
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Toward a More Accurate Genome: Algorithms for the Analysis of High-Throughput
Sequencing Data

Permalink
https://escholarship.org/uc/item/1xr1m27k

Author
Biesinger, William Jacob Benhardt

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1xr1m27k
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Toward a More Accurate Genome: Algorithms for the Analysis of High-Throughput
Sequencing Data

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

William Jacob Benhardt Biesinger

Dissertation Committee:
Professor Xiaohui Xie, Chair

Professor Pierre Baldi
Professor Chen Li

2014

Portion of Chapter 2 c© 2011 Mary Ann Liebert, Inc. publishers.
Portion of Chapter 3 published by BioMed Central Ltd., 2013, c© retained by William

Jacob Benhardt Biesinger
All other materials c© 2014 William Jacob Benhardt Biesinger

DEDICATION

To Emily, my helpmate forever.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xiii

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1

2 AREM: Aligning Reads by Expectation-Maximization 6
2.1 Introduction . 6

2.1.1 Contributions . 7
2.1.2 Chapter Outline . 8
2.1.3 Related Work . 9

2.2 Optimizing Peak Caller . 9
2.2.1 Alignment . 10
2.2.2 Peak Finding . 10
2.2.3 Motif finding . 11

2.3 A Probabilistic Framework for ChIP Read Realignment 12
2.3.1 Notations . 13
2.3.2 Mixture model . 13
2.3.3 Parameter estimation . 15
2.3.4 Expectation-maximization algorithm 16
2.3.5 Implementation of E-M updates . 17

2.4 Results . 19
2.4.1 AREM identifies additional binding sites 21
2.4.2 AREM’s sensitivity is increased with ambiguous reads 23
2.4.3 AREM is sensitive to repeat regions 23

2.5 Discussion . 25

iii

3 Discovering and Mapping Chromatin States Using a Tree Hidden Markov
Model 27

3.1 Introduction . 27
3.1.1 Contributions . 29
3.1.2 Chapter Outline . 30
3.1.3 Related Work . 31

3.2 Tree Hidden Markov Model . 32
3.2.1 Model Description and Notation . 32
3.2.2 Parameters . 34
3.2.3 Model Description and Parametrization 35
3.2.4 Incorporating Missing Markers and Hidden Cell Types 37
3.2.5 Data Preprocessing . 38

3.3 Variational Inference . 39
3.3.1 Mean field (MF) variational inference 41
3.3.2 Mean-field derivation and normalization 42
3.3.3 Structured mean field(SMF) variational inference 45
3.3.4 Structured mean-field derivation and normalization 46
3.3.5 Loopy belief propagation (LBP) . 49
3.3.6 Parameter Learning . 50

3.4 Results . 51
3.4.1 Artificial Data . 51
3.4.2 Data Processing for ENCODE Dataset 54
3.4.3 Comparing Approximate Inference Methods 55
3.4.4 Model Complexity for Human ENCODE dataset 56
3.4.5 TreeHMM on Complete Genomes using the SMF Approximation . . . 57
3.4.6 Comparison with ChromHMM . 59

3.5 Discussion . 61

4 Genomix: Scalable de-novo genome assembly 71
4.1 Introduction . 71

4.1.1 Contributions . 73
4.1.2 Chapter Outline . 73
4.1.3 Related Work . 73

4.2 Methods . 74
4.2.1 De Bruijn Graph Overview . 75
4.2.2 Notation . 77
4.2.3 Graph Building using Hyracks . 77
4.2.4 Remove Bad Coverage . 78
4.2.5 Graph Compression . 78
4.2.6 Tip Remove . 81
4.2.7 Bubble Merge . 81
4.2.8 Scaffolding . 83

4.3 Results . 88
4.4 Discussion . 92

iv

5 Conclusion 94

Bibliography 96

v

LIST OF FIGURES

Page

2.1 AREM workflow diagram. Given a set of multiply-mapping and singly-
mapping reads, AREM shifts stranded reads towards each other, identifies
all potential peak regions, then iterates between updating read alignment
probabilities and peak enrichment scores until convergence. Once converged,
AREM optimizes the enrichment score further, seeking the peak width that
gives the optimal enrichment score. Finally, the process is repeated for the
control data in order to determine the overall false discovery rate. 20

2.2 B-E de novo discovery of motifs. From top to bottom: B) CTCF in MACS
peaks from uniquely mapping reads, C) CTCF in AREM’s peaks with mul-
tireads, C) Srebp-1 in MACS peaks from uniquely mapping reads and D)
Srebp-1 in AREM’s peaks with multireads. 22

2.3 Graphs displaying varying parameters and number of possible alignments per
read. A) Total number of peaks discovered. B) Percentage of peaks with
repetitive sequences. C) False Discovery Rate. D) Percentage of peaks with
motif. 25

3.1 Example graphical model for a tree-structured HMM with three cell types.
Hidden state variables representing chromatin states (white) are connected
horizontally in a chain as well as vertically in a tree structure. Each chain in
the graph represents a certain cell type. For example, the top chain represents
the root cell type (e.g., ES cells). Observed nodes (grey) represent chromatin
modifications and are connected only to the hidden variables. 33

3.2 Lineage trees used for artificial data . 51
3.3 Free energy for approximate inference methods. Free energy for different in-

ference methods are compared, with parameters learned using exact inference.
The test dataset is restricted to a 2MB region of chromosome 22 with only
three cell types and K = 5. The approximate methods use the parameters
(learned by the exact method) and only perform inference steps. Note that for
the exact algorithm (clique), the free energy equals the negative log-likelihood. 56

3.4 Choosing model complexity (the optimal number of states K). We
ran the SMF variational EM algorithm on chromosome 22 with a range of K
values . The final free energy for different K and the complexity-penalized
likelihood score (BIC) is shown, revealing that a model with between 15 and
20 states are well-supported by the data. 57

vi

3.5 Learned chromatin states with the associated chromatin modification and en-
richment in distinct genomic regions - human data. Left panel: the probabil-
ity of observing each histone mark in each of 18 hidden states is summarized.
Right panel: fold enrichment of hidden states in various genomic regions re-
veals strong positional preferences of learned chromatin states. 65

3.6 Learned chromatin states with the associated chromatin modification and en-
richment in distinct genomic regions - mouse data. Left panel: The probability
of observing histone marks in each inferred state is summarized. Right panel:
fold enrichment of hidden states in various genomic regions reveals strong po-
sitional preferences of chromatin states. The values are average enrichments
across all 3 cell types. 66

3.7 Learned transition matrix α for the root cell type (H1 ES). 66
3.8 Transition matrix θ shown as specific submatrices for each vertical

parent state Each sub-matrix is associated with vertical parent state 1 to 18
indicated at the top-left. A strong diagonal in the transition matrix indicates
spatial persistence of states, while a strong vertical line indicates persistance
from the corresponding vertical state across cell types. 67

3.9 Comparison with ChromHMM. Left panel: Emission probabilities learned
by ChromHMM with K = 18. Right panel: Confusion matrix showing the
total number of bases identified as belonging to a particular state by the two
methods. In each cell, the top number is the log10(number of bins) in the in-
tersection, the value below corresponds to the percentage in the corresponding
tree-HMM sites and is used to color the heatmap. (values in each column sum
up to 1.) . 68

3.10 Learned transition matrix α for the root cell type - mouse dataset 68
3.11 Transition matrix θ shown as specific sub-matrices for each parent

state - mouse dataset Each sub-matrix is associated with vertical parent
state 1 to 10 indicated at the top-left. 69

3.12 Hierarchical clustering of binarized histone marks in human. Branch lengths
indicate the manhattan distance between species, considering all histone marks.
The two most similar cell types are indicated in red, and the next two most
similar are indicated in green. 69

3.13 K-means clustering reveals different cell-type specificities for differ-
ent chromatin states. K-means clustering with 20 clusters was performed
on the posterior probability of all the bins being in each state, posterior prob-
ability is shown as heatmap color, cell types are indicated at the top of each
column. From left to right: Insulator/CTCF (state 14), Strong Enhancer
(state 5), and Active Promoter (state 3). 70

4.1 The three types of overlap and the four corresponding edge types used to
indicate the relationship between nodes. RF and FR edges are symmetric
with themselves. 77

vii

4.2 Compressing the graph . Top: Simplified view of seven overlapping kmers.
Nodes C, D, and E can be compressed into a single supernode since the pairs
{C, D} and {D, E} have degree = 1 towards each other. Middle-top:
Equivalent bidirected graph detailing edge types induced by kmer orientations.
In the merge phase, D chooses “heads” and will subsume adjacent “tail”
nodes C and E. Center: C and E update their neighbors to point to the
subsuming node D. Middle-bottom: C and E merge towards D, and D
uses their neighbor’s edge type information to resolve its new edge types back
towards the neighbors of C and E. The new kmer in CDE is now of length
len(C) + len(D) + len(E)− (K − 1)× 2. To simplify graph updates, merged
nodes maintain the key and orientation of the original “heads” nodes, in this
case D. Bottom: Simplified view of the merged nodes. 80

4.3 Node designations for scaffolding. The walk starts at a seed node, in-
dicated by s, and has already proceeded through walk nodes w1 through w3.
The frontier node f makes the decision about which node to include next in
the walk from the candidates c1 and c2. Ray’s algorithm makes the inclusion
decision based only on this information. Our improvements include search-
ing beyond the candidates into complete paths which may include additional
branches. Over the search distance d, c1 has split into two paths p1

1∗ and p1
2∗,

whereas candidate c2 still has only one search path, p2
1∗. The decision made

in f about whether to include c1 or c2 can be augmented by the combined
kmer from each path as well as read information from the paths. We omit
edge types and edges that don’t participate in the algorithm (e.g., there could
be other edges incoming to one of the path nodes). 84

4.4 Runtime comparison as the size of the genome is increased while maintaining
100x coverage (synthetic data). These first three steps are take a substantial
portion of the total runtime since all later steps operate on a greatly simplified
graph. The scaffolding step may take much longer than these steps, depending
on the search options used. 90

viii

LIST OF TABLES

Page

2.1 Comparison of peak-calling methods for cohesin and Srebp-1. Three
peak callers (MACS, SICER, and AREM) were run on both datasets. For
AREM, the maximum number of retained alignments per read is varied (from
1 to 80). The total number of peaks and bases covered by peaks is reported
as well as the FDR by swapping treatment and control. For both datasets,
AREM’s minimum enrichment score was fixed at 1.5 with 20 maximum align-
ments per read. For comparison, the motif background rate of occurence was
4.5% (CTCF) and 27% (Srebp-1) in 100,000 genomic samples, sized similarly
to Rad21 MACS peaks and Srebp-1 MACS peaks, respectively. 26

3.1 Accuracy of different algorithms in recovering parameter values using artificial
data. 53

3.2 H1-ES ChIP-seq enrichment in predicted promoter and enhancer regions. . . 60
3.3 Average coverage and cell type-specific enrichment of learned chro-

matin states. The “mean” column gives the average percent coverage, or the
fraction of the segmented genome which is covered by the state. The following
columns show the enrichment of each state in each cell type relative to the
across-species mean (column 2). 62

3.4 Measured histone markers of Bone Marrow, G1E and G1E-ER4 - mouse dataset. 62

4.1 Assembly results for three bacterial genomes using Velvet, Ray, and Genomix.
In all cases, the algorithms were run with K = 31 in single-end mode and all
metrics are as reported by GAGE. Abbreviations are Inv. = Inversions, Rel.
= Relocations, Trans. = Translocations. 91

4.2 Assembly results for three bacterial genomes using Velvet, Ray, and Genomix.
In all cases, the algorithms were run with K = 31 in single-end mode and all
metrics are as reported by GAGE. Abbreviations are Inv. = Inversions, Rel.
= Relocations, Trans. = Translocations. 92

ix

LIST OF ALGORITHMS

Page
1 Variational expectation-maximization algorithm 41
2 Strucutred Mean Field: Normalization Algorithm 48
3 Strucutred Mean Field: Forward Algorithm 48
4 Strucutred Mean Field: Backward Algorithm 49
5 Graph Building . 78

x

ACKNOWLEDGMENTS

There are so many to thank for their support and guidance along this journey. First, I would
like to thank my advisor, Xiaohui Xie. Without his optimism, excitement, encouragement,
and an uncanny ability to turn a tough mathematical problem into mincemeat in seconds, I
would not have gotten this far. Next, THANK YOU to my sweet and incredibly supportive
wife, Emily. We were married in my first semester at UCI, and two kids and (hopefully) a
PhD later, we are closer and happier than ever. My two boys have filled my evening with
delight and lifted my heart many times after a hard day. Next comes all my parents, for
filling my commutes with words of wisdom and for being supportive and helpful especially
in the hard times.

I can’t get away without thanking all the great members of the Xie lab, who made lab
meetings fun, social, and delicious, and will continue to be my friends forever. If you ever
need a place to stay, my couch is there for you! Come watch the little ones grow up! Special
mention goes out to: Yi Li, the champion of mixture models, Elmira Forouzmand and
Lingjie Weng, both of whom inherited large projects from me and spent weeks trying to
wrap their heads around my code and who subsequently carried the projects off masterfully,
despite working by themselves for large spans. Daniel Newkirk, who kept us all laughing and
whose hobby of hoarding excellent hardware kept us all running despite too many Murphy’s-
law-failures. Daniel Quang gets the award for “Most Irate Rants About My Algorithm Not
Working” while also quite possibly being the coolest person in the lab. Yifei Chen amazingly
picked up python independent of my ranting about its superiority, and has put its awesome
deep learning packages to good use. I miss Alvin Chon for the awesome ideas, vision, and
general awesomeness, and Neil Infante for his good nature, hatred of my beloved python,
and wife’s cooking, and Mengfan Tang and Yuanfeng Wang for being the kindest, gentlest
people I’ve met. Anbang Xu, Jianfeng Jia, and Nan Zhang all deserve my thanks for forming
the framework and algorithms for the Genomix project, and making a stint to the second
floor so much fun. Countless other friends have enriched the journey; I wish I could include
you all here.

UCI has been a unique place, full of just the right mixture of expertise and easy-going
attitudes, fostering excellent collaborations from people who both know what they’re doing
and are so happy to help. I’m sad that the IGB training grant evaporated since many
collaborations started there and future students are surely going to miss out.

My beginnings at UCI were in Systems Biology and I owe many thanks to the scientific
insight of the faculty there, with particular mention of the bureaucratic ninja skills of Karen
Martin and the effective Socratic teaching method of Arthur Lander. So many professors here
have shaped my understanding and perspective and have shared their contagious excitement
for this field. Thank you.

For the AREM paper, I thank my co-authors, Daniel Newkirk and Alvin Chon, for releasing
the paper under the excellent Creative Commons License, BMC Bioinformatics, and, finally,
Tao Liu and the Liu lab for releasing MACS as open-source software. For the TreeHMM

xi

paper, my coauthor Yuanfeng Wang was a huge help, as well as Yifei Chen for some prelim-
inary discussions. Elmira, Anbang, Jianfeng, Nan, Hongzhi Wang, Yingyi Bu, and Chen Li
all deserve thanks for their help and support of the Genomix project.

My funding over this journey has been a lifesaver, and I owe it all in various parts to NSF
grant DBI-0846218, NIH grant HD062951 National Institutes of Health/NLM bioinformatics
training grant (T15LM07443).

xii

CURRICULUM VITAE

William Jacob Benhardt Biesinger

EDUCATION

Doctor of Philosophy in Computer Science 2014
University of California, Irvine Irvine, California

Bachelor of Science in Bioinformatics 2008
Brigham Young University Provo, Utah

RESEARCH EXPERIENCE

Graduate Research Assistant 2008–2014
University of California, Irvine Irvine, California

Undergraduate Research Assistant 2007–2008
Brigham Young University Provo, Utah

Intern Research Assistant 2007, 2008
City of Hope National Medical Center Duarte, California

TEACHING EXPERIENCE

Teaching Assistant 2009–2013
University of California, Irvine Irvine, California

xiii

REFEREED JOURNAL PUBLICATIONS

Integrative ChIP-seq/Microarray Analysis Identifies a
CTNNB1 Target Signature Enriched in Intestinal Stem
Cells and Colon Cancer

2014

PLOS One

Biallelic genome modification in F0 Xenopus tropicalis
embryos using the CRISPR/Cas system

2013

genesis

Discovering and mapping chromatin states using a tree
hidden Markov model

2013

BMC Bioinformatics

Transcriptome-wide analyses of CstF64–RNA inter-
actions in global regulation of mRNA alternative
polyadenylation

2012

Proceedings of the National Academy of Sciences

Genome-wide analysis of hepatic LRH-1 reveals a pro-
moter binding preference and suggests a role in regu-
lating genes of lipid metabolism in concert with FXR

2012

BMC Genomics

AREM: aligning short reads from ChIP-sequencing by
expectation maximization

2011

Journal of Computation Biology

Genome-wide localization of SREBP-2 in hepatic chro-
matin predicts a role in autophagy

2011

Cell Metabolism

Combined biological and computational approaches to
understand the role of Get1/Grhl3 in epidermal differ-
entiation

2011

Journal of Investigative Dermatology

A risk variant in an miR-125b binding site in BMPR1B
is associated with breast cancer pathogenesis

2009

Cancer Research

xiv

REFEREED CONFERENCE PUBLICATIONS

Discovering and mapping chromatin states using a tree
hidden Markov model

2013

Research in Computational and Molecular Biology

AREM: aligning short reads from ChIP-sequencing by
expectation maximization

2011

Research in Computational and Molecular Biology

SOFTWARE

Genomix https://github.com/uci-cbcl/genomix

Scalable De Bruijn graph-based genome assembly using Hyracks and Pregelix.

TreeHMM https://github.com/uci-cbcl/tree-hmm

Graphical model for identifying chromatin states simultaneously in multiple cell types.

AREM https://github.com/uci-cbcl/AREM

ChIP-seq peak caller that re-aligns ambiguously aligning reads.

HTS-waterworks https://github.com/uci-cbcl/HTS-waterworks

Pipeline for high-throughput sequencing, including comparison of alignment, ChIP-seq
and RNA-seq methods. Built on Ruffus.

Ruffus https://github.com/bunbun/ruffus

Python pipeline framework co-developed with Leo Goodstadt of the Wellcome Trust Cen-
tre for Human Genetics.

xv

https://github.com/uci-cbcl/genomix
https://github.com/uci-cbcl/tree-hmm
https://github.com/uci-cbcl/AREM
https://github.com/uci-cbcl/HTS-waterworks
https://github.com/bunbun/ruffus

ABSTRACT OF THE DISSERTATION

Toward a More Accurate Genome: Algorithms for the Analysis of High-Throughput
Sequencing Data

By

William Jacob Benhardt Biesinger

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Xiaohui Xie, Chair

High-throughput sequencing enables basic and translational biology to query the mechan-

ics of both life and disease at single-nucleotide resolution and with breadth that spans the

genome. This revolutionary technology is a major tool in biomedical research, impacting our

understanding of life’s most basic mechanics and affecting human health and medicine. Un-

fortunately, this important technology produces very large, error-prone datasets that require

substantial computational processing before experimental conclusions can be made. Since

errors and hidden biases in the data may influence empirically-derived conclusions, accurate

algorithms and models of the data are critical. This thesis focuses on the development of

statistical models for high-throughput sequencing data which are capable of handling errors

and which are built to reflect biological realities.

First, we focus on increasing the fraction of the genome that can be reliably queried in bi-

ological experiments using high-throughput sequencing methods by expanding analysis into

repeat regions of the genome. The method allows partial observation of the gene regulatory

network topology through identification of transcription factor binding sites using Chro-

matin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Binding

site clustering, or ”peak-calling”, can be frustrated by the complex, repetitive nature of

xvi

genomes. Traditionally, these regions are censored from any interpretation, but we re-enable

their interpretation using a probabilistic method for realigning problematic DNA reads.

Second, we leverage high-throughput sequencing data for the empirical discovery of under-

lying epigenetic cell state, enabled through analysis of combinations of histone marks. We

use a novel probabilistic model to perform spatial and temporal clustering of histone marks

and capture mark combinations that correlate well with cell activity. A first in epigenetic

modeling with high-throughput sequencing data, we not only pool information across cell

types, but directly model the relationship between them, improving predictive power across

several datasets.

Third, we develop a scalable approach to genome assembly using high-throughput sequenc-

ing reads. While several assembly solutions exist, most don’t scale well to large datasets,

requiring computers with copious memory to assemble large genomes. Throughput continues

to increase and the large datasets available today and in the near future will require truly

scalable methods. We present a promising distributed method for genome assembly which

distributes the de Bruijn graph across many computers and seamlessly spills to disk when

main memory is insufficient. We also show novel graph cleaning algorithms which should

handle increased errors from large datasets better than traditional graph structure-based

cleaning.

High-throughput sequencing plays an important role in biomedical research, and has already

affected human health and medicine. Future experimental procedures will continue to rely

on statistical methods to provide crucial error and bias correction, in addition to modeling

expected outcomes. Thus, further development of robust statistical models is critical to

the future high-throughput sequencing, ensuring a strong foundation for correct biological

conclusions.

xvii

Chapter 1

Introduction

The advent of high-throughput sequencing has brought about a revolution in biology, forever

changing the way we ask questions and seek answers in both basic and translational biology.

It has enabled biologists to query the mechanics of both life and disease at unprecedented

scale [55] and has transformed the scope of entire fields of biological study, taking them from

small-scale experiments to “-omics” scale studies, that is, comprehensive functional surveys of

all genes (“genomics” [75]), all proteins (“proteomics” [127]), and small molecules (“chem-

ical genomics” [51]), and these fields’ interactions in specific subfields such as toxicology

(“toxicogenomics” [1]), metabolism (“metabolomics” [35]), sleep patterns (“circadiomics”

[89]), etc, touching many subdisciplines of biological study. This incredible revolution has

been possible through the ever-decreasing costs of sequencing and simultaneous increase in

throughput and quality [104]. For comparison, Moore’s law in computer hardware states

that every two years, there is a doubling in the number of transistors on an integrated cir-

cuit [74]. High-throughput sequencing’s number of sequenced base pairs per dollar cost has

risen at at least that rate since 2001 and has been rising much faster than it since the end

of 2007 [49]. In 2011, the rate of increase nearly shut down one of the major repositories

tasked with hosting raw sequencing [32, 33], and in 2013, led to the first cancellation of an

1

XPRIZE (being “outpaced by innovation” [87]).

The effect of high-throughput sequencing on basic science and human health is already being

felt today. Boyd et al. [17] review recent results stemming from high-throughput sequenc-

ing, including inroads in “Mendelian genetic disorders, hematologic cancer biology, infectious

diseases, the immune system, transplant biology, and prenatal diagnostics.” Loman et al.

[64] point out that high-throughput sequencing is now making the transition into the clinical

laboratory, especially since smaller, more affordable benchtop sequencers are becoming avail-

able. In oncology and Mendelian diseases, high-throughput sequencing has been put to use in

expression profiling, complete genome sequencing, and exome sequencing (including only the

1% of the genome that codes for protein), where the combination of this information leads

to diagnosis of particular cancer subtypes [97, 118], reveals previously unsuspected cancer

genes ([34] for review) and causes of Mendelian diseases [5] and has even led to personalized

therapies [71, 81, 113]. In basic biology, high-throughput sequencing has given rise to a

plethora of new experimental techniques that are able to reliably quantify single-nucleotide

polymorphisms and structural variations [122], gene expression levels and their differences

across samples [96, 114, 123], protein-DNA interactions [88, 137], and even DNA-DNA inter-

actions [130]. Coupled with high-throughput sequencing, these new experimental methods

fuel new discoveries through comprehensive inquiry.

