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Statistical learning and adaptive
decision-making underlie human
response time variability in inhibitory
control
Ning Ma 1 and Angela J. Yu 2*

1Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA, 2Department of

Cognitive Science, University of California, San Diego, La Jolla, CA, USA

Response time (RT) is an oft-reported behavioral measure in psychological and

neurocognitive experiments, but the high level of observed trial-to-trial variability in this

measure has often limited its usefulness. Here, we combine computational modeling

and psychophysics to examine the hypothesis that fluctuations in this noisy measure

reflect dynamic computations in human statistical learning and corresponding cognitive

adjustments. We present data from the stop-signal task (SST), in which subjects respond

to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently

presented stop signal. We model across-trial learning of stop signal frequency, P(stop),

and stop-signal onset time, SSD (stop-signal delay), with a Bayesian hidden Markov

model, and within-trial decision-making with an optimal stochastic control model. The

combined model predicts that RT should increase with both expected P(stop) and SSD.

The human behavioral data (n = 20) bear out this prediction, showing P(stop) and SSD

both to be significant, independent predictors of RT, with P(stop) being a more prominent

predictor in 75% of the subjects, and SSD being more prominent in the remaining 25%.

The results demonstrate that humans indeed readily internalize environmental statistics

and adjust their cognitive/behavioral strategy accordingly, and that subtle patterns in

RT variability can serve as a valuable tool for validating models of statistical learning

and decision-making. More broadly, the modeling tools presented in this work can

be generalized to a large body of behavioral paradigms, in order to extract insights

about cognitive and neural processing from apparently quite noisy behavioral measures.

We also discuss how this behaviorally validated model can then be used to conduct

model-based analysis of neural data, in order to help identify specific brain areas for

representing and encoding key computational quantities in learning and decision-making.

Keywords: bayesian modeling, decision making, learning, response time, psychophysics, inhibitory control, stop

signal task

1. Introduction

Response time (RT) is an oft-reported behavioral measure in psychology and neuroscience studies.
As RT can vary greatly across trials of apparently identical experimental conditions, average or
median RT across many identical trials is typically used to examine how task performance or an
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internal speed-accuracy tradeoff might be affected by different
experimental conditions. Separately, a specialized subfield of
quantitative psychology has used not only the first-order statistics
(e.g., mean and median) but also second-order (e.g., variance)
and higher-order (e.g., skewness, kurtosis) statistics to make
inferences about the cognitive or neural processes underlying
behavior (Laming, 1968; Luce, 1986; Smith, 1995; Ratcliff and
Rouder, 1998; Gold and Shadlen, 2002; Bogacz et al., 2006). In
general, RT is considered a very noisy experimental measure,
with single-trial responses yielding little useful information about
the underlying mental processes.

In this work, we approach RT modeling from a different
angle, attempting to capture trial-to-trial variability in RT
as a consequence of statistically normative learning about
environmental statistics and corresponding adaptations within
an internal decision-making strategy. We focus on behavior in
the stop-signal task (SST) (Logan and Cowan, 1984), a classical
inhibitory control task, in which subjects respond to a go stimulus
on each trial unless instructed to withhold their response by
an infrequent stop signal that appears some time after the
go stimulus (stop-signal delay; SSD). We model trial-by-trial
behavior in SST, using a Bayesian hidden Markov model to
capture across-trial learning of stop signal frequency [P(stop)]
and onset asynchrony (SSD), and a rational decision-making
control policy for within-trial processing, which combines prior
beliefs and sensory data to produce behavioral outputs under
task-specific constraints/objectives.

This work builds on several previous lines of modeling
research. The new model combines a within-trial rational
decision-making model for stopping behavior (Shenoy and Yu,
2011) and an across-trial statistical learning model (Dynamic
Belief Model; DBM) that sequentially updates beliefs about
P(stop) (Yu and Cohen, 2009; Shenoy et al., 2010); it also
incorporates a novel across-trial learning component, a simple
version of a Kalman filter, that updates beliefs about the temporal
statistics of the stop-signal onset (SSD). Using this newmodel, we
can then predict how RT on each trial ought to vary as a function
of the sequence of stop/go trials and SSD’s previously experienced
by the subject, and compare it to the subject’s actual RT.

Several key elements of the combined model have previously
received empirical support. For example, we showed that the
rational decision-making model for stopping behavior (Shenoy
and Yu, 2011), which separately penalizes stop error, go
(discrimination and omission) error, and response delay, can
account for both classical effects in the SST (Logan and
Cowan, 1984), such as increasingly frequency of stop errors
as a function of SSD and faster stop-error responses than
correct go responses, as well as some recently discovered, subtle
influences of contextual factors on stopping behavior, such as
motivation/reward (Leotti and Wager, 2009) and the baseline
frequency of stop trials (Emeric et al., 2007). We also showed
that the across-trial learning model, DBM, can account for
sequential adjustment effects not only in SST (Shenoy et al.,
2010; Ide et al., 2013), but also more broadly in simple 2AFC
(2-alternative forced choice) perceptual decision-making tasks
(Yu and Cohen, 2009) and a visual search task (Yu and Huang,
2014).

