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ABSTRACT

Proteins and their functional interactions form the
backbone of the cellular machinery. Their connectiv-
ity network needs to be considered for the full un-
derstanding of biological phenomena, but the avail-
able information on protein–protein associations is
incomplete and exhibits varying levels of annota-
tion granularity and reliability. The STRING database
aims to collect, score and integrate all publicly avail-
able sources of protein–protein interaction informa-
tion, and to complement these with computational
predictions. Its goal is to achieve a comprehen-
sive and objective global network, including direct
(physical) as well as indirect (functional) interac-
tions. The latest version of STRING (11.0) more than
doubles the number of organisms it covers, to 5090.
The most important new feature is an option to up-
load entire, genome-wide datasets as input, allow-
ing users to visualize subsets as interaction net-
works and to perform gene-set enrichment analy-
sis on the entire input. For the enrichment analysis,
STRING implements well-known classification sys-
tems such as Gene Ontology and KEGG, but also
offers additional, new classification systems based

on high-throughput text-mining as well as on a hi-
erarchical clustering of the association network it-
self. The STRING resource is available online at
https://string-db.org/.

INTRODUCTION

While an impressive amount of structural and functional
information on individual proteins has been amassed (1–
3), our knowledge about their interactions remains more
fragmented. Some interactions are quite well documented
and understood, for example in the context of three-
dimensional reconstructions of large cellular machineries
(4–6), while others are only hinted at so far, through in-
direct evidence such as genetic observations or statistical
predictions. Furthermore, the space of potential protein–
protein interactions is much larger, and also more context-
dependent, than the space of intrinsic molecular function of
individual molecules. Interactions may not only be limited
to certain cell types or certain physiological conditions, but
their specificity and strength may vary as well, from obliga-
tory, highly specific and stable bindings to more fleeting and
relatively unspecific encounters. From a purely functional
perspective, proteins can even interact specifically without
touching at all, such as when a transcription factor helps
to regulate the expression and production of another pro-
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tein, or when two enzymes exchange a specific substrate via
diffusion.

Arguably, the common denominator of the various
forms of protein–protein associations is information
flow––biologically meaningful interfaces have evolved to
allow the flow of information through the cell, and they are
ultimately essential for implementing a functional system.
Hence, it is desirable to collect and integrate all types of
protein–protein interactions under one framework; this
then provides support for data analysis pipelines in diverse
areas, ranging from disease module identification (7,8) to
biomarker discovery (9–11) and allows manual browsing,
ad hoc discovery and annotation.

Protein–protein interactions can be collected from a
number of online databases (reviewed in (12,13)), as well
as from individual high-throughput efforts, e.g. (14). Pri-
mary interaction databases (3,15–18) are jointly annotating
experimental interaction evidence directly from the source
publications, and they are coordinating their efforts through
the IMEx consortium (19). They provide highly valuable
added services such as curating metadata, maintaining com-
mon name spaces and devising ontologies and standards.
A second source of protein–protein interaction information
is provided by computational prediction efforts, some of
which are hosted by dedicated databases, e.g. (20,21). Lastly,
a third class of databases is dedicated to protein interac-
tions at the widest scope, integrating both primary as well
as predicted interactions, often including annotated path-
way knowledge, text-mining results, inter-organism trans-
fers or other accessory information. The STRING database
(‘Search Tool for Retrieval of Interacting Genes/Proteins’)
belongs to this latter class, along with GeneMania (22),
FunCoup (23), I2D (24), ConsensusPathDb (25), IMP
(26) and HumanNet (27)––most of which have recently
been reviewed and benchmarked in (7).

STRING is one of the earliest efforts (28) and strives to
differentiate itself mainly through (i) high coverage, (ii) ease
of use and (iii) a consistent scoring system. It currently fea-
tures the largest number of organisms (5090) and proteins
(24.6 million), has very broad and diverse, benchmarked
data sources and provides intuitive and fast viewers for on-
line use. It also features a number of additional data ac-
cess points, such as programmatic access through an API,
access through a Cytoscape app (http://apps.cytoscape.org/
apps/stringapp), as well as download pages covering indi-
vidual species networks and associated data. The website
allows users to log on and store their searches and gene
sets, and contains evidence viewers to inspect the underly-
ing evidence of any given interaction. It also provides users
with high-level information regarding their input/search
data, including network enrichment statistics and func-
tional enrichment detection, using two different concep-
tual frameworks for the latter (see below). Many of the fea-
tures of STRING have been made available and described
earlier (28–31) and the website is currently accessed by
around 3500 distinct users daily; its hosting facilities have
recently been replicated and placed under a commercial
load balancer, to provide added stability and capacity. Users
can submit multiple proteins simultaneously and visual-
ize large networks; the Cytoscape stringApp can even han-
dle network sizes of several thousand proteins. STRING

