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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer with an overall 5-year survival rate 

less than 5% due to the poor early diagnosis and lack of effective therapeutic options. The most 

effective therapy remains surgery, however post-operative survival could be enhanced with 

effective adjuvant therapy. The massive information gained from Omics techniques on PDAC at 

the beginning of the 21st century is a remarkable accomplishment. However, the information 

gained from the omics data, including next generation sequencing data, has yet to successfully 

affect care of patients suffering with PDAC. Therefore, we propose the development of an 

actionable genomic platform that matches a patient’s PDAC clinically actionable genes with 

potential targeted adjuvant therapies. Using this platform, PDX1 has been identified PDX1 as a 

potential actionable gene for PDAC, therefore, RNAi therapy, gene therapy and small inhibitory 

drugs, all targeting PDX1, serve as potential targeted adjuvant therapies. Preclinical studies 

support the hypothesis that identification of PDAC actionable genes could permit translation of a 

patient’s genomic information into precision targeted adjuvant therapy for PDAC.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive and deadly cancer that 

ranks fourth among cancer-related deaths in the United States 1. The overall 5-year survival 

rate of patients with PDAC is less than 5%. Only less than 20% of patients diagnosed with 

PDAC are eligible for potentially curative resection, however the 5-year survival for patients 

with resectable PDAC is only 25% 2-6. Therefore, while the most effective therapy remains 

surgery, post-operative survival could be significantly enhanced with effective adjuvant 

therapy. It is believed that PDAC arises from changes in the DNA sequence of oncogenes 

and/or tumor suppressor genes in the genomes of a subset of adult pancreatic cells 2, 7-10. 

The somatic oncogenic mutations accumulate and then disrupt normal functions of multiple 

central signaling pathways, including Ras, PI3K, Wnt, Notch, Hedgehog and others, which 

play multiple important roles in regulating cell growth, cell proliferation, cell apoptosis, cell 

survival, as well as cell migration and metastasis 11-15. All of these genetic alterations can 

now be identified using the advanced techniques for genomics including next-generation 
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DNA/RNA sequencing and other proteomics tools, however none of them are actionable, ie., 

their identification does not affect choice, nor effectiveness, of care. To date, a list of gene 

mutations and PDAC biomarkers, including serologic patterns, aberrant overexpressed 

mRNAs, miRNAs and proteins, as well as epigenetic signatures including DNA methylation 

and histone modification profiles, have already been identified and associated with PDAC. 

In addition, a series of circulating tumor cell (CTC) and cell-free circulating tumor DNA 

(ctDNA) were discovered using state-of-the-art imaging techniques and high-throughput 

next-generation sequencing approaches using liquid biopsy from cancer patients 16-20. These 

could be potentially used as future early diagnostic and therapeutic tools. However, the 

information gained from genomic sequencing data has yet to successfully affect care of 

patients suffering with PDAC. It remains undetermined how to translate genomic sequencing 

techniques and genomic information into targeted therapies and prophylactic surgery (like 

that of mastectomy for BRCA mutations or thyroidectomy for RET proto-oncogene 

mutations) for PDAC 21, 22. Current adjuvant therapies for PDAC include Gemcitabine, 

Erlotinib, Capecitabine, FOLFORINOX (a combination of 5-fluorouracil, irinotecan, and 

oxaliplatin, plus the adjuvant folinic acid), and Gemcitabine + nab-Paclitaxel, which confer a 

survival advantage of only weeks to six months 23. The hope the next generation sequencing 

would lead to more effective targeted adjuvant has not been realized and there remains an 

enormous gap between genomic data and their translation to clinical care for patients with 

this deadly malignancy. Thus, we propose the development of an actionable genomic 

platform in which identification of a patient’s PDAC actionable genes can be matched to 

targeted therapies, and preclinical studies support the hypothesis of a precision medicine 

strategy for PDAC.