The primary contribution of the current work is to extend
a Bayesian model of trial-by-trial learning of P(stop) (Shenoy
et al., 2010) to also account for learning about the temporal
distribution SSD, and to quantify how much of RT variability
can be accounted for by each of these learning components.
Moreover, we expect that this extended model will be useful
in identifying brain regions in encoding key computational
variables in learning and decision-making.

In the following, we first describe the experimental design,
then the modeling details, followed by the results; we conclude
with a discussion of broader implications and future directions
for research.

2. Materials and Methods

2.1. Experiment
The stop signal task consists of a two alternative forced-choice
(2AFC) perceptual discrimination task, augmented with an
occasional stop signal. Figure 1 schematically illustrates our
version of the SST: subject responds to a default go stimulus
on each trial within 1100ms, unless instructed to withhold the
response by an infrequent auditory stop signal. The go task
is either a random-dot coherent motion task (8, 15, or 85%
coherence), or a more classical square vs. circle discrimination
task. On a small fraction of trials, an additional stop signal occurs
at some time (known as the stop-signal delay, or SSD) after the
go stimulus onset, and the subject is instructed to withhold the go
response. The trials without stop signals are called go trials. The
SSD is randomly and uniformly sampled on each trial from 100,
200, 300, 400, 500, and 600ms.

Twenty subjects (13 females) participated in the stop signal
task where, on approximately 25% of trials, an auditory “stop”
signal was presented some time after the go (discrimination)
stimulus, indicating that the subject should withhold their
response to the go stimulus. Each subject participated in 12
blocks, 3 block for each stimulus type, and each block containing
75 trials. Two days before the main experiment session, subjects
participated in a training session, which contained only 2AFC
discrimination and no stop trials. In the training session, there
were 10 blocks, 3 blocks for each random dot stimulus coherence
and one block for shape discrimination. Subjects were given the
same maximal amount of time to respond on the training session
trials (1100ms) as in the main experiment. The purpose of the
training session is to allow subjects to familiarize themselves
with the task and to allow their perceptual discrimination
performance to stabilize. Only data from the main experimental
session are analyzed and presented here.

We say that the subject makes a discrimination error when
he/she incorrectly responds to the stimulus in go trials, i.e.,
choosing the opposite motion direction or incorrect shape. The
subject makes an omission error if he/she fails to make a go
response prior to the response deadline on a go trial. The trials
having stop signal are called stop trials; trials without stop signal
are go trials. When the subject withhold the response until
the response deadline on a stop trial, the trial is considered a
stop success (SS) trial; otherwise, it is considered a stop error
(SE) trial. Each trial is terminated when the subject makes a

Frontiers in Psychology | www.frontiersin.org 2 August 2015 | Volume 6 | Article 1046

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Ma and Yu Learning, decision-making, and RT variability

FIGURE 1 | Schematic illustration of our stop signal task (A) Go trials:

On go trials, subject is supposed to make a response to a default go

stimulus by pressing the left or right button, based on the coherent

motion direction of random dots. The go reaction time (Go RT) is defined

as the time the subject takes to make a go response since the onset of go

stimulus. The subject makes a discrimination error if he/she chooses the

wrong direction (press the wrong key). Lack of response results in an omission

error. (B) Stop trials: On small fraction of trails, a stop signal will appear and

instruct the subject to withhold the go response. The time delay between the

occurrence of the onset of go stimulus and stop signal is called the stop-signal

delay (SSD). If the subject makes a go response in a stop trial, this trial is

considered a stop error (SE) trial, otherwise it is considered a stop success trial

(SS).

response, or at the response deadline itself if no response has
been recorded. To incentivize the subjects to be engaged in the
task, and to standardize the relative costs of the different kind of
errors across individuals, subjects are compensated proportional
to points they earn in the task, whereby they lose 50 points for
a go discrimination or omission error, 50 points for a SE, and 3
points for each 100ms of response delay (so maximally 33 points
for a trial that terminates with no response, and less if the subject
makes a response prior to the response deadline).

This study protocol was approved by the University of
California San Diego Human Subjects Review Board, and all
subjects gave written informed consent.

2.2. Model
In this section, we give a brief description of the computational
model we use to capture both within-trial sensory processing
and decision-making, and across-trial learning of P(stop) and
SSD. The model for within-trial processing is essentially identical
to that in our previous work (Shenoy et al., 2010; Shenoy and
Yu, 2011), while the model for across-trial processing is an
augmentation of a previous model (Ide et al., 2013) by taking into
account not only P(stop) but also SSD.

2.2.1. Within-Trial Processing
Within-trial processing is modeled as a combination of Bayesian
sensory processing, which consists of iterative statistical inference
about the identity of the go stimulus and the presence of
the stop signal, and optimal stochastic control, which chooses
whether to Wait or Go (and if so, which Go response) at

each instant, based on the accumulating sensory information
(Bayesian belief state) and general behavioral objectives (an
objective function consisting of parameterized costs for response
delay, go discrimination error, go omission error, and SE). We
briefly summarize the model here; a more detailed description
can be found elsewhere (Shenoy and Yu, 2011).

