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Abstract

A parallel micro-power mixed-signal VLSI implementation of independent component analysis 

(ICA) with reconfigurable outer-product learning rules is presented. With the gradient sensing of 

the acoustic field over a miniature microphone array as a pre-processing method, the proposed 

ICA implementation can separate and localize up to 3 sources in mild reverberant environment. 

The ICA processor is implemented in 0.5 µm CMOS technology and occupies 3 mm × 3 mm area. 

At 16 kHz sampling rate, ASIC consumes 195 µW power from a 3 V supply. The outer-product 

implementation of natural gradient and Herault-Jutten ICA update rules demonstrates comparable 

performance to benchmark FastICA algorithm in ideal conditions and more robust performance in 

noisy and reverberant environment. Experiments demonstrate perceptually clear separation and 

precise localization over wide range of separation angles of two speech sources presented through 

speakers positioned at 1.5 m from the array on a conference room table. The presented ASIC leads 

to a extreme small form factor and low power consumption microsystem for source separation and 

localization required in applications like intelligent hearing aids and wireless distributed acoustic 

sensor arrays.

Index Terms

Blind source separation; Independent component analysis; Micropower techniques

I. Introduction

Blind source separation(BSS) has long been considered a hard signal processing problem 

and different algorithms for a wide range of applications in speech processing [1], wireless 

communications [2] and biomedical signal processing [3] exist. Independent component 

analysis (ICA) is a signal processing technique for solving instantaneous BSS problem that 
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can be formulated as a linear transformation that minimizes the statistical dependence 

between components in a random data vector [4]. Few analog VLSI implementations of ICA 

exist in the literature [5], [6], while in the digital domain, the high-power implementations 

using FPGAs are common practice in the field [7], [8] and few digital ASICs [9], [10] are 

reported.

For blind separation of acoustic sources new opportunities arise with the miniaturization of 

microphones, specially with the design of MEMS microphones that can capture the field 

distribution of the impinging sound source [11], [12]. While the human auditory system 

performs remarkably well in segregating multiple streams of acoustic sources, performance 

of modern hearing aids significantly deteriorates in the presence of multiple signal and noise 

sources in the acoustic scene [13]. To be effective in resolving the signal of interest, both 

localization and separation of multiple acoustic sources are required. We have demonstrated 

that the direction of acoustic wave propagation can be estimated by differential spatial 

sensing of the field on sub-wavelength scale, using gradient flow technique [14], [15]. 

Mixed-signal VLSI implementation of the method [16] has demonstrated improved 

performance in terms of power dissipation and bearing resolution over conventional bearing 

estimation localizers. Besides its use in bearing estimation, gradient flow provides an 

efficient signal representation as a front-end for blind source separation of traveling wave 

signals. In the presence of multiple signal sources, gradient flow converts the problem of 

separating unknown delayed mixtures of independent signal sources, into a simpler problem 

of separating instantaneous mixtures of the time-differentiated source signals [14]. This 

formulation is equivalent to the problem statement in independent component analysis. 

Implementation of ICA in mixed-signal VLSI combined with spatial gradient sensing ASIC 

yields a real-time low-power system for separation and localization of multiple independent 

signal sources impinging on miniature microphone array. We have previously reported the 

implementation of the ICA update rule formulated in the outer-product form with the fixed-

diagonal terms [17], [18]. The presented ICA architecture implements natural gradient 

update rule with the back-propagation path providing improved stability and faster 

convergence.

The paper is organized as follows. Section II reviews algorithms for static linear ICA and 

describes how gradient flow yields to joint localization and separation in case of multiple 

travelling source waves. A general mixed-signal parallel architecture, that can be configured 

for implementation of various ICA update rules is presented in Section III. Experimental 

characterization of a fabricated prototype and demonstration of the separation performance 

is presented in Section IV, followed by the concluding comments in Section V.

