
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Machine Learning Approaches for VLSI Reliability Analysis

Permalink
https://escholarship.org/uc/item/202522tm

Author
Jin, Wentian

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/202522tm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Machine Learning Approaches for VLSI Reliability Analysis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Wentian Jin

March 2023

Dissertation Committee:

Dr. Sheldon X.-D. Tan, Chairperson
Dr. Shaolei Ren
Dr. Daniel Wong

Copyright by
Wentian Jin

2023

The Dissertation of Wentian Jin is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This dissertation would not have been possible without the help and support from

numerous individuals who have contributed in various ways.

First and foremost, I would like to thank my advisor, Dr. Sheldon Tan, for his

invaluable guidance, support, and mentorship throughout my PhD journey. His exper-

tise, knowledge, and dedication have been instrumental in shaping my research work and

academic career.

I am also grateful to my committee members, Dr. Shaolei Ren and Dr. Daniel

Wong, for their constructive feedback, insightful suggestions, and valuable contributions

to my research. Their guidance and mentorship have been instrumental in shaping the

direction of my research and ensuring its quality.

Furthermore, I would like to express my sincere appreciation to my fellow re-

searchers at the VLSI Systems and Computation lab for their help and support. Especially,

I want to thank Chase Cook, Zeyu Sun, Han Zhou, Shaoyi Peng, Sheriff Sadiqbatcha, Liang

Chen, Jinwei Zhang, Shuyuan Yu, Yibo Liu, Maliha Tasnim, Mohammadamir Kavousi,

Subed Lamichhane, Jincong Lu, Sachin Sachdeva and Chinmay Raje. Their insights, feed-

back, and discussions have been critical in shaping my research and broadening my perspec-

tive. I am grateful for the opportunity to work with such a talented and inspiring group of

researchers.

Last and most importantly, I would like to thank my family, especially my wife

Yirong, my father Yaping, and my mother Aihua, for their love, support, and encour-

agement. Their unwavering belief in me and my abilities has been a constant source of

iv

motivation throughout my PhD journey. I am grateful for their sacrifices, understanding,

and patience during this challenging time.

Once again, I extend my heartfelt gratitude to all those who have helped me in

achieving this milestone. Thank you.

The content of this thesis is reprinted or rewritten from these published materials:

• Wentian Jin, Sheriff Sadiqbatcha, Zeyu Sun, Han Zhou, and Sheldon X-D Tan. “Em-

gan: Data-driven fast stress analysis for multi-segment interconnects”. Proceedings

of the 2020 IEEE 38th International Conference on Computer Design (Chapter 2)

• Wentian Jin, Liang Chen, Sheriff Sadiqbatcha, Shaoyi Peng, and Sheldon X-D Tan.

“Emgraph: Fast learning-based electromigration analysis for multi-segment intercon-

nect using graph convolution networks”. Proceedings of the 2021 58th ACM/IEEE

Design Automation Conference (Chapter 2)

• Wentian Jin, Liang Chen, Subed Lamichhane, Mohammadamir Kavousi, and Shel-

don X-D Tan. “HierPINN-EM: Fast Learning-Based Electromigration Analysis for

Multi-Segment Interconnects Using Hierarchical Physics-Informed Neural Network”.

Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided

Design (Chapter 3)

• Wentian Jin, Sheriff Sadiqbatcha, Jinwei Zhang, and Sheldon X-D Tan. “Full-Chip

Thermal Map Estimation for Commercial Multi-Core CPUs with Generative Adver-

sarial Learning”. Proceedings of the 2020 IEEE/ACM International Conference On

Computer Aided Design (Chapter 4)

v

• Wentian Jin, Shaoyi Peng, and Sheldon X-D Tan. “Data-driven electrostatics anal-

ysis based on physics-constrained deep learning”. Proceedings of the 2021 Design,

Automation and Test in Europe Conference (Chapter 5)

vi

To my mother Aihua, my father Yaping, and my wife Yirong for all the love and

support.

vii

ABSTRACT OF THE DISSERTATION

Machine Learning Approaches for VLSI Reliability Analysis

by

Wentian Jin

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2023

Dr. Sheldon X.-D. Tan, Chairperson

The reliability of Very Large Scale Integration (VLSI) circuits is crucial in mod-

ern electronic devices. VLSI circuits, which contain millions of transistors, are vulnerable

to a variety of reliability issues such as electromigration (EM), time-dependent dielectric

breakdown (TDDB), and temperature variation. These issues can lead to circuit failure

and reduce the lifetime of electronic devices. Traditionally, VLSI reliability analysis and

prediction have been performed using physics-based models and simulators. These models,

however, are computationally intensive and can be time-consuming to run. In recent years,

machine learning (ML) techniques have been used to predict and diagnose reliability issues

in VLSI circuits.

This thesis presents an in-depth study of machine learning techniques applied to

EM analysis, post-silicon thermal map estimation, and electrostatics analysis. Specifically,

the first segment proposes two data-driven ML methods for the fast prediction of transient

EM stress of general interconnects in VLSI circuits. The traditional numerical partial differ-

ential equation (PDE) problem is treated as an image processing or graph aggregation prob-

viii

lem which yields considerable speedup with acceptable accuracy. However, these methods

are still supervised learning approaches, requiring extensive training data generated from

numerical solvers. Therefore, the second segment proposes a hierarchical physics-informed

neural networks (PINN) based method for EM analysis. This approach leverages PINN,

which is trained mainly by physics laws with minimal labeled data requirements. The hier-

archical nature of interconnects is leveraged, and the entire interconnect tree is solved step

by step. Temperature variation has always been problematic in VLSI circuits, as reliability

degrades drastically as temperature varies. The third segment presents a real-time ther-

mal map estimation method for commercial VLSI circuits. This approach treats thermal

modeling as an image-generation task using generative neural networks (GANs), produc-

ing tool-accurate thermal map estimations. Electrostatics analysis is an essential step for

analyzing TDDB, an important failure mechanism for interconnects. Lastly, the fourth seg-

ment presents a PINN-based 2D electric field analysis method. This approach eliminates

the heavy dependence of finite element methods (FEM) used in traditional TDDB analysis

and leads to orders of magnitude of speedup.

ix

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Electromigration Analysis for VLSI Interconnects 1
1.2 Real-Time Full-Chip Thermal Map Estimation 6
1.3 Electrostatics Analysis for VLSI Interconnects 10
1.4 Organization . 12

2 Data-Driven Learning-Based Electromigration Analysis 14
2.1 Related Work and Motivation . 14

2.1.1 Review of EM and EM modeling . 14
2.1.2 DNN based approaches for solving PDEs 16

2.2 EM-GAN: CGAN-Based Current Density to EM Stress Transformation . . 18
2.2.1 Data preparation . 18
2.2.2 Problem formulation . 23
2.2.3 EM-GAN architecture . 26

2.3 EMGraph: Graph Neural Network-Based EM Stress Solver 29
2.3.1 Problem formulation . 29
2.3.2 EMGraph architecture . 32

2.4 Experimental Results and Discussions . 37
2.4.1 EM-GAN accuracy and performance 37
2.4.2 EMGraph accuracy and performance 45

2.5 Summary . 51

3 Physics-Informed Neural Network-Based Electromigration Analysis 53
3.1 Related Work and Motivation . 53

3.1.1 Existing numerical approaches for solving PDEs 53
3.1.2 Learning based approaches for solving PDEs 54

3.2 HierPINN: Hierarchical Physics Informed Neural Network 55
3.2.1 Lower level: single-segment straight wire stress predictor 56
3.2.2 Upper level: atom flux predictor for all the wire segments 60

x

3.3 Experimental Results . 63
3.3.1 Accuracy of lower level on single-segment wires 64
3.3.2 Accuracy of EM stress prediction on straight wires 66
3.3.3 Accuracy of EM stress prediction on interconnect trees 70
3.3.4 Speed of inference . 71

3.4 Summary . 75

4 Full-Chip Thermal Map Estimation With Generative Adversarial Learn-
ing 76
4.1 Related Work and Motivation . 76
4.2 Training Data Preparation . 79
4.3 CGAN-Based PCM to Temperature Transformation 84

4.3.1 From PCM to thermal image transformation 84
4.3.2 Review of GANs . 84
4.3.3 Transient thermal map estimation 89

4.4 Experimental Results and Discussion . 89
4.4.1 Accuracy of thermal map estimation 92
4.4.2 Real case study . 93
4.4.3 Speed of inference . 94
4.4.4 Metrics in PCM that really matters 96
4.4.5 Comparisons with state of the arts 98

4.5 Summary . 100

5 Physics-Constrained Deep Learning-Based Electrostatics Analysis 102
5.1 Related Work and Motivation . 102
5.2 Preliminaries . 104

5.2.1 Electrostatics problem . 104
5.2.2 Finite element method . 105

5.3 Physics-Constrained Neural Network Solver for Electrostatics 106
5.3.1 PCNN models for electrostatics analysis 106
5.3.2 Improved loss function with labels 108
5.3.3 Parameterized PCNN surrogate models 109

5.4 Numerical Results and Discussion . 110
5.4.1 Label-free PCNN network . 110
5.4.2 Simulation-label assisted PCNN . 114
5.4.3 Parameterized PCNN surrogate models 114
5.4.4 Electric field estimation . 118

5.5 Summary . 121

6 Conclusions 123
6.1 Data-Driven Learning-Based Electromigration Analysis 123
6.2 Physics-Informed Neural Network-Based Electromigration Analysis 124
6.3 Full-Chip Thermal Map Estimation With Generative Adversarial Learning 125
6.4 Physics-Constrained Deep Learning-Based Electrostatics Analysis 126

Bibliography 127

xi

List of Figures

2.1 Illustration of training data: (a) Raw data acquisition for training dataset (b)
Input: A design with wire segments filled with current densities (c) Output:
Evolution of EM-induced stress distribution along 10 aging years. 19

2.2 EM-GAN models the stress estimation as an image-to-image task 22
2.3 EM-GAN framework for stress estimation 27
2.4 The architecture of the neural networks in the proposed EM-GAN: (a) gen-

erator (b) discriminator. 30
2.5 (a) Schematic and (b) directed graph of a multi-segment interconnect. . . . 33
2.6 (a) One node and four neighborhood nodes. Both nodes and edges are em-

bedded with features. Each edge has the direction. (b) One hidden layer
node-edge embedding update of EMGraph. The convolution operation is to
aggregate the information of its neighborhood nodes and connected edges into
one node. In the meantime, a convolution also aggregates the information of
two end nodes into one edge. 35

2.7 Framework of EMGraph with Multilayer perceptron network. 36
2.8 Comparison of EM stress estimation speed between state-of-the-art and EM-

GAN. 40
2.9 Comparison of inference results between different models and the ground truth. 42
2.10 Comparing the ground truth EM stress distribution with EM-GAN generated

ones using two different designs. 44
2.11 EMGraph prediction vs ground truth on all testing cases for (a) nodes and

(b) edges. 46
2.12 Comparison of the predicted stress maps obtained by EMGraph and EM-

GAN on (a) best case and (b) worst case. 48
2.13 EMGraph prediction vs ground truth on large design with 401 branches. . . 50

3.1 Framework of proposed stress predictor in the first stage. 57
3.2 Framework of proposed hierarchical PINN based EM Predictor. 60
3.3 Stress predictor vs ground truth on 20k single-segment wires. 65
3.4 Comparison of predicted stress and ground truth in (a) best and (b) worst

wire segments. 65

xii

3.5 Stress comparisons of (a) a 10-segment and (b) a 130-segment straight wire
between HierPINN-EM and COMSOL at 3 aging time instants: 1e4, 1e5 and
1e6 seconds. 67

3.6 Stress comparisons of (a) a 10-segment and (b) a 130-segment straight wire
between plain PINN and COMSOL at aging time instant 1e6 seconds. . . . 69

3.7 Stress comparisons of (a) a 10-segment and (b) a 105-segment interconnect
tree between HierPINN-EM and COMSOL at 3 aging time instants: 1e4, 1e5
and 1e6 seconds. 72

4.1 IR thermography setup used to collect training data in this work 81
4.2 Conventional thermal modeling flow and the proposed ThermGAN flow. . . 84
4.3 The proposed ThermGAN framework. 86
4.4 Evolution of one random sample as the training progresses. 91
4.5 Comparison between estimated thermal distribution and ground truth on

“Gimp” benchmark. 94
4.6 (a) Ground truth and estimated thermal map using (b) ThermGAN and (c)

COMSOL FEM simulation. 95
4.7 RMSE distribution across 170 masked PCM metrics. 97
4.8 Comparison between generated and ground truth thermal maps. 98

5.1 Concept of physics-informed neural networks 103
5.2 The proposed PCNN based electrostatic model. σ stands for nonlinear ac-

tivations. The training of PCNN is done by minimizing the physics-based
loss. 107

5.3 (a) Label-free PCNN solver result (b) Ground truth (c) Error map (d) Cen-
terline voltage profile . 111

5.4 Influence of weights on PCNN results . 113
5.5 (a) Coarse label data (b) Label-assisted PCNN solver result (c) Error map

(d) Centerline voltage profile . 115
5.6 (a) Boundary voltage inputs of parameterized PCNN (b) Learning curve of

parameterized PCNN . 116
5.7 Selected training results of Parameterized PCNN 116
5.8 (a) Ground truth of voltage potential (b) PCNN voltage potential estimation

(c) Ground truth of electric field (d) PCNN electric field estimation 119
5.9 Influence of Welec on voltage potential and electric field results 120
5.10 Influence of Wpde on voltage potential and electric field results 121

xiii

List of Tables

2.1 Input and output for GCN model . 31
2.2 Statistics of NRMSE for EM-GAN and modified models on testing set. . . . 43
2.3 Accuracy and speed comparison . 49

3.1 Accuracy and speed comparison . 73

4.1 Performance metrics (Intel PCM) . 82
4.2 ThermGAN parameters used in this work 88
4.3 Benchmarks . 90

xiv

Chapter 1

Introduction

1.1 Electromigration Analysis for VLSI Interconnects

Electromigration (EM) is a primary long-term reliability concern for copper-based

back-end-of-the-line interconnects used in modern semiconductor chips. As predicted by the

International Technology Roadmap for Semiconductors (ITRS), EM is projected to only get

worse in future technology nodes [2]. This, as with many other reliability effects, is due

to the continued trend of feature-size reduction and rapid integration, which ultimately

affects the critical sizes for the EM failure process. EM-related aging and reliability will

become worse for current 7nm and below technologies. As a result, it is crucial to ensure the

reliability of the very large scale integration (VLSI) chips during their projected lifetimes.

For EM analysis, it is well known that existing Black and Blech-based EM mod-

els [11, 12] are overly conservative and can only work for single wire segment [34, 79]. To

mitigate these problems, recently many physics-based EM models and simulation techniques

have been proposed [24, 37, 81, 14, 62, 15, 13, 21, 92, 106, 4, 16, 83, 77, 85]. These computa-

1

tional techniques primarily focus on finding a solution of the Korhonen equations [46], which

are the partial differential equations (PDEs) describing the hydrostatic stress evolution in

confined multi-segment interconnects subject to blocking material boundary conditions. A

number of conventional numerical and analytical methods have been proposed to attempt

to solve the PDEs efficiently and accurately [22, 80, 106, 93, 16]. Although numerical meth-

ods, such as finite difference method [22, 80] and finite element method [106], can work for

complex interconnect structures and obtain EM stress accurately, they impose high com-

putational costs due to the discretization of space and time. Recently, a semi-analytical

method based on the separation of variables method has been proposed [93, 16], which

shows promising performance in both accuracy and efficiency for general multi-segment in-

terconnects. However, solving the Korhonen equation in particular and PDEs in general

by traditional numerical methods still remains a significant challenge due to the inherent

limitations of those methods.

Recently, breakthroughs in deep learning for cognitive tasks based on deep neural

networks (DNNs) have brought new opportunities for solving differential equations in many

applications in the electric design automation (EDA) field [49]. However, how to apply

deep learning techniques to solve nonlinear partial differential equations still remains in its

infancy.

On the other hand, scientific machine learning (SciML) has emerged as a promising

and alternative solution to traditional numerical analysis techniques for solving PDEs. The

main concept is to replace traditional numerical discretization with a DNN that approxi-

mates the solution of the PDE. One important framework is the so-called physics-informed

2

neural networks (PINN), which use differentiable DNNs to regularize the loss functions

via backpropagation-based training to obtain physics-informed/constrained surrogate mod-

els [68, 97]. The resulting models can quickly infer the solutions of the PDE for all input

coordinates and parameters. Recently, a PINN-based EM analysis approach has been pro-

posed in [35]. The authors show that PINN can be applied to solving the PDE for stress

evolution in confined metal. However, it only demonstrated the solution on simple inter-

connect straight wires. Additionally, our study shows that the plain PINN method does

not work well for large interconnect trees.

To address these challenges, we propose two data-driven deep learning techniques

and a hierarchical PINN-based model for fast transient hydrostatic stress analysis. The

specific contributions of this segment are as follows:

• First, we show that EM analysis, modeled by partial differential equations, can be

viewed as a 2D image-to-image transforming process. Then, we propose to explore the

conditional generative adversarial networks (GAN) [28] structure in which the input

images, which are the multi-segment interconnects topology with current densities,

are treated as conditions.

• To learn the temporal dynamics in the transient EM analysis, we further explore the

conditional GAN structures to use the time variable as the continuous condition for

generator and discriminator. We show such a time-conditional GAN works well for

time-varying stress modeling.

• Different hyperparameters of GAN were studied and compared. We use current den-

sities of wire segments and aging time as the conditions for the conditional GAN.

3

The resulting EM-GAN can quickly give an accurate stress distribution of any multi-

segment wires for a given aging time.

• Second, we apply graph neural network (GNN) to perform transient EM stress on

multi-segment interconnect for the first time to the best of our knowledge. A graph

dataset on EM assessment is created using COMSOL multiphysics. The input of the

GNN model is edge features, such as length, width, current density, a graph structure,

and time. Its output is the stress on the edges. Then, we can estimate the hydrostatic

stress in each segment wire at the given time.

• We design our own graph neural network (called EMGraph) to perform the node-edge

regression task based on the popular GraphSage network. Compared with the GAN-

based method, the proposed EMGraph model can learn more transferable knowledge

to predict stress distributions on new graphs without retraining via inductive learning.

We use EMGraph to predict EM stress on large and unseen designs with good accuracy

and fast speed, which cannot be achieved by EM-GAN method [42] because of its size-

fixed image limitation. In addition, the size of the EMGraph model is much smaller

than that of the EM-GAN model.

• A novel graph convolution-decoder structure is employed in the EMGraph model. Our

model first processes the input graph using graph convolution. The resulting graph

embedding features are then fed into node and edge decoders, which convert latent

features to stress outputs.

• Lastly, we show that the plain PINN-based unsupervised learning does not work

very well for interconnects with a large number of segments in terms of accuracy and

4

training speed. To mitigate this problem, we propose a new hierarchical PINN solving

strategy to reduce the number of variables, which can lead to faster training and more

accurate models. The resulting PINN training framework is called HierPINN-EM for

fast EM-induced stress analysis for multi-segment interconnects.

• In the HierPINN-EM framework, the solving process consists of two steps (levels). The

first step is to find a parameterized solution for single-segment wires under different

boundary conditions, geometrical parameters, and stressing current densities. This

step can be solved by different approaches. In this work, we apply the supervised

learning method to build the DNN model with a parameterized input layer as a

universal solution to different single-segment wires under various boundary conditions.

• In the second step of HierPINN-EM, we apply the existing unsupervised PINN concept

to solve the stress and atom flux continuity problem in the interconnects by enforcing

the physics laws at the boundaries of all wire segments. In this way, HierPINN-EM

can significantly reduce the number of variables at the PINN solver, which leads to

faster training speed and better accuracy than the plain PINN method.

• The proposed HierPINN-EM framework consists of two steps. The first step is to find

a parameterized solution for single-segment wires under different boundary conditions,

geometrical parameters, and stressing current densities. This step can be solved by

different approaches. In this work, we apply the supervised learning method to build

the DNN model with a parameterized input layer as a universal solution to different

single-segment wires under various boundary conditions. In the second step, we apply

the existing unsupervised PINN concept to solve the stress and atom flux continuity

5

problem in the interconnects by enforcing the physics laws at the boundaries of all

wire segments. In this way, HierPINN-EM can significantly reduce the number of

variables at the PINN solver, which leads to faster training speed and better accuracy

than the plain PINN method.

Our experimental results demonstrate that:

EM-GAN is capable of quickly and accurately providing stress distribution of any

multi-segment wires for a given aging time. Compared to COMSOL [1] simulation results,

our experimental results show that the EM-GAN method has an average error of 6.6% and

orders of magnitude speedup. It also provides an 8.3× speedup over the previous state-of-

the-art analytic-based EM analysis solver [16].

EMGraph yields an average error of 1.5% compared to the ground truth results,

and it is orders of magnitude faster than both COMSOL and the state-of-the-art method.

It also achieves better accuracy and a 14× speedup over the EM-GAN method on several

interconnect tree benchmarks.

HierPINN-EM outperforms the plain PINN method in both accuracy and perfor-

mance with over 79× error reduction and orders of magnitude speedup, indicating much

better scalability. HierPINN-EM also yields 19% better accuracy with 99% reduction in

training cost over EMGraph.

1.2 Real-Time Full-Chip Thermal Map Estimation

As technology advances, high-performance microprocessors are becoming increas-

ingly thermally constrained due to steadily increasing power densities [86]. To enhance

6

reliability, many system-level thermal/power regulation techniques such as clock gating,

power gating, dynamic voltage and frequency scaling (DVFS), and task migration have

been proposed in the past [33, 55, 90]. One critical aspect of the algorithms mentioned

above is correctly estimating the full-chip temperature profile to guide the online thermal

management schemes properly [47, 45]. However, accurate thermal estimation is a difficult

task, especially for commercial off-the-shelf multi-core processors.

Some of the existing methods depend on on-chip temperature sensors. However,

typically, only a few physical sensors are available, and they may not be located in close

proximity to the true hotspots on the chip, misleading the temperature regulation deci-

sion [7]. Hence, the more popular solution is to supplement the data from the few on-chip

sensors with estimated temperatures of all the prominent hotspots on the chip via thermal

models based on estimated power-traces [9]. These methods offer higher spatial resolution

as they allow for the temperature of all the hotspots on the chip to be monitored in real-time

[64, 36, 96, 88].

However, existing thermal modeling methods still suffer a few drawbacks. Firstly,

they require accurate power-traces as inputs, but estimating the power of each functional

unit (FU) of a real processor under varying workloads is not a trivial task, if not infea-

sible [94, 25]. On the other hand, from the system-level thermal or power management

perspective, the parameters that can be easily accessed are the core frequency, voltage, and

many utilization or performance metrics natively supported by most commercial proces-

sors [103]. Examples include Intel’s Performance Counter Monitor (PCM) [38] and AMD’s

uProf [6]. Thermal models parameterized by these parameters will be more desirable and

7

practical. Secondly, it is difficult to calibrate these models for practical use due to sim-

plified modeling, boundary conditions, and the lack of sufficient accuracy. Lastly, most

models such as HotSpot [36] still employ expensive numerical methods to find temperature

solutions, which may not be fast enough for real-time use.