Sensory processing as Bayesian statistical inference
Figure 2A graphically illustrates the Bayesian generative model
for how iid noisy sensory data are assumed to be generated by
the (true) hidden stimulus states. The two hidden variables d
and s correspond, respectively to the identity of the go stimulus,
d ∈ {0, 1} (0 for left, 1 for right), and whether or not this trial is
a stop trial, s ∈ {0, 1}. Conditioned on the go stimulus identity
d, a sequence of iid sensory inputs, representing the cue of
go stimulus, are generated on each trial, x1, . . ., xt , . . ., where
t indexes time steps within a trial. The likelihood functions
of d generating the sensory inputs are f0(x

t) = p(xt|d = 0)
and f1(x

t) = p(xt|d = 1), which are assumed to be Bernoulli
distribution with respective rate parameters qd and 1 − qd. The
dynamic variable zt denotes the presence/absence of the stop
signal. z1 = . . . = zθ−1 = 0 and zθ = zθ+1 = . . . = 1 if a
stop signal appears at time θ , where θ represents stop signal
delay SSD. For simplicity, we assume that θ , also known as
the stop-signal delay (SSD), follows a geometric distribution:
P(θ = t|s = 1) = q(1 − q)t−1. The expected value of θ

is 1/q, which is the expected SSD, E [SSD], within a trial.
Conditioned on zt , each observation yt is independently
generated and indicates the cue of stop signal. For simplicity,
we assume the likelihood functions, p(yt|zt = 0) = g0(y

t) and
p(yt|zt = 1) = g1(y

t), are Bernoulli distributions with respective
rate parameters qs and 1− qs.

In the statistically optimal recognition model, Bayes’ Rule is
applied in the usual iterative manner to compute the iterative
posterior probability associated with go stimulus identity, pt

d
: =

P(d= 1|xt), and the presence of the stop signal, pts: = P(s = 1|yt),
where xt = {x1, x2, . . . , xt} and yt = {y1, y2, . . . , yt} denotes all
the data observed so far. The belief state at time t is defined to be
the vector bt = (pt

d
, pts), which can be iteratively computed from

time step to time step via Bayes’ Rule, by inverting the generative
model (Figure 2).

Decision making as optimal stochastic control
Figure 2B graphically illustrates the sequential decision-making
process used to model how an observer chooses whether to Go,
when to do so, and which Go response to select on each trial. The
decision policy is optimized with respect to the Bayesian belief
state and a behaviorally defined cost function that captures the
cost and penalty structure of SST, based on which the observer
decides at each moment in time whether to Go (and if so, which
Go response) or Wait at least one more time step.

On each trial, if the Go action is taken by the response
deadline D, it is recorded as a Go response (correct on Go trials,
error on Stop trials); otherwise the trial is terminated by the
response deadline and a Stop response is recorded (omission
error on Go trials, correct on Stop trials). Let τ denote the trial
termination time, so that τ = D if no response is made before
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FIGURE 2 | Within-trial sensory processing and decision-making.

(A) Bayesian generative model of iid sampled sensory observations

(x1, . . . , xt, . . .) conditioned on Go stimulus identity (d = 0 for left,

d = 1 for right), and an independent stream of observations

(y1, . . . , yt, . . .) conditioned on the presence (zt = 1) or absence

(zt = 0) of the Stop signal, which has a geometrically distributed

onset time when it is a stop trial s = 1 and never appears on a go

trial (s = 0). (B) The decision of whether to Go, when to do so,

and which Go response to select are modeled as a sequential

decision-making process, where the subject chooses at each moment

in time whether to select a Go response, or to wait at least one

more time point.

the deadline D, and τ < D if a Go action is chosen. δ ∈ {0, 1}
represents the possible binary Go choices produced by making
a Go response. We assume there is a cost c incurred per unit
time in response delay (corresponding to time-dependent costs,
such as time, effort, opportunity, or attention), a SE penalty of
cs for responding on a Stop trial, and a unit cost for making
a discrimination error or commission error on a Go trial—
since the cost function is invariant with respect to scaling, we
normalize all cost parameters relative to the Go error cost without
loss of generality. Thus, the cost function is:

l(τ, δ; d, s, θ,D) = cτ + cs1{τ<D,s= 1} + 1{τ<D,δ 6= d,s= 0}
+ 1{τ =D,s= 0}.

The optimal decision policy minimizes the expected (average)
loss, Lπ = E

[

l(τ, δ; d, s, θ,D)
]

, where r refers to the baseline
probability of encountering a stop trial:

Lπ = cE [τ ]+ csrP(τ < D|s = 1)+ (1− r)P(τ <D, δ 6= d|s = 0)

+ (1− r)P(τ = D|s = 0)

which is an expectation taken over hidden variables, observations,
and actions, and generally computationally intractable to
minimize directly. Fortunately, having formulated the problem
in terms of a belief state Markov decision process, we can
effectively use standard dynamic programming (Bellman, 1952),
or backward induction, to compute the optimal policy and action,
via a recursive relationship between the value function and the
Q-factors. The value function V t(bt) denotes the expected cost
of taking the optimal policy henceforth when starting out in
the belief state bt . The Q-factors, Qt

g(b
t) and Qw

g (b
t), denote

the minimal costs associated with taking the action Go or Wait,
respectively, when starting out with the belief state bt , and
subsequently adopting the optimal policy. The Bellman dynamic
programming principle, applied to our problem, states:

Qt
g(b

t) = ct + csp
t
s + (1− pts)min(ptd, 1− ptd)

Qt
w(b

t) = 1{D>t+ 1}E
[

V t+ 1(bt+ 1)|bt
]

bt+ 1

+ 1{D= t+ 1}(c(t + 1)+ 1− pts)

