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HIGHLIGHTED ARTICLE
| INVESTIGATION

Boosting Gene Mapping Power and Efficiency with
Efficient Exact Variance Component Tests of Single

Nucleotide Polymorphism Sets
Jin J. Zhou,*,1 Tao Hu,†,‡ Dandi Qiao,§ Michael H. Cho,**,††,‡‡ and Hua Zhou§§

*Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson,
Arizona 85724, †Bioinformatics Research Center, and ‡Department of Statistics, North Carolina State University, Raleigh, North
Carolina 27695, §Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, **Channing Division
of Network Medicine, and ‡‡Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s

Hospital, Boston, Massachusetts 02115, ††Harvard Medical School, Boston, Massachusetts, and §§Department of Biostatistics,
University of California, Los Angeles, California 90095

ORCID ID: 0000-0001-7983-0274 (J.J.Z.)

ABSTRACT Single nucleotide polymorphism (SNP) set tests have been a powerful method in analyzing next-generation sequencing (NGS)
data. The popular sequence kernel association test (SKAT) method tests a set of variants as random effects in the linear mixed model setting.
Its P-value is calculated based on asymptotic theory that requires a large sample size. Therefore, it is known that SKAT is conservative and can
lose power at small or moderate sample sizes. Given the current cost of sequencing technology, scales of NGS are still limited. In this report,
we derive and implement computationally efficient, exact (nonasymptotic) score (eScore), likelihood ratio (eLRT), and restricted likelihood
ratio (eRLRT) tests, EXACTVCTEST, that can achieve high power even when sample sizes are small. We perform simulation studies under various
genetic scenarios. Our EXACTVCTEST (i.e., eScore, eLRT, eRLRT) exhibits well-controlled type I error. Under the alternative model, eScore
P-values are universally smaller than those from SKAT. eLRT and eRLRT demonstrate significantly higher power than eScore, SKAT, and SKAT
optimal (SKAT-o) across all scenarios and various samples sizes. We applied these tests to an exome sequencing study. Our findings replicate
previous results and shed light on rare variant effects within genes. The software package is implemented in the open source, high-
performance technical computing language JULIA, and is freely available at https://github.com/Tao-Hu/VarianceComponentTest.jl. Analysis
of each trait in the exome sequencing data set with 399 individuals and 16; 619 genes takes around 1 min on a desktop computer.

KEYWORDS SNP set tests; linear mixed effect model; exact tests; next-generation sequencing studies; small sample sizes

Single nucleotide polymorphism (SNP) set analysis, also
referred to as gene set, pathway, or region-based analysis,

has been widely used in the genetic association analysis (Wang
et al. 2007, 2010). They examine groups of SNPs, each ofwhich
might contribute a small and individually undetectable effect to
the phenotype. The hypothesis is that, when examined jointly,
the combined effect of all the genes would rise to the detectable
level. SNP sets are usually predefined according to sliding win-

dows, exons, or canonical pathways. Compared to SNP-level
analysis, SNP set analysis has increased power because it re-
duces multiple testing burden and aggregates weak signals.
Besides its success in genome-wide association studies (GWAS)
(Wang et al. 2009; Psychiatric GWAS Consortium Bipolar Dis-
order Working Group 2011; Chen and Gyllensten 2015), SNP
set analysis plays a paramount role in analyzing rare variants in
the next-generation sequencing (NGS) studies.

Burden tests areamong thefirstSNPsetanalysis tools.Burden
tests collapse rare variants in agenetic region intoa singleburden
variable, and then regress the phenotype on the burden variable
to test for the cumulative effects of rare variants in the set
(Morgenthaler and Thilly 2007; Li and Leal 2008; Madsen and
Browning 2009; Price et al. 2010). The sequence kernel associ-
ation test (SKAT) is the first generalized linear mixed model-
based method for testing the joint effect of a set of variants on
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a quantitative/binary trait in an unrelated sample (Wu et al.
2011). It tests a SNP set as random effects using a quadratic
form and uses a mixture of chi-squared distributions as its as-
ymptotic null distribution. Compared to burden tests, a linear
mixed model (LMM)-based method is more powerful when a
genetic region has both protective and deleterious variants or
many noncausal variants (Lee et al. 2012). However, SKATmay
still be underpowered at small sample sizes, as it uses an asymp-
totic score test based on large sample theory. In this article we
consider exact variance component tests that are applicable to
genetic studies with small to moderate sample sizes.

Testing variance components in the LMM framework is
challenging and has received considerable attention in the
statistical literature (Chen and Dunson 2003; Kinney and
Dunson 2007; Greven et al. 2008; Saville and Herring 2009;
Drikvandi et al. 2013; Qu et al. 2013). Although likelihood ratio
test (LRT) and restricted likelihood ratio test (RLRT) are known
to be more powerful than score tests in finite samples, they
impose serious computational challenges to genome-wide
studies, as the alternative model has to be fit for each SNP
set and the calculation of P-values is computationally expen-
sive. Previous efforts in genetics studies include Zeng et al.
(2014, 2015) and Zeng and Wang (2015).

In summary, our contributions in this work are fourfold.
First, we develop the exact score (eScore) test that achieves
higher power than SKAT at small sample sizes but maintains
computational efficiency. Second, we examine the computa-
tional bottleneck of the exact likelihood ratio test (eLRT) and
the exact restricted likelihood ratio test (eRLRT) and design
newalgorithms that are scalable togenomic studies. Third,we
investigate the power of three exact variance component tests
under various genetic study scenarios and demonstrate that
the exact variance component tests have proper type I error
rates in small sample sequencing association studies, and that

eLRT and eRLRT significantly boost power in rare variant
studies. Last, we develop and freely distribute a user-friendly
software for genetic testing using the three exact variance
component tests.

