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Abstract

Data Driven Algorithms For Perception
With Applications To Autonomous Driving, Energy And Mixed Reality

by

Oladapo Afolabi

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

The rise of autonomous and artificially intelligent systems promises to deliver efficient and
optimal performance as well as unprecedented functionality in a variety of fields and human
endeavors. As varied as these fields are, a common property of most autonomous systems is
that they convert raw data about their relationship with the environment into optimal actions
to achieve a desired goal. One may further divide this conversion into the sub-tasks of sensing
and perception, planning, and actuation. Perception is an important part of this pipeline
since it describes the set of algorithms for turning raw data into useful bits of information
that can be used for planning.

At its core, we may view perception using an estimation framework. Perception algorithms
essentially seek to estimate information from noisy, incomplete and raw data obtained from
sensors. However, the accuracy of the information obtained (and consequently effectiveness
of the actions taken by the system) are dependent on the assumptions and models used in
designing perception algorithms. Therefore, it is important to take care in designing accurate
but tractable models for perception. Unfortunately, many perception tasks involve complex
functions and sensor models relating observed data to information. These functions are
difficult to model from physical properties. In these cases data-driven methods can provide
complementary techniques that result in excellent models for very complex systems.

In this dissertation, we present three perception algorithms designed for applications in
Autonomous Driving, Energy Systems and Mixed Reality. We make use of data driven
methods to provide approximations to complex sensor models and present tractable estimation
algorithms for turning raw data into information. We verify our approach on both synthetic
and real data and report excellent results.
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Chapter 1

Introduction

1.1 What is perception and why perception?
“All our knowledge begins with sense, proceeds thence to understanding, and ends with
reason”[51]. This statement is as true for humans as it is for artificially intelligent and
autonomous systems.

Much like humans, autonomous systems are designed to observe the relationship between
their environment and themselves, extract meaningful information from these observations,
and act on this information to modify the relationship in ways that achieve a desired set of
outcomes. From this standpoint, one may broadly decompose autonomous systems into three
parts:

1. Sensing: This refers the process of collecting data about the relationship between an
autonomous system and the environment, as well as processing this data to produce
useful information. Data on the relationship between an autonomous system may
comprise of observations about processes in the environment or the internal state of
the autonomous system.

2. Planning: Planning refers to the process and set of algorithms that convert information
to a set of actions required to achieve desired outcomes.

3. Actuation: Actuation refers to the process of either changing the system’s internal
state, the environment or both. For autonomous systems, actuation is the physical
realization of the actionable outcomes from the planning stage.

For example, in mobile robots, the sensing may comprise of physical sensors such as
cameras, LIDAR sensors, wheel encoders and algorithms to turn the raw sensor reading into
meaningful information. Such algorithms may include Localization and Mapping algorithms
or image classification algorithms. Planning may include algorithms to convert information
such as the pose of the robot and location of key objects in the environment into a useful set
of actions. In this scenario, this may simply be a path planning algorithm that outputs an
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obstacle free path to the exit in a room. Actuation would involve moving the robot along
this path towards the exit.

However, actuation need not always involve movement or mechanically moving parts. In
our broad definition, actuation can be any response made by the autonomous system to effect a
change on the environment or itself. For example, an energy disaggregation system estimating
the power consumption of individual appliances from aggregate power measurements may
display the resulting disaggregated information or a warning about appliance usage as its
form of actuation.

Sensing and Perception
This breakdown is just one way to view autonomous systems. The observant reader may
have noticed that we may further decompose sensing into data collection and data processing.
In fact, one could argue that the data processing stage could be another component on its
own or even part of the planning stage.

This argument may be valid. For simplicity we will stick to our original decomposition
but emphasize the difference between sensing and perception. As stated above, sensing may
be decomposed into two parts, data collection and data processing. It is this data processing
component we refer to as perception. Analogous to how we may look around a room and
observe large slabs of white boundaries leading to a brown rectangular pattern and perceive
it as a set of walls leading to a door, or the set of contours and lines on a page and perceive
it to be the drawing of a face, perception is what turns vast amounts of observed data to
manageable and meaningful abstractions called information.

Without this information autonomous systems run into difficulty when trying to make
sense of their environment, much in the same way a patient with Wernicke’s aphasia may
have trouble reading or recognizing a person even though they see the strokes making the
words on a page and the lines contouring a face; hence the importance of perception. It is
this definition of perception that is the focus of this thesis.

A Mathematical tool for perception
Another reason we will stick to our decomposition of autonomous systems is that the
decomposition lends itself easily to powerful mathematical tools for implementing sensing
modules. Concretely, estimation theory is an area of statistics concerned with estimating the
values of a set of parameters based on observed data. Once we define the information we
are after as a function of these parameters, it is easy to see why estimation theory should
play an important role in perception algorithms. In addition, since in practice data observed
is always impacted by some form of uncertainty e.g. sensor noise, occlusion etc., statistical
frameworks seem to be the right set of tools of the job.

We will make use of Maximum A Posteriori (MAP) estimators, for which it is necessary
to define the following:
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1. Sample space and Data: This refers to the space of observations and set of observed
data points that will inform our choice of optimal parameters. The data observed
belongs to the space Z and is a realization of a random variable Z.

2. Parameter space, parameters and functions of parameters: This refers to the set of the
parameters we wish to estimate, X, taking on values from some parameter space X or
possibly functions of these parameters h(X). These parameters and their image under
the various functions of interest will correspond to the information we seek to obtain
from sensing. X is a random variable.

3. Likelihood function and prior density: To model the uncertainty in our measurement
and to incorporate partial knowledge about the set of parameters we wish to estimate,
it is necessary to specify distributions of the data conditioned on the values parameters
may take. This distribution is referred to as the likelihood function p

Z|X . One may also
specify a distribution over the set of parameters if that knowledge is available. We refer
to this as the prior distribution p

X
.

To model the uncertainty in the observed data, we will model the process relating our
data and parameters as a function of the parameters of interest with added noise. We refer
to this model as an observation model. Concretely, we have that:

Z = h(X) +W ,

where the noise W is a random variable following some known distribution p
W

and h(.) is our
sensor model, informing us of what type of observations we should expect given a realization
of the random variable X. Characterizing the exact noise model from first principles can be
difficult and it is common to make assumptions on the distribution such as it being Gaussian
or Laplacian. The justifications for such assumptions typically appeal to the Central Limit
Theorem as well as ease of optimization.

With this choice of an observation model, the likelihood function will fall into the same
family of distribution as the noise variable. Our MAP estimator, which is a function that
approximates the realized parameter value from the observed data i.e. converts collected
data to information is:

X̂(z) = argmax
x∈X

p
Z|X (z|x)p

X
(x) . (1.1)

Simply put, our estimate of the true parameter (and information) is the one that maximizes
the posterior probability. In certain cases, we may want more information than just the
mode of the posterior distribution. In these cases we may instead compute the posterior
distribution entirely. The benefit of this is that we can qualify the uncertainty around our
estimate. In the algorithms presented in this thesis, we have made use of both alternatives,
choosing to use the mode of the posterior when it is practical and computing the entire
posterior when it is useful and feasible.
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Why data driven?

This framework for extracting information from data is theoretically sound, however herein
lies the problem. Our estimated parameters and hence obtained information are only as good
as the models we use. Poor sensor models are bound to result in poor parameter estimates.
As the saying goes “Garbage in, garbage out”.

It is therefore crucial to obtain accurate models of whatever noise variables or sensor
models we will be making use of. Unfortunately, modeling noise as well as sensors used in
autonomous systems can be a grueling task. However, while we may be content with making
certain assumptions about noise distributions, data driven models may be used to obtain
sensor models approximating the behavior of autonomous systems.

Complex autonomous systems including autonomous driving, mapping and robotic grasp-
ing systems have benefited from data-driven models [92, 104, 74]. This is not to say that we
should ignore physics based models when we are able to use them. When certain physical
characteristics of the sensor are known, it is wise to make use of these characteristics in
modeling and then restrict the data driven portion to those parts of the model we have
little information about. We will take a this approach in the algorithms presented in this
work incorporating both physics and data driven models whenever possible to improve our
estimation performance.

Roadmap
The range of application of autonomous and artificially intelligent systems to the various
facets of life is limited only by imagination. We see many examples ranging from individual
scale application such as personal robotic systems and virtual reality headsets to large scale
communal applications such as autonomous highways and energy grids. In this thesis we
focus on three applications, namely Autonomous driving, Energy disaggregation and Mixed
Reality systems. In each scenario, we will present data driven perception algorithms, their
implementation and performance. In chapter 2, we present a method for pedestrian detection
in autonomous driving scenarios that focus on cases where the physical sensors mounted on
a vehicle might fail or be occluded. We make use of the data-driven behavioral models of
other human drivers to predict possible pedestrian locations. In chapter 3, we present an
energy disaggregation algorithm that estimates individual appliance power consumption from
measured whole house energy consumption. We make use of data-driven appliance models as
in this case modeling individual appliances from physical principles is not realistic. Finally in
chapter 4, we present a a 3D reconstruction and perception algorithm geared towards mixed
reality applications. We make use of data-driven 3D shape models to reconstruct 3D shapes
and their poses from partial observation.

In each chapter, we have decided to maintain notation that is common in the literature.
Unfortunately, this conflicts with the goal of sharing notation across the chapters. To improve
the ease of understanding the material we will include a table of notation along with each
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chapter. We end with discussions on the work presented in this thesis as well as exciting
suggestions for future research directions.
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Chapter 2

Autonomous Driving: People as
Sensors

List of Symbols

M,A Space of maps and actions respectively.
X1:t, Z1:t, A1:t Set of random variables representing pose, observed envi-

ronmental data and actions from time 1 to t respectively.
x, z, a Specific values of pose, observed data and action respec-

tively.
mi value of i’th gridcell (used for occupancy grid represen-

tation of the environment).
ξi value of i’th feature/landmark (used for landmark rep-

resentation of the envronment).
Mi Random variable representing the i’th grid cell.
Ξi Random variable representing the i’th feature/landmark.
M Random variable representing the map of the environ-

ment (M = {Mi}i=1:n for occupancy grid representation
and M = {Ξi}i=1:k for landmark representation).

2.1 Introduction
Our first example of a data-driven perception algorithm finds its application in autonomous
driving. Despite growing attention to autonomous driving, there are still many open problems,
including how autonomous vehicles will interact and communicate with human agents [32].
These concerns are particularly important when considering vulnerable users like pedestri-
ans [18]. Although there has been some work in vehicle control in the presence of pedestrians,



CHAPTER 2. AUTONOMOUS DRIVING: PEOPLE AS SENSORS 7

the majority of research has been focused on improving perception for pedestrian detection [11,
38, 24].

While detection is important for a complete autonomous system, this chapter considers a
specific scenario concerning the interaction between pedestrians and drivers, and examines
how that interaction might influence map estimation, as a proxy for detection. Such a scenario
is shown in Fig. 2.1. In this scene, a pedestrian may be starting to cross the street. From the
perspective of the red car, the human is occluded. We examine how to take advantage of
other agent’s actions to infer the presence of a pedestrian despite occlusion. We present an
approach based on an a-posteriori estimation framework.

Mapping in mobile robotics refers to the process of representing an agent’s environment.
Based on this representation of the environment, the agent can make intelligent decisions on
how to behave in and interact with the environment. In our scenario, the agent is the ego
(red) vehicle.

One common representation of the environment is the occupancy grid map. The occupancy
grid map represents the environment as a grid of cells whose occupancy is modeled by
independent binary random variables [34]. An occupancy grid map allows for tractability in
representing large environments with considerable amount of detail and provides a starting
point for more advanced representations. Another type of map representation is the sparse
feature-based landmark map, which only represents key objects in the environment [41].
There are many more representations, many of which are more detailed (e.g. point-clouds
and textured meshes), yet require more computational resources [105]. The particular choice
of representation is dictated by the environment, computational resources, and how the map
representation will be used to make decisions.

Common to all these representations is the need for sensor modeling. Sensor models are
regularly derived from physical properties of how the sensor in question works. For example,
the pinhole model is used for visual cameras and beam models for LIDAR and ultrasound
sensors [106].

In this chapter, we exploit the fact that, aside from the physical interaction of energy
(e.g. light and sound) with the environment, the actions of other intelligent agents also give
us useful information about the environment. As such, we derive a data-driven behavioral
model for agents in the environment and incorporate these people as sensors.

Behavioral driver modeling is an active area of research in many different applications,
ranging from driver assistance systems to improved interaction for autonomy [32, 92, 28].
In [31], the mapping of the environment state was learned with respect to the states of the
surrounding vehicles. These influences can also be learned by estimating the cost function
of the driver, which can determine what actions the driver might take given some feature
representations [2]. Driver models specifically considering pedestrian interactions have also
been developed [88, 40, 99].

Few approaches have directly modeled the external influences of driver behavior in a
manner that is amenable to improving environment estimation. Map-based approaches
require directly modeling the connection between observable states of the vehicle (i.e., that
which can be observed from a nearby vehicles) and the belief over the environment. In this
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Figure 2.1: Motivating example of occluded pedestrian. (Left) Topview showing the red ego vehicle,
the black car causing occlusion, and the hidden pedestrian. We model the actions of the black car
as sensor inputs. (Right) Viewpoint from the red car (ego vehicle), showing that the pedestrian is
occluded.

chapter, we focus on developing a driver model that can act as a sensor for the environment.
We apply learning techniques to approximate the distribution over pre-determined driver
behaviors given a map representation. From this, we integrate the sensor model into mapping
frameworks to improve our overall awareness of the environment. This chapter presents four
key contributions:

1. We introduce and formalize the concept of people as sensors for imputing maps.

2. We conduct an experiment with human drivers in a vehicle simulator to collect data on
interactions between drivers and pedestrians.

3. We demonstrate improved environment estimation using occupancy grids on the collected
data;

4. We modify pedestrian motion estimation and prediction in a landmark representation
of mapping and test on a real-world dataset.

This chapter is organized as follows. The methodology used to integrate driver models
and mapping is summarized in Section 2.2. The experimental setup for the user studies is
described in Section 2.3. Section 3.8 presents our results using our dataset. Our method is
also validated using an existing real-world dataset in Section 2.4. Section 2.6 discusses our
findings and outlines future work.
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2.2 Methods
This section provides a brief overview of mapping and the methods used to incorporate people
as sensors.

Mapping Preliminaries
Let M represent the space of maps. A map m ∈ M represents a possible state of the
environment. In addition, let x1:t represent relevant information about the mobile agent
up to time t (e.g., pose) and z1:t represent information about the physical state of the
environment up to time t, (e.g., position of other vehicles in the environment). Further, we
will interpret these quantities as realizations of the random variables M, X1:t, Z1:t respectively.
Then, the problem of mapping can be formulated as estimating the posterior belief at time
t, pM|X1:t,Z1:t

(M = m | X1:t = x1:t, Z1:t = z1:t), over the space of maps M. To simplify
notation, we will drop the subscript on the distribution when it is clear from the context
what distribution we are referring to.

The choice of environment representation largely determines which algorithm to use to
estimate p(M = m | X1:t = x1:t, Z1:t = z1:t). In this chapter, we have chosen to represent the
environment using two different approaches, depending on the structure of the data. We
examine applying the people as sensors framework to

1. mapping the world using occupancy grids.

2. mapping the world using a collection of sparse landmarks in the environment.

Occupancy Grid Maps

When the environment is represented using an occupancy grid, the world is a set of binary
random variables arranged in grids. Each random variable indicates whether or not its
corresponding grid cell is occupied. Therefore, each map m is a realization of a set of
binary random variables. If we denote the value of the grid cell with index i as mi, (with
corresponding binary random variable Mi) , then m = {mi}i=1:n (and M = {Mi}i=1:n) ,
where n is the number of grid cells used to represent the world.

Unfortunately, this choice of representation results in a space of maps that grows ex-
ponentially with the number of cells. However, most mapping algorithms make a further
assumption of statistical independence between each binary random variable. Due to this
assumption, one may compute the posterior belief over the space of mapsM as:

p(M = m | X1:t = x1:t, Z1:t = z1:t) =
n∏
i=1

p(Mi = mi | X1:t = x1:t, Z1:t = z1:t), (2.1)

leaving us to focus on the simpler and more tractable task of estimating p(Mi = mi | X1:t =
x1:t, Z1:t = z1:t). Further, we make the simplifying assumption that the state of the world at



CHAPTER 2. AUTONOMOUS DRIVING: PEOPLE AS SENSORS 10

any time t only depends on data obtained at time t. This is a reasonable assumption, given
rich enough sensor and mobile agent information at time t. As such, we may write that:

p(M = m | X1:t = x1:t, Z1:t = z1:t) =
n∏
i=1

p(Mi = mi | Xt = xt, Zt = zt). (2.2)

To compute p(Mi = mi | Xt = xt, Zt = zt), we make use of the mapping algorithm
presented by Thrun et al., [106]. Occupancy grids are typically used for mapping in static
environments. The application of our work focuses on non-static environments, including
moving vehicles and pedestrians. Consequently, we modify the traditional mapping algorithm
by removing the time dependence across maps, thus taking a one shot approach with no
prior knowledge of the environment. However, if some domain specific knowledge about the
dynamics of the environment is known, it can be incorporated into p(Mi = mi | Xt = xt, Zt =
zt) through a transition function that links the previous state to the current state.

Landmark Representation

When the environment is represented as a collection of sparse landmarks, the world can be
viewed as a collection of salient points in the environment (e.g., people, vehicles, key buildings
and natural objects). These salient points are termed landmarks, and the mapping task is to
estimate the state of these landmarks given data obtained from sensors. Typically, the state
of most interest is the pose of these landmarks. This approach represents the map m as a
collection of k landmarks {ξi}i=1:k (with corresponding random variables {Ξi}i=1:k), so that
now, m = {ξi}i=1:k (and M = {Ξi}i=1:k).