As powerful as this technology is, it is not without its shortcomings. High-throughput se-

quencing reads must be put through rigorous quality control and correction since they tend

to be shorter than the previous generation of Sanger reads, are more error-prone, and have

several biases that can lead to incorrect conclusions if not properly accounted for [138]. In-

deed, it is perhaps the rigorous statistical modeling of the data and experiments that has

enabled high-throughput sequencing to become such a success, despite these major limita-

tions. As new experimental procedures have been developed, new computational algorithms

and statistical models were custom-built to account for particular experimental biases and

2

describe expected outcomes. Largely thanks to high-throughput sequencing, in recent years

the computational aspect of biology has become “the pillar of new biology” and is hardly

recognizable as a separate science [86]. Richard Durbin, an early and major contributor

to computational biology [27, 57, 59, 60], stated “ I would say that computation is now as

important to biology as chemistry is” [2].

Within computational biology, probabilistic statistical models have proven particularly pop-

ular, given their robustness against noise in the data, communicability of the models, in-

terpretability of the results, scalability with respect to data size, and their modular and

expandable nature. Many major bioinformatic tools incorporate probabilistic models to:

correct for sequencing errors in the data (see for example, [60, 68, 107, 121]); directly model

biological phenomena such as gene regulatory networks ([67] for review), physical interac-

tions within and between chromosomes [130]; discover sequence motifs in co-regulated genes

[4, 112]; to discovery transcription factor binding sites ([76, 109, 133, 136, 137] among others);

determine differentially expressed genes ([36, 114]); and for many other specific applications.

Probabilistic modeling has even been proposed as a complete replacement for biology’s sci-

entific discovery process itself [38].

Advances in high-throughput sequencing’s chemistry, throughput, and cost aren’t enough;

they must be coupled with progression in our understanding, hypotheses, and algorithms if

its full potential impact is to be realized. In this thesis, we present three major contribu-

tions furthering our understanding of the genome through computational and algorithmic

developments

Dissertation Outline and Contributions

The thesis is outlined as follows:

3

In chapter 2, we present our contributions to the analysis of ChIP-seq data and the resulting

improvement in genomic annotation in two ChIP datasets. The contributions include an

improved peak caller, a probabilistic model of the ChIP enrichment process which allows

ambiguously aligning reads to be iteratively realigned to the genome and enabling peak call-

ing in previously-censored repeat regions of the genome. These contributions are released

as an open-source software package called AREM, or “Aligning Reads by Expectation-

Maximization”, which is available at https://github.com/uci-cbcl/AREM. Portions of

this chapter were published as part of [83].

In chapter 3, we present contributions centered on automatically determining epigenomic an-

otations and contrasting them across multiple species. We expand the HMM methodology

of Ernst et al. [29] (called ChromHMM) for automatic epigenetic segmentation and annota-

tion, but instead of using independent models for each cell type, we generalize the model by

connecting the hidden nodes in a lineage. Our model comes closer to the biological reality

that different cell types share common lineage from early stem-like progenitors and could be

adapted for time series that include both lineage and spacial information. Since exact infer-

ence in the proposed model is computationally expensive, we explore several approximate

variational inference methods including mean field, structured mean field and loopy belief

propagation, and explore the accuracy of each method using synthetic and real data. We

show that our model exhibits several desirable features including improved accuracy of in-

ferring chromatin states, improved handling of missing data, and linear scaling with dataset

size. Finally, we cluster the epigenetic marks in multiple species and segment the genome

into 18 distinct chromatin state types, showing improved accuracy of the inferred state over

the previous ChromHMM. These contributions are released as an open-source software pack-

age called TreeHMM, available at https://github.com/uci-cbcl/tree-hmm. Portions of

this chapter were published as part of [10].

In chapter 4, we introduce a de bruijn graph assembly method which combines several

4

https://github.com/uci-cbcl/AREM
https://github.com/uci-cbcl/tree-hmm

algorithms from popular assembly programs and includes a new approach to expanding

contigs. The implementation is built on Hyracks and Pregelix, scales well with respect

to the genome size, and shows an N50 value similar to previously reported findings. Fur-

ther, the framework is inherently adaptable, able to be run on large clusters of commod-

ity machines (such as Amazon’s EC2 cloud), in more traditional grid environments, or

even on a single machine with limited memory and computational resources. These con-

tributions are released as an open-source software package called Genomix, available at

https://github.com/uci-cbcl/genomix.

5

https://github.com/uci-cbcl/genomix

Chapter 2

AREM: Aligning Reads by

Expectation-Maximization

2.1 Introduction

In recent years, high-throughput sequencing coupled to chromatin immunoprecipitation

(ChIP-seq) has become one of the premier methods of analyzing protein-DNA interactions

[88]. The ability to capture a vast array of protein binding locations genome-wide in a sin-

gle experiment has led to important insights in a number of biological processes, including

transcriptional regulation, epigenetic modification and signal transduction [13, 72, 85, 103].

Chromatin immunoprecipitation followed by high-throughput sequencing yields a snapshot of

a single protein’s DNA interactions. The procedure consists of a chemical cross-linking that

captures all protein-DNA interactions within the cell followed by a random DNA shearing,

a targeted pull-down of the protein of interest, and finally, a reversal of the cross-link. DNA

adjacent to the interaction site is pulled down and eventually amplified and sequenced. When

aligned back to the reference genome, DNA fragments will be enriched in the area directly

6

surrounding protein-DNA interaction sites of the protein of interest, allowing a researcher to

identify binding sites based on the enrichment of DNA fragments. The enriched regions are

generally termed “peaks” and a whole industry of “peak-callers” has been developed by the

computational biology community; this is an area that continues to receive major efforts.

Some approaches to calling peaks are outlined in section 2.1.3. Typically, signal from the

enriched DNA fragments is compared against a control experiment to account for fluctuations

due to the pull-down process, chromatin accessibility, GC content, or copy number variations

in the sample and the most-enriched regions are assumed to contain the original protein-

DNA interaction site. Many transcription factors have well-characterized preferences for

particular DNA letters (“motif” sequences). Validation of peak-calling quality often consists

of searching the identified peak regions for known motifs or submitting their sequences to a

de novo motif search using MEME [3] or some other program.

Numerous methods have been developed to analyze ChIP-Seq data and they typically work

well for identifying protein-DNA interactions located within non-repeat sequences. However,

most genomes are riddled by repetitive DNA sequences. These sequences may show up dozens

or even hundreds of times within a single genome and can be problematic in bioinformatic

analysis. Normally, DNA fragments that align to the genome multiple times are either

removed from the analysis completely (leaving holes in the analysis and our understanding

of the genome) or one of several possible alignments is chosen at random. We present novel

methodology for identifying protein-DNA interactions in these repeat sequences.

2.1.1 Contributions

In this chapter, we present our contributions to the analysis of ChIP-seq data and the

resulting improvement in genomic annotation in two ChIP datasets.

7

• We implement an improved peak caller based on the method of Model-based Analysis

of ChIP-Seq (MACS) [137]. In addition to the methods from MACS, we refine poten-

tial peaks by direct optimization of the local poisson enrichment p-value, identifying

additional peaks at a higher resolution than previous methods.

• Second, we develop a probabilistic framework for ChIP-derived DNA read alignment

that accounts for multiple possible alignments for each read. We show how to find a lo-

cally optimal maximum-likelihood (ML) solution in this framework using expectation-

maximization.

• Third, we implement an efficient peak caller that solves both of the above problems

jointly and demonstrate its use on two ChIP datasets.

These contributions are released as an open-source software package called AREM, or “Align-

ing Reads by Expectation-Maximization”, which is available at https://github.com/uci-cbcl/

AREM. Portions of this chapter were published as part of [83].

2.1.2 Chapter Outline

The remainder of this chapter is structured as follows: Section 2.1.3 surveys related work,

including MACS, the basis for our improved peak caller. The peak caller is presented in

2.2. Section 2.3 presents the probabilistic framework for read realignment as well as our

solution to the local maximum likelihood problem using expectation-maximization. Section

2.4 presents the results of combining these two methods in two ChIP datasets, and finally,

section 2.5 includes a brief discussion of the methods and possible future work.

8

https://github.com/uci-cbcl/AREM
https://github.com/uci-cbcl/AREM

2.1.3 Related Work

For the alignment phase, Eland, MAQ, Bowtie, and SOAP are among the most popular

for mapping short reads to a reference genome [22, 58, 60, 61] and provide many or all of

the potential alignments for a given sequence read. Once potential mappings have been

identified, significantly enriched genomic regions are identified using one of several available

tools [12, 30, 47, 76, 93, 99, 109, 133, 137]. Some peak finders are better suited for histone

modification studies, others for transcription factor binding site identification. These peak

finders have been surveyed on several occasions [52, 90, 126].

2.2 Optimizing Peak Caller

MACS searches the pileup of reads and leverages the fact that reads overlapping the ChIP

binding site display a distinct bimodal binding profile, with forward strand reads appearing

only upstream of the binding site, while negative strand reads only appear downstream of

the binding site. After determining an empirically-optimal shift pushing the two strands

together into a taller, unimodal distribution, MACS compares the number of reads within

each peak region against a locally-defined poisson background. The background rate is the

highest of the region directly surrounding the peak, the several-kilobase region around that,

and the background region for the entire genome. Statistically speaking, this method will

lead to more conservative predictions than using only one of the background rates. The

peak boundaries themselves are defined heuristically as the region where the read count

goes above some predefined threshold; all sites going above that threshold are considered

candidate peaks, though only those surpassing a predefined poisson p-value are reported as

peaks in the end.

In our methodology, after performing the bimodal to unimodal read shift and identifying

9

candidate peaks, we apply a further filter to refine potential peaks. Specifically, we attempt

to prune the edges of the peak regions where doing so decreases the poisson p-value by

excluding fringe reads from the peak region.

2.2.1 Alignment

We aligned the data using Bowtie [58] with the Burrows-Wheeler index provided by the

Bowtie website. The index is based on the unmasked MM9 reference genome from the

UCSC Genome Browser [95]. We clipped the first base of all raw reads to remove sequencing

artifacts and allowed a maximum of two mismatches in the first 28 bases of the remaining

sequence. We generated several alignment collections for both Srebp-1 and Rad21 by varying

k, the maximum number of reported alignments. We restricted our study to search the 1,

10, 20, 40, and 80 best alignments. Table 1 shows that the total number of alignments was

only starting to plateau at k=80, indicating that many sequences have more than 80 possible

alignments, for practicality we restricted our search as above. We calculated map confidence

scores from Bowtie output as in [60]. We also provide an option for using the aligner’s

confidence scores directly rather than recalculating them from mismatches and sequence

qualities. During preparation of the sequencing library, unequal amplification can result in

biased counts for reads. To eliminate this bias, we limit the number of alignments to one

for each start position on each strand. In particular, we choose the best alignment (based

on quality score) for each position; in the event that all alignments have the same quality

score, we choose a random read to represent that particular position.

2.2.2 Peak Finding

Our peak finding method is an adapted version of the MACS [137] peak finder. Like MACS,

we empirically model the spatial separation between +/- strand tags and shift both treatment

10

and control tags. We also continue MACS’ conservative approach to background modeling,

using the highest of three rates as the background (in this study, genome-wide or within

1,000 or 10,000 bases). As a divergence from MACS, we use a sliding window approach to

identify large potentially enriched regions then use a smoothened greedy approach to refine

called peaks. We call peaks within this large region by greedily adding reads to improve

enrichment, but avoid local optima by always looking up to the full sliding window width

away. The initial large regions correspond to the K regions used for the E-M steps of Section

2.3.5. During the E-M steps, local background rates are used as during final peak-calling.

Peaks reported in this study are above a p-value of 10−5. All enrichment scores and p-values

are calculated using the poisson linear interpolation described in equation 2.12. Once E-M

is complete on the treatment data and peaks are called, we reset the treatment alignment

probabilities, swap treatment and control and rerun the algorithm, including E-M steps, to

determine the False Discovery Rate (FDR). For all algorithms tested in this study, we define

the FDR as the ratio of peaks called using control data to peaks called using treatment data.

This method of FDR calculation is common in ChIP-Seq studies (e.g., [133, 137]).

2.2.3 Motif finding

Motif presence helps determine peak quality, as shown in [14]. To determine if our new

peaks were of the same quality as the other peaks, we performed de novo motif discovery

using MEME [3] version 4.4. Input sequence was limited to 150 bp (Rad21) and 200 bp

(Srebp-1) around the summit of the peaks called by MACS from uniquely mapping reads.

All sequences were used for Srebp-1, while 1,000 sequences were randomly sampled a total

of 5 times for Rad21. The motif signal was strong in both datasets and we extracted the

discovered motif position weight matrix (PWM) for further use. We also performed the

motif search using Srebp-1 and CTCF motifs catalogued in Transfac 11.3, and found similar

results. For the CTCF motif, we did genomic sampling (100,000 samples) to identify a

11

threshold score corresponding to a z-score of 4.29. For Srebp-1, we used the threshold score

reported by MEME (see Figure 1).

2.3 A Probabilistic Framework for ChIP Read Realign-

ment

Many short reads cannot be uniquely mapped to the reference genome. Most peak finding

workflows throw away these non-uniquely mapped reads, and as a consequence have low

power for detecting peaks located within repeat regions. While each experiment varies, only

about 60% [in house data] of the sequence reads from a ChIP-Seq experiment can be uniquely

mapped to a reference genome. Therefore, a significant portion of the raw data is not utilized

by the current methods. There have been proposals to address the non-uniquely mapped

reads in the literature by either randomly choosing a location from a set of potential ones

[50, 101] or by taking all potential alignments [76], but most peak callers are not equipped

to deal with ambiguous reads.

We propose a novel peak caller designed to handle ambiguous reads directly by performing

read alignment and peak-calling jointly rather than in two separate steps. In the context

of ChIP-Seq studies, regions enriched during immunoprecipitation are more likely the true

genomic source of sequence reads than other regions of the genome. We leverage this idea to

iteratively identify the true genomic source of ambiguous reads. Under our model, the true

locations of reads and binding peaks are treated as hidden variables, and we implement an

algorithm, AREM, to estimate both iteratively by alternating between mapping reads and

finding peaks.

12

2.3.1 Notations

Let R = {r1, · · · , rN} denote a set of reads from a ChIP-Seq experiment with read ri ∈ Σl,

where Σ = {A, C, G, T}, l is the length of each read, and N denotes the number of reads. Let

S ∈ ΣL denote the reference sequence to which the reads will be mapped. In real applications,

the reference sequence usually consists of multiple chromosomes. For notational simplicity,

we assume the chromosomes have been concatenated to form one reference sequence.

We assume that for each read we are provided with a set of potential alignments to the

reference sequence. Denote the set of potential alignments of read ri to S by Ai = {(lij, qij) :

j = 1, · · · , ni}, where lij and qij denote the starting location and the confidence score of the

j-th alignment, and ni is the total number of potential alignments. We assume qij ∈ [0, 1]

for all j, and use it to account for both sequencing quality scores and mismatches between

the read and the reference sequence. There are several programs available to generate the

initial potential alignments and confidence scores.

2.3.2 Mixture model

We use a generative model to describe the likelihood of observing the given set of short reads

from a ChIP-Seq experiment. Suppose the ChIP procedure results in the enrichment of K

non-overlapping regions in the reference sequence S. Denote the K enriched regions (also

called peak regions) by {(sk, wk) : k = 1, · · · , K}, where sk and wk represent the start and

the width, respectively, of the i-th enriched region in S. Let Ek = {sk, · · · , sk + wk − l}

denote the set of locations in the enriched region k that can potentially generate a read of

length l. Let Es
k, E

w
k denote the start and width of region k. We will use E0 to denote all

locations in S that are not covered by
⋃K
k=1Ek.

We use variable zi ∈ {1, · · · , ni} to denote the true location of read ri, with zi = j represent-

13

ing that ri originates from location lij of S. In addition, we use variable ui ∈ {0, 1, · · · , K}

to label the type of region that read ri belongs to. ui = k represents that read ri is from

the non-enriched regions of S if k = 0, and is from k-th enriched region otherwise. Both zi

and ui are not directly observable, and are often referred to as the hidden variables of the

generative model.

Let P (ri|zi = j, ui = k) denote the conditional probability of observing read ri given that

ri is from location lij and belongs to region k. Assuming different reads are generated

independently, the log likelihood of observing R given the mixture model is then

` =
N∑
i=1

log

[
ni∑
j=0

K∑
k=0

P (ri|zi = j, ui = k)P (zi = j)P (ui = k)

]
,

where P (zi) and P (ui) represent the prior probabilities of the location and the region type,

respectively, of read ri. P (zi) is set according to the confidence scores of different alignments

P (zi = j) =
qij∑ni
k=1 qik

. (2.1)

P (ui) depends on both the width and the enrichment ratio of each enriched region. Denote

the enrichment ratio of the ChIP regions vs non-ChIP regions by α, which is often signifi-

cantly impacted by the quality of antibodies used in ChIP experiments. We parametrize the

prior distribution on region types as follows

P (ui = k) =
1

(α− 1)
∑

j wj + L
×

 L−∑j wj if k = 0

αwk o.w.
(2.2)

14

2.3.3 Parameter estimation

The conditional probability P (ri|zi = j, ui = k) can be modeled in a number of different

ways. For example, bell-shaped distributions are commonly used to model the enriched

regions. However, for computational simplicity, we will use a simple uniform distribution to

model the enriched regions. If read ri comes from one of the enriched regions, i.e., k 6= 0, we

assume the read is equally likely to originate from any of the potential positions within the

enriched region, that is,

P (ri|zi = j, ui = k) =
1

wk − l + 1
IEk(lij), (2.3)

where IA(x) is the indicator function, returning 1 if x ∈ A and 0 otherwise.

If the read is from non-enriched regions, i.e., k = 0, we use pbi to model the background

probability of an arbitrary read originating from location i of the reference sequence. (We

assume pbi has been properly normalized such that
∑L

i=1 p
b
i = 1.) Then the conditional

probability P (ri|zi = j, ui = k) for the case of k = 0 is modeled by

P (ri|zi = j, ui = 0) = IE0(lij) p
b
lij
. (2.4)

Numerous ChIP-Seq studies have demonstrated that the locations of ChIP-Seq reads are

typically non-uniform, significantly biased toward promoter or open chromatin regions [88].

The pbi ’s takes this ChIP and sequencing bias into account, and can be inferred from control

experiments typically employed in ChIP-Seq studies.

Next we integrate out the ui variable to obtain the conditional probability of observing ri

15

given only zi

P (ri|zi = j) = P (ui = 0)IE0(lij) p
b
lij

+
K∑
k=1

P (ui = k)

wk − l + 1
IEk(lij). (2.5)

Note that because E0, E1, · · · , EK are disjoint, only one term in the above summation can

be non-zero. This property significantly reduces the computation for parameter estimation

since we do not need to infer the values of ui variables any more.

The log likelihood of observing R given the mixture model can now be written as

`(r1, · · · , rn; Θ) =
N∑
i=1

log

[
ni∑
j=0

P (ri|zi = j)P (zi = j)

]
, (2.6)

where Θ = (s1, w1, · · · , sK , wK , α) denotes the parameters of the mixture model. We estimate

the values of these unknown parameters using maximum likelihood estimation

Θ̂ = arg max
Θ

`(r1, · · · , rn; Θ). (2.7)

2.3.4 Expectation-maximization algorithm

We solve the maximum likelihood estimation problem in Eq. (2.7) through an expectation-

maximization (E-M) algorithm. The algorithm iteratively applies the following two steps

until convergence:

Expectation step: Estimate the posterior probability of alignments under the current esti-

mate of parameters Θ(t):

Q(t)(zi = j|R) =
1

C
P (ri|zi = j,Θ(t))P (zi = j), (2.8)

where C is a normalization constant.

16

Maximization step: Find the parameters Θ(t+1) that maximize the following quantity,

Θ(t+1) = arg max
Θ

N∑
i=1

ni∑
j=0

Q(t)(zi = j|R) logP (ri|zi = j,Θ). (2.9)

2.3.5 Implementation of E-M updates

The mixture model described above contains 2K + 1 parameters. Since K, the number of

peak regions, is typically large, ranging from hundreds to hundreds of thousands, exactly

solving Eq. (2.9) in the maximization step is nontrivial. Instead of seeking an exact solution,

we identify the K regions from the data by considering all regions where the number of

possible alignments is significantly enriched above the background.

For a given window of size w starting at s of the reference genome, we first calculate the

number of reads located within the window, weighted by the current estimation of posterior

alignment probabilities,

f(s, w) =
N∑
i=1

ni∑
j=1

Q(t)(zi = j|R) I[s,s+w−l](lij). (2.10)

We term this quantity the foreground read density. As a comparison, we also calculate

a background read density b(s, w), which is estimated using either reads from the control

experiment or reads from a much larger extended region covering the window. Different

ways of calculating background read density are discussed in [137].

Provided with both background and foreground read densities, we then define an enrichment

score φ(s, w) to measure the significance of read enrichment within the window starting at

position s with width w. For this purpose, we assume the number of reads are distributed

according to a Poisson model with mean rate b(s, w). If f(s, w) is an integer, the enrichment

17

score is defined to be φ(s, w) = − log10(1− g(f, b)), where

g(x, λ) = e−λ
x∑
k=0

λk

k!
(2.11)

denotes the chance of observing at least x Poisson events given the mean rate of λ. However,

if f(s, w) is not an integer, the enrichment score cannot be defined this way. Instead, we use

a linear extrapolation to define the enrichment score φ(s, w) = − log10(1 − g̃(f, b)), where

function g̃ is defined as

g̃(x, λ) = g(bxc, λ) + [g(dxe, λ)− g(bxc, λ)] (x− bxc). (2.12)

If two potential alignments of a read have the same confidence score and are located in two

peak regions with equal enrichment, the update of posterior alignment probabilities in Eq.

(2.8) will assign equal weight to these two alignments. This is so because we have assumed

that peak regions have the same enrichment ratio as described in Eq. (2.2), which is not true

as some peak regions are more enriched than others in real ChIP experiments. To address

this issue, we have also implemented an update of the posterior probabilities that takes the

calculated enrichment scores into account as

Qt(zi = j|R)←
K∑
k=1

[φ(Es
k, E

w
k) P (zi = j) IEk(zi)] (2.13)

which is then normalized. In practice, we found this implementation usually behaves better

than the one without using enrichment scores.

We use entropy to quantify the uncertainty of alignments associated with each read. For

read i, the entropy at iteration t is defined to be

H t
i = −

ni∑
j=1

Qt(zi = j|R) logQt(zi = j|R). (2.14)

18

We stop the E-M iteration when the relative square difference between two consecutive

entropies is small, that is, when

∑N
i=0(H t

i −H t−1
i)2∑N

i=0(H t−1
i)2

< ε, (2.15)

where ε = 10−5 for results reported in this paper.

AREM seeks to identify the true genomic source of multiply-aligning reads (also called

multireads). Many of the multireads will map to repeat regions of the genome, and we

expect repeats to be included in the K potentially enriched regions. To prevent repeat

regions from garnering multiread mass without sufficient evidence of their enrichment, we

impose a minimum enrichment score. Effectively, unique or less ambiguous multireads need

to raise enrichment above noise levels for repeat regions to be called as peaks. The minimum

enrichment score is a parameter of our model and its effect on called peaks is explored in

Results.