On the other hand, estimating the full-chip 2D thermal map of multi-core CPUs

from given performance monitor parameters can be viewed as an imaging synthesis problem.

We can treat the performance monitor parameters as extracted latent features for power

information of the chip. Then we can synthesize the 2D thermal maps once the neural net-

work is trained for the utilization to temperature transformation. Such training and image

generation process can be carried out using GAN, a popular generative deep neural net-

work for imaging synthesis, semantic imaging editing, style transfer, image superresolution,

etc [28, 23].

Inspired by this observation, in this work, we propose a novel data-driven fast

transient full-chip thermal map estimation method for multi-core commercial CPUs by

exploiting conditional generative adversarial learning. The specific contributions of this

segment are as follows:

• First, ThermGAN can be implemented on most, if not all, existing commercial multi-

core microprocessors, as it only uses the existing temperature sensors and workload-

independent utilization information. In other words, our strictly post-silicon approach

does not require any modifications to the chip’s design.

• We propose to treat this existing thermal modeling problem as an image generation

problem conditioned on high-level performance monitors, which are available in most,

8

if not all, commercial microprocessors. We then propose to explore the conditional

generative neural network structure in which the input high-level performance data is

treated as categorical conditions.

• In our work, we use a simple memory-less convolutional neural network for both gen-

erator and discriminator, with Wasserstein distance as the loss function. We demon-

strate that the proposed ThermGAN can estimate transient and real-time thermal

maps without using any historical data for training and inferences, which is in con-

trast with a recent LSTM-based thermal map estimation method in which historical

data is needed [74].

• We use an advanced infrared thermography setup system that enables clear heatmaps

to be recorded directly from commercial microprocessors while they are under load.

A total of 257,400 pairs of PCM data and thermal maps were collected, and 75% were

used for training.

• The resulting ThermGAN can provide tool-accurate full-chip transient thermal maps

from the given performance monitor traces of commercial off-the-shelf multi-core pro-

cessors.

Experimental results show that the trained model is very accurate in thermal

estimation with an average RMSE of 0.47◦C, namely, 0.63% of the full-scale error. Our

data further show that the speed of the model is less than 7.5ms per inference, which is

two orders of magnitude faster than the traditional finite element-based thermal analysis

and is suitable for real-time thermal estimation. Furthermore, the new method is ∼4x more

accurate than the recently proposed LSTM-based thermal estimation method [74] and has

9

a faster inference speed. It also achieves ∼2x accuracy with much less computational cost

than the EigenMaps method [70], which is a state-of-the-art pre-silicon method.

1.3 Electrostatics Analysis for VLSI Interconnects

Electrostatics is an important subject of study as it is pivotal in many VLSI mod-

eling applications. The goal is to compute voltage potential and electric fields with some

voltage and current boundary conditions for dielectrics and metal interconnects or planes.

In the back-end of VLSI manufacturing, a strong electric field can induce failure of the

dielectrics, which is known as Time-dependent dielectric breakdown (TDDB) [60]. Simula-

tion of this aging effect requires electrostatics. Also, several methods of parasitic extraction

involve electrostatics simulations in the chip layouts [18]. Recently, global placement is also

modeled as electrostatic problem [57].

Traditionally, this problem is primarily solved by numerical methods with spatial

discretization of the governing equation using polynomials into a finite-dimensional algebraic

system (as is done in finite element method (FEM) or finite difference method (FDM)). Such

numerical methods typically require meshing of a complicated layout or geometry, which

can be very computationally prohibitive for large problems.

On the other hand, DNNs have propelled an evolution in machine learning fields

and redefined many existing applications with new human-level AI capabilities. DNNs such

as convolutional neural networks (CNNs) have recently been applied to many cognitive

applications such as visual object recognition, object detection, speech recognition, natural

language understanding, etc. due to dramatic accuracy improvements in those tasks [49].

10

However, how to apply deep learning techniques to learn and encode laws of physics and

help to solve nonlinear partial differential equations still remains in its infancy.

Recently, the so-called PINN or physics-constrained neural networks (PCNNs)

have been proposed to learn and encode physics laws expressed by nonlinear PDEs for

complex physical, biological or engineering systems [66, 67]. The idea is to use DNNs,

which are differentiable, to regularize the loss functions via back-propagation based train-

ing to obtain so-called physics-informed/constrained surrogate models, which can quickly

infer the solutions of the PDEs to all input coordinates and parameters. The promise of

PINN/PCNN is that we only need a small number of training examples and the resulting

DNN models will quickly respect the underlying principled physics laws for all the input

coordinates and parameters so that fast and accurate numerical solutions can be obtained.

Another significant benefit of the PINN/PCNN idea is that they are mesh-free compared to

traditional FEM or FDM based methods. However, only very simple PDE problems were

demonstrated in [68, 97, 78, 10, 67], although some progress was made for more complicated

aerodynamics simulation recently [19].

Inspired by recent progress with PINN/PCNN for solving partial differential equa-

tions, in this work, we propose a new data-driven 2D analysis of electric potential and electric

fields based on a physics-constrained deep learning scheme, called PCEsolve. The specific

contributions of this segment are as follows:

• We first show how to formulate the differential loss functions to consider the Laplace

differential equations with voltage boundary conditions for a typical electrostatic anal-

ysis problem. The resulting solving process becomes a nonlinear optimization process,

11

which is solved by the back-propagation method in existing DNN networks. We apply

the resulting PCEsolve solver to calculate electric potential and electric field for VLSI

interconnects with complicated boundaries.

• Our study for purely label-free training (in which no information from FEM solver

is provided) shows that PCEsolve can get accurate results around the boundaries,

but the accuracy degenerates in regions far away from the boundaries. To mitigate

this problem, we explore adding some simulation data or labels at collocation points

derived from FEM analysis. We explore both voltage and electric field (1st order

derivative) label information, and the resulting PCEsolve can be much more accurate

across all the solution domain.

• We also studied the impacts of weights on different components of loss functions to

improve the model accuracy for both voltage and electric field.

Experimental results demonstrate the PCEsolve achieves an average error rate of

3.6% on 64 cases with random boundary conditions, and it is 27.5× faster than COMSOL

on test cases. The speedup can be further boosted to ∼ 38, 000× in single-point estimations.

Our study shows that the current PINN/PCNN frameworks have some potentials for solving

practical electrostatics analysis but with limited accuracy.

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 presents two data-

driven learning-based EM analysis methods for multi-segment interconnects in VLSI cir-

cuits, namely GAN-based model EM-GAN and GNN-based model EMGraph. To eliminate

12

the heavy dependency on simulated labeled data, Chapter 3 presents a hierarchical PINN-

based method, called HierPINN-EM, to solve the Korhonen equations for multi-segment

interconnects for fast EM failure analysis. Chapter 4 presents a data-driven full-chip tran-

sient thermal map estimation method for commercial multi-core microprocessors using the

generative adversarial learning technique. Chapter 5 presents a 2D electric field analysis

approach based on the concept of physics-constrained deep learning. Finally, Chapter 6

concludes the thesis.

13

Chapter 2

Data-Driven Learning-Based

Electromigration Analysis

2.1 Related Work and Motivation

2.1.1 Review of EM and EM modeling

EM is a diffusion phenomenon of metal atoms migrating from cathode to anode of

confined metal interconnect wires due to the momentum exchange between the conducting

electrons and metal atoms [11]. With the EM driving force, the hydrostatic stress increases

over time. When the stress reaches a critical value, a void is nucleated at the cathode and

ahillock is created at the anode of the interconnects. This eventually leads to an open or

short circuit, which is an EM-induced reliability problem in modern VLSI circuits.

Black’s equation predicts the EM-induced time-to-failure (TTF) based on empiri-

cal or statistical data fitting, which only works for a specific single wire [11]. Blech’s limit,

14

which is an immortality check method, cannot estimate transient hydrostatic stress and

is subject to growing criticism due to unnecessary overdesign [12]. To mitigate this prob-

lem, the physics-based EM model, Korhonen equations [46], is employed to describe the

hydrostatic stress evolution for general multi-segment interconnects.

The general multi-segment interconnect consists of n nodes, including p interior

junction nodes xr ∈ {xr1, xr2, · · · , xrp} and q block terminals xb ∈ {xb1, xb2, · · · , xbq}, and

several branches. The physics-based Korhonen’s PDE for this general structure in nucleation

phase can be formulated as follows [93, 16].

∂σij(x, t)

∂t
=

∂

∂x

[
κij(

∂σij(x, t)

∂x
+Gij)

]
, t > 0

BC : σij1(xi, t) = σij2(xi, t), t > 0

BC :
∑
ij

κij(
∂σij(x, t)

∂x

∣∣∣∣
x=xr

+Gij) · nr = 0, t > 0

BC : κij(
∂σij(x, t)

∂x

∣∣∣∣
x=xb

+Gij) = 0, t > 0

IC : σij(x, 0) = σij,T

(2.1)

where BC and IC are boundary and initial conditions respectively, ij denotes a branch

connected to nodes i and j, nr represents the unit inward normal direction of the interior

junction node r on branch ij. σ(x, t) is the hydrostatic stress, G = Eq∗
Ω is the EM driving

force, and κ = DaBΩ/kBT is the diffusivity of stress. E is the electric field, q∗ is the

effective charge. Da = D0 exp(−Ea
kBT) is the effective atomic diffusion coefficient. D0 is the

pre-exponential factor, B is the effective bulk elasticity modulus, Ω is the atomic lattice

volume, kB is the Boltzmann’s constant, T is the absolute temperature, Ea is the EM

activation energy. σT is the initial thermal-induced residual stress.

15

2.1.2 DNN based approaches for solving PDEs

In order to solve the PDE (2.1) accurately, numerical methods [22, 80, 106], such

as finite difference and finite element methods, are applied for EM assessment. However,

these methods require huge computational costs and are not scalable for modern chips.

Therefore, an analytic-based method, called the separation of variables method, is employed

to estimate the transient hydrostatic stress with eigenvalues. This method suffers from

computing eigenvalues slowly and determining the number of eigenvalues [93, 16].

Deep learning has revolutionized the machine learning field with breakthroughs

in many cognitive applications such as image, text, speech, and graph recognition [49, 28].

Inspired by these observations, neural networks are modified to solve PDEs.

There are several strategies for solving PDEs using DNN-based methods. One

approach is to frame the PDE-solving process into a nonlinear optimization process coded

by DNN with loss functions to enforce the physics laws represented by the PDE and bound-

ary conditions. Recently proposed physics-informed neural networks [68, 67] or physics-

constrained neural networks [78, 61] represent this strategy. However, most of the reported

works only solve very small PDEs with simple boundary conditions. Furthermore, it is

unclear whether such methods can deliver sufficient accuracy without any labels (unsuper-

vised learning). On the other hand, the second approach uses supervised learning to build

DNN models based on the measured or simulated label data. Despite the abundance of suc-

cessful models in cognitive applications, identifying an appropriate representation for VLSI

interconnects and formulating an effective DNN model for EM analysis remain significant

challenges that demand investigation.

16

To harness the tremendous success of deep learning models in image processing

applications, it is practical to represent VLSI interconnects as a 2-D image, and the EM

analysis problem can be addressed as an image-to-image problem. The topology of inter-

connects can be projected onto a pixel grid while other relevant electrical or geometrical

information can be stored in multiple channels of the image. This formulation makes it

possible to model the EM-induced stress evolution using existing image processing models

with necessary adaptations.

To efficiently represent the multi-segment interconnects structure, a graph is more

suitable to store the node and edge information of the interconnect trees. Kipf and Welling

introduced a definition of the convolution operation on a graph, which aggregates infor-

mation into the node from its neighborhood nodes [44]. However, this method only works

on a fixed graph because the input needs an adjacency matrix representing a graph. Once

the graph is changed, the model needs to be trained again. To mitigate this problem, the

GraphSAGE network is proposed for inductive learning on graphs [32]. Unlike the matrix

factorization method proposed by Kipf and Welling, GraphSAGE only learns the local node

features by aggregating the information from its neighborhood and can predict the features

at unseen nodes. This means that the model can predict the embedding features on new

graphs without retraining. Also, several works leveraging GNN have been proposed recently

for solving various problems in EDA, such as analog circuit clustering [76], estimation of

device parameters in [72], chip power estimation in [104], 3D circuit partitioning [58], tran-

sistor sizing [89], analog IC placement [53]. Since GNN represents more general and natural

17

relationship among different design objectives, the knowledge learned by GNN models tends

to be more transferable for different designs, which is highly desirable in this work.

2.2 EM-GAN: CGAN-Based Current Density to EM Stress

Transformation

2.2.1 Data preparation

For machine learning-based approaches, one crucial aspect is sufficient training

data. For our GAN-based EM stress estimation, the input data are interconnect topologies

with various current densities in different wire segments, while the output is the evolution

of the EM-induced stress distribution across all wire segments. The proposed EM-GAN is

trained to model the transformation scheme between these two datasets. In what follows,

we present the details of the training data and how we preprocess and map them into the

domain that can be leveraged by GAN-based model.

To achieve the abundance of training data, we randomly generated 2500 different

topologies of multi-segment interconnects. Each of them has a different number of wire

segments with random widths, lengths, and current densities. These generated topologies

with current densities are then fed into COMSOL, an off-the-shelf finite element method

(FEM) solver. For each input, COMSOL produces a series of stress distributions that

reflect the stress evolution along the aging time. The data acquisition process is illustrated

in Fig. 2.1(a). The time-step between two adjacent results can be adjusted to obtain the

best trade-off between accuracy and performance.

18

time-step

Input:
Interconnects

Topology

Current

densities

COMSOL

stress

result

stress

result
Output:

Aging Time

(a)

Fill into

wire segments

A/m2

Interconnects

Topology

256 × 256

Current

densities

Original Input

Project topology

onto grid

(b)

1st year

Pa

5th year 10th year

stress

result

stress

result

stress

result

1st year 5th year 10th year

Topology

Fill into

wire segments

(c)

Figure 2.1: Illustration of training data: (a) Raw data acquisition for training dataset (b)
Input: A design with wire segments filled with current densities (c) Output: Evolution of
EM-induced stress distribution along 10 aging years.

19

These data are all saved in numerical format. As stated in Section 2.1.2, to leverage

the GAN model, we have to transform them into the image domain so that the problem is

simplified as an image-to-image task.

• Input: Every interconnects topology is composed of rectangular wire segments with

random sizes. When generating the topologies, we set the bounds for both x- and

y-dimensions to 256 µm, and the resolution of the wire segments is set to 1 µm. With

this configuration, we can easily project the topology onto a 256 × 256 grid, which

can also be seen as a single-channel image, as shown in Fig. 2.1(b). We note that this

configuration does not restrict our work to only small-size interconnects, as in real

cases, bulk interconnect system may be divided into small pieces with partitioning

algorithms for parallel calculation. The proposed EM-GAN is used as the solver for

small partitions, and the results can be synthesized back to form the final results for

the original bulk interconnect system. Another input is the current density, which is

generated by applying random current sources to the interconnects. In each topology,

current density varies drastically among different wire segments but is equally and

uniformly distributed within the same segment. To combine these two inputs into

a single image, we fill every wire segment with its current density, and the resulting

single-channel image is shown in Fig. 2.1(b). In this work, we refer to every combined

input of topology and current density as a design.

• Output: The results we obtain from COMSOL for each design are a time-series of

gradually changing stress distributions. In this work, the maximum aging time is

set to 10 years, and we reserve 10 results from the 1st to the 10th year for training

20

purposes. Similar to the raw data of current densities, the stress distributions are

also saved in numerical format, so they can also be combined with topologies. The

combined result is referred to as a stress map in this work. The combination process

together with the resulting stress maps at the 1st, 5th, and 10th aging years are

illustrated in Fig. 2.1(c). Each stress map can also be seen as a single-channel image

with the same 256× 256 size as the input design. The difference is that each pixel in

stress maps represents the stress value in the corresponding 1 µm2 area, and for each

input design, there are 10 resulting stress maps.

Feeding all 2500 randomly generated designs into COMSOL results in 25000 stress

distributions, which are then organized into a training dataset with 2500 pairs of (Input :

1 design, Output : 10 stress maps) samples. The 1-to-10 relationship within each data pair

implies that a single-input multiple-output (SIMO) model is required, while traditional

GANs are only capable of single-input single-output (SISO) modeling. The technique we

use to overcome this barrier will be detailed in Section 2.2.2.

Now that both the input and output have been transformed into the image domain,

a GAN-based model can be leveraged to solve the proposed problem as an image-to-image

task, as illustrated in Fig. 2.2. However, some preprocessing is still required before the data

can be fed into the model. Since there is only one channel in the image, the figures shown

in Fig. 2.1 are depicted as heat maps in which the colors are only for visualization purpose.

In a typical color image, pixels usually have red-green-blue channels, and the values are

limited to the range of 0 to 255, which is not the case in our dataset. Pixels in design and

stress map are filled with real values of current density and stress, respectively. In this work,

21

1 year

Input:

EM-GAN

Output:

Aging Time

A/m2

1st year

Pa

10th year

Figure 2.2: EM-GAN models the stress estimation as an image-to-image task

22

both current density and stress can range drastically from magnitudes of −109 to 109. The

positive sign here denotes the direction toward right and up, and vice versa. It is commonly

accepted that values around zero are more numerically stable for neural networks. Thus,

we have to scale our dataset down to such a range. In this work, we rescale all samples to

zero mean and unit standard deviation using data standardization method. All values are

squeezed into the range of -7 to 7 with the majority of values around zero.

2.2.2 Problem formulation

The current density image to EM stress image transformation

We first show that we can view the PDE solving process for a multi-segment wire

as image synthesis process, in which the DNN can automatically extract features reflecting

the physics-law of stress evolution in the confined metal wire. Then we can use the DNN

network to map the input images of interconnect wires with stressing current to the stress

distributions of wire segment for any given aging time.

Review of GANs

Generative Adversarial Networks (GANs) are widely used generative models that

consist of two neural networks: (1) a Generator G, which is trained to produce real-like data

that mimics the samples in the training set, and (2) a discriminator D, which takes either

real or fake data as input and aims to discriminate between them. The input of G is usually

random noise z, which follows a certain distribution. Thus, the generated output is also a

random sample extracted from the distribution of fake data. The training of GAN requires

both G and D to be trained simultaneously in an alternative fashion, and the final goal is

23

to let the distribution of fake data overlap with that of the training set. The output of D

measures the similarity between these two distributions, and usually, the Jensen-Shannon

Divergence is employed as the measurement. To reduce the randomness in the generated

data, Conditional GAN (CGAN) was created to provide a certain extent of control on the

output of G. CGAN is a variant of GAN that introduces additional condition input so

that the fake data distribution is conditioned on it. CGANs have been widely used as a

conditional generation method and are at the forefront of a wide range of applications.

Time dependent architecture

GANs are designed for static applications where a single input always leads to a

single output. However, our dataset consists of 2500 pairs of (1 design → 10 stress maps)

samples, which requires the model to be able to generate a sequence of stress distributions

across all the aging years using only one design as input. To overcome the barrier between

traditional GAN and the time-dependent data, we propose the EM-GAN, which is a CGAN-

based model with the capability of time-variant output synthesis.

There are some recent studies trying to preserve the temporal dynamics through

modifications of GAN architecture. In TimeGAN [100], additional auxiliary networks called

embedding and recovery are added to learn the temporal information of data. Other re-

searchers employ recurrent neural networks (RNN), which is a natural architecture for time

series modeling, in both generator and discriminator for time series data augmentation [69]

and missing value imputation for multivariate time series data [59]. These existing works

mostly deal with simulated or size-limited synthetic data, in which employing RNNs will

not cause too much overhead. However, in this work, we are dealing with a time-dependent

24

image synthesis problem where both input and output are of quite large sizes (256 × 256

pixels). Such large data throughput results in a heavy model, and integrating it recursively

in an RNN-like architecture will lead to a bulky network that can be expressed as

p (z, 0)
G→ p (ŷ1 | z)

p (z, ŷ1:t−1)
G→ p (ŷt | z, ŷ1:t−1)

(2.2)

where z is a random design, G the generator model, and ŷt the estimated stress

distribution produced at the tth time-step, which is conditioned on both design and history

results. This is not a practical architecture due to the significant computational overhead it

would introduce in both training and inference. Additionally, considering the fact that EM-

induced stress continuously evolves over 10 years, such a large time range further impedes

the employment of RNN, which otherwise would produce numerous intermediate results at

each time-step before the final aging year is reached. In real cases, designers only care about

whether the interconnects are able to last before the chip lifetime is reached, which implies

that getting only the stress result at the specified aging year is enough. The intermediate

results are only needed when a wire failure is spotted, and further investigation into the

stress evolution is required.

Based on these observations, we propose the EM-GAN model, which employs a

CGAN as the backbone and is illustrated in Fig. 2.3. The design z is taken as one input,

and another input is the explicitly specified aging year t, which serves as the time condition.

Compared with the sequential network in (2.2), EM-GAN is simplified to directly map the

design to the stress map at the conditioned aging year with no intermediate result generated.

Additionally, if stress-induced failure is found in the stress map, a backward investigation

25

can be conducted by changing the input aging year to previous time-steps, such that the

detailed evolution of the stress map can be gathered and analyzed.

With such a time-conditioned architecture, a single design can be projected onto

multiple stress maps by varying the time condition input. The proposed EM-GAN model

can be expressed as

p (z, t)
G→ p (ŷ | z, t) (2.3)

where z is a random design, t the specified aging year, G the generator network,

and ŷ the stress map estimated by the generator conditioned on time t.

2.2.3 EM-GAN architecture

As shown in Fig. 2.3, the generator G of EM-GAN takes the design image imgdes ∈

R256×256×1 and the aging year t ∈ R as input. The scalar value t is expanded into R256×256×1

through channel-wise duplication, so that imgdes and t can be concatenated element-wise

into a two-channel image x with the size of 256× 256× 2. This two-channel image is then

taken as the real input of the generator G. The architecture employed for G is an encoder-

decoder network, which is widely used in image-to-image applications. In this network,

the input x is first downsampled through a series of convolutional layers until a bottleneck

layer is reached, where the extracted latent features are saved. These features may contain

various abstract information, such as physics-law and temporal dependency. The rest of G

leverages the extracted features and generates the stress map by upsampling them through

transposed convolutional layers. However, a drawback of this encoder-decoder network is

that all information passes through the narrow bottleneck layer in the middle, which is not

26

G

G(x)

y D

D(x,y)

D(x,G(x))

Gradients

Skip Connections

Encoder

Bottleneck

Decoder

Gradients

G(x)

Real

Fake

Condition

Real
Stress Map

Generated
Stress Map

Generated
Stress Map

Inputs

Topology with
current density

Real value for
the aging time

Duplication

Expansion

Channel

Concatenation

x

Figure 2.3: EM-GAN framework for stress estimation

necessary. In this work, both input design and output stress map share the same topology

of interconnects. The extraction and reconstruction of such geometric information leads to

excessive overhead in both computation and bandwidth. To make the model focus solely

on the processing of temporal and physical features, we add skip connections between the

encoder and the decoder, as shown in Fig. 2.3. With this configuration, the bottleneck layer

is bypassed, and the geometric information is passed through the shortcuts directly from

the encoder to the decoder. Skip connections can greatly improve the output accuracy,

which will be discussed in detail in Section 2.4.1.