V t(bt) = min(Qt
g,Q

t
w)

whereby the optimal policy in state bt is to choose between Go
and Wait depending on which one has the smaller expected cost.
Note that a Go response terminates the current trial, while a
Wait response lengthens the current trial by at least one more
time step (unless terminated by the externally imposed response
deadline). Since the observer can no longer update the belief state
nor take any action at the deadline, the value function at t = D
can be computed explicitly, without recursion, as VD(bD) =
cD + (1 − PDs ). Bellman’s equation then allows us compute the
value functions and Q factors exactly, up to discretization of
the belief state space, backwards in time from t = D − 1 to
t = 1. In practice, we discretize the belief state space, (pt

d
, pts), into

200× 200 bins.
The optimal policy partitions the belief state into three discrete

action regions: two symmetric Go regions for extreme values of
pd and relatively small values of ps (i.e., where the subject believes
the probability of a stop trial is small and the confidence about
whether the go stimulus requires a left/right response is high),
where the optimal action is to Go, and a large central Wait
region, where the value of pd is close to 0.5 (subject is unsure
of go stimulus identity) and/or the value of ps is large (subject
is fairly sure of this being a stop trial), and the optimal action is
to Wait.

2.2.2. Across-Trial Processing
Across-trial processing is modeled as Bayesian iterative inference
about trial type, P(stop), and the temporal onset of the stop
signal, SSD.

Dynamic belief model for P(stop)
We originally proposed the Dynamic Belief Model (DBM)
to explain sequential effects in RT and accuracy in 2AFC
tasks, as a function of experienced trial history (Yu and
Cohen, 2009), in particular predicting the relative probability
of observing a repetition (identical stimulus as last trial) or
alternation (different stimulus than last trial) on each trial.
Here, as we did earlier (Ide et al., 2013), we adapt DBM
to model the prior probability of observing a Stop trial (as
opposed to Go trial) based on trial history (see Figure 3A for
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FIGURE 3 | Bayesian sequential inference model for learning P(stop)

and E [SSD]. (A) Graphical model for DBM. γ ∈ [0,1], sk ∈ {0,1}.
p(γk |γk− 1 ) = αδ(γk − γk− 1 )+ (1− α)p0 (γk ), where p0 = Beta(a,b).

Numbers inside circles indicate example random variable values.

(B) Evolution of predictive probability mass for DBM p(γt|sk− 1 ) (grayscale)

and its mean, the predictive probability P(sk = 1|sk− 1 ) (cyan), for a

randomly generated sample sequence of observations (red dots valued 1

or 0). P(sk = 1|sk− 1 ) fluctuates with transient runs of stop (e.g., starting

at trial 11) and go trials (e.g., starting at trial 6). Simulation parameters:

α = 0.75, p0 = Beta(2.5,7.5). (C) Graphical model for the Kalman filter.

p(hk |hk− 1 ) =N(hk− 1,Q), p(zk |hk ) =N(hk ,R), p(h1 ) =N(h0,P0 ). Numbers

inside circles indicate example random variable values. (D) Evolution of

posterior mean (cyan) and probability mass (grayscale) of SSD over time,

for a randomly generated sequence of observations (red circles) with

values in {0.1,0.2,0.3,0.4,0.5,0.6}. E [SSD] tends to increase when a

number of large SSD have been observed (e.g., starting at trial 6) and

decrease when a number of small SSD (e.g., starting at trial 11) have

been observed. Simulation parameters: Q = 0.03, R = 0.15, h0 = 0.35,

P0 = 1. Unless otherwise stated, these parameters are used in all the

subsequent simulation.

a graphical illustration of the generative model, and Figure 3B

for simulated dynamics of DBM given a sequence of sample
observations). We briefly describe the model here; more details
can be found elsewhere (Yu and Cohen, 2009; Ide et al.,
2013).

We assume that γk is the probability that trial k is a stop
trial, and it has a Markovian dependence on γk− 1, so that with
probability α, γk = γk− 1, and probability 1 − α, γk is redrawn
from a generic prior distribution p0(γk). The observation sk is
assumed to be drawn from a Bernoulli distribution with a rate
parameter γk. The iterative posterior and prior of γk can be
updated via Bayes’ Rule by:

p(γk|sk) ∝ p(γk|sk− 1)p(sk|γk)
p(γk|sk− 1) = αp(γk− 1 = γ |sk− 1)+ (1− α)p0(γk = γ ) .

Note that the predicted value of γk, what we call
P(stop), is the mean of the predictive prior distribution:
P(sk = 1|sk− 1) = E

[

γk|sk− 1

]

=
∫

γ p(γ |sk− 1)dγ . Under this
model, P(sk = 1|sk− 1) specifies the prior probability of seeing a
stop signal for within-trial sensory processing in Section 2.2.1.

Kalman filter model for learning expected SSD
We use a simple linear-Gaussian dynamical systems model,
also known as a Kalman filter (Kalman, 1960), to model
the trial-by-trial estimation of the mean and variance of the
posterior and predictive prior distribution of SSD in the SST.
When the prior distribution of the hidden dynamic variable
is Gaussian, the dynamics is linear and corrupted by Gaussian
noise, and the observations are a linear function of the hidden
variable corrupted by Gaussian noise, the posterior distribution
of the hidden variable after each observation, as well as the
predictive prior before the next observation, are both Gaussian
as well. The Kalman filter describes the statistically optimal
(Bayesian) equations for updating the posterior and prior
distributions.

