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ABSTRACT The growth and physiology of soil microorganisms, which play vital roles in
biogeochemical cycling, are shaped by both current and historical soil environmental condi-
tions. Here, we developed and applied a genome-resolved metagenomic implementation
of quantitative stable isotope probing (qSIP) with an H2

18O labeling experiment to identify
actively growing soil microorganisms and their genomic capacities. qSIP enabled measure-
ment of taxon-specific growth because isotopic incorporation into microbial DNA requires
production of new genome copies. We studied three Mediterranean grassland soils across
a rainfall gradient to evaluate the hypothesis that historic precipitation levels are an impor-
tant factor controlling trait selection. We used qSIP-informed genome-resolved metagenom-
ics to resolve the active subset of soil community members and identify their characteristic
ecophysiological traits. Higher year-round precipitation levels correlated with higher activity
and growth rates of flagellar motile microorganisms. In addition to heavily isotopically la-
beled bacteria, we identified abundant isotope-labeled phages, suggesting phage-induced
cell lysis likely contributed to necromass production at all three sites. Further, there was a
positive correlation between phage activity and the activity of putative phage hosts.
Contrary to our expectations, the capacity to decompose the diverse complex carbohy-
drates common in soil organic matter or oxidize methanol and carbon monoxide were
broadly distributed across active and inactive bacteria in all three soils, implying that these
traits are not highly selected for by historical precipitation.

IMPORTANCE Soil moisture is a critical factor that strongly shapes the lifestyle of soil
organisms by changing access to nutrients, controlling oxygen diffusion, and regulating
the potential for mobility. We identified active microorganisms in three grassland soils
with similar mineral contexts, yet different historic rainfall inputs, by adding water la-
beled with a stable isotope and tracking that isotope in DNA of growing microbes. By
examining the genomes of active and inactive microorganisms, we identified functions
that are enriched in growing organisms, and showed that different functions were
selected for in different soils. Wetter soil had higher activity of motile organisms, but ac-
tivity of pathways for degradation of soil organic carbon compounds, including simple
carbon substrates, were comparable for all three soils. We identified many labeled, and
thus active bacteriophages (viruses that infect bacteria), implying that the cells they
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killed contributed to soil organic matter. The activity of these bacteriophages was signifi-
cantly correlated with activity of their hosts.

KEYWORDS metagenome-assembled genomes, metagenomics, soil microbiome, soil
moisture, stable isotope probing

Soils are among the most diverse microbial ecosystems, and microbial communities
modulate the properties of soil that define its capacity to support terrestrial macro

ecosystems, and human agro-ecosystems (1). Microbial communities contribute to
global biogeochemical cycles (2, 3) as well as soil ecosystem services (e.g., moisture
retention, nutrient availability, and structure) (4). Understanding microbial commun-
ities and traits along environmental gradients is foundational to predicting how soil
biogeochemical processes will be altered by climate change (5). Microbial traits under-
lie soil organic matter biogenesis and turnover via the production and degradation of
polymers (e.g., extracellular polysaccharides, chitin) and the varied processes that con-
tribute to cell death (6). In fact, emerging paradigms of soil organic carbon (SOC) bio-
genesis suggest that microbial necromass constitutes much of SOC (7–9). Yet critical
gaps remain in our capacity to link microbial functional capabilities to in situ measure-
ments of microbial growth and mortality, and to differentiate the active versus inactive
viral populations that drive microbial community dynamics and responses to environ-
mental variation.

Soil ecology studies frequently attempt to link surveys of microbial community
composition with measurements of environmental parameters. For example, amplifica-
tion and sequencing of 16S rRNA gene sequences from environmental DNA was used
to show that soil pH contributes strongly to microbial community structure across
diverse soils (10), and that many 16S rRNA gene-based microbial phylotypes abundant
in soils are common across global soil biomes and edaphic factors (11). Sequencing of
phylogenetic marker genes and whole genomes of cultured soil microbial populations
has also revealed the effects of latitude (12, 13) and soil parent material (14) on micro-
bial community composition (15).

A limitation of phylogenetic marker-based studies is their inability to robustly pre-
dict microbial traits of actively growing taxa, i.e., the functional capacities of soil micro-
bial communities that are relevant to the biogeochemical properties of their broader
soil ecosystem. Further, marker genes such as 16S rRNA tend to be slow evolving; thus,
any evolutionary traits they predict would likely be ancient. More fast-evolving traits
are more likely to be useful in defining microbial niches (16). Genome-resolved meta-
genomics provides a route to access these more rapidly evolving traits and enables
predictions of the sets of capacities of individual soil organisms without the require-
ment for cultivation (17, 18), including for organisms missed in marker-gene amplicon
studies (19) and viruses (20, 21). However, functional inferences from many typical
“meta-omics” studies are limited due to their lack of information about which organ-
isms are active. Although tools such as iRep (19) can use DNA sequence coverage to
provide insight into replication rates, these methods have limitations (22) and are not
very effective in soil studies due to genome completeness and coverage requirements.
Metaproteomics measurements can detect abundant proteins, and thus infer bacterial
activity (17), but the insights are often limited by extraction bias and identification of
proteins from only a small subset of the most abundant soil microbes. Soil metatran-
scriptomics, a more encompassing and taxonomically informative analysis, may reveal
how functions are expressed in space and time, e.g., that carbohydrate decomposition
is conducted by distinct guilds of taxa that operate in different soil niches (16).
However, gene expression cannot be directly linked to growth rates (23). Bio-orthogo-
nal noncanonical amino-acid tagging (BONCAT) can tag cells that are actively synthe-
sizing proteins, sort them, and sequence marker genes. This method has been applied
to soils and revealed that as many as 34% of cells in soil are translationally active at
any time (24), but it cannot link directly to substrate usage and biosynthesis. In
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contrast to the approaches listed above, stable isotope probing (SIP) tracks isotopically
labeled substrates into microbial populations that consume them, and is method for
linking resource utilization to activity as a function of environmental conditions and
overall community structure.