II. Blind Source Separation

The blind source separation problem can be formulated in a following manner. N unknown 

sources s(t) = [s1(t)s2(t)․․sN(t)]T propagate through an unknown medium and are observed by 

an array of M sensors x(t) = [x1(t)x2(t)․․xM(t)]T. The task is to obtain estimates of the source 

signals y(t) = [y1(t)y2(t)․․yN(t)]T from the observed sensor signals. The common assumption 

on the source signals utilized in solving the separation problem is that the source signals are 

statistically independent [4]. The model of the mixing process is determined in accordance 
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with the setting of the problem. In the case of linear instantaneous mixing, the observed 

signals x are linear combinations of the unknown source signals

(1)

where A is M×N dimensional mixing matrix and n is the additive noise. When the number 

of source N is greater than the number of observations M, N > M, some prior information on 

the source signals is necessary for solving the problem.

A. Gradient Flow Signal Representation

The linear instantaneous mixing model is not applicable when the source signals are 

traveling waves like acoustic waves. We devised a signal conditioning technique gradient 

flow [14] for unmixing of the observed signals on the miniature microphone array with the 

distance between microphones much smaller than the wavelength of the source signals. 

Gradient flow separates and localizes sources by relating spatial and temporal derivatives of 

the impinging acoustic field, as illustrated in Figure 1(a). Observation of the first order 

spatial gradients of the acoustic field ξ10(t) and ξ01(t) in perpendicular directions p and q in 

the plane in the case of a single source enables indirect estimation of time delays τp and τq, 

as illustrated in Figure 1(b),

(2)

where ξ̇00(t) is the time-differentiated spatial common mode of the acoustic field ξ00(t). The 

propagation delays τp and τq directly yield the azimuth θ and the elevation ϕ angle of the 

source.

When multiple sources are impinging on the miniature array, as illustrated in Figure 1(c) for 

three sources, the observed first order spatial gradients yield linearly mixed observations of 

the time-differentiated source signals ṡℓ each scaled by propagation delays τp
ℓ and τq

ℓ along 

the gradient directions:

(3)

where ν10 and ν01 represent spatial derivative components of additive noise in the sensor 

observations.
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Likewise, the time-differentiated spatial common mode ξ̇00(t) yields further linearly mixed 

observation of the time-differentiated source signals ṡℓ:

(4)

where ν̇00 represents the time-derivative of the common mode component of additive noise 

in the sensor observations. Looking at gradient signals ξ̇00(t), ξ10(t) and ξ01(t), equations (3) 

and (4) can be identified as a linear instantaneous mixture of time-differentiated source 

signals, which is in the form of classic linear static ICA (1) as

(5)

The gradients ξ̇00(t), ξ10(t) and ξ01(t) in (5) are estimated by finite differences of the 

acoustic field on the sensor grid comprising four microphones in the configuration illustrated 

in Figure 1 [14] and computed in a micropower mixed-signal VLSI architecture [16]. The 

mixing coefficients in (5) represent the corresponding 3-D direction cosines in terms of 

inter-temporal differences and uniquely determine the direction of the source ℓ. Therefore, in 

this representation a system composed by integration of gradient flow and linear 

instantaneous ICA, can be used to achieve multiple source separation and localization of 

traveling source signals.

B. Independent Component Analysis

For this mixing model (1), ICA solution is formulated as a linear transformation that 

minimizes the statistical dependence between components in the output signals y

(6)

where W is N×M dimensional unmixing matrix. The unmixing matrix W is not uniquely 

defined, with ambiguity in scaling and permutation. The energy of the source signals cannot 

be determined, since both s and A are unknown and any scalar multiplier in one of the 

sources could be canceled by dividing the corresponding column of A by the same scalar. As 

the order of the independent sources is not predefined, any permutation of the columns of 

the matrix W is a valid solution of the separation problem.

1) ICA Learning Rules—Most of the ICA learning algorithms proposed in the literature 

are based on optimizing a cost function defined as the measure of independence between the 

components of the output signals [19]. Different approaches, like maximization of entropy 

[20], minimization of mutual information of the output signals [19], [21] and the 

maximization of likelihood function [22], lead to the same form of the cost function
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(7)

where pi (yi) are the marginal probability density functions (pdfs) of output signals. Term 

det(W) represent the volume conserving property of the linear transformation [23]. ICA 

learning rule is derived by applying the stochastic gradient descent to (7)

(8)

where f (y) is the cumulative distribution function

(9)

This update rule was first derived as InfoMax learning rule in [20] by maximization of 

entropy of transformed output signals. Selection of f (y) as a non-linearity that 

approximately matches the input cdf’s does not affect the performance of the algorithm. The 

uniform and robust convergence is obtained by using Amari’s natural gradient [24], which 

has the simple form in the space of matrices, WWT. Multiplying (8) by WWT leads to the 

learning rule without matrix inversion

(10)

The convergence of (10) implies E{fi (yi)yi}=1 as a constraint on the reconstructed signals. 