In this work, we have chosen to use pedestrians as landmarks. The state of interest is their
position on the 2D floor plane. Concretely, ξi ∈ R2. One could make use of a Kalman filter
to estimate p(M = m | X1:t = x1:t, Z1:t = z1:t), but the publicly available dataset this model
was tested on did not contain enough information to do this. Alternatively, since we are
interested in modeling the position of the pedestrian in cases where they are occluded, we have
assumed a uniform distribution for p(M = m | X1:t = x1:t, Z1:t = z1:t). This simple approach
represents the fact that when the pedestrian is occluded, we may have no information about
its possible location due to the unpredictability of human behavior.

Integrating Humans in Mapping
One of the main contributions of this chapter is the use of human models as a source of sensor
information. We argue that the actions of intelligent agents, specifically other drivers in this
scenario, are a ubiquitous source of rich information that should not be ignored. However, it
is also important that this information be incorporated appropriately with other sources of
information, since human agents are highly uncertain and are difficult to model.

Given data on human driver behaviors a, from a set A, and corresponding random variable
A, we may reformulate the mapping problem as estimating p(M = m | X1:t = x1:t, Z1:t =
z1:t, A1:t = a1:t), where a1:t is a sequence of observed data on human drivers up until time t,
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and A1:t the set of corresponding random variables. We will subsequently refer to this human
behavior data as an action.

While this idea is indeed general, we restrict ourselves to the case where we only observe
actions from the closest driver in front of our ego vehicle. In future work, we will extend
formulation to the scenario with multiple driving agents and lanes.

Building on the formulation discussed in the previous section, we estimate p(M = m |
X1:t = x1:t, Z1:t = z1:t, A1:t = a1:t) by using Bayes’ rule to fuse information obtained from
driver data with our map estimate obtained using (2.1). Thus, we have:

p(M = m | X1:t = x1:t, Z1:t = z1:t, A1:t = a1:t) =
p(A1:t = a1:t |M = m, X1:t = x1:t, Z1:t = z1:t)p(M = m | X1:t = x1:t, Z1:t = z1:t)

p(A1:t = a1:t | X1:t = x1:t, Z1:t = z1:t)
. (2.3)

As before, we assume that the state of the world at any time t only depends on data
obtained at time t. Though this assumption may seem restrictive, in practice, we use actions
obtained at time t that contain a history of observed behavior.

We also assume that given a representation of the world, the behavior of the human
driver does not depend on the pose of our mobile agent or our sensor information. While this
generally might not be true, in the specific context of our application, this assumption is valid
due to the relative positioning of the agents. Taking into account the recursive influences is
left as future work. Given these assumptions, what we seek to estimate is:

p(M = m | X1:t = x1:t, Z1:t = z1:t, A1:t = a1:t) =
p(At = at |M = m)p(M = m | Xt = xt, Zt = zt)

p(At = at)
(2.4)

In the case where the world is represented as an occupancy grid, we have used a driver
model p(at | mi) that depends on each grid cell and fused the information from the driver to
estimate:

p(Mi = mi | Xt = xt, Zt = zt, At = at) = p(At = at |Mi = mi)p(Mi = mi | Xt = xt, Zt = zt)
p(At = at)

.

(2.5)
We then make use of (2.2) to obtain p(M = m | Xt = xt, Zt = zt, At = at). The next section
explains in detail how we obtain the driver model p(At = at |M = m).

Sensor Models for Drivers
To model the driver as a sensor, we must learn a function that takes in map data and outputs
a probability distribution over actions that the driver may take. Our proposed framework is
general enough to handle both the occupancy grid and the landmark formulation, depending
on the type of driving data used to learn the sensor model.
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We evoke concepts from discrete choice theory, a tool from economics that aims to describe,
explain, and predict choices between discrete alternatives [109]. We assume we have a discrete
set of actions that is both exclusive and exhaustive, meaning that the driver must pick one
and only one of the defined actions.

Likelihood of Actions from Occupancy Grids

Supposing we have a finite collection of driver actions A and the assumption that each cell in
the grid is an independent Bernoulli random variable, we can approximate the probability of
an action given the state of cell mi empirically. For each action, we denote this empirical
distribution as p̂Ns(A = a | Mi = mi), where Ns is the total number of trials and a is the
action in set A.

We employ this method on simulation dataset from which we are able to extract the
relative position of the human driven vehicle to the crosswalk along with its velocity and
acceleration information. We seek to learn the distribution over this data given the current
map.

Given that learning the high-dimensional distribution is computationally difficult and
data intensive, we make a few simplifications to the problem. Rather than learn over the
space of all positions, velocities and accelerations, we instead define a finite collection of
representative samples of this space observed during experiments.

To determine what these samples should be, we cluster over the data containing the
current distance between the human driven vehicle and the crosswalk, and ten evenly spaced
samples of both velocity and acceleration over the last half second. We use k-means clustering
algorithm to identify k natural groupings in the data. These can be thought of as “actionlets”
that correspond to typical sequences of driver behaviors. We then define these clusters as the
set of possible actions we may observe. In this work, we make set k = 10 as prescribed by
grid search.

In doing this, we can easily learn the probability distribution over actions given map data,
giving us an approximation of p̂Ns(At = at |Mi = mi).

Likelihood of Action from Landmarks

Using the landmark interpretation of the mapping problem, the sensor model of the driver
must be approximated as the probability of an action given the position of the landmark
obstacle. To do this, we apply the logit model from discrete choice theory to find this
mapping [109].

Previous work has demonstrated that this method can determine driver actions and intent
with high accuracy [31]. This approach employs the EM algorithm to iteratively find the
optimal linear combination of features in the dataset to estimate the probability of an action
given some map configuration: p(At = at |M = m).
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We employ this method on a real-world dataset. While this dataset does not provide access
to the vehicle state information, it alternatively provides descriptions of the ego vehicle’s
velocity profile that are consistent with actions used in the literature [62]:

1. Moving Fast: The vehicle is moving at a speed above predetermined threshold.

2. Moving Slow: The vehicle is moving at a speed below predetermined threshold.

3. Accelerating: The vehicle increasing its speed.

4. Decelerating: The vehicle is decreasing its speed.

5. Stopped: The vehicle is stopped.

We make use of these descriptions as actions. Given that these actions inherently take
into account time (e.g., moving fast indicates a high constant velocity for a period of time)
we do not consider the the sequences of actions over time and only estimate the map given
the last observed action.

2.3 Case 1: Occupancy Grid Formulation
We first evaluate our conceptual framework on the map representation of occupancy grids.
In this test case, we carry out a user study to collect ground truth information about the
state of the world, which is easily translated into the discretized space of occupancy grids.

Experimental Setup
In order to build the driver model for mapping purposes, training, testing, and validation
driving data is required. For the scenario considered, there are few publicly available datasets
that provide the quality of data required for mapping and driver modeling purposes. Section
2.4 presents the formulation and results on one of these real-world datasets.

Due to lack of available data with full information about the vehicle and environment
states, a new dataset was collected to study driver pedestrian interaction. Driver data was
collected using PreScan, an industry standard simulation tool that provides vehicle dynamics
and customizable driving environments [30]. Using a force feedback steering wheel and pedals
for the subject to control the human-driven vehicle, we created various intersection scenarios
in which a pedestrian might appear, as shown in Fig. 2.2.

In each trial, the human-driven vehicle began approaching an intersection at an initial
distance d0 and speed v0. The pedestrian motion was designed to recreate typical pedestrian
behaviors. After appearing from behind an occluding obstacle at randomized velocity, the
prescribed behaviors included boldly crossing the road, waiting to cross until the approaching
vehicle slowed down, and just standing at the side of the road. To discourage anticipating
the pedestrian motion, the pedestrian did not appear in half of the instances.
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Figure 2.2: Visualization of the driver view from the experiment. As the driver approaches the
crosswalk, there is a chance a pedestrian obstacle will appear from behind the bus stop.

Five subjects each completed approximately one hour of experiments. In each trial, the
subject was asked to maintain a constant velocity between 10 and 15 mph and stay in their
lane, if possible. This resulted in 1,440 example interactions each lasting approximately 5 to
10 seconds, recorded at 30Hz. From this, we generated a total of 281,506 maps to build our
sensor models and test our mapping. Twenty percent of this data is used to generate the
learned distribution over actions.

For each trial, we collected: the human driven vehicle states and inputs, and the ground
truth position of the pedestrian. Using this data, we created a ground truth occupancy for
the region in front of the human driver that would be occluded for our ego vehicle. The
occlusion is determined using a simple lidar model to determine what the closest obstacles
are in the 360◦ view. We assume only some of the vehicle states are observable from the ego
vehicle (i.e., relative position and velocity, distance to crosswalk).

Using the actions defined in Section 2.2, we train a sensor model that maps the ground
truth occupancy grid and sensor measurements to a distribution over actions; this human
driver model can then be used to impute the occupancy map from observed actions. An
example occupancy grid input and the associated action distribution is shown in Fig. 2.3.

To reiterate, we consider a scenario with three agents: the ego vehicle, the human driven
vehicle, and the pedestrian, as visualized in Fig. 2.1. The ego vehicle observes the human
driven vehicle that is occluding the pedestrian. Based on the observed actions, we construct
a posterior belief across possible maps.
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Figure 2.3: Illustrative example of input and output of the driver model. (Left) Sample occupancy
grid for the region in front of the vehicle (i.e., grid location (2,6) is directly in front of the vehicle),
where an occupied space is far ahead and to the right of the vehicle at (3,2). (Right) Probability
distribution over possible semantic actions given the occupancy map on the left.

Evaluation Metrics
We tested our solution on multiple scenarios from our experimental dataset. As stated
previously, each scenario is composed of three agents, an ego vehicle in one lane, a human
driven vehicle in the other lane causing the occlusion, and a pedestrian. The ego vehicle was
set to follow a constant velocity trajectory behind the human driven vehicle in the second
lane (see Fig. 2.1). To evaluate the occupancy grids generated by our approach, we made use
of the Image Similarity metric.

The Image Similarity metric, ψ, is used to evaluate the similarity of an occupancy grid to
an ideal or ground truth measurement [15]. This metric is computed as:

ψ(U, V ) =
∑

c∈{0,1}
d(U, V, c) + d(V, U, c) (2.6)

where
d(U, V, c) = 1

#c(U)
∑
U [i]=c

min {||g(i)− g(j)||1 : V [j] = c} (2.7)
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Figure 2.4: Two example comparisons of occupancy grids generated by our method and a standard
occupancy grid algorithm. Darker regions indicate greater confidence of occupancy. The orange and
blue car icon represent ground truth positions of our ego vehicle and obstructing vehicle, respectively.
The pedestrian icon indicates the ground truth position of the pedestrian. In the left image, the
obstructing vehicle is observed increasing its velocity while in the right image the obstructing vehicle
is observed slowing down.

where U [i] is the occupancy value at grid cell i in map U , g(·) returns the 2D coordinates
of grid cell i, j ∈ {1, 2, ..., n}, || · ||1 gives the Manhattan distance between coordinates, and
#c(U) is the number of cells in U with occupancy values c.

To make use of ψ, we indicate the occupancy value of each cell by thresholding the
probability p(Mi = 1|X1:t = x1:t, Z1:t = z1:t) as follows:

U [i] =
1 if p(Mi = 1|X1:t = x1:t, Z1:t = z1:t) ≥ 0.6

0 if p(Mi = 1|X1:t = x1:t, Z1:t = z1:t) < 0.6
.

Results
We compare our results to a standard occupancy grid mapping algorithm that does not
incorporate information from the actions of other drivers and to ground truth measurements.
We refer to the results from the standard occupancy grid algorithm as “Standard Grid.”

Fig. 2.4 shows sample results based on using occupancy grids to represent the environment.
The orange and blue vehicle icons indicate the ground truth positions of the ego vehicle
and the human-driven vehicle respectively, while the pedestrian icon indicates the ground
truth position of the pedestrian. In these scenarios, the pedestrian is occluded from the view
of the ego vehicle by the human-driven vehicle in the scene. Consequently, there is large
uncertainty concerning the position of the pedestrian using the Standard Grid. Although
we do not observe the pedestrian, we observe the behavior of the human-driven vehicle. By
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incorporating this information, our driver model is able to help us reason about the likely
positions of the pedestrian. Our algorithm can reduce the uncertainty present and provide a
more accurate prediction about the position of the pedestrian.

Quantitatively, we applied the metric presented in the previous subsection to compare our
solution to the Standard Occupancy Grid. Table 2.1 and Fig. 2.5 show the average scores
under the Image Similarity metric, where t = 0 indicates the beginning of the trials, t = T/2
indicates the middle of each scenario, and and T indicates the end of each scenario. The
mean and standard deviation of the results over time are shown in Fig. 2.5. Our solution
does significantly better than the standard occupancy grid approach.1

Table 2.1: Image Similarity Results for Occupancy Grid Approach.

Avg. t = 0 t = T/2 t = T

Standard grid 1.085 1.863 1.071 0.377
Our work 0.169 0.218 0.068 0.289

2.4 Case 2: Landmarks in Real-World Dataset
We attempted to assess our framework on a more realistic scenario by testing on a real-world
dataset for pedestrian interaction. Ideally, we would use a dataset with a substantial amount
of pedestrian interactions, ground truth estimates of vehicle and pedestrian locations over
time, and annotations of driver actions. Many of the public datasets do not meet these
requirements. The Joint Attention in Autonomous Driving (JAAD) dataset centers on
driver-pedestrian interaction, but provides only partial information about the state of the
world through semantic action labels and approximate position estimates, making occupancy
grids difficult to consider without substantial assumptions [83, 84]. Taking these restrictions
into account, we modify our mapping pipeline to one that estimates landmarks that may be
occluded, and demonstrate that our framework can be applied to many different settings if
context can be taken into account.

JAAD Dataset of Pedestrian Interactions
We use the JAAD dataset, which consists of 346 high-resolution video clips, lasting approxi-
mately 5 to 10 seconds each, that are representative of possible crosswalk scenes that often
occur in urban driving. These clips are annotated, providing labels associated with the driver
and pedestrian actions as well as bounding boxes of detected pedestrians [83, 84]. No vehicle
state information (e.g., position, speed, acceleration) is provided with this dataset.

1We note that while these results show results overall drivers in the study, we also examined individual
driver models. The individual metrics exhibited similar trends to the overall metrics, except for two drivers
which had significantly better performance near t = T .
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Figure 2.5: Comparison of Image Similarity scores between the occupancy grid generated by our
solution and the standard approaches. Lower scores imply better matching. Plots show the mean
for the two methods along with the standard error. Our method exhibits significant improvement
to the standard occupancy map.

From the pedestrian’s bounding box, we estimate the person’s position relative to the
vehicle camera housing to generate an approximate map for each frame. Given the assumptions
required to get this estimate, we assume a Gaussian distribution over our estimates, making
this partial, noisy data more inline with the landmark philosophy.

From this dataset, we extract a total of 76,514 samples to train and test our model from.
The logistic regression model is trained on 20% of the samples to find the relationship between
the action and relative position. An example image and map data are shown in Fig. 2.6.

Results
Using the driver model learned from the JAAD dataset, we predict the location of the
pedestrian as a landmark, as described in Section 2.2. We assume an uninformed (i.e.,
uniform) prior over the occluded space, and show how the output of our algorithm provides
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Figure 2.6: Example image from JAAD Dataset with the pedestrian in a labeled blue bounding
box [83].

a posterior distribution conditioned on the human driver actions that can improve the
estimation of the pedestrian’s location. To evaluate the improvement that the map generated
by our landmarks model of the environment provides, we compare the likelihood of the
pedestrian’s true location in the posterior distribution to the prior distribution.

The results of our approach compared with the uniform prior are shown in Table 2.2.
Fig. 2.7 presents a sample output of the our solution using the landmark representation and
that of the uniform prior. The orange and blue vehicle icons represent the ground truth
positions of the ego vehicle and the human-driven vehicle respectively, while the pedestrian
icon represents the ground truth position of the pedestrian.

Once again, in this scenario, the pedestrian is occluded from the view of the ego vehicle.
The plots in the figure represent the estimated posterior density of the position of the
pedestrian, with darker regions indicating higher density values. As shown, by incorporating
the driver model learned from data, our solution is able to predict the likely position of the
pedestrian during occlusions.

Our method provides useful predictions in a majority of the actions and is most informative
in safety critical situations. The scenarios where our methodology is less informative are
intuitive if we consider how drivers behave in the real-world. When we drive and observe other
drivers maintaining a constant speed, we gain little insight about occluded obstacles. We
observe from the driver model derived from the JAAD dataset that the two constant velocity
actions (moving fast and slow) are not informative without detailed contextual information.
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Further, since we partition the dataset to only consider samples where the pedestrian might
be occluded, these two actions are underrepresented relative to the other labels. Because of
these points, our approach only exhibits improved performance on a subset of the actions. We
are of the opinion that with ground truth position information and more evenly distributed
data, significantly better improvements can be obtained as was the case in the simulated
environment.

2.5 Interpretation as an Estimation Problem
The presentation in this chapter will have hinted to the fact that at its core, the problem
presented is an estimation problem. Explicitly, we note that the parameter(s) to be estimated
is the map of the environment M. The likelihood function p(A1:t | M) is the data driven
driver model and the prior distribution p(M | X1:t, Z1:t, A1:t) is obtained using a standard
occupancy grid mapping algorithm [106]. A data-driven likelihood function is advantageous
because it is otherwise difficult to relate the behavior of human drivers to the state of the
environment.