In SIP, DNA from isotopically labeled organisms is separated by density gradient centrif-
ugation and identified with marker gene amplification and/or metagenomics. For example,
SIP experiments have been combined with metagenome sequencing to infer horizontal
gene transfer events responsible for conferring isoprene degradation among novel phyllo-
sphere taxa (25), functional diversification between cellulose and lignin degradation in for-
est soils (26), microbes acting in consortia for the full degradation of polycyclic aromatic
hydrocarbons in contaminated soils (27), as well as in seawater (28), and linkages of uncul-
tured microbial populations to rhizosphere carbon cycling (29, 30). The quantitative stable
isotope probing (qSIP) approach additionally estimates population-specific growth and
death rates by tracking compositional information for 16S rRNA genes (31, 32). Here, we
applied qSIP-informed genome resolved metagenomics, following an H2

18O addition
experiment, to differentiate active from inactive soil microbes, define their metabolic
capacities, and evaluate the potential roles of phages in bacterial cell lysis and carbon cy-
cling among Mediterranean-climate grassland soils that occur across a natural rainfall gra-
dient. Our goal was to characterize the total versus growing (active) bacterial/archaeal
communities (and their genomic attributes) across these sites at a time of year when water
was not limiting.

RESULTS
Site characteristics. To identify genomic traits associated with active microbes under

varying historical precipitation patterns, we selected sites at three geographically dispersed
Mediterranean California grasslands spanning two orders of magnitude in mean annual
precipitation: Sedgwick Reserve, Hopland Research and Extension Center, and Angelo
Coast Range Reserve (388, 956, 2,833 mm H2O, respectively). The soils developed on similar
parent material, primarily sedimentary rock including sandstone and shale, and vary only
slightly in mineralogy and texture, with the driest site, Sedgwick, containing the highest
proportion of clay and the highest effective cation exchange capacity (33). Sedgwick soils
also reach lower water potentials at higher moisture contents than those from Hopland or
Angelo (Fig. S2). All three sites had similar nitrogen and carbon content (Table S1; Foley
et al. [33]).

Density fractionation effects on genome recovery. To evaluate the effect of den-
sity fractionation and isotope labeling on metagenome assembly, we assembled and
binned individual fractions, sliding windows of co-assemblies of three adjacent frac-
tions, and co-assemblies of full density gradients. For one sample (Hopland replicate
soil core 1, both 18O and 16O incubations), we compared genome recovery outcomes
using DNA sequences from all fractions versus three adjacent fractions on the density
gradient and found that the all-fraction co-assemblies yielded the largest number of
high-quality genome bins (Fig. S3A and B). Where genomes were recovered by both
approaches, the highest quality bins (defined by maximum completeness and mini-
mum contamination) tended to be those from the full co-assembly and most good
bins that were recovered only once came from the all-fraction co-assemblies. We clus-
tered genome bins from each assembly at 99% sequence identity, and found that of
65 genomes representative of the clusters, 44 with the highest quality (based on dRep
scores) were from the all-fraction assembly. Twenty-eight clusters contained metage-
nome-assembled genomes (MAGs) recovered in multiple cross-fraction co-assemblies,
in 15 of which, the highest quality genome was from the all-fraction assembly (Fig. S3C
and D). Among the 37 clusters that we recovered in only one co-assembly, 29 were
assembled in the all-fraction co-assembly (Fig. S3A and B). Read mapping indicated
that genome bins had coverage across the density gradient, consistent with the addi-
tive effects of combining density-fraction libraries contributing to improved assemblies
(Fig. S4). In addition, relative coverage across the density gradient varied systematically
(with low GC regions having relatively higher coverage at lower densities). Based on
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the superior performance of the all-fraction co-assemblies, we proceeded with these
assemblies for each sample for genome binning, annotation, isotopic-label quantifica-
tion, and statistical analyses.

Metagenome assembly and binning. From the all-fraction co-assemblies from all sam-
ples, we reconstructed 433 nonredundant genome bins with estimated completeness. 75%
and contamination , 25%, representing a diverse array of common soil associated microbial
taxa, with Actinobacteria predominating at all three sites (Fig. 1A). Diverse Proteobacteria are
abundant at Angelo and Hopland reserves. Less-abundant organisms diverge between sites:
we detect Gemmatimonadetes only at Angelo; Bacteroidetes and Chloroflexi predominantly

FIG 1 (A) Relative abundance (from 0 to 1, calculated as coverage in unfractionated-DNA library normalized to total sequence
from that sample) and taxonomy of medium and high-quality genome bins assembled from density gradient metagenome co-
assemblies following an H2

18O stable isotope probing incubation in three CA annual grassland soils (each bar represents one 16O
or 18O incubation of one replicate soil core, A = Angelo, H = Hopland, S = Sedgwick, e.g., A1-16 = Angelo sample 1, 16O-H2O
incubation). (B) Illustrative plots representing the DNA density distribution for a single organism from one site that is either active
(upper panel) or inactive (lower). Vertical lines indicated the weighted-mean density (WMD) of the pictured genome in 16O or 18O
samples. (C) Boxplots showing the distribution of 18O atom fraction excess (AFE) values for all genome bins assembled at each
site. Boxes represent the range from the 25th to 75th percentile AFE for all bins; the bold horizontal line marks the median AFE
value for bins from that site. Isotopic incorporation rates across genome bins at each site are significantly statistically different
from each other based on Tukey’s HSD test (indicated by the letters above boxes).
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at Hopland; and Chrenarchaeota only at Sedgwick. Bdellovibrio was observed in Angelo and
Hopland soils.

Quantifying isotopic incorporation in metagenomic sequences. To associate mi-
crobial ecophysiological traits with metabolic activity and population turnover, we cal-
culated atom fraction excess (AFE) of 18O in DNA sequences assembled from qSIP
metagenomes (Fig. 1B). Isotopic enrichment represents new incorporation of oxygen
into biomass, and AFE is therefore proportional to metabolic activity and population
growth of the organisms from which the sequence assembled (34). Estimated AFE
ranged from 20.16 (reflecting experimental error) to 0.47, with the range and distribu-
tion of AFE varying significantly by site (Fig. 1C; see additional supplemental tables).
We refer to organisms with AFE lower than average for the site where it was assembled
as “low activity” and those with higher than average AFE as “high activity.” In the data
set of 18O-SIP 16S rRNA gene amplicon sequences that parallel our 18O-SIP metage-
nomic libraries, we found a significant positive correlation between activity estimates
from the two data types (Fig. 2A and B).

The index of replication (iRep) provides an orthogonal measure of in situ microbial
growth calculated from metagenomic sequence data (19). However, only three bins
exceeded the coverage filtering threshold required for iRep. Of these three bins, iRep
was inversely related to AFE calculated for each (see additional supplemental tables),
suggesting the difference in measuring instantaneous replication rates (as in iRep) ver-
sus gross population growth over time (qSIP).

