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Abstract 

Simple decision heuristics that process cues in a particular 
order and stop considering cues as soon as a decision can be 
made have been shown to be both accurate and quick. But one 
criticism of heuristics such as Take The Best is that these owe 
much of their simplicity and success to the not inconsiderable 
computations necessary for setting up the cue search order 
before the heuristic can be used. The criticism, though, can be 
countered in two ways: First, there are typically many cue 
orders possible that will achieve good performance in a given 
problem domain. And second, as we will show here, there are 
simple learning rules that can quickly converge on one of 
these useful cue orders through exposure to just a small 
number of decisions. We conclude by arguing for the need to 
take into account the computation necessary for not only the 
application but also the setup of a heuristic when talking 
about its simplicity. 

One-Reason Decision Making and Ordered 
Search 

In the book Simple heuristics that make us smart, 
Gigerenzer and colleagues (1999) propose several decision 
making heuristics for predicting which of two objects or 
options, described by multiple binary cues, scores higher on 
some quantitative criterion. These heuristics have in 
common that information search is stopped once one cue is 
found that discriminates between the alternatives and thus 
allows an informed decision. No integration of information 
is involved, leading these heuristics to be termed “one-
reason” decision mechanisms. These heuristics differ only 
in the search rule that determines the order in which 
information is searched. But where do these search orders 
come from? 

“Take the Best” (TTB; Gigerenzer & Goldstein, 1996, 
1999) is the heuristic that has received most attention to 
date, both theoretically and empirically. TTB consists of 
three building blocks: 

 
1. Search rule: Search through cues in the order of their 

validity. Validity is the proportion of correct 
decisions made by a cue out of all the times that cue 
discriminates between pairs of options.  

 
2. Stopping rule: Stop search as soon as one cue is 

found that discriminates between the two options.  

3. Decision rule: Select the option to which the 
discriminating cue points, that is, the option that has 
the cue value associated with higher criterion values.  

 
The performance of TTB has been tested on several real-
world data sets, ranging from professors’ salaries to fish 
fertility (Czerlinski, Gigerenzer & Goldstein, 1999). Cross-
validation comparisons have been made against other more 
complex strategies, such as multiple linear regression, by 
training on half of the items in each data set to get estimates 
of the relevant parameters (e.g., cue order based on 
validities for TTB, beta-weights for multiple linear 
regression) and testing on the other half of the data. Despite 
only using on average a third of the information employed 
by multiple linear regression, TTB outperformed regression 
in accuracy when generalizing to the test set (71% vs. 68%). 

The even simpler heuristic Minimalist was tested in the 
same way. It is another one-reason decision making 
heuristic that differs from TTB only in its search rule. 
Minimalist searches through cues randomly, and thus 
requires even less knowledge and precomputation than TTB 
– all it needs to know are the directions in which the cues 
point. Again it was surprising that this heuristic performed 
reasonably close to multiple regression (65%). But the fact 
that Minimalist lagged behind TTB by a noticeable margin 
of 6 percentage points indicates that part of the secret of 
TTB’s success lies in its ordered search. 

In this paper, we explore how such useful cue orders can 
be constructed in the first place, by testing a variety of 
simple order-learning rules in simulation. We find that 
simple mechanisms at the learning stage can enable simple 
mechanisms at the decision stage, such as one-reason 
decision heuristics, to perform well. 

Experimental Evidence for Ordered Search 
From an adaptive point of view, the combination of 
simplicity and accuracy makes one-reason decision making 
with ordered search, as in TTB, a plausible candidate for 
human decision processes.  Consequently, TTB has been 
subjected to several empirical tests. Because TTB explicitly 
specifies information search as one aspect of decision 
making, it must be tested in situations in which cue 
information is not laid out all at once, but has to be searched 
for one cue at a time, either in the external environment or 
in memory (Gigerenzer & Todd, 1999).  
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In situations where information must be searched for 
sequentially in the external environment, particularly when 
there are direct search costs for accessing each successive 
cue, considerable use of TTB has been demonstrated 
(Bröder, 2000, experiments 3 & 4; Bröder, 2003). This also 
holds for indirect costs, such as from time pressure 
(Rieskamp & Hoffrage, 1999), as well as for internal search 
in memory (Bröder & Schiffer, 2003). The particular search 
order used has not always been tested separately, but when 
such an analysis at the level of building blocks has been 
done, search by cue validity order has received support 
(Newell & Shanks, 2003; Newell, Weston & Shanks, 2003). 