Potential Actionable Genes for PDAC

The definition of an "actionable gene" is quite variable and includes the use of biomarkers 

for imaging and early detection, surgery for prophylactic removal of tissues at risk for 

cancer, as well as those that guideg choice of targeted therapy 24, 25. Dependent on the 

choice of actions taken, potential actionable genes for PDAC can be primarily categorized 

into 3 types: (1) oncogenes carrying gain-of-function mutations, (2) tumor suppressor genes 

carrying loss-of-function mutations, and (3) genes that are aberrantly overexpressed in 

PDAC compared to adjacent non-tumor pancreas tissue, including genes that are regulating 

global transcription network of pancreas development.

One of the most important type I genes for PDAC is KRAS. Oncogenic KRAS mutations 

(e.g. KRASG12D) occur in more than 90% of PDAC, and appear to be the signature event in 

PDAC, serving a critical role in tumor initiation 16. Constitutive activated KRASG12D 

protein promotes cell proliferation and cell survival in PDAC cells through the activation of 

the downstream MAPK and PI3K-mTOR signaling pathways, assigning KRAS gene as the 

driver oncogenic mutation for PDAC. While KRAS mutations are still largely considered 

undruggable for PDAC, RNA interference (RNAi) technologies, especially the small 

interfering RNA (siRNA) in combination with a nanoparticle delivery system, have proved 

feasibility in effectively silencing mutant KRAS expression in vitro and may potentially 

serve as an alternative choice of gene-targeted therapy for PDAC.
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Type II genes are tumor suppressor genes, which have been associated with multiple key 

signaling pathways and related to cell proliferation and survival, including p53 pathway 

(TP53), cell cycle pathway (CDKN2A), TGFβ pathway (SMAD4, TGFBR1, TGFBR2) and 

DNA damage response pathway (ATM, BRCA2) 16, 17. Several therapeutic platforms by 

restoration of tumor suppressive function of these type II genes have been tested at various 

preclinical and clinical stages, however none of these “actions” have yet to affect clinical 

practice for patients with PDAC.

Type III genes for PDAC are those genes aberrantly overexpressed in PDAC compared to 

adjacent non-tumor pancreatic tissues, including those that play an important role in 

regulating pancreas development. To date, a list of aberrant overexpressed genes have been 

identified to associate with PDAC states using microarray and next generation sequencing 

technologies, and validated by immunohistochemical staining on PDAC tumor specimens. 

Type III genes could be potentially used to design novel screening and imaging agents based 

on molecular contrast which would differentiate PDAC with adjacent non-tumor tissues, as 

well as putative gene targets for targeted therapies. In a series of preclinical studies, our team 

has demonstrated that PDX1 (Pancreatic and duodenal homeobox-1) represents a potential 

type III actionable gene of PDAC 26, 27.

PDX1 as an actionable gene for PDAC

PDX1 plays a central role in regulating the pancreas global transcription network and is an 

essential transcription factor for pancreatic development, β-cell differentiation and the 

maintenance of mature β cell function 28. PDX1 is well known to be a master regulator for 

expression of genes crucial for both exocrine and endocrine pancreatic development 29. In 

adult pancreas, PDX1 regulates multiple islet-expressed genes such as insulin, islet amyloid 

polypeptide, somatostatin and glucokinase that maintain homeostasis of the endocrine and 

exocrine pancreas. NR5A2, which is regulated by PDX1, has been identified as a PDAC 

susceptibility gene from genome wide association studies 30. Persistent expression of Pdx1 

in acinar cells results in acinar-to-ductal cell metaplasia in mice 31, 32. PDAC cells tend to 

form ductal structures in vivo, which support the concept that PDAC originates from ductal 

cells; however, the cells of origin of PDAC remain undetermined. Recently, a sub-population 

of Pdx1-expressing cells has been shown to be an origin of PDAC in mice. In contrast, 

mouse islet β cells, which also express Pdx1, are resistant to transformation with Kras 

activation, unless under contextual conditions of oxidative stress or inflammation 33, 34.

Our team has presented evidence supporting the hypothesis that PDX1 is an oncogenic 

transcription factor regulating PDAC and a potential type III actionable gene for PDAC. 