In this chapter, rather than seeking the Maximum A Posteriori (MAP) estimate, we
instead compute the posterior distribution over the space of maps. The benefit being that it
gives us more information about our parameter of interest than just the MAP estimate.

2.6 Discussion
By exploiting the actions of other intelligent agents, a great deal of information can be
inferred about the environment. We have presented a methodology that uses driver models as
sensors to impute maps that can be used to improve planning in the face of uncertainty. Thus,
regions of the map that would otherwise be occluded can be imputed, providing an estimation
of the environment’s state. We validate this concept on two different map representations
and datasets, demonstrating significantly improved performance over standard mapping
techniques.

Table 2.2: Evaluation Metric on JAAD Dataset showing the probability of observing the pedestrian
at ground truth location for each action.

Action Uniform Prior Our Work Improvement Ratio
Moving Fast 0.064 0.002 –0.963
Moving Slow 0.064 0.027 –0.569
Accelerating 0.064 0.067 0.049
Decelerating 0.064 0.080 0.242
Stopped 0.064 0.257 3.040
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Figure 2.7: Example comparison of landmark map generated by our method versus using a uniform
prior over possible locations, where the obstructing vehicle is stopped. White space indicates
un-occluded regions. Darker regions indicate greater belief in the pedestrian position. The orange
car, blue car, and pedestrian icons represent ground truth positions of our ego vehicle, obstructing
vehicle, and pedestrian, respectively.
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Chapter 3

Energy: Energy Disaggregation

List of Symbols

[D] The set {1, 2, . . . , D} .
U (i) Random vector representing the usage pattern of device

i over the time horizon.
U Random matrix whose ith column is U (i).
Y(i) Random vector representing the energy consumption of

device i over the time horizon.
Z Aggregate energy consumption signal, the sum of Y(i)

over all devices.
sn The nth time segment, i.e. the interval {tn, tn +

1..., tn+1 − 1}.
a[sn] For some signal a, the value of a over the nth time

segment.
a[t1 : tn] For some signal a, the value of a from time t1 to tn.
F The set of filters in the filter bank.
H(i) The device model for device i.
H The aggregate device model, the sum of H(i) over all

devices.

In the previous chapter we developed an algorithm for estimating the state of the
environment in an autonomous driving scenario. We now turn our attention to a different but
equally important problem of energy disaggregation. We present a data-driven perception
algorithm for energy disaggregation developed in this chapter and the corresponding Appendix.
Here, perception is the process of turning raw aggregate energy consumption data into
meaningful energy consumption estimates for the individual appliances in a building.
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3.1 Introduction
Concerns about the earth’s rising temperature and other effects of global warming have
prompted a worldwide response to reducing energy consumption and greenhouse gas emissions.
It has been suggested that reducing the energy consumption of residential and commercial
buildings can play a significant role in curbing energy consumption and greenhouse gas
emissions [20, 63]. In fact, in the U.S. alone, residential and commercial buildings currently
account for about 40% of total energy consumption and greenhouse gas emissions [4, 112].
This energy consumption is usually reported to consumers in aggregated form through a
monthly bill. However, studies [7] have shown that feedback on appliance level consumption
patterns should help reduce energy consumption better than feedback through an aggregated
energy bill.

Presently, the energy grid is set up to allow the measurement of aggregate consumption
data. Installing plug level sensors to measure the energy consumption of each appliance is
cumbersome and intrusive, in the sense that it reduces consumers’ perceived privacy. In
addition, modifying the energy grid with high frequency, high resolution, metering and data
transfer technology for multiple devices per household would be cost prohibitive. Energy
disaggregation or Non-Intrusive load monitoring (NILM), which refers to the process of
estimating appliance level energy consumption patterns given aggregated energy consumption
measurements, presents a way to obtain fine-grained device level measurements without
incurring huge infrastructural and privacy costs.

Furthermore, disaggregation allows for better control and modeling of energy systems. The
increased granularity of information presented through disaggregation can help in creating
better models for energy systems which in turn help in detecting anomalous behavior. This
fault detection coupled with better modeling presents an opportunity for finer control of
critical energy systems such as heating, ventilation, and air conditioning (HVAC) units.

Utility companies may also benefit from energy disaggregation. Disaggregated data
may be used to discover user consumption patterns. These user consumption patterns in
conjunction with other data may be used for market segmentation. Market segmentation
allows utility companies more accurately target consumer groups with products that would
be beneficial to them, thereby making more efficient use of product development funds and
improving customer retention.

Essentially, to do this well and gain the trust of all beneficiaries across the board, we
argue that disaggregation algorithms should produce “realistic" looking and “believable"
signals. I.e., the results should not only be on average similar to the ground truth, but
should follow a similar form and pattern to the ground truth signal. Good device models,
which may sometimes take sophisticated forms with complex temporal dependencies, are
crucial to obtaining such realistic estimates. In addition, it may be necessary to incorporate
sophisticated priors on the behavior of devices.

With many approaches to disaggregation, it can be difficult to incorporate such sophisti-
cated models and priors and perform inference efficiently. For example, ensuring temporal
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similarity for predicted values in Hidden Markov Models and their variants can lead to an
exponential increase in the size of the state space.

Unfortunately, many disaggregation metrics do not strongly emphasize the “believabil-
ity/realism” of the predicted signal and as such, an algorithm may score highly on popular
metrics but not look like the signal to be predicted.

What we present in this chapter is a framework that allows the flexibility in device
modeling required to produce signals more similar in pattern to the those produced by
the actual devices, while intelligently pruning wasteful computation in the optimization
process necessary to produce an optimal disaggregation. We test an implementation of our
framework on a public dataset and show that we achieve results comparable to baselines,
while achieving more realistic disaggregation trajectories even with a very simple but more
flexible device model. We present the energy disaggregation problem in an adpative filter
banks framework and expand on our previous formulation that combines the filter bank idea
with linear dynamical models of devices. In particular, we provide a broader formulation of
the framework and revisit assumptions necessary for optimality.

This chapter is organized as follows. In Section 3.2, we give an overview of previous work on
energy disaggregation. In Section 3.3, we formally define the problem of energy disaggregation.
Section 3.4 introduces our framework and proposed algorithm for disaggregation. We prove
properties of this algorithm in Section 3.5, and give implementation details and experimental
results in Sections 3.6, B.1 and 3.8.

3.2 Background
Energy disaggregation is a well studied problem. Solutions to the problem of energy disag-
gregation include the use of hardware devices such as smart plugs to measure device-level
consumption. As stated earlier, these solutions can be somewhat intrusive. Rather, the set
of solutions we consider here fall under the category of non-intrusive algorithmic solutions
that make use of aggregate whole building energy measurements. The works in [13, 12, 121]
provide in depth surveys on the breadth of solutions offered in the literature. Yet, in an
effort to be as accessible and self-contained as possible, we give an overview of some of these
solutions and highlight the similarities and differences between our solution and the existing
work.

Broadly, energy disaggregation algorithms can be split into supervised and unsupervised
methods. Supervised disaggregation algorithms are typically discriminative algorithms that
require the use of a labelled training dataset containing signatures or features associated to
an appliance type. The data for each appliance may be collected and labelled using smart
plugs or may be annotated through the use of smartphone technologies [115]. This tends to
be a cumbersome process. Fortunately, there exist datasets such as [70, 60, 6, 55] that allow
the researcher get access to good data without having to set up all the processes necessary to
collect it.
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Dissimilarly, unsupervised methods do not require labelled training data for the constituent
devices in the aggregate signal. Nonetheless, they may require parameter tuning to ensure
good performance and generalization.

Examples of current supervised approaches include optimization-based methods [61, 35,
100], change detection and clustering-based approaches [29, 82] and pattern recognition
methods [36, 54]. In [61] the authors make use of sparse coding to reconstruct the aggregate
signal from a library of signatures. In [35] the authors also make use of sparse coding but
incorporate priors for temporal smoothness, device sparsity and co-occurence. They also
represent each device using a mixture of dynamical systems. Our work is similar to these
methods in the sense that we also seek to find the most likely combination of signatures from
a library of device signatures. Unlike these works, the optimization procedure in our work
makes use of a technique similar to Branch and Bound. We also make no explicit sparsity
requirement. More recently, there has been a body of work such as [54, 118, 72, 64], making
use of artificial neural networks (ANNs) for the task of energy disaggregation. Our work
differs from these in that we do not learn an optimal set of weights to make good predictions,
but rather reason over how, given a model of devices, the states of each device contribute to
the optimal disaggregation. However, our framework may also benefit from using ANNs for
device modeling.

Examples of unsupervised methods include methods based on factorial Hidden Markov
Models (HMMs) [59, 57, 79], difference Hidden Markov Models [77], Hierarchical Dirichlet
Process Hidden semi-Markov Models [50], and the use of temporal ordering to uncover motifs
[91]. Most unsupervised methods do not require the use of device signatures but make the
assumption of piecewise constant power consumption. However, the authors in [71] introduce
an HMM with superstates and a sparse Viterbi algorithm that learns device model parameters
from training data. Examples of unsupervised methods not making use of HMMs include [65].
Here, users’ usage behavior is modeled using a Marked Hawkes Process and incorporated
into the disaggregation process.

In our previous work [26], we introduced a filter bank approach to energy disaggregation
and combine this with a dynamical system model of devices. The filter bank framework is
similar to HMM frameworks in the sense that both methods essentially formulate hypotheses
regarding which devices are on at each time instant. However, unlike HMMs, we made use of
dynamical models to help identify devices. In this chapter, we expand on our previous effort
by providing a broader framework to reason about the algorithm, strengthening proofs and
providing more precise assumptions under which optimality is guaranteed. In addition, this
framework removes the restriction of a finite impulse response (FIR) model of devices. We
also test our work on a public dataset and compare our performance to two other publicly
available implementations of energy disaggregation algorithms. We show that we achieve
more robust results than the baselines and more realistic disaggregation trajectories.

This chapter is part of work done with the co-author in [25, 27]. Some of the theoretical
formulation presented here are also explained in [25], but we present it again here so that
the chapter is self contained. One of the main additional contributions of this chapter is to
extend the implementation to large public data as well as show improved methods for device



CHAPTER 3. ENERGY: ENERGY DISAGGREGATION 26

modeling as contained in the Appendix to this chapter.

3.3 Problem Formulation

Notation and concepts
In this section, we outline a formalization of the basic components that are present in our
energy disaggregation problem. There are D ∈ N devices, and we work with a time horizon of
T ∈ N discrete time steps. For i ∈ [D], U (i) is a random vector taking on values u(i) ∈ RT+1,
where u(i) is a realization of the usage/ input pattern of device i over the time horizon.
Similarly, Y(i) is a random vector taking on values y(i) ∈ RT+1, where y(i) is a realization of
the energy consumption of device i. Finally, let U be a random matrix whose ith column is
U (i), so that U takes on values u ∈ R(T+1)×D .

Assumption 3.3.1. (Conditional independence of usage patterns) We assume that the energy
consumption signals follow a known distribution

Y(i)|U (i) ∼ PY(i)|U(i)(y(i)|u(i)) .

We also assume that:

U ∼ PU (u) .

Additionally, the energy consumption of device i, Y(i), is assumed to be conditionally inde-
pendent of the usage patterns of other devices U (j) for j 6= i, given U (i). The aggregate energy
consumption, which is known, is given by Z = ∑

i∈[D] Y(i). So that,

PZ|U (z|u) =

∫
· · ·

∫ [(
D−1∏
i=1

PY(i)|U(i)(y(i)|u(i))
)
PY(D)|U(D)

(
z −

D−1∑
i=1

y(i)
∣∣∣∣∣u(D)

)]
dy(1) . . . dy(D−1)

= (PY(1)|U(1) ∗ . . . ∗ PY(D)|U(D))(z|u) ,

(3.1)

where ∗ is the convolution operator.

Then, formally, we can define the Bayesian energy disaggregation problem as the tuple1:

(PU , {PY(i)|U(i)}i∈[D], z) , (3.2)
1Note that D is implicitly contained in the size of the set in the first element of the tuple, and T is

implicitly contained in the domain of the probability measures.
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where the goal is to obtain an estimate for the usage pattern u, given z , PY(i)|U(i) , and PU .

The maximum a posteriori (MAP) estimate of u is given by:

ûMAP = arg max
u

(
PU (u)PZ|U (z|u)

)
. (3.3)

Additionally, we will suppose there is a unique element in the arg max, although this assump-
tion is for simplicity of notation and not necessary for the development of the subsequent
text2. Finally, in this problem formulation, we are given PU and PY(i)|U(i) . In practice, these
will have to be learned from a training set of individual devices’ energy consumption data.

Switching times

In general, finding ûMAP could be very difficult. However, an observation that helps us
solve the problem of energy disaggregation is the following: when data is collected at high
frequencies, the inputs to devices are often piecewise constant. For example, the Reference
Energy Disaggregation Dataset (REDD) [60] contains data sampled at rates faster or equal
to 1/3 Hz. In contrast, heating, ventilation, and cooling (HVAC) systems switch states at
much slower rates, and energy consumers change lighting settings at slower rates as well.
With this observation in mind, we can define the switching times of a given input.

Definition 3.3.1. (Switching times). For some fixed v : {0, 1, . . . , T} → RD, we can define
the switching times of v, denoted Tswitch(v) ⊂ {0, 1, . . . , T}, as the unique set such that:

• v[t− 1] 6= v[t] for all t ∈ Tswitch(v) .

• v[t− 1] = v[t] for all t /∈ Tswitch(v) .

We adopt the convention where v[−1] = 0.
We will often use the notation Tswitch(v) = {t1, t2, . . . , tN} with the understanding that

N depends on v and t1 < t2 < · · · < tN . Switching times will also be referred to as a
segmentation. Each interval {tn, tn + 1, . . . , tn+1 − 1} for n ∈ {0, 1, . . . , N} is defined as
a segment sn, with the convention t0 = 0 and tN+1 = T + 1. In addition, we adopt the
convention that N = 0 when Tswitch = ∅.

If we think of the rows of U as indexed by time, then we can similarly define the switching
times of the random variable U ∼ PU , where Tswitch(U) is now a random set-valued element.

Our observation allows us to think about the energy disaggregation problem as a two
step process. First, we find the switching times of ûMAP, and subsequently estimate the
actual value of ûMAP. If we consider every possible switching time, we would solve the energy
disaggregation problem exactly. This is formally stated in Proposition 3.3.1.

2For full rigor, we can simply replace any statement of the form ‘x = arg maxx∈C f(x)’ with ‘pick any
x ∈ arg maxx∈C f(x)’.
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Definition 3.3.2. For any set Tswitch ⊂ {0, 1, . . . , T}, we define s(Tswitch|z) as follows:

s(Tswitch|z) = max
u:

Tswitch(u)=Tswitch

(
PU (u)PZ|U (z|u)

)
.3 (3.4)

Proposition 3.3.1. Tswitch(ûMAP) satisfies the following condition.

Tswitch(ûMAP) = arg max
Tswitch

s(Tswitch|z) . (3.5)

Additionally, if Tswitch(ûMAP) is known, then:

ûMAP = arg max
u:

Tswitch(u)=Tswitch(ûMAP)

(
PU (u)PZ|U (z|u)

)
. (3.6)

Similarly:
PU (ûMAP)PZ|U (z|ûMAP) = max

Tswitch

s(Tswitch|z) . (3.7)

Proposition 3.3.1 implies that the problem of energy disaggregation can be broken up
into two parts. First, we identify the set of switching times T ∗switch = arg maxTswitch

s(Tswitch|z).
Then, we calculate the MAP estimate ûMAP by maximizing the posterior probability PU (u)PZ|U (z|u)
across the set of u such that Tswitch(u) = T ∗switch.

Next, we will argue that the optimal û for a fixed segmentation is a light calculation,
given some assumptions motivated by the energy disaggregation application. Then, we will
present an algorithm which allows us to selectively consider possible switching times, while
still ensuring the recovery of ûMAP.

3.4 Proposed Framework
In this section, we will first introduce conditions under which the estimation of u is computa-
tionally inexpensive for a fixed segmentation. Essentially, the next assumption will ensure
that the estimation problem in each segment is decoupled. First, we introduce the notation

y[sn] = (y[tn], y[tn + 1], . . . , y[tn+1 − 1]) . (3.8)

Assumption 3.4.1. (Conditional independence of segments) Given Tswitch(u) = {t1, t2, . . . , tN},
we can express PU in the following way:

PU (u) =
N∏
n=0

PUsn
(u[tn]) . (3.9)

3In the most general case, it is possible for the supremum to exist outside the feasible set. However, we
will assume this is not the case, since in most implementations the space of inputs is finite and u is quantized.
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Note: This product depends on Tswitch(u), u[sn] = constant = u[tn]. PUsn
are in general

non-negative functions indexed by sn and not necessarily densities; this condition is different
from statistical independence.

Additionally, conditioned on Tswitch(u) = {t1, t2, . . . , tN}, the following are independent:

{y(i)[s0], y(i)[s1], . . . , y(i)[sn]} . (3.10)

Therefore, we can write that

PZ|U (z|u) =
N∏

n=0
PZ|Usn

(z[sn]|u[tn]) . (3.11)

In the context of energy disaggregation, these assumptions have a natural interpretation.
The assumption (3.10), imposes a condition on PZ|U that the observation at time t only
depends on how devices are being used in that segment. The energy consumption of devices
generally undergo a transient as the device switches state, and then approach a steady-state
energy consumption. Intuitively, what this assumption states is that time between device
switches is long enough that devices reach steady-state in each segment. As mentioned before,
this assumption is motivated by the fact that the duration of these transients is much shorter
than the duration of our usage patterns, e.g. lighting reaches steady-state far more quickly
than the time period when light switches stay on or off during normal use. We note that this
assumption is likely necessary for good performance: if this assumption were violated, then
the transient signatures of devices would collide and interfere with each other.