2.4 Results

Two ChIP-Seq datasets were used in this study: 1) cohesin, a new dataset generated in

house, and 2) Srebp-1, a previously published dataset [103]. We generated the cohesin

dataset by performing ChIP-Seq using mouse embryonic fibroblasts and an antibody target-

ing Rad21 [134], a subunit of cohesin. Cohesin is an essential protein complex required for

sister chromatid cohesion. In mammalian cells, cohesin binding sites are present in inter-

genic, promoter and 3’ regions-especially in connection with CTCF binding sites [63, 98]. It

was found that cohesin is recruited by CTCF to many of its binding sites, and plays a role

in CTCF-dependent gene regulation [80, 124]. Cohesin has been shown to bind to repeat

sequences in a disease-specific manner [134], making it a particularly interesting candidate

19

Figure 2.1: AREM workflow diagram. Given a set of multiply-mapping and singly-
mapping reads, AREM shifts stranded reads towards each other, identifies all potential peak
regions, then iterates between updating read alignment probabilities and peak enrichment
scores until convergence. Once converged, AREM optimizes the enrichment score further,
seeking the peak width that gives the optimal enrichment score. Finally, the process is
repeated for the control data in order to determine the overall false discovery rate.

for our study.

The second dataset is Srebp-1, a transcription factor important in allostatic regulation of

sterol biosynthesis and membrane lipid composition [39]. This particular dataset [103] exam-

ines the genomic binding locations for Srebp-1 in mouse liver. Regulation of expression by

Srebp-1 is important for regulation of cholesterol; repeat-binding for this transcription factor

20

has not been shown previously [39, 132]. We choose these datasets because both proteins

have well characterized regulatory motifs, allowing us to directly test the validity of our peak

finding method.

Building on the methodology of the popular peak-caller Model-based Analysis of ChIP-

Seq (MACS) [137], we implement AREM, a novel peak caller designed to handle multiple

possible alignments for each sequence read. AREM’s peak caller combines an initial sliding

window approach with a greedy refinement step and iteratively aligns ambiguous reads. We

use two ChIP-Seq datasets in this study: Rad21 and Srebp-1. Rad21, a subunit of the

structural protein cohesin, contained 7.2 million treatment reads and 7.4 million control

reads (manuscript in preparation). Srebp-1, a regulator of cholesterol metabolism, had 7.7

million treatment reads and 6.4 million control reads [103].

Using AREM, we identify 19,935 Rad21 peaks covering more than 10 million base pairs at a

low False Discovery Rate (FDR) of 3.7% and 1,474 Srebp-1 peaks covering nearly 1 million

bases at a moderate FDR of 8%. For comparison, we also called peaks using MACS and

SICER [133], another popular peak finding program. To compare our results, we use FDR

and motif presence as indicators of bona fide binding sites.

2.4.1 AREM identifies additional binding sites

We seek to benchmark both AREM’s peak-calling and its multiread methodology. To bench-

mark peak-calling, we limit all reads to their best alignment and run AREM, MACS and

SICER. In the Rad21 dataset, AREM identifies 456 more peaks than MACS and 1920 more

peaks than SICER but retains a similar motif presence (81.6% MACS, 82.5% SICER, 81.3%

AREM) and has a lower FDR (2.8% MACS, 12.7% SICER, 1.9% AREM) (see Table 1).

For Srebp-1, AREM identifies more than double the number of peaks compared to MACS

and 816 more than SICER, though the FDR is slightly higher (4.85% MACS, 9% SICER,

21

8% AREM), and motif presence is slightly lower (46.6% MACS, 59% SICER, 39% AREM).

In both datasets, AREM appears to be more sensitive to true binding sites, picking up more

total sites with motif instances, although it trades off some specificity in Srebp-1.

To see if AREM can identify true sites that are not significant without multireads, we per-

formed peak-calling with multireads, removing peaks that overlapped with those identified

using AREM without multireads. Up to 1,546 (8.1%) and 272 (18.9%) previously unidenti-

fied peaks were called from Rad21 and Srebp-1, respectively. These new peaks have a similar

motif presence compared to previous peaks but overlap with annotated repeat regions more

often.

Figure 2.2: B-E de novo discovery of motifs. From top to bottom: B) CTCF in MACS
peaks from uniquely mapping reads, C) CTCF in AREM’s peaks with multireads, C) Srebp-
1 in MACS peaks from uniquely mapping reads and D) Srebp-1 in AREM’s peaks with
multireads.

22

2.4.2 AREM’s sensitivity is increased with ambiguous reads

Several methods for dealing with ambiguous reads have been proposed, including retaining

all possible mappings, retaining one of the mappings chosen at random, and distributing

weight equally among the mappings. The first option will clearly lead to false positives,

particularly in repeat regions as the number of retained mappings increases. We compare

the latter two methods to our E-M implementation, varying the number of retained reads

and summarizing the results in Table 1. Although both random selection and fractionating

reads increases the number of peaks called, our E-M method outperforms them, yielding

1546 more peaks for Rad21, and 272 for Srebp-1 with comparable quality. As the number

of retained alignments increases, the disparity gets smaller. AREM shows fairly consistent

results across datasets with a large increase in total number of alignments (nearly 40-fold

for Rad21, over 10-fold for Srebp-1).

For a given sample, the iterations show a continued shift of the max alignment probabilities to

either 1 or 0. This shift is consistent across datasets with larger numbers of max alignments

(data not shown), but does depend on other parameters. What is apparent is that AREM’s

E-M heuristic performs well, allowing for significant shift toward a “definitive” alignment;

at the same time, it does not force a shift on reads with too little information, preventing

misalignment and resulting spurious peak-calling.

2.4.3 AREM is sensitive to repeat regions

An important parameter in our model is the minimum enrichment score for all K regions.

Since repeat regions have such similar sequence content, many reads will share the same

repetitive elements. If one of the shared repeat elements has a slightly higher enrichment

score by chance, the E-M method will iteratively shift probability into that repeat region,

snowballing the region into what appears to be a full-fledged sequence peak. To distinguish

23

repetitive peaks arising by small enrichment fluctuations from true binding sites within or

adjacent to repetitive elements, we impose a minimum enrichment score on all regions.

Using lower threshold scores, our method may include false positives from these random

fluctuations. However, true binding peaks near repetitive elements may be missed if the

score is too high.

To explore the effect of varying the minimum enrichment score, we varied the minimum score

from 0.1 to 2, keeping the maximum number of alignments fixed at 20. For Rad21, we see a

declining number of discovered peaks ranging from 28,305 to 19,634 peaks. In addition to a

decline in discovered peaks as minimum enrichment score increases, we also see a decrease

in the reported FDR and the percent of peaks in repeat regions from 11.28% to 2.95% FDR

and 71.56% to 59.02%. Lastly, the percent of peaks with motif increases from 63.64% to

81.12%. These additional peaks appear to be of lower quality: motifs are largely absent from

them and the FDR is much higher (see Figure 2).

For our method, detecting peaks near repeat regions is a tradeoff between sensitivity and

specificity. As the minimum score increases, the method approaches the uniform or “fraction”

distribution, in which only the initial mapping quality scores (and not the enrichment) affect

alignment probabilities. The fraction method is explored explicitly, showing increased power

compared to unique reads only, but decreased sensitivity to true binding sites compared to

other AREM runs.

On a 2.8Ghz CPU, AREM takes about 20 minutes and 1.6GB RAM to call peaks from over

12 million alignments and about 30 minutes and 6GB RAM to call peaks from nearly 120

million alignments. Each dataset takes less than 40 iterations to converge. AREM is written

in Python, is open-source, and is available at http://sourceforge.net/projects/arem.

24

Figure 2.3: Graphs displaying varying parameters and number of possible alignments per
read. A) Total number of peaks discovered. B) Percentage of peaks with repetitive se-
quences. C) False Discovery Rate. D) Percentage of peaks with motif.

2.5 Discussion

Repetitive elements in the genome have traditionally been problematic in sequence analysis.

Since sequenced reads are short and repetitive sequences are similar, many equally likely

mappings may exist for a given read. Our method uses the low-coverage unique reads near

repeat regions to evaluate which potential alignments for each read are the most likely. Our

method’s sensitivity to repeat regions is adjustable, but increasing sensitivity may introduce

false positives. Further refinement of our methodology may lead to increased specificity.

25

Method # Alignments # Peaks Peak Bases FDR New Peaks Motif Repeat

Cohesin
MACS 2,368,229 18,556 9,546,641 2.8% — 81.67% 56.55%
SICER 2,368,229 17,092 17,374,108 12.71% — 82.55% 70.42%
AREM 1 2,368,229 19,012 9,353,567 1.9% — 81.32% 55.30%
AREM 10 7,616,647 19,881 10,225,479 3.8% 1,404 81.04% 58.88%
AREM 20 12,312,878 19,935 10,531,465 3.7% 1,517 80.88% 59.66%
AREM 40 20,527,010 19,863 10,744,836 3.2% 1,546 80.93% 60.34%
AREM 80 34,537,311 19,820 10,972,796 2.9% 1,538 80.73% 60.91%

Srebp-1
MACS 10,482,005 721 495,968 4.85% — 46.60% 53.95%
SICER 10,482,005 622 963,778 9.0% — 59.00% 77.33%
AREM 1 10,482,005 1,438 880,284 8.0% — 39.08% 53.47%
AREM 10 28,347,869 1,815 996,346 10.5% 262 39.22% 56.04%
AREM 20 44,493,532 1,748 959,646 8.0% 227 39.95% 55.97%
AREM 40 72,453,642 1,685 983,459 8.2% 248 40.34% 56.46%
AREM 80 118,744,757 1,695 987,746 7.3% 272 40.66% 56.73%

Table 2.1: Comparison of peak-calling methods for cohesin and Srebp-1. Three peak
callers (MACS, SICER, and AREM) were run on both datasets. For AREM, the maximum
number of retained alignments per read is varied (from 1 to 80). The total number of peaks
and bases covered by peaks is reported as well as the FDR by swapping treatment and
control. For both datasets, AREM’s minimum enrichment score was fixed at 1.5 with 20
maximum alignments per read. For comparison, the motif background rate of occurence
was 4.5% (CTCF) and 27% (Srebp-1) in 100,000 genomic samples, sized similarly to Rad21
MACS peaks and Srebp-1 MACS peaks, respectively.

Our results imply that functional CTCF binding sites exist within repeat regions, revealing

an interesting relationship between repetitive sequence and chromatin structure. Another

application of our method would be to explore the relationship between repetitive sequence

and epigenetic modifications such as histone modifications. Regulation of and by transpos-

able elements has been linked to methylation marks [44], and transposable elements have a

major role in cancers [21]. Better identification of histone modifications in regions of repet-

itive DNA increases our understanding of key regulators of genome stability and diseases

sparked by translocations and mutations.

26

Chapter 3

Discovering and Mapping Chromatin

States Using a Tree Hidden Markov

Model

3.1 Introduction

In this chapter, we shift our focus to the annotation of differences between cell types. New

biological techniques and technological advances in high-throughput sequencing are paving

the way for systematic, comprehensive annotation of many genomes, allowing differences

between cell types or between disease/normal tissues to be determined with unprecedented

breadth. Epigenetic modifications have been shown to exhibit rich diversity between cell

types, correlate tightly with cell-type specific gene expression, and changes in epigenetic

modifications have been implicated in several diseases. Previous attempts to understand

chromatin state have focused on identifying combinations of epigenetic modification, but in

cases of multiple cell types, have not considered the lineage of the cells in question.

27

Although identical DNA is shared amongst most cells in an organism, a key question in bi-

ology relates to how different cell types are formed, maintained, and made to perform vastly

different functions. Recent studies have shown that these processes are in part mediated by

the post-translational modifications of histone tails, which in turn affect chromatin acces-

sibility and other properties of chromatin structures in a cell-type specific way [6]. There

are also interactions between these modifications [102, 110], which act combinatorially to

exert dynamic control over gene expression and other fundamental cellular processes[31].

Although we do not fully understand the role of epigenetic modifications, their effect in the

development of disease and in defining cell type is becoming clearer. For example, epigenetic

changes have been shown to be tightly correlated with gene expression [26, 53, 129], have

been linked to metastasis development in certain types of cancer [48] and are shown to con-

trol recombination [7]. Epigenetic inheritance across cells and across individuals has been

highlighted in recent research (see [45] for a review) and our understanding of the scope of

epigenetic modifications has expanded considerably in recent years.

There is enough DNA in most human cells to stretch up to 1.8 meters if completely unwound

and laid end-to-end. Normally, the long threads of DNA are ultra-compacted down to only

about 90 micrometers by being wrapped around histone proteins [94]. The histones act like

miniature spools for the DNA threads, and can be further condensed by forming chemical

interactions with other histones. These interactions occur through modifications to the tails

of the histones. Both DNA compaction and expansion need to be efficient since different

portions of the DNA must be made available at different times and in different cell types for

replication and transcription. Since these chemical modifications can directly affect levels

of transcription and overall cell state but aren’t modifications to the letter sequence of the

DNA, they fit under the broad category of epigenetics.

As outlined in section 2.1, chromatin immunoprecipitation coupled with high-throughput

sequencing (ChIP-seq) has emerged as a cost-effective method for determining epigenetic

28

modifications. Although initially used as a high-resolution transcription factor binding site

discovery mechanism (see [88, 91] for review), ChIP-seq has recently been used to target

these histone tail modifications and is proving to be particularly cost-effective method for

epigenomic annotation. Thanks to the ENCODE project [53], hundreds of ChIP-seq datasets

are now publicly available and the process of integrating species-specific and cell-type specific

binding site information, gene expression, and chromatin state is now underway. These high-

throughput datasets provide an unbiased, comprehensive view of the function of different

genomic regions and enable comparison between multiple cell types and different species.

3.1.1 Contributions

In this chapter, we present contributions centered on automatically determining epigenomic

anotations and contrasting them across multiple species.

• We expand the HMM methodology of Ernst et al. [29] (called ChromHMM) for au-

tomatic epigenetic segmentation and annotation. Instead of independent models for

each cell type, we generalize the model by connecting the hidden nodes in a lineage.

The resulting Bayesian network uses epigenetic modifications to simultaneously model

1) chromatin mark combinations that give rise to different chromatin states and 2)

propensities for transitions between chromatin states through differentiation or disease

progression.

• Since exact inference in the proposed model is computationally expensive, we explore

several approximate variational inference methods including mean field, structured

mean field and loopy belief propagation, and explore the accuracy of each method

using synthetic and real data. We show that our model exhibits several desirable

features including improved accuracy of inferring chromatin states, improved handling

of missing data, and linear scaling with dataset size.

29

• We show that the structured mean field (SMF) approximation is closest to the exact

inference solution. Using SMF, we perform genome-wide prediction on two genomes

(mouse and human) using two large two Encyclopedia of DNA Elements (ENCODE)

datasets [29]. The genome is clustered into 18 distinct chromatin states and we show

improved accuracy of the inferred state over the previous ChromHMM.

These contributions are released as an open-source software package called TreeHMM, avail-

able at https://github.com/uci-cbcl/tree-hmm. Portions of this chapter were published

as part of [10].

3.1.2 Chapter Outline

The remainder of this chapter is structured as follows: Section 3.1.3 surveys related work,

including ChromHMM, which we compare favorably to in section 3.4.6. Our improved graph-

ical model is presented in 3.2 as well as some implementation details surrounding data pre-

processing in sections 3.2.4 - 3.2.5. Section 3.3 presents three variational approximations

to exact inference in our graphical model and goes into detail about their derivations, nor-

malization, inference, and learning steps.. Section 3.4 presents the results of our method,

with the different approximations compared on artificial data and human data in sections

3.4.1 through 3.4.3. Section 3.4.5 presents our results decoding the the entire human and

mouse genomes using the SMF approximation and section 3.4.6 presents our comparison

with ChromHMM. Finally, section 3.5 includes a brief discussion of the methods and possi-

ble future work.

30

https://github.com/uci-cbcl/tree-hmm

List of abbreviations

MF: Mean Field; SMF: Structured Mean Field; LBP: loopy belief propagation; BIC: Bayes

Information Criterion

3.1.3 Related Work

Several computational approaches have been used to tackle the important problem of genome

annotation using these high-throughput epigenetic datasets. In particular, methods that

integrate histone modification data can be segregated into two general approaches: one ap-

proach searches near known genomic annotations to identify characteristic marks of partic-

ular classes of regions, such as promoters and enhancers, and subsequently uses the learned

characteristics to find new instances of the class [40, 42, 73]. The other approach learns

the characteristic patterns of histone marks de novo using unsupervised methods, “redis-

covering” and predicting genomic features associated with mark combinations. Methods for

identifying these patterns have included clustering [46, 116], a dynamic Bayesian network

[41], and hidden Markov models (HMM) [28, 53, 128]. These methods differ mostly in how

they model the chromatin mark signal intensity. Some determine a characteristic signal

shape while others focus on modeling the mark signal using non-parametric histograms,

multivariate normal distributions, or binary presence and mark co-occurrence. Each of these

methods focuses on modeling the histone mark combinations; none explicitly incorporate the

lineage information by which the data are related.

Here, we expand the HMM methodology of Ernst et al. [29] (called ChromHMM), who

originally analyzed nine transcription factors (TF) or histone modifications (plus control)

performed in nine different human cell types. Their multivariate HMM model concatenated

several cell types to form a single chain with the goal of learning a global set of histone

mark combinations and left as secondary all comparative analysis between cell types. We

31

generalize the model to more closely reflect biological reality: chromatin remodeling oc-

curs as cells progress through several stages of differentiation. We expect many genomic

regions to be correlated across a lineage since cell types diverged from a common progenitor

are likely to share the chromatin changes that took place in that progenitor. To capture

this reality, we simultaneously model both the genomic localization of histone marks and the

chromatin dynamics along a lineage by explicitly aligning each cell type and connecting their

internal, hidden nodes vertically in a tree structure. Our model learns both histone modifi-

cations’ association with chromatin state and state transitions between cell types, capturing

epigenetic changes that occur through differentiation or disease progression. Our method

effectively pools information across species, and we expect it to show improved accuracy

of genome segmentation over the previous HMM approach which does not incorporate cell

lineage information.

3.2 Tree Hidden Markov Model

3.2.1 Model Description and Notation

We propose a tree hidden Markov model (TreeHMM) to discover and map chromatin states

using the observed chromatin modification data. We begin by introducing some notation.

We denote the chromatin modification of type l at position t of cell type i as xit,l , which

can take binary values, i.e. xit,l ∈ {0, 1}. Subsequently we denote all the histone marks at

position (i, t) to be xit = (xit,1, . . . , x
i
t,L), which is a vector of length L and X = {xit : i =

1, . . . , I; t = 1, . . . , T} to be the collection of all observed data. We further introduce a hidden

variable zit to denote the underlying chromatin state at chromosomal position t of cell type

i. We assume zit’s are discrete taking K possible values, i.e., zit ∈ {1, . . . , K} for all t and i.

Let Z = {zit : i = 1, . . . , I; t = 1, . . . , T} denote the collection of all hidden chromatin state

32

variables. We assume that these chromatin state variables are the key determinant of the

observed chromatin modifications, and that xit’s are independent of each other conditioned

on Z, i.e., P(X|Z) =
∏I

i=1

∏T
t=1 P(xit|zit).

z11 z12 z1t z1T

x1
1 x1

2 x1
t x1

T

z21 z22 z2t z2T

x2
1 x2

2 x2
t x2

T

z31 z32 z3t z3T

x3
1 x3

2 x3
t x3

T

· · · · · ·

· · · · · ·

· · · · · ·

Figure 3.1: Example graphical model for a tree-structured HMM with three cell types.
Hidden state variables representing chromatin states (white) are connected horizontally in a
chain as well as vertically in a tree structure. Each chain in the graph represents a certain cell
type. For example, the top chain represents the root cell type (e.g., ES cells). Observed nodes
(grey) represent chromatin modifications and are connected only to the hidden variables.

We assume the I cell types are related to each other through a lineage tree T and use

π(i) to denote the parent node of the cell type i within the lineage tree T . The conditional

dependencies among the variables are modeled by a Bayesian network as shown in Figure 3.1

with the chromatin state variables at neighboring positions of each cell type linked as a chain

(referred to as horizontal connections) and the state variables of different cell types at the

same chromosomal position connected according to the lineage tree T (referred to as vertical

connections). The horizontal connections capture the spatial correlation between chromatin

states, i.e., the tendency of histone modifications to spread and cluster spatially across the

genome, allowing for example large inactivated regions and short “poised” regions. The

lineage relation is modeled by vertical connections between the same locations of different

chains, and captures temporal changes in chromatin states during differentiation or disease

progression over the cell lineage. Given the conditional dependency specification, the joint

33

distribution of the chromatin state variables can then be written as

P(Z) =
I∏
i=1

T∏
t=1

P(zit|zit−1, z
π(i)
t) (3.1)

where by definition zit−1 = ∅ if t = 1 and z
π(i)
t = ∅ if node i is the root cell type. As a

notation, we also use π(i, t) to denote the parent nodes of node (i, t) in the model, and use

zπ(i,t) to denote the state variables at these parent nodes if they exist.

3.2.2 Parameters

The TreeHMM model presented above requires us to specify two sets of conditional dis-

tributions. One is the emission probabilities P (xit|zit), that is, the probability of observing

chromatin modification vector xit conditioned on chromatin state zit. For simplicity, we as-

sume different chromatin modification marks are independent of each other conditioned on

the chromatin state, and use ekl = P(xit,l = 1|zit = k) to denote the probability of observing

mark l at position t of cell type i conditioned on the underlying state being k.

The second set of conditional probabilities we need to specify are the transition probabilities

among chromatin states, that is, P(zit|zit−1, z
π(i)
t). When t > 1 and π(i) is not empty, we will

use a K ×K ×K matrix to specify P(zit|zit−1, z
π(i)
t). However, when one of the conditioned

variable is non-existent, we use K × K matrix to specify the transition probability. More

specifically, the state transition probabilities are modeled as

θabc = P(zit = a|zπ(i)
t = b, zit−1 = c) t 6= 1, i is not root

αab = P(zit = a|zit−1 = b) t 6= 1, i is root

βab = P(zit = a|zπ(i)
t = b) t = 1, i is not root

γa = P(zit = a) t = 1, i is root.

34

We will also use Θ = {θabc, αab , βab , γa, eal |(a, b, c) ∈ 1, . . . , K; l ∈ 1, . . . , L} to denote the

collection of all parameters associated with the model.

3.2.3 Model Description and Parametrization

We use a Bayesian network to model the chromatin states across the genome of I different

cell types. The genomic location is divided into total of T fixed-size bins. Each bin is

associated with a hidden variable (node) representing the underlying chromatin state and

several observed nodes denote the measured chromatin markers. Nodes within one cell type

are connected horizontally while cell lineage is modeled by connecting nodes at the same

horizontal location in a lineage tree. The resulting model is a TreeHMM model as shown in

Fig. 1 of the main article. Each node can be indexed by (i, t) with i ∈ {1, 2, . . . , I} indicating

the cell type and t ∈ {1, 2, . . . , T} indicating the location. We denote the hidden variables as

zit and the observed variables as xit. The possible values of the hidden and observed variables

can take are

zit ∈ {1, . . . , K}, xit ∈ {0, 1}L

where K is the number of chromatin states and L is the number of different epigenetic

markers.