The output stress map of the generator is denoted as G(x) and referred to as fake

stress map in this work. In the training process, either a fake G(x) or a real stress map y

from the training set is fed into the discriminator D together with its corresponding design

27

and aging time x. The discriminator then judges whether the stress map is real or fake,

based on the given x. The output of the discriminator is a scalar score, which is denoted

as D(G(x),x) or D(y,x), depending on which stress map, fake or real, was inputted. It

reflects how confident the discriminator is that the stress map it is being fed is a real one.

The key idea of the EM-GAN model is to let the generator learn the mapping

method from the distribution of designs with aging year to that of the real stress maps.

Such transformation is achieved by progressively training the generator according to the

gradients backpropagated from the loss, which is based on the output of the discriminator.

The generator and the discriminator are trained simultaneously but with opposite training

objectives. The training goal of the discriminator is to minimize D(G(x),x) and maximize

D(y,x), which can be expressed as

max
D
{Ex,y[D(y,x)]− Ex[D(G(x),x)]−

λgpEx̂[(‖∇x̂D(x̂,x))‖2 − 1)2]}
(2.4)

where Ex,y[D(y,x)] is the average score given by the discriminator to real stress

maps, while Ex[D(G(x),x)] is the average score given to the fake ones. These two terms

together confine the discriminator to be more confident in telling apart the real input from

the fake ones. The last term in (2.4) is the gradient penalty adopted from WGAN-GP [8],

which maintains the 1-Lipschitz continuity of the discriminator. x̂ is interpolation between

the generated EM stress image and its ground truth, and λgp is the hyperparameter which

controls the weight of gradient penalty.

On the contrary, the training objective of the generator is to produce real-like

stress maps so that the discriminator is deceived to give high scores to the fake inputs.

28

Since the generator has no influence on the scores given to the real samples, term D(y,x)

is discarded in its objective function, which can be shown as

min
G
{Ex[−D(G(x),x)] + λL2 · Ex,y[‖y −G(x)‖2]} (2.5)

where only term Ex[D(G(x),x)] is reserved. We also add the average L2-norm

Ex,y[‖y−G(x)‖2] here to further improve the objective function according to [39] in which

λL2 controls its weight. Introducing L2-norm into the loss function Skip connections im-

proves the quality of generated stress maps which will also be discussed in detail in Sec-

tion 2.4.1.

In both (2.4) and (2.5), we adopted the Wasserstein distance as the measure of

difference between distributions of real and fake stress maps. Compared to the conventional

Jensen–Shannon Divergence, Wasserstein distance provides higher convergence possibility

and stability in the training process. The detailed architectures of both generator and

discriminator in the proposed EM-GAN are illustrated in Fig. 2.4.

2.3 EMGraph: Graph Neural Network-Based EM Stress Solver

2.3.1 Problem formulation

This work aims to predict the transient hydrostatic stress over time on general

multi-segment interconnects using GCN. The current densities for each branch can be cal-

culated using an IR drop solver, such as SPICE circuit simulator. Besides current density,

the width and length of each branch also impact the EM stress. Thus, the input features

29

256x256x2

128x128x64
64x64x128

32x32x256
16x16x512

8x8x512 4x4x512 2x2x512 1x1x512 2x2x512 4x4x512 8x8x512
16x16x512

32x32x256
64x64x128

128x128x64
256x256x1

Encoder Decoder EM Stress

Map

[Current, Time]

Skip Connections

Bottleneck Layer

(a)

256x256x3
128x128x64

64x64x128
32x32x256

16x16x512
8x8x512

4x4x512 2x2x512

2048

1

[Stress, Current, Time] Convolutional Layers
Fully-connected

Layers

512

(b)

Figure 2.4: The architecture of the neural networks in the proposed EM-GAN: (a) generator
(b) discriminator.

30

Table 2.1: Input and output for GCN model

Features Type Definition

input

J edge current density (A/m2)

L edge length (µm)

W edge width (µm)

t edge/node time (s)

output σ edge/node stress (Pa)

include current density, width, length, and time. The output feature is the hydrostatic

stress. Table 2.1 lists all the inputs and outputs of the GCN model.

The general multi-segment interconnect can be naturally viewed as a graph, as

shown in Fig. 2.5. Fig. 2.5(a) shows an interconnect tree extracted from a real power

delivery network (PDN) where the current has direction. Each junction and branch can

be represented by a node and an edge in a graph, respectively. To describe the direction

of current, a directed graph is employed to represent the tree structure, as shown in Fig.

2.5(b). Then, the embedding features can be mapped into nodes and edges. Therefore, we

can obtain a directed graph G = (V,E) that consists of a node set V and a directed edge

set E. The node embedding feature of input is time (xv = [t], v ∈ V). The edge embedding

features of input are current density, length, width and time (xv,u = [J, L,W, t]T , (v, u) ∈ E),

where J is positive if current flows from v to u and vice versa. The node embedding feature

of output is stress (zv = [σ], v ∈ V) at node v. The edge embedding features of output are

stress at five sampling points (zv,u = [σ1, σ2, σ3, σ4, σ5]T , (v, u) ∈ E), as shown in Fig. 2.5(b).

31

Based on the embedding features of input and output, the graph learning task is a node-edge

regression.

To obtain the training set, we implemented an interconnect tree generation algo-

rithm that randomly generates branches with various widths, lengths, and current densities

in a fixed area of 256×256 µm2. The resulting dataset contains 2500 unique designs, and

the number of branches ranges from 5 to 110. To obtain the ground truth stress results,

the designs are simulated using a finite element-based commercial software COMSOL, and

for each design, 10 results at 1st to 10th discrete aging years are produced.

2.3.2 EMGraph architecture

In this section, we focus on developing a GCN model that takes node and edge

features as input and output as described in Section 2.3.1. However, there is no GNN model

for node-edge regression task. Therefore, we proposed our own GCN model, which is called

EMGraph, for EM stress assessment. The primary challenges are as follows: first, the stress

ranges from −2× 109 to 2× 109 Pa. It is difficult for a neural network to predict the entire

range, which spans 10 orders of magnitude; second, the edge is directed, and the output has

both node and edge features. The GCN model should be complex enough to deal with this

graph; third, the accuracy of the stress prediction should be high. However, the regression

using GCN has low accuracy.

32

1 2

3

4

5

6

7

9
8

10

11

13

14

12

16

15

17

j
1

j
2

j
4

j
3

j
6j

5 j
8

j
7

j
10

j
9

j
12

j
11

j
13

j
15

j
14

j
16

(a)

5

5
Stress sampling

points

4

7

6 12

13

14

16 17

15

1110

2

3

1

9

8

1

2

3

4

(b)

Figure 2.5: (a) Schematic and (b) directed graph of a multi-segment interconnect.

33

Data rescaling

It is commonly accepted that values around zero are numerically more stable for

neural networks. Thus, we rescale all input and output features to -1 to 1 using the min-

max normalization method. However, considering the large range of the output stress

values (4×109 Pa), such normalization squeezes values with fewer orders of magnitude into

a small range around zero. This may lead to more accurate predictions at large stress points

but may impact the accuracy at the smaller ones as they may be considered noise by the

model. This concern is verified by our experimental results in Sec. 2.4.2. However, such

configuration is actually in favor of our goal since the large stress points are the ones that

may lead to reliability issues and require higher accuracy, while the smaller ones are less

important and can be ignored. This is further justified as hydrostatic stress typically will

exceed the critical stress before a void is nucleated [84].

Graph convolution network

We propose an EMGraph architecture based on the GraphSAGE network [32] since

the GraphSAGE only works for the node classification task. The input layer of EMGraph

is represented by

h0
v = xv and h0

v,u = xv,u (2.6)

where h0
v and h0

v,u are node and edge hidden embedding features of the 0th layer, respec-

tively. The lth hidden layer of EMGraph is given by

hl+1
v = ReLU(bl

1 + Wl
1(hl

v||
∑

u∈N(v)

av,u(hl
u||hl

v,u))) (2.7)

34

5

,

,

,

,

2

3
1

4

(a)

Concatenate

,

,

,

,

, = +1

, = +1

, = 1

, = 1

,

,

,

,

(b)

Figure 2.6: (a) One node and four neighborhood nodes. Both nodes and edges are embedded
with features. Each edge has the direction. (b) One hidden layer node-edge embedding
update of EMGraph. The convolution operation is to aggregate the information of its
neighborhood nodes and connected edges into one node. In the meantime, a convolution
also aggregates the information of two end nodes into one edge.

hl+1
v,u = ReLU(bl

2 + Wl
2(hl

v||hl
u||hl

v,u)) (2.8)

where ReLU(·) is an activation function, av,u is a known parameter representing the direc-

tion of edge, N(v) is the set of neighborhood nodes of the node v, || denotes concatenation,

hl
v and hl

v,u are node and edge hidden embedding features of the lth layer, Wl and bl

are learnable weights and biases, respectively. Fig. 2.6 provides an example of one hidden

layer node-edge embedding update for EMGraph. The edge features can impact the node

features. In turn, the node features can also influence the edge features. The convolution

of EMGraph consists of two parts: one is to aggregate the information of its neighborhood

nodes and connected edges into one node, and another is to aggregate the information of

two end nodes into one edge. Concatenation is similar to the “skip connections” in different

layers and is also employed to consider both node and edge features. Therefore, EMGraph

35

, , ,

…

…
, ,

Multilayer

Perceptron

Node Embedding
Vector

Edge Embedding
Vector

Multilayer

Perceptron

Figure 2.7: Framework of EMGraph with Multilayer perceptron network.

can do the node-edge regression task. To represent directed edge, we introduce a parameter

av,u, which is 1 for the inward direction and −1 for the outward direction at the node, as

shown in Fig. 2.6. The output layer of EMGraph is expressed as

zv = bL
1 + WL

1 (hL
v ||

∑
u∈N(v)

av,u(hL
u ||hL

v,u)) (2.9)

zv,u = bL
2 + WL

2 (hL
v ||hL

u ||hL
v,u)) (2.10)

Node and edge decoder

To improve the modeling capacity of the EMGraph, we feed node and edge features

of the output in Section 2.3.2 to node and edge decoders which are two separate multilayer

perceptron (MLP) networks, as shown in Fig. 2.7. The GCN model, which is the first part

of EMGraph, is only responsible for graph embedding which converts the input graph into

latent edge and node features. These features are trained to extract and contain important

neighboring information for stress prediction, which are then utilized by node and edge

decoders to infer the stress values on each branch.

36

We propose such an architecture based on the observation that after a certain

point, increasing the number of hidden units and hidden layers in the GCN model does not

help much in improving the output stress accuracy. Due to the small size of GCN, modeling

capacity needs to be increased to further improve accuracy. Therefore, we employ another

way to increase the number of learnable parameters by combining GCN and MLP networks.

The MLP network can further process the information as it learns node and edge features

separately.

2.4 Experimental Results and Discussions

2.4.1 EM-GAN accuracy and performance

In this section, we present the experimental results demonstrating both the accu-

racy and speed of our proposed EM-GAN model for time-dependent EM stress estimation.

Our model is implemented in Python using the TensorFlow (1.14.0) library [3],

which is an open-source machine learning platform. As detailed in Section 2.4.1, our dataset

consists of 2500 pairs of (1 design→ 10 stress maps). To train EM-GAN, a random selection

of 15% of the dataset is set aside for testing purposes, while the remaining 85% forms the

training set. To fit the dataset to the input layer of EM-GAN, we reorganize each 1-to-10

data pair into 10 samples of (design with aging year → stress map). During the training

process, all samples are randomly permuted at the beginning of every epoch.

We run the training for 15 epochs on a Linux server with 2 Xeon E5-2698v2 2.3GHz

processors and Nvidia Titan X GPU. The cudnn library is used to accelerate the training

process on GPU. To employ mini-batch stochastic gradient descent (SGD), we set the batch

37

size to 8 and use the RMSProp optimizer to solve it. The learning rate of the optimizer is

0.0001, where the decay, momentum, and epsilon parameters are set to 0.9, 0, and 10−10,

respectively. The weight of the L2-norm distance λL2 is set to 100.

Accuracy of EM stress map estimation

Once the EM-GAN model is trained, only the generator part is preserved, which

serves as the generative model. It can take any multi-segment interconnects topology with

current densities as input and produce an estimated stress map at the specified aging year.

To evaluate the estimation error of the trained model, we compare the estimated stress

maps against the real ones, which serve as ground truth here. We employ the root-mean-

square error (RMSE) and the normalized RMSE (NRMSE) given in (2.11) and (2.12) as

the metrics of error.

RMSE =

√∑
(x,y)∈S [σ(x, y)− σ′(x, y)]2

|S|
(2.11)

NRMSE =
RMSE

σmax − σmin
(2.12)

where σ and σ′ are the real and generated stress map, respectively. S is the set

containing all pixels on the interconnects, and |S| denotes the number of elements in S.

σmax and σmin are the maximum and minimum stress values in the ground truth stress

map, respectively.

The accuracy evaluation is conducted on the test set with 375 designs that were set

aside during the training process. The random generation of designs in both the training and

test set guarantees that there is no overlap of either topology or current densities between

38

these two datasets. It means that all samples used for evaluation are unseen and completely

new to the trained EM-GAN, which makes the testing closer to real applications. When

EM-GAN is employed to estimate stress distribution for a real design, it is merely possible

that the given topology or current density is identical to any design from the training set.

The model has to extrapolate what it learned from the training set to unseen cases, which

is exactly what we are testing in this evaluation experiment.

For each of the 375 designs used for testing, it is fed into the generator of EM-GAN

together with 10 scalars representing 1st to 10th aging years, and the results of which are 10

stress maps showing the evolution of EM-induced stress distribution. Comparing all 3750

generated stress maps against their corresponding ground truth (real stress maps derived

from COMSOL), EM-GAN achieves an average RMSE of 0.13 GPa and NRMSE of 6.6%.

Considering the large numerical range (usually several GPa and 4 GPa in this work) that

typical EM stresses vary in, such accuracy is more than enough for EM failure assessment,

such as critical wire identification. Some testing results are visualized in Fig. 2.10. Two

designs are randomly picked from the test set, and the estimated stress maps at 1st, 4th,

7th and 10th aging years are shown together with the ground truth for comparison.

Speed of inference

In what follows, we present a comparison of the speed of our EM-GAN with

the state-of-the-art work [16] for EM stress analysis. We formulated the problem as a

large multi-segment interconnects design that can be partitioned into 528 smaller designs

of dimensions 256× 256 µm2. We generated the designs randomly using the same method

as the one used to generate the training dataset. The number of interconnect branches in

39

0 100 200 300 400 500
0

10

20

30

40
Ti

m
e

C
os

t (
s)

Design Number

 state-of-the-art
 EM-GAN

 8.3x
speedup

Figure 2.8: Comparison of EM stress estimation speed between state-of-the-art and EM-
GAN.

each design varied from 5 to 79. Both EM-GAN and the [16] method were run to estimate

the EM stress distribution for all 528 designs at the 10th aging year. The tests were run on

the same server and the accumulated time cost for all 528 designs are plotted in Fig. 2.8.

Although [16] produced more accurate results that were consistent with the solu-

tion obtained from COMSOL, our EM-GAN showed an 8.3× speedup over [16]. The total

time cost of EM-GAN and [16] was 37.86s and 4.58s, respectively. For [16], the time cost

of predicting each stress map varied between 0.49s and 0.003s depending on the number

of branches involved in the input design. However, for our EM-GAN, any given design is

taken as a whole image with same dimensions. The inference process is essentially an image

transformation process that deals with a fixed number of pixels, regardless of the number of

wire segments involved in the input design. Therefore, the inference time of our EM-GAN

40

is invariant to the varying number of interconnect branches, making it much more efficient

in estimating the EM stress for large-scale designs and exhibiting better scalability.

Analysis of loss and skip connections

As described in Section 2.2.3, EM-GAN employs skip connections in the generator

to bypass the bottleneck layer and convey geometric information directly from the encoder to

the decoder. Another technique we used to improve estimation accuracy is adding L2-norm

error in the loss function of generator. To analyze whether and how these modifications

help to improve results, we trained two modified EM-GAN models. We kept most of the

architecture the same as EM-GAN in both modified models. The only exception is that one

model removed the L2-norm from the objective function, and the other model discarded all

skip connections.

Both modified models were trained for 15 epochs on the same server and tested

using the same test set as above. The results showed that both modified models suffered

from degradation in output accuracy. Specifically, the model without L2-norm loss reached

an average NRMSE of 8.4%, and the error was even worse at 15.2% for the other model

with no skip connections. Additionally, compared to the modified models, EM-GAN per-

formed better in terms of standard deviation, maximum, and minimum errors, as shown in

Table 2.2. In Fig. 2.9, we randomly pick one design and show the inference results generated

by all three models along with their corresponding ground truth for comparison.

We first analyze the influence of skip connections. As shown in the results above,

models with skip connections outperformed the one without it by a significant margin.

Employing a conventional encoder-decoder architecture means that the network has to

41

Skip, w/o L2-normw/o Skip, L2-norm

Skip, L2-normGround Truth

Input

Current Density

Figure 2.9: Comparison of inference results between different models and the ground truth.

process both geometric and physics information from the input. This is unnecessary in this

work since the input design and the output stress map share exactly the same geometric

information, i.e. the interconnects topology. The extra work added to the network occupies

both computational and spatial resources that could have been used for extracting more

meaningful latent features. The skip connections mitigate this problem by introducing

shortcuts for the topology information to be directly passed from the input side to the

output side. It alleviates the workload of the main network and spares more bandwidth for

latent information flow, which then helps increase the output accuracy.

The influence of L2-norm loss on the result accuracy is not as significant as that

of skip connection, but its removal still leads to a degradation of the NRMSE from 6.6%

42

Table 2.2: Statistics of NRMSE for EM-GAN and modified models on testing set.

Metrics
EM-GAN

(Skip, L2-norm)

w/o Skip,

L2-norm

Skip,

w/o L2-norm

Mean 6.6% 15.2% 8.4%

Standard

Deviation

1.2% 2.1% 2.1%

Max 12.9% 24.6% 18.4%

Min 3.1% 9.8% 3.8%

to 8.4%. As shown in Fig. 2.9, the stress map generated by EM-GAN is slightly closer to

the ground truth than the model without L2-norm. Besides improving result accuracy, a

more significant impact the L2-norm brings to EM-GAN is actually the speedup of training

process. The modified model without L2-norm converges much slower than EM-GAN. This

is reasonable since L2-norm is manually added to the objective function as prior knowledge

from humans. It helps to guide the training process towards a partially defined target,

especially at the early stages of the training process.

The loss function is two folds, one is dynamically determined by the other part of

the model itself, i.e., the discriminator, and the other is a predefined goal, i.e., the L2-norm

distance. At the very early stages of the training process, when both discriminator and

generator are not well-trained yet, using the loss defined by the discriminator to guide the

training is more like a random walk. The model with L2-norm converges much faster in the

training process and is always closer to the ground truth than the one without L2-norm.

43

1 year 4 years 7 years 10 years

EM-GAN

Ground

Truth

Current Density

(a)

1 year 4 years 7 years 10 years

EM-GAN

Ground

Truth

Current Density

(b)

Figure 2.10: Comparing the ground truth EM stress distribution with EM-GAN generated
ones using two different designs.

It is reasonable to say that the L2-norm helps the model as prior knowledge. At the very

beginning of training process, both discriminator and generator are not well-trained and

the discriminator cannot provide useful guidance to the generator. This is where L2-norm

can complement the discriminator and provide the generator with a meaningful learning

direction. In our experiment, adding the L2-norm accelerates the convergence speed by 2×

and also leads to better inference accuracy.

44

2.4.2 EMGraph accuracy and performance

In this section, we present the accuracy and speed of EMGraph models on our

randomly generated dataset, which comprises 2500 circuit designs. The dataset is divided

into a training set of 2125 samples and a test set of 375 samples selected randomly.

The EMGraph model is implemented in Deep Graph Library (DGL) [91], which is

developed for deep learning on graph and built on PyTorch. For the GCN part, we utilized

5 layers with number of hidden features set to 8, 16, 32, 64 and 128, respectively. For the

node and edge decoders, the fully connected layers were set to [128, 256, 1024, 256, 64, 1]

and [128, 256, 1024, 256, 64, 5] separately. The model was trained and tested on a Linux

server with 2 Xeon E5-2699v4 2.2 GHz processors and an Nvidia Titan RTX GPU. The

training batch size was set to 32, and the learning rate of the Adam optimizer was set

to 10−4. The cross validation technique was employed, and the model was trained for 80

epochs in 2 hours.

Accuracy of EM stress prediction

Fig. 2.11(a) and Fig. 2.11(b) show the predicted stresses versus the ground truth

of all 223,380 nodes and 1,114,350 edges in the test set. The results were obtained using the

trained EMGraph to predict EM-induced stresses on all 375 test cases, which were never

seen by the model during the training process. For each case, 10 predictions for the 1st to

10th aging year were conducted.

As shown in Fig. 2.11, the stress values vary in a large numerical range from

−2 × 109 to 2 × 109 Pa. For both nodes and edges, there are more outliers in the range

45

1.5

P
re

d
ic

te
d

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Ground Truth

1e9

1e9

(a)

1.5

1e9

Ground Truth

P
re

d
ic

te
d

1.0

0.5

0.0

-0.5

-1.0

-1.5
1e9

(b)

Figure 2.11: EMGraph prediction vs ground truth on all testing cases for (a) nodes and (b)
edges.

around zero, while the results tend to be more accurate at both ends of the full range. This

is acceptable and indeed what we desired, since the large stresses are the ones that may

lead to reliability issues and require higher accuracy.

For better illustration and comparison, we convert all prediction results into stress

maps, in which stress values are filled into the interconnects topology and shown in colors.

The RMSE between the predicted stress map and its ground truth is employed to evaluate

the result accuracy.

EMGraph yields RMSE values ranging from 1.6× 107 to 1.8× 108 Pa on the test

set and achieves an averaged RMSE of 6 × 107 Pa, which translates to a 1.5% error rate

considering the full stress value range of 4× 109 Pa.

Fig. 2.12 shows the stress maps of both the best and worst cases (in terms of

averaged RMSE) predicted by EMGraph. The results of EM-GAN [42] and the ground

46

truth obtained from COMSOL are also shown in parallel for comparison. As the EM-

induced stress is a time-varying process, for each case, we show the results at the 1st, 5th,

and 10th aging year for a better illustration of the stress evolution.