As shown in Figure 3C, we assume that the observed SSD
on (stop) trial k, zk, is generated from a Gaussian distribution
with “true” (hidden) mean hk and variance R, whereby hk evolves
from (one stop) trial to (another stop) trial under Gaussian noise,
with mean 0 and variance Q. We also assume that the prior
distribution over h1 is Gaussian, p(h1) = N(h0, P0). Then the

predictive prior distribution p(hk|z1, . . . , zk− 1) = N(ĥ−
k
, P−

k
),

can be updated using iterative applications of Bayes’ Rule (and
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consistent with Kalman filter equations) as follows:

ĥ−
k

= ĥk− 1

P−
k

= Pk− 1 + Q

and the the posterior distribution, p(hk|z1, . . . , zk) = N(ĥk, Pk)
can be updated as:

Kk =
P−
k

P−
k
+ R

ĥk = ĥ−
k
+ Kk(zk − ĥ−

k
)

Pk = (1− Kk)P
−
k

where Kk is known as the Kalman gain, which depends on the
relative magnitude of state uncertainty P−

k
and the observation

noise R. Note that the new posterior is a linear compromise
between the predictive prior and observed data, parameterized
by Kk (see Figure 3D for simulated dynamics of the Kalman
filter given a sequence of sample observations). This constitutes
a particularly simple case of the Kalman filter, as both the
hidden and observed variables are scalar-valued, both the
hidden dynamics (how hk depends on hk− 1) and the emission
transformation (how zk depends on hk) are trivial, and the
observer does not actively control the system. The only caveat
is that on trials without a stop signal (Go trials), there is no
observation for zk; we assume on these trials the predictive
prior updates as usual and the posterior distribution is identical
to the prior (i.e., the inference model is allowed to diffuse
as normal, but there is no observation-based correction step).
An alternative implementation is to assume that the Kalman
filter is not updated on Go trials (no SSD observations). We
choose to allow the Kalman filter to diffuse on Go trials, because
preliminary analysis indicates that the influence of recently

experienced SSD diminishes with increasing number of recent

Go trials. Using this model, the prior mean ĥ−
k
specifies the mean

of the prior distribution for SSD for within-trial processing (1/q)
in Section 2.2.1.

3. Results

Systematic patterns of sequential effects have long been observed
in human 2AFC tasks, in which subjects’ responses speed up (and
accuracy increases) when a new stimulus confirms to a recent
run of repetitions or alternations, and slow down (and accuracy
decreases) when these local patterns are violated (Soetens et al.,
1985; Cho et al., 2002), as though humansmaintain an expectancy
of stimulus type based on experienced trial sequences and their
RT is modulated by this expectancy. Similar sequential effects
have also been observed in other classical behavioral experiments
used in psychology, including the stop-signal task (SST), in which
subjects’ Go RT increases with the preponderance of stop trials
in recent history (Emeric et al., 2007; Li et al., 2008). We first
verify, using a relatively crude model-free method, that this effect
is also present in our data. Figure 4A shows that Go RT indeed
increases with the frequency of stop trials in recent history, and
also with the recency of those experienced stop trials. In addition,
we hypothesize that, unlike in a basic 2AFC task, subjects may
maintain evolving statistical information about stimulus onset
time (stop-signal delay, SSD) across trials as well. Figure 4B
shows that the pattern of Go RT in Figure 4A is due to different
beliefs about P(stop) resulting from different types of recent
trial history, as a function of stop trial frequency and recency.
Figure 4C shows that subjects’ Go RT indeed increases with the
mean SSD of the two most recently experienced stop trials. The
strong correlation between Go RT and SSD is also consistent with
recent work on decomposing decision components in the SST
(White et al., 2014).

FIGURE 4 | Sequential effects in human data. (A) Go RT increases with

the frequency and recency of stop trials in recent trial history. Along the

abscissa are all possible three-trial sub-sequences of Go and Stop trials:

most recent trial is on the bottom. The Go RT of the correct go trial

immediately following the sub-sequence is recorded. Go RT data are then

averaged over all trials of a particular pattern for all subjects. Error bars

indicate s.e.m. of Go RT in each pattern. (B) Model-predicted P(stop)

increases with the frequency and recency of stop trials in recent trial history.

Analogous to (A), the prior P(stop) of the trial immediately following each

sub-sequence is computed using DBM. Estimates of P(stop) from all trials

and all subjects are then averaged in each pattern. DBM parameters: α =

0.75, a/(a+ b) = 0.25. (C) Go RT increases with experienced SSD. Go RT is

plotted against mean SSD of the two most recent stop trials. A Go trial is

only included if it directly follows a Stop trial (and the response was correct),

and the two previous Stop trials are separated by no more than three Go

trials. These restrictions are adopted because preliminary analysis indicates

that the influence of recently experienced SSD diminishes with increasing

number of recent Go trials. Each bin of SSD (spaced such that there are

equal number of data points in each bin) contains Go RT from all trials and

subjects where E [SSD] fell with this bin. Both Go RT and SSD are averaged

within each bin. Straight line denotes best linear fit. Error bars denote s.e.m.

