ 1

r6
(3.34)

and so forth. The c0 term contains a volume divergence, but c0 is also proportional

to Λ4−2s. It is a typical homogeneous energy density, of the same kind we previously

encountered. c1 ∼ Λ2−2s, but the contribution to the string tension from integrating

U(x) is finite. We see that the terms in this expansion all correspond to integrable con-

tributions to the tension of the string, though the coefficients may be cuttoff-dependent

and thus renromalizable parameters.

An alternative way to look at these results is the following. If a field is de-

fined at a temperature T , the mass parameter depends on that temperature: µ = µ(T ).

There is a critical temperature Tc near which µ2(T ) = a(T − Tc) for some constant

a. Thus for T < Tc we have a spontaneously broken U(1) symmetry, and above it, a

restored/unbroken symmetry. As T vanishes, µ2 tends to some finite positive constant.

Λ is the stand-in for T , and from equation (3.13) we see that there is some intermediate

µ(T ) ∼ T∗ < Tc for which the coefficient in parenthesis changes sign. The expression in

(3.13) may also be considered as the leading order long-range potential energy between

infinitesimal string segments (of opposite winding number) that are separated by dis-

tance R. For T < T∗ the strings are pulled together and confined, but for T > T∗ they

are repulsed, unconfined. At Tc the string core ceases to exist and the strings evaporate.

A similar mechanism has been studied before in a thermodynamic context under the

name “Berezinskii–Kosterlitz–Thouless (BKT) transition”[23][24], though always in the

62



context of non-relativistic systems in two or lower spatial dimensions. This effect sug-

gests that cosmic global strings may have been deconfined for a long period after their

formation, or perhaps still are, depending on the particular value of λ that describes

the underlying physics.

3.2 Casimir Forces on Spheres

We turn now to a far simpler computation of the functional determinant. To

motivate the discussion, we should review some material relevant to cosmic axion strings.

These are global strings like we have already studied, where the axion is the Goldstone

boson of a global U(1) symmetry broken at very high energies. There are many reasons

a phenomenologist would consider such a system, the most important of which is that

it provides a mechanism to solve the Strong CP problem[25]. In this case, a confin-

ing gauge theory at low energies has many degenerate vacuum states, and therefore

processes exist which tunnel between these vacuua. The tunneling processes are called

instantons, which are like solitons except they are localized in spacetime, not just space.

They occur in an instant, hence the name. The instantons make identification of the

many degenerate vacuum states ( in e.g. SU(3) gauge theories ) indistinguishable, and

thus only a relative phase between states is measured. This phase angle is called θ, and

it breaks charge-parity (CP) in the gauge theory, when fermions are present, and θ ̸= 0.

The standard model should have a θ, but it has been measured to be zero, to one part
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in 10 billion. The anomalous smallness of θ without real explanation is known as the

Strong-CP problem, and the axion was proposed to solve this problem.

In the context of Strong-CP, θ is promoted to a dynamical field, and this is the

axion, the Goldstone boson of some high energy spontaneously broken U(1) symmetry.

The instantons dynamically generate a potential for the axion, forcing it to its minimum

at zero, explaining the smallness of θ and creating an anomalous axion mass. Through

interactions with the quarks, the axion couples anomalously to the photon, and thus

mixes with the photon. This is not important to us. What matters is the instantons

cause the axion to develop a small anomalous mass[26], the phase angles of the axion

field around the global string (equation (3.2)) are no longer isotropic. Angles away from

α = 0 develop higher energy density, and therefore a two-dimensional membrane forms

(it will have width proportional to the inverse axion mass, but this is very small in

comparison with the area formed by the membrane), bounded by the much more dense

string core.

All this is to say that if global strings are to be expected and sought out in the

cosmos, many models predict that the strings will be accompanied by thin membranes.