Methods

Notations and models

Suppose y is an n3 1 vector of quantitative phenotypes, X is
an n3 p covariate matrix (e.g., gender, smoking history, prin-
cipal components, etc.), G is an n3m genotype matrix of m
genetic variants, and W is a prespecified diagonal weight
matrix for genetic variants. We consider a standard LMM

y ¼ Xbþ Ggþ e;
g � N

�
0;s2

gW
�
; e � N

�
0;s2

e In
�
;

(1)

where b are fixed effects, g are random genetic effects, and
s2
g and s

2
e are variance component parameters for the SNP set

and environmental effects respectively. Therefore, the phe-
notype vector y has covariance

V ¼ s2
gSþ s2

e In;

where S ¼ GWG9 is the kernel matrix capturing effects of the
SNP set. The resulting log-likelihood function is

L
�
b;s2

g ;s
2
e
� ¼ 2

n
2
lnð2pÞ2 1

2
lndetðVÞ

2
1
2
ðy2XbÞ9V21ðy2XbÞ:

(2)

In the following sections, we present the test statistics for
the three exact tests along with their null distributions and
then outline the computational strategy to scale them to

Figure 1 Discrepancy between SKAT and eScore P-values. Left: there is no SNP set effect ðnull model; s2
g ¼ 0Þ: Right: there is SNP set effect

ðalternative model; s2
g ¼ 0:5Þ:
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genome-wide studies. Detailed derivations are delegated to
the Supplemental Material, File S1.

eScore

The classical score test statistic for testingH0 : s2
g ¼ 0 (noSNP

set effect) vs. HA : s2
g . 0 takes the form

Sscore ¼
J21
s2
g ;s

2
g

�
@

@s2
g
L
�2 @

@s2
g
L. 0

0
@

@s2
g
L# 0

;

8>>><
>>>:

where J is the Fisher information matrix relevant to variance
components ðs2

g ;s
2
e Þ and @

@s2
g
L is the score function, both

evaluated at the maximum likelihood estimate (MLE) under
H0: File S1, section S.2, shows that

Sscore ¼ max
ðy2Xb̂Þ9Sðy2Xb̂Þ
ðy2Xb̂Þ9ðy2Xb̂Þ ;

trðSÞ
n

( )
; (3)

where b̂ ¼ ðX9XÞ21X9y is the least squares estimate of fixed
effects and trðMÞ represents the sum of diagonal entries of a
squarematrixM: The exact score test (eScore) rejects the null
hypothesis when Sscore is large.

Let s ¼ rankðXÞ; PX ¼ XðX9XÞ21X9 be the projection ma-
trix onto the column space CðXÞ; and fm1; . . . ;mkg be the
strictly positive eigenvalues of ðIn 2PXÞSðIn 2PXÞ: Under
the null hypothesis s2

g ¼ 0; Sscore is distributed as

max
Pk

i¼1mkw
2
iPn2s

i¼1w
2
i
;
trðSÞ
n

( )
;

where w1; . . . ;wn2s are independent standard normals. The
P-value of observed SScore ¼ t equals the tail probability

P

 Pk
i¼1mix

2
1;iPn2s

i¼1x
2
1;i

$ t

!
¼ P

 Xk
i¼1

ðmi 2 tÞx21;i 2 tx2n2s2k $ 0

!
;

where x2
1;1; . . . ; x

2
1;k; x

2
n2s2k are independent chi-square ran-

dom variables. Therefore eScore P-values can be calculated

Table 1 Empirical type I error rate of eScore, eLRT, and eRLRT based on 106 simulation replicates

Scenario Length (kb) n a eScore eLRT eRLRT

Common + Rare
(1) 5 500 531022 4:9931022 5:073 1022 5:0031022

131022 1:0131022 1:023 1022 1:0131022

131024 9:7031025 9:303 1025 8:6031025

5 1000 531022 5:0031022 5:083 1022 4:9231022

131022 1:0031022 1:013 1022 9:9531023

131024 1:0231024 1:043 1024 1:0631024

5 2000 531022 5:0131022 5:033 1022 4:6131022

131022 1:0131022 1:023 1022 9:7431023

131024 1:0431024 1:003 1024 9:1031025

(2) 10 500 531022 5:0231022 5:053 1022 4:9531022

131022 1:0031022 1:023 1022 1:0131022

131024 9:3031025 1:013 1024 9:8031025

10 1000 531022 5:0231022 5:053 1022 4:7131022

131022 1:0031022 9:943 1023 9:6031023

131024 1:0731024 9:403 1025 9:2031025

10 2000 531022 5:0331022 5:023 1022 3:9731022

131022 1:0031022 1:003 1022 8:8131023

131024 9:2031025 7:103 1025 7:6031025

Rare Only
(3) 5 500 531022 5:0131022 5:003 1022 5:0031022

131022 1:0031022 1:003 1022 1:0031022

131024 9:2031025 1:183 1024 1:1531024

5 1000 531022 4:9831022 4:973 1022 4:9731022

131022 9:8131023 9:803 1023 9:9731023

131024 8:5031025 9:603 1025 9:0031025

5 2000 531022 5:0531022 5:033 1022 5:0331022

131022 1:0131022 1:013 1022 1:0131022

131024 9:6031025 8:403 1025 8:1031025

(4) 10 500 531022 5:0331022 5:013 1022 5:0231022

131022 1:0031022 1:023 1022 1:0231022

131024 9:7031025 9:403 1025 9:3031025

10 1000 531022 4:9731022 4:993 1022 4:9931022

131022 1:0031022 1:003 1022 1:0031022

131024 1:1531024 9:803 1025 1:1031025

10 2000 531022 5:0331022 5:003 1022 4:9631022

131022 1:0031022 1:003 1022 1:0031022

131024 9:0031025 9:603 1025 1:0031024

Top panel shows the cases when simulation region include both common and rare, while bottom panel shows the cases when only rare variants are included.

Efficient Exact Variance Component Tests 923

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.190454/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.190454/-/DC1/FileS1.pdf


using the same numerical methods SKAT uses to evaluate the
tail probability of a mixture of independent chi-squares.
Moreover, whenever the ratio of two quadratic forms in (3)
is less than the threshold n21trðSÞ; it represents evidence
against the alternative hypothesis and the correct P-value
should be 1. This saves considerable computation as most
test regions are not associated with the trait.

In contrast, SKAT employs the test statistic

SSKAT ¼ ðy2Xb̂Þ9Sðy2XbÞ
ðy2Xb̂Þ9ðy2Xb̂Þ=ðn2 sÞ ¼

ðy2Xb̂Þ9Sðy2Xb̂Þ
ŝ2
e

(4)

and calculates its P-value using the null distributionPk
i¼1mix

2
1;i of s

22
e ðy2Xb̂Þ9Sðy2Xb̂Þ: Under the null model,

ŝ2
e converges to the true s2

e as sample size n increases.
Therefore SSKAT is distributed as

Pk
i¼1mix

2
1;i only asymptot-

ically. Under the alternative model ðs2
g 6¼ 0Þ; however, ŝ2

e is
a biased estimator that tends to overestimate the true s2

e :

This bias potentially affects the power of SSKAT:

eLRT and eRLRT

In this sectionwefirst review the eLRTandeRLRT for testing a
single variance component proposed by Crainiceanu and
Ruppert (2004), and then discuss the computational chal-
lenges for applying them to sequencing studies. Section S.3
in File S1 gives self-contained derivation.