To avoid numerical instability due to non-stationarity in the sources, the Cichocki-

Unbehauen (C-U) algorithm [25] introduces a non-holonomic constraint in the natural 

gradient learning rule (10), by fixing the diagonal terms of the unmixing matrix W:

(11)

where Λ is a diagonal scaling matrix. Convergence of the C-U algorithm implies Λii = E[f 
(yi)yi].

The similar algorithm can be derived based on non-linear decorrelation that introduces 

higher-order statistics into the solution method. This first formulation of ICA, inspired by 

biomimetic principles, was derived by Herault-Jutten (H-J) [26] and was based on a 

feedback network topology

(12)
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with zero diagonal terms (wii ≡ 0, ∀i). An independence criterion with nonlinear correlation 

between output signals yields the on-line learning rule for the off-diagonal terms

(13)

where f(․) and g(․) are appropriately chosen, odd-symmetric functions. Good example is the 

function that matches cumulative distribution function of source signals for f and linearity 

g(y) ≡ y for function g.

2) General Outer-Product Learning Rule—Efficient implementation of ICA in 

feedforward parallel architecture requires casting learning rules (10) and (13) in a form of 

the outer-product update rule. H-J learning rule (13) is in the form of the outer-product, 

however the learning rule is defined for recurrent architecture (12). To map the recurrent 

architecture onto a feedforward form, we apply the following approximation:

(14)

In other words, we choose to implement the H-J rule with linear feedforward network of the 

type y = Wx with fixed diagonal terms wii ≡ 1, and with off-diagonal terms adapting 

according to (13) [17], [18]. Equivalently, the implemented update rule can be seen as the 

gradient of InfoMax (8) multiplied by WT, rather than the natural gradient multiplication 

factor WTW. Interestingly, in the special case of a 2 × 2 network (2 sources and 2 

observations) the update rule (13) reduces to non-holonomic (zero-diagonal) form of the C-

U rule (11).

To obtain the natural gradient update rule (10) in outer-product form, it is necessary to 

include a back-propagation path in the network architecture to implement the vector 

contribution z = WT y. The learning rule can then be represented in the form of the decay 

term and the outer-product term

(15)

Through quantization of the vector terms in the outer-product rules (13) and (15), as well as 

the quantization of the decay term in (15), the update rules in the proposed implementation 

are simplified to the discrete counting operations. In the case of speech signals that are 

approximately Laplacian distributed, the optimal nonlinear scalar function f (yi) can be 

approximated by sign(yi), which requires a single bit quantization. Conversely, vectors y in 

rule (13) and z in rule (15) are approximated by a 3-level staircase function (−1, 0, +1) using 

2-bit quantization.
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III. Chip Architecture

The functional block diagram of a 3 × 3 outer-product mixed-signal ICA architecture is 

shown in Figure 2. An analog datapath directly interfaces with input signals and provides 

analog output signals, without the need for analog-to-digital conversion at the input and 

digital-to-analog conversion at the output. The digital adaptation offers the flexibility in 

selection of the learning rules. The mixed-signal architecture is implemented using fully 

differential switched-capacitor (SC) sampled-data circuits. The coefficients of the unmixing 

matrix are stored digitally in each cell of the architecture. The update is performed locally 

by once or repeatedly incrementing, decrementing or holding the current value of counter 

based on the on-chip defined learning rules or through a range of learning rules served by 

the external logic. Correlated double sampling performs common mode offset rejection and 

1/f noise reduction.

The differential analog input channels directly interface the gradient output signals from a 

previously developed gradient flow processor for acoustic localization [16], to extend the 

system functionality to joint separation and localization of up to three acoustic sources. The 

digital values of the unmixing coefficients correspond to the directional angles of the source 

signals in the gradient flow representation.