shares its genome-, protein- and name spaces with a num-
ber of sister projects, dedicated to orthology (eggNOG
(32)), small molecules (STITCH (33)), protein abundances
(PaxDB (34)), tissue expression (TISSUES (35)) and viruses
(Viruses.STRING (36)), respectively.

Together with other online resources (including the IMEx
consortium, which is one of STRING’s largest primary data
sources), the STRING database has recently been awarded
the status of a European Core Data Resource by ELIXIR,
a pan-European bioinformatics initiative dedicated to sus-
tainable bioinformatics infrastructure (37). As a prerequi-
site and consequence of this status, all interaction data and
accessory information in STRING are now freely available
without restrictions, under the Creative Commons Attribu-
tion (CC BY) 4.0 license.

DATABASE CONTENT

The basic interaction unit in STRING is the ‘functional as-
sociation’, i.e. a link between two proteins that both con-
tribute jointly to a specific biological function (38–40). For
two proteins to be associated this way, they do not need to
interact physically. Instead, it is sufficient if at least some
part of their functional roles in the cell overlap––and this
overlapping function should be specific enough to broadly
qualify as a pathway or functional map (in contrast, merely
sharing ‘metabolism’ as an overlapping function would be
too unspecific). By this definition, even proteins that an-
tagonize each other can be functionally associated, such
as an inhibitor and an activator within the same pathway.
The desired specificity cutoff for functional associations in
STRING roughly corresponds to the annotation granular-
ity of KEGG pathway maps (41), whereby maps that largely
group proteins by homology (such as ‘ABC transporters’)
are removed from consideration.

All of the association evidence in the STRING database
is categorized into one of seven independent ‘channels’:
three prediction channels based on genomic context in-
formation (see below), and one channel each for (i) co-
expression, (ii) text-mining, (iii) biochemical/genetic data
(‘experiments’) and (iv) previously curated pathway and
protein-complex knowledge (‘databases’). Users can disable
all channels individually or in combinations. For each chan-
nel, separate interaction scores are available as well as view-
ers for inspecting the underlying evidence (Figure 1). In gen-
eral, the interaction scores in STRING do not represent the
strength or specificity of a given interaction, but instead are
meant to express an approximate confidence, on a scale of
zero to one, of the association being true, given all the avail-
able evidence. The scores in STRING are benchmarked us-
ing the subset of associations for which both protein part-
ners are already functionally annotated; for this, the KEGG
pathway maps (41) are used as a gold standard and they thus
implicitly also determine the granularity of the functional
associations.

Within each channel, the evidence is further subdivided
into two sub-scores, one of which represents evidence stem-
ming from the organism itself, and the other represents
evidence transferred from other organisms. For the latter
transfer, the ‘interolog’ concept is applied (42,43); STRING
uses hierarchically arranged orthologous group relations as

http://apps.cytoscape.org/apps/stringapp
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Figure 1. A typical association network in STRING. The yeast prion-like protein URE2 has been selected as input. The network has been expanded by an
additional 10 proteins (via the ‘More’ button in the STRING interface), and the confidence cutoff for showing interaction links has been set to ‘highest’
(0.900). The insets at the right show how many items of the various evidence types in STRING contributed to this particular network (counts denote how
many records covered at least two of the proteins in the network; not all of these records contributed high-scoring links after score calibration).

defined in eggNOG (32), in order to transfer associations
between organisms where applicable (described in (29)).