AFE from qSIP expresses the observed shift in density as a proportion of the maxi-
mum theoretical density shift for an organism’s genome. This shift is calculated by sub-
tracting an organism’s density in unlabeled samples (determined by its GC content),
from its density in labeled samples. However, if the observed density of an organism’s
unlabeled genome matches the theoretical density calculated from the genome’s GC
values, we should be able to infer an organism’s isotopic incorporation purely from the
observed density of its isotopically labeled genome (Fig. S2B and C). With our data set,
we calculated AFE for each genome bin using only read coverage data from 18O-
enriched libraries and found a very strong and significant positive correlation between
AFE values calculated from 18O and 16O libraries (P , 2.2 � 10216, R2 = 0.93; Fig. S2C).
On average, AFE values calculated solely with 18O samples are 0.08 lower than when
calculated using 18O samples, but the discrepancy approaches 0 for lower GC genomes.
This is likely because at higher densities sampled in the density gradient, fractions rep-
resenting wider density ranges were combined to yield enough DNA for sequencing,
meaning the accuracy of mean-weighted density estimates decreases at higher density
(i.e., for genomes with high GC and high 18O incorporation) (Fig. S2D). Nevertheless,
the tight correlation between AFE estimated using both 16O and 18O samples with AFE
estimated with 18O alone suggests it will be possible that unlabeled samples need not
be sequenced in future SIP-metagenomics studies as long as sequencing depth ena-
bles substantial genome reconstruction.

We found 18O AFE varied widely for genomes within the same phylum, both within
and between sites (Fig. 2C), with community-level AFE distributions reflecting meas-
ured respiration rates between sites (Fig. S2C). Actinobacteria, the most abundant phy-
lum observed at all three sites, had a particularly wide range in activity, including the
highest and lowest AFE values at each site. Most Actinobacteria genomes had similar
AFE distributions relative to the broader microbial community at each site, while mem-
bers of the family Nocardioidaceae had higher activity levels than other Actinobacteria
at all three sites.

Members of several less common groups of bacteria had more consistent activity
levels compared to Actinobacteria. Chloroflexi and related phyla (Chloroflexota_A, also
known as Rif_CHLX, and bacteria of the phylum Dormibacterota) at all three sites as
well as Chrenarchaeota from Sedgwick had consistently very low activities. Members
of the phylum Planctomycota had low activity levels (AFE , 0.1) at both Hopland and
Sedgewick sites.
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Bdellovibrio (known as “predatory” bacteria for their obligate intracellular parasitism
of other bacteria), represented by four genomes from Angelo and Hopland, were
among the most active organisms at each site. Consistent with obligate parasitism, the
genomes all contain loci for the type IV pilus known to be involved in host attachment,
and exhibit many auxotrophies in amino-acid biosynthesis (35).

Statistical testing distinguishes metabolisms and ecophysiological traits by ac-
tivity across sites. To assess drivers of microbial community differences between each
site, we conducted constrained ordination of microbial communities from each sample
in terms of beta diversity and activity (as expressed by pairwise Bray-Curtis distance
between samples calculated from relative abundance of genomes as well as AFE,
respectively). For both microbial diversity and activity, mean annual precipitation at
each site was the only environmental variable statistically significantly (P , 0.05)

FIG 2 Microbial atom fraction excess (AFE) patterns following an H2
18O stable isotope probing incubation in three CA

annual grassland soils collected during the wet winter season. (A) Regression analysis of AFE measured in 16S rRNA ASVs
(SIP-amplicon analysis from Foley et al. [33]) versus the subset of shotgun sequence metagenomic bins containing 16S
sequences that match 16S-amplicon ASVs (X axis). (B) Regression of AFE estimated for 16S amplicon ASVs (Y axis) versus
AFE calculated for metagenomic contigs containing 16S rRNA genes (X axis). (C) Mean and 95% confidence intervals of 18O
atom fraction excess (AFE) for all genome bins measured in the three CA grassland soils, colored and ranked by phylum.
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explaining clustering of microbial populations (additional variables tested were soil
pH, soil water potential at the permanent wilting point, soil moisture at sample collec-
tion, and soil moisture during the incubation).

To identify microbial traits associated with activity and how these patterns were
framed by our sites’ soil and environmental characteristics, we used a statistical test to
identify traits where the AFE significantly increased at each site relative to the total mi-
crobial population (Fig. 3A; Fig. S5C). Motility emerged as the predictor of growth with
the closest positive relationship to mean annual precipitation across sites. Putatively
motile organisms (genome bins encoding full or mostly full suites of genes for flagellar
biosynthesis) were statistically overrepresented among active organisms from the wet-
ter Angelo and Hopland sites (organisms with flagella-encoding genes had AFE 8.1 and
9.2 higher, and 1.3% lower than all organisms assembled at Angelo, Hopland, and
Segwick, respectively; Fig. 3B and 4A; Fig. S5D). This is partially due to the presence of
flagellar genes in the highly active Bdellovibrionata at Angelo and Hopland. Similarly,
active Nocardioideaceae (phylum: Actinobacteriota) at Angelo and Hopland have the
capacity for flagellar motility whereas those from Sedgwick were not.

We hypothesized that organisms with limited mobility would tend to be more ver-
satile in terms of the substrates that they can metabolize. We found that the nonmotile
Nocardioideacae from Sedgwick encoded higher numbers of polysaccharide degrada-
tion pathways. These organisms also had higher numbers of enzymes for nitrate reduc-
tion and nitrite reduction, whereas Nocardioideacae from Angelo and Hopland only
had the capacity for nitrite reduction.

Genes for carbon monoxide and methanol dehydrogenases were broadly distributed
phylogenetically, geographically, and across activity levels measured by AFE (Fig. 4E).
Carbon monoxide dehydrogenase (coxL) was primarily confined to Actinobacteria across

FIG 3 (A) Distributions of AFE values for all bins at each site. A solid line represents the average AFE across all bins at all sites; a
dotted line represents average AFE across bins from the site shown in that figure panel. (B) Distribution of AFE values for genome
bins encoding flagellin at each site. These genomes are significantly enriched at Angelo and Hopland relative to average bins at each
site. A solid line represents the average AFE from all bins at that site; a dotted line is the average AFE of genomes encoding flagellin
genes at that site.
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sites (Fig. S5A and E). Calcium-dependent methanol dehydrogenase (mxaF) was broadly
distributed among Acidobacteria, Gemmatimonadetes, and Proteobacteria (Fig. S5B and
F). Genomes annotated with mxaF were often highly active at Angelo (0.151 for mxaF bins,
average AFE of 0.107 for all Angelo bins), and to a lesser extent at Hopland (0.174 com-
pared with 0.135) but bacteria with mxaF from Segwick were relatively inactive (0.063 ver-
sus 0.110).

