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NeuroX, a fast and efficient genotyping platform for 
investigation of neurodegenerative diseases
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Raphael Gibbs, Claudia Schulte, Nathan Pankratz, Margaret Sutherland, Lars Bertram, 
Christina M. Lill, Anita L. DeStefano, Tatiana Faroud, Nicholas Eriksson, Joyce Y. Tung, 
Connor Edsall, Noah Nichols, Janet Brooks, Sampath Arepalli, Hannah Pliner, Chris 
Letson, Peter Heutink, Maria Martinez, Thomas Gasser, Bryan J. Traynor, Nick Wood, John 
Hardy, and Andrew B. Singleton* on behalf of the International Parkinson’s Disease 
Genomics Consortium (IPDGC) and the Parkinson’s Disease meta-analysis consortium

Abstract

Our objective was to design a genotyping platform that would allow rapid genetic characterization 

of samples in the context of genetic mutations and risk factors associated with common 

neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and 

use a common and accessible technology. Central to this project, we wanted to make the content 

of the platform open to any investigator without restriction. In designing this array we prioritized a 

number of types of genetic variability for inclusion, such as known risk alleles, disease-causing 

mutations, putative risk alleles, and other functionally important variants. The array was primarily 

designed to allow rapid screening of samples for disease-causing mutations and large population 

studies of risk factors. Notably, an explicit aim was to make this array widely available to 

facilitate data sharing across and within diseases. The resulting array, NeuroX, is a remarkably 

cost and time effective solution for high-quality genotyping. NeuroX comprises a backbone of 

standard Illumina exome content of approximately 240,000 variants, and over 24,000 custom 

content variants focusing on neurologic diseases. Data are generated at approximately $50–$60 

per sample using a 12-sample format chip and regular Infinium infrastructure; thus, genotyping is 

rapid and accessible to many investigators. Here, we describe the design of NeuroX, discuss the 

utility of NeuroX in the analyses of rare and common risk variants, and present quality control 

metrics and a brief primer for the analysis of NeuroX derived data.
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1. Introduction

The availability of economical custom content additions to genome-wide or exome-wide 

genotyping arrays has permitted the development of tail;ored arrays for both genetic 

discovery and replication efforts. In the last few years, it has become evident that in the 

second wave of genome wide association (GWA) investigators sought to investigate variants 

below the threshold of genome-wide significance and fine map extant signals. Such an effort 

requires large-scale replication efforts involving the assay of large numbers of samples, and 

the interrogation of a very large number of candidate variants. A fairly inefficient approach 

to this problem was being used, where investigators representing single disease research 

groups pursued replication in isolation of other efforts both within and across diseases. In 

2011, the National Institute of Neurological Disorders and Stroke convened a meeting that 

included investigators researching myriad common neurodegenerative diseases with the 

intent of identifying a more efficient solution. This meeting involved representatives from 

genetics groups leading GWA in Alzheimer’s disease (AD), Parkinson’s disease (PD), 

amyotrophic lateral sclerosis (ALS), multiple sclerosis, and frontotemporal dementia (FTD), 

among others. There was a broad consensus that the design of an accessible array that could 

type variants of interest for all major neurodegenerative diseases would be of great utility; 

such an array had the potential to benefit from an economy of scale, to reduce cost by 

allowing easy sharing of controls and allow direct comparison of genetic data across 

diseases. In response to that consensus, we modified the design of an array originally 

intended to serve as a replication assay for a large PD meta-analysis to include a wide 

variety of content relevant to the broader neurodegenerative disease research community. 

Here, we describe the content and use of this array, called NeuroX.

In this effort, summary statistics for the largest available genome-wide association studies 

(GWAS) were mined to nominate known and candidate loci tagging risk for AD, FTD, 

multiple system atrophy (MSA), myasthenia gravis, Charcot Marie Tooth, progressive 

supranuclear palsy (PSP), ALS, and PD. Where available, putative risk variants identified by 

exome sequencing of familial and population based samples, as well as those derived from 

literature review for the previously mentioned diseases, were also included on the array. We 

also performed a systematic literature and database search for all mutations known to cause 

neurologic disease. Technical redundancies and reliable proxies were used for priority SNPs 

to guarantee quality genotyping calls produced by the array. This custom Neuro content 

includes over 24,000 neurodegenerative-focused variants; this custom library can be added 

to many off-the-shelf Illumina Infinium products; however; here we describe the use of this 

library when added to Illumina’s Infinium HumanExome BeadChip, a product we have 

named NeuroX. Thus NeuroX includes full exome sequencing based variability standard to 

the Illumina HumanExome array v1.1 (242,901 variants) and neurologic and 

neurodegenerative disease focused content (24,706 variants). In addition to the ability to add 

the custom Neuro library to other illumina genotyping arrays, it is also relatively easy to add 
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new custom variants should the need arise. In this article however, we describe the initial 

version of the NeuroX array comprising the base exome and existing custom content.