As shown in Fig. 2.12, EMGraph yields much better accuracy in both cases, with

7× better in the best case and 2.5× better in the worst case. Although the RMSE of the

worst case is 11× larger than that of the best case, the predicted stress map for the worst

case is still quite accurate and closer to the ground truth than the result of EM-GAN. In

comparison with EM-GAN, EMGraph demonstrates much better accuracy in both cases,

with 7× better in the best case and 2.5× better in the worst case. More statistics on the

comparison between EM-GAN and EMGraph are listed in Table 2.3.

Speed of inference

The training process of the EMGraph takes 2 hours, and the trained model consists

of a 441KB GNN, a 2252KB edge decoder, and a 2251KB node decoder. The lightweight

model, combined with the highly parallelizable nature of the graph input, makes EM-

Graph have the potential to yield fast inference speed. In what follows, we compare the

speed performance of EMGraph, EM-GAN, and the state-of-the-art work [16], which is a

separation-of-variables-based analytical method.

As shown in Table 2.3, the average inference speed of EMGraph for each case is

only 0.27ms, which is 14× and 265× faster than the 3.8ms and 71.7ms inference speeds

yielded by EM-GAN and work [16], respectively. These statistics were obtained by running

three methods on all test cases and taking the average of the time cost for each case.

47

EMGraph

Ground

Truth

EM-GAN

1 year 5 years 10 years
1e9

1.0

0.5

0.0

-0.5

-1.0

(a)

EMGraph

Ground

Truth

EM-GAN

1 year 5 years 10 years
1e9

1.0

0.5

0.0

-0.5

-1.0

(b)

Figure 2.12: Comparison of the predicted stress maps obtained by EMGraph and EM-GAN
on (a) best case and (b) worst case.

48

Table 2.3: Accuracy and speed comparison

Metrics EMGraph EM-GAN State-of-the-art

Max RMSE 1.8× 108 Pa 5.2× 108 Pa

Close to

ground truth

Min RMSE 1.6× 107 Pa 1.2× 108 Pa

Mean RMSE 6× 107 Pa 2.6× 108 Pa

Mean

Error Rate

1.5% 6.6%

Inference

Speed

0.27ms 3.8ms 71.7ms

Although work [16] yields higher accuracy, EMGraph achieves a two orders of magnitude

speedup while still rendering comparable results in accuracy. Moreover, as EMGraph treats

each graph input as individual nodes and edges that can be processed in parallel, it has the

potential to achieve even more significant speedups on large designs.

Scalability on large unseen designs

In this section, we further test the scalability of the trained EMGraph model on

13 large designs that are randomly generated without any limitations on their dimensions.

Although we trained EMGraph on the dataset with a fixed size of 256×256 µm2, we note

that EMGraph is not limited to a certain size, in contrast to EM-GAN, which is only

applicable to the size it was trained on. We fix the size of the dataset in this work just to

make a fair apple-to-apple comparison between two models. The scalability of EM-GAN is

limited due to its image-processing-based nature, and the cost of its forward propagation

49

EMGraph Ground Truth 1e9

1.0

0.5

0.0

-0.5

-1.0

1.5

Figure 2.13: EMGraph prediction vs ground truth on large design with 401 branches.

becomes exponentially large as the input size increases, which is not the case for EMGraph.

The inference cost of EMGraph is linearly dependent on the number of branches in its input

graph, and such calculations are highly suitable for parallelization, which further boosts its

scalability to large designs.

Fig. 2.13 shows the stress map predicted by EMGraph for the largest design with

401 branches at the 10th aging year. EMGraph maintains its high accuracy on the large

designs and achieves an average RMSE of 1.1 × 108 Pa across all 13 large designs, with a

minimum of 8× 107 Pa and a maximum of 1.6× 108 Pa. The number of branches in these

large designs ranges from 113 to 401, which is much larger than the cases in the previous

test set. We only compare the results with ground truth here, as EM-GAN is not applicable

to such large designs.

50

Although the accuracy on large cases slightly degenerates compared to the previous

test set, considering that these are much more complicated designs and were never seen by

the model before, such accuracy is still acceptable. We also recorded the time cost of

EMGraph, and the average inference speed for each case is only 0.32ms, which is still at the

same level as it yields on the smaller cases, thanks to the parallel nature of the nodes and

edges in the input graph.

2.5 Summary

The work presented in this chapter introduces two data-driven, learning-based EM

analysis methods for multi-segment interconnects. First, we present a GAN-based transient

hydrostatic stress analysis model, which is called EM-GAN, for EM failure assessment. In

this approach, we treat the traditional numerical PDE solving problem as a time-varying

2D-image-to-image problem, where the input is the multi-segment interconnects topology

with current densities, and the output is the EM stress distribution in those wire segments

at the given aging time. We randomly generated the training set and trained the model

with the COMSOL simulation results. Different hyperparameters of GAN were studied

and compared. After the training process, EM-GAN is tested against 375 unseen multi-

segment interconnects designs and achieved high accuracy with an average error of 6.6%.

It also showed an 8.3× speedup over recently proposed state-of-the-art analytic-based EM

analysis solver. Second, we present a graph neural network-based model, which is called

EMGraph, for transient EM stress analysis. EMGraph performs the node-edge regression

task to predict the stress at the wire segment (edge). Compared with the GAN-based image

51

method, EMGraph can learn more transferable knowledge to predict stress distributions on

new graphs without retraining via inductive learning. Experimental results show the model

has a smaller size, better accuracy, and faster speed over EM-GAN on several interconnect

trees benchmarks. Therefore, EMGraph is very powerful and suitable for the transient EM

stress assessment.

52

Chapter 3

Physics-Informed Neural

Network-Based Electromigration

Analysis

3.1 Related Work and Motivation

3.1.1 Existing numerical approaches for solving PDEs

In order to solve the PDE (2.1), numerous conventional numerical and analytical

methods have been proposed to attempt to solve the PDEs efficiently and accurately [22, 80,

106, 93, 16, 83, 77]. Although the numerical methods, such as finite difference method [22,

80, 83] and finite element method (FEM) [106], can work for the complex interconnect

structures and obtain EM stress accurately, they require high computational costs due to

discretization of space and time. Recently, semi-analytical method based on the separation

53

of variables method has been proposed [93, 16], which shows promising performance in both

accuracy and efficiency for general multi-segment interconnects. Furthermore, a very fast

analytic approach [77] has been proposed, but it cannot be applied to interconnect line

wires..

3.1.2 Learning based approaches for solving PDEs

Recently, machine learning, particularly deep learning based on deep neural net-

works, has achieved breakthrough success in many cognitive applications, such as image,

text, speech, and graph recognition [49, 28]. Inspired by these observations, neural networks

have been adapted to solve PDEs [78, 87, 41].

In previous chapter, a generative adversarial network (GAN)-based method, called

EM-GAN, is proposed to perform fast transient hydrostatic stress analysis by solving Ko-

rhonen equations [42]. It achieved an order of magnitude speedup over the efficient analytic-

based EM solver with good accuracy. However, this method only works for a fixed region

because its output is an image with a fixed size, which restricts its application in real chips.

Furthermore, the image is not a natural tool to represent multi-segment interconnects be-

cause the region with large areas is filled with nothing. We further proposed an improved

GNN-based EM solver, called EMGraph [40]. Since GNN represents a more general and

natural relationship among different design objectives, knowledge learned by GNN models

tends to be more transferable for different designs, which is highly desirable. However, all

these methods are still supervised learning approaches that require extensive training from

numerical solvers or measured data.

54

To mitigate this drawback, a recently proposed unsupervised learning framework,

called physics-informed neural networks [68, 67], PINN or physics-constrained neural net-

works [78, 61], has been introduced. The key concept is to frame the process of solving

PDEs into a nonlinear optimization process using DNN with loss functions to enforce the

physics laws represented by the PDE and boundary conditions. However, only very simple

PDE problems were demonstrated in [68, 97, 78, 10, 67], although some progresses were

made for more complicated aerodynamics simulation recently [19]. Recently, a PINN-based

approach for EM analysis has been proposed [35]. The method attempts to improve the

PINN method to better handle the temperature-dependent diffusivities for metal atom mi-

grations. It tries to add more neurons representing some pre-determined allocation points

and time instances into the neural networks. This method slightly improves the plain PINN

method by achieving better training accuracy at the cost of longer training time under the

same number of neurons.

3.2 HierPINN: Hierarchical Physics Informed Neural Net-

work

In this section, we present the new hierarchical PINN solving strategy, which takes

multi-segment interconnect tree as input and predicts the EM-induced stress for arbitrary

locations in the interconnects at any given aging time. The proposed model solves the stress

evolution equations in a hierarchical way, which consists of two levels (stages). The first

stage, or the lower level, takes only a single-segment straight wire as input and predicts the

stress inside and at both ends of the given wire. The first stage can be viewed as implicitly

55

enforcing the physics laws related to the stress evolution inside a segment wire and leaving

the boundaries as the input and output variables to be used in the second stage. The second

stage, or the upper level, takes all internal junctions or boundaries as inputs and matches

the stress predicted by the lower level at each junction to meet the boundary conditions

among adjacent wires (i.e., stress continuity and atom flux conservation) in the original

PDE using the PINN optimization framework. Each level employs a multilayer perceptron

(MLP) network with different configurations as the backbone. The rest of this section will

introduce both levels in detail together with the data preparation procedures.

3.2.1 Lower level: single-segment straight wire stress predictor

The lower level of the proposed hierarchical PINN is a stress predictor/solver

which takes single-segment straight wire as input and predicts the EM-induced stress for any

location on the wire at a given aging time instant. We note that multi-segment interconnects

always consist of many wire segments with different widths and lengths, stress currents, and

atomic fluxes at the two terminals. For one wire segment, once the geometrical parameters,

current density, and boundary conditions are given, EM-induced stresses are determined

at all locations, including terminals for a given time instant. For one wire segment under

those parameterized conditions, one way to obtain the fast and compact model is by means

of DNN networks via supervised learning. The whole process is illustrated in Fig. 3.1: The

backbone of the stress predictor is a multilayer perceptron network with 7 layers. The

input layer has 7 neurons corresponding to the location, aging time, stress current, and

geometrical parameters of a straight wire. The input vector is called the wire feature vector

56

Training Dataset

x

t

F1(t)

F2(t)

L

W

G

EM Stress Predictor

F
1

F
2

L

W

G

Ground Truth Stress
t = 0 t = T

FEM Solver

t = T

t = 0

Predicted Stress

MSE Loss

100k

Random

Wires

(,)

Figure 3.1: Framework of proposed stress predictor in the first stage.

denoted as u. As shown in Fig. 3.1, we use L, W , and G to denote the length, width, and

driving force of the input wire. F1 and F2 are the atom fluxes at the left and right ends

of the wire segment. x and t are the location and aging time at which the stress is to be

predicted. For any input wire, the positive direction of location, driving force, and atom

flux is always pointing from left to right, such that negative values are allowed to represent

the opposite direction. The output layer of the stress predictor has only a single neuron

with no non-linear activation function attached. The scalar value of this output neuron

indicates the predicted stress at the input location x and aging time t.

For any given combination of wire geometries, driving force, and boundary con-

ditions at both ends of a wire, the stress evolution is uniquely determined according to

the EM stress PDE. With that being said, the task of the proposed stress predictor is to

solve the PDE in a single-wire case. The boundary conditions at the left and right ends

57

of the wire are defined by F1 and F2, respectively, while the rest of the parameters in the

stress evolution equation are set by the other 5 input neurons. The input neurons are then

processed through layers of non-linear forward propagation operations, and the final output

neuron is a scalar value indicating the predicted stress. In this process, the stress predictor

serves as an approximation to the single-wire EM stress solver. The hidden layers inside

the MLP learn to capture the governing physics laws and convert the input features into

stress results.

We want to stress that for practical use of this method, the first stage needs

to be trained ONLY ONCE. Then it can be used for different multi-segment wires with

different numbers of wires and topologies and stressing current density conditions. This is

a real benefit of our approach as the training cost of this stage can be ignored for sufficient

applications of this method. Second, our method is open to other solving solutions at the

first stage (such as analytic solutions, fast numerical solutions). Third, we can pursue more

accurate DNN modeling even at high computing costs.

Regarding the accuracy, the accuracy of the stress predictor as an approximated

PDE solver is guaranteed in two senses. First, we limit the stress predictor to work only

on simple single-wire cases instead of overcomplicated interconnect trees. Although a mul-

tilayer perceptron, as a universal approximator, can theoretically approximate any compli-

cated non-linear solver, it is not practical to implement it in real cases with limited resources

and strict speed requirements. Thus, such limitation substantially reduces the complexity

of the problem given to the model, which makes it possible to achieve both high accuracy

and performance.

58

Secondly, the stress predictor is trained on a large dataset consisting of 80k random

wires, as shown on the left-hand side in Fig. 3.1. To obtain abundant high-quality train-

ing data, we generated 80k single straight wires and randomly assigned length, width, and

current density to each wire. These wires were then randomly connected together to create

interconnect trees. Due to the randomness in both the generation and connection proce-

dures, the resulting interconnect trees are also completely random with various topologies.

These interconnects were then passed into COMSOL, which is a commercial FEM solver,

to do the EM stress simulation. The COMSOL-simulated stress evolutions in every single

wire, as illustrated at the bottom of Fig. 3.1, were saved as ground truth results. During the

FEM simulation process, the time-variant atom fluxes at both ends of each wire (F1(t) and

F2(t)) were recorded and then concatenated with wire geometries to serve as input features

in the training dataset. Again, such a one-time training cost does not add significant overall

computing cost to the final HierPINN-EM solution, as mentioned earlier.

To verify the accuracy of the proposed stress predictor, we generated another 20k

single wires to serve as the test set. These wires were generated using the same methodology

as we used in generating the training dataset. These test data were never seen by the model

during the training process, and the trained stress predictor showed impressive accuracy on

this test set, with details demonstrated in Section 3.3.1.

59

Atom Flux Predictor
j

t

GL

GU

GR

GD

FL

FU

FR

1 2

3

4

5

6

7

9
8

10

11

13

14

12

16

15

17

G
1

G
2

G
4

G
3

G
6G

5
G
8

G
7

G
10

G
9

G
12

G
11

G
13

G
15

G
14

G
16

Data Preprocessing

F
U

F
L F

R

F
D

Flux

Conservation

+ =

j

x

t

F1(t)

F2(t)

L

W

G

Trained EM Stress Predictor

Internal

Junctions

Segments Connected with

Internal Junctions

=
×

(() ())

Backpropagation

(,)

Loss Function

Figure 3.2: Framework of proposed hierarchical PINN based EM Predictor.

3.2.2 Upper level: atom flux predictor for all the wire segments

After the lower-level stress predictor is trained, we can then build the upper level

on top of it, as illustrated in Fig. 3.2. Similar to the stress predictor, the backbone of the

upper level is still an MLP but with completely different objectives and configurations.

The goal of the upper level is to predict the correct boundary conditions, i.e. atom

fluxes, for every single wire in the given interconnect tree so that the EM stress in internal

junctions or boundaries are continuous, and EM stress in each wire can be independently

derived using the stress predictor already trained in the lower level. To achieve this, we

implemented the atom flux predictor using an MLP model with seven layers.

This model takes internal junctions instead of wire segments as input. Therefore,

the first stage in the upper level, as illustrated on the left-hand side of Fig. 3.2, is to label

all internal junctions in the input interconnect tree starting from 1. Each internal junction

60

is then assigned a feature vector, and the feature vector of the j-th junction is denoted as

xj . The first two entries in the feature vector are the label number j and aging time t.

Since each internal junction may have up to four wires connected to it from four directions,

i.e. left side, upside, right side, and downside, we appended the driving forces in these four

directions (GL, GU , GR, and GD) to the feature vector, and the driving force would be set

to zero if there was no connected wire in the corresponding direction. The resulting feature

vectors are then passed into the atom flux predictor.

The output of the atom flux predictor for the j-th internal junction is a vector

denoted as zj . There are three entries in zj , which correspond to the predicted atom fluxes

in the left, up and right directions, respectively. As suggested by the second and third

boundary conditions in EM PDE (2.1), the atom fluxes at each internal junction must

satisfy the flux conservation law. As a result, we apply the flux conservation law to zj

so that we can calculate the fourth atom flux in the downward direction using the other

three predicted results. In this way, the flux conservation law is strictly enforced at every

internal junction in the interconnects. The predicted atom fluxes are then filled into the

corresponding F1 and F2 entries of wire feature vectors u, in which the other entries are

directly obtained from the original input interconnects.

One huge advantage of our proposed hierarchical method is that the upper level

only needs to be trained at internal junctions instead of the whole interconnects. As a

result, the x entries in the wire feature vectors are set to 0 or 1, corresponding to the

left/down or right/up end of each wire, respectively. This avoids random sampling inside

61

each wire (0 < x < 1), which would otherwise result in a large number of training points

and significantly increase the training cost.

Next, the wire feature vectors are passed into the trained stress predictor to obtain

the stress results at all internal junctions. For each internal junction at any aging time, there

will be two to four predicted stress results depending on the number of wires connected at

that junction. According to the first boundary condition in EM PDE (2.1), stress values

should be continuous at boundaries, meaning that the predicted stress results should be

equal to each other at any internal junction. This leads to the following physics-informed

loss function, which we propose to train the atom flux predictor.

L =
1

NI ×Ki

NI∑
i=1

Ki∑
k=2

(σk(t)− σk−1(t))2 (3.1)

where NI denotes the number of internal junctions in the interconnects, Ki rep-

resents the number of connected wires at the i-th junction, which ranges between 2 and 4.

σk(t) is the k-th predicted stress result for the current junction at aging time t. The loss

function is the mean squared error (MSE) of all predicted internal junction stress, which

serves as a measurement of stress discontinuity at boundaries. When training the upper

level, the lower level stress predictor is fixed, and the loss is only back-propagated back to

the atom flux predictor to update the weights and biases in the model.

We note that the proposed hierarchical PINN approach bears some similarity to the

domain decomposition method [107] in which hierarchical solving strategies are employed.

However, there are several distinguished differences between the two approaches. First,

in domain decomposition, the subcircuits are typically obtained by partitioning and have

62

to be solved for each subcircuit every time when the whole circuit is to be solved. While

for HierPINN-EM, solutions of the single wire, whose boundary or junctions are naturally

defined, can be obtained much more efficiently via inference on the DNN network, which

only needs to be trained ONCE. At the top level, the domain decomposition method tries

to solve more dense matrices due to the subcircuit reduction via matrix-solving processes

like LU decomposition, while HierPINN-EM uses the unsupervised PINN framework to

find the solution, which is meshless and easy for design space parameterizations. It uses the

differential nature of the DNN model trained in the first stage to guide the backpropagation

process in the second stage.

3.3 Experimental Results

In this section, we demonstrate the prediction accuracy, speed, and scalability of

the proposed HierPINN-EM by testing it on both straight wires and interconnect trees that

were randomly generated. Both Atom Flux Predictor and Stress Predictor in HierPINN-

EM are implemented in Python 3.8.12 with PyTorch 1.7.1. The training and testing of both

models were run on a Linux server with 2 Xeon E5-2699v4 2.2 GHz processors and Nvidia

TITAN RTX GPU. In the training phase, the Adam optimizer was used to update the

model, and the learning rate was set to 10−4. The cross-validation technique was employed

in the training process.

63

3.3.1 Accuracy of lower level on single-segment wires

The lower-level stress predictor serves as the foundation of our proposed hierarchi-

cal method. A 7-layer multilayer perceptron with configurations of [7, 256, 512, 1024, 512,

256, 1] is employed as the backbone of the stress predictor. The stress predictor takes a wire

feature vector consisting of wire geometries, EM driving force, and boundary conditions as

input and outputs the predicted EM-induced stress at a given position and aging time. As

discussed in Section 3.2.1, we created a large dataset of 100k single-segment straight wires,

using 80k of them for training and reserving the remaining 20k wires for testing. The model

was trained for 20 epochs, which took approximately 23 hours.

Fig. 3.3 illustrates the predicted stress versus the ground truth at 2576392 locations

for an aging time of 106 seconds. These locations were randomly sampled from all 20k wires

in the test set, which were never seen by the stress predictor during the training process.

As shown in Fig. 3.3, the predicted stress values all closely align with the red line

(slope=1, intercept=0). For all 20k wires in the test set, the trained stress predictor yields

a root-mean-square error (RMSE) ranging from 7.5 × 103 to 5.7 × 104 Pa and achieves an

average RMSE of 2.7×104 Pa. Both the worst and best predicted wire segments are shown

in Fig. 3.4.

The predicted results agree very well with the ground truth, even in the worst case.

Such accuracy is even more impressive, considering that the ground truth stress values vary

in a large range between −5 × 107 and 5 × 107 Pa. By dividing the RMSE with the full

stress range (i.e., 108 Pa), the worst and mean error rates of the stress predictor can be

64

1e7

Pr
ed

ic
te

d
(P

a)

Ground Truth (Pa)

1e7

Figure 3.3: Stress predictor vs ground truth on 20k single-segment wires.

0 5 10 15 20 25 30 35 40
-0.6

-0.4

-0.2

0.0

0.2

St
re

ss
 (P

a)

Length (m)

 FEM,t=1e4
 FEM,t=1e5
 FEM,t=1e6
 Predicted,t=1e4
 Predicted,t=1e5
 Predicted,t=1e6

1e7

(a)

0 5 10
-3

-2

-1

0

1

2

3

St
re

ss
 (P

a)

Length (m)

 FEM,t=1e4
 FEM,t=1e5
 FEM,t=1e6
 Predicted,t=1e4
 Predicted,t=1e5
 Predicted,t=1e6

1e7

(b)

Figure 3.4: Comparison of predicted stress and ground truth in (a) best and (b) worst wire
segments.

65

calculated as 0.008% and 0.057%, respectively. Its low error rate in predicting stress in each

segment will serve as the foundation for accurate predictions in larger interconnect trees.

We want to note that this stress predictor only needs to be trained ONCE and

can then be embedded into the upper level for EM analysis of different interconnect trees

with different topologies. As a result, it can be viewed as a library that needs to be built

once and can actually be generated using different methods as long as the stress evolution

physics laws in a single wire are learned and enforced.

3.3.2 Accuracy of EM stress prediction on straight wires

To verify the accuracy of HierPINN-EM, we first test it on 121 randomly generated

multi-segment straight wires. All test cases have random numbers of segments ranging from

10 to 130. The stressing current density and geometrical parameters of each segment are also

randomly assigned. Fig. 3.5 shows the comparison of EM stress predicted by HierPINN-EM

and ground truth FEM results simulated by COMSOL. Fig. 3.5(a) shows the results of the

smallest case in the test set, which has 10 segments, and Fig. 3.5(b) shows the results of

the largest case with 130 segments. To show the evolution of the EM stress as aging time

increases, we plotted stress results at three aging time instants (104, 105, and 106 seconds)

for each case. The RMSEs of the HierPINN-EM predicted stress results are 5.9× 104 and

2.0× 105 Pa, respectively, for these two cases. For all 121 test cases, HierPINN-EM yields

RMSEs ranging from 4.7× 104 to 4.0× 105 Pa, and the mean error is 1.9× 105 Pa, which

can be converted to 0.19% mean error rate when taking the full 108 Pa stress range into

consideration.