Here we will consider the case of a circular string of tension T , hosting a disk membrane

of tension Σ. If Σ1/3 << T 1/2, and the radius is large, most of the energy will be stored

in the string, and the lowest energy oscillations of the string-membrane system will be

vibrations of the disk which leave the string undeformed. The frequencies of oscillation
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are the same of a drum head, and are the roots of the ordinary Bessel function of the

first kind, i.e. Jℓ(jℓ,n) = 0, n = 1, 2, 3, · · · .

ω =
jℓ,n
a

(3.35)

The Casimir energy is therefore some constant divided by the radius of the string/disk

a, and it is our goal to determine the sign and size of this constant. We will find it

is positive, indicating a repulsive force. The Casimir effect on spherical geometries has

been explored for a long time, the main avenue of research being the computation of the

zeta functions for summations over the roots of ordinary and spherical Bessel functions.

In three spatial dimensions, the force on a sphere from massless modes trapped within

is known to be repulsive. As it turns out, the forces and therefore the energies of the

even spatial dimensions (on 1-spheres, 3-spheres, etc) is divergent[27]. There are simple

poles in the Zeta function at the point corresponding to the Casimir effects. We can

see this explicitly from McMahon’s expansion[28]. For fixed ℓ and large n, the following

form is known.

jℓ,n ∼ π

(
n+

ℓ

2
+

1

4

)
− 4ℓ2 − 1

8π
(
n+ ℓ

2 + 1
4

) −O
(

1

n3

)
(3.36)

The summation is to be taken over the natural number n, and also over the integer ℓ.

It is clear that the first term diverges, but one may regulate the summation with the

Riemann zeta function. i.e.

∞∑
n=1

n→ ζR(−1) = − 1

12
(3.37)
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and so forth. However, the second term in (3.36) is infinity even in this scheme.

N∑
n=1

1

n+ c
∼ ln(N) → ζR(1) = ∞ (3.38)

Logarithmic divergences appear as simple poles in the complex plane. Multi-log di-

vergences are higher order poles. The zeta function for the eigenvalues (3.35) contains

only simple poles. In fact, its analytic structure is known for a significant portion of its

domain[29]. Let’s define this zeta function as the circular zeta function, calling it ζ⊙.

Where the sum converges, it is equal to

ζ⊙(s) =
∞∑

ℓ=−∞

∞∑
n=1

(jℓ,n)
−s (3.39)

Since from (3.36) is is clear j−1
ℓ,n ∼ n−1, it must be that this sum diverges for Re(s) ≤ 1.

In fact the first pole appears at s = 2. The sum over n has been computed for s =

2, 4, 6, · · · and in the case s = 2 we find

ζ⊙(s) =
∞∑

ℓ=−∞

1

4(ℓ+ 1)
→ ∞ (3.40)

We must mention that while the summation over ℓ is taken over all the integers, the ℓ in

(3.36) and (3.40) is positive. This is because the roots for Jℓ and J−ℓ are identical, corre-

sponding to the waves which move clockwise and anti-clockwise in the two-dimensional

space. For ℓ ̸= 0 there is two-fold degeneracy, but the ℓ = 0 state is singularly degener-

ate. In three-dimensions, for example, the degeneracy is 2ℓ+1. We omit absolute value

signs in these expressions because they are unsightly.

The circular zeta function has poles at s = 2, 1,−1,−3,−5,−7, · · · . The pole

at s = 2 is due to a log divergence of the summation over ℓ, while the remaining poles
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are due to log divergences in the summation over n. They appear at odd integers be-

cause the powers of 1/n in (3.36) are only odd. One may calculate the asymptotic form

of jℓ,n to any odd positive power and verify the series contains a 1/n term. Hence the

location of the poles in ζ⊙ are due to asymptotic spacing of the eigenvalues jℓ,n, and

the singularity of the Riemann zeta function in (3.38).