A. Vector Matrix Multiplication

ICA is a linear transformation and the main functionality of the proposed implementation is 

a (3×1)–(3×3) vector-matrix multiplication. In addition to the vector-matrix multiplication in 

the computation of the output signals y = Wx, the vector-matrix multiplication is required 

for the implementation of the natural gradient learning rule in the outer-product form (15), z 
= WT y. Since the same matrix W is used in both multiplication operations, the vector z is 

computed using the same circuit used to compute the vector y, but with the time-multiplexed 

input in and output out signals of the vector-matrix multiplication circuitry. That is, the 

product z = WT y in the natural-gradient learning rule is obtained after computation of the 

output signal y.

The switched-capacitor implementation of the vector-matrix multiplication is shown in 

Figure 3. The input vector is analog signal, while the coefficients of the unmixing matrix are 

adaptive digital values. Looking at the product y = Wx, one component of the output signal 

yi is decomposed in differential form as a linear sum of the weighted differential input 

contributions

(16)
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The multiplication is performed through multiplying D/A capacitor arrays and output of 

each of these DACs represents product  or . The output signal is computed by 

accumulating outputs from all the DAC cells in the ith row. The clocks ϕ1 and ϕ2 are non-

overlapping, and ϕ1e replicates ϕ1 with its falling edge slightly preceding the falling edge of 

ϕ1. All the switches are complementary transmission gate FETs, except the switches 

controlled by ϕ1e, which are n-channel FETs. In the precharging phase ϕ1, all the unit 

capacitors in the array are precharged to the zero-level reference voltage Vmid (set to Vdd/2), 

as well as the feedback capacitor C2. The inverters are reset. In the computation phase ϕ2, 

the input signals are sampled on unit capacitors and the accumulation is performed on C2 by 

high-gain amplifier yielding the valid output signals during ϕ2 phase. The implementation 

and layout of the multiplying capacitor arrays are the same as in gradient flow acoustic 

localizer chip [16]. The value of the unit capacitor in the array is 5.1 fF. The value of the 

feedback capacitor C2 is externally set to accommodate variable gain in the vector-matrix 

multiplication and can take one of the four values: 0.5 pF, 1 pF, 2 pF and 4 pF. The vector-

matrix multiplier is followed by the sample-and-hold circuit that provides the analog output 

signal.

A cascoded pseudo-nMOS inverter biased in weak inversion (the upper range of the 

subthreshold regime) is used as high-gain amplifier [16]. The choice of telescopic 

operational amplifier without tail transistor is driven by smaller area and reduced noise and 

power dissipation [27], [28], while the weak inversion is chosen as the region of operation 

due to extended output dynamic range and the maximum transconductance-to-current ratio 

for maximum energy efficiency at the highest possible speed [29]. The performance of the 

designed cascoded amplifier was simulated at 200 nA of biasing current with the load 

capacitance of 1 pF. At 3 V supply, simulations indicate an open-loop dc gain of 91 dB and 

gain-bandwidth product of 844.3 kHz. The biasing current in each of the amplifiers in the 

proposed architecture was set by considerations of sampling frequency, slew-rate, and power 

dissipation.

B. Comparator Design

The discrete values of functions sgn(yi), quant(yj) and quant(zj) in (15) are obtained 

through level comparisons. Implementation of the comparator, that is able to compare signal 

with variable level, consists of the preamplifier, shown in Figure 4, followed by a latched, 

regenerative comparator [16]. The clocks  and  are non-overlapping and their relative 

timing with respect to clocks ϕ1 and ϕ2 is shown as inset in Figure 4, as well as the changes 

in threshold voltage VTH for 3-level comparison.  replicates  with its falling edge 

slightly preceding the falling edge of . The value of capacitors C1 and Cc is 300 fF.

While the output signals are valid, yi
+ is sampled in phase  on capacitor C1. The sign of 

the comparison of yi with variable level threshold VTH is computed in the evaluate phase , 

through capacitive coupling into the amplifier input node. The change in voltage VTH in 

phase  will lead to multiple level comparisons in a single clock cycle. The offset of the 

comparator was measured to be 10 mV and is consisted for the different level comparisons.
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C. Learning Rule

The parallel architecture with the representation of the ICA learning rules in the form of 

outer-product enables the local updates of coefficients of the unmixing matrix W. The 

coefficients are represented as 14-bit values in two’s complement and are stored in a counter. 