66

0 50 100 150 200
-4

-3

-2

-1

0

1

2

3

4

St
re

ss
 (P

a)

Length (m)

 FEM, t=1e4
 FEM, t=1e5
 FEM, t=1e6
 Predicted, t=1e4
 Predicted, t=1e5
 Predicted, t=1e6

1e7

(a)

 FEM, t=1e4 Predicted, t=1e4
 FEM, t=1e5 Predicted, t=1e5
 FEM, t=1e6 Predicted, t=1e6

(b)

Figure 3.5: Stress comparisons of (a) a 10-segment and (b) a 130-segment straight wire
between HierPINN-EM and COMSOL at 3 aging time instants: 1e4, 1e5 and 1e6 seconds.

67

To compare HierPINN-EM with the existing PINN method, we also implemented

a plain PINN model using a 7-layer MLP with exactly the same structure as HierPINN-

EM. Note that we did not compare our method with [35], as this method can be essentially

viewed as a plain PINN method with some trade-offs between training accuracy and training

time due to more complicated neuron representations.

All equations from (2.1) are formulated into a single physics-informed loss function

to train the plain PINN. We tested the plain PINN on the same 10-segment and 130-segment

test cases, and the comparison of plain PINN and FEM stress results at aging time of 106s

is shown in Fig. 3.6. The RMSEs of plain PINN results in these two cases are 6.4× 106 and

1.6 × 107 Pa separately, which are 107× and 79× worse than that of HierPINN-EM. Due

to the large number of collocation points required in each segment in the training process

of the plain PINN model, the training cost is around 30 minutes on the 10-segment case,

and it leaps significantly to around 10 hours on the 130-segment case. As a comparison, the

training costs of HierPINN-EM are only 5.5s and 39.1s separately in these two cases. The

result verifies the great advantage in scalability of our proposed hierarchical method over

the plain PINN model.

The physics-informed loss function used to train the plain PINN model contains

all PDE equations for all domains, which leads to a complex training process. This means

that the PINN model has to be trained simultaneously in all segments and boundaries to

minimize every single error in the loss function to satisfy different physics laws. This makes

the training process of PINN highly unstable, and successful convergence is not always

guaranteed. In contrast, our proposed HierPINN-EM overcomes this issue by splitting the

68

0 50 100 150 200
-5
-4
-3
-2
-1
0
1
2
3
4
5

St
re

ss
 (P

a)

Length (m)

 FEM, t=1e6
 PINN, t=1e6

1e7

(a)

 FEM, t=1e6 PINN, t=1e6

(b)

Figure 3.6: Stress comparisons of (a) a 10-segment and (b) a 130-segment straight wire
between plain PINN and COMSOL at aging time instant 1e6 seconds.

69

equations into two levels so that the model at each level is separately trained to satisfy a

simpler physics law. The lower level is focused on a single segment while the upper level is

based on a trained lower level model so that the upper level only has to be trained on a few

internal junction points, which significantly alleviates the training load. Once the upper

level is trained, the physics laws inside each segment are automatically satisfied thanks to

the highly accurate lower level model, which is already shown in Section 3.3.2.

Moreover, different physics laws in a single loss function also require careful con-

sideration in weight assignment to balance the influence of each equation [41]. Such a weight

balancing process adds extra overhead to the training process of the plain PINN model and

further limits its scalability in large interconnects.

3.3.3 Accuracy of EM stress prediction on interconnect trees

To demonstrate the generalizability of the proposed model, we further test HierPINN-

EM on 2-D interconnect trees with more complicated topologies. The test set consists of

165 interconnect trees with random numbers of segments ranging from 10 to 105. Similar

to the straight wire test set, the stressing current density and geometrical parameters of

each segment are also randomly assigned.

To make an apple-to-apple comparison with GNN-based method EMGraph, we

convert all prediction results into stress maps, which are generated by projecting the pre-

dicted stress results for every single segment onto the interconnects topology and shown in

3-D formats. We show the comparison between HierPINN-EM, EMGraph, and COMSOL

results of the smallest (10 segments) and largest (105 segments) designs from the test set

70

in Fig. 3.7. The evolution of the stress at 3 time instants, i.e., 104, 105, and 106 seconds, is

illustrated from left to right in each row.

Comparing the predicted stress maps in Fig. 3.7 with the COMSOL ground truth

results, HierPINN-EM yields 1.2 × 105 and 3.4 × 105 Pa RMSE for these two cases, while

EMGraph yields 3.1× 105 and 3.9× 105 Pa, which are slightly worse than HierPINN-EM.

For all 165 interconnect trees in the test set, HierPINN-EM achieves better accuracy with

a mean RMSE of 2.8×105 Pa, while EMGraph achieves 3.6×105 Pa. Thus, HierPINN-EM

outperforms EMGraph in accuracy with 19% better RMSE when predicting EM-induced

stress for 2-D interconnect trees.

Moreover, EMGraph sets the number of sampling points in each segment to 5,

which leads to a coarse granularity in predicted stress results. This is not a big concern

when the lengths of segments are relatively small. However, when the segments get much

longer, it may introduce huge errors into the prediction since there are large spaces between

5 sampling points and the interpolations between them become much less reliable. This

problem is solved in HierPINN-EM as the location input x is a scalar value in float format,

which can represent any point in the segment. The granularity of the results can be easily

controlled by altering the sampling density of input x. The better inference flexibility gives

HierPINN-EM more potential in generalizability to larger interconnect trees.

3.3.4 Speed of inference

The training process of HierPINN-EM is conducted in stages; the lower level was

trained for 23 hours, while the training cost of the upper level varies case by case between

71

t = 104 s

HierPINN-EM

EM-Graph

t = 105 s t = 106 s

1e6 1e7 1e7

1e6 1e7 1e7

(a)

t = 104 s

HierPINN-EM

EM-Graph

t = 105 s t = 106 s

1e6 1e7 1e7

1e6 1e7 1e7

(b)

Figure 3.7: Stress comparisons of (a) a 10-segment and (b) a 105-segment interconnect tree
between HierPINN-EM and COMSOL at 3 aging time instants: 1e4, 1e5 and 1e6 seconds.

72

Table 3.1: Accuracy and speed comparison

Metrics HierPINN-EM EMGraph COMSOL

Max RMSE 8.9× 105 Pa 5.3× 105 Pa

Ground Truth

Min RMSE 8.4× 104 Pa 1.9× 105 Pa

Mean RMSE 2.8× 105 Pa 3.6× 105 Pa

Mean

Error Rate

0.28% 0.36%

Training

Speed

<1min 2hr -

Inference

Speed

0.8ms 0.27ms 30min

4 to 57 seconds, mainly determined by the number of internal junctions in the interconnect

tree. Although the training of the lower level seems quite time-consuming, it only has to be

trained ONCE and provides a universal predictor that can be repeatedly used in the upper

level with no further tuning effort required.

Once the HierPINN-EM is trained, both levels will be set to inference mode. All

sampling points in the interconnects will be passed simultaneously into the model to leverage

the parallel computation advantage of the GPU. We tested the training and inference speeds

of both HierPINN-EM and EMGraph on the interconnect tree test set, and the results are

summarized in Table 3.1.

73

Both learning-based methods can achieve significant speedups compared to COM-

SOL. Specifically, the mean inference speed of HierPINN-EM for each interconnect tree is

0.8ms, which is 3× slower than the 0.27ms inference speed of EMGraph. However, the dif-

ference in inference speed is mainly caused by the difference in sampling density, as shown

in Section 3.3.3. During the inference test, the number of sampling points in each segment

varies according to the wire length in HierPINN-EM, but is fixed to only 5 in EMGraph

due to its fixed input layer structure. This results in approximately 30× more sampling

points in HierPINN-EM, leading to higher computational cost. However, with such adap-

tive sampling ability, HierPINN-EM can predict more accurate stress map with much better

granularity. Therefore, the loss in inference speed is actually an acceptable tradeoff.

Another major advantage of HierPINN-EM over EMGraph lies in its better flexi-

bility in the inference phase. Limited by the message-passing structure of GNN, to predict

EM stress in any single segment, the whole interconnect graph requires to be fed into EM-

Graph so that the target segment can receive useful information from its multi-hop neighbors

which can be leveraged to predict stress. This means that EMGraph can only predict stress

for interconnects as a whole, but is not able to make predictions for small local regions. In

contrast, HierPINN-EM takes position x and time t as input parameters, which enables it

to make stress predictions with much better flexibility. It can predict stress for any seg-

ment or even a single point in the interconnects at any aging time by simply passing the

interested location and time into the model. This enables HierPINN-EM to achieve more

significant speedups in local stress analysis. The better accuracy, inference flexibility, and

74

granularity of results make HierPINN-EM a better learning-based approach for transient

EM stress analysis.

3.4 Summary

The work presented in this chapter introduces a hierarchical PINN-based method,

called HierPINN-EM, to solve the Korhonen equations for multi-segment interconnects,

which enables fast EM failure analysis. HierPINN-EM divides the physics laws into two

levels and solves the PDE equations step by step. The lower level uses supervised learning

to train a DNN model that takes parameterized neurons as inputs, serving as a universal

parameterized EM stress solver for single-segment wires. The upper level employs physics-

informed loss function to train a separate DNN model at the boundaries of all wire segments,

enforcing stress and atom flux continuities at internal junctions in interconnects. Numerical

results on a number of synthetic interconnect trees show that HierPINN-EM can lead to

orders of magnitude speedup in training and over 79× better accuracy compared to the

plain PINN method. Furthermore, HierPINN-EM yields 19% better accuracy with a 99%

reduction in training cost over the previous graph neural network-based EM solver, EM-

Graph. Overall, the proposed HierPINN-EM method offers a powerful and efficient solution

for fast EM failure analysis in multi-segment interconnects.

75

Chapter 4

Full-Chip Thermal Map

Estimation With Generative

Adversarial Learning

4.1 Related Work and Motivation

To estimate on-chip temperature maps, there are two general strategies. The first

strategy involves estimating full-chip heat maps from physics-based thermal models and

power-related information [96, 88]. Such bottom-up numerical methods include HotSpot [36],

which is based on simplified finite difference methods, finite element methods [31], equiv-

alent thermal RC networks [27], and the recently proposed top-down behavioral thermal

models based on the matrix pencil method [51] and subspace identification method [26, 56].

In general, full-chip thermal analysis from given power information requires expensive nu-

76

merical analysis such as finite difference or finite element-based approaches, which are very

expensive for online applications [17]. The second strategy involves using an interpolation-

based approach to estimate full-chip heat maps from embedded sensor readings [20, 9].

Since the number of sensors and their placement significantly impact the accuracy of the

aforementioned interpolation, smart sensor placement algorithms have been proposed that

can be used during design time to find the optimal placement for the given budget of

embedded temperature sensors [20, 63, 71, 70, 105, 52]. Work in [20] exploits Fourier anal-

ysis techniques to fully recover the thermal map. However, the accuracy is limited by the

non-band-limited nature of the temperature signals and approximations required for non-

uniform placement of the thermal sensors, which is common in heterogeneous multi-core

processors. Nowroz et al. [63, 71] tried to minimize the number of thermal sensors in the

sensor placement to recover thermal maps (or some key locations) based on interpolation of

hard sensor information in frequency domain and DC domain, respectively. Such a strat-

egy was further improved by using Eigen decomposing of the interpolation matrix, which

leads to near-optimal sensor number and placement [70]. Zhang et al. [101, 105] proposed a

statistical method for both power and thermal maps estimation, in which the correlations

of power dissipation of different modules of a chip were exploited to recover the power map

from sensor readings first, and temperature was estimated once the power map is obtained.

However, the estimation is based on power correlation information. Recently, Ziabari et

al. [108] introduced the power blurring method for fast 2-D temperature map computation,

which is essentially the Green’s function-based method in which the temperature response

to unit power impulses must be computed first from FEM thermal analysis. However, this

77

method is difficult to apply practically as accurate thermal models are not always available

first.

However, the aforementioned methods either require design-time hardware changes

(such as inserting or relocating sensors) or at the very least require detailed knowledge of the

chip’s floorplan, correlations among functional unit power sources, and constants specific

to the technology-node, which are not disclosed by the original chip manufacturer. An

exclusively post-silicon approach to real-time transient estimation of the spatial temperature

distribution across the entire chip area, i.e., at time t, estimate the full-chip spatial heatmap

T (x, y)t, remains a challenge for existing commercial microprocessors.

On the other hand, machine learning, especially deep learning, is gaining much

attention due to the breakthrough performance in various cognitive applications such as

visual object recognition, object detection, speech recognition, natural language processing,

etc. due to dramatic accuracy improvements in their time-series or sequential modeling

capabilities [28]. Machine learning for electronic design automation (EDA) is also gaining

significant traction as it provides new computing and optimization paradigms for many

of the challenging design automation problems that are complex in nature. For instance,

machine learning methods have been applied to power modeling [30] and design space

exploration [43]. Additionally, machine-learning-based schemes have recently been explored

to build a workload-dependent thermal prediction model [103], where the future steady-

state temperature of the chip can be predicted by application characteristics and physical

features.

78

Recently, long-short-term memory (LSTM) based machine learning approach based

on Intel Performance Counter Monitor (PCM) metrics has been proposed for hot spot de-

tection [73, 75] and for full-chip thermal map estimation [74] of commercial off-the-shelf

multi-core processors. To improve efficiency, 2D discrete cosine transformation (DCT) is

used to compress the thermal images for the learning process [74]. However, this method

needs to know the historical data of both PCM and temperatures for the training, which

can be expensive. Furthermore, the accuracy of this approach is still less than expected due

to the data compression process.

Recently, GAN-based methods have been applied for VLSI physical designs such

as generation of various noise maps to facilitate the IR-drop noise sensor placement [54], for

layout lithography analysis [99], and sub-resolution assist feature generation [5], for analog

layout well generation [95]. However, few studies have investigated data-driven circuit-level

and thermal analysis to model the dynamic systems described by the partial differential

equations.

4.2 Training Data Preparation

Sufficient data is always vital for machine learning methods. To enable the pro-

posed model to learn the distribution of PCM data and map it to the correct thermal

distribution map, sufficient amount of training data is a must. In this work, a large amount

of thermal distribution data of the CPU (called thermal map in this work) and correspond-

ing real-time PCM data are required from which the model can learn the transformation

scheme in between. In what follows, we will present the setup used to acquire the training

79

data, as well as the necessary pre-processing methods performed on the training set prior

to feeding them to the model.

To externally acquire accurate thermal maps of a working CPU, we propose to use

a measurement system based on an infrared (IR) camera. Fig. 4.1 illustrates the overall

setup of our thermography system. The IR camera over the chip is a FLIR A325sc (16-bit

320 × 240 pixels, 60Hz). The camera is rated for the temperature range of 0◦C to 328◦C,

and spectral range of 7.5µm to 13µm. A microscope lens is used to provide a finer spatial

resolution of 50µm/px. The CPU used in our test is an Intel i7-8650U working on an

Intel ® NUC7i7DNHE motherboard with the stock CPU cooler removed. The distance

between the camera and the chip is approximately 70mm. When the CPU is running, the

thermo-electric device mounted at the back of the chip transfers heat from its upper side

to the other. The water block and circulation loop attached below further dissipate the

heat into the radiator, where the heat finally radiates to the air. With this setup, we are

able to maintain the temperature of the CPU within its specified range as the stock cooler

between the IR camera and the chip is removed. To synchronize the captured thermal

map with its corresponding PCM data, we connect the IR camera and the CPU through

a synchronization I/O. Each thermal map and PCM data that were collected at the same

time instant are paired and saved together as one sample.

PCM is a tool from Intel that monitors the performance and energy metrics of

all series of Intel processors. The monitored metrics range widely from basic processor

monitoring utilities, such as instructions per cycle (IPC) and core frequency, to sleep and

energy states of the processor, and to peripheral memory bandwidth and cache miss. A

80

IR Camera

Motherboard

CPU Die

Thermo-electric

Device

Waterblock

Radiator

Water

Circulation

Loop

Programmable

DC Power Supply

Synchronization I/O

(a)

(b)

Figure 4.1: IR thermography setup used to collect training data in this work

81

Table 4.1: Performance metrics (Intel PCM)

Pkg. Socket Socket Core 1 to 8

INST EXEC C6res% EXEC

ACYC IPC C7res% IPC

TIME FREQ C2res% FREQ

PhysIPC AFREQ C3res AFREQ

PhysIPC% L3MISS C6res L3MISS

INSTnom L2MISS C7res L2MISS

INSTnom% L3HIT C8res% L3HIT

C0res% L2HIT C9res% L2HIT

C2res% L3MPI C10res% L3MPI

C3res% L2MPI SKT0 L2MPI

C6res% READ C0res%

C7res% WRITE C1res%

C8res% TEMP C3res%

C9res% C0res% C6res%

C10res% C1res% C7res%

Energy C3res% TEMP

number of APIs are provided for real-time monitoring which is highly suitable for our real-

time full-chip thermal modeling application. The complete list of all 170 PCM metrics that

we collect and employ for the thermal modeling of Intel i7-8650U is shown in Table 4.1.

The temperatures in each thermal map vary widely from 25◦C to 100◦C, while

the values of the metrics in PCM data have all kinds of scales. Some metrics only change

in a small range around zero, while others range widely with several orders of magnitude.

Such inconsistencies in data scales may cause severe instability and accuracy degeneration

82

in neural networks. Before feeding them to the machine learning model, all data must be

rescaled to comparable ranges. In this work, to accommodate the tanh activation function

employed in our model, as detailed in Section 4.3, we rescale all thermal maps to the range of

[-1,1] using the min-max normalization scheme as given in (4.1). For PCM data, we rescale

all metrics to a mean of 0 and a standard deviation of 1 using the data standardization

method.

Data′ij = (
Dataij −min(Data)

max(Data)−min(Data)
× 2)− 1 (4.1)

Fig. 4.2 illustrates the flow of conventional thermal modeling for full-chip estima-

tion and our proposed ThermGAN method. There are multiple stages in the conventional

flow. First, only thermal-related metrics are extracted from the PCM data while the exact

locations of the thermal sensors are unknown. The thermal model should predict the sensor

locations prior to performing the actual thermal estimation. As the final estimation is based

only on the sensor data, the accuracy of full-chip thermal modeling is inherently limited. As

shown in the lower flow in Fig. 4.2, our proposed GAN-based method takes all PCM data

as input and is trained on measured thermal maps. The unknown physics law governing

the transmission between them is automatically learned by the model, making it possible

for high-accuracy full-chip thermal modeling.

We note that the proposed thermal modeling technique is orthogonal to specific

CPU being modeled and the way thermal maps are obtained. It can be applied to any real-

time monitoring metrics to full-chip thermal modeling of commercial multi-processor chips.

The CPU used in this work is only for illustrative purposes. Furthermore, the thermal

83

PCM Data

Conventional

Thermal

Model

ThermGAN

IPC

core frequency

energy state

cache miss

Estimated

Thermal Map

GAN Generated

Thermal Map

Ground Truth

Thermal Map

Functional Unit

Utilization Rate

Floorplan

Functional Unit

Power

Figure 4.2: Conventional thermal modeling flow and the proposed ThermGAN flow.

maps obtained in this work were from the setup without heat sinks due to the imaging

measurement requirement. However, the proposed method can be applied to any obtained

or computed thermal maps. Research is underway to obtain accurate transient thermal

maps from CPUs running in a practical setup with heat sinks.

4.3 CGAN-Based PCM to Temperature Transformation

4.3.1 From PCM to thermal image transformation

We first demonstrate that the process of estimating a full-chip thermal map for a

multi-core processor can be viewed as an image synthesis process. In this process, the DNN

can convert features (PCMs) and continuous time variables into an image.

4.3.2 Review of GANs

Generative Adversarial Nets (GANs) were first introduced by Ian Goodfellow in

2014 [29] and have drawn tremendous attention in recent years. A typical GAN consists

84

of two networks known as the discriminator D and generator G. The generator takes a

random vector z, usually normally distributed, as its input and maps it to an output image

that is as close to those in the training dataset as possible. Images in the training set are

labeled as ’real’ images, and the ones produced by the generator are noted as ’fake’. The

discriminator takes either a real or fake image as its input and discriminates between them.

Both D and G are trained simultaneously, and this process is a contest between these two

networks. The generator keeps optimizing itself to fool the discriminator with fake images

while the discriminator also strives to increase its classification accuracy. Once the GAN is

trained, the generator should be able to generate real-like images by mapping its random

input to the learned distribution of real images. The discriminator, on the other hand, will

classify all its input images as ”real” or ”fake” with the same possibility of 50%, indicating

that fake and real images look pretty much alike and are no longer distinguishable by the

discriminator.

The training of GANs is usually a tricky process and may never converge due to

the gradient vanishing problem. Wasserstein GAN (WGAN) was introduced by Martin

Arjovsky in [8] to mitigate this issue. Wasserstein Distance, rather than the conventional

JS-Divergence, was proposed to serve as the measurement of the difference between real and

fake image distributions. With such a small change in the loss function, WGAN promises

a more stable training process and less likelihood of mode collapse. The results have shown

significant advantages of GANs over conventional methods in terms of both performance

and accuracy.

85

IPC

core freq

energy

cache

x G
G(x)

y

D

D(x,y)

D(x,G(x))

Real

Fake

Gradients

Gradients

OR OR

Condition

Generator Discriminator

+

PCM Data

Figure 4.3: The proposed ThermGAN framework.

Fig. 4.3 illustrates our proposed structure of converting PCM data into thermal

map using WGAN. The raw PCM data z is given to the generator G as a 1×170 vector

with all entries standardized around zero, as described in Section 4.2. Both PCM data and

thermal maps follow a unique probability distribution separately. The generator learns the

mapping method between these two distributions and transforms the input PCM data z to

its corresponding thermal map, denoted as G(z). The fake thermal map G(z) and the real

ones y are then fed alternatively into the discriminator D along with their paired PCM data,

which serves as the condition input. For G(z), the PCM data concatenated to it is the input

of G used to generate G(z). For y, the PCM data collected at the same time instant is used

as the condition input. The output of the discriminator, noted as D(z,y) or D(z,G(z))

depending on whether real or fake thermal map was taken as input, is a real value indicating

how confident the discriminator is toward the input being a correct thermal map conditioned

on the given PCM data. The objective in training the discriminator is therefore to maximize

D(z,y) and minimize D(z,G(z)) in terms of expectations over the distributions of y and

86

z. Such an objective function of the discriminator can be mathematically expressed as the

following equation (4.2).

max
D
{Ez,y[D(z,y)]− Ez[D(z, G(z))]−

λgpEẑ[(‖∇ẑD(ẑ, z))‖2 − 1)2]}
(4.2)

Ez,y and Ez represent the expectations over the distributions of z and y, respec-

tively. To maintain the 1-Lipschitz continuity of the discriminator, we adopt the gradient

penalty from WGAN-GP [8]. ẑ is the interpolation between the fake and the real thermal

map and λgp controls the weight of gradient penalty. The training objective of the generator

is to deceive the discriminator with generated thermal maps, so its objective is to maximize

the expectation of D(z,G(z)). The objective function of the generator is defined in (4.3).