We found significant positive correlation between annotated metacyc degradation
pathways and AFE-based activity levels at Angelo, but not the other soils (Fig. S6A). Across
sites, we aggregated genomes based on phylum affiliation and found no significant corre-
lation between substrate diversity and activity levels. We also examined the distribution of
degradation pathways for several complex carbohydrates and found that, of genomes pos-
sessing any of 13 polysaccharide degradation pathways curated in the DRAM genome
annotation pipeline (36), none differed significantly in inferred activity levels from the total
community represented by the assembled metagenome at any site (Fig. 4C). We observed
significant correlations between the diversity of polysaccharide degradation pathways
encoded in a genome and the high activity levels for that genome in some phyla, but the
phyla that displayed this pattern often varied across sites. For example, we found a signifi-
cant positive correlation between the number of polysaccharide-degradation pathways

FIG 4 Heatmap of number of genomes with annotated functions and the activity (reflected by 18O atom
fraction excess-AFE) of those genomes, at three grassland sites in northern California, for genomes
encoding: (A) flagellin (significantly active at high moisture sites); (B) cutinase (significantly active at low
moisture site, Sedgwick); (C) polysaccharide metabolism; (D) nitrogen metabolism; (E) C1 metabolism; (F)
oxygen metabolism. For all panels, the size of each point is proportional to the number of genomes with
that trait. Circle color represents the average AFE of genomes with that trait, per site. An asterisk next to a
point indicates significant difference from the average AFE of all bins at that site.
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encoded in Proteobacteria genomes and organism activity (AFE) across all sites (r = 0.47,
P , 0.05) whereas for Gemmatimonadetes, there was only a significant correlation
between polysaccharide-degradation pathways and activity at Angelo (r = 0.33, P , 0.05)
(Fig. S6B). Conversely Chrenarchaeota at Sedgwick and Acidobacteria and Bacteroidetes
from Hopland exhibited higher activity correlated with a lower diversity of polysaccharide
degradation pathways.

MAGs from the three sites varied in the presence of specific nitrogen cycle enzymes, in
the abundance of nitrogen-related genes, and in the inferred activity levels of bacteria
involved in nitrogen compound transformations (Fig. 4D). All three sites had organisms
whose genomes encoded the first three steps of denitrification (reduction of nitrate to ni-
trite; nitrite to nitric oxide; nitric oxide to nitrous oxide). The capacity for nitrate reduction
was only observed in genomes of highly active bacteria from the wettest site, Angelo,
whereas genes for nitrite reduction were broadly distributed among organisms with varied
activity levels at all three sites. Nitric oxide reduction capacity was also encoded in genomes
of the most highly active bacteria from the Angelo site. The capacity for nitrous oxide reduc-
tion to molecular nitrogen was only observed in genome bins at Hopland and Sedgwick
(organisms potentially capable of N2O-reduction were close to average activity at both sites).
The capacity for aerobic ammonia oxidation was predicted for Acidobacteria from Hopland,
and Crenarchaeota from Sedgwick, but the inferred activity levels of these organisms were
low. In addition, genes for nitrogenase were encoded on unbinned contigs from the
Hopland and Sedwick data sets. A few nitrogenase operons were encoded on high AFE con-
tigs from Sedgwick.

We annotated genome bins for EPS biosynthetic gene clusters for a class of polysac-
charides produced through the synthase-dependent biosynthetic system, including
poly-N-acetylglucosamine (PNAG), cellulose and acetylated cellulose, alginate, and
Pel. PNAG was the most commonly observed polysaccharide biosynthesis cluster,
assembling in a broad range of taxa with varied activity levels at all sites (Fig. S7).
Notably, Actinobacteria of the family Nocardioideaceae—that were apparently highly
active at each site—are not predicted to synthesize PNAG.

Quantifying activity in phage.Many studies have documented viruses in soil (e.g.,
21, 37–39), but given that viruses can be deactivated in soil through multiple mecha-
nisms (e.g., by sorption to minerals), a grand challenge is to assess what fraction of
viruses is active. We identified potential phage sequences in metagenomic assemblies
(total of 119,253 viral contigs across all all-fraction assemblies; clustered into 8,617 viral
populations), and examined patterns of activity measured by AFE, focusing on phage
contigs for which we confidently predicted hosts. As with microbial genomes, putative
phage contigs demonstrated a range of AFE at each site. We find a significant positive
relationship between the AFE of a host genome and its putative phage genome (P
value , 2.45e-14, R2 = 0.683; Fig. 5). For example, we identified a circular 38-kbp ge-
nome for a phage predicted to infect a Bdellovibrio at Hopland. Circularization indicates
that the sequences were derived from phage particles, not from prophage. Both the
putative Bdellovibrio phage and the only Bdellovibrio genome assembled from Hopland
are predicted to have been highly active (AFE ;0.3 to 0.35 range). However, notably,
for this phage-host pair and in general, hosts predicted to be highly active had lower
relative abundances. High activity of hosts represents high growth rates, and we might
expect that this would lead to high abundances. However, it is possible that the most
active phages had infected and lysed their hosts (leading to low abundance) before
samples were collected. Alternatively, the phages may simply have infected low abun-
dance yet active hosts.

From all three sites, we reconstructed and annotated seven genomes of phages that
encode alginate lyase carbohydrate-active enzymes (CAZYmes). Alginates are polysaccha-
rides that may mask receptor sites used by phages during infections, and the phage lyase
may circumvent this defense. When aligned to the refseq database, genes within these pu-
tative phage contigs that align to annotated genes from known organisms have highest
homology to sequences from Pseudonocardiaceae, consistent with these phage infecting
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Pseudonocardiaceae cells. Interestingly, only five Pseudonocardiaceae from Sedgwick have
operons implicated in alginate synthesis whereas Pseudonocardiaceae genomes from
Hopland are not predicted to produce alginate (Fig. S8). Putative Pseudonocardiaceae-
infecting phages from Segwick that encode alginate lysase occur on metagenomic contigs
that are not circularized. These contigs have higher AFE than the predicted alginate-pro-
ducing Pseudonocardiaceae host genomes assembled from Segwick, consistent with their
existence as phage particles that replicated in an actively growing host (Fig. S9).