From its inception, the NeuroX array was designed to be a rapid and cost effective solution 

for high quality genotype data. The current cost of the array is approximately $57 per 

sample and genotyping of thousands of samples per week is achievable in most core 

laboratories, with this estimate including reagents but excluding labor and previous Illumina 

infrastructure costs. It is also notable that we are in the process of making a large amount of 

NeuroX data publicly available (dbgap address pending).

2. Methods

2.1. Array design

The custom content available on the NeuroX array was taken from 3 primary sources: large-

scale GWAS, high throughput sequencing of families and cohort studies, and literature 

searches to identify risk factors and disease-causing mutations.

For GWAS based data sets we mined participant level data, when available, for diseases 

such as PD, ALS, FTD, and myasthenia gravis, including both published and unpublished 

data sets (ALSGEN Consortium et al., 2013; Chiò et al., 2009; Do et al., 2011; International 

Parkinson Disease Genomics Consortium et al., 2011; International Parkinson’s Disease 

Genomics Consortium (IPDGC) and Wellcome Trust Case Control Consortium 2 

(WTCCC2), 2011; Lill et al., 2012; Mok et al., 2012). Participant level GWAS data for AD 

and PSP were not available to our group at the time of chip design, so publicly available 

GWA loci for these diseases were included (1000 Genomes Project Consortium et al., 2012; 

Höglinger et al., 2011; Hollingworth et al., 2011; Lambert et al., 2009). Genome-wide 

significant loci from diseases of interest were included with either multiple proxies for the 

top SNP at every locus, or technical replicates, if proxies were not available. We have 

included up to 5 variants per significant locus. Loci were defined as any SNP reaching a 

genome-wide significant p-value and correlated at r2 < 0.50 with any other significant SNPs 

within 250 kilobases for each disease of interest. All analyses were derived from at least 

1000 Genomes level SNP coverage and used participant level data from the 1000 Genomes 

project to nominate proxies when possible. In addition, locus tagging SNPs were included to 

allow for the identification of new loci in larger sample series. For all SNPs associated in 

GWAS with diseases of interest that reached candidate p-values of 1 × 10−4 or stronger, 

additional haplotype-tagging SNPs were placed on the NeuroX array, in an attempt to 

facilitate future genotype imputation efforts. Tagging SNPs were selected based on an r2 in 

1000 Genomes samples at less than 0.50 with any other SNPs meeting the same p-value 

threshold within a 250 kilobase window, allowing for regional assessments of genetic 

variability. Whenever possible, GWAS based SNPs that were not the most significant within 

the locus were replaced by a proxy meeting the previously mentioned criteria if array design 

scores for the probe associated with that SNP failed (quality less than 0.80 and no array 

validation), as a means of only using higher quality SNPs on the NeuroX array. This led to 

the successful inclusion of almost 16,000 GWAS-derived variants or GWAS-related variants 

across multiple disease sources.
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Sequence-based data generated by pilot studies within our consortia (both exome and 

genome sequencing) were mined to nominate rare and coding variants for inclusion on the 

NeuroX array. These data come from familial and cohort studies looking into AD, MSA, 

FTD, Charcot Marie Tooth, MSA, PSP, ALS, and PD. Cohort-derived sequence-based data 

were inclusive of any rare and coding variants at a frequency of less than 5% in the 

population from which the pilot data were collected. For data extracted from family-based 

sequencing studies, variants were filtered and only those not appearing in the 1000 Genomes 

Project and the NHLBI Exome Sequencing Project database were included (1000 Genomes 

Project Consortium et al., 2012; NHLBI GO Exome Sequencing Project, 2011). This led to 

the successful inclusion of 7485 rare sequence-based variants.

An extensive systematic review of published literature was performed to include variants 

known to be involved in neurologic or neurodegenerative diseases for nomination onto the 

array. Briefly, we performed PubMed searches using the gene name and the word 

“mutation” as search parameters to identify articles describing mutations. The genes 

searched for were: ABCA7, ACE, APOE, APP, ATP13A2, BACE1, CHMP2B, CLCN6, 

CLN3, CLN5, CLN6, CLN8, CSF1R, CST3, CTSD, DNAJC5, ECE2, FBXO7, FUS, GBA, 

GLA, GLB1, GRN, GUSB, HEXA, HEXB, LRRK2, MAPT, MFSD8, NEU1, NOTCH3, NPC1, 

NPC2, PANK2, PARK2, PARK7, PINK1, PLA2G6, PPT1, PSAP, PSEN1, PSEN2, SGSH, 

SNCA, SORL1, SPTLC1, TARDBP, TPP1, TREM2, TYROBP, VCP, and VPS35. We 

complemented this search by including all the variants in the Parkinson Disease Mutation 