However, none of these experiments tested search rules 
other than validity ordering. One other very important 
dimension on which cues can be ordered is discrimination 
rate, which refers to the proportion of all possible decision 
pairs in which a cue has different values for (i.e., 
discriminates between) the two alternatives1. A closer look 
into the experimental designs of the studies cited above 
reveals that they all used systematically constructed 
environments in which discrimination rates of the cues were 
held constant. Now, when the discrimination rates of cues 
are all the same, there are not many orders besides validity 
that make sense. To put it differently, identical 
discrimination rates make several alternative ordering 
criteria that combine discrimination rate and validity (e.g., 
Martignon & Hoffrage, 2002) all lead to the same (validity) 
order. Examples for such criteria are success, which is the 
proportion of correct discriminations that a cue makes plus 
the proportion of correct decisions expected from guessing 
in the non-discriminating trials (success = v·d + 0.5·(1-d), 
where v = validity and d = discrimination rate of the cue), 
and usefulness, the portion of correct decisions not 
including guessing (usefulness = v·d).  

Because these criteria collapse to a single order (validity) 
in the reported experiments, nothing can be said about how 
validity and discrimination rate may interact to determine 
the search orders that participants apply. It remains unclear 
what information participants would base their decisions on 
when both validity and discrimination rate vary. There are 
hints that when information is costly, making it sensible to 
consider both how often a cue will enable a decision (i.e., its 
discrimination rate) and the validity of those decisions, other 
criteria such as success that combine the two measures show 
a better fit to empirical data (e.g., Newell, Rakow, Weston 
& Shanks, in press; Läge, Hausmann, Christen & Daub, 
submitted). But these studies, too, remain silent about how 
these criteria, or an order based on these criteria, could 
possibly be derived by participants.  

In sum, despite accumulating evidence for the use of one-
reason decision making heuristics, the basic processes that 
underlie people’s search through information when 
employing such heuristics remain a mystery. While some 
clues can be had by considering the size of the overlap or 
correlations between the search orders people use and 
various standard search orders (as reported by Newell et al., 

                                                           
1 Other dimensions for ordering are possible, such as the temporal 
order of previous cue use, but we will not consider them here. 

in press, and Läge et al., submitted), they do not come close 
to telling us how cue orders could possibly be learned. 

Search Order Construction – the Hard Way 
But how can the search order of TTB be constructed? 
Although TTB is a very simple heuristic to apply, the set-up 
of its search rule requires knowledge of the ecological 
validities of cues. This knowledge is probably not usually 
available in an explicit precomputed form in the 
environment, and so must be computed from stored or 
ongoing experience. Gigerenzer at al. (1999) have been 
relatively silent about the process by which people might 
derive validities and other search orders, a shortfall several 
peers have commented on (e.g., Lipshitz, 2000; Wallin & 
Gärdenfors, 2000). The criticism that TTB owes much of its 
strength to rather comprehensive computations necessary 
for deriving the search order cannot easily be dismissed. 
Juslin and Persson (2002) pay special attention to the 
question of how simple and informationally frugal TTB 
actually is, debating how to take into account the 
computation of cue validities for deriving the search order. 
They differentiate two main possibilities on the basis of 
when cue validities are computed: precomputation during 
experience, and calculation from memory when needed. 

When potential decision criteria are already known at the 
time objects are encountered in the environment, then 
relevant validities can be continuously computed and 
updated with each new object seen. But if it is difficult to 
predict what decision tasks may arise in the future, this pre-
computation of cue validities runs into problems. In that 
case, at the time of object exposure, all attributes should be 
treated the same, because any one could later be either a 
criterion or a cue depending on the decision being made. To 
use the well-known domain of German cities (Gigerenzer & 
Goldstein, 1996, 1999), the task that one encounters need 
not be the usual prediction of city populations based on cues 
such as train connections, but could just as well be which of 
two cities has an intercity train line based on cues that 
include city population. To keep track of all possible 
validities indicating how accurately one attribute can decide 
about another, the number of precomputed validities would 
have to be C2 - C, with C denoting to the number of 
attributes available. In the German cities example, there are 
10 attributes (9 cues plus the criterion population size), thus 
90 validities would have to be pre-computed. This number 
rises rapidly with increasing number of attributes. Even 
ignoring computational complexity, this precomputation 
approach is not frugal in terms of information storage.  