In the gradient flow framework, the unmixing coefficients yield the 3-D direction cosines in 

terms of inter-temporal differences τ1
ℓ and τ2

ℓ. The update is performed by incrementing, 

decrementing or holding the current value of the counter.

The implementation of H-J learning rule (13) is performed as [17]

(17)

where quant(yj) is a 3-level staircase function (−1,0,+1), that is coded using 2-bits, sgn and 

mag, as illustrated in Figure 5. The natural gradient learning update (15) comprises the outer 

product update

(18)

and periodical update that is proportional to the value of the first two MSBs of wij. 

Additional levels could be introduced in a staircase function quant(yj) by increasing a 

number of levels in the comparator signal VTH, as described in the Section III-B, at the 

penalty of increased power consumption due to additional clock transitions. The 8 most 

significant bits of the weights are presented to multiplying D/A capacitor array in 

thermometer code to construct the output signals. The remaining 6 bits in the coefficient 

registers provide flexibility in programming the update rate to tailor convergence.

IV. Experimental Results

A prototype 3 × 3 mixed-signal ICA processor was designed, fabricated, and tested. The 

architecture is integrated on a single 3mm × 3mm chip fabricated in 0.5 µm 3M2P CMOS 

technology. Figure 6 shows the micrograph of the chip.

All the experiments with the chip were conducted at 3 V supply voltage and with the zero-

level reference Vmid set to 1.5 V. The signal swing at the chip inputs is 2.4 V peak-to-peak. 

The reference voltage Vmid and three biasing voltages for cascoded inverter were generated 

on-board for testing purposes. However, they might have been generated internally at 

expense of small increase in power consumption.
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The integral nonlinearity(INL) of the multiplying DAC is measured at 0.54 LSB. The 

effective resolution in the output signal as the result of the vector-matrix multiplication is 

8.83 bits. The measured power consumption of the chip is 195 µW at 16 kHz sampling rate.

The digital estimates of coefficients wij in unmixing matrix are obtained directly from the 

counters at convergence and are output 4-bits at time. The chip also outputs the estimated 

source signals yi(t). The output signals are presented in complementary analog format 

through sample-and-hold buffers.

A. Synthetic Speech Experiments

For the full characterization of the separation performance of ICA processor, the synthetic 

mixtures of the speech signals were generated under diverse conditions in a controlled 

environment. The observed signals were artificially generated as received on the four 

microphone array in a configuration illustrated in Figure 1. The distance between 

microphones was set at 1 cm with sampling frequency of 16 kHz. The source signals were 

speech signals from TIMIT database. The microphone signals were first processed by 

acoustic localizer [16] that computes the spatial gradient signals (5) using on-grid 

approximation. The spatial gradients are the input signals to the ICA processor. ICA 

processor was configured to implement the outer-product update algorithms in (13) and (15). 

The quantization level in 3-level approximation of quant(y) was set to 180 mV amplitude 

change in voltage VTH, while the level change in quant(z) was 150 mV throughout all the 

experiments.

In the on-chip implementation of the ICA learning rules, we introduced quantization of the 

vector terms in the learning rules (13) and (15), as well as quantization of the decay term in 

(15). To assess the effect of the quantization on the separation performance, ICA algorithms 

implementing H-J learning rule (13) and natural gradient learning rule (15) without 

quantization were implemented in MATLAB. As additional benchmark for the separation 

performance, the efficient FastICA(EFICA) algorithm [30] was used. As a measure of 

separation performance, we used the signal-to-interference ratio (SIR). SIR in a single 

output yi is computed as

(19)

where yij is the contribution of the signal j to the output signal i. The reported SIR for the 

separation of multiple sources is obtained as the minimum of SIR in all output signals

(20)