The first few residues are known as well[29]. We will only need the first three,

as the form of ζ⊙ we will take is

ζ⊙(s) =
1

2(s− 2)
− 1

2(s− 1)
− 1

128(s+ 1)
+ φ(s) (3.41)

where φ(s) is an analytic function in a neighborhood around s = −1. The residue at

s = −5 is positive, and about half the magnitude of the residue at s = −1. Since the

simple poles in ζ⊙ are due to distributions of eigenvalues in the high-frequency limit of

the spectrum, we are justified in dealing with these logarithmic divergences in the usual

way of renormalization. We define the Minimal-Subtraction (MS) renormalized Casimir

Energy as

Eren
Cas(a) =

1

a
lim

s→−1

(
ζ⊙(s) +

1

128(s+ 1)

)
=

1

a

(
1

12
+ φ(−1)

)
(3.42)

The subtraction of the simple pole at s = −1 may be associated with the renormal-

ization group flow of some other parameter in the theory, which depends on a in the

same way. For example, the tension T or Σ may be renormalized in a radius-dependent

way by this cancellation. This is unimportant, since the physical forces exerted on
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the string/membrane must be finite and therefore determined by (3.42). We have pre-

formed the first computation of φ(−1) and found it to be negative, but smaller in mag-

nitude than 1/12. Hence the renormalized Casimir energy is positive, and the forces

repulsive[21]. To preform this calculation, we employed numerical analytic continuation

of the function φ(s) on a region of the complex plane, which we will now discuss.

3.2.1 Data Generation

Efficient computation of the jℓ,n for small ℓ and n is handled quite well by

libraries like Python’s SciPy, which utilizes Newton’s algorithm for root finding. For

large n and small ℓ, the McMahon asymptotic expansion is preferable to root finding.

The built-in SciPy root finder for Jℓ(x) uses x = 0 as its starting point however, which

poses a significant problem for larger values of ℓ. These functions are extremely small

near the origin for larger values of ℓ, and do not grow to appreciable values until x is

comparable with the first root jℓ,1. For example, J200(x) is smaller 10−15 until x ∼ 150.

Floating point error in determination of Jℓ(x) throws Newton’s method into a loop for

starting points too close to the origin. Thus, the SciPy functions are of no use for ℓ any

larger than about 200. On our machine, the first failure of these built-in methods occurs

at ℓ = 231, far too small to compute the zeta function with any impressive accuracy.

Ultimately, we have efficiently computed roots for ℓ ≲ 10, 000.

The problem would be alleviated if a better starting position were known than

x = 0. In fact, the first root of Jℓ(x) is always at least ℓ, but we can do much better
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than this. The roots of the Bessel functions are known to be interlaced. That is,

jℓ−1,n < jℓ,n < jℓ−1,n+1 (3.43)

so if one had already computed the roots to Jℓ−1, the work required to find those of Jℓ

is greatly reduced. Since all of the roots are necessary, this is the approach we took.

This sequential computation was employed, and using the interlacing property described

above, the bisection method was found to be most efficient, converging usually within

20-30 iterations to the threshold accuracy of 10−10.

The number of roots jℓ,n less than some value N scales as O(N2), so multipro-

cessing was applied to cut down on computation time. The computation for N = 105

was preformed on a 2015-era laptop with a 4-core processor, and completed in about 90

minutes, averaging ∼4 ms per root found. For N = 106 our machine would need to run

for an estimated 6 days, prohibitively long.

The result of the computation, shown as a density plot of the jℓ,n for bins of

size 1 is shown below in Figure 3.1. The density is consistent asymptotically with the

function:

ρ(j) ∼ j

2
− 1

4
+ error (3.44)

The error between this data and the asymptotic form ρ(j) is randomly distributed

around zero and seems to grow in absolute value no faster than
√
j × constant. Within

these relative bounds on the error, the roots are not distributed uniformly.
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Figure 3.1: Number of Bessel roots jℓ,n per unit interval, including only those less than
105. Values for ℓ ̸= 0 have been counted twice, accounting for the 2-fold degeneracy of
waves in 2+1 dimensions.