As a second possibility, Juslin and Persson (2002) 
consider storing all objects (exemplars) encountered along 
with their attribute values and postponing computation of 
validities to the point in time when an actual judgment is 
required. This, however, makes TTB considerably less 
frugal during its application. The number of pieces of 
information that would have to be accessed at the time of 
judgment is the number of attributes times the number of 
stored objects; in our city example, it is 10 times the number 
of known objects. With regard to computing validities for 
each of the N·(N-1)/2 possible pairs that can be formed 
between the N known objects, each of the C cues has to be 
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checked to see if it discriminated, and did so correctly. Thus 
the number of checks to be performed before a decision can 
be made is C·N·(N-1)/2, which grows with the square of the 
number of objects. 

Although Juslin and Persson assume worst case scenarios 
in terms of computational complexity for the sake of their 
argument, they raise an important point, showing that one of 
the fundamental questions within the framework of the ABC 
research group (Gigerenzer et al., 1999) remains open: How 
can search orders be derived in relatively simple ways?  

Many Roads Lead (Close) to Rome 
From what we have said so far, the situation does not look 
too good for validity either in terms of empirical evidence or 
psychological feasibility. But what would be the 
consequence in terms of loss in accuracy if we drop the 
assumption that cue search follows the validity order? 
Simulation results can provide an answer. First of all, 
validity is usually not the best cue ordering that can be 
achieved. For the German city data set, Martignon and 
Hoffrage (2002) computed the performance of all possible 
orderings, assuming one-reason stopping and decision 
building blocks. The number of possible orders was 362,880 
(9! orders of 9 cues). The mean accuracy of the resulting 
distribution corresponded to the performance expected from 
Minimalist, 70%, which was considerable above the worst 
ordering at 62%. Ordering cues by validity led to an 
accuracy of 74.2%, while the optimal ordering yielded 
75.8% accuracy. More than half of all possible cue orders 
do better than the random order used by Minimalist, and 
6,532 (1.8%) do better than the validity order. We can 
therefore conclude that many good orders exist. But how 
can one of these many reasonably good cue orders be 
constructed in a psychologically plausible way?  

Search Order Construction – the Simple Way 
A variety of simple approaches to deriving and continuously 
updating search orders can be proposed. Indeed, computer 
scientists have explored a number of self-organizing 
sequential search heuristics for the purpose of speeding 
retrieval of items from a sequential list when the relative 
importance of the items is not known a priori (Rivest, 1976; 
Bentley & McGeoch, 1985). The mechanisms they have 
focused on use transposition of nearby items and counting 
of instances of retrieval.  Our problem of cue ordering is 
slightly different from that of the standard sequential list 
ordering, because cues can fail in ways that retrieved items 
cannot: a cue may not discriminate (necessitating the search 
for another cue before a decision can be made), or it may 
lead to a wrong decision. Still, the mechanisms of 
transposition and counting will be central to the heuristics 
we propose. 

We focus on search order construction processes that are 
psychologically plausible by being frugal both in terms of 
information storage and in terms of computation. The 
decision situation we explore is different from the one 
assumed by Juslin and Persson (2002) who strongly 
 

differentiate between learning of (or about) objects and 
making decisions. Instead of assuming this unnecessary 
separation, we will explore a learning-while-doing situation. 
Certainly there are many occasions akin to Juslin and 
Persson’s situation where individuals have to make 
decisions based on knowledge they have learned about 
objects encountered previously and in a different task 
context. But perhaps more common are tasks that have to be 
done repeatedly with feedback being obtained after each 
trial about the adequacy of one’s decision. For instance, we 
can observe on multiple occasions which of two 
supermarket checkout lines, the one we have chosen or 
(more likely) another one, is faster, and associate this 
outcome with cues including the lines’ lengths and the ages 
of their respective cashiers. In such situations, one can learn 
about the differential usefulness of cues for solving the task 
via the feedback received over time. It is this case – 
decisions made repeatedly with the same cues and criterion 
and the opportunity to learn from outcome feedback – which 
we will now look at more closely. 