across all trials included in data point. R2 = 0.56, p = 0.0002.
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Our main modeling goal here is to develop a principled
explanation for how Go RT ought to vary from trial-to-trial in the
SST, as a function of observed data, perceived statistical structure
of the environment, and behaviorally defined objectives. We
can then compare model predictions with human data to see
whether our assumptions about the underlying computational
processes and objectives hold. There are two key components
to the model (details in Section 2.2): (1) how subjects’ beliefs
about task statistics vary across trials as a function of previously
experienced outcomes, and (2) how subjects’ behavioral strategy
within each trial depends on prior beliefs (learned from prior
experience). These two components are generally referred to as
the observation and response models (Daunizeau et al., 2010).
In the context of modeling behavior, where that behavior is itself
modeled under ideal Bayesian assumptions, the observer model
constitutes the subject’s generative model of how observations
are caused, while the response model maps from the implicit
beliefs to observed responses. Because we assume subjects’ belief
updating (Bayesian inference) and response selection are both
ideal, given environmental statistics (specified by the Bayesian
generative model) and behavioral objectives (specified by the
objective/cost function in the stochastic control model), there
are no free parameters in either the observation and response
models. Furthermore, as we demonstrate through simulations,
the ideal mapping between the belief state (obtained using the
observation model) and the RT is essentially linear, resulting in a
particularly simple parameterization of the response model.

For the first component, we separately model the evolution of
subjects’ beliefs about the frequency of stop trials, P(stop), using
a Bayesian hidden Markov model known as the Dynamic Belief
Model (DBM), and their beliefs about the temporal onset of the
stop signal, SSD, using a Kalman filter model (Section 2.2.2).
We previously proposed DBM to explain sequential effects in
2AFC tasks (Yu and Cohen, 2009), and later adapted it to explain
sequential effects in the SST (Shenoy et al., 2010; Ide et al.,
2013)—see Figure 3A for a graphical illustration of the generative
model, and Figure 3B for simulated dynamics of DBM given a
sequence of sample observations. To model sequential effects in
SSD, we use a simple variant of the Kalman filter (Kalman, 1960).
which primarily differs from DBM in that the hidden variable s is
assumed to undergo (noisy) continuous dynamics, such that the
mean of the new variable is centered at the old sk− 1 (aMartingale
process), whereas DBM assumes that the new hidden variable
sk is either identical to sk− 1, or redrawn from a generic prior
distribution p0(s), which is identical on each trial. Thismeans that
hidden variables dynamics in DBM are not Martingale, and the
variable s can undergo large, discrete jumps, which are unlikely in
the Kalman filter. In a preliminary analysis (results not shown),
we used both the Kalman filter and a modified version of DBM
(which takes continuously valued inputs instead of binary ones)
to model subjects’ beliefs about E [SSD], and found that the
Kalman filter does a significantly better job of accounting for
trial-by-trial variability in RT than does DBM.

For the second component, we use a Bayesian inference and
optimal decision-making model (Shenoy et al., 2010; Shenoy and
Yu, 2011) to predict when and whether the subject produces a
Go response on each trial, as a function of prior beliefs about

P(stop) and SSD. The model chooses, in each moment in time,
between Go and Wait, depending on ongoing sensory data and
the expected costs associated withmaking a go (discrimination or
omission) error, a SE (not stopping on a stop trial), and response
delay (details in Section 2.2.1). Our earlier work showed that this
model can explain a range of behavioral and neural data in the
SST (Shenoy et al., 2010; Shenoy and Yu, 2011; Ide et al., 2013;
Harlé et al., 2014).

We first simulate the within-trial sensory processing/decision-
making model to demonstrate how the model predicts Go RT
ought to vary as a function of prior beliefs about P(stop) and SSD.
Intuitively, we would expect that Go RT ought to increase with
the prior belief P(stop), since a higher probability of encountering
a stop signal should make the subject more willing to wait for
the stop signal despite the cost associated with response delay.
We also expect that Go RT ought to increase with E [SSD] for
the prior distribution, since expectation of an earlier SSD should
give confidence to the observer that no stop signal is likely to
come after a shorter amount of observations and thus induce
the observer to respond earlier. Simulations (Figure 5) show that
Go RT indeed increases monotonically with both P(stop) and
E [SSD], and does so linearly. Note that P(stop) and E [SSD]
are explicitly and naturally specified in the statistical model
here (details in the Models section), so we only need to change
these parameters and observe their normative consequences by
simulating the model, without tuning any free parameters.

Given the strong linear relationship themodel predicts to exist
between Go RT and both P(stop) and E [SSD], we expect that the
same would be true for human data if the across-trial learning
model (Section 2.2.1) appropriately models subjects’ prior beliefs
about P(stop) and SSD based on experienced trial history, and
subjects modify their internal sensory processing and decision-
making accordingly as prescribed by the rational within-trial
decision-making model (Section 2.2.2).

As a strong correlation between the two model predictors,
P(stop) and E [SSD], would complicate any analysis and
interpretation, we first verify that they are sufficiently
decorrelated from each other (as we expect them to be, since SSD
on each stop trial is chosen independently in the experimental
design). We find that the average correlation between the two,
across all subjects, is only 0.019 (std = 0.073), and so treat them
as independent variables for the remainder of the analyses.