Since the generator has no influence on the real thermal maps, the D(z,y) term is omitted

in the function.

min
G
{Ez[−D(z, G(z))] + λL2 · Ez,y[‖y −G(z)‖2]} (4.3)

In both (4.2) and (4.3), we use the Wasserstein Distance as the loss function, which

has the advantage of higher training stability and convergence possibility. The detailed

architecture and parameters of the ThermGAN are shown in Table 4.2. We discard the

random noise from the original GAN, as in our work, there are abundant PCM data in the

training set that follow a certain distribution. This makes the PCM data itself can be seen as

random noise, just as the original z vector does. The PCM data given to the generator is first

passed through a fully connected layer and reshaped to a square array. Then it is upsampled

through six transposed convolutional layers and outputted as a 256×256 fake thermal map.

87

Table 4.2: ThermGAN parameters used in this work

Generator Discriminator

Layer Kernel #Output Activation Layer Kernel #Output Activation

FC - 8192 LReLU Conv 5x5 128×128×64 ReLU

Reshape - 4×4×512 - Conv 5x5 64×64×128 ReLU

Conv trans 5x5 8×8×512 LReLU Conv 5x5 32×32×256 ReLU

Conv trans 5x5 16×16×512 LReLU Conv 5x5 16×16×512 ReLU

Conv trans 5x5 32×32×256 LReLU Conv 5x5 8×8×512 ReLU

Conv trans 5x5 64×64×128 LReLU Conv 5x5 4×4×512 ReLU

Conv trans 5x5 128×128×64 LReLU Conv 5x5 2×2×512 ReLU

Conv trans 5x5 256×256×1 tanh FC - 512 ReLU

- - - - FC - 1 None

All thermal maps are originally 185×154 in dimensions; however, for the convenience of

being handled by the discriminator, they are expanded to 256×256 by equally padding zero

values in every dimension. The discriminator is a conventional convolutional classifier with

only one neuron as an output and, to utilize the Wasserstein distance, no activation function

is applied to it.

88

4.3.3 Transient thermal map estimation

Traditionally, computing thermal information from power is a time-convolutional

operation, which requires historical power data. However, our thermal image generation

problem from the utilization and on-chip sensor readings can be viewed as a real-time inverse

or fitting problem using on-chip real-time information. Similar problems based on limited

on-chip sensor readings have been explored by many pre-silicon temperature estimation

methods [63, 71, 70].

For our problem, the PCM metrics indeed consist of real-time temperature sensor

information for each core and the emtire chip. Although the temperature at any time instant

is determined by history thermo-information, such a dependency is already decoupled by

the temperature sensors, allowing for the estimation of the thermal map. As shown in

the experimental section, ThermGAN can produce highly accurate transient thermal map

estimation and outperforms the time-dependent LSTM model from [74] in terms of both

accuracy and speed.

4.4 Experimental Results and Discussion

In this section, we present the experimental results demonstrating the speed and

accuracy of our proposed ThermGAN model for PCM data to thermal map estimation.

We implemented the entire network in Python 3.7 based on TensorFlow(1.14.0) [3],

a widely used open-source machine learning library. The model was trained for 10 epochs

on a Linux server with 2 Xeon E5-2698v2 2.3GHz processors and Nvidia Titan X GTX

GPU. The batch size was set to 8, and each data sample consisted of a pair of synchronized

89

Table 4.3: Benchmarks

Processor Memory System

AObench PHPbench T-test

Compress-7zip Cyclictest Cachebench

Encode-flac Git RAMspeed

Build-gcc Mbw Stream

Idle Dbench Aio-stress

- Tinymem Fio

- - Tiobench

PCM data and thermal map. We used 18 computationally intensive benchmarks from the

Phoronix benchmark suite [65] to collect the training data. As listed in Table 4.3, the

benchmarks were split into three categories: processor, memory, and system. The variety

of the benchmarks ensured that the CPU was subjected to different kinds of workloads,

leading to the diversity of the training samples. For each workload, we kept the CPU

running for 4 minutes and sampled the data at a frequency of 60Hz. At each time instant,

both PCM data and the thermal map were captured simultaneously and saved in pair as

one sample. Finally, we obtained 14,300 samples for each benchmark, and a total of 257,400

samples were collected in the training set.

The collected raw samples are preprocessed as described in Section 4.2. To better

validate the performance of our trained model, we randomly pick 25% of the samples as

the test set and only use the remaining 75% for training. The learning rate and the decay

parameters in the RMSProp optimizer are set to 0.0001 and 0.9. The weight of L2-norm

90

Ground Truth

Epoch 1 Epoch 2 Epoch 5

Epoch 8 Epoch 10

Figure 4.4: Evolution of one random sample as the training progresses.

λL2 is set to 100, and λgp is set to 10. We ran the training for 10 epochs, and the results

reported in this section are based on the test set, which was completely unseen by the model

in the training process.

Fig. 4.4 visualizes the training process by showing the evolution of the output of

the generator. We randomly picked one sample from the training set and show results in 5

epochs together with the ground truth. It can be clearly seen that the generated thermal

map becomes closer to the ground truth as the training progresses.

91

4.4.1 Accuracy of thermal map estimation

Once the ThermGAN is trained, the discriminator will be discarded, and only the

generator is preserved. This model can take PCM data from any time instant as input and

generate a real-like thermal map indicating the full-chip thermal distribution. To verify

the performance of the model, we use the root-mean-square error (RMSE) given in (4.4) as

the metric to indicate the difference between the generated and real thermal map (ground

truth).

RMSE =

√∑W
x=1

∑H
y=1(T (x, y)− T ′(x, y))2

W ×H
(4.4)

where T and T ′ are the real and generated thermal maps, respectively. Both of

them are images with only one channel, which can easily suit the equation as matrices. The

vertical and horizontal dimensions of the thermal maps are H = 185 pixels and W = 154

pixels, respectively. We evaluated our trained ThermGAN model on the test set, and the

average RMSE across all 64,350 samples in the test set is 0.47◦C with a standard deviation

of 0.56◦C. In this work, the temperature in thermal maps of our test set ranges from 25 to

100◦C. Comparing the absolute values of the error with this 75◦C scale, the ThermGAN

achieves an averaged full-scale estimation error of 0.63% and a standard deviation of 0.75%.

This is a quite promising result since such resolution is accurate enough for thermal es-

timation applications. Fig. 4.8 illustrates the comparison between generated and ground

truth thermal maps, which are randomly picked from the test set. The title of each thermal

map indicates the benchmark it is from and the time instant in which it was collected. We

show every thermal map in both 2D-image and 3D-plot with contour lines. As shown in the

92

figure, there are more spikes in the contour lines of the generated thermal map, indicating

more noise, but the overall thermal distribution pattern is indistinguishable. The bottom

row of Fig. 4.8 illustrates the error maps, which are defined as the pixel-to-pixel difference

between the real and fake thermal maps. Most of the errors are within 0.5◦C, except for

only a few points, but still in an acceptable range, which is less than 1.5◦C.

4.4.2 Real case study

The proposed ThermGAN is aimed at online estimation of full-chip transient ther-

mal distribution. To evaluate the model in a real application, we run the test on another

benchmark named “Gimp”. It is also from the Phoronix benchmark suite and is an open-

source image manipulation program that keeps the chip at an intensive workload. This

benchmark was kept unseen throughout the training process and has completely no overlap

with the benchmarks in the training set. We run the “Gimp” workload on the i7-8650U

processor for 2 minutes while the PCM data are collected at the frequency of 60Hz and

fed into the ThermGAN for inference. The IR camera simultaneously captures real thermal

maps of the chip, which are used as ground truth to verify the ThermGAN inference results.

A total of 7200 samples are collected, and ThermGAN achieves an average RMSE of 0.83◦C

with a standard deviation of 0.52◦C. The error increases by 0.39◦C compared to the result

we get on the test set, which is actually a reasonable result as the distribution of data

points in real cases may vary a lot from that of the training set. Despite the degradation

of accuracy, the RMSE is still within 1◦C, and the averaged full-scale error is only 1.1%,

which is more than enough for full-chip thermal estimation in real applications. Some of

the results are detailed in Fig. 4.5. We pick three time instants (883, 4260, and 6903) and

93

Ground TruthEstimated Ground TruthEstimated Ground TruthEstimated

Figure 4.5: Comparison between estimated thermal distribution and ground truth on
“Gimp” benchmark.

compare the estimated thermal map with its ground truth. We also fix a point on the upper

right section of the chip and plot the time-series temperature prediction for this position.

4.4.3 Speed of inference

The training process of ThermGAN was time-consuming and cost more than 12

hours to converge. However, once the model is trained, it only reserves the generator part,

which is much lighter and can be embedded into the CPU to perform real-time thermal

map estimation. In our test, the time cost for each inference (one estimation of the whole

chip thermal distribution based on the PCM data acquired in real-time) has a mean of

7ms and a maximum of 7.5ms, which translates to an inference frequency faster than 140

94

(a) (b) (c)

Figure 4.6: (a) Ground truth and estimated thermal map using (b) ThermGAN and (c)
COMSOL FEM simulation.

thermal maps per second. Such performance further verifies that our ThermGAN model is

capable of real-time thermal estimation. The inference may introduce some overhead into

the CPU computation, but doing temperature estimation at intervals of several seconds is

fast enough to meet the need for real applications such as CPU task arrangement control.

We further study the modeling efficiency by comparing it with the off-the-shelf

FEM tool. Since we start with PCM parameters as inputs, we can’t use traditional thermal

simulator like HotSpot [36]. Instead, we first obtain the power map from the measured

thermal map via 2D spatial Laplace operation and subsequent scaling based on the total

power [73]. We then use COMSOL to model the setup for multi-core processors and use the

power map obtained as the inputs. The FEM simulation was conducted on the same server

as the GAN model, and it takes 3 seconds on average for each thermal map generation.

As a result, our study shows that the proposed ThermGAN model can achieve a ∼240X

speedup over the FEM method with similar accuracy, as shown in Fig. 4.6. We remark that

95

much faster numerical thermal analysis methods (than FEM) also exist. But the absolute

speedup is less important than the millisecond performance we achieved in this work.

4.4.4 Metrics in PCM that really matters

As detailed in Table 4.1, we utilized all 170 PCM metrics as inputs for ThermGAN,

which is actually an overkill, since not all metrics are necessarily relevant to thermal estima-

tion. Out of the 170 metrics, only 9 of them, i.e., temperature sensor readings of 8 cores and

1 socket, are directly related to the thermal information. For the remaining 161 metrics,

it is difficult to determine which ones are more correlated with CPU thermal performance

and which are of lesser importance. Therefore, in this work, we leave it to the model to

determine the importance of each metric as the training process will assign heavier weights

to the thermo-relevant metrics automatically. During inference, the irrelevant metrics will

have less influence on the accuracy of the estimated thermal map.

To verify this and identify the thermo-relevant metrics, the following PCM mask-

ing test was conducted using the trained ThermGAN model. For each PCM vector, we

masked only one entry at a time corresponding to the metric of interest. Thus, the input

dimension remained unchanged, and the trained ThermGAN model could still be applied

to it. However, the masked metric did not participate in the feed-forward calculation. By

doing so, we observed how much the output accuracy was influenced by the masked met-

ric, while all the remaining 169 metrics remained unchanged. The RMSE of the generated

thermal map against the ground truth was calculated in the same way introduced in Sec-

tion 4.4.1. For each input, the mask slid through all 170 entries, resulting in 170 thermal

96

TE
M
P

TE
M
P

TE
M
P

TE
M
P

TE
M
P

TE
M
P

TE
M
P

TE
M
P

L3
M
ISS

TE
M
P

C1
re
s%

L2
M
ISS

C7
re
s%

L3
M
ISS

C1
re
s%

C6
re
s%

C1
re
s%

C1
re
s%

C7
re
s%

W
RIT

E
C7
re
s%

C8
re
s%

C9
re
s%

C1
0r
es
%

L2
HI
T

TIM
E(t
ick
s)

C3
re
s%

C3
re
s%

C3
re
s%

0.0

0.5

1.0

1.5

2.0

2.5

3.0
RM
SE
/
°C

PCM Metrics

Figure 4.7: RMSE distribution across 170 masked PCM metrics.

maps, each corresponding to a masked PCM metric. We ran the masking test on the test

set and plotted the average RMSEs for all masked metrics in Fig. 4.7.

The red line represents the average RMSE of thermal maps generated using un-

masked PCM data. Masking different metrics results in vastly various accuracy degradation.

The importance of each metric is proportional to the increment it introduces to the output

RMSE. The top 8 errors are all caused by masking core temperature sensor readings. Each

of them leads to an accuracy loss of more than 1.3◦C. Masking the socket temperature met-

ric caused an error of 0.65◦C, which is not as much as the core temperatures but still among

the top 10 metrics. Such an observation is within our expectation, but they are obviously

not the only factors causing the accuracy degradation. The L3MISS is influencing the ac-

97

Generated

Thermal Map

Ground Truth

Thermal Map

aobench 13177 compress-7zip 9804 cachebench 14033 tinymembench 570phpbench 6813 t-test1 4081

Error Map

Figure 4.8: Comparison between generated and ground truth thermal maps.

curacy even more than the socket temperature. For the rest 160 metrics, 70 of them caused

more than a 5% degradation in accuracy compared to the baseline 0.44◦C, and among which

33 metrics led to >10% accuracy loss. We refer to these top 80 metrics as thermo-relevant

metrics, and the rest 90 metrics are playing a relatively small (<5%) or even negligible role

in the estimation, which implies that they are not thermo-relevant metrics. Apart from

the temperatures, most of the thermo-relevant metrics are related to C-state, which reflects

the idle power-saving information per core. The other thermo-relevant metrics consist of

frequencies, L3 caches, instructions per cycle, and so on.

4.4.5 Comparisons with state of the arts

In this subsection, we compare ThermGAN with a recently proposed post-silicon

full-chip thermal estimation method [74] and the pre-silicon estimation method [70].

Work in [74] is a machine-learning-based model aimed at full-chip thermal esti-

mation using PCM data. It employed LSTM as its backbone and is implemented on the

dual-core i5-3337U, which has only 80 PCM metrics as input. To conduct a fair comparison,

98

we increased the number of units in both its input and first layers to 170 to accommodate

the 170 PCM metrics of i7-8650U. The same dataset introduced in Sec 4.2 was used for

both training and testing.

The average RMSE across all testing workloads is 1.84◦C, and the standard devi-

ation is 1.11◦C. In contrast, the proposed ThermGAN yields an average RMSE of 0.47◦C

and a standard deviation of 0.56◦C, respectively, as previously mentioned in Sec 4.4.1. Fur-

thermore, the computational cost for each inference is ∼17ms, which is also slower than the

∼7ms inference time yields by ThermGAN.

Since there is no other research on post-silicon thermal estimation other than

[74], we further compare our method with the state-of-the-art pre-silicon method known

as “Eigenmaps” proposed in [70]. We note that this is not an apples-to-apples compar-

ison as the “Eigenmaps” method requires optimized sensor locations in the chip design

process. For commercial off-the-shelf microprocessors, both the number and locations of

the temperature sensors are fixed and may not meet the requirements of the “Eigenmaps”

method. However, in this comparative research, we assume such optimizations are done

and allow the “Eigenmaps” method to get the temperatures from the measured thermal

maps instead of the physical sensors. The locations where the temperatures are sampled

can be seen as virtual sensors which are optimized according to the algorithms in [70]. To

make a fair comparison, the number of virtual sensors is set to one for each of the 4 physical

cores and one for the socket. We ran the “Eigenmaps” method on the test set, and the

average RMSE of estimated thermal maps is 0.94◦C with a standard deviation of 0.45◦C.

It is slightly better than [74], but still worse than the proposed ThermGAN method. In

99

terms of the overhead in real-time thermal estimation, the “Eigenmaps” method requires

pre-calculating and saving a dense matrix with 811680100 single-precision floating-point

entries, which translates to 3.25 GB in memory. This is quite expensive and therefore not

suitable for real-time applications.

4.5 Summary

The work presented in this chapter introduces a data-driven full-chip transient

thermal map estimation method for commercial multi-core microprocessors based on the

generative adversarial learning method. The proposed method, named ThermGAN, only

uses the existing embedded temperature sensors and system-level utilization information,

which are available in real-time. Consequently, the methods presented in this work can be

implemented by either the original chip manufacturer or a third party alike. In our approach,

we treat the traditional thermal modeling problem as the image generation task based on

customized conditional generative adversarial networks. The resulting ThermGAN can

provide tool-accurate full-chip transient thermal maps from the given performance monitor

traces of commercial off-the-shelf multi-core processors. Experimental results show that

the trained model is very accurate in thermal estimation with an average RMSE of 0.47◦C,

namely, 0.63% of the full-scale error. Our data further show that the speed of the model is

faster than 7.5ms per inference, which is two orders of magnitude faster than the traditional

finite element-based thermal analysis. Furthermore, the new method is ∼4x more accurate

than the recently proposed LSTM-based thermal map estimation method and has faster

100

inference speed. It also achieves ∼2x the accuracy with much less computational cost than

a state-of-the-art pre-silicon-based estimation method.

101

Chapter 5

Physics-Constrained Deep

Learning-Based Electrostatics

Analysis

5.1 Related Work and Motivation

In this section, we review some related work. The use of neural networks with

physics laws to solve classic differential equations as constraints was originally proposed in

the late 1990s [50, 48]. However, those works were limited by computational power at the

time. Recently, this idea has received much attention due to the recent advances in deep

learning for many cognitive tasks, along with ever-increasing computational resources [49].

Recently, Raissi et al proposed to solve 1-D PDEs [68, 67] using the so-called PINN, as

shown in Fig. 5.1. In this neural network, the physics law in terms of partial differential

102

�

Æ

Ç

}

P

P

P

P

P

P

P

P

P

P

�5 L =5Qç E >5Që E ?5Qëì E @5Qçç E®

�6 L =6Qç E >6Që E ?6Qìí E @6Qëí E®

�7 L =7 E >7Qì E ?7Qëì E @7Qëí E®

�8 L =8 E >8Që E ?8Qí E @8Qëí E®

�9 L =9 E >9Që E ?9Qì E @9Qíí E®

í

M�

MÆ

MÇ

MÌ

í

M�

MÆ

MÇ

MÌ

Figure 5.1: Concept of physics-informed neural networks

equations, boundary conditions, and initial conditions are explicitly checked for each input

(coordinates). This allows the resulting loss function and its gradient to be computed for

back-propagation based training.

The PINN or PCNN approaches have recently been extended to solve high-dimensional

PDEs by approximating the Galerkin method using neural networks [78], assimilate multi-

fidelity training data [61], and its variational analyses have been explored based on arbitrary

polynomial chaos [102] and adversarial inference [98]. However, these models can only solve

small-sized PDEs with simple boundary conditions. PDE problems with complex bound-

aries and geometries actually still remain a challenging problem, as demonstrated by this

work. Berg et al. proposed a new loss function so that the boundary conditions can be

hard-coded to be automatically fulfilled by using two well-defined neural network-enabled

auxiliary functions [10]. Recently, Sun et al. applied the PCNN concept to solve uncer-

tainty quantification problems of fluid flows described by the Navier-Stokes PDEs [82].

This method introduced more parameters into the neural networks to model the param-

103

eter variations and showed that PCNN-based models can yield significant speedup over

the first-principle-based numerical approaches. However, all these published works were

demonstrated on many small problems with simple boundary conditions, and the claimed

accuracies were not verified on large engineering problems. As we show in this paper, the

PINN/PCNN-based analysis framework still remains challenging for practical large analysis

problems in terms of both speedup and accuracy.

5.2 Preliminaries

5.2.1 Electrostatics problem

As mentioned above, many VLSI-related problems can be concluded to the elec-

trostatics problem, where electric current does not exist, and there are only static electric

fields due to the voltages applied or charges. They are governed by the first equation of

Maxwell’s equations, also known as Gauss’s law:

∇2u(x) =
−ρ
ε
, x ∈ Φ (5.1)

with following Dirichlet and Neumann boundary conditions:

u = f(x), x ∈ ΓD,

∇u · ~n = g(x), x ∈ ΓN ,

(5.2)

where Φ is the solution domain, ΓD is the part of the boundary where Dirichlet (voltage)

boundary conditions are given, ΓN is the part of the boundary where Neumann boundary

conditions are given, u(x) is the unknown potential to be found, ρ is the charge density, ε

is the permittivity, and f(x) and g(x) are the given voltage sources and current sources at

the boundaries.

104

In cases where static charges are absent, which is the focus of this work, Equation

(5.1) becomes the Laplace equation:

∇2u = 0 (5.3)

After solving Equation (5.3), the distribution of the electric field is usually obtained

by calculating the gradient as per its definition:

~E = −∇u (5.4)

Solving for ~E under the given voltage boundary conditions f(u) is often of more

interest for many practical problems. For example, in capacitance extraction, the voltage

is first set to 1V for one interconnect wire (indexed i) and 0V for other wires. Then, the

induced static charge in any other wire j can be computed using Gauss’s flux theorem.

5.2.2 Finite element method

In conventional methods, electrostatics problems are solved using discretization

techniques such as FEM or FDM. Results obtained from commercial tools based on FEM,

such as COMSOL, are usually considered reliable.

In conclusion, FEM first discretizes the domain to be solved by a mesh. The

chosen mesh and the shape function define a function space. Elements of the function space

are defined by expansion coefficients of the shape functions. A numerical solution to the

original PDEs can then be found by searching in this function space for the one that best

fits the original equations. This is done by setting up and solving a linear system from

the original PDEs, with the expansion coefficients to be solved. Typically, the final linear

system is composed of tens of thousands of unknowns, known as degrees of freedom (DOF).

105

Solving a problem of this scale is not very expensive, yet it is still noticeable in a longer

routine.

5.3 Physics-Constrained Neural Network Solver for Electro-

statics

In this section, we present the proposed physics-constrained neural network solver

for the electrostatics problem. We first describe how the loss functions are built and then

show how to extend the PCNN concept for a parameterized PCNN network so that the

trained models can be applied to simulation works for different parameters and conditions.

5.3.1 PCNN models for electrostatics analysis

As we can see, PCNN essentially leverages the well-known capability of DNN

as a universal function approximator [66, 67]. PCNN learns to model the behaviors of any

dynamic time-dependent, nonlinear system, expressed by the given PDE with boundary and

initial conditions. For the electrostatic problem, as we see from (5.1), we are computing

the steady-state solution. As a result, we only use a multilayer perceptron (MLP) neural

network architecture as we do not need to learn temporal information. Fig. 5.2 shows the

proposed MLP-based PCNN electrostatic solver that takes the inputs (location x, y) and

outputs an approximate solution. The specific hyperparameters, such as the number of

hidden layers and the number of nodes in each layer, are determined experimentally. For

each hidden layer, ReLU is used as the activation function. For the output layer, sigmoid

is used as the activation function as we scale the output voltage range to [0, 1].