In the first experiment, the effect of the angular distance between two sources on the 

separation performance was examined. The same elevation angles were assumed for both 

sources and the azimuth angle of the first source was set at θ1=30°. The azimuth angle of the 
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second source θ2 was varied from −15° to 135° in increments of 15°. We have omitted the 

locations of the second source at 0° and 90° where the separation is trivial. The separation 

performance of ICA online on-chip rules (13) (on-chip HJ) and (15) (on-chip NG), as well 

as the performance obtained from MATLAB with H-J, natural gradient (NG) and EFICA 

algorithm are shown in Figure 7. The results demonstrate a uniform separation performance 

for EFICA, while performance of on-line learning rules slightly depends on the directional 

separation. HJ online learning rule has demonstrated a lower convergence rate than natural-

gradient on-line rule, with also higher sensitivity to the initial conditions. The experiment 

was repeated with three sources present in the environment, with incidence angle 

corresponding to 30°, 70° and 135°. The simulated SIRs in three channels for on-chip NG 

were 28.5 dB, 25.6 dB and 18.2 dB. We also assessed the effect of the finite resolution of the 

vector-matrix multiplication on the separation performance of the quantized on-chip learning 

rules through MATLAB simulations. Increasing the effective resolution of the vector-matrix 

multiplication beyond 9 bits did not result in any significant improvement in the separation 

performance.

In the second experiment, the effect of the acquisition noise on the separation performance is 

investigated. We assumed that a white, spatially uncorrelated Gaussian noise sources are 

added to each sensor. The results for different signal-to-noise ratios (SNR) are presented in 

Figure 8. In the noisy environment, on-line quantized learning rules outperform EFICA.

In the mixing model adopted in the gradient flow representation (3), the anechoic 

environment is assumed. However, in the real room environment, due to reverberations the 

observed microphone signal is a sum of multi-path replicas of the source signal, that is a 

sum of time-delayed and attenuated source signals, where the delays and attenuations 

depend on the room geometry and the reflection coefficient of the walls. To measure the 

influence of the reverberations on the separation performance, we model a real room 

environment using image model [31]. The room dimensions were selected as [6m, 4m, 3m] 

and the reflection coefficient was the same for all the room surfaces. The location of the 

speakers and the microphone array is illustrated in Figure 9. The reflection coefficient was 

varied to determine the effect of the reverberation on the separation performance. The 

separation, as the function of the reflection coefficient, is shown in Figure 10. The separation 

performance degrades with the increase of the reflection coefficient, but satisfying 

performance is demonstrated in mild reverberant conditions. The separation is sustained as 

long as the direct path signal is stronger than the multi-path signals. The reflection 

coefficient of 0.52 in the presented room corresponds to the reverberation time of 300 ms.

B. Room Speech Separation Experiments

The separation performance of ICA processor was demonstrated and characterized in a real 

room environment. The recordings were performed in a typical conference room with size 

that corresponds to the simulated room in the synthetic room experiments. The input signals 

to the ICA processor were the spatial gradient signals, that are outputs of the gradient flow 

acoustic localizer [16]. The microphone array comprises four omnidirectional miniature 

microphones (Knowles FG-3629) in configuration shown in Figure 1. Microphones were 

arranged in a circular array with radius of 0.5 cm. The sensitivity of microphones is −53 dB 
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and typical noise level is at 27 dB. The microphone signals were passed through a second-

order bandpass filter with low-frequency cutoff set at 130 Hz and high-frequency cutoff set 

at 4.3 kHz. The signals were also amplified by a factor of 20. The system sampling 

frequency was set to 16 kHz. The speech signals, same as the ones used in the synthetic 

experiments, were presented through loudspeakers positioned at 1.5 m distance from the 

array.

To provide the quantifiable separation performance, speech segments were presented 

individually through either loudspeaker at different time instances. The first source was kept 

at the azimuth angle of 30°, while the second was moved from 45° to 165° in increments of 

15°. The two recorded datasets were then added, and presented to the gradient flow localizer 

ASIC [16]. The gradient signals obtained from the chip were then presented to the ICA 

processor, configured to implement the outer-product update algorithms in (13) and (15). 

The obtained SIRs for both on-chip learning rules, as well as for software H-J, natural 

gradient and EFICA ICA algorithms, are presented in Figure 11. The real room SIRs are in 

accordance with the simulation results and verify the separation performance in a mild 

reverberant environment. The experiments were repeated with joint presentation of both 

sources and 14-bit digital weights that represent the coefficients of the unmixing matrix were 

recorded. The angles of incidence of the sources relative to the array were derived and 

compared to the localization results obtained by acoustic localizer ASIC when a single 

source was presented. The angles obtained through LMS bearing estimation under individual 

source presentation are within 2° to the angles produced by both on-line ICA learning rules. 