We note a consequence of Assumption 3.4.1 and Proposition 3.3.1.

Proposition 3.4.1. Let Tswitch(ûMAP) = {t1, t2, . . . , tN}. Under Assumption 3.4.1:

ûMAP = arg max
u

N∑
n=0

[
ln
(
PUsn

(u[tn])
)

+ ln
(
PZ|Usn

(z[sn]|u[tn])
)]

. (3.12)

If Tswitch(ûMAP) is given, then these optimizations are decoupled, so:

ûMAP[tn] = arg max
u

[
ln
(
PUsn

(u[tn])
)

+ ln
(
PZ|Usn

(z[sn]|u[tn])
)]

. (3.13)

Proposition 3.4.1 states that, if we are given the true switching time Tswitch(ûMAP), then
calculating ûMAP is very tractable. In fact, if we are given a collection of potential switching
times, calculating ûMAP is still tractable, provided Tswitch(ûMAP) is in the collection and the
collection is not too large.

Next, we will develop an algorithm to achieve this: it will selectively consider candidate
subsets of {0, 1, . . . , T} such that it considers significantly less than 2T+1 candidates, but will
still consider Tswitch(ûMAP). We draw on results in the adaptive filtering literature. In our



CHAPTER 3. ENERGY: ENERGY DISAGGREGATION 30

particular case, we use a filter bank approach to handle the energy disaggregation problem.
A filter bank is a collection of filters, and the adaptive element of a filter bank is in the
insertion and deletion of filters, as well as the selection of the optimal filter.

As previously mentioned, there are 2T+1 different possible segmentations of {0, 1, . . . , T}
so iteratively considering each one is intractable. The process of finding the best segmentation
can be seen as exploring a binary tree. This is visualized in Fig. 3.1.

Figure 3.1: A segmentation Tswitch can be thought of as a leaf node on a binary tree of depth
T . That is, Tswitch corresponds exactly to one leaf node of this binary tree. Additionally, we
can associate a node at depth t with a switching time by assuming that no switches happen
after t.

Consider how nodes in this tree correspond to segmentations. At depth t, if t ∈ Tswitch,
then we take the 1 branch. If t /∈ Tswitch, then we take the 0 branch. In this fashion, each of
the 2T+1 leaf nodes can be related to a unique segmentation. Additionally, if we pick a node
at depth t, we can associate it with a switching time by just taking the 0 branch repeatedly
to the leaf, i.e. assuming that no switches occur after time t. Thus, every node on this tree
can be associated with a switching time.

Before we can introduce our algorithm, we will define one intermediary function which
calculates the maximum posterior probability when only given the measurements up until
time t, z[0 : t].

Definition 3.4.1. For any t ∈ {0, 1, . . . , T}, Tswitch = {t1, t2, . . . , tN} ⊂ {0, 1, . . . , t − 1},
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and z ∈ RT+1, let tN+1 = t and let T ′switch = Tswitch ∪ tN+1. Then, we can define:

st(Tswitch|z) = max
û:Tswitch(û)=T ′

switch

N∏
n=0

PUsn
(u[tn])PZ|Usn

(z[sn]|u[tn]) . (3.14)

Finally, we introduce our algorithm in Algorithm 1. Note that, given z, we can calculate
T since z ∈ RT+1.

Algorithm 1 Energy disaggregation via filter banks
procedure EDFB(z, PU , PZ|U ,U , pthres)
F ← {∅} . Initialize the filter bank with

. one filter corresponding to Tswitch = ∅.
for t ∈ {0, 1, . . . , T} do

for Tswitch ∈ F do . Prune the segmentations Tswitch whose
if st(Tswitch|z) < pthres then . likelihood falls below a certain threshold

remove Tswitch from F . when considering data up until time t.
Tlist ← arg maxTswitch∈F st(Tswitch|z) . Branch the segmentations Tswitch

for Tswitch = {t1, t2, . . . , tN} ∈ Tlist do . with the highest
. likelihood up to time t.

tN+1 ← t

append Tswitch ∪ tN+1 to F

pick any Tswitch ∈ arg maxTswitch∈F s(Tswitch|z) . Find a set of
pick any u∗ ∈ arg max

û:Tswitch(û)=Tswitch
PU (û)PZ|U (z|û) . optimal switching times,

return u∗ . and calculate the u∗ value
. conditioned on any one of the optimal switching times.

As previously hinted, our algorithm selectively explores branches of a binary tree. Limiting
the growth of the filter bank F can be done by deciding which branches to expand and which
branches to prune. This sort of formulation lends itself very easily to an online formulation of
the filter banks algorithm. In fact, it is more intuitive to think of the algorithm in an online
fashion.

At time t, by default, we only follow the 0 branch. For example, in Fig. 3.1, this
corresponds to following only the top path, as done at the [root→0] node. We choose to
branch a filter, i.e. explore both the 0 and 1 branches on the binary tree, only if it corresponds
to one of the most likely segmentations. As an example, this is done at the [root] node in
Fig. 3.1. The branching corresponds to adding the bottom path to the [root] node (creating
the [root→1] node) as well as the top path (creating the [root→0] node). At the beginning
of t = 1, the filter bank will contain Tswitch = {0} and Tswitch = {}.

Additionally, at time t, we prune any paths that have sufficiently low likelihood. That
is, we remove the segmentation Tswitch from F if st(Tswitch|z) < pthres, where pthres is an
algorithm parameter. This is depicted by the dotted line in Fig. 3.1; this involves removing
Tswitch = {0} from our filter bank when t = 1. After pruning, none of this node’s children
will be explored, so no node beginning with [root→1] will be present in the filter bank after
time t = 2.
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Thus, Algorithm 1 will only consider a subset of the leaf nodes of the binary tree. However,
by intelligently deciding which subset to consider, we can maintain good performance of
energy disaggregation algorithm. In fact, Algorithm 1 will recover an MAP estimate of the
input under the conditions presented in the previous section. We will prove this formally
below.

3.5 Theory
Theorem 3.5.1. (Optimality of energy disaggregation via filter banks without pruning)
Under Assumption 3.4.1, for pthres = 0, the u∗ returned by Algorithm 1 is a MAP estimate
for the energy disaggregation problem (PU , PZ|U , z).

Intuitively, this proof works as follows. Suppose an MAP estimate were removed from the
binary tree due to selective branching. This means that, at a particular point in time, there
is a switching time t where the algorithm did not branch the correct segmentation. However,
at time t, the algorithm did branch some segmentation Tswitch, which was optimal based on
the observations up until time t. By the decoupling in Proposition 3.4.1, we can improve our
performance by replacing the MAP estimate’s switching times up until time t with Tswitch
instead. Thus, a MAP estimate was not removed. The formal proof follows.

Proof. Suppose not, i.e. there exists an MAP estimate ũ such that:

PU (ũ)PZ|U (z|ũ) > PU (u∗)PZ|U (z|u∗),

and
PU (ũ)PZ|U (z|ũ) ≥ PU (u)PZ|U (z|u)

for any u.

By the construction of the algorithm, there exists a time t ∈ Tswitch(ũ) such that Algo-
rithm 1 did not branch the node corresponding to Tswitch(ũ) ∩ {0, 1, . . . , t− 1}.

Now pick a Tswitch such that Tswitch ∩ {0, 1, . . . , t − 1} was branched at time t. It fol-
lows that st(Tswitch|z) > st(Tswitch(ũ)|z).

Let
T ′switch = (Tswitch ∩ {0, 1, . . . , t− 1}) ∪ (Tswitch(ũ) ∩ {t, t+ 1, . . . , T}) ,

i.e. T ′switch takes the switching times of Tswitch prior to t and the switching times of ũ after t.

By the decoupling noted in Proposition 3.4.1, we have for any τ > t:

sτ (T ′switch ∩ {0, 1, . . . , τ − 1}|z) > sτ (Tswitch(ũ) ∩ {0, 1, . . . , τ − 1}|z) .
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This also includes the case where τ = T + 1. That is:

s(T ′switch|z) > s(Tswitch(ũ)|z) .

However, by Proposition 3.3.1, we can conclude that ũ is in fact not an MAP estimate. This
contradiction allows us to happily conclude that u∗ is, in fact, an MAP estimate.

Corollary 3.5.1.1. (Optimality of energy disaggregation via filter banks) In addition to
Assumption 3.4.1, suppose there exists an MAP estimate ũ such that, for all t ∈ {0, 1, . . . , T}:

st(Tswitch(ũ) ∩ {0, 1, . . . , t− 1}|z) ≥ pthres . (3.15)
Then, Algorithm 1 will recover an MAP estimate u∗.

Proof. Note that the hypothesis of the corollary implies that an MAP will never get pruned.
Joint with Theorem 3.5.1, we recover the desired result.

3.6 Implementation Details

The implementation of our algorithm, requires that we are able to compute PU (u), PY(i)|U(i) ,
and pthres. st(Tswitch|z) can be computed via (3.14) and PZ|U (z|u) via (3.1). In practice, under
the assumptions we make on our device models, PZ|U (z|u) is proportional to the error
between the observed aggregate result and mean aggregate prediction, thereby simplifying
computations. This section describes how each of these objects was instantiated and what
further assumptions were made for ease of implementation.

Usage prior
First, we describe our model for the devices to be disaggregated. We modeled each device
based on its recorded real power signature from a training dataset. For simplicity, we assumed
that each device has only one mode of operation. This restricts the usage pattern for each
device at each time step to either signify on or off events, i.e. u(i) ∈ {0, 1}T+1 ⊂ RT+1. We
modeled more complex devices with multiple modes as a combination of “elementary" single
mode devices. Once disaggregation is achieved, the results for the more complex models can
be obtained by aggregating results for their associated elementary devices. More formally,
we modeled each device i as H(i) : {0, 1}T+1 7→ R, and the aggregate system as H = ∑

iH(i).
H(i)(u(i))[t] corresponds to the recorded signatures at time t if u(i)[t] = 1 and is zero if
u(i)[t] = 0.

In our implementation, PU was used as a prior to constrain the duration of usage patterns
and computational complexity. We restrict U to be sampled from the set of inputs so that :

1. Each device is on for at least as long as the minimum amount of it was observed on in
the training set.
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2. Each device is on for no longer than the duration of it’s recorded signature.

3. At most one device changes state at each point in time.

These restrictions implicitly define our prior over the set of u’s. Usage patterns where
devices are on for longer than the recorded signature duration would force us to run out of
data to model the device. With a more sophisticated model, this restriction is unnecessary.
We also encourage u to be similar to usage patterns seen in the training set by enforcing that
each device must be in use for a minimum amount of time or not at all. Finally, restricting
only one state change at each time step improves computational performance. It is equivalent
to the assumption that at most one device turns on or off at any time. We have found this
assumption to have negligible effects on the results while improving computational speed, if
the data is sampled fast enough. Crucially, this restriction also prevents overfitting to noisy
aggregate data during test time.

Device model

Next, we instantiated PY(i)|U(i)(y(i)|u(i)) by assuming that y(i) is distributed normally about
the output of the device model given u(i) as an input. Concretely, PY(i)|U(i)(y(i)|u(i)) ∼
N (H(i)(u(i)), I(T+1)x(T+1)).

Thresholds
Extending our notation so that St(F|z) = {s = st(Tswitch|z) : Tswitch ∈ F} and St(F|z)(k) as
the k’th order statistic of St(F|z), we chose pthres at time t to be :St(F|z)(Nmax_filters) if α

√
t < St(F|z)(Nmax_filters)

α
√
t otherwise

,

where α and (Nmax_filters) are hyper-parameters. Effectively, this ensures we keep at least
(Nmax_filters) filters but no more than however many are α

√
t close to optimal at time t. In

practice, all the assumptions required for optimality may not be fully satisfied. To improve
performance in this scenario, we branch not only the most likely filter, but a handful of them.
In this implementation, we branch at least 5 filters, but no more than as many as are α

√
t

close to optimal at time t.

3.7 Experimental Evaluations
Our proposed approach was evaluated on the AMPds2 dataset [70]. The AMPds2 dataset
contains recorded energy measurement for a residential building in Canada. This dataset
contains 11 types of measurement for 21 sub-circuits/devices recorded at one minute intervals
over the space of two years. In addition, we made use of NILMTKv2.0 [56] to preprocess the
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Figure 3.2: Percentage of total energy consumed by each sub-circuit on the AMPds2 dataset.

dataset. This choice was made to allow consistent future comparisons with our work. We
compare our work against opensource implementations of two baselines made available via
NILMTKv2.0, combinatorial optimization (CO) [43] and Factorial Hidden Markov Model
(FHMM).

We made use of the Total Energy Correctly Assigned (TECA) metric to evaluate the
goodness of our approach. The TECA metric is a standard metric used in [60]. Denoting the
ground truth energy consumption for device i as y(i) , its estimate obtained by our algorithm
as ŷ(i) = H(i)(ûMAP

(i)[t]) and z[t] as the aggregate ground truth measurement at time t, Total
Energy Correctly Assigned (TECA) :

Acc = 1−
∑
t

∑
i

∣∣∣y(i)[t]− ŷ(i)[t]
∣∣∣

2∑t z[t] . (3.16)

Since disaggregation errors can be unbounded, TECA scores can take any value in the
range [−∞, 1], (z[t] ≥ 0). A good TECA score should be close to 1. We have made use of
denoised aggregate values in all our experiments and metrics, meaning that the aggregate
measurement is exactly the sum of the measurements obtained from the component parts.
Essentially, we are assuming there is no noise introduced by aggregation. The only noise
present is that which is introduced during the measurement of the component devices. We
also attempted to evaluate the robustness of our approach by including a device not present
in the training set as part of the aggregate signal used during test time. We refer to this
device as an unmetered appliance.

Furthermore, we only disaggregated a subset of the 21 sub-meters. More specifically,
we chose 3 of the top 5 energy consuming devices. Fig. 3.2 shows the percentage energy
consumption of these devices. RSE was not initially included as one of the devices comprising
the signal to be disaggregated because it is composed of many unknown electrical devices
found in a rental unit detached from the main house monitored by the AMPds dataset.
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However, we have included it in experiments where we wish to test the robustness of our
framework to unmodeled signals, as this realistically represents deployment use cases.

All algorithms tested were given an identical period of two weeks of data as a training set
and were tested on an identical set of 3 days of data not included in the training set. Both
the training and test sets were selected randomly from the dataset. The training set was
used to extract signatures for devices. These signatures were manually extracted from the
training set. Parameter min_on_time(i), represents the minimum amount of time device i
should be “on” for. We estimated its value from the training set by computing the shortest
amount of time the device was observed in the “on” state. α was set to 0.01 and

3.8 Results

Results with metered appliances
Fig. 3.3 shows an example estimated power consumption result for our approach and the
two other baselines, compared to the ground truth. Table 3.1 shows the results for all three
algorithms using TECA as metrics.

The results shown in Fig. 3.3 and Table 3.1 indicate that our algorithm performs compa-
rably to the baselines when all the devices comprising the aggregate signal are known. Our
optimization procedure is able to find a sequence of inputs for each device that adequately
explains the aggregate signal. We also note that it produces more realistic looking signals.

Results with unmetered appliances
To test for robustness against unmodeled signals that might, for example, be present when
not all devices composing the reported aggregate signal are known before hand, or due to
signal corruption, we included RSE as part of the aggregate signal, z. Note that this signal
was not present in the training set but is present during test time. Fig. 3.4 and Table 3.2
show the disaggregation results in this case.

In this scenario, our algorithm outperforms the baselines. Fig. 3.4 also indicates that it
produces more realistic signals as disaggregation estimates for each device. We argue that
a key benefit of energy disaggregation is to provide consumer feedback on usage patterns.
Unrealistic looking results such as those produced by the baselines ( e.g. those for CDE )
may lose consumer trust. We also emphasize that the unmetered scenario is the scenario
more likely to be encountered during deployment as it can be impractical to obtain a model
for every device in the house. Consequently, obtaining realistic estimates in the presence of
some unmetered devices is essential for ease of deployment and obtaining consumer trust.
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Figure 3.3: Disaggregation output for FHMM , CO and EDFB (ours) on day 1 in the test set.
Ground truth also inserted for comparison. Note that our method produces more realistic
looking signals, which is important in gaining users’ trust of the system.

Table 3.1: Comparison of total energy correctly assigned (TECA) across all three algorithms
for each day in the test set. A good TECA score should be close to 1. We achieve a score
within 95% of the baselines.

FHMM CO Ours
Day1 0.975 0.988 0.967
Day2 0.875 0.864 0.871
Day3 0.913 0.904 0.880
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Figure 3.4: Disaggregation output for FHMM, CO and EDFB (ours) on day 3 in the test
set after adding a signal not encountered during training. Ground truth also inserted for
comparison. Note that our method produces more realistic looking signals, which is important
in gaining users’ trust of the system.

Table 3.2: Comparison of total energy correctly assigned (TECA) across all three algorithms
for each day in the test set after adding a signal not encountered during training. A good
TECA score should be close to 1.

FHMM CO Ours
Day1 −0.187 −0.283 0.342
Day2 0.168 0.641 0.812
Day3 0.592 0.443 0.832



CHAPTER 3. ENERGY: ENERGY DISAGGREGATION 39

Discussion

We observe that the choice to model devices with recorded signatures and restricting u(i) ∈
{0, 1}T+1 ⊂ RT+1 constrains energy consumption predictions to not only take on exactly the
same values as those in the recorded signature, but to also transition between these values
in exactly the same manner as that observed in the recorded signature for at least as long
as min_on_time(i) (i.e. Given a starting point in the recorded signature, the sequence of
predicted energy consumption values are identical to those of the recorded signature). The
other algorithms being compared are not constrained to transition between values in this
manner. While this choice of modeling improves the ease of implementation, it is also too
restrictive. The authors believe that this is a reason for not matching the ground-truth values
better. However, Fig. 3.3 shows that our algorithm finds a very reasonable estimate. With a
more sophisticated model for the devices, our algorithm should perform even better. In the
unmetered case, we observe a robustness to overfitting by our algorithm. This robustness
can be attributed by the ability to incorporate priors and flexible device models in our
framework.