Database and the Alzheimer Disease & Frontotemporal Dementia Mutation Database (Cruts 

et al., 2012). In addition, updated GWAS loci for any traits meeting p < 1 ×10−8 in NHGRI 

GWAS catalog that were not already on the basic exome content were added to the array if 

the probe design score for that SNP was >0.8 (Hindorff et al., 2009a, 2009b). Also, as part 

of this phase of array design, special attention was paid to the APOE region with 34 variants 

being dedicated to genotyping of the canonical epsilon-4 compound genotype. This led to 

the successful inclusion of 1322 variants. For ALS, we also mined variants from a number 

of databases with several aims. To identify new mutation carriers, we collected from HGMD 

and ALSOD all mutations in common (C9orf72 excluding repeat expansions, FUS, 

MATR3, OPTN, SOD1, SPG11, TARDBP, UBQLN2, and VCP) and rare ALS genes 

(ALS2, ANG, CHMP2B, DCTN1, FIG4, SETX, TAF15, and VAPB). To identify association 

signals in and around known ALS genes, we mined 1000 Genome data to identify all 

multiethnic variants with minor allele frequency (MAF) >0.01 located in common ALS gene 

bodies ±100 kb. We then used Plink to identify haplotype-tagging SNPs (r2 > 0.50). For the 

ALS/FTD linked gene C9orf72, we mined variants located within the 242 kb Finnish 42-

SNP haplotype and ±20 kb (Laaksovirta et al., 2010, p. 21). To fine map exonic variation in 

known ALS genes, we mined 1000 Genome data to identify all multiethnic exonic variants 

with MAF >0 in common ALS genes.

2.2. Array genotyping

For the pilot analysis used to generate the data presented here, approximately 14,000 

samples were genotyped and multiple calling methods tested. Samples tested were derived 

from a number of sources including DNA from whole blood, EBV transformed 

lymphocytes, and brain tissue. Genotyping was executed as per the manufacturer’s protocol 
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(Illumina, Inc). Our genotype calling workflow used a publicly available cluster file for the 

exome array standard content, which we modified to maximize variant calling for the 

NeuroX custom content. This was accomplished using a combination of the Illumina 

GenomeStudio automated clustering algorithm, with manual inspection and modification for 

the subset of the clusters not included in Grove et al. (2013). As part of the array design 

process, we excluded a number of variants based on low design quality scores, which 

allowed us to retain diverse content and maximize the number of successfully typed 

variants.

In addition, we imputed a random subset of 1000 European ancestry unrelated individuals 

from a larger Parkinson’s disease GWAS study that passed quality control after being 

genotyped on the NeuroX array (Nalls et al., 2014) using the default settings of MiniMac 

(Howie et al., 2012). Nonpalindromic SNPs passing quality control and overlapping with 

those included in the reference haplotypes (1000 Genomes Phase 1 Alpha Freeze version 3, 

multiethnic panel) were used for imputation (1000 Genomes Project Consortium et al., 

2012). This allowed us to densely impute higher variant coverage into regions of interest 

related to neurologic diseases GWAS based on the currently available content on the array. 

In addition, we show that the NeuroX array can be used for basic quality control similar to 

standard GWAS, such as gender checking (evaluating concordance between self-reported 

and genetically determined genders as part of quality control) or estimating continental 

ancestry based on applying principal components analyses to common tagging SNPs 

(Supplementary Figs. 1 and 2).

3. Results and conclusions

Both NeuroX custom content and the standard HumanExome based content show that most 

of the SNPs across the MAF spectrum have GenTrain scores >0.7, suggesting high quality 

genotype clusters are readily available (Fig. 1). As expected, lower MAFs are associated 

with slightly lower genotype cluster qualities (p < 0.001 from linear regression models 

across MAF strata in Fig. 1 comparing trends in GenTrain as MAF changes). GenTrain 

scores tend to be only marginally lower for the custom content, which is not entirely 

surprising, given that genotypes for these variants were clustered and called on a reference 

of approximately 14,000 samples as opposed to approximately 60,000 samples used to 

generate the reference cluster file used to call genotypes for the standard exome content.