Additionally, we will define the following functions for notational simplicity:

35

pa(i, t) = {(j, s)| node (j, s) is a parent of (i, t)}

=

∅ if i is the root and t = 1

{(i, t− 1)} if i is the root and t > 1

{(pa(i), t), (i, t− 1)} otherwise

and

pa(i) = {j|j is the parent of cell type i in the tree}

Below we define the parameters of our model, which specify the transition probabilities

P(zit|pa(zit)) and emission probabilities P(xit|zit).

Transition Probabilities

The probability of observing state zit conditional on the parent states pa(zit) is given by

P(zit|pa(zit)) =

θkmn ≡ P(zit = k|zpa(i)
t = m, zit−1 = n) if t > 1, i is not root

αkm ≡ P(zit = k|zit−1 = m) if t > 1, i is root

βkm ≡ P(zit = k|zpa(i)
t = m) if t = 1, i is not root

γk ≡ P(zit = k) if t = 1, i is root

The total number of parameters in each transition matrix are: |θ| = K2 ×K, |α| = K ×K,

|β| = K ×K, and |γ| = K.

Emission Probabilities

36

We treat each histone mark as independent variables, the probability of observing lth histone

mark given certain cell state k is given by:

ekl ≡P(xit,l = 1|zit = k) ∀i = 1 . . . I, t = 1 . . . T

where xit,l represents the lth histone mark, which takes a binary value of {0, 1}. Thus the

emission probability matrix e has K × L parameters (or K vectors with dimension 1× L).

We use variational EM algorithm to do model learning. The Variational EM algorithm

minimizes the free energy

F = −
∑
Z

Q(Z) log
P(X,Z; Θ)

Q(Z)
(3.2)

= EQ(Z)[logQ(Z)− logP(X,Z; Θ)] (3.3)

under some approximate form of hidden variable distribution. The algorithm iterates be-

tween two procedures - expectation (or inference) and maximization (or learning). Below

we derive the update formula of the E-step and M-step for the mean-field and structured

mean-field approximations.

3.2.4 Incorporating Missing Markers and Hidden Cell Types

Many additional histone modifications are available beyond the nine included in the EN-

CODE dataset. Most of the additional marks are only available for a small number of cell

types. These markers, though excluded from the current analysis, could be incorporated to

provide additional model refinement. Since each mark is treated as an independent variable,

if a certain marker l is absent in some of the cell types, we simply remove the lth emission

term in (3.12). While the inference step and parameter learning of the transition matrices

37

follow the exact procedure, the estimation of emission parameters in the M-step is modified

as

ekl ∝
∑
i,t

q(zit = k)I(xit,l = 1)I(M i
l = 1),

where I is the indicator function and M is a binary matrix with M i
l indicating the availability

of lth marker .

In the current approach we use simple, biologically-motivated tree structures for the human

dataset. In reality, cells differentiate through multiple steps, and some of the intermediate

cell types may not have available experimentally derived measurements. Also, other statis-

tically motivated tree structures such as those created by hierarchical clustering could be

used. Adding unobserved cell types has both biological and modeling significance. Compu-

tationally, hidden cell types can be treated as a special case of absent markers by considering

all of its markers as missing. The inference step and parameter learning are similar to the

above case of absent markers.

3.2.5 Data Preprocessing

As a preprocessing step, we create a histogram of mapped reads by dividing the genome

into 200bp non-overlapping bins and counting the number of mapped reads whose middle

base fell into each bin. All replicates, if any, were added to the histogram and the histogram

was then binarized using a threshold corresponding to a Poisson p-value of 10−4, similar to

[29]. We further segmented the genome into regions with and without chromatin marks by

applying a smoothing filter to the raw count data, retaining regions that contained mapped

reads. Further data processing details can be found in Supplemental material section 3.4.2,

and all preprocessing methods are available as part of the released source code.

38

Our model’s preprocessing and parameterization are very similar to the multivariate HMM

methodology of [29], however Ernst’s implementation suffered from a very slow runtime on

our processed data, which contains many regions to facilitate parallel inference. We re-

implemented the method as described [28] and use this implementation for comparison in

later sections. The implementation is available in the released source code.

3.3 Variational Inference

Given the TreeHMM model described above and the set of observed chromatin modification

data X, our goal is to: 1) estimate the parameters of the model, and 2) infer the underlying

hidden state at each chromosomal location of each cell type. For parameter learning, we will

use the maximum likelihood method, that is, we seek to find the optimal parameter set Θ∗

that maximizes the log likelihood function

logL(Θ;X) = logP(X; Θ) = log
∑
Z

P(Z; Θ)P(X|Z; Θ) (3.4)

Note that in the above notation, we put Θ into the distributions to emphasize the dependency

of the distributions on the parameters. However, we will also the simplified notation P(Z|X)

or P(X) when the context is clear. After finding the optimal parameters, we infer the

underlying chromatin states using posterior inference, to calculating the posterior probability

of each chromatin state conditioned on the observed data, P(zit|X; Θ).

We explore various inference methods for the TreeHMM model, including exact methods

and approximate methods. For exact inference, we provide two implementations: first, we

generate a lattice for the Graphical Models Toolkit (GMTK) [11], which provides an efficient

framework for exact inference and learning using the junction tree algorithm [25]. We also

provide a custom library which implements a “cliqued” method in which each slice t of

39

the model has all its nodes in that slice treated as if they were part of a single “cliqued”

node that has KI states. In this cliqued node representation, we can apply standard HMM

methodology to do inference and learning. The state space of the cliqued inference method

grows exponentially with I, but we found it to be faster than the GMTK implementation

for small trees. Both implementations gave the same results in our testing.

Since the TreeHMM model contains undirected cycles, exact inference methods such as

junction tree and the “cliqued” method quickly become intractable in computational time

and memory consumption when the number of nodes I or the number of inferred states

K increases. Therefore, we introduce several approximate inference methods to solve the

inference and learning problem presented above. We focus on variational methods since they

are usually computationally efficient and scale well with size of the dataset[119]. The overall

strategy of variational methods is to find an easier-to-handle surrogate distribution of the

states Q(Z) that can be used to approximate the true posterior distribution P(Z|X). This

is done through the venue of the free energy function

F = −
∑
Z

Q(Z) log
P(X,Z; Θ)

Q(Z)
= EQ[logQ(Z)]− EQ[logP(X,Z; Θ)] (3.5)

By Jensen’s inequality, F is always lower bounded by the negative log likelihood function,

i.e. F ≥ − logL(Θ;X), with equality holding if and only if Q(Z) = P(Z|X). The goal

of the variational inference is to find a Q distribution (usually under some approximate

form) that minimizes the free energy function. We will consider three different forms of

surrogate distributions and briefly describe variational inference for each of them. Details of

the derivations are given in section 3.2.3.

40

Algorithm 1 Variational expectation-maximization algorithm

Initialize Q0(Z) =
∏

i qi(zi), Θ0 = (θ0, α0, β0, γ0, e0)
s = 1
repeat

(E-step)
repeat

for i = (1, . . . , I) do
log qi(zi) ∼ E{qj}|j 6=i logP(X,Z; Θs−1)

end for
until∣∣∣F (Qnew(Z),Θs−1)−F (Q(Θs−1,Z))

F (Θs−1,Q(Z))

∣∣∣ < ε

return Qs(Z) =
∏

i qi(zi)
(M-step)
Update Θs=arg minΘ F (Θ,Qs(Z)) .
Set s = s+ 1.

until
Convergence

3.3.1 Mean field (MF) variational inference

In the mean field variational method, we consider the surrogate distribution to be the product

of the marginal distributions of each individual state variable

Q(Z) =
I∏
i=1

T∏
t=1

q(zit) (3.6)

where q(zit) represents the marginal distribution of zit. For notational simplicity, we also use

qit as an abbreviation of q(zit). In this case, the free energy becomes

F =
I∑
i=1

T∑
t=1

E[log q(zit)− logP(xit|zit)]− E[logP(zit|zπ(i,t))] (3.7)

where the expectation is with respect to Q, as will always be the case in the remainder of

this paper.

To find the optimal Q that minimizes the free energy, we use a coordinate descent method

- alternatively updating each component qit while keeping all other components fixed. To

41

update qit we collect the terms in F that involve qit,

Fit = E[log q(zit)− logP(xit|zit)]− E[logP(zit|zπ(i,t))]−
∑

{(j,s):(i,t)∈π(j,s)}

E[logP(zjs |zπ(j,s))].

The last term involves nodes that are children of (i, t). The update formula for qit is thus

given by q(zit) ∼ exp{φ(zit)}, up to a normalizing constant, where

φ(zit) = logP(xit|zit) + Eqπ(i,t) [logP(zit|zπ(i,t))] +
∑

{(j,s):(i,t)∈π(j,s)}

Eqjs,qπ(j,s)\(i,t) [logP(zjs |zπ(j,s))].

The (j, s) nodes in the last term are all children of node (i, t), but the expectation involves

all the parents of (j, s) except (i, t).

3.3.2 Mean-field derivation and normalization

The mean-field approximation assumes the following factorized form of Q(Z)

Q(Z) =
∏
i

∏
t

q(zit) (3.8)

where q(zit) represents the distribution of hidden variable zit of node (i, t).

Under the assumption (3.8), the first term of (3.2) becomes

EQ(Z)[logQ(Z)] =
∑
i

∑
t

∑
Z

(∏
i′

∏
t′

q(zi
′

t′)

)
log q(zit) (3.9)

=
∑
i

∑
t

∑
zit

qit log qit.

For the last step of (3.9) and below we abbreviate q(zit) as qit for notational simplicity. The

derivation is easily attained by noting that the summation over {zi′t′} for all (i′, t′) 6= (i, t)

yields 1. This is an observation that we will use frequently in later derivations.

42

The second term in the free energy

EQ(Z)[logP(X,Z; Θ)] =EQ(Z)

[∑
i

∑
t

(logP(zit|pa(zit)) + logP(xit|zit))
]

(3.10)

=
∑
i

∑
t

∑
z

∏
(i′t′)

qi′t′

[logP(zit|pa(zit)) + logP(xit|zit)
]

(3.11)

=
∑
i

∑
t

∑
zit,pa(zit)

qit ∏
(i′t′)∈pa(i,t)

qi′t′

[logP(zit|pa(zit)) + logP(xit|zit)
]

=
∑
i

∑
t

 ∑
zit,pa(zit)

qit ∏
(i′t′)∈pa(i,t)

qi′t′

 logP(zit|pa(zit)) +
∑
zit

qit logP(xit|zit)

where, assuming there are no missing marks, the emission probability P(xit|zit) is given by

P(xit|zit = k) =
∏
l

(
I(xit,l = 1)ekl + (1− I(xit,l = 1))(1− ekl)

)
(3.12)

For the expectation step (E-step), we isolate the terms in (3.9) and (3.10) that involve qit :

F (qit) =
∑
zit

qit log qit −
∑

zit,pa(zit)

qit ∏
(i′,t′)∈π(i,t)

qi′t′

[logP(zit|pa(zit)) + logP(xit|zit)
]
(3.13)

−
∑

zi
t′ ,pa(zi

t′)|t=t
′+1

(
qit′qitqpa(i),t′

)
logP(zit′|pa(zit′))

−
∑

zi
′
t′ ,pa(zi

′
t′)|(i,t)=(pa(i′),t′)

(qi′t′qitqi′,t′−1) logP(zi
′

t′ |pa(zi
′

t′)).

43

The above equation can be written as
∑

zit
(qit log qit − qit log φ(zit)) with

log φ(zit) =
∑

pa(zit)

 ∏
(i′,t′)∈pa(i,t)

qi′t′

[logP(zit|pa(zit)) + logP(xit|zit)
]

(3.14)

+
∑

zi
′
t′ ,z

pa(i′)
t′ |t=t′+1

(
qit′qpa(i),t′

)
logP(zit′ |pa(zit′))

+
∑

zi
′
t ,z

i′
t−1|i=pa(i′)

(qi′tqi′,t−1) logP(zi
′

t′ |pa(zi
′

t′)).

Subsequently qit is obtained by normalizing φ(zit) ,

qit(z
i
t) = φ(zit)/

∑
zit

φ(zit)

The M-step seeks parameters that minimize the free energy F under the constraints
∑

a θ
a
bc =

1,
∑

a α
a
b = 1,

∑
a β

a
b = 1,

∑
a γ

a = 1. where

F = EQ[− logP(X,Z; Θ)] + C (3.15)

= −
∑
i,t

(qit
∏

(i′,t′)∈pa(i,t)

qi′t′)
[
logP(zit|pa(zit)) + logP(xit|zit)

]
+ C,

where the entropy term, denoted as C, is now a constant given fixed Q(Z). We can group

terms associated with each parameter matrix and we can easily see that the parameter values

that maximize F are given by the average frequency of occurrence of each child-parent state.

44

More specifically, the parameter updates are given by

θkmn ∝
∑

i>1,t>1

q(zit = k)q(z
pa(i)
t = m)q(zit−1 = n), (3.16)

akm ∝
∑

i=1,t>1

q(zit = k)q(zit−1 = m), (3.17)

βkm ∝
∑

i>1,t=1

q(zit = k)q(z
pa(i)
t = m), (3.18)

γk ∝ q(z1
1 = k), (3.19)

ekl =

∑
i,t q(z

i
t = k)I(xit,l = 1)∑
i,t q(z

i
t = k)

(3.20)

where I(·) is the indicator function and i = 1 corresponds to the root species.

3.3.3 Structured mean field(SMF) variational inference

In the structured mean field variational method, we consider the surrogate distribution to

be the product of the marginal distributions of disjoint sets of state variables. Let zi = {zit :

t = 1, . . . , T} denote the set of all state variables within cell type i, corresponding to the

state variables within each horizontal chain of the TreeHMM model. We consider the Q to

be of the following form

Q(Z) =
I∏
i=1

qi(zi), (3.21)

written as the product of marginal distributions of zi variables. In this case, the free energy

becomes

F =
I∑
i=1

[
E[log qi(zi)]−

T∑
t=1

(E[logP(zit|zπ(i,t))] + E[logP(xit|zit)])
]
. (3.22)

45

To find the optimal distribution Q that minimizes the free energy, we again alternatively

optimize each marginal distribution component while keeping others fixed. To update qi(zi),

we collect the terms in F that involve qi(zi),

Fi = Eqi [log qi(zi)−
T∑
t=1

(
log fit(z

i
t, z

i
t−1) + logP(xit|zit)

)
], (3.23)

where we have defined fit(z
i
t, z

i
t−1) = exp{Eqπ(i) [logP(zit|zπ(t,i))]+

∑
j:i=π(j) Eqj [logP(zjt |zπ(j,t))]}.

Since fit only involves expectations with respect to the distributions other than qi, it is a

fixed function of zit and zit−1 during the update of the qi(zi). If the fit functions can be nor-

malized to be conditional probability distributions, then Equation (3.23) shares the exact

form of the free energy of a hidden Markov model with transmission probabilities specified

by fit and emission probabilities specified by P(xit|zit). As such, the optimal qi minimizing

the free energy is the same as the posterior probabilities of the states in the hidden Markov

model, which can be efficiently calculated using the forward-backward algorithm [27]. The

details of how to normalize the fit functions to be proper transition probabilities is shown

in the next section, 3.3.4.

3.3.4 Structured mean-field derivation and normalization

In structured mean-field approximation, we assume that Q(Z) takes the following form

Q(Z) =
I∏
i=1

qi(zi),

where zi is the group of hidden variables within ith chain.

46

We can write F as

F = EQ[logQ(Z)− logP(X,Z; Θ)] (3.24)

=
I∑
i=1

EQ[log qi(Zi)]−
I∑
i=1

T∑
t=1

(
EQ[logP(zit|pa(zit))] + EQ[logP(xit|zit)]

)
=

I∑
i=1

Eqi [log qi(zi)]−
I∑
i=1

T∑
t=1

(
Eqi,qpa(i) [logP(zit|pa(zit))] + Eqi [logP(xit|zit)]

)
.

Again we isolate the terms that involves qi(zi)

F = Eqi [log qi(zi)]−
T∑
t=1

(
Eqi,qpa(i) [logP(zit|pa(zit))] + Eqi [logP(xit|zit)]

)
(3.25)

−
∑

i′|i∈pa(i′)

T∑
t=1

Eqi′ ,qi [logP(zi
′

t′ |pa(zi
′

t′))] + const

= Eqi [log qi(zi))]−
T∑
t=1

Eqi
[
log fit(z

i
t, z

i
t−1) + logP(xit|zit)

]
,

where we have defined

fit(z
i
t, z

i
t−1) ≡ exp

Eqpa(i) [logP(zit|pa(zit))] +
∑

i′|i∈pa(i′)

Eqi′ [logP(zi
′

t |pa(zi
′

t))]

 .

Equation (3.25) from above shares the form of the free energy of a hidden Markov model if

fit(z
i
t, z

i
t−1) has the normalization property of a transition matrix. To normalize it, we use

the procedure outlined in 4, starting from the last node in the chain:

47

Algorithm 2 Strucutred Mean Field: Normalization Algorithm

Initialize g(ziT) = [1, . . . , 1]

for t = (T, . . . , 2) do

f̃(zit, z
i
t−1) = g(zit)f(zit, z

i
t−1)))

g(zit−1) =
∑

zit
f̃(zit, z

i
t−1)

f̃(zit, z
i
t−1) = f̃(zit, z

i
t−1)/g(zit−1)

end for

For t = 1, we get log(fi1(zi1)g(zi1)), which we can normalize to get the prior distribution of

variable zi1.

f̃(zi1) =
fi1(zi1)g(zi1)∑
zi1
fi1(zi1)g(zi1)

where fi1(zi1) = exp
(
Eqpa(i) [logP(zi1|zpa(i)

1)] +
∑

i′|i∈pa(i′) Eqi′ [logP(zi
′

1 |zi1)]
)

.

Notice that now f̃ is properly normalized. Next we can use the forward-backward algorithm

to infer the posterior distribution qi(z
i), thus the marginal q(zit) and q(zit, z

i
t−1). Omitting

index i and defining the forward and backward messages akt = P(x1, . . . , xt, zt = k) and

bkt = P(xt+1, . . . , xT |zt = k), we can then perform forward-backward algorithm as below:

Algorithm 3 Strucutred Mean Field: Forward Algorithm

Initialize ak1 = ek(x1)f̃(z1 = k)

for t = (2, . . . , T) do

akt = ek(xt)
∑

j a
j
t−1f̃(zt−1 = j, zt = k).

end for

where f̃(z1 = k), f̃(zt−1 = j, zt = k) are the normalized prior and transition matrices calcu-

lated previously. ek(xt) = P(xt|zt = k) =
∏L

l=1[(1− ekl)I(xt,l = 0) + ekl I(xt,l = 1)].

48

Algorithm 4 Strucutred Mean Field: Backward Algorithm

Initialize bkT = (1, 1, . . . , 1)

for t = (T − 1, . . . , 1) do

bkt =
∑

j f̃(zt = k, zt+1 = j)el(xt+1)bjt+1

end for

The likelihood is given by P(x) =
∑

zT
P(x, zT) =

∑
k a

k
T . We can calculate the posterior

distribution of hidden variables P(zt = k|x) and P(zt = k, zt+1 = j|x) as

q(zt = k|x) =
at(zt = k)bt(zt = k)

P(x)
,

q(zt = k, zt+1 = j|x) =
at(zt = k)f̃(zt = k, zt+1 = j)el(xt+1)bt(zt+1 = j)

P(x)
.

The M-step is similar to the mean-field case and is given below.

θkmn ∝
∑

i>1,t>1

q(z
pa(i)
t = m)q(zit−1 = n, zit = k),

αkm ∝
∑

i=1,t>1

q(zit−1 = m, zit = k),

βkm ∝
∑

i>1,t=1

q(z
pa(i)
t = m)q(zit = k),

γk ∝ q(z1
1 = k),

ekl =

∑
i,t q(z

i
t = k)I(xit,l = 1)∑
i,t q(z

i
t = k)

3.3.5 Loopy belief propagation (LBP)

The third inference method we used is loopy belief propagation. Belief propagation is a

message passing algorithm commonly used in probabilistic graphical models. The algorithm

49

is exact for tree and poly-tree structured graphs. For general graphs that contain cycles or

loops, it is an approximate algorithm also called loopy belief propagation. In this case, the

algorithm is not guaranteed to converge nor is the approximate free-energy a bound of the

log-likelihood. Nevertheless, it has shown empirical success in some cases [78]. Loopy belief

propagation can be also viewed as a variational method with the Q distribution taking the

Bethe approximation form upon convergence [131]. Here we use Pearl’s belief propagation

algorithm which is directly applicable to the Bayesian network representation. For each

node, the algorithm tracks two types of messages - one from its children and the other from

its parents, both of which are 1 × K vectors in our case (observed nodes are treated as

evidence and no associated messages are incorporated). At the start of the algorithm, we

initialize all the messages to unity vectors. During each iteration, all messages are updated

simultaneously based on the messages from the previous iteration. The procedure is repeated

until convergence. We refer readers to [23] for the details of the algorithm.

3.3.6 Parameter Learning

Above we have introduced different inference methods. To do parameter learning, we use a

variant of the expectation-maximization (EM) algorithm called variational EM algorithm.

Like the EM algorithm, the variational EM algorithm iterates between two steps: an expecta-

tion and a maximization step. The expectation step (E-step) is performed by the inference

methods, during which we calculate Q(Z) in the approximate forms outlined above with

fixed parameter values. In the maximization step (M-step), we seek parameter values that

minimize F (or maximize −F) under Q(Z).

Consider the free energy F as a function of Θ, the variational maximization step seeks the

50

parameters that minimize F given the current hidden variable distribution Q(Z), i.e.

Θ̂ = arg min
Θ
F (Θ,Q(Z)).

The above optimization can be solved explicitly. As a result, the state transition parameters

are calculated as θabc ∝
∑

i>1

∑
t>1 Q(zit = a, z

π(i)
t = b, zit−1 = c), αab ∝

∑
t>1 Q(z1

t = a, z1
t−1 =

b), βab ∝
∑

i>1 Q(zi1 = a, z
π(i)
1 = b), γa ∝ Q(z1

1 = a) up to a normalization constant, where

Q(·) denotes the marginal distribution of the variables inside the brackets. The emission

parameters are given by eal =
∑
i,t Q(zit=a)I(xit,l=1)∑

i,t Q(zit=a)
where I(·) is the indicator function. The

variational EM algorithm for the SMF case is outlined in Algorithm 1 1. Notationally, we

have considered the entire genome as a single chunk. In practice, we break up the genome

into many smaller chunks to allow more efficient, parallel execution and to reduce memory

consumption, at the cost of computational artifacts at chunk borders.

3.4 Results

3.4.1 Artificial Data

(a) I=2 (b) I=6 (c) I=9

Figure 3.2: Lineage trees used for artificial data

51

We assess the accuracy of different approximations on artificial datasets generated under

the TreeHMM model described above. We tested cases with different tree structures (I ∈

{2, 6, 9}) and number of states K ∈ {5, 10} .For the cases of I = 2, we consider a lineage

where species are connected in a line structure. For the case of I = 9 , we adopt a tree

structure with one being root and others being direct children. And for the case of I = 6,

we have used a relatively deep tree, as depicted in Fig. 3.2. We also set the number of

markers to be L = 10 respectively to mimic the real data. Parameters in α, β, γ and e

are generated randomly between [0, 1] and normalized to be a conditional probability table

(except e). Sub-matrices θ(k, :, :) are generated by adding perturbations to α. We specify

the model in the Bayes Net Toolbox (BNT) [77] and use the sample bnet function in BNT

to generate values for the observed nodes using the “true” parameter values. We generate

datasets consisting of T = 104 slices for K = 5 and T = 105 for K = 10.