In this chapter, we have presented the energy disaggregation problem as a MAP estimation
problem with data-driven models for devices (we also provide an alternative neural network
based model in the Appendix corresponding to the chapter), and have described an algorithm
for solving this problem. We have also shown that our solution is optimal under certain
conditions.

In line with the theme of data-driven perception, we note that this algorithm turns raw
aggregate data into estimates of appliance usage patterns. Given our data-driven device
models, we are able to obtain individual appliance energy consumption estimates (the
information we seek) as a function of the usage patterns.

Finally, we have validated our work on a public dataset and highlighted the ability of
our framework to provide good solutions more similar in pattern to the ground truth than
baselines. At the same time, we achieve more robust score than the baselines on a standard
metric. Our approach easily allows the designer incorporate different priors and device models,
while still making inference tractable.
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Chapter 4

Mixed Reality: Joint Shape Retrieval
and Transform Estimation for 3D
Scene Reconstructions and
Understanding

List of Symbols

S A 3D shape represented as a mesh.
S Set of 3D shapes of the same class, and canonical pose

and scale, provided by user to the algorithm
D Dataset of shapes used by the algorithm.

ΩS Set of 3D points inside and on the surface of shape S.
∂ΩS Set of 3D points on the surface of shape S.

Φ Signed distance function.
s, R, t scale, rotation matrix, translation vector respectively.
ω, ψ, ρ, θ Rotation axis, azimuth angle, elevation angle, angle of

rotation respectively.

Our final example of data-driven perception algorithms is a perception algorithm for
shape and pose estimation from 3D data. On its own, estimating shape and pose is useful for
downstream applications such as robotic manipulation, since the shape and orientation of
an object informs us on how to manipulate it. An added benefit of this algorithm is that it
provides a compact representation for shape and allows for deformation of shapes. This in
turn is very useful for 3D reconstruction algorithms that require compact representations
as well as robustness to incomplete sensor data. We present this algorithm below as well
as preliminary results on its usefulness for 3D reconstruction and representation of indoor
scenes geared towards Mixed Reality applications.
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4.1 Introduction
The rapid growth of low-cost LIDAR or RGB-D sensors (e.g., Intel RealSense and Apple
iPad Pro LIDAR) has led to the growth of applications that require building 3D models
of real-world scenes. Such models are useful for virtual immersion and automatic content
creation in Augmented and Virtual Reality (AR/VR) where the user experience can be
customized to individuals’ own spaces. A typical pipeline of the task currently would include
Simultaneous Localization and Mapping to generate an SDF representation of the space.
Subsequently, mesh or pointcloud models of the scene may be extracted from the SDFs using
variants of the Marching Cubes algorithm[67].

While very accurate models can be produced by this pipeline, it is also well known that
the models may suffer from missing parts and holes due to occlusion and insufficient scanning
coverage of the scene. Furthermore, pointcloud or mesh representations of the scene may
not be organized in a way that is intuitive to edit (i.e., they are unordered), and may take
up large amounts of memory to store. These characteristics present a significant bottleneck
for AR/VR applications to transmit customized user models in real time and to virtually
interact with the models.

To alleviate this problem, multiple lines of work such as [110, 48, 66, 10] have suggested
that we decompose the scene into objects and their poses and scales. For example, one
popular approach is to replace object pointcloud with a suitable Computer Aided Design
(CAD) model from a database. The benefit of this is that the model is more likely to be
complete and can be stored using its index in the database rather than a full mesh model.
However, since models in CAD databases are most likely stored in a canonical pose and
scale [17], this approach is only useful when one can estimate the appropriate scale and pose
together with recognizing the model category in the database. This leads to a joint shape
retrieval and transform estimation (JSRTE) problem, which is the focus of this chapter.

Another drawback of the above approach is that given a scene scan, there is no guarantee
of finding similar models in the database. Thus we may lose a great deal of representation
power if we only rely on referencing the database indexes. Nevertheless, it has been proposed
that deep neural network (DNN) based 3D generative models such as [3, 76, 39] allow one
to produce a larger set of shapes than are available during training (or in the database) by
learning a latent space that allows for interpolation and generalization of shapes. What this
implies is that we may now be able to obtain the benefit of using a CAD model representation
without sacrificing too much representation power.

In this chapter we utilize an SDF-based 3D DNN model to formulate the JSRTE problem
constrained on similarity transforms (rigid body transform and scale) as an optimization
problem. We present a gradient-descent based solution and compare our results to the state
of the art for shape retrieval and/or transform estimation problems. We show this approach
produces excellent results on synthetic and real world data. Our contributions are as follows:

1. Formulate JSRTE problem as a novel joint optimization problem.
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2. Demonstrate a parameterization of the problem allowing for easy incorporation in
popular DNN frameworks.

3. Conduct experiments on synthetic and real datasets showing the effectiveness of our
approach on JSRTE problem and as a form of 3D data compression.

4. Provide extensions to the main algorithm to incorporate prior knowledge such as
symmetry and repetition of objects.

5. Provide preliminary qualitative results for reconstructing indoor 3D scenes.

4.2 Related Work

3D Shape Alignment using Signed Distance Functions
Aligning 3D shapes is a well studied problem with varying solutions depending on the
representations of the 3D shape. For example, when the geometry of a 3D object is represented
using pointcloud, solutions for estimating rigid-body and orientation-preserving similarity
transformations have been proposed [44, 45, 8, 114, 111].

Alternatively, and more pertinent to this chapter, 3D shapes can be aligned using signed
distance functions (SDFs). [97] provided a good overview of some of these methods. For
example, [94, 16] presented techniques to estimate rigid-body transformations between two
shapes represented using SDFs. [69, 21] further tackled the problem of estimating rigid-
body transformation and scale using SDFs, the same type of transformation studied in
this chapter. Their algorithms made use of geometric moments and the Fourier transform.
In comparison, we develop a gradient-descent based algorithm to find a solution to an
optimization formulation. Similarly, [75, 47] also made use of gradient-descent algorithms on
optimization problems to estimate similarity transformations between SDFs. Yet, none of
the works above explicitly allow for solving shape retrieval and transformation estimation in
one optimization problem. Rather, they only deal with transformation estimation given the
shape model.

3D Features for Shape Retrieval and Alignment
There exists a body of work that explicitly deals with shape retrieval. Classical shape retrieval
algorithms such as [90, 42, 107] usually follow a two-step approach: The first step involves
shape recognition from a database by making use of shape descriptors such as [108, 86, 5].
The second step involves a correspondence search using 3D keypoints and descriptors followed
by registration. It has been argued in [93] that dense alignment via SDFs can produce much
better results since it does not make use of a correspondence search which may introduce
errors. Our work favors this approach. We will compare our superior results against classical
3D feature based retrieval techniques.
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More recent work has shifted from using hand-crafted descriptors to data driven ones
such as [117, 23]. Alternative data driven approaches [80] make use of deep neural networks
(DNNs) to replace the recognition module entirely. However, the sequential approach of
recognition and then registration does not allow for corrections of errors in the registration
phase caused by a mismatch during the recognition stage. To address this problem, [9]
proposed an end-to-end shape retrieval and alignment module. In comparison, although our
work also jointly optimizes over the space of shapes and transforms, the formulation is not a
feed-forward neural network but an optimization problem that makes use of a neural network
model. The main benefit of this is that the optimization process can be viewed as introducing
feedback that allows iterative minimization of errors from predictions made by the network.
A feed-forward module can only make a prediction once per input and has no mechanism to
minimize errors after training. More importantly, the space of shapes over which we optimize
allows us to retrieve objects that were not seen during training.

4.3 DeepSDF-based Shape Retrieval and Similarity
Transform Estimation

Problem Statement
Assume that we are given a set of shapes S = {S1, S2, S3, . . . , Sn} belonging to the same
class, all in the canonical scale and pose (e.g., a set of chairs all normalized to lie in the unit
sphere with forward directions aligned with the positive y axis). Further assume the shapes
are represented as meshes although our approach also works for other representations as long
as we can extract a signed distance function from the representation.

Then, for a new shape S belonging to the same class but not necessarily in S or in the
same canonical scale and pose, we would like to firstly build a dataset D of shapes using
S, and secondly find an item in D and a corresponding similarity transformation that best
approximates S.

Note that we do not enforce D = S, but only require that D is constructed using only
S. Typical shape retrieval problems tend to set D = S. However, as we will show, this may
restrict the richness of D. Our approach assumes that all given shapes have an associated
SDF. This can be easily obtained, for example, from a triangle mesh representation of the
shape.1

As shown in Fig. 4.1, the input to our algorithm is a query shape S and a set of canonical
shapes S. Its output are the optimal shape representation in canonical pose and scale from D
as a mesh, the optimal similarity transformation, and a compact representation of the query
shape for data compression.

1Please refer to the appendix for more details on SDF extraction and sampling.
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Figure 4.1: Overview of the proposed JSRTE algorithm.

Notation and Preliminaries
A 3D similarity transformation g ∈ Sim(3) is a tuple (s, R, t), with s ∈ R+, R ∈ SO(3) ⊂
R3×3, t ∈ R3. Then, g acting on a point x ∈ R3 is given by

g(x) = sRx+ t. (4.1)

Let S be a solid 3D shape with a closed surface such that we have a well-defined notion
of inside and outside. In addition, let ∂ΩS represent the set of points on the surface of S, ΩS

represent the set of points on the surface and interior of S, and Ωc
S the complement of ΩS .

Then an SDF is an implicit representation of the shape defined as:

Φ(x,ΩS ) =


− min
y∈∂ΩS

||x− y||2 , if x ∈ ΩS ;

min
y∈∂ΩS

||x− y||2 , if x ∈ Ωc
S.

Intuitively, for a fixed shape S, its SDF at a point x tells us the distance from x to the
surface of S, with the sign determined by whether x lies in the interior of S.

Let S, S ′ be two shapes related by a similarity transformation g as defined in (4.1), i.e.,
∂ΩS′ = {g(x)|x ∈ ∂ΩS }. Under this condition, it is well known [75] that

Φ(g(x),ΩS′ ) = sΦ(x,ΩS ). (4.2)

In other words, SDFs are invariant to rotations and translations, but vary proportionally
with isotropic scaling. The constant of proportionality is the scaling factor s.

Approach
Our proposed approach first learns a dataset D from the input set of shapes S and then
formulates and solves an optimization problem to jointly estimate the transformation and
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shape parameters. Inspired by [76], we also learn a generative model and latent space of
shapes. The benefit to this is that the latent space is more expressive than the input set
of shapes S. Specifically, the latent space has been shown in [76] to extrapolate the shapes
in S and produce new shapes of the same class but not contained in S. The generative
model also allows us to formulate searching over the latent space as a tractable optimization
problem. In addition, since the dimension of the latent space is relatively small and a
similarity transformation involves only a few parameters, we can simultaneously obtain a
compact representation of the query shape.

Approximating SDFs with DNNs and Learning a Latent Dataset

Given an object class of shapes in a canonical pose and scale, S = {S1, S2, S3, . . . , Sn}, one
can learn a generative model f̂(x, z) ≈ Φ(x, h(z)) using DNNs [76]. Here x ∈ R3 is a point
and z ∈ Rd is a latent vector with one-to-one correspondence with the shapes in S. h(z) is a
mapping that assigns each latent vector in Rd to a shape in S, i.e., h : Rd → P(R3) such that
∀S ∈ S ∃z ∈ Rd : h(z) = ΩS . The dimension d is a design choice, and we refer to Rd as the
latent space. It was also shown in [76] that in learning f̂ , one learns a latent space that may
generate new shapes not in the training dataset.

The implication of these results is that we can choose the latent space as the dataset
for our algorithm. Also, given a shape S in the same canonical scale and pose and a set
of m samples of its SDF χS = {(xi, φi = Φ(xi,ΩS )}mi=1, S can be estimated by solving the
following problem [76]:

min
z∈Rd

∑
(xi,φi)∈χS

|f̂(xi, z)− φi|. (4.3)

The above problem can be viewed as a special case of shape retrieval, since one can
convert the latent vector back into a mesh by using f̂ to generate SDF samples of the shape
and using [67] to convert it to a mesh. Moreover, in the event that we have incomplete
knowledge of the SDF of S, this formulation gives some robustness and has been shown to
be useful for shape completion as well.

However, the above restriction to shapes in the canonical pose and scale limits the
usefulness of this work in real world applications, since most objects are not in a canonical
scale and pose. While it is possible to learn a new generative model on a larger dataset
containing scaled and transformed versions of shapes in S, we find that this is an inefficient
approach to solving the problem. Our main contribution in this work is to present a principled
way to overcome this problem without making use of any more data or computation for
training.

Joint Optimization of Shape and Transform Parameters

Our main idea is to modify (4.3) to include an optimization over similarity transform
parameters that is also easy to implement. Using (4.2) and (4.3), we formulate the problem
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as:
min
s,R,t,z

∑
(xi,φi)∈χS

∣∣∣∣∣sf̂
(
R−1(xi − t)

s
, z

)
− φi

∣∣∣∣∣ (4.4)

with s ∈ R+, R ∈ SO(3), t ∈ R3, z ∈ Rd. Then one may use gradient-descent algorithms to
solve the problem. However, care must be taken since R does not live in a vector space.
While it is possible to properly take gradient steps in SO(3) [22], we take an alternative
approach to parameterize R.

Using the axis-angle representation for rotation matrices, we know that for any rotation
matrix R, there exists ω : ||ω||2 = 1 and θ ∈ [−π, π] : R = exp(ω̂θ), where ω = [ω1, ω2, ω3]>,
ω̂ =

[
0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

]
. Since ω lies on the unit sphere, we may parameterize it using spherical

coordinates as ω1 = sin(ψ)cos(ρ), ω2 = sin(ψ)sin(ρ), ω3 = cos(ψ), where, to avoid potential
confusion due to overloading symbols, we have used ψ to represent the polar angle and ρ to
represent the azimuthal angle. Consequently, we may write

R(ψ, ρ, θ) = exp


 0 −cos(ψ) sin(ψ)sin(ρ)

cos(ψ) 0 −sin(ψ)cos(ρ)
−sin(ψ)sin(ρ) sin(ψ)cos(ρ) 0

 θ
 (4.5)

and the initial problem (4.4) as

min
s,ψ,ρ,
θ,t,z

∑
(xi,φi)∈χS

∣∣∣∣∣sf̂
(

[R(ψ, ρ, θ)]−1(xi − t)
s

, z

)
− φi

∣∣∣∣∣ . (4.6)

In this way, no special handling of gradients has to be taken. We find that this explicit
formulation allows for easy implementation and incorporation into common deep learning
frameworks with automatic differentiation such as [78]. We summarize our JSRTE algorithm
in Algorithm 2.

Implementation
We have implemented JSRTE algorithm using PyTorch [78] and report some implementation
details here for reproducibility. Specifically, the matrix exponential exp(ω̂θ) is expressed by
Rodrigues’ formula [85, 68]: exp(ω̂θ) = I+ω̂sin(θ)+ω̂2(1−cos(θ)). Adam[58] as implemented
in [78] is adopted to solve the optimization problem (4.6). To ensure that the search is in the
feasible set of the problem, s ∈ [

¯
s, s̄] can be restricted as

¯
s = 0.01, s̄ = 10. f̂ is learned using

open source code provided by [76, 33], with latent vectors in R256. For all objects, we have
trained on subsets of the corresponding Shapenet [17] class. To encourage convergence of the
network, [76] has used a penalty term on the norm of z weighed by 10−4. We also include
this term in solving (4.6). We generally make use of the same SDF extraction and sampling
approach used in [76] (see appendix for details).
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Algorithm 2 Joint Shape Retrieval and Transform Estimation (JSRTE)
1: function JSRTE(S, S, s0, ρ0, ψ0, θ0, t0, z0)
2: f̂,D ← S . Learn generative model and latent space from data (offline).
3: {xi, φi}mi=1 ← S . Sample SDF from query shape
4: Initialization . Initialize (4.6) using provided parameters
5: Solve (4.6) for s∗, R∗, t∗, z∗ . Use gradient descent to solve (4.6)
6: {x̄i, f̂(x̄i, z∗)}ni=1 ← f̂, z∗, x̄i ∈ [−1, 1]3 . Generate SDF samples at z∗ using f̂
7: S∗ ← MARCHINGCUBES({x̄i, f̂(x̄i, z∗)}ni=1) . Generate mesh from SDF samples with [67]
8: return s∗, R∗, t∗, z∗, S∗

4.4 Experiments
We perform three experiments to validate our approach for shape and transformation esti-
mation. The first experiment seeks to evaluate the performance of the proposed algorithm
when we initialize its parameters within reasonable bounds of the groundtruth. The second
experiment evaluates our algorithm on real world data and compares it to state-of-the-art
benchmarks. The third experiment assesses the viability of our approach as a means for 3D
data compression.

Synthetic data
Gradient-descent based methods are susceptible to converging to locally optimal solutions.
So it is important to find good initialization points for the variables. For this experiment, we
want to observe the behavior of our algorithm when initialized within reasonable bounds of
the groundtruth.