The LRT statistic for testing H0 : s2
g ¼ 0 vs. HA : s2

g . 0 is

SLRT ¼ 2 sup
HA

L
�
b;s2

g ;s
2
e
�
2 2 sup

H0

L
�
b;s2

g ;s
2
e
�
: (5)

Under the null model s2
g ¼ 0; SLRT has exact distribution

SLRT ¼D sup
l$0

nln

Xn2s

i¼1
w2
iXk

i¼1

w2
i

1þ lmi
þ
Xn2s

i¼kþ1
w2
i

8>>><
>>>:

2
Xl
i¼1

lnð1þ ljiÞ
)
; (6)

where w1; . . . ;wn2s are independent standard normals,
j1; . . . ; jℓ are the strictly positive eigenvalues of S; and
fm1; . . . ;mkg are the strictly positive eigenvalues of
ðIn 2PXÞSðIn 2PXÞ:

The RLRT is based on the restricted/residual log-
likelihood

RL
�
s2
g ;s

2
e
� ¼ 2

n2 s
2

lnð2pÞ2 1
2
lndet

�
Q9VQ

�
2
1
2
y9Q

�
Q9VQ

�21
Q9y;

(7)

where I2PX ¼ QQ9: The RLRT statistic is

SRLRT ¼ 2 sup
HA

RL
�
s2
g ;s

2
e
�
2 2 sup

H0

RL
�
s2
g ;s

2
e
�
; (8)

which, under the null model s2
g ¼ 0; has exact distribution

SRLRT ¼D sup
l$0

  ðn2 sÞln
Xn2s

i¼1
w2
iXk

i¼1

w2
i

1þ lmi
þ
Xn2s

i¼kþ1
w2
i

8>>><
>>>:

2
Xk
i¼1

lnð1þ lmiÞ
)
; (9)

where w1; . . . ;wn2s are independent standard normals and
fm1; . . . ;mkg are the strictly positive eigenvalues of
ðIn 2PXÞSðIn 2PXÞ:

Applying eLRT and eRLRT to NGS studies, which routinely
test 103 � 106 genes or SNP sets, incurs serious computa-
tional challenges. First we need to find the MLE ðb̂; ŝ2

g ; ŝ
2
e Þ

or restricted maximum likelihood estimate (REML) ðŝ2
g ; ŝ

2
e Þ

for each SNP set, which requires repeatedly inverting n 3 n
matrices, an expensive operation when n is large. Second,
computing the P-value of eLRT or eRLRT for each SNP set
is nontrivial. Crainiceanu and Ruppert (2004) propose the
straightforward way of simulating B points from the null
distribution (6) or (9). That involves solving B univariate
optimizations, where B needs to be at order of 106 to obtain
P-values at order of 1024 with accuracy. This method is hard
to scale to genomic scans with a large number of SNP sets.

Implementation

Weattack thefirst computational challenges by anefficientand
stable algorithm for fitting the alternative model that avoids
repeatedly invertingmatrices.We resolve the second challenge
by using an accurate approximation that only requires simu-
lating a small number of points from the null distributions.

Fast algorithm for fitting variance component model

This section describes an efficient algorithm for fitting the
variance componentModel 2 or restricted-likelihoodModel 7.
Let S ¼ Udiagðj1; . . . ; jnÞU9 be the eigen decomposition of
the SNP set variance matrix. Then

Table 2 Summary of testing regions (average over simulation replicates)

n Total variants Observed variants Rare variants (%)

Causal variants (10%, 30%)

Model I–III Model IV–VI

500 193 84 80.6 6.2 8.25
1000 193 111 84.3 9.27 10.33
2000 194 146 87.9 12.38 14.43

924 J. J. Zhou et al.
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L
�
b;s2

e ;s
2
g
� ¼ 2

n
2
lnð2pÞ2 1

2

Xn
i¼1

ln
�
s2
e þ s2

gji
�

2
1
2
ðy2~XbÞ9diagðwÞð~y2 ~XbÞ;

where ~y ¼ U9y; ~X ¼ U9X; and w ¼ fðs2
e þ s2

gj1Þ21; . . . ;

ðs2
e þ s2

gjnÞ21g Our strategy is to update the mean compo-
nents b and variance components ðs2

e ;s
2
gÞ alternately.

Updating b given ðs2
e ;s

2
gÞ is a standard weighted least-

squares problem. To update ðs2
e ;s

2
gÞ given bðtÞ; where the

superscript t is iteration number, we denote the residuals by
rðtÞ ¼ ~y2 ~XbðtÞ: The objective is then

2
1
2

Xn
i¼1

ln
�
s2
e þ s2

gji
�
2

1
2

Xn
i¼1

rðtÞ2i

�
s2
e þ s2

gji
�21

;

which can be maximized by a minorization-maximization (MM)
technique (Hunter andLange2000). The simpleMMupdates are

s
2ðtþ1Þ
e ¼ s

2ðtÞ
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
rðtÞ2i

�
s
2ðtÞ
e þ jis

2ðtÞ
g

�22

Xn

i¼1

�
s
2ðtÞ
e þ jis

2ðtÞ
g

�21

vuuuut

s
2ðtþ1Þ
g ¼ s

2ðtÞ
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
jir

ðtÞ2
i

�
s
2ðtÞ
e þ jis

2ðtÞ
g

�22

Xn

i¼1
ji

�
s
2ðtÞ
e þ jis

2ðtÞ
g

�21

vuuuut :

(10)

See section S.4 in File S1 for the derivation of the MM up-
dates. This algorithm avoids repeatedly inverting n 3 n ma-
trices as only one eigen decomposition is required. Each
iteration only involves solving a weighted least squares prob-
lem and OðnÞ operations for updating variance components.
This algorithm is numerical stable as each update of b and
ðs2

g ;s
2
e Þ always increases the log-likelihood value.