PDX1 was shown to be over-expressed in all human PDAC specimens studied to date, and 

was shown by others to be associated with advanced clinical pathological stages and poor 

prognosis. Furthermore, PDX1 was shown to be aberrantly overexpressed in other solid 

tumors including gastric, colon, breast, prostate, ovary, colorectal and kidney by tissue 

microarray assay 35. We demonstrated that PDX1 regulates cell proliferation and invasion 

both in vitro and in vivo and that over-expression of PDX1 significantly increased cell 

proliferation and invasion in human PDAC cells, as well as in benign human pancreatic 

ductal epithelial cells and HEK293 cells. Furthermore, the application of PDX1-RNAi to 
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suppress PDX1 expression reversed these effects. Moreover, over-expression of PDX1 in 

human PDAC, as well as benign HEK293 cells, resulted in a significant increase in area of 

formed colonies and in volume of human PDAC tumors grown in mice. PDX1 

overexpression resulted in significantly enhanced RAS and PI3K signaling by up-regulating 

expression of genes KRAS, EGFR, INS, etc, and by down-regulating expression of RAS-

signaling negative regulators RASA1 and axon guidance genes SLIT2, ROBO2, etc, as well 

as decreasing p53 levels. Notably, PDX1 degradation is suppressed by PI3K/AKT 

phosphorylation of GSK3β and further stabilized by the RAS downstream kinase, MAPK 

p38. We have proposed a PDX1 amplification loop model (Figure 1) in which PDX1 

enhances the RAS and PI3K pathways, which, in turn, inhibit PDX1 degradation resulting in 

PDX1 overexpression 26-28, 36. In a series of preclinical studies, we have demonstrated that 

therapeutic actions targeting PDX1 could be achieved using RNAi, gene therapy and small 

molecules, such as metformin (Figure 1). These PDX1 targeted preclinical therapies will be 

reviewed.

RNAi therapeutic platform targeting PDX1 in PDAC

RNA interference (RNAi) is a naturally occurring intracellular pathway by which small 

RNA molecules bind to mRNA and trigger its degradation. In last decade, RNAi has been 

used to demonstrate the role of a number of genes in carcinogenesis, cancer cell survival, 

proliferation, invasion, metastasis and resistance to chemotherapy. Having demonstrated 

PDX1 is a potential actionable gene for PDAC, we developed in collaboration with 

StrikeBio, Inc. PDX1 bi-functional shRNA therapy 37-39. Bi-functional shRNA consists of 

two stem-loop shRNA (short-hairpin RNA) structures: one cleavage-dependent unit with a 

perfectly matched passenger-strand and guide-strand, and one cleavage-independent unit 

composed of a mismatched double strand. Bi-functional shRNA is able to induce both 

RNase-H like cleavage and non-cleavage mediated degradation of the target mRNA and 

inhibit translation concurrently, leading to more rapid onset of target gene silencing, higher 

efficacy and greater durability 40-43. We designed and tested a series of bi-shRNAPDX1 

vectors and demonstrated in vitro that bi-shRNAPDX1 was more effective than conventional 

shRNAPDX1 in silencing PDX1 gene expression in PDAC cells. Pre-clinical in vivo 
therapeutic effects of bi-shRNAPDX1 were demonstrated in mice using three biweekly cycles 

of systemically delivered bi-shRNAPDX1 nanoplexes, which ablated human PDAC 

tumors 26, 28. Intravenous infusions of bi-shRNAPDX1 nanoplexes in a large bio-relevant 

Yucatan mini-pig model was associated minimal toxicity, thus demonstrating safety44. 

Therefore, preclinical studies suggest that PDX1 RNAi therapy is a promising adjuvant, 

targeted therapy for PDAC (Figure 1).