We sample objects from the chair, table, sofa, and bed categories from ShapeNet [17].
First, 30 objects from each category are sampled. Then for each object a random scale
and pose are assigned by sampling the groundtruth parameters, s ∼ Uniform([1

2 , 2)) ,
ψ, ρ, θ,∼ Uniform([−π, π)), and ||t||2 ∼ Uniform([0, 4)). The direction of t is chosen uniformly
from the surface of a unit sphere. For each shape and transform pair, we solve the shape
retrieval problem using our algorithm 50 times, with each trial using a random initialization.
We carry out two sub-experiments to highlight scenarios where our algorithm is applicable.
In the first scenario, we assume that we know the axis of rotation (and consequently ψ, ρ),
but all other parameters are unknown. This is a reasonable assumption since many objects
lie upright on flat surfaces such as floors or tables. One may use the normal to the surface
as the axis of rotation. In the second scenario, we relax this assumption and introduce
some uncertainty in the axis of rotation. The scenarios are used to randomly sample the
initialization for our algorithm.

Concretely, we refer to the initialization parameters as s0 = s(1 + ∆s), ψ0 = ψ+ ∆ψ, ρ0 =
ρ + ∆ρ, θ0 = θ + ∆θ, t0 = t + ∆t. The ∆ variables correspond to the difference between
the ground-truth and initialization parameters. We then sample the ∆ variables uniformly
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from ranges determined by each scenario. Table 4.1 below summarizes these ranges for the
different scenarios.

Table 4.1: Parameter ranges for the difference between initialization points and groundtruth
values.

Scenario ∆s ∆ψ ∆ρ ∆θ ||∆t||(m)

Known rotation axis [0, 0.3) N/A N/A [−π
9 ,

π
9 ) [0, 0.15)

Unknown rotation axis [0, 0.3) [− π
36 ,

π
36) [− π

36 ,
π
36) [−π

9 ,
π
9 ) [0, 0.15)

In all scenarios, We choose the direction of ∆t uniformly from the surface of a unit sphere.
z0 ∼ Normal(0, σI), σ = 0.01. We use the corresponding ShapeNet [17] model class as input
shape set S.

To quantitatively measure the performance of our algorithm, we use the F-score between
the output shape (transformed by our predicted transform parameters) and the test shape
as recommended in [101]. The F-score measures the similarity between 3D surfaces as the
harmonic mean between precision and recall. A point on the predicted surface is considered a
true positive if it is within a threshold ε of the groundtruth surface. In this work, we have set
this threshold as 5% of the scale of the groundtruth object. We refer to this score as F@5%.
The F-score ranges from 0 to 1, with higher numbers indicating more closely matched shapes.

For each shape and transform pair, we categorize the F-score into bins and count the
number of initializations out of 50 that fall into each bin. Then for each bin, we report
aggregate statistics using box plots in Fig. 4.2. The position of each box-plot on the x-axis
corresponds to the rightmost edge of its bin. The leftmost edge of its bin is the previous
point on the x-axis.

Fig. 4.2 corresponds to scenarios with a known and unknown axis of rotation respectively.
In both scenarios, we observe that our algorithm performs well with most F@5% scores
greater than 0.8. We also observe a slight degradation in performance in the scenario with
an unknown axis of rotation, as is to be expected due to greater uncertainty. Intuitively,
the results imply that with a known axis of rotation, if we know the amount of rotation up
to ±20◦, the translation up to ±15 cm and the scale up to 30% of the true scale, we can
expect our algorithm to perform very well. We also perform more experiments to test the
our algorithm in other parameter ranges and report those as well as qualitative results in the
supplementary.

Real Data
In the next set of experiments, we evaluate our algorithm on real data. In this chapter, we
demonstrate the results on the chair subset of the Redwood dataset [19]. The Redwood
dataset contains scans (represented as triangle meshes) of real objects in varying scales and
poses. We have manually segmented the dataset so that we remove other objects in the
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Figure 4.2: Box plot of F@5% from experiments described in Table 4.1. Left: Scenario with
a known axis of rotation; Right: Scenario with an unknown axis of rotation. The median
for each bin is shown as an orange line in the box, with outliers shown as circles. Each box is
placed on the right edge of its corresponding bin, the left edge of each bin is the right edge of
the preceding bin.

background, leaving behind only the floor and the main object in each scene. We assume
that all objects in the scene lie on the floor and are upright. This allows us to obtain an
estimate for ω as the normal to the floor plane. In this way, we collect 89 shapes and samples
of their SDFs. However, we use 31 randomly selected shapes from these 89 for validating
the baselines described below, leaving only 58 for testing. We discarded all other scenes
that could not be segmented properly. For each shape, we initialize s using the radius of its
bounding sphere and t using the center of the bounding sphere. We estimate ω using the
normal vector to the floor plane and z is initialized by drawing from Normal(0, σI), σ = 0.01.
The only parameter left is θ. For θ we grid up the space in increments of 30◦ and run our
algorithm for each value of θ0 ∈ [0, π6 ,

π
12 , . . . 2π). We then select the best result from each of

these initialization of θ using the F@5% score.
We compare our work to three different approaches for shape retrieval and transform

estimation. In these approaches, we perform recognition to find the closest shape to the
query shape in the set of input shapes and then perform registration to estimate a similarity
transform.2

The first approach uses Harris3D keypoints and the SHOT[89] descriptor to perform
recognition and provide correspondences for registration. Registration is then carried out
using [111]. Specifically, for recognition, we describe each shape in the dataset using the
descriptor and keypoint detecting method stated above. During test time, we compare the
keypoints and descriptors of the query shape to those in the dataset. This method is referred
to as Harris3D+SHOT.

The second approach replaces the keypoint detector and descriptor with the shape
2We are aware of other state-of-the-art SDF based methods for jointly estimating shape and similarity

transformation [9]. However, we could not find a publicly available implementation to use for testing.



CHAPTER 4. MIXED REALITY: JOINT SHAPE RETRIEVAL AND TRANSFORM
ESTIMATION FOR 3D SCENE RECONSTRUCTIONS AND UNDERSTANDING 50

descriptor developed in [5]. For registration, points are sampled from the mesh and then
applied to an Iterative Closest Point (ICP)[14] variant that makes use of [111] for transform
estimation. Correspondences are assigned by solving an optimal assignment problem. We find
that this significantly improves the result. This method is referred to as OURCVFH+ICP.

The last approach uses PointNet[81] as described in [80] for recognition and the ICP
method described above for registration. This method is referred to as PointNet+ICP.

We report the average F@5% score of these methods in Table 4.2, which shows our
algorithm significantly outperforms the three alternative approaches. We also provide
qualitative results of randomly sampled test cases in Fig. 4.3, which shows that the shapes
predicted by our method are qualitatively better than the alternative methods, with much less
misalignment. Alternative methods using a two-step pipeline of recognition and registration
can propagate errors in the recognition stage that cannot be corrected by just a similarity
transformation in the registration stage. In addition, our method uses a richer search
space for shapes by using the latent space as its dataset, rather than just the set of input
shapes provided. Moreover, finding good correspondences can be difficult for other two-step
approaches as clean CAD models and noisy real scans have differing local surface properties.
Finally, the need to sample the surface to allow tractable registration may introduce errors in
the sense that true corresponding pairs may not belong to the sampled sets. Our method on
the other hand does not make explicit use of correspondences.

Table 4.2: Quantitative results on Redwood dataset. Average F-scores for shape retrieval
and similarity transformation methods compared to ours. Our algorithm’s score more than
doubles the others.

Harris3D + SHOT OURCVFH + ICP PointNet + ICP Ours
F@5% 0.273 0.367 0.452 0.902

3D Shape Compression
Finally, we conduct an experiment to explore the viability of our approach as a form of 3D
data compression. Given the neural network parameters of f̂ , we can choose to store only the
latent vector representing a shape and the associated similarity transform. With access to f̂
and the transform parameters, one can then decode the latent vector and convert it back to
a mesh model. In our experiment, the network size is approximately 7MB. This is a constant
cost shared across many uses and is consequently amortized.

For this experiment, we save each mesh in our Redwood test set under two mesh sim-
plification schemes, mesh simplification using Quadric Error Metrics[37, 119] and Vertex
Clustering [119]. We have varied the parameters of each method. For mesh simplification
using Quadric Error Metrics, we set the target number of faces to be reduced by a factor of
100 and 1000 from the number of faces in the original mesh. We refer to these experiments
as QE-100, QE-1000 respectively. For Vertex Clustering, we vary the size of the grid cells
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used for clustering to be a factor of 0.1 and 0.2 of the radius of the bounding sphere for the
shape. We refer to these as VC-0.1, VC-0.2 respectively. We save all meshes and compute the
average size of the files as well as the mean F-score (compared to the original mesh) to give
an indication of the representation power at each simplification parameter. We compare these
scores against our mean F-score and the cost of saving the latent vector and transformation
parameters as a 4× 4 matrix and report the results in Table 4.3. The result shows that our
method provides an impressive tradeoff between reconstruction quality and storage size.

Table 4.3: Comparison of storage size and representation power for various mesh simplification
algorithms. Our approach provides an excellent trade-off between accuracy and storage space,
saving over 20x space as the most accurate method with less than a 10% drop in accuracy.

Ours QE-100 QE-1000 VC-0.1 VC-0.2
Average F-score 0.902 0.977 0.778 0.978 0.839
Average size (KB) 1.088 20.120 3.454 34.833 9.073

Extensions
While we have presented the main idea and results for Joint Shape Retrieval and Transfor-
mation Estimation in previous sections, we now take a look at special scenarios where we
may be able to take advantage of prior knowledge to obtain more robust results.

Reflective Symmetry

In 3D space, a reflection is a Euclidean (distance preserving) transformation with a plane as
its set of fixed point. We say a set of points Ω is symmteric with respect to the transformation
g if g(Ω) = Ω. Man-made objects typically enjoy reflective symmetry. For example most
chairs and tables exhibit bi-lateral symmetry.

Symmetry has been used in previous 3D reconstruction work [96, 73, 116, 53] as a way
to obtain more robust reconstruction or recognize shapes. Indeed with known reflective
symmetry, partial observations of an object may be as good as complete knowledge of the
object. Consequently, knowing that an object has one or multiple reflective symmetries allows
us to obtain robust shape retrieval and transformation estimation. To take advantage of
this knowledge in our framework, first assume the canonical shape has reflective symmetry
with respect to the transform g (not to be confused with notation given earlier for similarity
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transforms). Then we may enforce this symmetry in our optimization problem as3:

min
s,ψ,ρ,
θ,t,z

∑
(xi,φi)∈χS

∣∣∣∣∣sf̂
(

[R(ψ, ρ, θ)]−1(xi − t)
s

, z

)
− φi

∣∣∣∣∣+
λ

∣∣∣∣∣f̂
(

[R(ψ, ρ, θ)]−1(xi − t)
s

, z

)
− f̂

(
[R(ψ, ρ, θ)]−1(g(xi)− t)

s
, z

)∣∣∣∣∣ . (4.7)

The equation (4.7) approximately enforces symmetry by making use of the prior informa-
tion on symmetry as a penalty term with λ as a parameter controlling the importance of the
penalty. We note that the penalty term∣∣∣∣∣f̂

(
[R(ψ, ρ, θ)]−1(xi − t)

s
, z

)
− f̂

(
[R(ψ, ρ, θ)]−1(g(xi)− t)

s
, z

)∣∣∣∣∣ .
is obtained by approximating the relation:

Φ(g(x),ΩS′ ) = Φ(x,ΩS) ∀x ∈ R3.

Since Φ is a scalar function, we can show the above relation to be true if we show that:

1. sgn(Φ(x,ΩS )) = sgn(Φ(g(x),Ω
S′

)).

2. |Φ(x,ΩS )| = |Φ(g(x),Ω
S′

)|.

We note that since sgn(Φ(x,ΩS )) is determined by whether or not x ∈ ΩS , the sign is
preserved if g is a function that maps interior (boundary/ points outside the shape) points in
the domain to interior (boundary/ points outside the shape) points in the image and is also
injective. The magnitude of Φ(x,ΩS ) is determined by the distance of x to points on the
boundary of ΩS , thus the magnitude is preserved if g is a distance preserving function. Both
statements are shown to be true by making use of Lemmas B.2.1, B.2.2, B.2.3 and the fact
that g is a Euclidean transform.

In Fig 4.4, we provide qualitative results of this extension. We have manually detected
planar symmetries in randomly sampled shapes from the ShapeNet dataset [17] and simulated
scenarios with missing data and occlusions. We use this occluded data as input to our
algorithm, including information about reflective symmetries. We compare the results to an
approach that does not use this knowledge.

As can be seen in Fig. 4.4, including reflective symmetries can provide more accurate and
aesthetically pleasing results even in the presence of severe occlusions.

3see Appendix for full derivation.



CHAPTER 4. MIXED REALITY: JOINT SHAPE RETRIEVAL AND TRANSFORM
ESTIMATION FOR 3D SCENE RECONSTRUCTIONS AND UNDERSTANDING 53

Repeated Objects

In addition, many indoor environments include multiple instances of the same shape. For
example, a dinning room might contain four identical chairs around a dining table or a
classroom might contain multiple identical desks. Knowing that multiple instances of the
same shape occur in a scene can be very useful in improving the robustness of results obtained
by our proposed algorithm.

Specifically, multiple instance of the same object provide multiple views of the object.
This is especially useful since occlusion patterns are generally not the same across the object
(the legs of one chair may be occluded but the legs of another instance of the chair may not
be). When all the information from all the instances of the object are used together, we
obtain a better picture of the shape in question. Furthermore, if we know that all instances
are of the same scale, we can also include this as a constraint in our optimization.

With this in mind, for K instances of the same shape, our optimization problem becomes:

min
sk,ψk,ρk,
θk,tk,z
k=1,...,K

K∑
k=1

∑
(xk

i ,φ
k
i )∈χk

S

∣∣∣∣∣skf̂
(

[R(ψk, ρk, θk)]−1(xki − tk)
sk

, z

)
− φki

∣∣∣∣∣ . (4.8)

where the superscripts have been used to indicate parameters and data belonging to a
particular instance.

We have tested this formulation by randomly sampling shapes from the ShapeNet dataset
[17] and created three instances of the shape at different poses. We solve the JSRTE problem
making use of the knowledge that the shapes are multiple instances of the same shape. We
also solve the JSRTE problem without making use of this information. Each triple of rows
in Figs. 4.5, 4.6 and 4.7 show the results of this experiment for a sample shape. As can be
seen in the figures, incorporating knowledge of multiple instances of the same shape provides
significant benefits in obtaining good results with our algorithm. In particular, we observe
that even when one of the instances undergoes severe occlusions, we may still be able to
obtain excellent results by making use of information from the other instances.

Layout Modeling

We stated earlier that an indoor scene may be the decomposed into a layout as well objects
and their poses and scales. Previous sections have dealt with how to represent and estimate
objects, we now focus on layout estimation and representation. Indeed, the distinction
between objects and layouts with respect to the algorithm presented in this chapter is rather
artificial since SDFs may be used to represents shapes irrespective of their class. As such,we
may be able to respresent layouts using deep generative models. To test this hypothesis,
we have collected a set of 3D CAD models from the SUNCG dataset[95] as well as publicly
available models from the 3D Warehouse[1]. We train DeepSDF [76] on 2175 model and
display some sample outputs generated by the model in Figs. 4.8 and 4.9.
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Figures 4.8 and 4.9 validates our hypothesis. We also note that we are able to represent
both planar and non-planar surfaces with the same amount of data. With this representation,
we do not need to make an assumption that the layout of the scene is planar or Manhattan,
giving us more representation power and flexibility in the type of scenes we can represent.

To test the ability of our proposition to model indoor scenes, we have obtained two scans
of indoor rooms from the Replica 3D dataset [98] and used the proposed methods to model
the layout and objects. Figures 4.10 and 4.11 below show some of the qualitative results
displaying very promising potential.

4.5 Interpretation as an Estimation Problem
The JSRTE problem presented in this chapter is an estimation problem. Concretely we seek
to estimate from observed SDF data the following parameters z, s, ψ, ρ, θ and t corresponding
to shape and similarity transform parameters.

To obtain the likelihood function, we model our observations at each point xi as a function
of the data-driven generative model corrupted by noise. We also assume that the noise
variable at each point is independent. Specifically, we model our observations as:

φi = sf̂

(
[R(ψ, ρ, θ)]−1(xi − t)

s
, z

)
+Wi

for i = 1, . . . ,m, where Wi is a random variable representing the noise corruption and the
Wi’s are independent. Our presentation in this chapter assumes that the noise variables follow
a Laplace(0, 1) distribution. This assumption was made because it empirically produced
better results. Intuitively, this makes sense since the Laplace distribution has “fatter” tails
than the Gaussian distribution and thus permits the observation of more noisy data.

The optimization problem in (4.6), makes use of an uninformative prior over the variables
of interest, however as mentioned in section 4.3, it may be beneficial to assume that the
latent vector z is close to zero and within the unit sphere. In addition, including information
about repeated objects and symmetry also induce a prior on the latent variables. This is also
shown to produce significant improvements and robustness.

The algorithm presented in this chapter is essentially an algorithm that seeks to find
the Maximum A Posteriori (MAP) estimate given the likelihood and prior functions. It is
important to note that we only provide an approximation to the MAP estimate since we
make use of gradient descent solvers that may be stuck at locally optimal points.