DISCUSSION

Using qSIP-informed genome-resolved metagenomics, we quantified the activities of
bacteria, archaea, and phages from the three annual grasslands that exist along a strong
precipitation gradient. Previous SIP metagenome studies have typically sequenced only
the heavy fraction of DNA density gradients for labeled and unlabeled samples. At best,
this approach can make a binary distinction between organisms that have or have not
incorporated the stable isotope label, and many organisms that incorporate the isotope
are missed due to lower yet significant isotope incorporation. Additionally, regions of the
same genome with differences in GC content distribute across the density gradient, reduc-
ing assembly quality if only subsets of the density gradient are assembled. Finally, as the
mean weighted density is determined by both GC content and isotope incorporation,
many low GC genomes with high AFE may be missed if only the heavy fraction was
sequenced. By sequencing across the density gradient, the approach used here, we recov-
ered more and higher quality genomes and quantified isotopic enrichment in microbial
and phage genomes. Estimates of AFE for metagenomic contigs and genomes containing
16S rRNA genes align with AFE estimates for identical 16S rRNA gene sequences calculated
from the paired data set from the same samples. This approach allowed us to deduce
quantitative relationships, to test for a correlation between abundance and growth, and to

FIG 5 Taxon-specific activity (measured by 18O AFE) of grassland soil bacterial genomes versus phage
predicted to infect each bacterial host based on matching CRISPR spacer sequences. Sites include Angelo (A),
Hopland (H), and Sedgwick (S), which exist along a rainfall gradient in northern California. Host relative
abundance is indicated by the size of datapoints.
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use a statistical framework to associate microbial traits with activity as a function of histori-
cal water inputs.

The strongest statistical signal we saw relating a microbial trait to differences across
the annual precipitation gradient represented by our sample sites was flagellar motil-
ity. Genomes predicted to belong to motile organisms were proportionally most active
at the wettest site (Angelo), followed by the more moderate precipitation site
(Hopland), whereas the seasonally driest site (Sedgwick) had motile bacteria with the
lowest activity under our experimental conditions. Previous modeling has predicted
that spatial heterogeneity of soil selects organisms capable of rapidly responding to
changes in availability of a wide diversity of substrates (and against alternative nutrient
acquisition strategies such as chemotactic motility) (40), whereas we found selective
pressure favored increased motility in soils with a historical pattern of higher soil mois-
ture availability.

The higher soil moisture levels at Angelo and Hopland could make motility advan-
tageous (except for those bacteria that rely on soluble organic compounds, as diffusion
rates would increase with increased soil moisture). Interestingly, the motile bacteria
from family Nocardioidaceae at Angelo and Hopland have relatively few enzymes for
degradation of insoluble carbohydrate compounds such as arabinan, and xylan, as well
as polysaccharides containing fucose or rhamnose, compared with nonmotile bacteria
from this family at Sedgwick. Thus, the Actinobacteria at higher-moisture sites appear
to be relatively specialized (from the perspective of carbohydrate degradation) com-
pared with those from Sedgwick. These findings support the premise of some ecologi-
cal models (40) that suggest homogeneity associated with wetter soils should select
for organisms with relatively specialized metabolisms, whereas heterogeneous envi-
ronments such as drier soils should select for versatile heterotrophs. In wetter soils,
microbes that are motile can relocate to sites where resources they can use are found,
whereas in dry soils, motility is restricted and, therefore, it is beneficial to be a versatile
heterotroph. During the soil incubations, water potential varied little between sites.
The observed patterns in microbial activity therefore reflect the effects of historical dif-
ferences between sites in soil moisture. Long-term climate shifts toward decreased pre-
cipitation might select for less motile organisms and their associated lifestyles.

The higher activity of motile organisms in wetter soils was driven in part by the ac-
tivity of motile Bdellovibrio (representing 20% of flagella-encoding genomes at Angelo
and 9.7% at Hopland). Bdellovibrio are often intracellular parasites of other bacteria. If
the Bdellovibrio in the soils studied here are also parasites, then it may be reasonable
to hypothesize that motility enabled by higher moisture levels enhanced the success
of parasitic bacteria. There is increasing evidence for the predominance of microbial
necromass in SOC (7); therefore, we speculate that Bdellovibrio-induced lysis could con-
tribute substantially to SOC pools in wetter soils (41). The lack of difference in SOC
abundances in the three soils may be due to increased access to the lysate as a C
source in wetter soils. Climate-change-driven reduction in moisture levels may select
against Bdellovibrio, lowering the contribution of bacterial predation to cell death.

Our SIP-metagenome data show that despite the precipitation gradient among our
sites, metabolic capacities such as aerobic respiration, CO oxidation, and methanol oxi-
dation were linked to genomes whose isotopic enrichment values fell close to average
community enrichment values at all three sites. Thus, we conclude that these are wide-
spread capacities in grasslands during seasonally high soil moisture.

Metagenomic qSIP enabled us to track activity of phage populations. The observation
that AFE of phage genomes is closely linked to the AFE of their predicted microbial hosts
might suggest that phage lysis rates are sometimes predicted by microbial growth rates
(42). However, a subset of these may have been prophage and were isotopically labeled
during host replication. The observed low relative abundances of host bacteria in soil may
be a consequence of phage replication leading to host bacterial death, but other explana-
tions (including bacterial and eukaryotic predation) likely also contribute. It is interesting to
note that phage predation may have reduced the abundances of bacteria that were
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recently highly active to undetectable levels, precluding deduction of their recent high ac-
tivity via qSIP-informed genome-resolved metagenomics. The detection of phages with
high 18O values but no apparent host may be an indication of prior host growth and a use-
ful signature of high rates of phage-induced mortality, as well as an indicator of top-down
trophic influence in soil microbiomes (41).