We run each variational EM algorithms on the generated artificial datasets. Since EM

algorithm could reach local optimal solutions, we run each algorithm 5 times with random

initializations for each dataset and take the result with the lowest free energy. We use the

root mean squared error (RMSE) of the elements in each parameter matrix to measure the

accuracies of the inferred parameters. To test the consistency of the learning algorithms,

we generated five datasets using different parameters for each (K, I) pair, and record the

averaged result of RMSE of inferred parameters w.r.t. the true ones in each parameter

matrix.

From results summarized in Table 3.1, we observe that the SMF approximation consistently

outperforms LBP and MF. Although LBP and MF can give good estimates of the emission

matrix e for some simple cases (e.g. K = 5), they usually give a large error in the learned

α and θ parameters, indicating that the two methods are less accurate in inferring joint

marginals of hidden variables. We also observe that the performance of LBP decreases

with increasing number of leaf cell types (e.g., percent error of α = 4.5% for I = 2 versus

52

26% for I = 9 in K = 5 cases), indicating that LBP is sensitive to the tree structures

and tends to infer inaccurate marginals when nodes in the graph have many connected

nodes. Interestingly it performs well in I=6 case of relatively deep lineage tree. In contrast,

SMF consistently gives accurate estimations for all the cases. SMF’s advantage is especially

apparent for estimating α and θ, which involve the joint marginal. For example, the percent

error of θ = 9.4% versus 63% for MF and 168% for LBP in the (I,K) = (9, 10) case. Also we

can see that, as expected, more data is needed to achieve the same accuracy for the inferred

parameters as the number of states K (and therefore the number of parameters) increases.

Table 3.1: Accuracy of different algorithms in recovering parameter values using artificial
data.

RMSE (percent∗)

(K, I, T) Approx e α θ

(5, 2, 10K) SMF 0.008 (1.5%) 0.009 (4.6%) 0.022 (11%)

MF 0.03 (6.7%) 0.03 (17.1%) 0.04 (22%)

LBP 0.011 (2.1%) 0.009 (4.5%) 0.28 (140%)

(10, 2, 100K) SMF 0.005 (1.0%) 0.005 (4.8%) 0.013 (13%)

MF 0.08 (15%) 0.055 (55%) 0.06 (59%)

LBP 0.06 (12%) 0.026 (26%) 0.17 (170%)

(5, 9, 10K) SMF 0.004 (0.8%) 0.009 (4.7%) 0.008 (4.2%)

MF 0.04 (0.9%) 0.03 (18%) 0.04 (19%)

LBP 0.022 (4.4%) 0.10 (52%) 0.30 (150%)

(10, 9, 100K) SMF 0.009 (1.8%) 0.008 (8.3%) 0.009 (9.4%)

MF 0.06 (23%) 0.05 (65%) 0.05 (63%)

LBP 0.14 (26%) 0.20 (196%) 0.17 (168%)

(5, 6, 10K) SMF 0.005 (1.0%) 0.015 (7.5%) 0.021 (11%)

MF 0.04 (8.0%) 0.16 (80%) 0.16 (80%)

LBP 0.04 (8.0%) 0.014 (70%) 0.08 (40%)

SMF: structured mean field, MF: mean field, LBP: loopy belief propagation

*Each value inside the bracket is the percent error relative to the mean value of the corresponding parameter

matrix elements.

53

3.4.2 Data Processing for ENCODE Dataset

We preprocessed the datasets by dividing the genome into 200-bp non-overlapping bins and

then binarized the reads within each bin, similar to [29]. For binarization, we assign value 1

if the total number of reads located within the bin is above the threshold corresponding to

a p-value of 10−4 under a Poisson model, where the Poisson rate λ is the number of reads in

all replicates of an experiment divided by the length of the genome.

To reduce computational cost, we segmented the genome into regions with and without

chromatin marks and only use the regions with sufficient reads present. To do this, binned

read counts across all species and all marks were summed together into a single track and

convolved using a 1-D Gaussian kernel acting over σ = 40kb. Only regions with at least

0.5 smoothed reads across at least 5kb were retained as having sufficient signal to include in

training. In total, these segments covered 54.8% of the genome and inference proceeded on

each segment in parallel.

We used the same human ENCODE dataset reported in [29] which contains ChIP-seq pro-

files for nine human cell types including human embryonic stem cells (H1 ES), erythrocytic

leukaemia cells (K562), B-lymphoblastoid cells (GM12878), hepatocellular carcinoma cells

(HepG2), umbilical vein endothelial cells (HUVEC), skeletal muscle myoblasts (HSMM),

normal lung fibroblasts (NHLF), normal epidermal keratinocytes (NHEK), and mammary

epithelial cells (HMEC). For each cell type, ten different markers are used including eight hi-

stone modifications (H3K27me3, H3K36me3, H4K20me1, H3K4me1, H3K4me2, H3K4me3,

H3K27ac, and H3K9ac), one transcription factor closely related to chromatin dynamics

(CTCF), and a control data set (whole cell extract). Altogether, the dataset contains 90

ChIP-seq profiles, which were downloaded from the ENCODE website [84].

Since the cell types in the ENCODE data represent very diverse, distinct cell types, we used a

simple lineage tree structure with the H1 ES cell type forming the tree root and all other cell

54

types connecting to it directly as leaves. ES cells exhibit unique epigentic biology [9], how-

ever hierarchical clustering of the observed marks reveals that each mark exhibits substantial

correlation between all cell types (see Supplemental Figure 3.12). Further, TreeHMM can

incorporate information from marks that are only available in certain cell types and can be

adapted to more interesting tree structures by including additional latent cell types. Al-

though the current choice of tree structure may be an oversimplification of the underlying

biology, we are mostly focusing on the methodology for approximate inference in TreeHMM;

we explored the performance on artificial data with more interesting tree structures in Sup-

plemental Material section 3.4.1. Finally, we note that while exact inference methods scale

exponentially in the tree width, the approximate inference methods developed here scale

linearly with I, allowing deeper lineages and more complex tree structures to be examined

eventually.

3.4.3 Comparing Approximate Inference Methods

To determine the accuracy of our approximate inference methods, we apply the TreeHMM

model to the human ENCODE dataset described above using the following scheme: Exact

inference and learning are used to define a set of parameters at each iteration. Each of the

approximate inference methods performs inference on the parameters’ values to get the free

energy. We apply this procedure on a randomly selected 2MB region with 3 cell types (H1

ES, K562, GM12878) using K = 5. Figure 3.3 shows the log likelihood of the exact inference

and the corresponding free energy of different inference methods during exact EM iterations.

We observe that the SMF approximation gives the highest negative free energy in this test

dataset. The closeness between SMF free energy and the exact log likelihood indicates

that the SMF method captures the majority of correlation between variables. Notably, the

free energy curves of MF approximation and LBP fluctuate widely as the parameters are

refined by the exact algorithm, indicating inconsistency in the free energy landscapes of these

55

approximations and the true one. We also experiment with parameter recovery in several

artificial datasets with different tree structures (Supplemental material section 3.4.1), and

observe that SMF typically outperforms the other approximate methods. As SMF seems to

be the most accurate approximation in both the artificial and real data cases, we proceed

with the SMF approximation in the following real data genomic segmentation and prediction

problems.

Figure 3.3: Free energy for approximate inference methods. Free energy for different inference
methods are compared, with parameters learned using exact inference. The test dataset is
restricted to a 2MB region of chromosome 22 with only three cell types and K = 5. The
approximate methods use the parameters (learned by the exact method) and only perform
inference steps. Note that for the exact algorithm (clique), the free energy equals the negative
log-likelihood.

3.4.4 Model Complexity for Human ENCODE dataset

We seek to determine the model complexity, i.e. the number of chromatin states K, that is

best supported by the human histone data. We expanded SMF inference to include all of

chromosome 22 and all nine cell types, and varied the number of hidden states. Supplemental

Figure 3.4 shows the free energy together with the complexity-penalized score according to

Bayesian information criterion (BIC), assuming SMF free energy to be a close approximation

56

to the true likelihood. To proceed with whole-genome analysis, we chose K = 18 where the

maximum BIC score is achieved in this smaller dataset. We note that the value is close to

the number of states (15) selected by [29] which was chosen partly by post-analysis of the

assigned states.

5 10 15 20 25
Number of hidden states

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

×106

- Free Energy
BIC

Figure 3.4: Choosing model complexity (the optimal number of states K). We ran
the SMF variational EM algorithm on chromosome 22 with a range of K values . The final
free energy for different K and the complexity-penalized likelihood score (BIC) is shown,
revealing that a model with between 15 and 20 states are well-supported by the data.

3.4.5 TreeHMM on Complete Genomes using the SMF Approxi-

mation

We next apply the TreeHMM model’s SMF approximation to the complete genomic histone

data. We use the Bayes Information Criterion, a complexity-penalized likelihood, to deter-

mine the optimal number of states K = 18 (see Supplemental material section 3.4.4). After

running several random initializations of the EM algorithm to convergence, we report the

one with highest final likelihood. Figure 3.5 shows the learned states’ characteristic chro-

matin modification co-occurrence patterns (the emission matrix e) and their enrichment in

57

different genomic regions. Although states are learned de novo based only on the chromatin

markers, many marker co-occurrences correspond to previous biological observations (e.g.

H3K4 di- and tri-methylation in promoter regions and H3K4 mono- and di-methylation in

enhancer regions [8]). We have annotated the likely function of each state (Figure 3.5) based

on its genomic localization and concordance with previously reported findings [29]. The

states show distinct enrichment patterns in different genomic locations. Several of the states

(3, 8, and 11) are strongly enriched (8-17 fold) in the ±2kb TSS region. Other states (7,

13, and 15) are enriched (2-3 fold) in coding genes. The coverage of each chromatin state

region also varies widely, as shown in Table 3.3. The promoter and enhancer states cover

a relatively small portion of the genome, e.g. ∼ 1.1% for both active promoter and strong

enhancer regions while low signal regions combine for around 75% of the genome. The state

distribution also shows some cell-type specific properties, e.g., enhancer states 5, 10 and 11

are largely depleted in H1 ES cells, while other enhancer states are not (one being 2 fold

enriched), indicating different functional roles of the learned enhancer states.

To explore the cell-type specificity of our learned states, we performed K-means clustering

regions assigned to each state in any cell type. We show three of the states in Figure

3.13, including the insulator regions (state 14), strong enhancer regions (state 5) and active

promoter regions (state 3). We can see that the distribution of different states across cell

types differs drastically. Almost half of all insulator sites (state 14) are shared amongst all

nine cell types or are only missing in one or two cell types. Many of the remainder are

specific to a single cell type. Likewise, some active promoter regions (state 3) are shared

amongst all or most cell types, but many more of the promoter regions are cell-type specific.

Finally, the strong enhancer regions (state 5) are almost entirely cell-type specific. These

overall patterns of cell-type specificity are captured by the learned transition matrices α and

θ, which are shown in Supplemental Figures 3.7 and 3.8.

Several states are dominated by their vertical component in the θ transition matrix, including

58

the states localizing to TSS’s (states 2, 3, 8, 10, and 11), copy number variant/repeat regions

(state 4), and the insulator state marked by CTCF (state 14). Other states have weak vertical

components: consistent with the cell-type specificity of enhancers and chromatin remodeling,

three of the enhancer regions (states 1, 5 and 6) and the polycomb repressed regions (state

17) show little to no vertical correlation. In particular, enhancer state 1 does not show the

vertical correlation that might be expected given its propensity for TSS regions (4.24 fold

enrichment).

3.4.6 Comparison with ChromHMM

We compare our result with ChromHMM - a similar method based on hidden Markov model

described in [29] that does not utilize lineage information. We ran the HMM on the same

histone data, treating each cell type’s segment as a separate chain with inference performed

in parallel but with tied parameters. We set number of states to be the same as in the

TreeHMM result for consistency.

The learned emission probability matrix from ChromHMM together with the confusion ma-

trix between the assigned states of the two results is shown in Supplemental Figure 3.9 (right

panel). Comparing the emission matrix from two methods (Fig. 3.5 and Supplemental Fig-

ure 3.9 (left panel)), we observe similar co-occurrence patterns of markers. But as revealed

by the confusion matrix, there is a substantial set of regions that are assigned different states

due to the lineage constraint introduced in our model. For example, the weak promoter state

(state 8) overlaps with ChromHMM ’s inactive promoter and enhancer states (2 and 8). Also

ChromHMM exhibits two repetitive states (similar to [29]) while there is only one such state

in the TreeHMM result. To assess the accuracy of our methods, we tested our predicted

states’ overlap with several human ES-cell-specific ChIP-seq datasets.

We use a recent series of ChIP-seq datasets of transcription factor binding in H1-ES cells

59

Promoters

Factor
TreeHMM ChromHMM

All Unique All Unique
Taf1 32,069 (41.6x) 1,489 (15.2x) 35,082 (26.0x) 4,502 (6.7x)
Oct4 4,980 (23.8x) 231 (8.7x) 6,932 (19x) 2,183 (12x)
Klf4 2,622 (18.1x) 105 (5.7x) 3,819 (15.1x) 1,302 (10.3x)
p300 141 (1.0x) 16 (0.9x) 1,597 (6.4x) 1,472 (11.8x)

Nanog 1,556 (1.5x) 227 (1.7x) 8,650 (4.7x) 7,321 (7.7x)
Sox2 412 (1.6x) 63 (2.0x) 2,509 (5.7x) 2,160 (9.8x)

Enhancers

Factor
TreeHMM ChromHMM

All Unique All Unique
Taf1 8,095 (2.5x) 4,293 (4.4x) 5,611 (2.2x) 1,809 (5.3x)
Oct4 3,914 (4.5x) 2,060 (7.8x) 2,274 (3.3x) 420 (4.5x)
Klf4 2,143 (3.6x) 1,294 (7.1x) 1,003 (2.1x) 154 (2.4x)
p300 7,253 (12.2x) 1,517 (8.4x) 5,861 (12.2x) 125 (2.0x)

Nanog 39,829 (9.1x) 7,941 (6.0x) 33,561 (9.6x) 1,673 (3.5x)
Sox2 9,786 (9.4x) 2,185 (6.9x) 7,952 (9.5x) 351 (3.1x)

Table 3.2: H1-ES ChIP-seq enrichment in predicted promoter and enhancer regions.

[62] including Taf1, p300, Nanog, Klf4, Oct4, and Sox2. Among those, Taf1 is part of

the machinery that recruits Polymerase II to the transcription start site and we expect its

enrichment in promoter regions. p300 is a transcription factor (TF) that interacts with many

other TFs in enhancer regions and we expect its presence in predicted enhancer regions. The

other TFs in this dataset are important in maintaining stem-cell state, but a preference for

promoter vs. enhancer has not been established. We investigated the overlap of ChIP-

seq peaks in these datasets with our predicted states. For each method, we pooled the

“enhancer” states (states 1, 5, 6, 10 and 11 in both methods) and report the fraction of

sites overlapping called peaks for each transcription factor in Table 3.2. Similar results are

reported for “promoter” regions (states 2, 3 and 8 in both methods).

As shown in Table 3.2, Taf1 shows strong enrichment in the promoter regions annotated by

both ChromHMM and TreeHMM methods (26 and 41.6 fold enrichment over background,

respectively). Although the two methods identify a similar number of active promoters

(136,702 for TreeHMM vs. 239,792 by ChromHMM), a larger fraction of TreeHMM’s pre-

dicted promoter overlaps with Taf1 binding sites than ChromHMM (32,069 or 23.5% of sites

predicted by TreeHMM vs. 35,082 or 18.5% of sites predicted by ChromHMM). The enhancer

regions predicted by the two methods with similar fold enrichment (12.2 and 12.3 fold) in

p300 ChIP-seq binding peaks, but 24% more sites are correctly predicted by TreeHMM

60

(7,253 vs. 5,861). An interesting observation is that Oct4 and Klf4 both show preference for

promoter regions over enhancer regions and in these cases, ChromHMM captures more of

the ChIP-Seq binding sites but at the cost of calling many more total sites (23.8 vs. 19 fold

enrichment of Oct4; 18.1 vs. 15.1 fold enrichment of Klf4). Distinctly, Nanog and Sox2 show

a strong preference for enhancer regions. For these predictions, more ChIP binding sites

(19% more for Nanog, 23% more for Sox2) are captured by TreeHMM at similar enrichment

levels. These results indicate TreeHMM’s lower false negative rate for enhancer regions and

lower false positive rate for promoter regions.

We also investigated the enrichment of the CTCF motif in predicted insulator regions. CTCF

is a transcription factor often associated with insulator regions and helps segment different

regions of the genome. Its DNA binding motif is well-defined and it is often found in ChIP-

seq determined CTCF binding sites [54]. To compare the accuracy of the predicted insulator

regions, we searched through these regions for the presence of the CTCF motif. Among the

211,282 insulator regions predicted by TreeHMM in at least one cell type, 33,002 (15.6%)

contained the CTCF motif. ChromHMM identified nearly twice as many insulator regions

(388,788), of which only 43,111 (11.1%) contained the CTCF motif. Of the 186,735 sites

uniquely predicted by ChromHMM, only 5.7% actually contain the CTCF motif compared

to 7.2% of the 9,230 sites uniquely predicted by TreeHMM, indicating that many of the

additional sites predicted by ChromHMM are likely to be spurious. In this case, TreeHMM

offers increased accuracy and fewer spurious sites (false positives) over ChromHMM at the

cost a few missed sites (false negatives).

3.5 Discussion

We have here presented a tree hidden Markov model for identifying chromatin state based on

measurements from multiple cell types in a principled way. The major improvement over the

61

State mean H1 ES K562 GM12878 HePG2 HUVEC HSMM NHLF NHEK HMEC
1 1.0 2.02 0.72 0.95 0.17 0.87 0.94 0.84 1.21 1.28
2 0.7 0.39 0.59 1.15 2.84 0.42 1.1 1.14 0.68 0.7
3 1.1 0.58 0.97 1.17 2.04 0.58 0.88 1.04 0.91 0.83
4 0.1 0.84 2.21 0.85 0.87 0.9 0.82 0.82 0.84 0.85
5 1.5 0.4 0.53 0.78 0.05 1.54 1.46 1.15 1.43 1.66
6 4.0 1.08 1.05 0.88 1.36 0.81 0.79 0.89 0.94 1.19
7 4.3 0.24 1.01 1.2 1.12 0.89 1.67 0.98 0.98 0.91
8 0.7 1.26 0.56 1.02 1.85 0.7 0.99 0.97 0.81 0.84
9 1.3 2.93 0.99 0.88 0.61 0.91 0.91 0.61 0.51 0.66
10 0.5 0.09 0.48 0.8 3.54 0.36 1.06 1.21 0.73 0.74
11 1.1 0.18 1.57 1.46 0.15 1.56 1.0 0.68 1.48 0.93
12 11 5.29 0.42 0.38 0.47 0.37 0.45 0.53 0.48 0.61
13 0.8 0.12 1.61 1.14 0.9 0.86 1.7 0.95 1.03 0.69
14 1.3 1.04 1.19 0.95 0.95 0.96 0.96 1.14 1.04 0.76
15 1.6 2.09 1.26 0.36 1.65 1.06 0.78 0.41 0.9 0.48
16 15 0.76 0.95 0.98 0.99 0.96 1.19 1.07 1.11 1.0
17 6.5 0.35 1.43 0.46 1.82 1.43 0.88 1.01 1.08 0.54
18 48 0.21 1.08 1.23 0.95 1.13 1.03 1.13 1.08 1.17

(%) (fold)

Table 3.3: Average coverage and cell type-specific enrichment of learned chro-
matin states. The “mean” column gives the average percent coverage, or the fraction
of the segmented genome which is covered by the state. The following columns show the
enrichment of each state in each cell type relative to the across-species mean (column 2).

previous HMM approach is the incorporation of cell lineage explicitly in the model. While

previous methods have focused only on the marks present at a particular region in a particular

cell type, we pool information across the same genomic location at different cell types. This

allows increased discernment in regions of uncertainty. Although model learning in our

proposed model is intractable except in the smallest cases, we developed several approximate

methods and demonstrated their accuracy using the ENCODE histone modification data for

Table 3.4: Measured histone markers of Bone Marrow, G1E and G1E-ER4 - mouse dataset.

H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K9ac H3K9me3
Bone Marrow • • •

G1E • • • • • •
G1E-ER4 • • • • • •

62

nine different cell types. Interestingly, we found strong correlations along cell lineages and

show that in many cases the information gained from lineage correlations increases state

inference accuracy. Inherent to our method is the discovery of states that are more likely to

change during differentiation or disease progression. This information allows more accurate

prediction and allows accurate delineation between housekeeping genes present in all cell

types and genes regulated in a lineage-specific fashion.

In this work, we have focused on developing approximate methods for doing inference and

learning in the general framework. Our implementation is general and can deal with missing

marks and missing species (discussed in section 3.2.4). With the capabilities of the model,

there can be many further improvements including incorporating more cell types with incom-

plete measurements, modifying the lineage tree to include hidden nodes, and incorporating

heterogenous data beyond histone marks. By pooling information from similar cell types and

learning combinations of marks, it should be possible to infer cell state without a full spec-

trum of histone modifications measurements. We plan on exploring the rapidly increasingly

heterogenous datasets to gain further insight into role of chromatin modifications in deter-

mining epigenetic states and their relationship with disease phenotype. Another possible

application of the framework is to look into cross-species correlation of histone modification

[56] to gain insight into inter-species conservation or divergence of epigenetic mechanisms.

Understanding epigenetic factors’ associations with cell state is a primary step towards proper

context for biological systems. Histone modifications play an essential role in regulating

and maintaining gene expression and determining cell state. We have developed a novel

graphical model for determining chromatin state from epigenetic modifications. Our method

explicitly models transitions between cell types during differentiation or disease progression

by considering cell lineage relationship. Although performing exact inference in our model is

intractable, we develop highly accurate approximate inference methods that scale well with

dataset size. By utilizing information from several cell types, our method can infer epigenetic

63

state more accurately and has the ability to incorporate tendency of transitions between cell

states in a more principled way. These cross-cell type correlations may be especially useful

in datasets where the complete battery of experiments have not been performed in all cell

types.