Gene therapy platform targeting PDX1 in PDAC

The field of gene therapy holds great promise in serving as adjuvant therapy for cancer, 

however has not yet fulfilled its potential and reached the stage of routine clinical care for 

patients with cancer. While there are a myriad of reasons limiting its potential, with one of 

the main limitations being the lack of an ideal gene delivery system, the field continues to 

move forward to develop effective targeted therapies for cancer. In this spirit, our team 

pursued a strategy of delivering a synthetic cytotoxic gene that would only be activated in 
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the PDAC cell delivered by DOTAP:cholesterol liposome system encapsulating adenoviral 

vectors, thus limiting toxicity 45, 46. To do so, a synthetic insulin promoter, which was shown 

to be activated only by PDX1 in the PDAC cells, was used to drive the cytotoxic viral 

thymidine kinase gene (TK) 47, 48. Once expressed in the cancer cell, TK is coupled with its 

prodrug, ganciclovir, to induce cancer cell death. Liposomal delivery of the IP-TK gene 

construct allowed repeated intravenous infusions, which significantly ablated human PDAC 

tumors in mice with minimal toxicity in vivo 45, 46, 49. These preclinical studies suggest that 

gene therapy targeting PDX1 could potentially serve as adjuvant, targeted therapy for 

PDAC.

Small Molecules targeting PDX1-targeted in PDAC

We then sought to identify small molecules that inhibit PDX1 in human PDAC cells using 

high-throughput drug screening technology. To achieve this goal, a powerful synthetic 

human insulin promoter (SHIP) was designed with excellent dynamic range and sensitivity 

to drive firefly luciferase reporter gene to reflect inhibition of the PDX1 transcription factor-

Insulin promoter complex within PDAC cells. Small-molecule libraries were tested in 384-

well plates with PDAC cells to search for small molecules that suppress PDX1 within the 

PDAC cell. We chose to study an FDA approved drug library, which consists of 2100 drugs 

from the NIH clinical collection (I and II; version 5) that could be repurposed for PDAC 

therapy. Repurposing of drugs is of great interest, as it reduces costs of drug research and 

development and saving years of drug development time. A panel of FDA approved drugs 

that effectively targeting PDX1 were identified, .one of which was metformin, the most 

widely prescribed diabetes drug worldwide. Metformin has been associated with a 

substantially lower risk of cancer mortality in multiple studies and meta-epidemiological 

analyses and is emerging as a promising anticancer drug in clinical trials at various 

stages 50-52. There are currently ten clinical trials in progress to determine whether 

metformin might prolong life for patients with pancreatic cancer 53, 54. For these reasons, we 

chose to study and metformin and demonstrated that it suppresses growth of PDAC cells via 

inhibition of PDX1 via a variety of adenosine monophosphate (AMP)-activated protein 

kinase (AMPK)-dependent and/or AMPK-independent mechanisms 55. (Figure 1). Thus, 

these preclinical studies suggest that FDA approved drugs targeting PDAC actionable genes, 

such as PDX1, can be identified through high-throughput screening technology which in 

turn could be repurposed for PDAC adjuvant, targeted therapy.

Conclusion

While remarkable discoveries have been made through next generation omics approaches, 

the gap between genomic information its translation into clinical care represents a great 

clinical challenge for the 21st century. We as surgeons need to incorporate genomic 

information into the practice of surgery to enhance our outcomes and prolong survival of our 

patients. There is no greater example of this need that of pancreatic surgery for PDAC. 

While survival is greatest following surgery, which is the only chance of cure, there remains 

an urgent need for more effective and less toxic adjuvant therapy gleaned from the genomic 

information of each patient’s PDAC to prolong survival after surgery. In this spirit, our team 

is pursuing an actionable genomic platform which proposes to match actionable genes of 
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PDAC with effective adjuvant targeted therapies, such a RNAi, gene therapy and/or 

metformin. Preclinical studies support the hypothesis that identification of PDAC actionable 

genes could permit translation of a patient’s genomic information into precision targeted 

adjuvant therapy for PDAC, thus usher in a new era of precision medicine and personalized 

surgery.
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Figure.1. 
PDX1 is an oncogenic transcription factor in an amplification loop model. PDX1 enhances 

the RAS and PI3K pathways, which, in turn, inhibit PDX1 degradation resulting in PDX1 

overexpression. PDX1-RNAi and metformin were demonstrated to inhibit the amplification 

loop and PDX1 levels in cancer cells.
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