The fast replication of organisms encoding enzymes involved in nitrate, nitrite, and
nitric oxide reduction suggests denitrification to N2O likely occurs in Angelo soils dur-
ing the wet season. The genomic capacity of active organisms for nitrous oxide reduc-
tion, leading to full denitrification to dinitrogen gas, was more prevalent at Hopland
and Sedgwick compared with Angelo. Given that all three sites have similar nitrogen
compound concentrations, we suggest that activity differences might have occurred
because the sites were not equally wet at the time we sampled (Table S1). Thus, long-
term differences in yearly moisture availability likely had a strong impact on microbial
transformations in soil nitrogen cycles. The high activity of genomes encoding denitrifi-
cation steps at Angelo (historically the wettest site) is consistent with previous results
showing that high soil moisture leads to increased respiration rates and increased an-
oxia, selecting for organisms that can rapidly use nitrate as an alternative electron
acceptor (43). Furthermore, denitrifiers at Angelo and Hopland also encoded flagella,
suggesting motile denitrifiers have an advantage, perhaps because oxygen is depleted
more rapidly. Although the bacteria capable of reduction of nitrous oxide were not
particularly active at the time of sampling, these bacteria could limit emissions of N2O
resulting from partial denitrification from the drier soils under other conditions. More
importantly perhaps, the ability to reduce N2O to N2 is most prevalent in bacteria from
both Sedgwick and Hopland that are nonmotile. Thus, future decreases in soil moisture
levels could lead to decreased emissions of this greenhouse gas. Conversely, the lack
of genomes encoding genes for reduction of N2O at the Angelo site may predict a
higher capacity for release of this greenhouse gas from Angelo compared with other
soils, especially under wetter conditions. This is consistent with previous observations
of higher N2O fluxes from wetter soils (44).

Methodological advances and implications. Past metagenomic SIP studies have
claimed that either the density fractionation or stable-isotope labeling itself improves
metagenomic assembly by reducing the complexity of the microbial community
sampled within each individual fraction (26, 45). In contrast, in our study we observed
that co-assembling all nine sequenced fractions from the same sample almost always
improved assembly quality, probably because it increased the coverage per genome.
This suggests a possible SIP metagenomics experimental design wherein assemblies
primarily come from unfractionated DNA sequenced to high depth where density frac-
tions are sequenced at low coverage for identifying bins through differential abun-
dance and for estimating isotopic incorporation.

In the future, this genome-resolved approach could be greatly expanded by using sub-
strates labeled with 13C (e.g., 46) or 15N labeled (e.g., 47, 48), as demonstrated by 16S rRNA
gene amplicon qSIP studies. Use of 13C and 15N labeled substrates could be used as in-depth
analysis of soil carbon biogeochemistry, because compounds predicted from genomes to be
consumed or synthesized by isotopically enriched bacteria can be quantified with spectro-
scopic techniques that can differentiate isotopically labeled molecules (e.g., HPLC, NMR).
Furthermore, sequencing unfractionated metagenomic DNA from not one (as was done
here) but many time series points would constrain the relative abundances of specific bacte-
ria, potentially enabling direct estimates of microbial net growth (i.e., birth and death) rates
(31, 32). This would complement measurements of isotope incorporation into phage popula-
tions that are predicted to infect specific microbial populations, allowing linkage of cell death
to phage predation.

Genome-resolved SIP can be cost- and labor-intensive. Given that the mean-weighted
densities for organisms in natural-abundance isotope-treated samples are close to those
estimated purely from GC of the same sequence assembled in heavy-isotope labeled sam-
ples, it may be possible to conduct future SIP experiments with few or no natural-
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abundance isotope controls. This would double, for the same cost, the number of samples
that could be included in metagenomic qSIP experiments, enabling deeper replication
coupled with increased statistical power (49) and/or more diverse treatments.

Conclusions. The qSIP-enabled implementation of genome-resolved metagenom-
ics that involved sequencing multiple density fractions enabled us to probe the activ-
ities and functional potential of bacteria and phages in soil microbial communities. We
differentiate phenomena associated with soils that have experienced a gradient of an-
nual precipitation levels and identify traits that may change in prevalence as climate
changes, including a subset that could impact soil greenhouse gas emissions.

MATERIALS ANDMETHODS
Sample collection, isotopic enrichment, and fractionation. Triplicate 0- to 10-cm soil cores were

collected from northern California annual grassland sites at Sedgwick Reserve, Hopland Research and
Extension Center, and Angelo Coast Range Reserve between February 2018 and March 2018 (the period
when water is most available at each site annually). Soil at these sites developed on similar parent mate-
rial, are overlaid by annual grasses, including Avena spp., and experience a rainfall gradient of 388 mm
yr21 to 2,833 mm yr21. Each soil core was homogenized and separated into 5-g subsamples that were
dried at room temperature over 24 h to 1.5% gravimetric soil moisture, re-wetted to 25% to 30% mois-
ture with either natural abundance 16O-H2O or 98.15 atom% 18O-H2O, and then incubated for 8 days at
room temperature in the dark in 500-mL glass Mason jars. Five mg of DNA extracted from each sample
was subjected to ultracentrifugation in a cesium chloride density gradient (final average density 1.730 g/
mL) in 5.2-mL tubes, then separated into 36 density (;200 mL each) using a semiautomated robotic SIP
protocol (50). The fractions for each sample were binned into nine groups based on density (1.6900 to
1.7099 g/mL, 1.7100 to 1.7149 g/mL, 1.7150 to 1.7199 g/mL, 1.7200 to 1.7249 g/mL, 1.7250 to 1.7299 g/
mL, 1.7300 to 1.7349 g/mL, 1.7350 to 1.7399 g/mL, 1.7400 to 1.7468 g/mL, 1.7469 to 1.7720 g/mL), and
fractions within a binned group were combined and sequenced. Soil water retention curves were gener-
ated for Sedgwick, Angelo, and Hopland field sites using a tensiometer (HYPROP) and dew point poten-
tiometer (WP4C) as previously described; full details of sample collection and processing are provided in
Foley et al. (33).

DNA sequencing, assembly, annotation, and binning. DNA sequencing libraries were generated
using the Kapa HyperPrep kit (Roche) from each density fraction, as well as unfractionated DNA from
each incubated soil sample. Paired-end, 150-bp reads were generated with two lanes of the NovaSeq
platform (Illumina), to an average depth of 7 gbp per library. Illumina adapter and Phix sequences were
removed with BBtools (https://jgi.doe.gov/data-and-tools/bbtools/), and low-quality sequences were
trimmed or discarded with sickle (51). Quality-filtered reads were assembled with Megahit (version
v1.2.9) with parameters “–k-min 21 –k-step 6 –k-max 255” (52) for each individual density-fraction library
as well as unfractionated-DNA libraries; co-assemblies of all sliding windows of every three adjacent den-
sity fractions (1 1 2 1 3, 2 1 3 1 4, 3 1 4 1 5, etc.) for each incubated soil sample; and co-assemblies
of all density fractions from each incubated sample (replicate samples, i.e., cores, from the same site,
were assembled and binned separately). Assemblies were filtered to remove contigs shorter than 1 kb.