For eRLRT, we need to find the REML for each SNP set.
Let B 2 ℝn3 ðn2sÞ be an orthonormal basis of CðXÞt; e.g.,
obtained from the singular value decomposition of X: Then
B9Y is multivariate normal with mean 0n2s and covariance

B9VB ¼ s2
eB9Bþ s2

gB9SB ¼ s2
e In2s þ s2

gB9SB:

Let the eigen decomposition of the covariancematrix B9SB be

B9V1B ¼ Gdiagðj1; . . . ; jn2sÞG9:

Then the transformed data ~Y ¼ G9B9Y has independent
components

~Y � N
�
0n2s;s

2
e In2s þ s2

gdiagðj1; . . . ; jn2sÞ
�

and the restricted log-likelihood function (7) becomes

2
n2 s
2

lnð2pÞ2 1
2

Xn2s

i¼1

ln
�
s2
e þ s2

gji
�

2
1
2

Xn2s

i¼1

~y2i
�
s2
e þ s2

gji
�21

:

It becomes clear that theMMupdates (10) remain unchanged
for finding REML except replacing ri by ~yi and n by n2 s:

Approximating null distributions of eLRT and eRLRT

Calculation of eLRT and eRLRT P-values relies on drawing
samples from the theoretical null distributions (6) and (9).
Typical genome scans test 103 � 105 SNP sets. An exome-
wide significant P-value at a level of 1026 requires drawing
about 107 samples from the null distribution and each of
them requires solving a univariate optimization problem.
Hence the P-value calculation for eLRT and eRLRT is compu-
tationally intensive. We propose an approximation scheme
that only requires drawing a small number of samples for
each SNP set and thus is highly scalable to genomic scans.

We approximate the exact null distributions (6) and (9) by
a mixture distribution of form p0x

2
0 : ð12p0Þax2

b ; where the
point mass p0 at 0, scale parameter a, and the degree of
freedom b for the chi-squared distribution need to be deter-
mined for each SNP set. We illustrate with eLRT. Denote the
expression to be maximized in (6) by f ðlÞ: The point mass of
the null distribution at 0 is well approximated by the proba-
bility of f ðlÞ having a local maximum at 0

Prob
�
f 9ðlÞ# 0

�
¼ Prob

 Xk

i¼1
miw

2
iXn2s

i¼1
w2
i

#
1
n

Xℓ
i¼1

ji

!

¼ Prob

0
BB@Xk

i¼1

0
BB@mi 2 n21

Xℓ
i9¼1

ji9

1
CCA

x2i 2

 
n21

Xℓ
i9¼1

ji9

!
x2n2s2k #0

1
CCA:

Therefore p0 is calculated by either numerically evaluating
the cumulative distribution function of the mixture of chi-
square distribution at 0 or by the simpleMonte Carlomethod.
To approximate the continuous part ax2

b of null distribution,
we simulate a small number (300 by default) of SLRT by
numerically maximizing fðlÞ using the Newton–Raphson
method, and then estimate parameters a and b by matching
the first two sample moments to those of ax2

b : This approxi-
mation scheme is well known as the Satterthwaite method
in statistics (Satterthwaite 1941), which has been used

Table 3 Models for simulating phenotypes based on a 10-kb
region

Disease
model

Causal
variants

Causal effects

Causal variants (%)MAF Distribution Direction

1 ,0.5 Nð0;s2
gÞ — 10 or 30

2 ,0.5 clogðMAFÞ Half and half 10 or 30
3 ,0.5 clogðMAFÞ All positive 10 or 30
4 ,0.05 Nð0;s2

gÞ — 10 or 30
5 ,0.05 clogðMAFÞ Half and half 10 or 30
6 ,0.05 clogðMAFÞ All positive 10 or 30

Efficient Exact Variance Component Tests 925
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Figure 2 Power comparison when causal variants are both common and rare (Models 1–3). Left panel shows the power when 10% of the
variants in the testing region are causal; right panel shows the power when 30% of the variants in the testing region are causal. Heritability is
fixed at both 5 and 10%.

926 J. J. Zhou et al.



Figure 3 Power comparisons when causal variants are rare only (Models 4–6). Left panel shows the power when 10% of the variants in the testing region are
causal; right panel shows the power when 30% of the variants in the testing region are causal. Heritability is fixed at both 5 and 10%.

Efficient Exact Variance Component Tests 927



successfully to approximate the null distributions of many
test statistics. The performance of our approximation is in-
cluded in the section S.5 in File S1, which indicates that our
approximation method works well for generating P-values
and reducing computational burden.

Data availability

Simulated data sets are generated using computing language
JULIA and are available upon request. COPDGene exome se-
quencing study (http://www.copdgene.org/) is part of the
National Heart, Lung, and Blood Institute (NHLBI) Grand
Opportunity Exome Sequencing Project (GO-ESP) and has
been deposited to database of Genotypes and Phenotypes
(dbGaP) (study accession: phs000296.v3.p2).

Results

We first illustrate the subtle differences between SKAT and
eScore for the motivation of exact tests. We then conduct a
comprehensive simulation study to illustrate the control of
type I error rate and the power under various conditions of
genetic association. These simulations were designed to eval-
uate two primary questions: (1) What is the relative perfor-
mance and what are the advantages of using LRT based tests,
especially when the causal variants are rare? (2) Can our
method still have advantages even when genetic association
are not under model assumptions?

Simulation studies

Differences between SKAT and eScore are demonstrated
using simulations. Genotypes of n ¼ 200 samples are
formed by randomly pairing 400 haplotypes drawn from
the haplotype pool distributed with the SKAT software
(Wu et al. 2011). We used the first 5 kb as the test region,
which contains 61 monomorphic loci, 20 rare variants with
MAF (minor allele frequency) ,0.05 (13 with MAFs
, 0:01), and 12 common SNPs. 1000 replicates of y are
generated under the null ðs2

g ¼ 0Þ and alternative model
ðs2

g ¼ 0:5Þ; respectively. Under the alternative hypothe-
ses, causal variants are chosen using criterion MAF
, 0:05: For simplicity no covariates are included. Figure
1 displays the discrepancy of P-values between eScore and
SKAT. Under the null model (left panel), SKAT P-values
roughly match those from eScore, except 73.1% of the
eScore tests have P-values equal to 1. This reflects the fact
that ŝ2

e is a fairly accurate estimate of s2
e under the null

model. Under the alternative model (right panel), how-
ever, ŝ2

e is a biased estimate and the SKAT P-values are
systematically larger than those from eScore, especially
in the region of small P-values. This can lead to loss of
power by SKAT in genome scans where a stringent P-value
threshold is necessary to correct multiple testing. The dif-
ference is more dramatic at smaller sample sizes or stron-
ger effect size s2

g :

For both type I error and power simulation studies, we
use the haplotype pool that comes with the SKAT software

(Wu et al. 2011) to generate genotypes of study samples.
That is, for each simulation replicate, we pair 2n ran-
domly drawn haplotypes to form the genotypes of a sample
of n subjects. To assess empirical type I error of eScore,
eLRT, and eRLRT, we consider combinations of following
factors:

1. test region: first 5 or 10 kb,
2. samples size n: 500, 1000, or 2000, and
3. significance level a: 0.05, 0.01, or 0.0001.