4.6 Discussion
In this chapter we have presented a formulation for shape and similarity transform estimation
from SDFs as an optimization problem. We have obtained good results with a gradient-descent
optimization scheme and good initialization of the parameters. We have also shown results
on a dataset of real scans and obtained superior performance to benchmarks.
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From the perspective of perception, we present an algorithm to convert raw depth
measurement (as contained in a SDF) and object classification into information about the
pose of an object and its identity with respect to a fixed dataset (constructed latent space).
This information is useful as a form of data compression as well as for other tasks such as 3D
reconstruction and object manipulation.
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Test Shape Harris3D + SHOT OURCVFH + ICP Pointnet + ICP Ours

Figure 4.3: Qualitative result on Redwood dataset. Left to Right, test shape, results using
Harris3D and SHOT[89] for shape retrieval, results using OURCVFH [5] and ICP, results
using PointNet [81] and ICP, our proposed method. We have shown each method’s result
in gray overlaid with the input mesh in red. Our algorithm provides significant qualitative
improvement with almost perfect retrieval.
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Occluded Shape w/o Symmetry w Symmetry Planes of Reflection Groundtruth

Figure 4.4: Qualitative results showing the benefit of incorporating knowledge of reflective
symmetries. Left to right: Partially Occluded input mesh, JSRTE without symmetry informa-
tion, JSRTE with symmetry information, planes of reflection, groundtruth unoccluded shape.
The results incorporating symmetry information provide more accurate and aesthetically
pleasing shapes.
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Occluded Shape w/o Repeated Object w Repeated Object Groundtruth

Figure 4.5: Qualitative results indicating the benefit of making use of knowledge about
repeated objects. Left to Right: Partially occluded shape, JSRTE solution without using
information about repeated objects. JSRTE solution using information about repeated
objects, groundtruth. Rows 1-3, 4-6, 7-9, each correspond to multiple instances of the same
shape. We observe more robustness by making use of information about repeated objects.
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Occluded Shape w/o Repeated Object w Repeated Object Groundtruth

Figure 4.6: Qualitative results indicating the benefit of making use of knowledge about
repeated objects. Left to Right: Partially occluded shape, JSRTE solution without using
information about repeated objects. JSRTE solution using information about repeated
objects, groundtruth. Rows 1-3, 4-6, 7-9, each correspond to multiple instances of the same
shape. We observe more robustness by making use of information about repeated objects.
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Occluded Shape w/o Repeated Object w Repeated Object Groundtruth

Figure 4.7: Qualitative results indicating the benefit of making use of knowledge about
repeated objects. Left to Right: Partially occluded shape, JSRTE solution without using
information about repeated objects. JSRTE solution using information about repeated
objects, groundtruth. Each row corresponds to a repeated instance of the same object.
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Figure 4.8: Sample images of layouts represented using DeepSDF[76] as a generative model.
We are able to represent both planar and non-planar layouts accurately using the same
number of parameters.
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Figure 4.9: Sample images of layouts represented using DeepSDF[76] as a generative model.
We are able to represent both planar and non-planar layouts accurately using the same
number of parameters.
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Figure 4.10: Sample results from using the methods proposed in the chapter to model the
layout and objects in an indoor scene. Left: 3D scan of an input scene, Right: model
generated by our proposed methods.

Figure 4.11: Sample results from using the methods proposed in the chapter to model the
layout and objects in an indoor scene. Left: 3D scan of an input scene, Right: model
generated by our proposed methods.
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Chapter 5

Conclusion and Future Directions

So far in this dissertation, we have presented three data-driven perception algorithms for
three different artificially intelligent systems. In chapter 2, we introduced “people as sensors"
a data driven perception algorithm for pedestrian detection in autonomous driving scenarios.
In chapter 3, we presented an energy disaggregation algorithm that makes use of data-driven
models to predict individual appliance energy consumption from whole building energy
consumption measurements. Finally, in chapter 4 we presented an algorithm to estimate
object shape and pose from data. We showed that this algorithm is also able to provide
compact representations for scenes by making use of data-driven shape models.

While the algorithms presented displayed excellent results and showcased the benefit of
using data-driven estimation algorithms for perception, they can still be improved to take
advantage of upcoming data-driven methods. Some of the datasets and experiments presented
were exploratory and designed to illustrate the feasiblity of the algorithms presented. To
truly reap the rewards of these algorithms it will be beneficial to design new datasets in
some cases and in other cases incorporate these algorithms in larger systems than the ones
presented. We now briefly enumerate some interesting future directions and applications of
the algorithms presented.

Incorporation of new datasets for Pedestrian Detection in
Autonomous Driving
The work presented chapter 2, was tested on the JAAD [83, 84] dataset. While the JAAD
dataset provides real world data with pedestrian annotation from frame-to-frame, it was not
designed with our use case in mind. For example, it does not provide 3D position data for the
pedestrian or camera parameters that would be helpful to extract this data. This prevents us
from comparing against and incorporating other predictive models for pedestrian detection.
It would be useful to incorporate such datasets into this work to truly understand its benefit
for autonomous vehicles.

In addition, it would be beneficial to design control strategies to take advantage of this
work for driver safety and comfort in the case of sensor occlusion.
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Incorporation of Deep Neural Network based Device Models for
Energy Disaggregation
The work presented in chapter 3 may be viewed as a starting point for more sophisticated
optimization based approaches for energy disaggregation. The main advantage of the approach
presented is its flexibility in allowing the user incorporate proirs into the disaggregation
process. However, the iteration presented in chapter 3 makes use of pre-recorded signatures
for device modeling. While simple and effective, pre-recorded signatures may be difficult
to obtain since it requires human intervention. An alternative approach discussed in the
Appendix is to make use of deep neural networks for modeling devices. This alternative has
the potential to allow for more expressive device models. In addition, the use of GPU batch
processes can make the optimization procedure significantly faster.

Furthermore, the algorithm presented in chapter 3 attempts to estimate the switching
times using a tree-like structure. A faster approach would be to use deep neural networks
for switching time prediction. A preliminary version of this approach is presented in the
Appendix. The benefit of decoupling switching time estimation and device usage prediction
is that switching time estimation can be done relatively quickly. Given the switching times,
device usage prediction is exponentially faster.

Finally, we note that it would be interesting to characterize the behavior and feasibility
of the presented algorithm in scenarios with significantly more devices, since it will then be
harder to discriminate between devices. Developing algorithms to deal with such cases is left
for future work.

Application of Joint Shape Retrieval and Transform Estimation
for Manipulation, Layout Estimation and 3D Reconstruction
The Joint Shape Retrieval and Transform Estimation work presented in chapter 4 proposed
a method for estimating object pose and shape from data. One application of this method
is for use in robotic manipulation tasks. When the latent space of shapes is also annotated
with shape part labels (e.g. cup handle, chair leg) as well as ways to manipulate the objects
in the latent space, our method provides a way to generalize this annotation to new objects
in new poses and scales. Given this generalization, the task of object manipulation becomes
relatively easy.

In addition, we have presented a proof of concept as to how our method can be used for
modeling layouts and 3D indoor scenes. Our view of modeling layouts using deep generative
models is not the only compact representation possible. In fact for piece-wise planar scenes,
more compact representations can be achieved using wireframes [46, 120] or bounded plane
segments. It would be advantageous to build a system to explore easy conversion between
the various representations.

Moreover, the current dataset used for learning a representation for layouts can be greatly
improved. Towards this end, we have started working on a project to capture scans of U.C.
Berkeley buildings and annotate them with layout models amongst other useful attributes.
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Finally, to ensure that our algorithm works well in broader real world scenes, it is essential
to develop robust localization and mapping algorithms that produce relatively clean data
to work on. Care must also be taken to reason about clutter in the scene and mis-classified
objects.
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Appendix A

Supplementary Results for Chapter 3

A.1 Proof of Proposition 3.3.1
By definition,

ûMAP = max
u

PU (u)PZ|U (z|u) . (A.1)

First, we seek to show that:

Tswitch(ûMAP) = arg max
Tswitch

s(Tswitch|z) .

Notice that:
max
Tswitch

s(Tswitch|z) = max
u

PU (u)PZ|U (z|u) ,

since the value of Tswitch is unrestricted in the above optimization.
Also observe that:

max
Tswitch=Tswitch(ûMAP)

s(Tswitch|z) = max
Tswitch=Tswitch(ûMAP)

max
u:

Tswitch(u)=Tswitch

PU (u)PZ|U (z|u) ,

and since by definition ûMAP is a global optimizer,

max
Tswitch=Tswitch(ûMAP)

max
u:

Tswitch(u)=Tswitch

PU (u)PZ|U (z|u) = max
u

PU (u)PZ|U (z|u)

= max
Tswitch

s(Tswitch|z)
.

Therefore,

max
Tswitch=Tswitch(ûMAP)

s(Tswitch|z) = max
Tswitch

s(Tswitch|z)
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=⇒ Tswitch(ûMAP) = arg max
Tswitch

s(Tswitch|z) .

Next, we want to show that if Tswitch(ûMAP) is known, then:

ûMAP = arg max
u:

Tswitch(u)=Tswitch(ûMAP)

(
PU (u)PZ|U (z|u)

)
.

Indeed, if Tswitch(ûMAP) is known, then:

ûMAP ∈ {u : Tswitch(u) = Tswitch(ûMAP)} .

Since ûMAP is a global optimizer for PU (u)PZ|U (z|u), then it must be that:

ûMAP = arg max
u:

Tswitch(u)=Tswitch(ûMAP)

(
PU (u)PZ|U (z|u)

)
.

Finally, we show that:

PU (ûMAP)PZ|U (z|ûMAP) = max
Tswitch

s(Tswitch|z) .

We can establish by (3.6) that:

s(Tswitch(ûMAP)|z) = max
Tswitch

s(Tswitch|z) . (A.2)

We can also establish by Definition (3.3.2) , (3.7) and since ûMAP ∈ {u : Tswitch(u) =
Tswitch(ûMAP)}, that:

s(Tswitch(ûMAP)|z) = PU (ûMAP)PZ|U (z|ûMAP) . (A.3)

Then by (A.2) and (A.3),

PU (ûMAP)PZ|U (z|ûMAP) = max
Tswitch

s(Tswitch|z) .
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A.2 Proof of Equation 3.11

PZ|U (z|u) =
∫
· · ·
∫ [(D−1∏

i=1
PY(i)|U(i)(y(i)|u(i))

)
PY(D)|U(D)

(
z −

D−1∑
i=1

y(i)

∣∣∣∣∣u(D)

)]
dy(1) . . . dy(D−1) (A.4)

=
∫
· · ·
∫ [(D−1∏

i=1

N∏
n=0

PY(i)|U(i)
sn

(y(i)[sn]|u(i)[tn])
)

×
N∏

n=0
PY(D)|U(D)

sn

(
z[sn]−

D−1∑
i=1

y(i)[sn]

∣∣∣∣∣u(D)[tn]
)]

dy(1)[s0]dy(1)[s1] . . . dy(D−1)[sN ]]
(A.5)

=
N∏

n=0

∫
· · ·
∫ D−1∏

i=1
PY(i)|U(i)

sn
(y(i)[sn]|u(i)[tn])

× PY(D)|U(D)
sn

(
z[sn]−

D−1∑
i=1

y(i)[sn]

∣∣∣∣∣u(D)[tn]
)
dy(1)[sn] . . . dy(D−1)[sn]

(A.6)

=
N∏

n=0
(PY(1)|U(1)

sn
∗ PY(2)|U(2)

sn
∗ . . .∗ PY(D)|U(D)

sn
(z[sn]|u[tn])) (A.7)

=
N∏

n=0
PZ|Usn

(z[sn]|u[tn]) . (A.8)

A.3 Proof of Proposition 3.4.1
Making use of (3.9) and taking the log of the right side of (3.6), we get that:

ûMAP = arg max
u

N∑
n=0

[
ln
(
PUsn

(u[tn])
)

+ ln
(
PZ|Usn

(z[sn]|u[tn])
)]

.

The optimizer remains the same since the log function is a monotonic increasing function.

In addition, since the values of u in each segment do not affect each other, the optimization
decouples so that the optimal value of the objective is given as:

ûMAP =
N∑
n=0

max
u[tn]

[
ln
(
PUsn

(u[tn])
)

+ ln
(
PZ|Usn

(z[sn]|u[tn])
)]

.
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Then ûMAP must be such that,

ûMAP[tn] = arg max
u

[
ln
(
PUsn

(u[tn])
)

+ ln
(
PZ|Usn

(z[sn]|u[tn])
)]
∀n .

A.4 Complementary Approach to Energy
Disaggregation using Deep Neural Networks.

Recently, the energy disaggregation community has witnessed a rise in the use of deep neural
networks as a tool for disaggregation. While these approaches provide impressive results, it
is not very clear how to incorporate priors into neural network based disaggreagtion methods.
In addition, since most approaches rely on regressing a function to predict device energy
consumption, it can be unclear if the predictions still possess desirable properties (for example,
that the sum of device power consumption is equal to the aggregate consumption or that
power values are non-negative) on new data.

The framework presented in Chapter 3, provides a complementary approach that can be
used along with deep neural networks to incorporate user priors as well as approximately
satisfy constraints leading to desirable properties of the predicted signal. In particular, we
may make use of deep neural networks to model devices and then incorporate these models
into the framework we provided.

Device modeling using Deep Neural Networks

For the i’th device, given N input-output pairs of historical data {(u(i)
j , y

(i)
j )}Nj=1, we seek to

find a function f (i)(ui, θ) that solves the following optimization problem:

min
θ

N∑
j=1
|f (i)(u(i)

j , θ)− y
(i)
j |.

We model f using a deep neural network parameterized by θ, and assume that future
observations of input-output pairs are drawn from the same data generating process as
those observed in historical data. We may then set the device model for the i’th device as
H(i) = f (i). Further, we assume that the observed output for each model may be modeled as:

y(i) = f(u(i), θ) +W(i)

where W(i) is a noise variable modeled as a random vector with a known distribution. This
implicitly defines a distribution for Y(i)|U (i) and hence PY(i)|U(i)(y(i)|u(i)) is known. The rest
of the formulation then follows as described in chapter 3.
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Implementation details

In practice, most available datasets do not contain the input signal in addition to the measured
output signal per device. To ameliorate this situation, we assume that each device has a
fixed number of modes and that the outputs is approximately constant for each mode. We
then make use of k-means clustering to estimate these modes per device. We set the input
for each mode to correspond to the integer index representing the mode. In this fashion we
are able to extract input-output pairs for each device.

We make use of a siz layer neural network described in Table A.1 below and implemented
in PyTorch[78]. We train using Adam [58] with a learning rate of 0.01 and a rate decay every
10 epochs. We train for a total of 30 epochs.

Table A.1: Architecture for Convolutional Neural Network used to model devices. Each
column describes the kernel width and height, as well as the number of channels and replication
padding respectively. Batch normalization, a ReLU layer and a Dropout layer with probability
0.3 are placed between the layers shown below.

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Non-
negative
Activation

In
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R
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The Rectifying Linear Unit (ReLU) at the end of the network is used to prevent negative
power predictions. In addition, we train our model on subsequences of input and output
pairs so that it can be used in an iterative manner to predict the output at the current time
given all input from previous time steps. We pad the subsequences with −1 until them reach
the length of the time horizon T before feeding it to the network.

Switching Times prediction using Deep Neural Networks
Recall that in chapter 3, we defined switching times as the following: For some fixed v :
{0, 1, . . . , T} → RD, we can define the switching times of v, denoted Tswitch(v) ⊂ {0, 1, . . . , T},
as the unique set such that:

• v[t− 1] 6= v[t] for all t ∈ Tswitch(v) .

• v[t− 1] = v[t] for all t /∈ Tswitch(v) .
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We also suggested that given a switching time, solving the energy dissagregation problem
becomes significantly easier. Rather than exploring a tree-like structure to estimate the
switching times as suggested in chapter 3, an alternative approach is to predict the optimal
switching times and then solve the optimization problem. Essentially, this saves computational
resources for time steps not in the set of optimal switching times. In addition, this is a
reasonable approach since it may be relatively easy to detect when changes occur in the
aggregate signal. To extend this further, we may predict not only the switching times for the
aggregate signal but also for the individual devices, given the aggregate signal. The switching
times for the aggregate signal will then be the union of switching times for the individual
devices. The benefit of this is that we may use per device switching times as a prior to help
us discriminate between predictions where the power signal for different devices are relatively
similar.

To accomplish this task, we make use of a deep neural network to predict per device
switching times, given the aggregate energy consumption signal. Essentially we treat it as
a sequence-to-sequence prediction task, where we predict a sequence of 0’s and 1’s given
the aggregate signal. Each value in the prediction corresponds to a classification of whether
or not we believe that corresponding index is a switching time. Table A.2, below details
the architecture of our switching times prediction network. We have made use of a sigmoid
activation in the final layer to restrict the outputs to be in (0, 1). We then threshold the
values, accepting time steps with value greater than 0.2 as a predicted switching time.

Table A.2: Architecture for Convolutional Neural Network used to predict per device switching
times. Each column describes the kernel width and height, as well as the number of channels
and zero padding respectively. Batch normalization, a ReLU layer and a Dropout layer with
probability 0.3 are placed between each of the layers shown above. In the final layer D
denotes the total number of devices as defined in chapter 3.