Contigs from each assembly were annotated using multiple sources. Open reading frames (ORFs) were pre-
dicted from assembled contigs using Prodigal v2.6.3 (53) with the parameters “-m -p meta.” We used USEARCH
to identify sequences homologous to predicted ORFs in the Uniprot, Uniref90, and KEGG (54) databases. We pre-
dicted 16S rRNA gene sequences using the 16SfromHMM.py script, and tRNA genes using tRNAscan-SE (55). All-
fraction co-assemblies were also annotated using the METABOLIC pipeline (version 1.0) (56).

We separated metagenomic contigs greater than 2.5 kb into bins representing genomes from dis-
tinct microbial populations based on sequence signatures and differential abundance across samples.
Quality-filtered reads from all libraries of each sample from the same site were mapped to each all-frac-
tion co-assembly from that site using bbmap (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
bb-tools-user-guide/bbmap-guide/) with the parameters “fast=t ambig=random minid = 0.98.” The
abundance of contigs across samples was calculated using the jgi_summarize_bam_contig_depths
script from the Metabat2 software package (57). Contigs from each co-assembly were sorted into ge-
nome bins using Metabat2, Maxbin2 (58), and Concoct2 (59). Genome bins generated by each binning
algorithm were aggregated using the Bin_refinement module of metawrap (60). Aggregated bins from
each all-fraction co-assemblies were dereplicated into representative nonredundant genomes using
dRep (61) using a 99% sequence identity threshold. Dereplicated high-quality bins were manually
inspected for phylogenetic coherence using the ggkbase tool (http://ggkbase.berkeley.edu). The same
read-mapping procedure was performed for individual-fraction assemblies, and sliding window 3-frac-
tion co-assemblies for H2

18O and H2
16O incubations from soil core 2 from Hopland reserve. Metabat2

was used to generate genome bins from individual-fraction, 3-fraction, and all-fraction assemblies for
these two samples, and these bins were dereplicated with dRep at 99% average nucleotide identity to
determine which assembly strategy would yield the most high-quality genome bins.

We re-annotated the aggregated, dereplicated genome bins by predicting ORFs using prodigal with
parameters “-p single.” Predicted ORFs were again annotated using USEARCH (62) against Uniprot,
Uniref, and KEGG, as well as METABOLIC (version 1.0) (62) and DRAM (version 1.0) (36). Dereplicated ge-
nome bins were also assessed for the capacity for extracellular polysaccharide production through the
synthase-dependent pathway by first identifying all putative secondary-metabolic biosynthetic gene
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clusters using the antiSMASH (v 5.0) (63) pipeline with strictness set to “loose.” Putative saccharide bio-
synthesis clusters were further classified as synthase-dependent and by class of polysaccharide using
the criteria developed by Bundalovic-Torma et al. (64). In brief, genes from biosynthetic gene clusters
that antiSMASH identified as saccharide were searched against HMM profiles for gene families from
known synthase-dependent polysaccharide biosynthetic gene clusters. Clusters were classified with
known polysaccharide synthesis operons if the cluster had HMM hits with e-value , 1025 for three or
more genes from that known operon, including for Polysaccharide synthase. We then clustered all pre-
dicted genes from all extracellular polysaccharide (EPS) biosynthesis pathways identified above into pu-
tative gene families using the protein clustering pipeline described in (65).

We replicated an analysis from Nunan et al. (40) correlating rRNA copy number with the number of
metabolic pathways annotated “degradation” among genomes in the metacyc database. For this pur-
pose, we manually parsed the metacyc database pathways information to identify all pathways contain-
ing the term “Degradation,” analogous to Nunan et al. We identified metacyc pathways in genomes
assembled from this study using MinPath (version 1.4) (66). Whereas Nunan et al. use 16S rRNA gene
copy number as a proxy for maximum growth rate to compare with metabolic diversity, we used atom
fraction excess (AFE) value—calculated from the observed density shift of metagenome bins—as a
direct measure of population growth in our replication of Nunan et al.’s analysis (40).

Virus identification and host assignment. Phage-related contigs were identified with VirSorter (67)
and deepVirFinder (68). VirSorter was run in “virome decontamination” mode, and only virus contigs
identified as category 1, 2, 4, and 5 were kept. These viral contigs were compared with those identified
by deepVirFinder, in which contigs were considered viral if they obtained a score $ 0.9 and a P
value # 0.05. Across all fraction assemblies, a total of 119,253 viral contigs were identified. To gain ap-
proximate “species-level” taxonomic resolution (i.e., a viral population), the contigs were dereplicated
through clustering at 95% average nucleotide identity (ANI) and 80% coverage (69).

Viral populations were linked to their putative microbial hosts using a scoring approach (VirMatcher;
70) that was previously applied to study human gut viruses (71). The putative microbial hosts used to es-
tablish these linkages were retrieved from 443 high-confidence MAGs assembled in this study, and used
as the host database. The different bioinformatic methods used in our scoring approach include viral
matches to (i) host CRISPR-spacers, (ii) integrated prophages in MAG contigs, (iii) host tRNA sequences,
and (iv) host k-mer composition (72), with the details of each method and associated scores described in
Gregory et al. (71). The host assignments shown here only include the high- and intermediate-confi-
dence predictions with a final score of$1.5.