We consider several explicitly defined cue order learning 
rules that are designed to deal with probabilistic inference 
tasks. In particular, the task we use is forced choice paired 
comparison, in which a decision maker has to infer which of 
two objects, each described by a set of binary cues, is 
“bigger” on a criterion – the task for which TTB was 
formulated. Thus, in contrast to Juslin and Persson (2002), 
we assume individuals encounter decision situations instead 
of objects. After an inference has been made, feedback is 
given about whether a decision was right or wrong. 
Therefore, the learning algorithm has information about 
which cues were looked up, whether a cue discriminated, 
and whether a discriminating cue led to the right or wrong 
decision. There are different possibilities for taking these 
pieces of information into account. For example, correct 
decisions could be counted up for each cue (essentially 
keeping tallies). Or the information could be used to 
compute cue validities and discrimination rates based on the 
cases in which the cue has actually been looked up so far. 
These tallies, validity estimates, etc., would then be used for 
creating and adjusting the current cue order. 

The rules we propose differ in the pieces of information 
they use and how they use them. We classify the learning 
rules based on their memory requirement – high versus low 
– and their computational requirements (see Table 1). The 
computational requirements include whether the entire set of 
cues is completely reordered after each decision or only 
adjusted locally via swapping of neighboring cue positions, 
and whether reordering is done on the basis of measures 
involving division, such as validity, or simple tallying.  

The validity rule is the most demanding of the rules we 
consider in terms of both memory requirements and 
computational complexity. It keeps a count of all 
discriminations made by a cue so far (in all the times that 
the cue was looked up) and a separate count of all the 
correct discriminations. Therefore, memory load is 
comparatively high. The validity of each cue is determined 
by dividing its current correct discrimination count by its
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Table 1: Learning rules classified according to memory and computational requirements 
 

 
total discrimination count. Based on these values computed 
after each decision, the rule reorders the whole set of cues 
from highest to lowest validity.  

The tally rule only keeps one count per cue, storing the 
number of correct decisions made by that cue so far minus 
the number of incorrect decisions. So if a cue discriminates 
correctly on a given trial, one point is added to its tally. If it 
leads to an incorrect decision, one point is subtracted from 
its tally. The tally rule is less demanding both in terms of 
memory and computation: Only one count is kept, and no 
division is required.  

While the validity and tally rules rely on a counting 
mechanism, the simple swap rule uses the principle of 
transposition (cf. Bentley & McGeoch, 1985). This rule has 
no memory of cue performance other than an ordered list of 
all cues, and just moves a cue up one position in this list 
whenever it leads to a correct decision, and down if it leads 
to an incorrect decision. In other words, a correctly deciding 
cue swaps positions with its nearest neighbor upwards in the 
cue order, and an incorrectly deciding cue swaps positions 
with its nearest neighbor downwards. 

The tally swap rule is a hybrid of the simple swap rule 
and the tally rule. It keeps a tally of correct minus incorrect 
discriminations per cue so far (so memory load is high) but 
only locally swaps cues: When a cue makes a correct 
decision and its tally is greater than or equal to that of its 
upward neighbor, the two cues swap positions. When a cue 
makes an incorrect decision and its tally is smaller than or 
equal to that of its downward neighbor, the two cues also 
swap positions. 

As indicated in table 1, many variants of these basic types 
of learning rules are possible. Here we will focus on these 
four rules spanning the space of possibilities, and look at 
how they perform in simulations. Elsewhere we consider 
evidence for their use in experimental decision settings, and 
use these simulation results to assess human performance. 

Simulation Study of Simple Ordering Rules 
To test the performance of these order learning rules, we use 
the German cities data set (Gigerenzer & Goldstein, 1996),  

 
consisting of the 83 highest-population German cities 
described on 9 cues. The question we want to address is, 
what would happen if a decision-maker does not search for 
cues in validity order from the beginning, but instead must 
construct a search order using feedback received about each 
decision made? We assume that cue directions are known. 
Furthermore, instead of allowing the decision maker to look 
up information about all 9 cues in each pair comparison, we 
assume that TTB’s stopping and decision rule are used on 
all decisions. We do this because it is more natural to 
assume that learning happens in the ongoing context of 
decision making, which does not necessarily involve 
exhaustive information search. This runs counter the 
approach taken by Juslin and Persson (2002) who in their 
worst case scenarios assume exhaustive information search 
for validity computations. In our approach, only the limited 
information gathered until the first discriminating cue is 
found can be taken into account.  