Knowing the asymptotic form of this eigenvalue distribution is important. The

summations involved in computing the zeta function converge slowly relative to those of

the Riemann zeta function, so the function ρ(j) allows us to approximate the remainder

of the infinite sums without actually generating the roots themselves. Particular values

of the zeta function have been found analytically[29]. For instance:

ζ⊙(4) =
∞∑

ℓ=−∞

∞∑
n=1

1

j4ℓ,n
=

2π2 − 15

96
≈ 0.049366758356028 (3.45)

Direct computation of this sum, cut off at jℓ,n ≤ 105, with accuracy of each root to 10

decimal places, yields ∑
j≤105

1

j4ℓ,n
≈ 0.049366755856... (3.46)

which is accurate for the first 8 decimal places. This can be improved significantly by
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simply adding to the sum an integration term:

∑
j≤105

1

j4ℓ,n
+

∫ ∞

105

ρ(j)

j4
dj ≈ 0.049366758356... (3.47)

thereby increasing the accuracy to 12 decimal places. In the next section we characterize

how these inaccuracies build when analytic continuation is preformed.

3.2.2 Analytical Continuation

For simplicity, we solved the discrete Cauchy-Riemann equations on a square

lattice of spacing ε representing the complex plane. This requires a connected domain

of initial values for the zeta function, which were acquired by directly computing the

summation described in the previous section, with the integral over ρ(j) to represent

the zeros which were not explicitly derived. This procedure does not work well near

poles, but since we know where the poles are and their residues, this can be avoided.

Strictly speaking, we computed functions u and v:

φ(s) = ζ⊙(s)−
1

2(s− 2)
+

1

2(s− 1)
+

1

128(s+ 1)
≡ u+ iv (3.48)

(which is analytic for Re(s) > −3) then iteratively solved the discrete Cauchy-Riemann

equations

ui,j = ui+2,j − vi+1,j+1 + vi+1,j−1 (3.49)

vi,j = vi+2,j + ui+1,j+1 − ui+1,j−1 (3.50)

where the index i represents steps in the positive real direction of the complex s plane,

and the index j represents steps in the positive imaginary direction. These formula eas-

ily compute a region to the left of your initial known values, and can be manipulated to
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compute regions above, below, and to the right. Our procedure was as follows: directly

compute the zeta function for a vertical strip of width 2ε and height h (symmetric about

the real axis), then apply the Cauchy-Riemann equations to estimate the zeta function

on a domain to the left and to the right of this strip. The final domain of computed

values spans a 45◦ rotated square in the complex plane, centered on s = x0 + i0, with

corners at x0 − h/2 + i0, x0 + h/2 + i0, x0 + ih/2, x0 − ih/2.

The purpose of computing for larger real values of s was to establish bounds

on the failure of this iterative process to accurately compute ζ⊙. To this end, ε, h, and

x0 had to be chosen wisely. Too many steps (too small ε) resulted in the blowup of

floating point errors, and too few steps created errors which we believe represent the

failure of coarse-graining of the Cauchy-Riemann equations. x0 needed to be as close

to s = −1 as possible without incurring the wrath of the simple pole at s = 2 (the

summation does not converge well at all for s to the left of 4 + i0), but not too large

lest we run into the problem of step size.

Ultimately, we settled on the parameters x0 = 8, ε = 0.36, h = 36. h was

chosen to be so large so that we were guaranteed to see a blowup of the algorithm at

some definite number of steps. We found this to be a good combination of the described

constraints, and this is apparent in the data. In Figure 3.2 you will find the numerically

generated plots of φ(s) on the real axis.
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In Figure 3.2, we see that the function φ(s) is negative, but beginning to turn

around near s = −1. This is consistent with the existence of a simple pole of positive

residue at s = −3, which is known to be the case. As previously stated, we extracted

a value of φ(−1) ≈ −0.07594, and estimate a relative error of about 5% for this value.