In Figure 12, the input and the output signals of the ICA processor, that is the spatial 

gradients (3) and the reconstructed source signals, are presented for azimuth angles of 

θ1=30° and θ2=105°. We verified that the time-waveforms of the residue signals in each of 

the reconstructed outputs, y12 and y21, are free of direct path signal components and are 

dominated by multipath contributions due to room reverberation. The performance of the 

proposed ICA mixed-signal implementation has been compared to the implementations in 

the digital-domain in Table I. It is important to note that the proposed IC has analog input 

and output signals which eliminates the need for data conversion. This results in 

significantly lower power consumption and form factor of the corresponding sensory system 

for source separation compared to the system that contains digital ASIC. Additionally, the 

operational frequency in the proposed IC matches the bandwidth of the input signals, which 

is not the case for digital ASICs.

V. Conclusions

The proposed parallel low-power ICA architecture with outer-product learning rules using 

the gradient flow representation demonstrated state-of-the-art separation performance in 

noisy and mild reverberant conditions. The architecture mitigates the need for input or 

output data conversion as the inputs are the analog observed signals and the outputs are the 

analog reconstructed source signals with digitally stored coefficients of the unmixing matrix. 

The measured characteristics of the fabricated chip are summarized in Table II. These results 

suggest application of the gradient flow system integrating spatial sensing and static ICA 

with miniature microphone arrays to intelligent hearing aids with adaptive suppression of 

interfering signals and nonstationary noise. The separation performance of the proposed 
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system can be extended to moderate reverberation environment by using subband 

decomposition of spatial gradient signals and static ICA applied in each frequency band.
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Fig. 1. 
(a) Gradient flow principle. At low aperture, interaural level differences (ILD) and interaural 

time differences (ITD) are directly related, scaled by the temporal derivative of the signal 

[18]. (b) Propagation delays τp and τq scale the spatial gradients in perpendicular directions. 

(c) Joint separation and localization of up to three sources s1, s2 and s3 impinging on the 

array.
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Fig. 2. 
(a) Reconfigurable parallel mixed-signal ICA architecture implementing general outer-

product form of ICA update rules with one unmixing coefficient cell shown in (b).
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Fig. 3. 
Switched-capacitor implementation of the vector-matrix multiplication for computation of 

the ith component of the output signal y.

Stanaćević et al. Page 18

IEEE Trans Circuits Syst I Regul Pap. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Design of the comparator for sequential comparison of the signals y and z with variable 

voltage levels defined by the threshold voltage VTH.

Stanaćević et al. Page 19

IEEE Trans Circuits Syst I Regul Pap. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The unmixing coefficient wij is stored in a 14-bit counter and presented for vector-matrix 

multiplication through 8-bit multiplying D/A capacitor array [16].
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Fig. 6. 
Micrograph of 3 mm × 3 mm chip in 0.5 µm CMOS technology.

Stanaćević et al. Page 21

IEEE Trans Circuits Syst I Regul Pap. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
SIR for separation of two sources incident on the microphone array. The azimuth angle of 

the first source is fixed at θ1=30° and the azimuth angle of the second source θ2 is varied 

from −15° to 135°.
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Fig. 8. 
Separation performance as a function of spatially uncorrelated sensor noise when the source 

signals are impinging the array at 30° and 70°.
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Fig. 9. 
Location of the sensor array and speakers in the simulated room environment.
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Fig. 10. 
Separation performance in reverberant environment as a function of reflection coefficient 

when the two sources are located at 30° and 70°.
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Fig. 11. 
SIR for two reconstructed speech sources played through a loudspeakers to a miniature 

microphone array in a conference room. The azimuth angle of the first source was fixed at 

θ1 = 30° and the azimuth angle of the second source θ2 was varied from 45° to 135°. The 

elevation angles ϕ1 and ϕ2 for both sources were 8°.
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Fig. 12. 
Time waveforms and spectrograms of the source signals s1 and s2, spatial gradients (3), the 

input signals to the ICA processor, and reconstructed source signals, output signals of the 

ICA processor for the case of two source signals with azimuth angles of θ1=30° and 

θ2=105°.
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TABLE II

ICA Processor Characteristics

Technology 0.5 µm 2P3M CMOS

Size 3 mm × 3 mm

Supply 3 V

Room separation 6 dB – 12 dB

Power dissipation 192 µW at 16 kHz
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