The average number of variants are 97 and 193 for 5- and
10-kb regions, respectively. We evaluate type I error when
both common and rare variants are included in the region as
well as when only rare variants (MAF ,5%) are included in
the region. We generate 106 replicates for each simulation
scenario. For each replicate, we first simulate four continuous
covariates from independent standard normals, one binary
covariate from Bernoulli(0.5), and then generate phenotypes
from Model 1 with b ¼ 1; s2

g ¼ 0; and s2
e ¼ 1: Results in

Table 1 show that the three exact tests control type I error
at all a levels.

For power comparisons, we take the first 10 kb of the
haplotype pool as the test region. Over simulation replicates,
testing regions include around 193 variants and 80–150 ob-
served variants on average (Table 2). Average proportion of
rare variants (MAF ,0.05) are 80.8, 84.3, and 87.9% for
sample sizes of 500, 1000, and 2000, respectively. The num-
ber of causal variants for different models are also shown in
Table 2. This is among the settings where we have evaluated
protected type I error. Covariates are generated in the same
manner as in the last section andwe set fixed effects atb ¼ 1:
For Models 1 and 4, causal effects g follow a normal distri-
bution Nð0;s2

gIÞ: Models 2, 3, 5, and 6 mimic the simulation
schemes in Wu et al. (2010), where the magnitude of causal
effects g is determined by cjlogðMAFÞj; so that rarer variants
have larger effects. In Wu et al.’s (2010) article, c was set up
as 0.4 and in Lee et al.’s (2014) article cwas set as 0.14, which
provides 80% power at level a, 1028 when the sample size
is 50,000. In our simulations, we chose s2

g and c by fixing
heritability h2; where h2 ¼ VarðGgÞ=VarðYÞ; so that power is
in the comparable ranges for most of methods given sample
sizes. Environmental variance s2

e was fixed at 1. For Models
1 and 4, we chose s2

g to be,

s2
g ¼ h2

12 h2
:

Table 4 The number of gene sets that pass genome-wide
significant level at FWER 0.05 from the COPDGene exome
sequencing study

eScore eRLRT eLRT SKAT SKAT-o

Height 5 8 15 4 3
PackYears 0 0 0 0 0
BMI 0 0 0 0 0

For eScore, eRLRT, eLRT, and SKAT, linear kernel and no weights are adopted.
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Similarly, c was chosen according to the formula

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

12 h2
1

VarðGjlogðMAFÞjÞ

s
:

As a comparison we list the mean and standard deviation of our
simulated c over simulation replicated in File S1 (Table S1). It is
shown that our c is smaller compared to Wu et al. (2010) and
Lee et al. (2014), which indicates smaller heritability explained
by testing regions. We consider the following simulation factors
to evaluate power and label them as Models 1–6 in Table 3:

1. sample size n: 500, 1000, or 2000,
2. heritability h2 : 5 or 10%,
3. MAF of causal variants: common and rare (MAF,0.5) or

rare only (MAF ,0.05),
4. percentage of causal variants: 10 or 30%,
5. distribution of causal effects: Nð0;s2

gÞ or cjlogðMAFÞj;
6. direction of causal effects: half positive and half negative

or all positive.

Significant level a is 1024: We simulate 1000 repli-
cates for each scenario. Therefore the largest Monte Carlo
standard error for power estimate is controlled belowffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:53 ð120:5Þ=1000p � 0:016:
For simplicity, in both simulation and real data analysis,

SNP weights are not incorporated and the linear kernel is
adopted forbothexact tests andSKAT.SKAToptimal (SKAT-o)

uses the default setting in Lee et al. (2012). Note all
exact tests can incorporate variant weights or other kernels
just as in SKAT or SKAT-o.

Figure 2 displays the results forModels 1, 2, and 3 (common
and rare causal variants) and Figure 3 for Models 4, 5, and
6 (rare causal variants only). Left panels of both figures are
the results when 10% of the variants in the region are causal,
while the right panels show powers when 30% of variants are
causal. It is clear that (1) performance of score tests (SKAT and
eScore) are comparable in these scenarios; (2) eLRT and eRLRT
significantly boosts power over score tests across all scenarios,
especially when causal variants are rare only or sample size is
small; and (3) when the causal variants are both common and
rare, the SKAT-o method can increase power extensively com-
pared with SKAT method with linear kernel. Its power is com-
parable to eLRT and eRLRT (Figure 2).

COPDGene exome sequencing study

Wefurther illustrateourmethodsusing theCOPDGeneexome
sequencing study (http://www.copdgene.org/). It is part of

Table 5 Top genes from the COPDGene exome sequencing study using five different methods

Gene eScore eRLRT eLRT SKAT SKAT-o Position Chr SetSize

Height**
ANKRD39 5:4731026 8:7731026 1:51310-6 7:4231026 1:4231025 97,521,896 2 2
ATP5D 1:17310-6 1:58310-6 5:19310-7 1:893 10-6 4:7431026 1,243,764 19 3
BHMT2 3:6031026 2:5531025 1:92310-6 4:8031026 2:48310-6 78,379,543 5 2
CDC16 8:5031027 2:86310-7 3:45310-7 1:193 10-6 1:19310-6 115,028,428 13 1
DOLPP1 5:0831026 8:1931026 1:39310-6 6:9231026 1:2731025 131,848,186 9 2
EVX2 2:4431024 5:3231026 9:53310-6 2:7131024 7:2531025 176,948,416 2 2
FAM204A 8:50310-7 2:86310-7 3:45310-7 1:193 10-6 1:19310-6 120,095,908 10 1
FASLG 2:2031025 2:0931025 2:34310-6 2:9231025 6:4831025 172,628,477 1 3
IFNGR1 2:51310-6 2:01310-6 9:91310-7 3:7631026 5:4831026 137,521,195 6 3
KRTAP13-1 1:8331023 2:33310-6 4:5031026 1:9431023 1:6431023 31,768,732 21 4
MN1 9:3331024 2:97310-7 5:57310-7 1:0031023 6:0831024 28,194,819 22 5
NDRG4 3:8431026 7:0931026 1:19310-6 5:3131026 1:0231025 58,529,726 16 2
PLD6 5:3331026 1:6231025 1:52310-6 7:2431026 1:4031025 17,107,768 17 2
RAPH1 1:6931026 5:5231026 6:3231026 2:363 10-6 3:2631026 20,432,4540 2 3
TTC1 5:6831026 1:53310-7 7:89310-8 7:5531026 7:7631026 15,947,3903 5 3
ZER1 1:7931024 7:3431026 2:13310-6 2:1131024 1:3431024 131,512,382 9 5
ZNF513 2:16310-6 1:48310-6 4:45310-7 3:7131026 1:0631025 27,601,136 2 7