This estimate is determined by inspecting the relative (or absolute) error at the location

s = 17, which is equal number of lattice steps to the right of our starting point x0 as the

point of interest, s = −1. By s = 19, the error build up becomes large, and this is also

seen to the left of the graph, close to the pole at s = −3. However, due to the pole at

this location, we did not feel displaying the calculated values was of any interest, as the

values are quite large. At the location s = 17, the values of the blue and orange graphs

are −0.001706 and −0.001649, respectively. The 5% error bound on φ(−1) squarely

places the renormalized value of ζ⊙,ren(−1) ≈ 0.0074± 0.0038, which is positive.
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Figure 3.2: In blue, we show the numerically determined (analytically continued) values
of φ(s) along the real axis, and in orange, the exact determination using the summation
described in section 2.1. A portion of the entire domain, x ∈ (−1, 20) is shown (top) as
well as a zoomed-in section x ∈ (12, 19) used to illustrate the growth of numerical error
(bottom).

74



3.2.3 String/Membrane Stability

If we suppose a circular string is formed, and later its membrane, then we may

calculate the total energy in the regime where membrane excitations are allowed but the

boundary string is fixed in place. This is the case where the energy stored in the string

is much greater than that of the membrane. Since the membrane oscillations have the

same energy density as tension, the waves are massless and described by the spectrum

of the ordinary Bessel functions Jℓ. Therefore the total energy is

E(a) = 2πaT + πa2Σ+
ζ⊙,ren(−1)

a
(3.51)

We however assume that the second term is much smaller than the first and third

components. In other words

a <<
2πT

Σ
(3.52)

The solution is, as before, what we call a∗, and it must be large compared to the inverse

of the anomalously generated Axion mass, m−1
a , since this determines the thickness

of the membrane. Denote the scale of the U(1) symmetry breaking by MSSB and the

coupling constant of this field by λ. The tension Σ scales with ma like Σ ∼ maf
2
a , where

fa is the scale of physics that generates the anomaly (for the QCD Axion, MSSB = fa,

the Axion decay constant)[26]. In principle there is no reason these cannot be different

scales for generic Axion models. The hierarchy of scales is therefore:

1 <<
ma

MSSB

√
λζ⊙,ren(−1)

2π
<< 2

(
MSSB

fa

)2

(3.53)

The first inequality is the condition that the thin-membrane approximation is valid at

the stable radius, and the second inequality the condition that membrane oscillations
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are the primary source of the Casimir effect, or that oscillations of the string boundary

are kinetically inaccessible. These are the approximations we must take to apply the

results of our Zeta function calculation with confidence.

Our thin wall approximation is easily met if λ is parametricaly large compared

to the mass ratio of the heavy U(1) quanta to the anomalous Axion mass. λ can be

small if ma >> MSSB, but this is likely prohibited phenomenologically, at least in the

case that the Axion is weakly coupled with the anomalous physics. For the QCD Ax-

ion, these inequalities clearly cannot be met, and an analysis must be done of the full

vibration spectrum of the string+membrane system (much larger radii). This involves

determination of the zeta function for the roots of Bessel functions, j′ℓ,n. We attempted

this calculation but progress was slow since the residues and locations of the poles are

unknown to this author. We expect the result to be repulsive, as the exchange of Dirich-

let to Neumann boundary conditions does not significantly effect the spectral density.

Clearly, when coupling constants are large, quantum effects may be strong

enough to counteract classical forces and tensions, stabilizing soliton configurations

which would not otherwise be stable. If one only considers the functional determinant

contribution, one finds that coupling constants need to be very big for this to occur.

However, there are always higher and higher order contributions to consider, and we

expect a full analysis of the quantum forces will produce stabilized solitons for much

more reasonable values of λ.
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3.3 Source Terms in the φ3 Theory

We will now explore the quantum effects that are dominant at weak coupling.