The individual protein associations in the various chan-
nels are derived, briefly, as follows:

The three genomic context prediction channels (neigh-
borhood, fusion, gene co-occurrence) are the result of sys-
tematic all-against-all genome comparisons, aiming to as-
sess the consequences of past genome rearrangements, gene
gains and losses, as well as gene fusion events. These evolu-
tionary events are known to be retained non-randomly with
respect to the functional roles of genes, and thus allow the
inference of functional associations between genes even for
otherwise rarely studied organisms (genomic context tech-
niques are reviewed in (44,45)).

The co-expression channel is based on gene-by-gene cor-
relation tests across a large number of gene expression
datasets (using both transcriptome measurements as well
as proteome measurements). In the case of transcript data,
STRING re-processes and maps the large number of ex-
periments stored in the NCBI Gene Expression Omnibus
(46), followed by normalization, redundancy reduction and
Pearson correlation (described in (29)). For version 11, we
have further improved the RNAseq co-expression infer-
ence pipeline. This was achieved by processing a higher
number of RNAseq samples and using the robust biweight
midcorrelation (47). In addition to NCBI Geo, for a sub-

set of species, gene count data was downloaded from the
ARCHS4 and ARCHS4 zoo collections (48).

Protein-based co-expression analysis is new in version 11
of STRING, and as of now it is restricted to one dataset
imported as is: namely the ProteomeHD dataset of the
Juri Rappsilber lab (unpublished, https://www.proteomehd.
net/), covering 294 biological conditions measured using
SILAC in human cells. ProteomeHD is not based on
Pearson correlation, but instead uses the treeClust algo-
rithm (49); for STRING, the results of this algorithm
are recalibrated and scored using the KEGG benchmark.
Each ProteomeHD-provided interaction features a cross-
link through which the underlying evidence can be in-
spected at the ProteomeHD website.

For the experiments channel, all interaction records from
the IMEx databases (plus BioGRID), are re-mapped and
re-processed: first, duplicate records and datasets are re-
moved, and then entire groups of records are benchmarked
against KEGG and scored accordingly.

The database channel is based on manually curated in-
teraction records assembled by expert curators, at KEGG
(41), Reactome (50), BioCyc (51) and Gene Ontology (52),
as well as legacy datasets from PID and BioCarta. STRING
only retains associations between direct pathway members
or within protein complexes. The database channel is the
only channel for which score calibration does not apply; in-

https://www.proteomehd.net/
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Figure 2. Functional enrichment analysis of a genome-sized input set. An expression dataset comparing metastatic melanoma cells with normal skin
tissue (62) has been submitted to STRING, with average log fold change values associated to each gene (negative values signify depletion in the melanoma
cells). The screenshot shows how STRING presents and groups statistical enrichment observations for a number of pathways and functional subsystems.
When hovering with the mouse, the website highlights the corresponding proteins both in the input data on the left side, as well as in the organism-wide
network on the right side. The latter can be interactively zoomed until individual proteins and their neighbors become discernible. Here, the highlighted
observation shows that the desmosome is downregulated in melanoma cells––this stands out by way of several publications in PubMed whose discussed
proteins (desmosome proteins) are strongly enriched at one end of the user input.

stead, all associations in this channel receive a high, uniform
score (0.900).

At last, for the text-mining channel, STRING conducts
statistical co-citation analysis across a large number of
scientific texts, including all PubMed abstracts as well as
OMIM (53). Since version 10.5 of STRING, the text cor-
pus also contains a subset of full-text articles. For version
11.0, the Medline abstracts (last updated on 9 June 2018)
were complemented with open access as well as author-
manuscript full text articles available from PMC in BioC
XML format (https://arxiv.org/abs/1804.05957) (last up-
dated on 17 April 2018). Full-text articles that were not clas-
sified as English-language articles were removed (using fast-
Text and a pretrained language identification model for 176
languages (https://arxiv.org/abs/1607.01759)), as were those
that could not be mapped to PubMed. We also removed
highly unspecific articles that mention more than 200 rel-
evant biomedical entities such as proteins, chemicals, dis-
eases or tissues. The final corpus consists of 28 579 637
scientific publications, of which 2 106 542 are available as
full-text articles and the remainder as abstracts. While the

text-mining pipeline itself has remained unchanged (last de-
scribed in (29)), its dictionary of gene and protein names
has been updated to the new set of genomes and the stop-
word list improved to increase precision, especially for hu-
man proteins.