PackYears*
SIN3A 9:6531024 1:3331025 3:6031025 1:0831023 1:5131023 75,693,827 15 5

BMI*
ADAMTS7 0.10 8:6131024 7:4031024 0.10 7:2331025 79,073,876 15 21
ADRA2A 2:2631024 2:9231024 9:3431025 2:8931024 5:0531024 112,838,638 10 2
APOLD1 9:8231026 1:7831025 1:9831025 1:7331025 1:5731025 12,909,721 12 4
HEPH 5:3031022 3:8831024 2:2531024 6:5731022 6:4631025 65,434,485 23 11
SNAPC5 2:6331025 2:1031024 6:2031025 3:0631025 3:3631025 66,788,877 15 3

Genes that pass Bonferroni corrected genome-wide significance level of 3 3 1026 are in boldface font. Position is the base pair position in the middle of the gene. Chr,
chromosome of the test region; SetSize, the number of SNPs in the test region. ** P , 3 3 1026, * P , 1024.

Table 6 Runtimes (in seconds) of different methods

Trait SKAT SKAT-o eScore eLRT eRLRT

eight 61.6 4004.1 53.5 64.8 31.9
PackYears 61.2 4041.3 50.3 56.9 28.4
BMI 57.7 4191.1 51.6 66.5 30.2
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NHLBI GO-ESP project (dbGaP study accession: phs000296.
v3.p2). After quality control, 399 individuals remain for the
analysis (Qiao et al. 2016). We analyze 16; 619 genes along
the genome and apply different testing methods to three
phenotypes: height, cigarette packages per year (PackYears),
and body mass index (BMI). Table S2 in File S1 tabulates
their descriptive statistics.

For all three phenotypes, we adjust population substruc-
ture using the top three eigenvectors generated by the Eigen-
strat software (Price et al. 2006), age, and gender. For
PackYears, we additionally adjust for current smoking status.
Table 4 shows the numbers of gene sets that pass Bonferroni-
adjusted exome-wide significance level 33 1026: Table 5
contains detailed information of gene sets that pass exome-
wide significance level for height. It also lists gene sets with
P-value , 1024 for trait PackYears and BMI for the purpose
of side-by-side comparison of P-values, as none of the gene
sets pass the exome-wide significant level.

Wemake following observations: (1) For the complex trait
height, eLRT and eRLRT identify 8 and 15 genes that pass
the Bonferroni-adjusted, genome-wide significant level and
eScore identifies 5. In contrast, SKATandSKAT-o only identify
four and three respectively. (2) For the other two traits, no
genes pass Bonferroni-adjusted genome-wide significance
level in all tests. (3) eScore P-values are universally smaller
than SKAT. This agrees with the simulation results in Figure 1
that the asymptotic test by SKAT can lose power at small
samples size and strong signals. (4) The optimal kernel in
SKAT-o does not show advantage over SKAT with linear ker-
nel and no weight in this analysis (Figure S1).

Computational efficiency of ExactVC

We compare the computational time of different methods.
Table 6 records the run times of each method on a desktop
with i7-3770 central processing unit of 3.40 GHz and 16 GB
RAM. For each trait, exact tests (eScore and eRLRT) complete
the analysis in ,1 min, while eLRT uses around a minute.
SKAT takes slightly longer than eScore, while SKAT-o takes
significantly longer than all of the tests. Note that although
LRT and RLRT is considered more computationally intensive
compared to the score test, Table 6 shows that the speed of
our eLRT test is comparable to eScore and SKAT tests, while
eRLRT is even faster.

Discussion

In this report we study and implement computationally effi-
cient exact variance component tests (eScore, eLRT, and
eRLRT) for testing SNP sets in sequencing studies. Simulation
study and real data analysis show that (1) all exact tests
control type I error, (2) eScore yields smaller P-values than
SKAT at small sample size and strong signal, and (3) eLRT
and eRLRT significantly boost power over eScore, SKAT, and
SKAT-o, especially when sample size is small or there are
plenty of rare variants. By supplying a fast and easy-to-use
software package, we hope to boost the power and efficiency

of gene mapping based on current NGS technology. Although
the derivation of eLRT and eRLRT require normal assumption
of genetic effects within a region, we evaluate the misspeci-
fied distribution and how that will affect power. In all scenar-
ios, even without normal assumption, our methods show
superior power compared with competing methods. The soft-
ware package, EXACTVCTEST, is implemented in the open
source, high-performance technical computing language
JULIA and is freely available at https://github.com/Tao-Hu/
VarianceComponentTest.jl.

There are a few directions for future work. One advantage
of the asymptotic test by SKAT is that it does not dependon the
normality assumption and equally applies to association test-
ing of binary traits (Wu et al. 2011; Lee et al. 2012), while the
exact tests depend on the normality assumption. Fortunately
many quantitative traits satisfies the normality assumption
after suitable transformations. Development of LRT and
RLRT for binary trait remains a challenge. Another statistical
challenge is to develop LRT or RLRT for testing SNP set in
related samples. An asymptotic score test has been developed
by Chen et al. (2013). Rigorous testing of multiple variance
components still remains a statistical challenge (Crainiceanu
2008; Drikvandi et al. 2013).
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Figure S1: Pvalues comparisons with and without �2
approximation for sample size 500, 1000, and 2000. Pvalues

from eLRT tests are shown in columns one and two, while pvalues from eRLRT are shown in columns three and

four. Second and forth columns are the zoom-in plots when pvalues are less than one. 1000 simulation replicates are

included. Phenotypes are simulated under the null hypothesis and 10kb testing region is used for evaluation (e.g.,

scenario (2) in Table 3 of the manuscript). Red line represents the line with slope 1 and intercept 0.