Calculating isotopic enrichment of microbial populations. Reads from each density-fraction meta-
genome library were mapped to each all-fraction co-assembly for all samples from the same site. For
each contig, mean coverage was multiplied by contig length and divided by the total sequencing yield
of that library in order to calculate relative abundance of each assembled sequence in each density frac-
tion (for bins, this measure of relative abundance was summed across all contigs in the bin). Relative
abundances were multiplied by ng/mL of DNA recovered from ultracentrifugation for that density frac-
tion to estimate the proportion of DNA in each density fraction belonging to each assembled sequence.
These ng/mL DNA concentrations across each incubation’s density gradient for a given sequence were
used to calculate mean weighted density values for that sequence in each incubated sample. Isotopic
enrichment for each bin was calculated following the methods described in Hungate et al. (73) with the
following modifications. The observed GC content of each sequence was used to estimate the oxygen
content of the DNA comprising the sequence, and from there the maximum mean weighted density of
the sequence if all oxygens were substituted with 18O. Additionally, we used the concentration of DNA
in each recovered density fragment to normalize the abundance (measured by read mapping) of each
bin or metagenomic contig (23, 49). The difference between the average mean weighted density for a
given assembled sequence in all three natural-abundance 16O replicates from that site was subtracted
from the average mean weighted density in all 18O replicates. The proportion of this observed density
shift relative to the estimated maximum density shift represents the sequence’s atom fraction excess 18O
(AFE) (Fig. 1C). In reality, no organism could reach the maximum possible density shift estimated
because 18O atom fraction excess was not 100% in the 18O-H2O incubated samples (Table S1). This can
be accounted for by calculating the fraction of maximum potential enrichment as in Foley et al. (23). To
calculate confidence intervals for AFE estimates for each genome bin, we implemented a bootstrapping
procedure as follows: for each genome bin, weighted-mean density (WMD) shifts were calculated for
each pair of 16O/18O incubated samples from each replicate soil core from the site where the bin was
assembled; three WMD shifts were randomly subsampled with replacement from the WMD shifts calcu-
lated for each replicate soil cores. This subsampling procedure was repeated 1,000 times for each ge-
nome and average AFE was calculated for the three subsampled WMD shifts for each bootstrap; 95%
confidence intervals for AFE for each genome were calculated from the distribution of AFE estimates
across the 1,000 bootstraps.

In marker-gene amplicon-based qSIP, GC is estimated based on the mean weighted density of an
amplicon sequence variant (ASV) in natural-abundance isotope samples (32, 73). To calculate AFE on
metagenomic contigs and genome bins, we used the GC content of the assembled sequence, rather
than estimating GC from the mean weighted density of the sequence in 16O samples (we found that
both methods yielded near equivalent values). In order to test the feasibility of SIP metagenomics
experiments without natural-abundance samples, we further calculated AFE on each metagenomic
bin using the genome’s observed GC content and observed mean weighted density in 18O samples
(using GC to impute both maximum mean-weighted density and natural-abundance mean-weighted
density) and compared these 18O-only AFE values with those we had calculated using 16O samples.
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Hungate et al. (73) use the calculation GC ¼ 1
0:083506

� WLighti 2 1:640657ð Þ where GC is the average

GC (as a proportion of total DNA) of genomei and WLighti is the mean weighted density of the 16S
rRNA sequence from genomei in natural-abundance samples (73, see Equation 5). This is based on an
empirically derived relationship between mean weighted density and GC for DNA from microbial cul-
tures with genomes of known GC proportions. Based on the GC content of genome bins assembled
from our samples and calculated mean weighted densities in 16O-H2O incubated samples (Fig. S1A),

we find a relationship of GC ¼ 1
0:088

� WLighti 2 1:6689ð Þ. We used this formula to estimate the mean

weighted density of genomes without isotopic labeling in order to calculate AFE using densities only
from 18O-H2O incubated samples.

To evaluate the contribution of soil and environmental characteristics on microbial diversity at each
site, we calculated Bray-Curtis distance between each sample using relative abundance of bins and then
partial distance-based redundancy analysis on pairwise distances using stepwise model selection evalu-
ating the contributions to microbial community structure of mean annual precipitation, soil pH, soil
water potential at the permanent wilting point, soil moisture at sample collection, and soil moisture at
during the incubation each as covariates. This analysis was conducted using the package “vegan” in the
R computing language with the functions “vegdist,” “capscale,” and “ordistep” (74, 75). The analysis was
repeated using AFE instead of relative abundance for each genome to calculate Bray-Curtis distance
between samples.

For each annotation feature (key enzymes and pathways for core metabolism, stress, complex carbo-
hydrate degradation, physiological traits, including motility, viral defense, and polysaccharide biosynthe-
sis inferred from multiple annotation packages and custom pipelines), we conducted a two-way
Kolmogorov-Smirnov test comparing the AFE distribution of genomes with that trait at each site versus
the AFE distribution of all genomes at the same site, correcting for multiple comparisons with the
Benjamani-Hochberg procedure. We hierarchically clustered annotation features by mean AFE for
genomes possessing that feature at each site (see additional supplemental tables). The findings for the
three distinct sites were then compared.

We also calculated the index of replication (iRep, 19) for each dereplicated metagenomic bin by
mapping reads from unfractionated DNA from each of the 18 samples to genomes co-assembled from
density-fraction libraries from the same sample.

Comparison to 16S-rRNA marker gene qSIP. Density-fractionated DNA was also used to generate
16S rRNA V4-5 variable region amplicons as described by Foley et al. (33). Libraries were sequenced on
an Illumina MiSeq instrument at Northern Arizona University’s Genetics Core Facility. Paired-end reads
were filtered to remove phiX and other contaminants with bbduk v38.56 (https://jgi.doe.gov/data-and
-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/) and Fastq files were trimmed for qual-
ity and used to generate ASVs with DADA2 v1.10 and phyloseq v1.26 (76, 77). Chimeric sequences were
removed using removeBimeraDenovo from DADA2. 18O AFE of bacterial and archaeal 16S rRNA gene
amplicons was quantified following a modified version of the procedure (Tag-SIP) described in Hungate
et al. (73). Here, average DNA concentration was used rather than 16S-rRNA copy number (23, 49) to nor-
malize the relative abundance of taxa within each density fraction. A WMD was then calculated for each
taxon based on the distribution of its DNA across the CsCl density gradient following incubation with ei-
ther natural abundance or isotopically heavy water.

Representative ASV sequences from amplicon libraries were compared with 16S rRNA gene sequen-
ces identified from metagenomic contigs using blast, filtering for any hits that aligned at 99% across the
full 250-bp assembled amplicons. We calculated AFE of individual 16S rRNA gene-containing contigs
using the procedure described above, and compared AFE values for 16S rRNA gene sequences calcu-
lated from amplicon sequencing and metagenomic assembly using published qSIP calculations.

Data availability. Sequence data generated for this manuscript is available at NCBI under Bioproject
PRJNA718849. Microbial genomes bins and annotations are available at: https://ggkbase.berkeley.edu/wsip
-metawrap-drep-bins/organisms. Scripts for the computation and analysis used to generate results for this manu-
script are available at https://github.com/alexgreenlon/wsip/tree/master. Additional supplemental tables are avail-
able to https://github.com/alexgreenlon/wsip/blob/master/Greenlon-et-al.2022%20additional%20supplemental%
20data.xlsx.
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