We apply the across-trial learning model to a subject’s
experienced sequence of go/stop trials and SSD to estimate their
prior beliefs on each trial, and then plot how Go RT varies with
the model-based estimates of P(stop) and SSD. Figure 6 shows
that the subjects’ Go RT increases approximately linearly with
prior P(stop) and SSD, as predicted by the model (Figure 5).
For individual subjects, a linear regression of Go RT vs. binned
values of P(stop) and E [SSD], using the same binning procedure
as for the group data analysis in Figure 6C, is significant in
90% (18/20) of the subjects (p < 0.05), with p = 0.09 and
p = 0.14 for the two remaining subjects. On average (across all
subjects), we see that variability in P(stop) can explain 34.5% of
the variability in the binned RT data (std = 25.0%), while the
combined P(stop) and E [SSD] model can account for 47.2% of
the variability in the binned RT data (std= 18.9%). RT variability
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explained by P(stop), on average, accounts for 68.3% of the
variability explained by the combined model (std = 34.8%). In
other words, P(stop) is a slightly more prominent predictor of RT
variability, although we do see that in 25% of the subjects (5/20),
E [SSD] was a stronger predictor of RT variability than P(stop),
i.e., P(stop) accounted for less than 50% of the variance explained
by the combined model.

These results imply that humans both continuously monitor
and update internal representations about statistics related
to stimulus frequency and temporal onset, and adjust their
behavioral strategy rationally according to those evolving
representations. Moreover, we can get some insight into implicit
human assumptions about environmental statistics based on
estimated model parameters. For DBM, we found that α = 0.75
yields the best linear fit between Go RT and P(stop) (highest
R2-value), implying that subjects assume that the frequency
of stop trials changes on average once every four trials (the
expected duration between changes is 1/(1 − α)). This is
consistent with the α-value previously found in a DBM account
of sequential effects in a 2AFC perceptual discrimination task
(Yu and Cohen, 2009). We also found through simulations
(results not shown) that the model fit was not very sensitive
to the precise value of a and b, the parameters of the Beta
prior distribution p0(γ ), in that different values of (a, b) yield
highly correlated predictions of P(stop). Thus, a and b were
not optimized with respect to the data but instead fixed at
a/(a+ b) = 0.25, equivalent to the empirical baseline frequency
of stop trials, and a+ b = 10. For the Kalman filter, we found
that Q = 0.03 and R = 0.15 yield the best linear fit between Go
RT and E [SSD], which implies that subjects expect on average
that hk will “diffuse” from trial to trial according to a Gaussian
distribution with a standard deviation of

√
0.03 = 0.17 s, and

that the perceived SSD is corrupted by unbiased observation
noise with a standard deviation of

√
0.15 = 0.39 s. The

correlation between Go RT and E [SSD] is not very sensitive to
the other Kalman filter parameters (results not shown), h0, and
P0, and thus those were specified with fixed values (see caption of
Figure 3).

4. Discussion

In this paper, we presented a rational inference, learning, and
decision-making model of inhibitory control, which can account
for significant variability of human RT in the SST. Unlike

FIGURE 6 | Human Go RT vs. model-estimated P(stop) and SSD. (A) Go

RT vs. P(stop): P(stop) on each trial estimated by DBM based on actual

sequence of stop/go trials the subject experienced prior to the current trial.

Binning of E [SSD] spaced to ensure equal number of data points in each bin.

Straight line denotes best linear fit of average Go RT for each bin vs. average

P(stop) for each bin. Linear regression of group data: R2 = 0.97, p < 0.0001.

Error bars denote s.e.m. DBM parameters: α = 0.75, p0 = Beta(2.5,7.5).

(B) Go RT vs. E [SSD]: E [SSD] on each trial estimated by a Kalman filter

based on actual sequence of SSD the subject experienced prior to the current

trial. Binning of E [SSD] spaced to ensure equal number of data points in each

bin. Straight line denotes best linear fit between average Go RT vs. average

E [SSD] for each bin. Linear regression of group data: R2 = 0.52, p = 0.0003.

Error bars denote s.e.m. Kalman filter (KF) parameters: Q = 0.03, R = 0.15,

h0 = 0.35, P0 = 1. (C) Go RT vs. P(stop) and E [SSD]: P(stop) and E [SSD]

are equally discretized into 5 bins between minimum and maximum

“observed” values (by applying the model to subjects’ experienced sequence

of trials). Each point in the grid contains RT data from all trials and all subjects

where P(stop) and E [SSD] fell within corresponding bins. (D) Fitted surface

plot of the scatter plot in (C), by applying Matlab function griddata(. . . ,′ v4′ ), a
biharmonic spline interpolation method, to the data in (C).

FIGURE 5 | Model prediction of Go RT vs. P(stop) and E [SSD].