13



n

Average c

Model II and III Model V and VI

h2
= 5% h2

= 10% h2
= 5% h2

= 10%

Causal variants Causal variants Causal variants Causal variants

10% 30% 10% 30% 10% 30% 10% 30%

500 0.14(0.03) 0.07(0.02) 0.21(0.05) 0.10(0.03) 0.18(0.04) 0.09(0.02) 0.26(0.06) 0.13(0.03)

1000 0.14(0.04) 0.07(0.02) 0.20(0.05) 0.10(0.03) 0.19(0.05) 0.10(0.02) 0.26(0.06) 0.14(0.03)

2000 0.14(0.04) 0.07(0.02) 0.20(0.06) 0.10(0.02) 0.18(0.05) 0.10(0.02) 0.26(0.07) 0.14(0.03)

Table S1: Simulation constant c average over simulation replicates for di↵erent models.
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Trait Mean SD n

Height (cm) 168.59 9.59 399

PackYears 50.05 19.73 399

BMI 26.92 5.04 399

Table S2: Descriptive statistics of 3 phenotypes in COPDGene exome sequencing study.
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S.1 Model and notations

Suppose y is a n× 1 vector of quantitative phenotype, X is an n× p covariate matrix (e.g., grand

mean, sex, smoking history, height, principal components, etc), β is a p× 1 vector of fixed effects,

G is an n × m genotype matrix for m genetic variants, γ is their effects and follows an normal

distribution with variance σ2gW . W is the prespecified diagonal weight matrix for the rare variants

of size m × m. ε is the usual normal distributed random errors with mean zero and covariance

σ2eIn. We consider a standard linear mixed model y = Xβ + Gγ + ε, γ ∼ N(0m, σ
2
gW ), and

ε ∼ N(0n, σ
2
eIn) where σ2g and σ2e are corresponding variance component parameters for the SNP

set and environmental effects. Therefore, Var(y) = V = σ2gS + σ2eIn, where S = GWG′ is the

kernel matrix capturing effects from the SNP set.

Throughout the paper, we let PX = X(X ′X)−1X ′ be the projection matrix onto the column

space of C(X), In − PX be the projection matrix onto the complimentary null space of N (X ′) =

C(X)⊥. Let {ξ1, . . . , ξ`} be the positive eigenvalues of S and {µ1, . . . , µk} be the positive eigenvalues

of (I −PX)S(I −PX). We denote l = rank(S), k = rank((I −PX)S(I −PX)) and s = rank(X)

and define Q0 ∈ Rn×s be an orthonormal basis of C(X), Q1 ∈ Rn×k be an orthonormal basis from

the eigendecomposition of matrix (I − PX)S(I − PX), Q2 ∈ Rn×(n−s−k) is an orthonormal basis

of C(Q0,Q1)
⊥ = C(X,Q1)

⊥, and Q = (Q1,Q2) ∈ Rn×(n−s) be an orthonormal basis of the space

C(X)⊥.

S.2 Derivation of eScore test statistic and null distribution

We derive the exact score test for H0 : σ2g = 0 vs HA : σ2g > 0 in the variance component model

Y ∼ Nn(Xb,V ), where

V = σ2eIn + σ2gS.

The log-likelihood function is

L(b, σ2e , σ
2
g) = −n

2
ln(2π)− 1

2
ln det(V )− 1

2
(y −Xb)′V −1(y −Xb).

and its partial derivative with respect to σ21 is

∂

∂σ21
L(b, σ20, σ

2
1) = −1

2
tr(V −1S) +

1

2
(y −Xb)′V −1SV −1(y −Xb).

The information matrix relevant to variance components has entries

E

(
− ∂2

∂σ2e∂σ
2
e

L

)
=

1

2
tr(V −2)

E

(
− ∂2

∂σ2e∂σ
2
g

L

)
= E

(
− ∂2

∂σ2g∂σ
2
e

L

)
=

1

2
tr(V −2S)

E

(
− ∂2

∂σ2g∂σ
2
g

L

)
=

1

2
tr(V −1SV −1S).
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Rao’s score statistic is based on

J−1
σ2
g ,σ

2
g

(
∂

∂σ2g
L

)2

evaluated at the MLE under the null. We evaluate the partial derivatives at the MLE under the

null

b̂ = (X ′X)−1X ′y, σ̂2e =
y′(I − PX)y

n
.

That is

D1 :=
∂

∂σ2g
L(b̂, σ̂2e)

= − ntr(S)

2y′(I − PX)y
+
n2y′(I − PX)S(I − PX)y

2[y′(I − PX)y]2

=
−ntr(S)[y′(I − PX)y] + n2y′(I − PX)S(I − PX)y

2[y′(I − PX)y]2

Jσ2
g ,σ

2
g

:= E

(
− ∂2

∂σ2g∂σ
2
g

L(b̂, σ̂2e)

)
=

n2tr(S2)

2[y′(I − PX)y]2
,

from which we form the score statistic

T =

J
−1
σ2
g ,σ

2
g
D2

1 D1 ≥ 0

0 D1 < 0

=


[
−ntr(S) + n2 y

′(I−PX)S(I−PX)y
y′(I−PX)y

]2
y′(I−PX)S(I−PX)y

y′(I−PX)y ≥ tr(S)
n

0 y′(I−PX)S(I−PX)y
y′(I−PX)y < tr(S)

n

.

Equivalently the score test rejects when

T ′ = max

{
y′(I − PX)S(I − PX)y

y′(I − PX)y
,
tr(S)

n

}
is large.

To derive the null distribution of T ′, let s = rank(X), the eigen-decomposition of (I−PX)S(I−
PX) be

(I − PX)S(I − PX) = Q1diag(µ1, . . . , µk)Q
′
1,

where k = rank((I − PX)S(I − PX)), Q2 be an orthonormal basis of C(X,Q1)
⊥, and Q =

(Q1,Q2) ∈ Rn×(n−s). Then under the null

T ′ = max

{
y′Qdiag(µ1, . . . , µk, 0, . . . , 0)Q′y

y′QQ′y
,
tr(V1)

n

}
(1)

D
= max

{
σ2e
∑k

i=1 µkw
2
i

σ2e
∑n−s

i=1 w
2
i

,
tr(S)

n

}
(2)

D
= max

{∑k
i=1 µkw

2
i∑n−s

i=1 w
2
i

,
tr(S)

n

}
,

where wi are n− s independent standard normals. Here equation (1) is due to the following result.
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Lemma 1. I − PX = QQ′.

Proof. Note Q = (Q1,Q2) is an orthonormal basis of C(X)⊥ = N (X ′). Therefore QQ′ is an

orthogonal projection matrix onto N (X ′). I − PX is also an orthogonal projection matrix onto

N (X ′). Since orthogonal projection onto a vector space is unique, the equality follows.

Equation (2) is because, under the null, Q′y ∼ N(Q′Xb, σ2eQ
′IQ) = N(0, σ2eIn−s).