These are the terms generated by the source terms, as discussed in section 1.4.2. In most

cases, it is impossible to simplify the calculations involved, since they generally contain

infinite derivatives, or alternatively are non-local. However, the scalar φ3 theory in four

spacetime dimensions provides us with a workable scenario, at least in some asymptotic

limit. To begin, let’s discuss the model Lagrangian and equations of motion. In this

theory, the field is restricted to positive values: φ ≥ 0. The Lagrangian density is

L =
1

2
(∂φ)2 +

m2

2
φ2 − g

3
φ3 − m6

6g2
(3.54)

The Euler-Lagrange equations are

∂2φ−m2φ+ gφ2 = 0 (3.55)

Derrick’s theorem tells us that in three or higher dimensions, we can generally not

expect solitons to solve the equations of motion. Supposing we find a radially symmetric

solution of the form

φ(r) =
m2

g
f(mr) (3.56)

where f(0) = 0 and f(∞) = 1. the equations of motion reduce to (for a dimensionless

variable u = mr with f = f(u))

f ′′ +
2

u
f ′ − f + f2 = 0 (3.57)
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from which we can deduce that f must tend to 1 at infinity faster than any inverse

power of u. Further analysis shows that the asymptotic behavior of f is approximately

given by

f(u) ∼ 1− c1 cos(u) + c2 sin(u)

u
+O

(
u−2

)
(3.58)

This field configuration does not however have definite energy. We will explore this now,

bounding the total energy of the field configuration from below by a non-oscillating form.

3.3.1 Large Quantum Corrections for a Particular Configuration

Suppose we are given the asymptotic configuration for φ:

φ(r) =
m2

g

(
1− α

mr
− β

m2r2
− γ

m3r3
· · ·
)

(3.59)

with some constant α > 0, and unspecified corrections of order r−4. Our goal will not be

to make a convincing argument that such a configuration solves the equations of motion

for the complete effective action detailed in section 1.4.2. We will however demonstrate

that the classical contribution to the total energy is compensated significantly by the

contributions from the effective action source terms. First, the classical total energy is

computed. It in fact diverges, and we will only consider the leading order pieces. This

configuration was picked in particular due to the fact

−∇2φ = O
(

1

r4

)
(3.60)

The terms of this order are integrable, and we will be concerned only with the divergent

contributions to the total energy. So where leading order contributions are concerned,
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we may completely omit any derivative terms for φ (and consequently, the fluctuation

operator will commute with J and V
′′
up to these smaller subleading corrections). We

then have for the classical total energy

Ecl ∼ 4π

∫ R

drr2
(
m4β

g2r2
+
m3(αβ − α3/3)

g2r3
+O

(
1

r4

))
(3.61)

Integrating, we find

Ecl ∼
4πm4βR

g2
+

4πm3

g2

(
αβ − α3

3

)
ln(R) + finite (3.62)

If this were a text on classical physics, we would conclude α = β = 0 at all times,

regardless of the equations of motion. Before drawing such conclusions here we will

consider the quantum effects. The source term is given by

J(r) =
m4

g

(
− α

mr
+
α2 − β

m2r2
+

2αβ − γ

m3r3
+O

(
1

r4

))
(3.63)

The fluctuation operator is

∆ = −∇2
(4) +m2 − 2m2

(
α

mr
+

β

m2r2
+

γ

m3r3
+ · · ·

)
≡ −∇2

(4) +m2 + U(r) (3.64)

As previously mentioned, up to the order r−4 terms, the algebra of these functions and

operators is quite simple. In particular

∆J = (m2 + U)J +O
(

1

r4

)
(3.65)

∆U = (m2 + U)U +O
(

1

r4

)
(3.66)

We may now evaluate the effective action term that is quadratic in J . We use the form

discussed in equations (1.74) and (1.75):

W ⊇ −1

2

∫
d4xJ(r)

∫ ∞

0
dσe−σ∆J(r) (3.67)
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To evaluate this expression, one expands the exponential in powers of σ, applying the

expressions (3.65) and (3.66) at each order. Alternatively, because −∇2
(4) and U(r)

“commute” (up to integrable corrections) we may simply split the exponential.

e
−σ(−∇2

(4)
+m2+U)

J(r) ∼ e−σ(m2+U)e
−σ(−∇2

(4)
)
J(r) (3.68)

It is clear that the action of the final exponential is (again up to integrable corrections)

just the identity operator. Thus (3.67) reduces to a very simple form. The derivatives

may be dropped and the σ integral done explicitly. The result is

W(2) = −1

2

∫
d4x

J2

m2 + U
+O

(
1

r4

)
(3.69)