NEW ENRICHMENT DETECTION MODE

For users that query the STRING database with a set of
proteins (as opposed to a single query protein only), the
website computes a functional enrichment analysis in the
background; this can then be inspected and browsed by
the user, and includes interactive projections of the results
onto the user’s protein network. This functionality has been
available since version 9.1, and is based on straightforward
over-representation analysis using hypergeometric tests.

However, this analysis uses only a small part of the in-
formation that the user might have about his or her protein
list. First, the original list of proteins might have been much
longer, and the user would have had to truncate it (thus far,
STRING enforced an upper limit on the number of query
items). Second, the list might have had a biologically mean-

https://arxiv.org/abs/1804.05957
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ingful ranking, which would have been lost during submis-
sion to STRING. Third, each protein might have been as-
sociated with some numerical information from the under-
lying experiment or study (such as a log fold change, a mea-
sured abundance, a phenotypic outcome, etc.). For this type
of genome-wide measurements, simple overlap-based over-
representation analysis is not the best choice (54–56).

Thus, beginning with version 11.0, STRING offers such
users a second option for conducting enrichment analysis.
It specifically asks for genome-scale input, with each pro-
tein or gene having an associated numerical value (a mea-
surement or statistical metric). Of the available methods for
searching functional enrichments in such a set, we chose a
permutation-based, non-parametric test that performs well
in a number of settings, termed ‘Aggregate Fold Change’
(56). Briefly, this test works by computing, for each gene
set to be tested, the average of all values provided by the
user for the constituent genes. This average is then com-
pared against averages of randomized gene sets of the same
size. Multiple testing correction is applied separately within
each functional classification framework (GO, KEGG, In-
terPro, etc.), according to Benjamini and Hochberg (57),
but not across these frameworks as there is significant over-
lap between them. For large gene sets, the AFC random-
ization method becomes prohibitively slow; these gene sets
are instead tested after converting the user-provided gene
values to ranks, using two-sided Kolmogorov–Smirnov test-
ing. In addition to the usually applied functional classifi-
cation frameworks, STRING uses two additional systems,
thus giving users more options and potentially more nov-
elty for discovery. The first is based on a hierarchical clus-
tering of the STRING network itself. This assumes that
tightly connected modules within the network broadly cor-
respond to functional units, and has the advantage that it
covers a broader scope and potentially also novel modules
that may not yet be annotated as pathways. The cluster-
ing is based on a confidence diffusion state distance matrix
(58,59) computed on the full, organism-wide STRING net-
work, which is clustered hierarchically using HPC-CLUST
with average linkage (60). To compute the DSD matrix, the
final, combined STRING-score between proteins is used,
and the DSD algorithm is run with default parameters and
the ‘-c’ flag (confidence). Following the clustering proce-
dure, all clusters with sizes between 5 and 200 are included
in the functional enrichment testing, and reported under
their own, separate classification category. The second ad-
ditional set for enrichment testing consists of all published
papers mapping to the genes in the user’s input. This takes
advantage of STRING’s text-mining channel, for which all
of PubMed’s abstract and some additional scientific text are
already mapped onto STRING’s protein space (based on
identifier matches in the text). Detecting publications that
are enriched in the user-input ranking provides yet another
complementary way of interpreting the input, often with a
more fine-grained view.

Following the computation of the entire new enrichment
option, users are presented with a three-panel view of the re-
sults (Figure 2). There, each enriched functional subset can
be highlighted, and tracked back to the user’s input as well
as to a pre-rendered, organism-wide STRING network.
The layout of the latter is based on a t-SNE-visualization

of the network (61) and can be zoomed and panned inter-
actively.

OUTLOOK

Over the coming years, the STRING team aims to continue
tracking all available protein association evidence types and
prediction algorithms. One particular focus will be to ex-
pand the protein-based co-expression channel, where ad-
vances in proteomics throughput and scope lead us to ex-
pect growing data support for association searches. With re-
gard to the STRING website, we expect to provide tighter
integration of functional enrichment and network search re-
sults, and are exploring options to provide more context on
the various networks (such as cell type, tissues, organelles).
We will also strive to provide better interoperability options
and increase our list of partnered, crosslinked resources as
well as applicable direct data import options to facilitate our
regular data updates.
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