We simulated 10,000 learning trials for each rule, starting 
from random initial cue orders. Each trial consisted of 100 
decisions between randomly selected decision pairs. Below 
we report average values across the 10,000 trials. 

Results 
We start by considering the cumulative accuracies (i.e., 
online or amortized performance – Bentley & McGeoch, 
1985) of the rules, defined as the total percentage of correct 
decisions made so far at any point in the learning process. 
(The contrasting measure of offline accuracy – how well the 
current learned cue order would do if it were applied to the 
entire test set – is a less psychologically useful indication of 
a real decision maker’s performance using some rule.) The 
mean cumulative accuracies of the different search order 
learning rules when used with one-reason decision making 
are shown in Figure 1. Cumulative accuracies soon rise 
above that of the Minimalist heuristic (proportion correct = 
0.70) which looks up cues in random order and thus serves 
as a lower benchmark. However, at least throughout the first 
100 decisions, cumulative accuracies stay well below the 
(offline) accuracy that would be achieved by using TTB for 

High memory load, 
complete reordering 

High memory load, 
local reordering 

Low memory load, 
local reordering 

 

Validity: reorders cues based on 
their current validity 

 

Tally: reorders cues by number 
of correct minus incorrect 
decisions made so far 

 
 
 

Variants: 
- reorder based on tally of 

discriminations so far 
- reorder based on tally of 

correct decisions only 
 

 

Tally swap: moves cue up 
(down) one position if it has 
made a correct (incorrect) 
decision if its tally of correct 
minus incorrect decisions is � 
(�) that of next higher 
(lower) cue 

 

Variants: 
- only upward swapping after 

correct decisions 
- tally of correct decisions only 

 

Simple swap: moves cue up one 
position if it has made a 
correct decision, and down if 
it has made an incorrect 
decision 

 
 
 

Variants: 
- moving cues more than one 

position  
- only upward swapping after 

correct decisions 
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all decisions (proportion correct = 0.74), looking up cues in 
the true order of their ecological validities.  

The four learning rules all perform on a surprisingly 
similar level, with less than one percentage point difference 
in favor of the most demanding rule (i.e., validity) compared 
to the least (i.e., simple swap; mean proportion correct in 
100 decisions: validity learning rule: 0.719; tally: 0.716; 
tally swap: 0.715; simple swap: 0.711). Importantly, though, 
the more demanding learning rules outperform Minimalist 
earlier. Whereas the tally swap and simple swap rule lead to 
accuracies that are significantly higher than Minimalist only 
after 48 and 61 decisions, respectively, the validity learning 
rule does significantly better already after 37 decisions, and 
the tally rule after 35 decisions (z = 1.65, p = 0.05). 

 

 
Figure 1: Mean cumulative accuracy of order learning rules 
 

These four learning rules are, however, all more frugal 
than TTB, and even more frugal than Minimalist. On 
average, they look up fewer cues before reaching a decision 
(see Figure 2). Again, there is little difference between the 
rules (mean number of cues looked up in 100 decisions: 
validity learning rule: 3.17; tally: 3.07; tally swap: 3.13; 
simple swap: 3.18). The validity learning rule and the tally 
rule lead to cue orders that are significantly more frugal than 
Minimalist very early (after 16 and 14 decisions, 
respectively), whereas the two swapping rules take longer: 
The tally swap rule takes 27 decisions, and the simple swap 
rule 32 decisions.  

Consistent with this finding, all of the learning rules lead 
to cue orders that show positive correlations with the 
discrimination rate cue order (reaching the following values 
after 100 decisions: validity learning rule: r = 0.18; tally: r = 
0.29; tally swap: r = 0.24; simple swap: r = 0.18). This 
means that cues that often lead to discriminations are more 
likely to end up in the first positions of the order. In 
contrast, the cue orders resulting from all learning rules but 
the validity learning rule do not correlate with the validity 
cue order, and even the correlations of the cue orders 
resulting from the validity learning rule after 100 decisions 
only reach an average r = 0.12.  