Custom content on the NeuroX array spans 2236 megabases of the autosome, only slightly 

less than the approximately 2600 covered by early GWAS arrays on which many previous 

studies of neurodegenerative disease were based (Nalls et al., 2009). Mean per megabase 

coverage of the custom content is 10.754 variants per megabase, with a maximum of over 

600 variants of interest for fine mapping of particular regions, with a comparative bias 

toward nonexonic and GWAS-derived variants (Table 1, Fig. 2). The maximum coverage 

for the NeuroX custom content occurring in regions of interest up to over 5-fold the depth of 

the standard content in the same region. In comparison, the standard content covers 2703 

autosomal megabases at an average of 87.842 variants per megabase, with maximum 

coverage of certain exonic regions surpassing 1000 variants per megabase. The inclusion of 

tag SNPs within the GWAS-derived custom content in conjunction with standard content 

Nalls et al. Page 5

Neurobiol Aging. Author manuscript; available in PMC 2015 June 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



variants have facilitated the successful imputation of over 1.2 million SNPs (imputation 

quality >0.30). Imputed variants from the NeuroX array cover 2703 megabases and average 

478.400 variants per megabase with a maximum coverage up to over 16,500 variants per 

megabase in some regions of interest.

As a proof of concept, we accurately tag known rare variants in neurodegenerative disease. 

For example, the p.G2019S mutation in LRRK2 (rs34637584) was confirmed to be 

completely concordant for over 1000 samples genotyped using the NeuroX array that were 

also assayed via taqman genotyping (Paisán-Ruíz et al., 2004). APOE genotypes were 

extracted for a subset of over 2500 NeuroX assayed samples overlapping with a previous 

study based on targeted genotyping (Federoff et al., 2012) with only 93% accuracy to tag the 

APOE epsilon-4 haplotype associated with Alzheimer’s risk. This haplotype is made of 2 

SNPs rs7412 and rs429358. The discordance of APOE haplotypes between NeuroX and 

TaqMan genotyping was entirely driven by discordance at rs429358, with complete 

concordance at rs7412. Notably, we have identified rs429358 as a low quality variant on 

NeuroX. Rs7412 is of acceptable quality, with greater than 99% genotype concordance 

across 5 technical replicates, a success rate mirrored at most of the redundant sites across the 

array.

The data presented in this article unequivocally show that the NeuroX array is a powerful 

and reliable tool for the investigation of genetic factors associated with neurodegenerative 

disorders. Although not designed with clinical diagnosis in mind, we believe it will serve as 

a powerful analytic tool for research purposes and investigation of disease mechanisms. We 

have shown not only that the content of the array is useful in assaying both rare risk variants 

and common variability for use in future studies but also highly valuable in investigating 

known risk loci in more detail. We fully expect this array to become a starting point to the 

genetic analysis of neurodegenerative disorders, given its relevant and up-to-date genotyping 

content as well as its low cost. This custom array is being treated as an on-going venture and 

is currently being adapted to newer genotyping platforms outside of the standard exome 

array content described here and tuned for better accuracy and higher quality content, 

whereas still maintaining compatibility with current offerings. Additionally, the fact that 

virtually all samples derived from subjects with these disorders may be screened on the 

same platform will provide researchers with tremendous power to perform not only analysis 

of a single phenotype but also to compare different disease entities for overlaps or 

significant differences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
For both NeuroX custom content and the standard content included on the array, most of the 

SNPs across the minor allele frequency spectrum have GenTrain scores >0.7, suggesting 

quality genotype clusters are readily available. Discrepancies across content type are 

partially because of genotype cluster method differences between the 2 sets of variants 

(custom and standard content) but also because of the inclusion of rare and difficult to 

genotype loci in the custom content of the array. Abbreviation: SNPs, single-nucleotide 

polymorphisms. (For interpretation of the references to color in this Figure, the reader is 

referred to the web version of this article.)
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Fig. 2. 
Autosomal variant coverage per megabase for different content classes. Panel A, custom 

content coverage; panel B, standard content coverage; and panel C, coverage for 

successfully imputed variants (imputation quality >0.30). (For interpretation of the 

references to color in this Figure, the reader is referred to the web version of this article.)
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Table 1

Comparison of content across standard and custom content

Content type Custom content Standard content

Numebr of variants 24,706 242,901

Variants less than MAF 0.01 (%) 31.531 82.277

Variants less than MAF 0.05 (%) 40.047 86.078

Variants at MAF 0.05 to 0.50 (%) 59.953 13.922

Mean MAF 0.148 0.031

Exonic variants (%) 36.151 96.504

Nonsynonymous coding variants (% of exonic) 33.934 91.332

Data are based on clustering of over 14,000 Parkinson’s disease cases and controls as described in (Nalls et al., 2014). All annotations from 
ANNOVAR (Wang et al., 2010). Key: MAF, minor allele frequency.
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