Returning to real-time formalism, the action and therefore the contribution to the energy

of this static configuration may be read off:

S(2) =
1

2

∫
dt

∫
d3x

J2

m2 + U
(3.70)

E(2) ∼ −4π

∫ R

drr2
(
m4α2

2g2r2
+
m3αβ

g2r3
+O

(
1

r4

))
(3.71)

And after integration:

E(2) ∼ −2πm4α2R

g2
− 4πm3αβ

g2
ln(R) + finite (3.72)

Inspection of (3.72) and (3.62) yields an exact cancellation of the order R term if

β = α2/2, and partial cancellation of the ln(R) terms. We have not finished calcu-

lating the terms which contain a ln(R) divergence, so complete cancellation may yet be

possible. It is impressive however that the leading order divergence is already nullified,

by considering only the first quantum term in the effective action. Already this proves
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our point, that the effective action as a functional of the source J can not be neglected

from an analysis of the equations of motion for soliton configurations.

Let us go further and investigate the term cubic in J . This will be the final

divergent contribution to the total energy of the configuration (3.59), and will contribute

a final ln(R) divergence. All other terms in the effective action (1.72) will be integrable.

Confirming this is simply a problem of dimensional analysis. The cubic term is

W(3) =
1

6

(
3∏

i=1

∫
d4xiJ(xi)

)
G(3)(x1, x2, x3) (3.73)

The three-point function at tree level is easily derived. It is

G(3)(x1, x2, x3) = −2g

∫
d4x4∆

−1(x1, x4)∆
−1(x2, x4)∆

−1(x3, x4) (3.74)

As before, the calculation involves the integral and its following simplification (again,

up to integrable terms):

∫
d4xi∆

−1(xi, x4)J(xi) ∼
J(x4)

m2 + U(x4)
(3.75)

After returning to real-time and dropping the time integration from the action, we find

the divergent contribution to the energy to be

E(3) ∼
4πg

3

∫ R

drr2
(

J

m2 + U

)3

∼ 4πm3α3

3g2
ln(R) + finite (3.76)

The ln(R) divergences from equations (3.62), (3.72), and (3.76) add to zero. Hence the

total energy of this configuration is finite if β = α2/2, a conclusion that we certainly

would not have expected from a study of the classical equations of motion. Of particular
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importance is that this cancellation happens at weak coupling. We therefore conclude

that in quantum field theory, one generically expects to finds a class of solutions to the

full quantum equations of motion that are classically inaccessible, regardless of the size

of the theory’s parameters.
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Chapter 4

Conclusion

In chapter 1 were were introduced to the concept of the soliton as a stable,

inhomogeneous field configuration. By no means did we cover the details of the many

many solitons which have appeared and become relevant in high energy physics and

many-body physics, or in fluid dynamics. We discussed important aspects, such as scal-

ing relations, oscillations and bound states, and collective coordinates. This approach,

or rather these quantities, are the oft-discussed topics of soliton physics, and they are

all classical.

We then considered an approach consistent with the quantum effective field

theory, and quickly realized that not only did solitons inherit the difficulties with quan-

tum field theory around the vacuum, but these difficulties were amplified because of

the non-linear nature of the soliton equations of motion. In particular, the scaling ar-

guments in Derrick’s theorem and the variational methods of Euler and Lagrange are
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futile in a first principles approach. When considering a soliton that is already known

and studied in classical physics, one of course may take the point of view that quantum

corrections to the profile are small. In this context, the quantum system of equations

are ordered perturbatively and except in circumstances involving tunneling effects, the

stability of the classical soliton is not often put under threat by quantum physics.