64

C
TC

F

H
3
K
2
7
m
e
3

H
3
K
3
6
m
e
3

H
4
K
2
0
m
e
1

H
3
K
4
m
e
1

H
3
K
4
m
e
2

H
3
K
4
m
e
3

H
3
K
2
7
a
c

H
3
K
9
a
c

C
o
n
tr
o
l

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

10 9 2 10 82 94 30 13 12 1

 4 19 2 3 13 73 23 2 5 1

18 6 3 7 4 94 99 96 98 2

75 74 76 88 53 56 77 49 66 86

 7 0 6 2 95 70 8 94 36 2

 2 1 2 2 69 9 1 5 2 1

 1 0 81 4 1 0 0 1 0 1

20 21 2 6 37 98 98 7 47 1

 0 2 0 1 0 0 0 0 0 1

 2 0 5 3 9 32 6 65 18 1

15 1 15 11 96 100 91 94 90 5

 1 0 0 0 0 0 0 0 0 0

 5 0 73 27 76 29 8 32 11 2

94 4 4 4 9 6 1 1 1 1

 3 1 25 42 7 2 1 3 2 4

 0 0 8 1 0 0 0 0 0 0

 1 44 0 3 1 0 0 0 0 1

 0 1 0 0 0 0 0 0 0 0

Emission probabilities

+
/-
 2
kb

T
S
S

co
n
se
rv
e
d

co
n
se
rv
e
d

n
o
n
-e
xo
n

co
d
in
g

g
e
n
e
s

n
o
n
-c
o
d
in
g

g
e
n
e
s

Weak
Enhancer

Poised
Promoter

Active
Promoter

Repeat/CNV

Strong
Enhancer

Weak
Enhancer

Transcriptional
Elongation

Weak
Promoter

Low Signal

Enhancer

Strong
Enhancer

Low Signal

Transcriptional
Transition

Insulator

Coding Gene

Low Signal

Polycomb
Repressed

Low Signal

4.2 1.6 1.7 1.0 1.0

7.7 1.7 1.7 1.0 1.2

17.1 2.6 2.2 1.4 0.8

0.6 0.3 0.3 0.2 1.3

0.8 1.3 1.4 1.0 1.1

0.9 1.1 1.2 1.0 1.1

0.2 1.7 0.9 1.8 0.2

13.0 2.2 2.0 1.1 1.1

1.0 1.2 1.1 1.3 0.9

3.6 1.2 1.2 1.0 1.1

8.6 1.8 1.8 1.2 1.0

1.2 0.8 0.9 0.8 1.2

1.3 1.5 1.1 1.8 0.4

0.8 1.5 1.6 0.9 1.0

0.3 1.0 1.0 1.6 0.6

0.3 1.0 0.9 1.7 0.3

1.9 1.1 1.2 0.7 1.2

0.5 0.9 1.0 0.8 1.2

Fold Enrichment

Figure 3.5: Learned chromatin states with the associated chromatin modification and en-
richment in distinct genomic regions - human data. Left panel: the probability of observing
each histone mark in each of 18 hidden states is summarized. Right panel: fold enrichment
of hidden states in various genomic regions reveals strong positional preferences of learned
chromatin states.

65

H
3
k2
7
a
c

H
3
k0
4
m
e
1

H
3
k4
m
e
3

H
3
k9
m
e
3

H
3
k2
7
m
e
3

H
3
k3
6
m
e
3

C
o
n
tr
o
l

Emission probabilities

1

2

3

4

5

6

7

8

9

10

H
id
d
e
n
 S
ta
te

 1 0 0 2 3 99 0

 4 2 0 2 57 0 0

 4 2 0 1 1 1 1

13 86 4 3 5 96 4

 0 0 0 2 4 0 2

50 76 2 3 24 1 3

74 54 97 2 6 20 5

 7 0 0 85 9 0 1

 5 11 10 92 58 7 2

 2 0 0 41 0 0 4

+
/-
 2
kb

T
S
S

Po
l-
II

G
a
ta
1

G
a
ta
2

Ta
l1

Fold Enrichment

Transciptional
Elongation

Polycomb
Repressed

Low Signal

Enhancer

Low Signal

Enhancer

Active
Promoter

Transcriptional
repression

Poised
Promoter

Transcriptional
repression

0.2 0.5 0.2 1.1 0.1

1.0 1.7 1.7 3.1 1.6

1.1 1.6 1.5 3.1 2.3

1.1 7.7 9.2 6.0 7.9

0.2 0.3 0.1 0.5 0.1

1.3 3.6 10.1 3.5 15.5

10.0 30.7 47.4 12.6 43.9

0.4 2.7 1.1 3.2 0.8

5.3 8.9 8.6 21.0 5.1

0.1 0.3 0.3 0.4 0.4

Figure 3.6: Learned chromatin states with the associated chromatin modification and en-
richment in distinct genomic regions - mouse data. Left panel: The probability of observing
histone marks in each inferred state is summarized. Right panel: fold enrichment of hidden
states in various genomic regions reveals strong positional preferences of chromatin states.
The values are average enrichments across all 3 cell types.

1 2 3 4 5 6 7 8 9 101112131415161718
Node state

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

H
o
ri
zo
n
ta
l
p
a
re
n
t
st
a
te

Top root transition (α) for poc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro
b
a
b
ili
ty

Figure 3.7: Learned transition matrix α for the root cell type (H1 ES).

66

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 vp=1 vp=2 vp=3 vp=4 vp=5 vp=6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 vp=7 vp=8 vp=9 vp=10 vp=11 vp=12

1 2 3 4 5 6 7 8 9 101112131415161718

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 vp=13

1 2 3 4 5 6 7 8 9 101112131415161718

vp=14

1 2 3 4 5 6 7 8 9 101112131415161718

vp=15

1 2 3 4 5 6 7 8 9 101112131415161718

vp=16

1 2 3 4 5 6 7 8 9 101112131415161718

vp=17

1 2 3 4 5 6 7 8 9 101112131415161718

vp=18

Node state

H
o
ri
zo
n
ta
l
p
a
re
n
t
st
a
te

Figure 3.8: Transition matrix θ shown as specific submatrices for each vertical
parent state Each sub-matrix is associated with vertical parent state 1 to 18 indicated at
the top-left. A strong diagonal in the transition matrix indicates spatial persistence of states,
while a strong vertical line indicates persistance from the corresponding vertical state across
cell types.

67

C
TC

F

H
3
K
2
7
m
e
3

H
3
K
3
6
m
e
3

H
4
K
2
0
m
e
1

H
3
K
4
m
e
1

H
3
K
4
m
e
2

H
3
K
4
m
e
3

H
3
K
2
7
a
c

H
3
K
9
a
c

C
o
n
tr
o
l

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

C
h
ro
m
H
M
M
 S
ta
te

11 1 1 5 93 89 19 23 8 2

 9 2 2 4 18 83 48 8 18 1

18 7 3 7 3 94 98 89 98 2

95 91 95 98 81 85 96 77 90 97

 8 0 9 3 95 90 19 99 56 3

 1 2 1 1 64 6 0 1 1 1

 2 0 66 4 1 0 0 1 0 1

15 78 0 8 45 84 56 1 14 1

 4 5 4 9 1 0 5 1 2 15

 3 0 4 1 60 15 1 66 9 1

16 1 15 13 96 100 98 85 89 5

42 46 44 65 16 13 37 12 26 59

 6 0 63 29 72 28 7 28 10 2

95 3 1 3 7 4 0 1 1 1

 2 0 12 38 7 2 0 2 1 1

 0 0 11 1 0 0 0 0 0 0

 1 41 0 3 1 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0

Figure 3.9: Comparison with ChromHMM. Left panel: Emission probabilities learned
by ChromHMM with K = 18. Right panel: Confusion matrix showing the total number of
bases identified as belonging to a particular state by the two methods. In each cell, the top
number is the log10(number of bins) in the intersection, the value below corresponds to the
percentage in the corresponding tree-HMM sites and is used to color the heatmap. (values
in each column sum up to 1.)

Figure 3.10: Learned transition matrix α for the root cell type - mouse dataset

68

Figure 3.11: Transition matrix θ shown as specific sub-matrices for each parent
state - mouse dataset Each sub-matrix is associated with vertical parent state 1 to 10
indicated at the top-left.

Figure 3.12: Hierarchical clustering of binarized histone marks in human. Branch lengths
indicate the manhattan distance between species, considering all histone marks. The two
most similar cell types are indicated in red, and the next two most similar are indicated in
green.

69

Insulator/CTCF Strong Enhancer Active Promoter

Figure 3.13: K-means clustering reveals different cell-type specificities for different
chromatin states. K-means clustering with 20 clusters was performed on the posterior
probability of all the bins being in each state, posterior probability is shown as heatmap
color, cell types are indicated at the top of each column. From left to right: Insulator/CTCF
(state 14), Strong Enhancer (state 5), and Active Promoter (state 3).

70

Chapter 4

Genomix: Scalable de-novo genome

assembly

4.1 Introduction

Genome assembly is the attempt to reconstruct the original DNA sequence of a genome from

short, error-filled, overlapping substrings of the genome. The problem is somewhat akin to

attempting to reconstruct a written novel after finding thousands of shredded, error-filled

copies of it. Assembly is a classic problem in computational biology with roots that date

back to the original substring similarity algorithms of protein alignment, introduced in the

early 70’s and 80’s [82, 108]. Assembly played a critical role in the success of the human

genome project, completing in April 2003. Celera’s approach to the problem involved so-

called “shotgun-sequencing” and required extensive computational efforts to reconstruct the

original genome from fragments that were considered short at the time. Their rapid progress

was made possible by computational and algorithmic power. The genomes representing many

organisms have since been assembled at least to draft quality, but assembly continues to play

71

an important role in biology. Assembly is a first step to when studying a new organism, but

also continues to play a role in finding structural variation present in a sample that would be

difficult to identify if using reference-based variation discovery (see [115, 120] among many

other examples).

Since the inception of the human genome project, the length, quality, and quantity of the read

data has completely changed and gone through several phases. In the early days, Sanger

sequencing was employed to derive long (>500bp) reads of high quality but the method

suffered from low throughput and high costs. The original “next-generation” sequencing

came in the flavor of lower quality, extremely short reads (36bp) that were counted by

the millions instead of thousands. Further recent advancements have greatly improved the

quality, read length (now 100-250bp x 2 pairs), and throughput (with hundreds of millions

of reads generated from a single experiment). Some technologies currently offer even longer

reads (hundreds to thousands of bases long) at reduced quality and throughput.

Assembly methods have varied widely over the same space in time, with algorithms being

invented and adapted to better capture the strengths and account for the weaknesses of

changing sequencing technologies. Early attempts used greedy methods to connect reads

together and assemble the genome [43, 111]. Later methods drew heavily on algorithms

from graph theory to reconstruct the genome. Initially, they relied on there being long

stretches of overlap between the reads and were well suited to Sanger’s long read technology.

These methods built some variant of the String Graph, where the reads were represented by

nodes with edges connecting overlapping reads (see [79] for an example and review). Reads

from early next-generation sequencing experiments were too short and too numerous to be

used in such an overlap graph, and, instead, assemblers were built based on the de Bruijn

graph. De Bruijn graphs break the reads themselves into smaller kmers, or substrings of

length K. De Bruijn graphs have the desirable property that if there are no errors in the

reads, the size of the built graph is correlated to the size of the genome rather than the depth

72

of coverage or number of reads in the data. Several attempts have been made to reconstruct

the genome using de Bruijn graphs.

4.1.1 Contributions

We introduce a de Bruijn graph assembly method which combines several algorithms from

popular assembly programs and includes a new approach to expanding contigs. The im-

plementation is built on Hyracks and Pregelix and scales well with respect to the genome

size. Further, the framework is inherently adaptable, able to be run on large clusters of

commodity machines (such as Amazon’s EC2 cloud), in more traditional grid environments,

or even on a single machine with limited memory and computational resources.

4.1.2 Chapter Outline

This chapter is structured as follows: after discussing related work in section 4.1.3, explain

our methods in section 4.2, in particular, we explain the mechanics of the de Bruijn graph in

section 4.2.1 then proceed to explain the algorithms for cleaning and compressing the graph

as well as expanding the contigs in sections 4.2.3 through 4.2.8. In section 4.3, we show our

results comparing our method with Ray and Velvet on three different genomes. Finally, we

conclude with a discussion about future work in section 4.4.

4.1.3 Related Work

Several previous efforts have been made towards genome assembly using de Bruijn graphs.

A popular, early attempt at assembly was made by Velvet [135], which continues to be

improved by the authors. Velvet was one of the first methods to identify patterns in the de

73

Bruijn graph caused by sequencing errors and proposed several serial algorithms for pruning

them from the graph. All-Paths [19] and its several derivatives [37] used similar methods,

but attempts to expand large contigs by searching for paths that connect them. Among

several other notable methods [20, 65, 92], three are expecially pertinent to this work, as

they partially address the problem of scalability: 1) ABySS [106], 2) Ray [15], and 3) Contrail

[100]. The two former methods are based on the message-passing interface (MPI) framework

and effectively distribute the de Bruijn graph across multiple physically distinct computers.

While these methods do much to relieve the scalability problem, they are still limited in

their ability to handle very large genomes or very deep sequencing coverage with high error

rate, being limited to the available main memory of the computers they run on. The latter

method, Contrail, is based on the Hadoop framework, and mutates on-disk representations of

the graph. Unfortunately, in our testing, Contrail has an extremely long runtime. Hyracks,

our underlying framework, is billed as a more efficient and flexible implementation of the

“Big Data” tools normally solved by Hadoop.

4.2 Methods

Genome assembly attempts to reconstruct the original sequence of a genome from short,

error-prone fragments taken from a non-uniform, random shearing process. The first al-

gorithms for genome assembly used Sanger sequencing to determine the sequence of the

fragments, yielding relatively few fragments that were long and highly-accurate. These algo-

rithms Recently, next-generation sequencing While there are several approaches to genome

assembly, the de Bruijn graph representation has proven popular and effective, particularly

for reads derived from high-throughput sequencing experiments.

74

4.2.1 De Bruijn Graph Overview

We use the de Bruijn graph to represent the possible assemblies induced by a read dataset.

For a given integer k > 0 and an alphabet with l unique symbols, Σl, a de Bruijn graph is a

graph whose vertices V are composed of all possible length-l sequences from the alphabet.

Two vertices, A and B are connected by a directed edge A→ B if and only if the sequence

of B is equivalent to the sequence of A left-shifted by a single symbol. Thus, two nodes in

the graph are connected if they have an overlap of k − 1 symbols. De Bruijn graphs are

Eulerian and Hamiltonian and contain lk total vertices.

In genome assembly, we typically mean the subset of the de Bruijn graph induced by a

particular dataset. The vertices of the data-induced graph are those kmers found in the reads

and two vertices are connected by an edge if and only if a k+ 1-mer was present in the read

data. For example, the de Bruijn graph for k = 4 induced by the single read AACCGGTT

would consist of the vertices AAC → ACC → CCG→ CGG→ GGT → GTT . If the reads

contain no errors, covers the genome without gaps, and if the genome contains no repeated

sequences longer than k − 1, the resulting de Bruijn graph will contain the original genome

as one of its Eulerian paths (or tours for circular genomes).

Eulerian paths seek the shortest path covering the entire genome... May still be errors that

shouldn’t be incorporated. As [69] points out, it’s not actually the shortest genome we’re

looking for. It’s the one that’s most consistent with the reads. The shortest one will collapse

repeat regions. In their work, Medvedev et al. attempt to statistically determine the mul-

tiplicity of each edge’s sequence in the genome and then apply a series of transformations

to the graph, simplifying it where possible and consistent with the edge multiplicity. Fi-

nally, rather than finding an Eulerian tour of the graph (touching every edge exactly once),

they solve the Chinese Postman Problem (finding the minimum-cost tour), minimizing the

discrepancy between their tour and the estimated multiplicity of each edge in the genome.

75

Previous work has attempted to relax each of the above constraints with mixed performance;

no single method has come to dominate the genome assembly landscape. Some errors can

be resolved by inspecting the graph structure or through pruning particular nodes or edges

based on some additional data such as coverage of the kmers. Gaps in genomes can be

partially mediated by scaffolding together contigs (large stretches of unambigous sequence)

using paired-end read data. Repeated stretches of the genome will be collapsed in the de

Bruijn graph, leading to directed loops.

We build on the Hyracks and Pregelix distributed data frameworks to implement our assem-

bly algorithms. Hyracks [16] is an efficient distributed dataflow engine, handling all aspects

of data distribution and operator parallelization in exchange for an extensible “operator”

interface. The framework and interface is similar to MapReduce/Hadoop [24, 105, 125], but

is more flexible, efficient, and comes with several high-performance index structures out of

the box. The framework assumes a shared-nothing cluster of computers with limited mem-

ory, though it runs very well in more traditional grid environments, where filesystems are

often shared amongst machines or large quantities of memory are available. Unlike Hadoop,

Hyracks explicitly manages buffer pools to keep as much of the data in-memory as possible

and only spills to disk when it is insufficient.

Pregelix [18] is a Hyracks-based implementation of the Pregel API [66], providing users with

a flexible, efficient interface for implementing graph algorithms as Bulk-Synchronous Parallel

jobs. In this framework, all user-defined work occurs during separate iterations, with nodes

communicating through messages that will be delivered en masse at the start of the next

iteration. All nodes are addressable using their unique key and can save state between

iterations using a user-defined vertex value.

76

4.2.2 Notation

We define notation for our algorithms and several functions. We denote the provided reads

as Ri, with i ∈ {1 . . . I}, the number of reads in the input, and each read being a string of

length L. We define subseq(sequence, j, k) as the substring of the string sequence, starting

at position j and including k characters. We define min(sequence) as the smaller of sequence

and its reverse-compliment. emit(key, value) is the function which passes the (key, value)

pair on to the next operator. The user is required to specify the length of the kmers, denoted

K.

Each input read represents only one strand of the original DNA fragment and the same

fragment may have both strands sequenced. We group both the kmer and its reverse-

compliment in the same key/value pair and indicate the relationship between kmers by an

edge type, detailed in Figure 4.1. This system is effectively the same as that of [70] but

distributes the relationship between nodes to the nodes themselves rather than to a global

table. It is also used in [100].

FF

R
R

FR

FR

R
F

R
F

Figure 4.1: The three types of overlap and the four corresponding edge types used to indicate
the relationship between nodes. RF and FR edges are symmetric with themselves.

4.2.3 Graph Building using Hyracks

For graph building, we define a Hyracks operator that converts input fastq files into a dis-

tributed key/value store. The keys are the full set of kmers seen in the input file and values

contain neighbor information and some metadata such as node coverage and, for some nodes,

the set of reads that passed through the node. Comparing the kmers in each read with their

77

reverse-compliment, we keep the keys that are lexicographically smaller of the two.

Algorithm 5 Graph Building

Map Operator:
for all i ∈ {1 . . . I} in parallel do

for all j ∈ {1 . . . L−K} do
emit (min(subseq(Ri, j, k)), {min(subseq(Ri, j − 1, k)),min(subseq(Ri, j + 1, k))})

end for
end for
Group-by Operator
Reduce Operator:
for all kmer ∈ keys in parallel do

emit
(
kmer,

⋃
v∈values(kmer)

)
end for

4.2.4 Remove Bad Coverage

Immediately after graph building, we remove any nodes whose coverage is outside of an

acceptable range. That is, only nodes with min ≤ coverage ≤ max, where min and max

are user-defined parameters, defaulting to 2 and 1000, respectively. Nodes with extremely

low coverage are almost certainly caused by sequencing errors. A single sequencing error can

create up to 2K − 1 otherwise absent kmers, one for each overlapping kmer. Nodes with

extremely high coverage probably arise from highly-repeated regions of the genome which we

don’t attempt to resolve. Immediately after graph building, each node inspects its coverage.

If the coverage is outside the acceptable range, the node is pruned and a message is sent to

all of its neighbors, informing them to remove edges back to the removed node.

4.2.5 Graph Compression

There is overhead associated with storing each node and in performing each iteration. One

way to reduce this overhead is to compress the graph where possible. Two nodes that have

degree = 1 towards each other can be compressed together without loss of information, but

78

providing a significant reduction in the number of nodes in the graph and the number of

iterations required for searching for particular patterns in the graph. Our implementation

of graph compression is inspired by that in [100], which in turn is based on algorithms from

[117].

As shown in Figure 4.2, compressing the graph requires coordination between neighbors;

some nodes subsume other nodes while other nodes are subsumed and removed from the

graph. Coordination is done between neighbors in the graph through a controlled random

number generation: each node flips a coin and “head” nodes subsume “tail”, becoming longer

and replacing the edge towards the “tail’ node with the tail node’s next edges. The “tail”

node is removed from the graph and informs its neighbors to update their edges to point

to the “head” node. To coordinate this process, each node must know the head/tail state

of itself and all its neighbors. Neighbor state is made available without communication by

seeding the random number generator with the kmer key of the neighbor (or self to determine

a node’s own state) and the iteration number. In this way, each node knows their neighbor’s

state, even if that neighbor hasn’t yet flipped the coin to determine state.

One further coordination step is necessary before the merge can take place: those nodes

being subsumed must update their neighbors with the edges that will be present after the

merge. Since those neighbors may themselves be subsumed in the same iteration, we take

an extra iteration to coordinate edge updates across the graph. Figure 4.2 shows the state

of the graph after each of the two iterations required for one round of merging. Merging

continues until there are no more compressible nodes in the graph.

79

A

B

C

D

E

F

G

A F

C D E

B G

F
R

F
R

F
R

F
R

RF

RF

FF

RR

R
R

F
F

F
R

F
R

A F

C D E

B G

FF

F
R

F
R

FF

RF

RF

FF

RR

RR

F
F

FR

F
R

A F

CDE

B G

FF

RR

RR

FF

RR

FF

FR

FR

A

B

CDE

F

G

Figure 4.2: Compressing the graph . Top: Simplified view of seven overlapping kmers.
Nodes C, D, and E can be compressed into a single supernode since the pairs {C, D} and {D,
E} have degree = 1 towards each other. Middle-top: Equivalent bidirected graph detailing
edge types induced by kmer orientations. In the merge phase, D chooses “heads” and will
subsume adjacent “tail” nodes C and E. Center: C and E update their neighbors to point
to the subsuming node D. Middle-bottom: C and E merge towards D, and D uses their
neighbor’s edge type information to resolve its new edge types back towards the neighbors
of C and E. The new kmer in CDE is now of length len(C) + len(D) + len(E)− (K − 1)× 2.
To simplify graph updates, merged nodes maintain the key and orientation of the original
“heads” nodes, in this case D. Bottom: Simplified view of the merged nodes.

80

4.2.6 Tip Remove

Sequencing errors that appear near the beginning or end of reads will cause “tips” or dead-

ends in the de Bruijn graph. While an error introduced at the last position of a read will

cause only one erroneous kmer (and a tip of length 1), an error introduced K bases from the

end of the read will cause 2K − 1 error kmers, with a tip length of 2K − 1. Velvet originally

suggested removing tips from the graph based on their length and coverage [135], and we do

the same. Unbroken chains of length 2K − 1 terminating in a dead-end with relatively low

coverage (default: 5) will be excised from the graph, including all elements of the chain. This

step usually happens after merging the graph, making tip identification very easy. However,

removing tips from the graph can introduce additional tips, since multiple short tips may

extend from the same branch. We therefore proceed with search for tips, originating at all

dead ends in the graph, proceeding through all simple chain nodes, and stopping the search

when all paths have been checked.

4.2.7 Bubble Merge

Sequencing errors and the presence of alternative alleles in the genome will cause “bubbles”

in the graph. All 2K − 1 kmers overlapping the single error will branch off at the last non-

overlapping kmer and rejoin the main path after the last overlapping kmer. If multiple reads

include adjacent errors, the main path may be littered with many non-overlapping bubbles.

If a single read contains multiple sequencing errors within K − 1 bases of each other, the

length of the bubble will be increased to the size of the union of the two component bubble

paths before rejoining the main path. At high coverage, bubbles can be very common on

the graph. For example, at 100x coverage and a 1% error rate, we expect every base in

the genome to be covered by either a bubble or a tip. Still, the length of the individual

bubbles should be relatively short since it is not common many errors to be present within

81

K − 1 bases of each other in a single read. Unfortunately, the 2K − 1 erroneous kmers have

some chance of matching a kmer that actually exists in the genome, causing a bridge to be

formed between the erroneous bubble and some other part of the graph, which may represent

sequence from some very distant portion of the genome.