(A) Go RT vs. P(stop): simulated Go RT for a ranged of P(stop) values

(0.1, 0.15, . . ., 0.75). Data averaged over 10,000 simulated Go trials for

each value of P(stop). Straight line denotes best linear fit. Error bars

denote s.e.m. 1/q = E [SSD] = 10. (B) Go RT vs. E [SSD]: simulated Go

RT for a range of SSD values (8, 9, . . ., 18). Data averaged over 10,000

simulated Go trials for each value of E [SSD]. Straight line denotes best

linear fit. Error bars denote s.e.m. P(stop) = 0.45. (C) Go RT vs. P(stop)

and E [SSD]: simulated Go RT for a range of P(stop) and E [SSD] values,

where P(stop) varies between 0.1 and 0.75, and E [SSD] varies between

8 and 18. Data averaged over 10,000 simulated Go trials for each

[P(stop), E [SSD]]. Simulation parameters for A–C: qd = 0.55, qs = 0.72,

D = 50, cs = 0.4, c = 0.002. Initial string of Go trials in each block (on

average 3 trials, 1/4 time none at all) are excluded from all analyses, as

subjects’ initial beliefs about task statistics may vary widely and

unpredictably before any stop trials are observed.
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most previous models that assume RT variability to be due
to irreducible noise, we show that some of this variability
reveals how fluctuations in experienced empirical statistics are
used by human observers to continuously update their internal
representation of environmental statistics and rationally adjust
their behavioral strategy in response. As in many instances of
(meta) Bayesian modeling of subject behavior, we find that it
is sufficient to explain responses in terms of subject-specific
prior beliefs. In other words, there is no single Bayes-optimal
response valid across all trials, because individuals are equipped
with their own priors, continually learned and dynamically
evolving according to their individual experiences, and which
in turn determine how each observed outcome is assimilated
into posterior beliefs and how those beliefs drive observable
responses. To be sure, our model is only a partial explanation of
the overall RT variability. While our model is able to account for
about half of the RT variability averaged across subjects, there is
additional RT variability not accounted for by the model, which
is obscured by the averaging process. Much room remains for
future work to determine additional contextual and individual-
specific factors that drive variabilities in RT.

In this work, we assumed each human subject is best modeled
by fixed model parameters, such as the critical α parameter for
tracking P(stop) and the ratio R/Q for tracking E [SSD], both
of which parameterize the stability of environmental statistics
and thus determine the size of the “memory window” for using
previous trials to predict the next trial. One may well ask whether
human subjects in fact undergo meta-learning about these and
other parameters over the time course of the experiment. The
short answer is “no,” as we see no statistically discernible
differences in human behavior in the first and second halves
of the experiment (data not shown). This is not surprising,
given that in a much simpler 2AFC task (where the cognitive
demands within each trial are much lower), the first in which
we successfully accounted for sequential effects as arising from
tracking local statistics of the sensory environment (Yu and
Cohen, 2009), we found that not only did subjects not behave
differently in the first and second halves of the experiment, but
that from an ideal observer point of view, meta-learning of α is
much too slow to give rise to noticeably different behavior over
the time course of one experimental session.

Separately, this work makes an important contribution to
advancing the understanding of inhibitory control. Inhibitory
control, the ability to dynamically modify or cancel planned
actions according to ongoing sensory processing and changing
task demands, is considered a fundamental component of
flexible cognitive control (Barkley, 1997; Nigg, 2000). Stopping
behavior is also known to be impaired in a number of
psychiatric populations with presumed inhibitory deficits, such
as attention-deficit hyperactivity disorder (Alderson et al., 2007),
substance abuse (Nigg et al., 2006), and obsessive-compulsive
disorder (Menzies et al., 2007). The work present here can
help elucidate the psychological and neural underpinnings of
inhibitory control, by providing a quantitatively precise model
for the critical computational components, and thus informing
both experimental design and data analysis in future work
for the identification of neural functions. Along these lines,
the current work has concrete applications in the analysis of

neurophysiology data. Previously, we successfully applied the
P(stop)-learning model (Shenoy et al., 2010) in a model-based
analysis of fMRI data (Ide et al., 2013), and discovered that the
dorsal anterior cingulate cortex (dACC) encodes a key prediction
error signal related to P(stop); moreover, we found the dACC
prediction-error signal is altered in young adults at risk for
developing stimulant addiction (Harlé et al., 2014), a condition
known to be associated with impaired inhibitory control and
specifically stopping behavior. We expect that this new, extended
model should be even more powerful in capturing human
behavior and identifying neural correlates of the computations
involved in proactive control, which is concerned with the
preparation for inhibition in advance of sensory input. As we
have behaviorally validated, trial-by-trial measures of underlying
belief states, our model can be used to look for neural responses
specifically correlated with these beliefs, allowing us to establish
the functional neural anatomy of different sorts of probabilities
and uncertainties.

Beyond specific implications for inhibitory control and
response modeling, this work exemplifies an approach for
leveraging apparently “noisy” experimental measures such as
RT, to glean deep insights about cognitive representation and
behavioral strategy in humans (and other animals). Even though
our experiment did not explicitly manipulate the frequency
of stop trials or the onset of the stop signal across the
experimental session, subjects still used chance fluctuations in
the local statistics of empirical observation to continuously
modify their internal beliefs, and modulate their behavioral
strategy accordingly. This raises the very real possibility that
humans are constantly updating their internal model of the
environment in any behavioral task, and the apparent “noise”
in their behavioral output may often arise from an underlying
monitoring and adaptation process, which can be brought to
light by incorporating sophisticated normative modeling tools,
such as the Bayesian statistical modeling and stochastic control
methods used here. With the broadening use of these modeling
tools, there should be exciting new possibilities for advancing the
neural, psychological, and psychiatric study of learning, decision-
making, and cognitive control.
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