Layer1 Layer2 Layer3 Layer4 Layer5 Activation
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To generate training data for our network, we obtain the groundtruth device energy
consumption and make use of per device thresholding for change point detection. These
change points are then labelled as the groundtruth switching times.
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Experiments
We train both networks on subsets of the AMPds dataset [70] and perform experiments to test
the viability of our suggestions. We choose a subset of devices from the AMPds dataset[70],
namely the Clothes Dryer (CDE), Dishwasher (DWE), Fridge (FGE) and Heat Pump (HPE)
and create an artificial aggregate signals by summing up the individual power consumptions.
We train our device models and switching times predictor on a subset of this data and
perform disaggregation on a disjoint subset of the data using the formulation presented in
chapter 3. The only difference being that we assume we already have an optimal switching
time (predicted by the switching times prediction network). For time steps not included in
the switching times, we retain the input value at the last switching time, this significantly
improves the computational speed. Fig. A.1 and Fig, A.2 below, show some sample results
validating our approach. While these results and the ability to include arbitrary prior in the
disaggregation problem are promising, there are still questions with regards to which priors
are important and when they should be used.
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Figure A.1: Sample energy disaggregation results obtained by incorporating deep neural
networks for device modeling and switching times prediction in the framework presented in
chapter 3. Results are shown for four devices in red dashed lines with the groundtruth in
green dashed lines. The four devices (left to right, top to bottom) are Clothes Dryer, Fridge,
Dishwasher and Heat Pump. Results are shown for a day of data.
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Figure A.2: Sample energy disaggregation results obtained by incorporating deep neural
networks for device modeling and switching times prediction in the framework presented in
chapter 3. Results are shown for four devices in red dashed lines with the groundtruth in
green dashed lines. The four devices (left to right, top to bottom) are Clothes Dryer, Fridge,
Dishwasher and Heat Pump. Results are shown for a day of data.
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Appendix B

Supplementary Results for Chapter 4

B.1 Addition Results and Implementation Details
In order to simplify the presentation of the material we have excluded some more discussion
on results and implementation details of the algorithm presented in chapter 4. We now
provide these in the supplementary material. We also provide more implementation details
and descriptions of the metrics used.

Metrics
We have made use of the F-score as recommended in [101] to provide a quantitative evaluation
of our work. Given a groundtruth shape S and an estimate shape Ŝ, as well as samples of
points on their surfaces ∂ΩS and ∂Ω

Ŝ
, 1 the F-score is the harmonic mean of precision and

recall metrics. Precision and recall are defined as follows:
To compute the precision, for each point y in the estimate shape, we first compute its

distance to the groundtruth as:

ey = min
x∈∂ΩS

||y − x||2.

The precision is then computed as the percentage of points within distances less than εp:

P (εp) = 100
|∂Ω

Ŝ
|
∑

y∈∂Ω
Ŝ

1{ey<εp}. (B.1)

Recall is computed in the opposite direction. Again, the error is first computed for each
point x on the groundtruth shape as:

ex = min
y∈∂Ω

Ŝ

||x− y||2, (B.2)

1For simplicity of notation, we have retained the same notation as that used for the set of all points on
the surface. To compute the F-score, we can only use a sampling of the set of points on the surface.



APPENDIX B. SUPPLEMENTARY RESULTS FOR CHAPTER 4 86

and recall as:
R(εr) = 100

|∂ΩS |
∑

x∈∂ΩS

1{ex<εr}. (B.3)

Finally, the F-score is computed as:

F (ε) = 2P (ε)R(ε)
P (ε) +R(ε) (B.4)

The F-score ranges from 0 to 1, with higher values indicating a better match between the
estimate and the groundtruth. The F-score is very sensitive to deviations in shape and thus
makes an excellent metric. To obtain pointclouds from the meshes, we have sampled 3000
points from the surface of each mesh. We have also set ε = 0.05r, where r is the radius of
the bounding sphere of the shape S.

An alternative metric may have been computing the distance between the estimated
parameters and the groundtruth parameters, however, we find that solutions that are close in
3D space may not be close in the parameter space. For example, we find that the learned
shapes can have different centers from their groundtruth counterparts, as such a good result
may have a different translation value than the groundtruth.

Additional Results
In this section, we provide additional results to support those presented in chapter 4.

Synthetic data
We perform additional experiments making use of synthetic data to observe the behavior of
our algorithm under varying initialization conditions. Following the same procedure described
in section 4.4, we conduct two additional experiments that vary the initialization parameters
as follows:
Table B.1: Parameter ranges for the difference between initialization points and groundtruth
values.

Scenario ∆s ∆ψ ∆ρ ∆θ ||∆t||(m)

Known rotation axis [0, 0.5) N/A N/A [−2π
9 ,

2π
9 ) [0, 0.20)

Unknown rotation axis [0, 0.5) [− π
36 ,

π
36) [− π

36 ,
π
36) [−2π

9 ,
2π
9 ) [0, 0.20)

In the first scenario in Table B.1, we assume a known axis a rotation, but increase the
range of values that the initialization parameters can take on compared to those presented
in chapter 4. In the second scenario, we relax the assumption of a known axis of rotation
and introduce some uncertainty. We retain the same increase in the ranges of the other
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parameters. The purpose of this experiment is to see how the performance degrades when we
introduce more uncertainty.

As shown in Fig. B.1, we observe that both scenarios perform worse than those presented
in chapter 4. We also observe that for most of the experiments the median F-score is still
greater than 0.8. The difference here is that we observe significantly more F-scores in the
[0.5, 0.7] range.
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Figure B.1: Box plot of F@5% from experiments described in Table 4.1. Left: Scenario with
a known axis of rotation; Right: Scenario with an unknown axis of rotation. The median
for each bin is shown as an orange line in the box, with outliers shown as circles. Each box is
placed on the right edge of its corresponding bin, the left edge of each bin is the right edge of
the preceding bin. We still observe most median F-scores greater than 0.80, although we now
see more cases of F-scores in the range [0.5, 0.7].

Real Data
Figures B.2 - B.7 provide qualitative results from all the experiments carried out on the
Redwood dataset [19] detailed in section 4.4. We have displayed comparisons to the benchmark
making use of PointNet [81] and a variant of ICP [14] described in chapter 4. We report
a similar level of performance as that presented in chapter 4. Our algorithm consistently
provides qualitatively better results with fewer shape mismatch and misalignments. The
figures also indicate that our algorithm sometimes struggles with fine details and star shaped
legs. This is partly due to poor convergence of the SDF model during training and also
because in reality the star-shaped legs are free to rotate separately from the main body of
the chair. These additional degrees of freedom are not well captured by our assumptions.
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Implementation Details

SDF Sampling

For experiments using synthetic data (section 4.4), we follow the same sampling procedure
described in [76]. For experiments using the Redwood dataset [19] (section 4.4), we first
preprocess the data by manually segmenting the floor and main object in each scene. We
then make use of the plane fitting algorithm provided by [119] to segment the main object
and the floor. We also obtain the axis of rotation in this fashion as the normal to the floor
plane. Furthermore, we make use of the hidden point removal algorithm described in [52] and
implemented in [119] to remove artifacts. Other artifacts and noisy points are also removed
using the statistical outlier removal algorithm provided by [119].

Finally, for each point in the preprocessed mesh, we sample new points at a distance of
±0.01m in the direction of the normal to the surface at each point. We estimate the SDF at
these new points as ±0.01 respectively. To obtain SDF samples representing the freespace,
we take each point on the mesh and randomly and uniformly sample a new point between
0.07m and 0.20m away from the point on the mesh, in the direction of the outward pointing
normal. We compute the SDF at these new points by finding the approximate distance to
the closest point on the surface of the mesh. The sign is then determined by the whether
each new point is in the direction of the outward pointing normal at its nearest neighbor
on the mesh. We use a KDTree and the set of vertices on the densely sampled meshes to
approximate the nearest neighbors. We obtain 25000 freespace SDF samples in this manner.

The SDF samples used during optimization are composed of the freespace SDF as well as
the SDF sampled at distances ±0.01m from points on the mesh.

Optimization Parameters

To solve the proposed optimization problem, we employ Adam [58] as implemented in [78].
We follow a stochastic gradient-descent approach and make use of 8000 SDF samples at each
iteration. The learning rate is set to 0.05 for all parameters except for those assumed to be
known. The learning rate is decreased by a factor of 5 every 400 iterations. We solve the
optimization problem for 800 iterations.

Real data benchmarks

We report some implementation details for the benchmarks used for experiments on the
Redwood dataset [19] presented in chapter 4.

Harris3D + SHOT

For this benchmark we make use of Harris3D keypoint detector and the SHOT[108] descriptor
as implemented in [87].
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OURCVFH + ICP

For this benchmark, we make use of OURCVFH [5] as implemented in [87] as a shape
descriptor. We use the same subset of ShapeNet [17] chair models used to train our SDF
model and compute a shape descriptor for each chair model in the subset. During test time
we compute a OURCVFH[5] descriptor for the test model and use it to find the nearest
neighbor from the subset of ShapeNet[17] chair models.

For registration, we first obtain a rough approximation of the optimal transform parameters.
We estimate the scale as the radius of the bounding sphere for the test shape divided by the
radius of the bounding sphere of its closest match from the subset of ShapeNet[17] chairs. We
estimate the translation as the difference between the centers of their bounding spheres. Since
we know the axis of rotation, we estimate the rotation by searching the space of rotation angles
in increments of 20◦. We select the rotation angle the minimizes the maximum difference
between points on the test shape and their nearest neighbor on the closest matching shape.

We refine this estimate using an algorithm inspired by the Iterative Closest Point (ICP)
algorithm [14]. We first sample the test shape and its closest matching shape uniformly to
obtain sets of points representing each shape. Then for each iteration of the ICP algorithm,
we find correspondences by solving an optimal assignment problem. We then estimate the
optimal similarity transformation given the optimal correspondences. The optimal assignment
problem gives us a one-to-one mapping between correspondences. This prevents us from
obtaining a degenerate solution to the registration problem where the scale becomes almost
zero. We make use of [113] to solve the optimal assignment problem and [111] as implemented
in [119] to solve the registration problem.

PointNet + ICP

For this benchmark, we make use of the PointNet [81] classifier as implemented in [49]. We
train the classifier to predict the id of the closest ShapeNet [17] model from our subset of
chair models given an input pointcloud. During training, for each model we randomly sample
1024 point from the mesh and feed it to classifier for prediction. We add random noise to
each of the points, and the set of points are re-sampled each epoch. We run it for 60 epochs
after which the training loss does not significantly improve. We validate the model by making
use of 30 models from the Redwood dataset [19]. We do not train on the Redwood dataset
[19] models since they provide only a small number of models. Instead, we train on mesh
models provided by our subset of ShapeNet [17] chair mesh models. During test time we
sample 1024 points from the test shape and use it for predicting the closest matching model.

Registration is performed using the same algorithm described in the subsection above.
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B.2 Derivation of Equation 4.7
The first half of eq. 4.7, was already derived earlier. The second half is highlighted in red
below:

min
s,ψ,ρ,
θ,t,z

∑
(xi,φi)∈χS

∣∣∣∣∣sf̂
(

[R(ψ, ρ, θ)]−1(xi − t)
s

, z

)
− φi

∣∣∣∣∣+
λ

∣∣∣∣∣f̂
(

[R(ψ, ρ, θ)]−1(xi − t)
s

, z

)
− f̂

(
[R(ψ, ρ, θ)]−1(g(xi)− t)

s
, z

)∣∣∣∣∣.
We first note that the second half of this equation is a penalty term derived from the

constraint that:

f̂

(
[R(ψ, ρ, θ)]−1(xi − t)

s
, z

)
= f̂

(
[R(ψ, ρ, θ)]−1(g(xi)− t)

s
, z

)
.

which is in turn obtained from the statement that:

Φ(g(x),ΩS′ ) = Φ(x,ΩS) ∀x ∈ R3

and that
ΩS′ = g(ΩS) = ΩS. (B.5)

However, the statement (B.5) is trivially true since g is in the symmetry group of ΩS.
In essence, the second part of the equation (4.7) depends on showing that given shapes

S, S
′ containing the closed sets of points ΩS,ΩS′

⊂ R3 respectively, and a reflective symmetry
g such that ΩS′ = g(ΩS) then Φ(g(x),ΩS′ ) = Φ(x,ΩS) ∀x ∈ R3. As before, we assume that
we deal with closed 3D shapes with a well defined notion of interior and boundary points.

From the definition of the scalar function Φ as:

Φ(x,ΩS ) =


− min
y∈∂ΩS

||x− y||2 , if x ∈ ΩS

min
y∈∂ΩS

||x− y||2 , if x ∈ Ωc
S

,

we see that we need to show two things. That

1. sgn(Φ(x,ΩS )) = sgn(Φ(g(x),Ω
S′

))

2. |Φ(x,ΩS )| = |Φ(g(x),Ω
S′

)|

The main idea of the proof of these statements is as follows:
We note that since sgn(Φ(x,ΩS )) is determined by whether or not x ∈ ΩS , the sign is

preserved if g is a function that maps interior (boundary/ points outside the shape) points in
the domain to interior (boundary/points outside the shape) points in the image and is also
injective.
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The magnitude of (Φ(x,ΩS )) is determined by the distance of x to points on the boundary
of ΩS , thus the magnitude is preserved if g is a distance preserving function.

To show these statement, we will need to show the following two lemmas presented and
proved in [103, 102], but also shown here for completeness:

Lemma B.2.1. Let X, Y be topological spaces, let f : X → Y be a homeomorphism, and let
A ⊆ X, then f(int(A)) = int(f(A)).

Proof: Let x ∈ int(A). Then there exists an open neighborhood U ⊆ X such that x ∈ U ⊆ A.
Consequently, f(x) ∈ f(U) ⊆ f(A).
Since f is a homeomorphism, f(U) ⊆ Y is also open. Hence, we have an open neighbourhood
f(U) ⊆ f(A) in Y at f(x), making f(x) ∈ int(f(A)).
We have just shown that x ∈ int(A) =⇒ f(x) ∈ int(f(A)). The converse statement is also
true and the proof is identical to the one shown above.

Lemma B.2.2. Let X, Y be topological spaces, let f : X → Y be a homeomorphism, and let
A ⊆ X, then f(∂A) = ∂(f(A)).

Proof: Let x ∈ f(∂A), then for any open ball U at x, there exists an open ball f−1(U)
in X containing f−1(x), since f is a homeomorphism.
Since f−1(x) ∈ ∂A, then there exists points a, b ∈ f−1(U), a 6= b 6= f−1(x) such that
a ∈ A ∩X and b ∈ Ac ∩X.
Consequently, there exists f(a), f(b) ∈ U such that f(a) ∈ f(A) ∩ Y and f(b) ∈ f(Ac) ∩ Y .
However, since f is injective, f(Ac) ⊆ f(A)c. Therefore, there exists f(a), f(b) ∈ U such
that f(a) ∈ f(A) ∩ Y and f(b) ∈ f(A)c ∩ Y . Hence, x ∈ ∂f(A). Note that f(a) 6= f(b) 6= x,
since f is injective. The proof of the converse statement is similar to that shown above.

Putting together Lemma B.2.1 and Lemma B.2.2, we get the following statement:

Remark B.2.1. Let X, Y be topological spaces, let f : X → Y be a homeomorphism, and let
A ⊆ X and closed, then x ∈ A ⇐⇒ f(x) ∈ f(A). We also note that the contrapositive is
also true.

Since g is a Euclidean transform, g is also a homeomorphism. Hence the statements above
and the definition of Φ prove that sgn(Φ(x,ΩS )) = sgn(Φ(g(x),Ω

S′
))

To complete the proof we note the following Statement:

Lemma B.2.3. |Φ(x,ΩS )| = |Φ(g(x),ΩS′ )|

Proof: This is true since, g is a Euclidean transform (distance preserving) and g is a
homeomorphism.
Using the Lemmas proved above, we know that g(∂ΩS ) = ∂g(ΩS ) = ∂Ω′S.
Consequently, |Φ(g(x),ΩS′ )| = min

y∈∂ΩS

||g(x)− g(y)||2. But, by the distance preserving property

of g, ∀y ∈ ∂ΩS , ||g(x)− g(y)||2 = ||x− y||2.
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Hence, |Φ(g(x),ΩS′ )| = min
ȳ∈∂Ω

S
′
||g(x) − ȳ||2 = min

y∈∂ΩS

||g(x) − g(y)||2 = min
y∈∂ΩS

||x − y||2 =

|Φ(x,ΩS )|

Finally, sgn(Φ(x,ΩS )) = sgn(Φ(g(x),Ω
S′

)) and |Φ(x,ΩS )| = |Φ(g(x),Ω
S′

)| =⇒ Φ(x,ΩS ) =
Φ(g(x),Ω

S′
) since Φ is a scalar valued function.
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Test Shape Pointnet + ICP Ours

Figure B.2: Additional qualitative result on Redwood dataset. Left to Right, test shape,
results using PointNet [81] and ICP, our proposed method. We have shown each method’s
result in gray overlaid with the input mesh in red. Our algorithm provides significant
qualitative improvement on par with those displayed in chapter 4.
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Test Shape Pointnet + ICP Ours

Figure B.3: Additional qualitative result on Redwood dataset. Left to Right, test shape,
results using PointNet [81] and ICP, our proposed method. We have shown each method’s
result in gray overlaid with the input mesh in red. Our algorithm provides significant
qualitative improvement on par with those displayed in chapter 4.
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Test Shape Pointnet + ICP Ours

Figure B.4: Additional qualitative result on Redwood dataset. Left to Right, test shape,
results using PointNet [81] and ICP, our proposed method. We have shown each method’s
result in gray overlaid with the input mesh in red. Our algorithm provides significant
qualitative improvement on par with those displayed in chapter 4.
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Test Shape Pointnet + ICP Ours

Figure B.5: Additional qualitative result on Redwood dataset. Left to Right, test shape,
results using PointNet [81] and ICP, our proposed method. We have shown each method’s
result in gray overlaid with the input mesh in red. Our algorithm provides significant
qualitative improvement on par with those displayed in chapter 4.
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Test Shape Pointnet + ICP Ours

Figure B.6: Additional qualitative result on Redwood dataset. Left to Right, test shape,
results using PointNet [81] and ICP, our proposed method. We have shown each method’s
result in gray overlaid with the input mesh in red. Our algorithm provides significant
qualitative improvement on par with those displayed in chapter 4.
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Test Shape Pointnet + ICP Ours

Figure B.7: Additional qualitative result on Redwood dataset. Left to Right, test shape,
results using PointNet [81] and ICP, our proposed method. We have shown each method’s
result in gray overlaid with the input mesh in red. Our algorithm provides significant
qualitative improvement on par with those displayed in chapter 4.
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