To identify bubbles in the graph, Velvet implements a breadth-first search, starting at nodes

with high coverage. The search proceeds until a node is visited twice. The twice-visited

node must be the ending node of a bubble; Velvet proceeds to find the starting point of the

bubble, extracts the sequence of the two alternative paths, and if the sequences are similar

enough, removes the path with lower coverage. Nodes are processed from highest coverage

to lowest coverage to give preference to higher-confidence operations, should two operations

be mutually exclusive.

We follow a similar strategy, with the following changes: 1) we process all possible bubble

paths simultaneously in parallel, 2)we don’t give preference to high-coverage nodes, and 3)

we only remove the connection of the bubble path to the main path rather than removing

it from the graph. These changes are mostly in place to simplify the search process; we

feel it is important for each operation to proceed in parallel. In our implementation, every

node in the graph is considered a seed and starts a local search, seeking potential bubbles

that must include the seed node’s edges as the beginning of the bubble. If such a bubble

is found, the seed nodes will be the last common nodes between two or more bubble paths.

Rather than backtracking to get the sequence of traversed nodes, we store that information

in the messages of the search itself and mark each node with the traversed paths. The

extra information needed to store the paths within the nodes and messages will reduce the

runtime of this algorithm if the sought paths become too long, since every path is explicitly

stored and the number of paths is exponential in the tree width of the graph. In our testing,

however, we found that very few searches become unmanageable since the search range is

limited (default: 100bp). It may be necessary to impose an upper limit on the number of

82

branches each seed is allowed to expand into, or to seek an alternate implementation that

only stores the paths implicitly, as Velvet does.

4.2.8 Scaffolding

Our final algorithm for cleaning the de Bruijn graph consists of finding its high-confidence

regions and attempting to expand them using the original reads. The methodology is similar

to Ray [15], which proceeds as follows: First, a high-confidence version of the graph is built

by removing nodes with low coverage (e.g., everything below 10x). The resulting graph

will have very few sequencing errors but its components will be largely disconnected. Long,

unbroken chains of kmers are identified and marked as high-confidence seeds. Next, the

edges of the confident regions are extended through a voting process where, for each branch,

the branch’s kmer is checked for overlap with the reads present in the confident region. If

one branch’s kmer overlap dominates all other branches’ kmers, the dominating branch is

retained as part of the high-confidence region and the expansion voting continues with the

chosen branch’s next-neighbors. The process finishes when a dead end is reached or no

dominating edge is found, resulting in a long walk through the graph. Finally, walks that

overlap are checked to see if they should be merged together. Ray’s voted walk performs

admirably on the datasets we’ve tested.

We now present several improvements over the original Ray algorithm that should improve

the accuracy of the generated walk. These improvements each come at the cost of a longer

runtime, as they focus on searching in the neighborhood of the decision node. We use Figure

4.3 as a frame of reference to describe our improvements. Specifically, the nodes that were

part of the original high-confidence region are considered “walk” nodes, the node whose

branches are under consideration is termed the “frontier” node, and each of the branches

under consideration are considered “candidates”.

83

p1
13 · · ·

c1, p
1
11, p

1
21 p1

12, p
1
22

s w1 w2 f p1
23 · · ·

c2, p
2
11 p2

12 p2
13 · · ·

Figure 4.3: Node designations for scaffolding. The walk starts at a seed node, indicated
by s, and has already proceeded through walk nodes w1 through w3. The frontier node
f makes the decision about which node to include next in the walk from the candidates
c1 and c2. Ray’s algorithm makes the inclusion decision based only on this information.
Our improvements include searching beyond the candidates into complete paths which may
include additional branches. Over the search distance d, c1 has split into two paths p1

1∗ and
p1

2∗, whereas candidate c2 still has only one search path, p2
1∗. The decision made in f about

whether to include c1 or c2 can be augmented by the combined kmer from each path as well
as read information from the paths. We omit edge types and edges that don’t participate in
the algorithm (e.g., there could be other edges incoming to one of the path nodes).

Expanded Candidate Branches

The first improvement to scaffolding focuses on the kmer being compared. While Ray looks

only at the next kmer in each branch (essentially, the single letters that proceed the frontier

node), we expand the candidate kmers to a greater length. Since the graph has been com-

pressed before scaffolding commences, most kmers are substantially longer than K. With

only a single extra iteration, we can check not only the next letter but also a potentially

large number of letters that proceed the single letter.

In Ray, determining dominance of a particular branch depends on three inequalities and a

variable m, determined by the coverage of the frontier node. Given the set of reads from

the high-confident walk, and in particular, the kmers from those reads that have the same

offset as the candidate kmers, the read kmers are compared against each candidate kmer.

84

The dominant edge must have m-fold more total read kmers that exactly match the domi-

nant edge’s kmer, it must have an m-fold higher offset-weighted match score than all other

branches, and the smallest non-zero walk node’s contribution to the number of matching read

kmers must be greater than m times the smallest non-zero walk node contribution. This is

summarized in Equations 4.1, 4.2, and 4.3 as adapted from [15]. We say that a candidate y

“wins” against y′ if the following inequalities hold:

m · Σl
i=1(l − i)offseti(w, y

′) < Σl
i=1(l − i)offseti(w, y) (4.1)

m · Σl
i=1offseti(w, y

′) < Σl
i=1offseti(w, y) (4.2)

m · min
i∈{1...l}

(offseti(w, y
′) > 0) < min

i∈{1...l}
(offseti(w, y

′) > 0) (4.3)

where

offseti(w, y) := Σx∈wδ(subseq(x, i− start(x,w), K) = y) (4.4)

that is, the total number of reads (x) in walk w = 〈x1 . . . xJ〉 that exactly match candidate

kmer y. The m factor is determined by the coverage of the frontier node and is smaller for

higher coverage frontiers. We say that y dominates if and only if the inequality holds for all

other candidates y ∈ edges(f) \ {y′}.

In a compressed graph, the candidate kmer y is of variable length, at least as long as K. In

this case, we modify the offset function as follows:

85

offsetcompressed
i (w, y) := Σx∈wΣm∈{0···M−K}

δ(subseq(x, i − start(x,w) + m,K) = subseq(y,m,K)) (4.5)

where M = miny∈Y f (length(y)) and Y f is the complete set of candidates for the current

frontier f . This counts the total number of length-K subsequences in all reads that exactly

match each length-K subsequence of the candidate kmer at the correct offset. Since the

candidates may be of different lengths, we limit the the number of kmers compared to the

shortest of the candidates.

In the compressed graph, we replace the offseti function in Equations 4.1 and 4.2 with

offsetcompressed
i , however Equation 4.3 is a minimization over walk nodes, which have been

compressed. We modify this equation to instead measure the number of distinct reads that

overlap the candidate, that is:

countcompressed
i (w, y) := Σx∈w

δ
(
Σm∈{0···M−K}δ(subseq(x, i− start(x,w) +m,K) = subseq(y,m,K)) > 0

)
(4.6)

In section 4.2.8, we show how to relax the minimum length constraint by expanding the

candidate search to include multiple candidate paths.

86

Expanding Further and Scoring Multiple Candidate Paths

Candidate branch nodes contain kmer sequences that are of variable lengths, sometimes as

short as K. When short, the important decision of including the branch in the confident

walk is based on limited information, sometimes as little as a single base will determine

which branch to include.

To overcome this shortcoming, we expand the candidate branches into candidate paths,

enumerating all possible paths up to a predetermined distance d from the frontier and ac-

cumulating their complete sequence. Whereas previously Y f = {yi, i ∈ edges(f)}, we now

enumerate the complete set of paths originating at the frontier f , passing through each can-

didate c as Y f
c , each of which is normally at least d letters long (the exception occurs when

a path encounters a dead end, in which case it will be shorter). Now, each candidate has a

complete set of possible paths that pass through it. In this case, a candidate c dominates if

and only if at least one of its paths dominates all paths in all other candidates’ paths, that

is, if and only if:

∃ pc ∈ Y f
c : ∀ c′ ∈ edges(f) \ {c}, ∀ p′c′ ∈ Y f

c′ dominates(pc, p
′
c′) (4.7)

Mutual Scoring

Another piece of information available in making the decision about which candidate to

include in the path comes from reads that are present in the candidate paths themselves,

which may be oriented back towards the walk itself. Up until this point, we have relied on

the the reads in the walk nodes to score the candidate branches and/or paths. We can also

allow the candidate branches themselves to score the walk. We define the final score for a

87

candidate’s path as the simple sum of the walk’s offset score of the candidate path and the

candidate’s offset score of the walk.

By allowing the candidate branches to expand completely and by using mutual scoring from

candidate paths, we effectively search the neighborhood surrounding the frontier decision

point, and inform the candidate inclusion process in a way that, to the best of our knowledge,

has not been attempted previously.

4.3 Results

In this section, we present preliminary results for the Genomix program in two main di-

mensions: first, how the algorithms scale to large genomes, across multiple machines, and

in different available memory regimes. Second, we explore the accuracy of the algorithm in

reconstructing several genomes. Our initial results are based on running all algorithms in

single-end mode.

Timings

One compelling reason for using the Hyracks/Pregelix framework is its transparent and

efficient use of main memory. Traditional assemblers must be able to fit their graph rep-

resentation in RAM and are therefore only able to assemble large genomes on very large

servers including terabytes of RAM. MPI-based methods such as Ray [15] and ABySS [106]

have reduced some of the memory press by partitioning the graph across machines, but are

still limited in the size of genome that can be assembled. To the best of our knowledge,

only Contrail [100], which uses the Hadoop/MapReduce framework, is capable of scaling

beyond the current assembly size limitations without breaking the bank for a large-memory

system. Unfortunately, Hadoop uses almost no main memory, instead manipulating on-disk

88

representations of the graph and in our testing, Contrail’s runtime clearly suffered.

To test how our algorithm scales, we ran Genomix in three different configurations: first,

on a single machine with limited memory (16GB), on a small cluster with limited memory

(4 machines with 10 CPU’s, 10GB RAM each), and on a small cluster with a substantial

increase in available memory (4 machines with 10 CPU’s, 100GB RAM each). We also

explored the effect of varying the input data size by generating synthetic reads from human

genome hg19 chromosome 14. Keeping the coverage fixed at 100x, we tested the runtimes

of our algorithm’s various stages. Figure 4.4 shows a near-linear increase in runtime for a

linear increase in input data size, regardless of the computational configuration.

89

Figure 4.4: Runtime comparison as the size of the genome is increased while maintaining
100x coverage (synthetic data). These first three steps are take a substantial portion of the
total runtime since all later steps operate on a greatly simplified graph. The scaffolding step
may take much longer than these steps, depending on the search options used.

Assembly Accuracy

Assemblers seek to produce the most complete reconstruction of the genome, with the min-

imal number of gaps, the largest unbroken sequences, and the least number of errors. Per

convention, we use the N50 metric to compare lengths and use the scripts released as part of

GAGE to measure errors in the assembled contigs. The N50 is defined as the length of the

shortest contig such that 50% of the original genome is in longer contigs.

90

N50 SNPs Indels <5bp / ≥ 5bp Inv./Rel/Trans. Time 1/8/40 CPU

Rhodo (4.6MB genome, 101bp SE reads, 180x coverage)

Velvet 4312 899 324 / 6 1 / 2 / 2 628 / F / NA

Ray 3800 295 118 /4 0 / 2 / 3 ? / 2,347 / ?

Genomix 3878 573 138 / 4 2 / 3 / 9 ? / 11,402 / ?

E. coli (4.6MB genome, 36bp SE reads, 80x coverage)

Velvet 8735 24 0 / 0 0 / 2 / 0 220 / F / NA

Ray 12425 37 1 / 1 0 / 1 / 0 1,792 / 904 / ?

Genomix 10756 9 0 / 0 8 / 6 / 0 ? / 2,452 / ?

Staph (2.9MB genome, 101bp SE reads, 90x coverage)

Velvet 22361 100 9 / 4 0 / 2 / 0 113 / F / NA

Ray 3718 49 4 / 2 0 / 4 / 0 1,728 / 735 /?

Genomix 7881 77 3 / 1 3 / 3 / 0 1,276 / 1,176 /?

Table 4.1: Assembly results for three bacterial genomes using Velvet, Ray, and Genomix.
In all cases, the algorithms were run with K = 31 in single-end mode and all metrics are
as reported by GAGE. Abbreviations are Inv. = Inversions, Rel. = Relocations, Trans. =
Translocations.

91

N50 SNPs Indels <5bp / ≥ 5bp Inv./Rel/Trans. Time

Rhodo (4.6MB genome, 101bp SE reads, 180x coverage)

Velvet 4312 899 324 / 6 1 / 2 / 2 628 (1 CPU)

Ray 3800 295 118 /4 0 / 2 / 3 2,347 (8 CPU)

Genomix 3878 573 138 / 4 2 / 3 / 9 11,402 (8 CPU)

E. coli (4.6MB genome, 36bp SE reads, 80x coverage)

Velvet 8735 24 0 / 0 0 / 2 / 0 220 (1 CPU)

Ray 12425 37 1 / 1 0 / 1 / 0 904 (8 CPU)

Genomix 10756 9 0 / 0 8 / 6 / 0 2,452 (8 CPU)

Staph (2.9MB genome, 101bp SE reads, 90x coverage)

Velvet 22361 100 9 / 4 0 / 2 / 0 113 (1 CPU)

Ray 3718 49 4 / 2 0 / 4 / 0 735 (8 CPU)

Genomix 7881 77 3 / 1 3 / 3 / 0 1,176 (8 CPU)

Table 4.2: Assembly results for three bacterial genomes using Velvet, Ray, and Genomix.
In all cases, the algorithms were run with K = 31 in single-end mode and all metrics are
as reported by GAGE. Abbreviations are Inv. = Inversions, Rel. = Relocations, Trans. =
Translocations.

Though our initial results in each case are based on single-end performance, Genomix shows

promise as a scalable platform for genome assembly and compares favorably to the other

methods in terms of N50, though its accuracy could be improved.

4.4 Discussion

We have implemented and tested a new, distributed algorithm for de novo genome assembly

using approaches from several successful assemblers and have introduced several improve-

92

ments to the existing methods. We have shown that although there is overhead associated

with the distributed framework, the method scales well and should be able to handle much

larger genomes than previously feasible.

Ray’s voted walk through the graph is a very different approach than previous algorithms.

Rather than seeking the walk through the graph that minimizes the total walk length while

touching each edge (as in the Eulerian tour of Velvet and many other methods), Ray solves a

minimum cost network flow problem locally, using the overlap information from the reads to

guide the expanding candidates. This is similar to the minimum-cost network flow problem

solved by [69], except that Medvedev sought to match global kmer coverage rather than

using read/overlap information. There may be room for a combined approach which would

solve the global flow problem while also incorporating local read overlap information., where

the read information can guide local connections through the graph.

Our scaffolding implementation currently prunes the graph along the walk rather than in-

corporating the candidate nodes implicitly. It seems this premature edge pruning is leading

to an increased number of large-scale errors (inversions, translocations, and relocations).

We explored several strategies to delay graph pruning, but didn’t fully explore an implicit

inclusion and secondary merge phase as seen in Ray. Perhaps following their example more

closely in the scaffolding stage would lead to reduced errors in the graph.

Our implementation of split-repeat handles only one of four possible repeat types enumerated

in [69]. We started handling this repeat type fairly late in our implementation, but it had

immediate positive effect on our accuracy and N50 metrics so it might be worthwhile to

implement the other split methods.

93

Chapter 5

Conclusion

Through an astronomical increase in the quantity of available data, high-throughput sequenc-

ing has revolutionized basic and translational biology. As a result, biology has become even

more empirically driven, moving from experimental procedures of limited scope about single

genes to comprehensive, simultaneous sweeps elucidating function in genes across multiple

cell types. Some basic assumptions are being challenged by the mountains of data, while

novel hypotheses are being made, guided by and leading to new experimental procedures,

many of which are firmly rooted in sequencing’s dropping cost, increasing accuracy, and

expanding throughput.

In this thesis, we have presented three enhancements to the state of the art in bioinformatic

methods for genomic annotation, guided by high-throughput sequencing. First, we have

described improvements in functional annotation of ChIP-seq data through an improved

peak caller and a probabilistic model for the ChIP enrichment process, allowing ChIP peaks

to be identified in previously-censored repeat regions of the genome. We demonstrated in

two datasets that our method increases the total number of peaks called with transcription

factor binding motifs without a major reduction in accuracy. We also showed that the

94

peaks called tended to be near repeat regions of the genome and had been overlooked by

previous peak calling methods. Second, we showed how classic probabilistic models can be

adapted to specific experimental structures to better leverage mutual information between

experiments. Specifically, we modified a hidden Markov model for learning histone mark-

derived epigenetic state, creating a natural extension to the HMM that captured specific

biological realities, in this case shared inheritance of epigenetic state across cell types. We

also leveraged the optimization tools of variational inference to efficiently approximate the

intractable model. Finally, we built a scalable genome assembler based on but improving

the previous methods of Velvet and Ray, while able to efficiently assemble large genomes.

The framework’s capacity is limited by disk space distributed across many machines rather

than available memory in a single computer. We show similar N50 to previous methods and

promising scalability, while suffering somewhat in accuracy. Our implementations of these

improvements are all available as open-source software.

95

Bibliography

[1] M. J. Aardema and J. T. MacGregor. Toxicology and genetic toxicology in the
new era of “toxicogenomics”: impact of “-omics” technologies. Mutation Re-
search/Fundamental and Molecular Mechanisms of Mutagenesis, 499(1):13–25, 2002.

[2] S. Altschul, B. Demchak, R. Durbin, R. Gentleman, M. Krzywinski, H. Li,
A. Nekrutenko, J. Robinson, W. Rasband, J. Taylor, et al. The anatomy of successful
computational biology software. Nature biotechnology, 31(10):894–897, 2013.

[3] T. Bailey and C. Elkan. The value of prior knowledge in discovering motifs with
MEME. In Proc Int Conf Intell Syst Mol Biol, volume 3, pages 21–9, 1995.

[4] T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren,
W. W. Li, and W. S. Noble. Meme suite: tools for motif discovery and searching.
Nucleic acids research, 37(suppl 2):W202–W208, 2009.

[5] M. J. Bamshad, S. B. Ng, A. W. Bigham, H. K. Tabor, M. J. Emond, D. A. Nickerson,
and J. Shendure. Exome sequencing as a tool for mendelian disease gene discovery.
Nature Reviews Genetics, 12(11):745–755, 2011.

[6] A. Bannister and T. Kouzarides. Regulation of chromatin by histone modifications.
Cell research, 21(3):381–395, 2011.

[7] Y. Bergman and H. Cedar. Epigenetic control of recombination in the immune system.
Seminars in immunology, 22(6):323–9, Dec. 2010.

[8] B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry,
A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber,
and E. S. Lander. A bivalent chromatin structure marks key developmental genes in
embryonic stem cells. Cell, 125(2):315–26, Apr. 2006.

[9] M. Bibikova, E. Chudin, B. Wu, L. Zhou, E. Garcia, Y. Liu, S. Shin, T. Plaia, J. Auer-
bach, D. Arking, et al. Human embryonic stem cells have a unique epigenetic signature.
Genome research, 16(9):1075–1083, 2006.

[10] J. Biesinger, Y. Wang, and X. Xie. Discovering and mapping chromatin states using
a tree hidden markov model. BMC bioinformatics, 14(Suppl 5):S4, 2013.

96

[11] J. Bilmes and C. Bartels. On triangulating dynamic graphical models. In Proceedings of
the Nineteenth Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-03), pages 47–56, San Francisco, CA, 2003. Morgan Kaufmann.

[12] K. Blahnik, L. Dou, H. O’Geen, T. McPhillips, X. Xu, A. Cao, S. Iyengar, C. Nicolet,
B. Ludascher, I. Korf, et al. Sole-Search: an integrated analysis program for peak
detection and functional annotation using ChIP-seq data. Nucleic Acids Research,
38(3):e13, 2010.

[13] M. Blow, D. McCulley, Z. Li, T. Zhang, J. Akiyama, A. Holt, I. Plajzer-Frick,
M. Shoukry, C. Wright, F. Chen, et al. ChIP-Seq identification of weakly conserved
heart enhancers. Nature genetics, 42(9):806–810, 2010.

[14] V. Boeva, D. Surdez, N. Guillon, F. Tirode, A. Fejes, O. Delattre, and E. Barillot.
De novo motif identification improves the accuracy of predicting transcription factor
binding sites in ChIP-Seq data analysis. Nucleic Acids Research, 2010.

[15] S. Boisvert, F. Laviolette, and J. Corbeil. Ray: simultaneous assembly of reads from
a mix of high-throughput sequencing technologies. Journal of Computational Biology,
17(11):1519–1533, 2010.

[16] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A flexible and
extensible foundation for data-intensive computing. In Data Engineering (ICDE), 2011
IEEE 27th International Conference on, pages 1151–1162. IEEE, 2011.

[17] S. D. Boyd. Diagnostic applications of high-throughput dna sequencing. Annual Review
of Pathology: Mechanisms of Disease, 8:381–410, 2013.

[18] Y. Bu. Pregelix: dataflow-based big graph analytics. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 54. ACM, 2013.

[19] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S. Lander,
C. Nusbaum, and D. B. Jaffe. Allpaths: de novo assembly of whole-genome shotgun
microreads. Genome research, 18(5):810–820, 2008.

[20] M. J. Chaisson, D. Brinza, and P. A. Pevzner. De novo fragment assembly with short
mate-paired reads: Does the read length matter? Genome research, 19(2):336–346,
2009.

[21] N. Chuzhanova, S. Abeysinghe, M. Krawczak, and D. Cooper. Translocation and gross
deletion breakpoints in human inherited disease and cancer II: Potential involvement
of repetitive sequence elements in secondary structure formation between DNA ends.
Human mutation, 22(3):245–251, 2003.

[22] A. J. Cox. Efficient Large-Scale Alignment of Nucleotide Databases. Whole genome
alignments to a reference genome. http://bioinfo.cgrb.oregonstate.edu/docs/solexa,
2007.

97

[23] A. Darwiche. Modeling and reasoning with Bayesian networks. Cambridge University
Press, 2009.

[24] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[25] T. Dean and K. Kanazawa. Probabilistic temporal reasoning. AAAI, 1988.

[26] X. Dong, M. Greven, A. Kundaje, S. Djebali, J. Brown, C. Cheng, T. Gingeras, M. Ger-
stein, R. Guigó, E. Birney, et al. Modeling gene expression using chromatin features
in various cellular contexts. Genome biology, 13(9):R53, 2012.

[27] R. Durbin. Biological sequence analysis: probabilistic models of proteins and nucleic
acids. Cambridge Univ Pr, 1998.

[28] J. Ernst and M. Kellis. Discovery and characterization of chromatin states for sys-
tematic annotation of the human genome. Nature biotechnology, 28(8):817–25, Aug.
2010.

[29] J. Ernst, P. Kheradpour, T. S. Mikkelsen, N. Shoresh, L. D. Ward, C. B. Epstein,
X. Zhang, L. Wang, R. Issner, M. Coyne, M. Ku, T. Durham, M. Kellis, and B. E.
Bernstein. Mapping and analysis of chromatin state dynamics in nine human cell types.
Nature, 473(7345):43–9, May 2011.

[30] A. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge, and S. Jones. FindPeaks
3. 1: a tool for identifying areas of enrichment from massively parallel short-read
sequencing technology. Bioinformatics, 24(15):1729, 2008.