 
 

 
Figure 2: Mean cumulative frugality of order learning rules 

 
But why would the discrimination rates of cues exert 

more of a pull on cue order than validity, even when the 
validity learning rule is applied? Part of the explanation 
comes from the fact that in the city data set we used for the 
simulations, validity and discrimination rate of cues are 
negatively correlated. Having a low discrimination rate 
means that a cue has little chance to be used and hence to 
demonstrate its high validity. Whatever learning rule is 
used, if such a cue is displaced downward to the lower end 
of the order by other cues, it may never be able to escape to 
the higher ranks where it belongs. The problem is that when 
a decision pair is finally encountered for which that cue 
would lead to a correct decision, it is unlikely to be checked 
because other, more discriminating although less valid, cues 
are looked up before and already bring about a decision. 
Thus, because one-reason decision making is intertwined 
with the learning mechanism and so influences which cues 
can be learned about, what mainly makes a cue come early 
in the order is producing a high number of correct decisions 
and not so much a high ratio of correct discriminations to 
total discriminations regardless of base rates. 

In sum, all of the learning rules lead to accuracies 
between that of the heuristics TTB and Minimalist, but 
some rules reach orders that are better than Minimalist 
sooner. The rules are highly frugal, with a (slight) tendency 
to change the order in the direction of discrimination rate.  

Discussion 
The simpler cue order learning rules we have proposed do 
not fall far behind a validity learning rule in accuracy. This 
holds even for the simplest rule, which only requires 
memory of the last cue order used and moves a cue one 
position up in that order if it made a correct decision, and 
down if it made an incorrect decision. All of the rules 
considered here make one-reason decision heuristics 
perform above the level of Minimalist in the long run.  

On the other hand, the four rules, even the validity 
learning rule, stay below TTB’s accuracy across a relatively 
high number of decisions. But often it is necessary to make 
good decisions without much experience. Therefore, 
learning rules should be preferred that quickly lead to orders 
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with good performance. Both the validity and tally learning 
rules quickly beat Minimalist. At the same time, the tally 
rule leads to considerably more frugal cue orders. 

Remember that the tally rule assumes full memory of all 
correct minus incorrect decisions made by a cue so far. But 
this does not make the rule implausible. There is 
considerable evidence that people are actually very good at 
remembering the frequencies of events. Hasher and Zacks 
(1984) conclude from a wide range of studies that 
frequencies are encoded in an automatic way, implying that 
people are sensitive to this information without intention or 
special effort. Estes (1976) pointed out the role frequencies 
play in decision making as a shortcut for probabilities. 
Further, the tally rule is comparatively simple, not having to 
keep track of base rates or perform divisions as does the 
validity rule. From the other side, the simple swap rule may 
not be much simpler, because storing a cue order may be 
about as demanding as storing a set of tallies. We therefore 
conclude that the tally rule should not be discounted on 
grounds of implausibility without further empirical 
evidence. Of course, a necessary next step (currently 
underway) will be to test how well these and other rules 
predict people’s information search when they have to make 
cue-based inferences without knowing validities. 

Our goal in this paper was to argue for the necessity of 
taking into account the set-up costs of a heuristic in addition 
to its application costs when considering the mechanism’s 
overall simplicity. As we have seen from the example of the 
validity search order of TTB, what is easy to apply may not 
necessarily be so easy to set up. But simple rules can also be 
at work in the construction of a heuristic’s building blocks. 
We have proposed such rules for the construction of one 
building block, the search order. We have seen that these 
simple learning rules enable a one-reason decision heuristic 
to perform only slightly worse than if it had full knowledge 
of cue validities from the very beginning. Giving up the 
assumption of full a priori knowledge for the slight decrease 
in accuracy seems like a reasonable bargain: Through the 
addition of learning rules, one-reason decision heuristics 
might lose some of their appeal to decision theorists who 
were surprised by the performance of such simple 
mechanisms compared to more complex algorithms, but 
they gain psychological plausibility and thus become more 
attractive as explanations for human decision behavior. 
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