106

Æ

Ç

�

�

�

�

�

�

�

�

Q

D]v]u]Ì��Ï6Q

Figure 5.2: The proposed PCNN based electrostatic model. σ stands for nonlinear activa-
tions. The training of PCNN is done by minimizing the physics-based loss.

The training process of PCNN is essentially an optimization process that seeks

a set of parameters (W,b) that minimizes the physics-based loss defined by the original

differential equation.

Specifically, for our electrostatics problems, the physics-based loss function can be

defined by the original equations (5.3) and (5.2):

Lphy(W,b) = ||∇2u||Φ︸ ︷︷ ︸
Gauss’s law

+ ||u− f(x)||ΓD︸ ︷︷ ︸
Boundary condition

(5.5)

where || · || is the L2 norm over a specific domain. Then, the training of the network is

defined as an optimization problem that seeks the optimal weights and biases (W∗,b∗) that

minimize the loss. The process is also shown in Fig. 5.2:

W∗,b∗ = argmin
W,b

Lphy(W,b) (5.6)

107

In practice, the L2 norm is computed using the collocation method [48]. The

domain Φ and the boundary Γ are discretized into sets of collocation points Φd and Γd, with

the number of points |Φd| = Nf and |Γd| = Nb, respectively. Then, the loss is computed

through the root-mean-square error on these points. For the part that corresponds to

Gauss’s law in the PDE form (equation residual),

Lpde(W,b) =
1

Nf

Nf∑
i=0

|∇2U(xi, yi)|2, (xi, yi) ∈ Φd (5.7)

where U(x, y) stands for the PCNN solution.

For the part that covers the boundary condition,

Lbou(W,b) =
1

Nb

Nb∑
i=0

|U(xi, yi)− uib|2, (xi, yi) ∈ Γd (5.8)

where uib is the value of the voltage boundary condition at collocation point (xi, yi).

Combining the two parts of the loss function, the complete loss function used in

practice is defined as

Lpcnn(W,b) = Lpde(W,b) + Lbou(W,b) (5.9)

By minimizing the loss function, the network U(x, y) will converge to an accurate solution

to the original problem.

5.3.2 Improved loss function with labels

Our study shows that for many practical problems with complicated boundary

conditions, the PCNN loss function defined in (5.9) may still lead to large errors, especially

for the region far away from the boundary. In this case, introducing some data from

numerical solutions or measurements as labels can be instrumental for the training of PCNN

108

networks. For example, one can obtain the solution with FEM on a coarse mesh and use

it to aid in training the PCNN. Compared with the much longer runtime required to solve

the PDE on a finer mesh or train the label-free PCNN, the cost of getting such assistant

data is negligible.

Denote this set of data ((x, y), u) as Ψlabel, a new part of data-defined loss is then

Llabel(W,b) =
1

Nl

∑
Ψlabel

|U(x, y)− u|2 (5.10)

where Ψlabel is the data points and |Ψlabel| = Nl.

Furthermore, we can add first derivatives into the label data. In this case the data

set is in the form of ((x, y), u,∇u). The loss function becomes

Llabel(W,b) =
1

Nl

∑
Ψlabel

|U(x, y)− u|2 + λ|∇U(x, y)−∇u|2 (5.11)

where λ is a coefficient, which can be determined experimentally. The final loss function

with label data Lpcnn,L(W,b) becomes

Lpcnn,L(W,b) =Lpde(W,b) + Lbou(W,b)+

Llabel(W,b)

(5.12)

5.3.3 Parameterized PCNN surrogate models

The trained PCNN surrogate model discussed in the previous section can only solve

a particular problem described by given PDEs and boundary and initial conditions. To make

the model adaptive to various scenarios, PCNN models need to be parameterized [82]. For

our problems, the supply voltages are parameterized as a demonstration of this idea and

109

denoted as θ. Then the final loss function with labels and parameters becomes:

Lpcnn,L,P (W,b, θ) =Lpde(W,b, θ) + Lbou(W,b, θ)+

Llabel(W,b, θ)

(5.13)

We note that once the parameterized PCNN model is trained, the inference time

of the network is much faster than running a conventional FEM-based solver for the differ-

ential equations for different parameters, which can be very useful for process variation and

uncertainty quantification analysis.

5.4 Numerical Results and Discussion

In this section, we present the experimental results of our proposed PINN solver

for the electric potential and electric fields of VLSI interconnects. All the models are

implemented in Python based on the TensorFlow (1.14.0) library [3], which is an open-

source machine learning platform.

5.4.1 Label-free PCNN network

We first implement the original PCNN, which is based on [67]. It is called the

label-free PCNN solver as the model is solely trained by loss functions defined by the physics

constraint of PDE in (5.6) with no simulation data (labels).

We test this solver on a VLSI design with a complicated contour of interconnects.

The resulting electric field is shown in Fig. 5.3(a), and the result derived from COMSOL is

shown as the ground truth [41] in Fig. 5.3(b).

110

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

(a)

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

(b)

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

(c)

y

V
(x
=
1
0
0
0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

(d)

Figure 5.3: (a) Label-free PCNN solver result (b) Ground truth (c) Error map (d) Centerline
voltage profile

111

As shown in Fig. 5.3(c), the label-free PCNN solver yields accurate results near

the boundaries while errors increase in other parts, especially at points that are far away

from any adjacent boundary. The overall root-mean-square-error (RMSE) of the estimated

electric potential result is 0.29V, which can also be translated to 29% normalized-RMSE

(NRMSE) considering the full 1V voltage range. The reason for this low accuracy is that

the solver got stuck at a local minimum where it fails to generate smooth transitions from

high to low electric potentials. As mentioned at the end of Section 5.1, our result here

reveals the low capability of existing PCNNs in modeling practical engineering problems

with complicated boundaries.

The loss function (5.9) of the label-free PCNN solver consists of two parts: bound-

ary loss (Lbou), which penalizes errors on the boundaries, and equation residuals (Lpde),

which enforce the Laplace equation. Both parts contribute equally to the loss function.

However, the loss of equation residuals is derived by gradient-based calculation, which in-

herently has a gradient vanishing problem. The solver has 8 fully-connected layers, and

the equation residuals loss was observed to be 5 to 7 orders of magnitude smaller than the

boundary loss. This biased loss leads to a bad learning scheme in which the model is more

focused on minimizing the boundary errors and ignores the equation residuals part. To

make both parts more balanced, we introduce weight parameters (Wbou and Wpde) to the

loss function.

Lpcnn(W,b) = WpdeLpde(W,b) +WbouLbou(W,b) (5.14)

112

Weight of equation residual Loss Increases

Wbou : Wpde = 1:103 Wbou : Wpde = 1:106 Wbou : Wpde = 1:107 Wbou : Wpde = 1:108 Wbou : Wpde = 1:109

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

y

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

y

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

y

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

y

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

y

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

Figure 5.4: Influence of weights on PCNN results

To determine the optimal configuration of the weights, we set Wbou to 1 and

gradually increase Wpde from 103 to 109. Some of the results are presented in Fig. 5.4. It is

clear from the figure that increasing Wpde leads to improved accuracy in the transition areas.

However, as Wpde continues to increase, the accuracy near the boundaries deteriorates.

Ultimately, setting Wbou and Wpde to 1 and 108, respectively, yields an optimized solver

with a minimized RMSE of 0.059V or NRMSE of 5.9%. The accuracy is significantly better

than the original implementation, which had an RMSE of 0.29V.

The improvement in the loss function has significantly enhanced the accuracy of

the existing PCNN model, but the results are still unsatisfactory due to the poor accuracy

in the transition areas, which are not well-handled by PCNN. Actually, the idea of entirely

113

excluding any simulation data from the training process in the existing PCNN is debatable.

Some prior data, especially those that can be obtained at a low cost, should be incorpo-

rated into the model training. Therefore, we explore the potential of our solver further by

proposing the label-assisted PCNN model.

5.4.2 Simulation-label assisted PCNN

As discussed in Section 5.3.2, we introduce some simulation data as labels to assist

the training, under the assumption that these simulation data can be obtained inexpensively

via existing numerical approaches, as only small or coarse meshes are needed. As shown in

Fig. 5.5(a), only a limited number of simulation results are sampled (black dots) from the

coarse result derived by COMSOL, and most sample points are located in the transition

area. The label-assisted solver is trained in the same way as the label-free solver, except

that coarse data are added to facilitate the training process, and the results are presented

in Fig. 5.5. The overall accuracy is enhanced, and the RMSE is reduced to 0.049V, which

is equivalent to 4.9% in terms of NRMSE. The smoothness of the transition area is also

improved as the label penalizes the model for abrupt changes and forces the solver to

generate a continuously fading transition from high to low electric potentials.

5.4.3 Parameterized PCNN surrogate models

The PCNN models mentioned earlier are designed for a specific case with fixed

boundary conditions, meaning that the voltages on the interconnects are predetermined.

Whenever a new boundary condition is given, even if the voltages only slightly differ, the

114

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

(a)

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

(b)

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

(c)

y

V
(x
=
1
0
0
0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

(d)

Figure 5.5: (a) Coarse label data (b) Label-assisted PCNN solver result (c) Error map (d)
Centerline voltage profile

115

1

2
4

3

5

6

0 1000 2000
0

1000

2000

(a)

0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

Tr
ai

ni
ng

 Lo
ss

Epochs

(b)

Figure 5.6: (a) Boundary voltage inputs of parameterized PCNN (b) Learning curve of
parameterized PCNN

Case 10

Parameterized

PCNN

Ground Truth

Case 39Case 23 Case 43 Case 55

Error Map

Centerline

Profile

Case 56

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0

1

0

0

0

0

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0

1

0

0

0

0

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0

1

0

0

0

0

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

V
(x

=
1

0
0

0
)

0 1000 2000
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

V
(x

=
1

0
0

0
)

0 1000 200
0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

Figure 5.7: Selected training results of Parameterized PCNN

116

training process must start anew. This is also true for COMSOL, which requires rerunning

for every new boundary condition. To address this issue, we add the voltages on boundaries

as extra parameter inputs to PCNN, in addition to the original x, y coordinate inputs, and

we refer to this modified model as parameterized PCNN.

The interconnects topology used to train parameterized PCNN remains the same

as that in the aforementioned experiments. However, the boundary voltages can now be set

to random values. We generated 64 different boundary conditions by randomly assigning

either 0V or 1V voltage to each of the six wires, as shown in Fig. 5.6(a). In this work,

the parameterized PCNN has eight inputs, with two for location and six for voltages. It

is trained using all 64 cases simultaneously, and the learning curve is shown in Fig. 5.6(b).

The electric field estimation results for some of the training cases are shown in Fig. 5.7. The

average RMSE across all training cases is 0.036V, and the maximum and minimum RMSEs

are 0.052V and 0.007V, respectively. While the accuracy remains at the same level as the

previous solver, the model’s capacity is significantly enhanced. The parameterized PCNN

is capable of modeling much more cases and achieves good accuracy for each of them.

Another significant advantage of parameterized PCNN is its ability to extrapolate

to brand-new cases. By altering the six voltage inputs, the trained model can perform

inference for unseen test cases without the need for retraining. We tested the model on

two new cases with random boundary voltages, and the RMSEs were 0.21V and 0.23V,

respectively. Moreover, as no training is required for inference, the time costs for both cases

were 0.84s and 0.42s, respectively, which is considerably faster than the 23.14s COMSOL

required to solve each case.

117

The speedup can be more significant when doing inferences for a large number of

unseen new cases. Additionally, when the interconnects boundary becomes more complex,

it takes COMSOL more time to generate the mesh and solve for the result. However, the

time cost of PCNN remains the same as the forward propagation structure is unchanged.

Moreover, parameterized PCNN can solve for a small sub-area or even a single point. If

the voltage potential at only one point is required, the time cost of parameterized PCNN

is drastically reduced to 6 × 10−4, which makes the speedup against COMSOL boost to

∼ 38000× since COMSOL still has to solve the complete layout and then pick the required

point out.

5.4.4 Electric field estimation

Once the PCNN model is trained, both the x- and y-axis components of the electric

field can be derived by computing the partial derivatives of the voltage potential with

respect to the x and y inputs. In this work, we leverage existing automatic differentiation,

i.e., back-propagation, to compute the derivatives. We apply the label-assisted solver to

a different layout with new boundary conditions. The estimated voltage potential and

its corresponding electric field are shown in Fig. 5.8. The RMSE is 0.058V for voltage

potential and 8.1× 10−4 V/nm for electric field. We use this result as our baseline error in

this subsection.

As the accuracy of the electric field is a new consideration in this study, the model

and hyperparameters optimized in the previous section may not apply to this new case.

Therefore, we fine-tuned the solver further to obtain the best accuracy in electric field

118

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

(a)

RMSE=0.0575

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

(b)

10-2

10-3

10-4

10-5

0 1000 2000
0

1000

2000

(c)

10-3

10-4

10-5

RMSE=8.1 10-4

0 1000 2000
0

1000

2000

(d)

Figure 5.8: (a) Ground truth of voltage potential (b) PCNN voltage potential estimation
(c) Ground truth of electric field (d) PCNN electric field estimation

119

Weight of Electric Field Label Data Loss Increases

Welec = 10 Welec = 100 Welec = 1000 Welec = 10000

RMSE=9.3 10-4RMSE=9.3 10-4RMSE=1.3 10-3RMSE=1.2 10-3

RMSE=0.069 RMSE=0.047RMSE=0.063 RMSE=0.082

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

10-2

10-3

10-4

10-5

0 1000 2000
0

1000

2000

10-2

10-3

10-4

10-5

0 1000 2000
0

1000

2000

10-2

10-3

10-4

10-5

0 1000 2000
0

1000

2000
10-2

10-3

10-4

10-5

0 1000 2000
0

1000

2000

Figure 5.9: Influence of Welec on voltage potential and electric field results

estimation. The coarse simulation results of electric field are used as label data in addition

to existing electric potential labels. The weight for these new labels are also introduced into

the loss as Welec, which converts the loss function into (5.15)

Lpcnn,L(W,b) = WpdeLpde(W,b) +WbouLbou(W,b)+

1

Nl

∑
Ψlabel

|U(x, y)− u|2 +Welec|∇U(x, y)−∇u|2
(5.15)

To determine the optimized weight configuration, we set Wpde to zero to eliminate

the influence of second-order derivatives. Then, we fixed Wbou to 1 and gradually increased

Welec. The evolution of the results is shown in Fig. 5.9. The lowest error in both voltage

potential (0.047V) and electric field (9.3×10−4 V/nm) are achieved when the weights (Wbou

: Welec : Wpde) are set to 1 : 103 : 0. The result accuracy is worse than the baseline,

which is within our expectation since the influence of Wpde is temporarily isolated.

120

Weight of equation residual Loss Increases

RMSE=8.0 10-4RMSE=7.7 10-4RMSE=8.5 10-4RMSE=9.4 10-4

Wpde = 103

RMSE=0.048

Wpde = 107

RMSE=0.036

Wpde = 106

RMSE=0.042

Wpde = 108

RMSE=0.057

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

0 1000 2000
0

1000

2000

0.0

1.0

0.2

0.4

0.6

0.8

10-2

10-3

10-4

10-5

0 1000 2000
0

1000

2000 10-2

10-3

10-4

10-5

0 1000 2000
0

1000

2000

10-3

10-4

10-5

0 1000 2000
0

1000

2000

10-3

10-4

10-5

0 1000 2000
0

1000

2000

Figure 5.10: Influence of Wpde on voltage potential and electric field results

We then added Wpde back to the loss function and gradually increased it to find

the final optimized combination of three weights. The evolution of the results is shown

in Fig. 5.10. The best accuracy is achieved when the weights are set to 1 : 103 : 107.

Compared to the baseline, the RMSE of the voltage potential is reduced from 0.058V to

0.036V and from 8.1× 10−4 V/nm to 7.7× 10−4 V/nm for the electric field.

5.5 Summary

This chapter presents a 2D electric field analysis method based on the physics-

constrained deep learning concept. We show how to formulate the loss functions to consider

the Laplace differential equations with voltage boundary conditions for typical electrostatic

analysis problems so that the supervised learning process can be carried out. We apply

the resulting PCEsolve solver to calculate electric potential and electric field for VLSI

121

interconnects with complicated boundaries. Our study for purely label-free training (in

which no information from FEM solver is provided) shows that PCEsolve can give accurate

results around the boundaries, but the accuracy degenerates in regions far away from the

boundaries. However, with the assistance of coarse simulation data at collocation points

derived from FEM analysis, PCEsolve can be much more accurate across all the solution

domain. Numerical results demonstrate that PCEsolve achieves an average error rate of

3.6% on 64 cases with random boundary conditions, and it is 27.5× faster than COMSOL

on test cases. The speedup can be further boosted to ∼ 38000× in single-point estimations.

We also studied the impacts of weights on different components of loss functions to improve

the model accuracy for both voltage and electric field.

122

Chapter 6

Conclusions

The reliability of Very Large Scale Integration (VLSI) circuits is a crucial concern

for the design and manufacture of modern electronic devices. In this article, we reviewed

the culmination of our work and shared our contributions to major VLSI reliability is-

sues, including electromigration (EM), time-dependent dielectric breakdown (TDDB), and

temperature variation. Specifically, our contributions and results are summarized below.

6.1 Data-Driven Learning-Based Electromigration Analysis

Chapter 2 introduces two data-driven learning-based EM analysis methods for

multi-segment interconnects. Firstly, we present an innovative model called EM-GAN,

which is a generative adversarial network (GAN)-based transient hydrostatic stress anal-

ysis model for EM failure assessment. In this approach, the numerical partial differential

equations (PDE) solving problem is considered a time-varying 2D image-to-image problem,

where the input is the multi-segment interconnects topology with current densities, and

123

the output is the EM stress distribution in those wire segments at the given aging time.

The model was trained using randomly generated training sets and COMSOL simulation

results. Various hyperparameters of GAN were studied and compared, and after the train-

ing process, EM-GAN was tested against 375 unseen multi-segment interconnect designs.

The model achieved high accuracy with an average error of 6.6% and showed a significant

improvement in speed with an 8.3× speedup over the recently proposed state-of-the-art

analytic-based EM analysis solver.

Secondly, we introduce EMGraph, a graph neural network-based model for tran-

sient EM stress analysis. This model performs the node-edge regression task to predict

stress at the wire segment (edge). Compared with the GAN-based image method, EM-

Graph can learn more transferable knowledge to predict stress distributions on new graphs

without retraining via inductive learning. The experimental results showed that EMGraph

has a smaller size, better accuracy, and faster speed than EM-GAN on several interconnect

tree benchmarks. Therefore, EMGraph is a powerful and suitable method for transient EM

stress assessment.

6.2 Physics-Informed Neural Network-Based Electromigra-

tion Analysis

Chapter 3 introduces a hierarchical Physics-informed neural network (PINN)-

based method, named HierPINN-EM, for solving the Korhonen equations for multi-segment

interconnects, aimed at fast EM failure analysis. HierPINN-EM splits the physics laws into

two levels and solves the PDE equations step by step. The lower level uses supervised

124

learning to train a DNN model that takes parameterized neurons as inputs and serves as a

universal parameterized EM stress solver for single-segment wires. The upper level employs

a physics-informed loss function to train a separate DNN model at the boundaries of all wire

segments to enforce stress and atom flux continuities at internal junctions in interconnects.

Numerical results on several synthetic interconnect trees demonstrate that HierPINN-EM

can achieve orders of magnitude speedup in training and more than 79× better accuracy

than the plain PINN method. Furthermore, HierPINN-EM yields 19% better accuracy with

99% reduction in training cost over the previous graph neural network-based EM solver,

EMGraph.

6.3 Full-Chip Thermal Map Estimation With Generative Ad-

versarial Learning

Chapter 4 introduces a novel data-driven approach, named ThermGAN, for es-

timating full-chip transient thermal maps of commercial multi-core microprocessors. The

proposed method leverages the existing embedded temperature sensors and system level uti-

lization information available in real-time, making it suitable for implementation by either

the original chip manufacturer or a third party. In our approach, we treat the traditional

thermal modeling problem as an image generation task based on the customized conditional

generative adversarial networks. The resulting ThermGAN accurately estimates the thermal

maps with an average root-mean-square-error (RMSE) of 0.47◦C, which is only 0.63% of the

full-scale error, and a speedy inference time of less than 7.5ms per inference. ThermGAN

outperforms traditional finite element based thermal analysis by two orders of magnitude in

125

inference speed and is ∼4x more accurate than the recently proposed long-short-term mem-

ory (LSTM)-based thermal map estimation method, while achieving ∼2x accuracy with

much less computational cost than a state-of-the-art pre-silicon based estimation method.

6.4 Physics-Constrained Deep Learning-Based Electrostatics

Analysis

Chapter 5 introduces a novel method for 2D electric field analysis using physics-

constrained deep learning. This method, called PCEsolve, formulates loss functions to

consider Laplace differential equations with voltage boundary conditions for typical electro-

static analysis problem so that the supervised learning process can be carried out. We apply

PCEsolve to calculate the electric potential and field for VLSI interconnects with complex

boundaries. Our study demonstrates that purely label-free training (in which no informa-

tion from the finite element method (FEM) solver is provided) results in accurate boundary

solutions, but accuracy degrades further from the boundaries. However, the incorporation

of coarse simulation data at collocation points from FEM analysis greatly improves accu-

racy across the entire solution domain. Numerical results show that PCEsolve achieves an

average error rate of 3.6% on 64 cases with random boundary conditions and is 27.5× faster

than COMSOL on test cases. In single-point estimations, speedup can be further boosted

to ∼ 38, 000×. We also explore the impacts of weight variations on different components of

loss functions to improve the model accuracy for both voltage and electric field.

126

Bibliography

[1] Comsol multiphysics. https://www.comsol.com/.

[2] International technology roadmap for semiconductors (ITRS), 2015.
http://www.itrs2.net/itrs-reports.html.

[3] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16), pages 265–283,
Savannah, GA, November 2016. USENIX Association.

[4] Ali Abbasinasab and Malgorzata Marek-Sadowska. RAIN: A tool for reliability as-
sessment of interconnect networks—physics to software. In Proc. Design Automation
Conf. (DAC), pages 133:1–133:6, New York, NY, USA, 2018. ACM.

[5] Mohamed Baker Alawieh, Yibo Lin, Zaiwei Zhang, Meng Li, Qixing Huang, and
David Z. Pan. GAN-SRAF: Sub-Resolution Assist Feature Generation Using Condi-
tional Generative Adversarial Networks. In Proceedings of the 56th Design Automation
Conference, DAC ’19, pages 1–6, New York, NY, Jun. 2019. ACM Press.