[31] G. Felsenfeld and M. Groudine. Controlling the double helix. Nature, 421(6921):448–
453, 2003.

[32] N. C. for Biotechnology Information. Ncbi to discontinue sequence read archive
and peptidome [online]. 2011. URL: http://www.ncbi.nlm.nih.gov/About/news/
16feb2011.

[33] N. C. for Biotechnology Information. Status of the ncbi sequence read archive (sra)
[online]. 2011. URL: http://www.ncbi.nlm.nih.gov/About/news/13Oct2011.html.

[34] L. A. Garraway and E. S. Lander. Lessons from the cancer genome. Cell, 153(1):17 –
37, 2013.

[35] J. B. German, B. D. Hammock, and S. M. Watkins. Metabolomics: building on a
century of biochemistry to guide human health. Metabolomics, 1(1):3–9, 2005.

[36] P. Glaus, A. Honkela, and M. Rattray. Identifying differentially expressed transcripts
from rna-seq data with biological variation. Bioinformatics, 28(13):1721–1728, 2012.

98

http://www.ncbi.nlm.nih.gov/About/news/16feb2011
http://www.ncbi.nlm.nih.gov/About/news/16feb2011
http://www.ncbi.nlm.nih.gov/About/news/13Oct2011.html

[37] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J. Walker,
T. Sharpe, G. Hall, T. P. Shea, S. Sykes, et al. High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proceedings of the National
Academy of Sciences, 108(4):1513–1518, 2011.

[38] J. Gomez-Ramirez and R. Sanz. On the limitations of standard statistical modeling
in biological systems: a full bayesian approach for biology. Progress in biophysics and
molecular biology, 113(1):80–91, 2013.

[39] R. Hagen, S. Rodriguez-Cuenca, and A. Vidal-Puig. An allostatic control of membrane
lipid composition by SREBP1. FEBS letters, 2010.

[40] N. Heintzman, R. Stuart, G. Hon, Y. Fu, C. Ching, R. Hawkins, L. Barrera, S. Van Cal-
car, C. Qu, K. Ching, et al. Distinct and predictive chromatin signatures of transcrip-
tional promoters and enhancers in the human genome. Nature genetics, 39(3):311–318,
2007.

[41] M. Hoffman, O. Buske, J. Wang, Z. Weng, J. Bilmes, and W. Noble. Unsupervised pat-
tern discovery in human chromatin structure through genomic segmentation. Nature
methods, 9(5):473–476, 2012.

[42] G. Hon, W. Wang, and B. Ren. Discovery and annotation of functional chromatin
signatures in the human genome. PLoS computational biology, 5(11):e1000566, 2009.

[43] X. Huang and A. Madan. Cap3: A dna sequence assembly program. Genome research,
9(9):868–877, 1999.

[44] A. Huda and I. Jordan. Epigenetic regulation of Mammalian genomes by transpos-
able elements. Annals of the New York Academy of Sciences, 1178(Natural Genetic
Engineering and Natural Genome Editing):276–284, 2009.

[45] E. Jablonka and G. Raz. Transgenerational epigenetic inheritance: prevalence, mecha-
nisms, and implications for the study of heredity and evolution. The Quarterly review
of biology, 84(2):131–176, 2009.

[46] R. Jaschek and A. Tanay. Spatial clustering of multivariate genomic and epigenomic
information. In Research in Computational Molecular Biology, pages 170–183. Springer,
2009.

[47] H. Ji, H. Jiang, W. Ma, D. Johnson, R. Myers, and W. Wong. An integrated software
system for analyzing ChIP-chip and ChIP-seq data. Nature biotechnology, 26(11):1293–
1300, 2008.

[48] H.-X. Ju, B. An, Y. Okamoto, K. Shinjo, Y. Kanemitsu, K. Komori, T. Hirai,
Y. Shimizu, T. Sano, A. Sawaki, M. Tajika, K. Yamao, M. Fujii, H. Murakami, H. Os-
ada, H. Ito, I. Takeuchi, Y. Sekido, and Y. Kondo. Distinct profiles of epigenetic evo-
lution between colorectal cancers with and without metastasis. The American journal
of pathology, 178(4):1835–46, Apr. 2011.

99

[49] W. KA. DNA Sequencing Costs data from the nhgri genome sequencing program (gsp)
[online]. 2014. URL: http://www.genome.gov/sequencingcosts/.

[50] M. Kagey, J. Newman, S. Bilodeau, Y. Zhan, D. Orlando, N. van Berkum, C. Ebmeier,
J. Goossens, P. Rahl, S. Levine, et al. Mediator and cohesin connect gene expression
and chromatin architecture. Nature, 2010.

[51] M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kino****a, M. Itoh, S. Kawashima,
T. Katayama, M. Araki, and M. Hirakawa. From genomics to chemical genomics: new
developments in kegg. Nucleic acids research, 34(suppl 1):D354–D357, 2006.

[52] P. Kharchenko, M. Tolstorukov, and P. Park. Design and analysis of ChIP-seq exper-
iments for DNA-binding proteins. Nature biotechnology, 26(12):1351–1359, 2008.

[53] J. Khatun. An integrated encyclopedia of dna elements in the human genome. Nature,
489:57–74, 2012.

[54] T. Kim, Z. Abdullaev, A. Smith, K. Ching, D. Loukinov, R. Green, M. Zhang, V. Loba-
nenkov, and B. Ren. Analysis of the vertebrate insulator protein ctcf-binding sites in
the human genome. Cell, 128(6):1231–1245, 2007.

[55] M. Kircher and J. Kelso. High-throughput dna sequencing–concepts and limitations.
Bioessays, 32(6):524–536, 2010.

[56] P. Kolasinska-Zwierz, T. Down, I. Latorre, T. Liu, X. Liu, and J. Ahringer. Differential
chromatin marking of introns and expressed exons by h3k36me3. Nature genetics,
41(3):376–381, 2009.

[57] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon,
K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing and analysis of the human
genome. Nature, 409(6822):860–921, 2001.

[58] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol, 10(3):R25,
2009.

[59] H. Li and R. Durbin. Fast and accurate short read alignment with burrows–wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

[60] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome research, 18(11):1851, 2008.

[61] R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonucleotide alignment
program. Bioinformatics, 24(5):713, 2008.

[62] R. Lister, M. Pelizzola, R. Dowen, R. Hawkins, G. Hon, J. Tonti-Filippini, J. Nery,
L. Lee, Z. Ye, Q. Ngo, et al. Human dna methylomes at base resolution show widespread
epigenomic differences. Nature, 462(7271):315–322, 2009.

100

http://www.genome.gov/sequencingcosts/

[63] J. Liu, Z. Zhang, M. Bando, T. Itoh, M. Deardorff, D. Clark, M. Kaur, S. Tandy,
T. Kondoh, E. Rappaport, et al. Transcriptional dysregulation in NIPBL and cohesin
mutant human cells. PLoS Biol, 7(5):e1000119, 2009.

[64] N. J. Loman, R. V. Misra, T. J. Dallman, C. Constantinidou, S. E. Gharbia, J. Wain,
and M. J. Pallen. Performance comparison of benchtop high-throughput sequencing
platforms. Nature biotechnology, 30(5):434–439, 2012.

[65] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, et al.
Soapdenovo2: an empirically improved memory-efficient short-read de novo assembler.
Gigascience, 1(1):18, 2012.

[66] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: a system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pages 135–
146. ACM, 2010.

[67] F. Markowetz and R. Spang. Inferring cellular networks–a review. BMC bioinformatics,
8(Suppl 6):S5, 2007.

[68] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al. The genome analysis toolkit:
a mapreduce framework for analyzing next-generation dna sequencing data. Genome
research, 20(9):1297–1303, 2010.

[69] P. Medvedev and M. Brudno. Maximum likelihood genome assembly. Journal of
computational Biology, 16(8):1101–1116, 2009.

[70] P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computability of models for
sequence assembly. In Algorithms in Bioinformatics, pages 289–301. Springer, 2007.

[71] M. Might. Hunting down my son’s killer [online]. 2012. URL: http://matt.might.
net/articles/my-sons-killer/.

[72] T. Mikkelsen, M. Ku, D. Jaffe, B. Issac, E. Lieberman, G. Giannoukos, P. Alvarez,
W. Brockman, T. Kim, R. Koche, et al. Genome-wide maps of chromatin state in
pluripotent and lineage-committed cells. Nature, 448(7153):553–560, 2007.

[73] I. Mitchell Guttman, M. Garber, C. French, M. Lin, D. Feldser, M. Huarte, O. Zuk,
B. Carey, J. Cassady, M. Cabili, et al. Chromatin signature reveals over a thousand
highly conserved large non-coding rnas in mammals. Nature, 458(7235):223–227, 2009.

[74] G. E. Moore et al. Cramming more components onto integrated circuits [online]. 1965.

[75] O. Morozova and M. A. Marra. Applications of next-generation sequencing technologies
in functional genomics. Genomics, 92(5):255–264, 2008.

[76] A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature methods, 5(7):621–628,
2008.

101

http://matt.might.net/articles/my-sons-killer/
http://matt.might.net/articles/my-sons-killer/

[77] K. Murphy et al. The bayes net toolbox for matlab. Computing science and statistics,
33(2):1024–1034, 2001.

[78] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate in-
ference: An empirical study. In Proceedings of the Fifteenth conference on Uncertainty
in artificial intelligence, pages 467–475. Morgan Kaufmann Publishers Inc., 1999.

[79] E. W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl 2):ii79–
ii85, 2005.

[80] R. Nativio, K. Wendt, Y. Ito, J. Huddleston, S. Uribe-Lewis, K. Woodfine, C. Krueger,
W. Reik, J. Peters, and A. Murrell. Cohesin is required for higher-order chromatin
conformation at the imprinted IGF2-H19 locus. 2009.

[81] A. C. Need, V. Shashi, Y. Hitomi, K. Schoch, K. V. Shianna, M. T. McDonald, M. H.
Meisler, and D. B. Goldstein. Clinical application of exome sequencing in undiagnosed
genetic conditions. Journal of medical genetics, 49(6):353–361, 2012.

[82] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3):443–453, 1970.

[83] D. Newkirk, J. Biesinger, A. Chon, K. Yokomori, and X. Xie. Arem: aligning short
reads from chip-sequencing by expectation maximization. Journal of Computational
Biology, 18(11):1495–1505, 2011.

[84] E. of DNA Elements (ENCODE). Encyclopedia of dna elements (encode) [online].
2012. URL: http://genome.ucsc.edu/ENCODE/.

[85] Z. Ouyang, Q. Zhou, and W. Wong. ChIP-Seq of transcription factors predicts absolute
and differential gene expression in embryonic stem cells. Proceedings of the National
Academy of Sciences, 106(51):21521, 2009.

[86] C. A. Ouzounis. Rise and demise of bioinformatics? promise and progress. PLoS
computational biology, 8(4):e1002487, 2012.

[87] D. P. Outpaced by innovation: Canceling an xprize [online]. 2013. URL: http:

//www.huffingtonpost.com/peter-diamandis/outpaced-by-innovation-ca_b_

3795710.html.

[88] P. Park. ChIP–seq: advantages and challenges of a maturing technology. Nature
Reviews Genetics, 10(10):669–680, 2009.

[89] V. R. Patel, K. Eckel-Mahan, P. Sassone-Corsi, and P. Baldi. Circadiomics: integrating
circadian genomics, transcriptomics, proteomics and metabolomics. Nature methods,
9(8):772–773, 2012.

[90] S. Pepke, B. Wold, and A. Mortazavi. Computation for ChIP-seq and RNA-seq studies.
Nature Methods, 6:S22–S32, 2009.

102

http://genome.ucsc.edu/ENCODE/
http://www.huffingtonpost.com/peter-diamandis/outpaced-by-innovation-ca_b_3795710.html
http://www.huffingtonpost.com/peter-diamandis/outpaced-by-innovation-ca_b_3795710.html
http://www.huffingtonpost.com/peter-diamandis/outpaced-by-innovation-ca_b_3795710.html

[91] S. Pepke, B. Wold, and A. Mortazavi. Computation for ChIP-seq and RNA-seq studies.
Nature methods, 6(11 Suppl):S22–32, Nov. 2009.

[92] P. A. Pevzner, H. Tang, and M. S. Waterman. An eulerian path approach to dna
fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–
9753, 2001.

[93] Z. Qin, J. Yu, J. Shen, C. Maher, M. Hu, S. Kalyana-Sundaram, J. Yu, and A. Chin-
naiyan. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-
Seq data. BMC bioinformatics, 11(1):369, 2010.

[94] C. Redon, D. Pilch, E. Rogakou, O. Sedelnikova, K. Newrock, and W. Bonner. Histone
h2a variants h2ax and h2az. Current opinion in genetics & development, 12(2):162–
169, 2002.

[95] B. Rhead, D. Karolchik, R. Kuhn, A. Hinrichs, A. Zweig, P. Fujita, M. Diekhans,
K. Smith, K. Rosenbloom, B. Raney, et al. The UCSC genome browser database:
update 2010. Nucleic acids research, 2009.

[96] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edger: a bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics,
26(1):139–140, 2010.

[97] S. Roychowdhury, M. K. Iyer, D. R. Robinson, R. J. Lonigro, Y.-M. Wu, X. Cao,
S. Kalyana-Sundaram, L. Sam, O. A. Balbin, M. J. Quist, et al. Personalized oncology
through integrative high-throughput sequencing: a pilot study. Science translational
medicine, 3(111):111–121, 2011.

[98] E. Rubio, D. Reiss, P. Welcsh, C. Disteche, G. Filippova, N. Baliga, R. Aebersold,
J. Ranish, and A. Krumm. CTCF physically links cohesin to chromatin. Proceedings
of the National Academy of Sciences, 105(24):8309, 2008.

[99] M. Salmon-Divon, H. Dvinge, K. Tammoja, and P. Bertone. PeakAnalyzer: Genome-
wide annotation of chromatin binding and modification loci. BMC bioinformatics,
11(1):415, 2010.

[100] M. Schatz, D. Sommer, D. Kelley, and M. Pop. Contrail: Assembly of large genomes
using cloud computing. In CSHL Biology of Genomes Conference, 2010.

[101] C. Schmid and P. Bucher. MER41 Repeat Sequences Contain Inducible STAT1 Binding
Sites. PloS one, 5(7):e11425, 2010.

[102] S. L. Schreiber and B. E. Bernstein. Signaling network model of chromatin. Cell,
111(6):771–8, Dec. 2002.

[103] Y. Seo, H. Chong, A. Infante, S. Im, X. Xie, and T. Osborne. Genome-wide anal-
ysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter
proximal binding to a new motif. Proceedings of the National Academy of Sciences,
106(33):13765, 2009.

103

[104] J. Shendure and H. Ji. Next-generation dna sequencing. Nature biotechnology,
26(10):1135–1145, 2008.

[105] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system.
In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on,
pages 1–10. IEEE, 2010.

[106] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and İ. Birol. Abyss:
a parallel assembler for short read sequence data. Genome research, 19(6):1117–1123,
2009.

[107] S. S. Sindi, S. Onal, L. Peng, H.-T. Wu, and B. J. Raphael. An integrative probabilis-
tic model for identification of structural variation in sequencing data. Genome Biol,
13(3):R22, 2012.

[108] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197, 1981.

[109] C. Spyrou, R. Stark, A. Lynch, and S. Tavaré. BayesPeak: Bayesian analysis of ChIP-
seq data. BMC bioinformatics, 10(1):299, 2009.

[110] B. D. Strahl and C. D. Allis. The language of covalent histone modifications. Nature,
403(6765):41–5, Jan. 2000.

[111] G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage. Tigr assembler: A new
tool for assembling large shotgun sequencing projects. Genome Science and Technology,
1(1):9–19, 1995.

[112] G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouze, and Y. Moreau.
A higher-order background model improves the detection of promoter regulatory ele-
ments by gibbs sampling. Bioinformatics, 17(12):1113–1122, 2001.

[113] B. Tran, A. M. Brown, P. L. Bedard, E. Winquist, G. D. Goss, S. J. Hotte, S. A.
Welch, H. W. Hirte, T. Zhang, L. D. Stein, et al. Feasibility of real time next gener-
ation sequencing of cancer genes linked to drug response: results from a clinical trial.
International Journal of Cancer, 132(7):1547–1555, 2013.

[114] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel,
S. L. Salzberg, J. L. Rinn, and L. Pachter. Differential gene and transcript expression
analysis of rna-seq experiments with tophat and cufflinks. Nature protocols, 7(3):562–
578, 2012.

[115] E. Tuzun, A. J. Sharp, J. A. Bailey, R. Kaul, V. A. Morrison, L. M. Pertz, E. Haugen,
H. Hayden, D. Albertson, D. Pinkel, et al. Fine-scale structural variation of the human
genome. Nature genetics, 37(7):727–732, 2005.

[116] D. Ucar, Q. Hu, and K. Tan. Combinatorial chromatin modification patterns in the
human genome revealed by subspace clustering. Nucleic acids research, 39(10):4063–
75, May 2011.

104

[117] U. Vishkin. Randomized speed-ups in parallel computation. In Proceedings of the
sixteenth annual ACM symposium on Theory of computing, pages 230–239. ACM, 1984.

[118] N. Wagle, M. F. Berger, M. J. Davis, B. Blumenstiel, M. DeFelice, P. Pochanard,
M. Ducar, P. Van Hummelen, L. E. MacConaill, W. C. Hahn, et al. High-throughput
detection of actionable genomic alterations in clinical tumor samples by targeted, mas-
sively parallel sequencing. Cancer discovery, 2(1):82–93, 2012.

[119] M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends R© in Machine Learning, 1(1-2):1–305, 2008.

[120] J. Wang, W. Wang, R. Li, Y. Li, G. Tian, L. Goodman, W. Fan, J. Zhang, J. Li,
J. Zhang, et al. The diploid genome sequence of an asian individual. Nature,
456(7218):60–65, 2008.

[121] K. Wang, M. Li, D. Hadley, R. Liu, J. Glessner, S. F. Grant, H. Hakonarson, and
M. Bucan. Penncnv: an integrated hidden markov model designed for high-resolution
copy number variation detection in whole-genome snp genotyping data. Genome re-
search, 17(11):1665–1674, 2007.

[122] K. Wang, M. Li, and H. Hakonarson. Annovar: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic acids research, 38(16):e164–
e164, 2010.

[123] Z. Wang, M. Gerstein, and M. Snyder. Rna-seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics, 10(1):57–63, 2009.

[124] K. Wendt, K. Yoshida, T. Itoh, M. Bando, B. Koch, E. Schirghuber, S. Tsutsumi,
G. Nagae, K. Ishihara, T. Mishiro, et al. Cohesin mediates transcriptional insulation
by CCCTC-binding factor. Nature, 451(7180):796–801, 2008.

[125] T. White. Hadoop: The Definitive Guide: The Definitive Guide. O’Reilly Media, 2009.

[126] E. Wilbanks and M. Facciotti. Evaluation of Algorithm Performance in ChIP-Seq Peak
Detection. PloS one, 5(7):e11471, 2010.

[127] M. R. Wilkins, R. D. Appel, J. E. Van Eyk, M. Chung, A. Görg, M. Hecker, L. A.
Huber, H. Langen, A. J. Link, Y.-K. Paik, et al. Guidelines for the next 10 years of
proteomics. Proteomics, 6(1):4–8, 2006.

[128] H. Xu, C. Wei, F. Lin, and W. Sung. An hmm approach to genome-wide identifi-
cation of differential histone modification sites from chip-seq data. Bioinformatics,
24(20):2344–2349, 2008.

[129] X. Xu, S. Hoang, M. W. Mayo, and S. Bekiranov. Application of machine learning
methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses
gene expression. BMC bioinformatics, 11:396, Jan. 2010.

105

[130] E. Yaffe and A. Tanay. Probabilistic modeling of hi-c contact maps eliminates sys-
tematic biases to characterize global chromosomal architecture. Nature genetics,
43(11):1059–1065, 2011.

[131] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its
generalizations. In Exploring artificial intelligence in the new millennium, volume 8,
pages 236–239. 2003.

[132] C. Yokoyama, X. Wang, M. Briggs, A. Admon, J. Wu, X. Hua, J. Goldstein, and
M. Brown. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls tran-
scription of the low density lipoprotein receptor gene. Cell, 75(1):187–197, 1993.

[133] C. Zang, D. Schones, C. Zeng, K. Cui, K. Zhao, and W. Peng. A clustering approach
for identification of enriched domains from histone modification ChIP-Seq data. Bioin-
formatics, 25(15):1952, 2009.

[134] W. Zeng, J. C. de Greef, Y.-Y. Chen, R. Chien, X. Kong, H. C. Gregson, S. T.
Winokur, A. Pyle, K. D. Robertson, J. A. Schmiesing, V. E. Kimonis, J. Balog, R. R.
Frants, A. R. Ball, Jr., L. F. Lock, P. J. Donovan, S. M. van der Maarel, and K. Yoko-
mori. Specific loss of histone h3 lysine 9 trimethylation and hp1γ/cohesin binding at
d4z4 repeats is associated with facioscapulohumeral dystrophy (fshd). PLoS Genet,
5(7):e1000559, 07 2009.

[135] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome research, 18(5):821–829, 2008.

[136] X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo.
Pics: Probabilistic inference for chip-seq. Biometrics, 67(1):151–163, 2011.

[137] Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, D. Johnson, B. Bernstein, C. Nussbaum,
R. Myers, M. Brown, W. Li, et al. Model-based analysis of ChIP-Seq (MACS). Genome
biology, 9(9):R137, 2008.

[138] X. Zhou and A. Rokas. Prevention, diagnosis and treatment of high-throughput se-
quencing data pathologies. Molecular Ecology, 23(7):1679–1700, 2014.

106

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	AREM: Aligning Reads by Expectation-Maximization
	Introduction
	Contributions
	Chapter Outline
	Related Work

	Optimizing Peak Caller
	Alignment
	Peak Finding
	Motif finding

	A Probabilistic Framework for ChIP Read Realignment
	Notations
	Mixture model
	Parameter estimation
	Expectation-maximization algorithm
	Implementation of E-M updates

	Results
	AREM identifies additional binding sites
	AREM's sensitivity is increased with ambiguous reads
	AREM is sensitive to repeat regions

	Discussion

	Discovering and Mapping Chromatin States Using a Tree Hidden Markov Model
	Introduction
	Contributions
	Chapter Outline
	Related Work

	Tree Hidden Markov Model
	Model Description and Notation
	Parameters
	Model Description and Parametrization
	Incorporating Missing Markers and Hidden Cell Types
	Data Preprocessing

	Variational Inference
	Mean field (MF) variational inference
	Mean-field derivation and normalization
	Structured mean field(SMF) variational inference
	Structured mean-field derivation and normalization
	Loopy belief propagation (LBP)
	Parameter Learning

	Results
	Artificial Data
	Data Processing for ENCODE Dataset
	Comparing Approximate Inference Methods
	Model Complexity for Human ENCODE dataset
	TreeHMM on Complete Genomes using the SMF Approximation
	Comparison with ChromHMM

	Discussion

	Genomix: Scalable de-novo genome assembly
	Introduction
	Contributions
	Chapter Outline
	Related Work

	Methods
	De Bruijn Graph Overview
	Notation
	Graph Building using Hyracks
	Remove Bad Coverage
	Graph Compression
	Tip Remove
	Bubble Merge
	Scaffolding

	Results
	Discussion

	Conclusion
	Bibliography