However there are known cases of solitons in quantum theory that are not

satisfactorily explained by the classical physics we associate with the particle/wave con-

tent of the model. These cases were explored briefly in chapter 2, and they provide a

justification for asking the question: are there soliton solutions to quantum field theory

equations that do not exist when the quantum effects are removed? If the answer is yes,

then the approach taken in the typical treatment of solitons in quantum theory - that

which we have just described as an assumption of small corrections - is too weak of an

approach. To answer this question we must begin with the assumption that any such

field configuration is largely different from what one expects in classical physics. We

then generically must compute an infinite number of integrals to determine if a given

configuration is a minima of the energy functional, and methods for completing this

task in a finite amount of time presently elude us.

In general, one should expect quantum effects to be strong compared to clas-

sical effects when there is a large self-interaction in the theory. This is a regime where

most modern tools of quantum theory break down. The various phenomenology that
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is known when coupling constants become large run the gamut of physics: in some cir-

cumstances, strong coupling leads to more symmetry, and total loss of scale; in other

cases, it breaks what little symmetry is available and generates new mass scales from

nothing. It is not a controversial suggestion that in this regime, classical dynamics of

particles, waves, and solitons break down.

Ordinarily, one cannot distill the quantum interactions down to a finite num-

ber of computations, even when systems are weakly coupled. It is a rare circumstance

when the theorist only need calculate a handful of integrals to arrive at a result, and

especially in the case of strong interactions where the infinite number of terms cannot

even be arranged by some order of magnitude estimates. One circumstance where this

is possible is the case of large distance, or infrared physics, when there are free massless

degrees of freedom. In the case we saw of the global vortex/string, the lowest energy

degrees of freedom were the Goldstone bosons, and at large distances they are only mod-

erately coupled to the vortex itself. The problem of the infinite classical vortex mass

and string tension was due to the long range behavior of the phase degrees of freedom,

and so we were inclined to investigate the quantization of those same degrees of freedom

to resolve the issue of infinity. The massive quanta could not possibly produce energy

densities that fell off with polynomial dependence, as is well known from the spectral

properties of massive fields. For this same reason, the interactions between the massive

quanta and the Goldstone bosons also should depend on the intrinsic mass scale in a

non-polynomial way, so we omit these terms from the calculation.
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What is left is the functional determinant, which we saw in chapter 3 could

be expressed as a series of energy density contributions which fell off slowly from the

core of the vortex/string. The leading order of these corrections was established, and

it had the opposite sign and same form of the classical divergent contribution to the

mass/tension. Ultimately, we observed the mass/tension could be rendered finite if the

coupling constant was of order unity. The functional determinant was also evaluated

for the case of a vibrating membrane, and we additionally observed that at very large

coupling one may find this force sufficient to balance a very large soliton.

Of course, at large coupling, there are many other effects which may produce

comparably strong forces. These effects are all due to physics that is set at an intrinsic

mass scale, and as such will be ordered in an expansion around powers of that mass scale

and the geometric scales of the soliton. We make no claim in computing these effects,

or knowing what their nature should be. The purpose of the functional determinant

computations we have presented is to illustrate the potential for even the most simple

quantum corrections to upend the (in)stability of a soliton in quantum theory.

At the end of chapter 3, we demonstrated an exact cancellation of the clas-

sically divergent component of the soliton mass by quantum corrections. This occurs

at any coupling, small or large. The configuration we considered, a radially symmetric

field in a φ3 potential, which existed in an unbroken symmetry phase at the origin,
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is probably not of physical interest. This was a toy model we developed to illustrate

the importance of quantum effects even at weak coupling. Quantum effects are often

discarded when they are infinite, but in the case of infrared divergences, or ones we

associate with the infinite volume of a system, we should keep these infinities and look

for their opposite sign counterparts. In this case we see they cancel exactly, without

tuning any parameters of the model.

The question we asked earlier in this section: are there soliton solutions to

quantum field theory equations that do not exist when the quantum effects are removed?

does not have a direct answer. We cannot write down the full equations of motion, let

alone solve them. However, an adjacent question: are there field configurations dynam-

ically accessible in quantum field theory which are not in classical field theory?, has an

answer. It is a resounding yes. This discovery will prove to be a critical component in

the study of the dynamics of quantum solitons.
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