[6] AMD. AMD uProf. https://developer.amd.com/amd-uprof/.

[7] H. Amrouch and J. Henkel. Lucid infrared thermography of thermally-constrained
processors. In 2015 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), pages 347–352, July 2015.

[8] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv e-prints, page
arXiv:1701.07875, Dec. 2017.

[9] F. Beneventi, A. Bartolini, P. Vivet, and L. Benini. Thermal analysis and interpo-
lation techniques for a logic + wideio stacked dram test chip. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 35(4):623–636, April
2016.

127

https://developer.amd.com/amd-uprof/

[10] Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to
partial differential equations in complex geometries. Neurocomputing, 317:28 – 41,
2018.

[11] J. R. Black. Electromigration-A Brief Survey and Some Recent Results. IEEE Trans.
on Electron Devices, 16(4):338–347, Apr. 1969.

[12] I. A. Blech. Electromigration in thin aluminum films on titanium nitride. Journal of
Applied Physics, 47(4):1203–1208, 1976.

[13] S. Chatterjee, V. Sukharev, and F. N. Najm. Power Grid Electromigration Check-
ing Using Physics-Based Models. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(7):1317–1330, July 2018.

[14] H. Chen, S. X.-D. Tan, X. Huang, T. Kim, and V. Sukharev. Analytical modeling and
characterization of electromigration effects for multibranch interconnect trees. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 35(11):1811–
1824, 2016.

[15] H.-B. Chen, S. X.-D. Tan, J. Peng, T. Kim, and J. Chen. Analytical modeling of
electromigration failure for vlsi interconnect tree considering temperature and seg-
ment length effects. IEEE Transaction on Device and Materials Reliability (T-DMR),
17(4):653–666, 2017.

[16] L. Chen, S. X.-D. Tan, Z. Sun, S. Peng, M. Tang, and J. Mao. Fast analytic electro-
migration analysis for general multisegment interconnect wires. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, pages 1–12, 2019.

[17] Y.-K. Cheng, C.-H. Tsai, C.-C. Teng, and S.-M. Kang. Electrothermal Analysis of
VLSI Systems. Kluwer Academic Publishers, 2000.

[18] Tai-Yu Chou and Zoltan J Cendes. Capacitance calculation of ic packages using the
finite element method and planes of symmetry. IEEE transactions on computer-aided
design of integrated circuits and systems, 13(9):1159–1166, 1994.

[19] Sanjay Choudhary. Physics informed neural networks. Electronic Design Process
Symposium Lecture, 10 2019.

[20] Ryan Cochran and Sherief Reda. Spectral techniques for high-resolution thermal
characterization with limited sensor data. In Proc. Design Automation Conf. (DAC),
pages 478–483, 2009.

[21] C. Cook, Z. Sun, E. Demircan, M. D. Shroff, and S. X.-D. Tan. Fast electromigration
stress evolution analysis for interconnect trees using krylov subspace method. IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, 26(5):969–980, May 2018.

[22] Chase Cook, Zeyu Sun, Ertugrul Demircan, Mehul D. Shroff, and Sheldon X.-D. Tan.
Fast Electromigration Stress Evolution Analysis for Interconnect Trees Using Krylov
Subspace Method. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
26(5):969–980, May 2018.

128

[23] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,
and Anil A Bharath. Generative adversarial networks: An overview. IEEE Signal
Processing Magazine, 35(1):53–65, 2018.

[24] RL De Orio, Hajdin Ceric, and Siegfried Selberherr. Physically based models of
electromigration: From black’s equation to modern tcad models. Microelectronics
Reliability, 50(6):775–789, 2010.

[25] K. Dev, A. N. Nowroz, and S. Reda. Power mapping and modeling of multi-core pro-
cessors. In International Symposium on Low Power Electronics and Design (ISLPED),
pages 39–44, Sept 2013.

[26] T. Eguia, S. X.-D. Tan, R. Shen, D. Li, E. H. Pacheco, M. Tirumala, and L. Wang.
General parameterized thermal modeling for high-performance microprocessor design.
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2011.

[27] Y. C. Gerstenmaier and G. Wachutka. Rigorous model and network for transient
thermal problems. Microelectronics Journal, 33:719–725, September 2002.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016. http://www.deeplearningbook.org.

[29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2672–2680.
Curran Associates, Inc., 2014.

[30] Joseph L Greathouse and Gabriel H Loh. Machine learning for performance and power
modeling of heterogeneous systems. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–6. IEEE, 2018.

[31] Siva P. Gurrum, Yogendra K. Joshi, William P. King, Koneru Ramakrishna, and
Martin Gall. A compact approach to on-chip interconnect heat conduction modeling
using the finite element method. Journal of Electronic Packaging, 130:031001.1–
031001.8, September 2008.

[32] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30, pages 1024–1034. Curran Associates, Inc., 2017.

[33] Vinay Hanumaiah and Sarma Vrudhula. Energy-efficient operation of multicore pro-
cessors by DVFS, task migration, and active cooling. IEEE Trans. on Computers,
63(2):349–360, February 2014.

[34] M Hauschildt, C Hennesthal, G Talut, O Aubel, M Gall, K B Yeap, and E Zschech.
Electromigration Early Failure Void Nucleation and Growth Phenomena in Cu And

129

http://www.deeplearningbook.org

Cu(Mn) Interconnects. In IEEE Int. Reliability Physics Symposium (IRPS), pages
2C.1.1–2C.1.6, 2013.

[35] Tianshu Hou, Ngai Wong, Quan Chen, Zhigang Ji, and Hai-Bao Chen. A space-
time neural network for analysis of stress evolution under dc current stressing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages
1–1, 2022.

[36] Wei Huang, Shougata Ghosh, Siva Velusamy, Karthik Sankaranarayanan, Kevin
Skadron, and Mircea R. Stan. HotSpot: A compact thermal modeling methodology
for early-stage VLSI design. IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 14(5):501–513, May 2006.

[37] Xin Huang, Armen Kteyan, Sheldon X.-D. Tan, and Valeriy Sukharev. Physics-Based
Electromigration Models and Full-Chip Assessment for Power Grid Networks. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 35(11):1848–
1861, Nov. 2016.

[38] Intel. Intel Performance Counter Monitor (PCM). https://software.intel.com/

en-us/articles/intel-performance-counter-monitor.

[39] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image trans-
lation with conditional adversarial networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[40] Wentian Jin, Liang Chen, Sheriff Sadiqbatcha, Shaoyi Peng, and Sheldon X.-D. Tan.
Emgraph: Fast learning-based electromigration analysis for multi-segment intercon-
nect using graph convolution networks. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pages 919–924, 2021.

[41] Wentian Jin, Shaoyi Peng, and Sheldon X.-D. Tan. Data-driven electrostatics analysis
based on physics-constrained deep learning. In Proc. Design, Automation and Test
In Europe Conf. (DATE), pages 1–6, Feb. 2021.

[42] Wentian Jin, Sheriff Sadiqbatcha, Zeyu Sun, Han Zhou, and Sheldon X.-D. Tan. Em-
gan: Data-driven fast stress analysis for multi-segment interconnects. In Proc. IEEE
Int. Conf. on Computer Design (ICCD), pages 296–303, Oct. 2020.

[43] Ryan Gary Kim, Janardhan Rao Doppa, and Partha Pratim Pande. Machine learn-
ing for design space exploration and optimization of manycore systems. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1–6. IEEE, 2018.

[44] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In International Conference on Learning Representation, 2017.

[45] Joonho Kong, Sung Woo Chung, and Kevin Skadron. Recent thermal management
techniques for microprocessors. ACM Comput. Surv., 44(3):13:1–13:42, jun 2012.

130

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

[46] M. A. Korhonen, P. Bo/rgesen, K. N. Tu, and C.-Y. Li. Stress evolution due to
electromigration in confined metal lines. Journal of Applied Physics, 73(8):3790–3799,
1993.

[47] K.Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-
jan. Temperature-aware microarchitecture. In International Symposium on Computer
Architecture, pages 2–13, 2003.

[48] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks
for solving ordinary and partial differential equations. IEEE transactions on neural
networks, 9(5):987–1000, 1998.

[49] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–
444, May 2015.

[50] Hyuk Lee and In Seok Kang. Neural algorithm for solving differential equations.
Journal of Computational Physics, 91(1):110–131, 1990.

[51] Duo Li, Sheldon X.-D. Tan, Eduardo H. Pacheco, and Murli Tirumala. Parameterized
architecture-level dynamic thermal models for multicore microprocessors. ACM Trans.
Des. Autom. Electron. Syst., 15(2):1–22, 2010.

[52] X. Li, X. Li, W. Jiang, and W. Zhou. Optimising thermal sensor placement and
thermal maps reconstruction for microprocessors using simulated annealing algorithm
based on pca. IET Circuits, Devices Systems, 10(6):463–472, 2016.

[53] Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, and Wenbin Xu.
A customized graph neural network model for guiding analog ic placement. In 2020
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1–9. IEEE, 2020.

[54] Jinglan Liu, Yukun Ding, Jianlei Yang, Ulf Schlichtmann, and Yiyu Shi. Generative
Adversarial Network Based Scalable On-chip Noise Sensor Placement. In Proceedings
of the 30th International System-on-Chip Conference, SOCC ’17, pages 239–242, New
York, NY, Sep. 2017. IEEE Press.

[55] Z. Liu, S. X.-D. Tan, X. Huang, and H. Wang. Task migrations for distributed
thermal management considering transient effects. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 23(2):397–401, 2015.

[56] Z. Liu, S. X.-D. Tan, H. Wang, Y. Hua, and A. Gupta. Compact thermal
modeling for packaged microprocessor design with practical power maps. In-
tegration, the VLSI Journal, 47(1), January 2014. in press, online access:
http://www.sciencedirect.com/science/article/pii/S0167926013000412.

[57] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang, Chin-
Chi Teng, and Chung-Kuan Cheng. Eplace: Electrostatics-based placement using fast
fourier transform and nesterov’s method. ACM Trans. Des. Autom. Electron. Syst.,
20(2), March 2015.

131

[58] Y. C. Lu, S. S. Kiran Pentapati, L. Zhu, K. Samadi, and S. K. Lim. Tp-gnn: A
graph neural network framework for tier partitioning in monolithic 3d ics. In 2020
57th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2020.

[59] Yonghong Luo, Xiangrui Cai, Ying ZHANG, Jun Xu, and Yuan xiaojie. Multivariate
time series imputation with generative adversarial networks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 1596–1607. Curran Associates, Inc.,
2018.

[60] J.W. McPherson and H.C. Mogul. Underlying Physics of the Thermochemical E
Model in Describing Low-Field Time-Dependent Dielectric Breakdown in SiO2 Thin
Films. Journal of Applied Physics, 84(3):1513–1523, 1998.

[61] Xuhui Meng and George Em Karniadakis. A composite neural network that learns
from multi-fidelity data: Application to function approximation and inverse pde prob-
lems. Journal of Computational Physics, 401:109020, 2020.

[62] V. Mishra and S. S. Sapatnekar. Predicting Electromigration Mortality Under Tem-
perature and Product Lifetime Specifications. In Proc. Design Automation Conf.
(DAC), pages 1–6, Jun. 2016.

[63] A. Nowroz, R. Cochran, and S. Reda. Thermal monitoring of real processors: Tech-
niques for sensor allocation and full characterization. In Proc. Design Automation
Conf. (DAC), 2010.

[64] M. Pedram and S. Nazarian. Thermal modeling, analysis, and management in VLSI
circuits: Principles and methods. Proc. of the IEEE, 94(8):1487–1501, Aug. 2006.

[65] Phoronix. Open-Source, Automated Benchmarking. https://www.

phoronix-test-suite.com/.

[66] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differ-
ential equations. The Journal of Machine Learning Research, 19(1):932–955, 2018.

[67] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational Physics,
378:686–707, 2019.

[68] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics Informed Deep
Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.
arXiv e-prints, page arXiv:1711.10561, November 2017.

[69] Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen. T-CGAN:
Conditional Generative Adversarial Network for Data Augmentation in Noisy Time
Series with Irregular Sampling. arXiv e-prints, page arXiv:1811.08295, November
2018.

132

https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/

[70] Juri Ranieri, Alessandro Vincenzi, Amina Chebira, David Atienza, and Martin Vet-
terli. Eigenmaps: Algorithms for optimal thermal maps extraction and sensor place-
ment on multicore processors. In Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, pages 636–641, New York, NY, USA, 2012. ACM.

[71] S. Reda, R. Cochran, and A. N. Nowroz. Improved thermal tracking for processors
using hard and soft sensor allocation techniques. IEEE Transactions on Computers,
60(6):841–851, June 2011.

[72] H. Ren, G. F. Kokai, W. J. Turner, and T. S. Ku. Paragraph: Layout parasitics and
device parameter prediction using graph neural networks. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2020.

[73] S. Sadiqbatcha, H. Zhao, H. Amrouch, J. Henkel, and S. X.-D. Tan. Hot spot identifi-
cation and system parameterized thermal modeling for multi-core processors through
infrared thermal imaging. In 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2019.

[74] S. Sadiqbatcha, Y. Zhao, J. Zhang, H. Amrouch, J. Henkel, and S. X. D. Tan. Machine
learning based online full-chip heatmap estimation. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 229–234, 2020.

[75] Sheriff Sadiqbatcha, J. Zhang, H. Zhao, H. Amrouch, J. Hankel, and Sheldon X.-
D. Tan. Post-silicon heat-source identification and machine-learning-based thermal
modeling using infrared thermal imaging. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 2020.

[76] K. Settaluri and E. Fallon. Fully automated analog sub-circuit clustering with graph
convolutional neural networks. In 2020 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), pages 1714–1715, 2020.

[77] Al Shohel, Mohammad Abdullah, Vidya A. Chhabria, Nestor Evmorfopoulos, and
Sachin S. Sapatnekar. Analytical modeling of transient electromigration stress based
on boundary reflections. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–8, 2021.

[78] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for
solving partial differential equations. Journal of Computational Physics, 375:1339 –
1364, 2018.

[79] V. Sukharev. Beyond Black’s Equation: Full-Chip EM/SM Assessment in 3D IC
Stack. Microelectronic Engineering, 120:99–105, 2014.

[80] V. Sukharev and F. N. Najm. Electromigration Check: Where the Design and Reli-
ability Methodologies Meet. IEEE Transactions on Device and Materials Reliability,
18(4):498–507, December 2018.

133

[81] Valeriy Sukharev, Armen Kteyan, and Xin Huang. Postvoiding stress evolution in con-
fined metal lines. IEEE Transactions on Device and Materials Reliability, 16(1):50–60,
2016.

[82] Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid
flows based on physics-constrained deep learning without simulation data. Computer
Methods in Applied Mechanics and Engineering, 361:112732, 2020.

[83] Z. Sun, S. Yu, H. Zhou, Y. Liu, and S. X.-D. Tan. EMSpice: Physics-Based Electro-
migration Check Using Coupled Electronic and Stress Simulation. IEEE Transactions
on Device and Materials Reliability, 20(2):376–389, June 2020.

[84] Cher Ming Tan. Electomigration in ULSI Interconnects. International Series on Ad-
vances in Solid State Electronics and Technology. Word Scientific, 2010.

[85] Sheldon X.-D. Tan, Mehdi Tahoori, Taeyoung Kim, Shengcheng Wang, Zeyu Sun,
and Saman Kiamehr. VLSI Systems Long-Term Reliability – Modeling, Simulation
and Optimization. Springer Publishing, 2019.

[86] Michael Taylor. A landscape of the new dark silicon design regime. IEEE/ACM
International Symposium on Microarchitecture, 33(5):8–19, October 2013.

[87] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Acceler-
ating Eulerian fluid simulation with convolutional networks. volume 70 of Proceedings
of Machine Learning Research, pages 3424–3433, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[88] H. Wang, S. X.-D. Tan, G. Liao, R. Quintanilla, and A. Gupta. Full-chip runtime
error-tolerant thermal estimation and prediction for practical thermal management.
In Proc. Int. Conf. on Computer Aided Design (ICCAD), Nov. 2011.

[89] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H. S. Lee, and S. Han. Gcn-rl circuit
designer: Transferable transistor sizing with graph neural networks and reinforcement
learning. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6,
2020.

[90] Hai Wang, Jian Ma, Sheldon X.-D. Tan, Chi Zhang, He Tang, Keheng Huang, and
Zhenghong Zhang. Hierarchical dynamic thermal management method for high-
performance many-core microprocessors. ACM Trans. on Design Automation of Elec-
tronics Systems, 22(1):1:1–1:21, July 2016.

[91] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,
and Zheng Zhang. Deep graph library: A graph-centric, highly-performant package
for graph neural networks. In ICLR Workshop on Representation Learning on Graphs
and Manifolds, 2019.

134

[92] S. Wang, Z. Sun, Y. Cheng, S. X.-D. Tan, and M. Tahoori. Leveraging recovery effect
to reduce electromigration degradation in power/ground TSV. In Proc. Int. Conf. on
Computer Aided Design (ICCAD), pages 811–818. IEEE, Nov. 2017.

[93] X. Wang, Y. Yan, J. He, S. X.-D. Tan, C. Cook, and S. Yang. Fast physics-based
electromigration analysis for multi-branch interconnect trees. In Proc. Int. Conf. on
Computer Aided Design (ICCAD), pages 169–176. IEEE, Nov. 2017.

[94] Wei Wu, Lingling Jin, Jun Yang, Pu Liu, and Sheldon X.-D. Tan. Efficient power
modeling and software thermal sensing for runtime temperature monitoring. ACM
Trans. on Design Automation of Electronics Systems, 12(3):1–29, 2007.

[95] Biying Xu, Yibo Lin, Xiyuan Tang, Shaolan Li, Linxiao Shen, Nan Sun, and
David Z. Pan. WellGAN: Generative-Adversarial-Network-Guided Well Generation
for Analog/Mixed-Signal Circuit Layout. In Proceedings of the 56th Design Automa-
tion Conference, DAC ’19, pages 1–6, New York, NY, Jun. 2019. ACM Press.

[96] Y. Yang, Z. P. Gu, C. Zhu, R. P. Dick, and L. Shang. ISAC: Integrated space and time
adaptive chip-package thermal analysis. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 16(1):86–99, 2007.

[97] Yibo Yang and Paris Perdikaris. Physics-informed deep generative models. arXiv
e-prints, page arXiv:1812.03511, December 2018.

[98] Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-
informed neural networks. Journal of Computational Physics, 394:136–152, 2019.

[99] Wei Ye, Mohamed Baker Alawieh, Yibo Lin, and David Z. Pan. LithoGAN: End-to-
End Lithography Modeling with Generative Adversarial Networks. In Proceedings of
the 56th Design Automation Conference, DAC ’19, pages 1–6, New York, NY, Jun.
2019. ACM Press.

[100] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative
adversarial networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 5508–5518. Curran Associates, Inc., 2019.

[101] Yufu Zhang, A. Srivastava, and M. Zahran. Chip level thermal profile estimation using
on-chip temperature sensors. In 2008 IEEE International Conference on Computer
Design, pages 432–437, 2008.

[102] Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying to-
tal uncertainty in physics-informed neural networks for solving forward and inverse
stochastic problems. Journal of Computational Physics, 397:108850, 2019.

[103] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, and
P. Beckman. Machine learning-based temperature prediction for runtime thermal
management across system components. IEEE Transactions on Parallel and Dis-
tributed Systems, 29(2):405–419, Feb 2018.

135

[104] Y. Zhang, H. Ren, and B. Khailany. Grannite: Graph neural network inference for
transferable power estimation. In 2020 57th ACM/IEEE Design Automation Confer-
ence (DAC), pages 1–6, 2020.

[105] Y. Zhang, B. Shi, and A. Srivastava. Statistical framework for designing on-chip
thermal sensing infrastructure in nanoscale systems. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 22(2):270–279, 2014.

[106] H. Zhao and S. X.-D. Tan. Postvoiding fem analysis for electromigration failure
characterization. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
26(11):2483–2493, Nov. 2018.

[107] Quming Zhou, Kai Sun, Kartik Mohanram, and Danny C. Sorensen. Large power
grid analysis using domain decomposition. In Proc. Design, Automation and Test
In Europe. (DATE), pages 27–32, 3001 Leuven, Belgium, Belgium, 2006. European
Design and Automation Association.

[108] A. Ziabari, J. Park, E. K. Ardestani, J. Renau, S. Kang, and A. Shakouri. Power
blurring: Fast static and transient thermal analysis method for packaged integrated
circuits and power devices. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(11):2366–2379, 2014.

136

	List of Figures
	List of Tables
	Introduction
	Electromigration Analysis for VLSI Interconnects
	Real-Time Full-Chip Thermal Map Estimation
	Electrostatics Analysis for VLSI Interconnects
	Organization

	Data-Driven Learning-Based Electromigration Analysis
	Related Work and Motivation
	Review of EM and EM modeling
	DNN based approaches for solving PDEs

	EM-GAN: CGAN-Based Current Density to EM Stress Transformation
	Data preparation
	Problem formulation
	EM-GAN architecture

	EMGraph: Graph Neural Network-Based EM Stress Solver
	Problem formulation
	EMGraph architecture

	Experimental Results and Discussions
	EM-GAN accuracy and performance
	EMGraph accuracy and performance

	Summary

	Physics-Informed Neural Network-Based Electromigration Analysis
	Related Work and Motivation
	Existing numerical approaches for solving PDEs
	Learning based approaches for solving PDEs

	HierPINN: Hierarchical Physics Informed Neural Network
	Lower level: single-segment straight wire stress predictor
	Upper level: atom flux predictor for all the wire segments

	Experimental Results
	Accuracy of lower level on single-segment wires
	Accuracy of EM stress prediction on straight wires
	Accuracy of EM stress prediction on interconnect trees
	Speed of inference

	Summary

	Full-Chip Thermal Map Estimation With Generative Adversarial Learning
	Related Work and Motivation
	Training Data Preparation
	CGAN-Based PCM to Temperature Transformation
	From PCM to thermal image transformation
	Review of GANs
	Transient thermal map estimation

	Experimental Results and Discussion
	Accuracy of thermal map estimation
	Real case study
	Speed of inference
	Metrics in PCM that really matters
	Comparisons with state of the arts

	Summary

	Physics-Constrained Deep Learning-Based Electrostatics Analysis
	Related Work and Motivation
	Preliminaries
	Electrostatics problem
	Finite element method

	Physics-Constrained Neural Network Solver for Electrostatics
	PCNN models for electrostatics analysis
	Improved loss function with labels
	Parameterized PCNN surrogate models

	Numerical Results and Discussion
	Label-free PCNN network
	Simulation-label assisted PCNN
	Parameterized PCNN surrogate models
	Electric field estimation

	Summary

	Conclusions
	Data-Driven Learning-Based Electromigration Analysis
	Physics-Informed Neural Network-Based Electromigration Analysis
	Full-Chip Thermal Map Estimation With Generative Adversarial Learning
	Physics-Constrained Deep Learning-Based Electrostatics Analysis

	Bibliography