S.3 Derivation of eLRT and eRLRT and their null distributions

Under the same model, we derive exact LRT (eLRT) and exact RLRT (eRLRT) for testing σ2g = 0

when V = σ2gS + σ2eIn (Crainiceanu and Ruppert, 2004). Let λ = σ2g/σ
2
e be the signal-to-noise

ratio, and rewrite the covariance as V = σ2e(In + λS) = σ2eVλ, where Vλ = In + λS. Testing

H0 : σ2g = 0 vs HA : σ2g > 0 is equivalent to testing H0 : λ = 0 vs HA : λ > 0. The log-likelihood

function is L(β, σ2e , λ) = −n
2 lnσ2e − 1

2 ln det(Vλ)− 1
2σ2

e
(y−Xβ)′V −1λ (y−Xβ). The likelihood ratio

test (LRT) statistic is

LRT = 2 sup
HA

L(β, σ2e , λ)− 2 sup
H0

L(β, σ2e , λ)

= sup
λ≥0

{
n lny′(I − PX)y − n lny′Aλy − ln det(Vλ)

}
, (3)

where Aλ = V −1λ − V −1λ X(X ′V −1λ X)−1X ′V −1λ . The restricted/residual likelihood ratio test

(RLRT) is based on the restricted/residual log-likelihoodRL(σ2e , λ) = −n−s
2 lnσ2e−1

2 ln det(Q′VλQ)−
1

2σ2
e
y′Q(Q′VλQ)−1Q′y. The RLRT statistic is

RLRT = 2 sup
HA

RL(σ2e , λ)− 2 sup
H0

RL(σ2e , λ)

= sup
λ≥0

{
(n− s) ln(y′QQ′y)− (n− s) ln[y′Q(Q′VλQ)−1Q′y]

− ln det(Q′VλQ)
}

(4)

Since both I −PX and QQ′ are the orthogonal projection onto C(X)⊥, I −PX = QQ′. LRT

statistic (3) becomes

LRT = sup
λ≥0

{
n lny′(I − PX)y − n lny′Aλy − ln det(Vλ)

}
= sup

λ≥0

{
n lny′QQ′y − n lny′Aλy − ln det(Vλ)

}
.

It is easy to show that under the alternative model when λ > 0, σ−1e Q
′y ∼ N(0n−s,diag(1 +

λµ1, . . . , 1 + λµk, 1, . . . , 1)). Therefore the first term of LRT statistics (3) can be expressed in

distribution as sum of squared standard normal distributions. Following the same idea, we can

show Aλ = QDQ′, where D = diag((1 + µ1)
−1, . . . , (1 + µk)

−1, 1, . . . , 1). LRT statistics (3) is
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further reduced to

LRT = sup
λ≥0

{
n lny′QQ′y − n lny′QDQ′y − ln det(Vλ)

}
.

D
= sup

λ≥0

n ln

∑n−s
i=1 w

2
i∑k

i=1
w2

i
1+λµi

+
∑n−s

i=k+1w
2
i

−
l∑

i=1

ln(1 + λξi)

 .

Finally the calculation of LRT statistics becomes an optimization problem with the constraint λ > 0

and Newton-Raphson algorithm is implemented.

Similar derivation as eLRT shows that the null distribution of eRLRT is

RLRT
D
= sup

λ≥0

(n− s) ln

∑n−s
i=1 w

2
i∑k

i=1
w2

i
1+λµi

+
∑n−s

i=k+1w
2
i

−
k∑
i=1

ln(1 + λµi)

 ,

where w1, . . . , wn−s are normal random variables with covariance diag(1+λξ1, . . . , 1+λξk, 1, . . . , 1).

S.4 Fast algorithm for fitting variance component model

This section is dedicated to a computational algorithm for parameter estimation in a linear mixed

effect models with a single variance component (as shown in the manuscript: model (1)). We return

to the original parameterization σ2e and σ2g , then the log-likelihood function is

L(β, σ2e , σ
2
g) = −1

2
ln det(σ2eIn + σ2gS)− 1

2
(y −Xβ)′(σ2eIn + σ2gS)−1(y −Xβ).

Let Udiag(ξ1, . . . , ξn)U ′ be the eigen-decomposition of S. Then

L(β, σ2e , σ
2
g) = −n

2
ln(2π)− 1

2

n∑
i=1

ln(σ2e + σ2gξi)−
1

2
(ỹ − X̃β)′diag(w)(ỹ − X̃β),

where ỹ = U ′y, X̃ = U ′X, w =
{

(σ2e + σ2gξ1)
−1, . . . , (σ2e + σ2gξn)−1

}
. Our strategy is to update

the mean components β and variance components (σ2e , σ
2
g) alternately. Updating β given (σ2e , σ

2
g) is

a standard weighted least squares problem. To update (σ2e , σ
2
g) given β, we denote the residuals by

r = ỹ − X̃β. The objective is then −1
2

∑n
i=1 ln(σ2e + σ2gξi)− 1

2

∑n
i=1 r

2
i (σ

2
e + σ2gξi)

−1, which can be

maximized by the minorization-maximization (MM) algorithm (Hunter and Lange, 2004). The

MM updates are

σ2(t+1)
e = σ2(t)e

√√√√∑n
i=1 r

2
i (σ

2(t)
e + ξiσ

2(t)
g )−2∑n

i=1(σ
2(t)
e + ξiσ

2(t)
g )−1

σ2(t+1)
g = σ2(t)g

√√√√∑n
i=1 ξir

2
i (σ

2(t)
e + ξiσ

2(t)
g )−2∑n

i=1 ξi(σ
2(t)
e + ξiσ

2(t)
g )−1

. (5)

Next we consider REML. Let B ∈ Rn×(n−s) be an orthonormal basis of C(X)⊥, e.g., obtained

from the SVD of X. Then B′Y is multivariate normal with mean 0n−s and covariance

B′V B = σ2eB
′B + σ2gB

′SB = σ2eIn−s + σ2gB
′SB.
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Let the eigen-decomposition of the covariance matrix B′SB be

B′V1B = Γdiag(ξ1, . . . , ξn−s)Γ
′.

Then the transformed data Ỹ = Γ′B′Y has independent components

Ỹ ∼ Nn−s(0, σ
2
eIn−s + σ2gdiag(ξ1, . . . , ξn−s))

and the log-likelihood function is

L(σ2e , σ
2
g) = −n− s

2
ln(2π)− 1

2

n−s∑
i=1

ln(σ2e + σ2gξi)−
1

2

n−s∑
i=1

ỹ2i (σ
2
e + σ2gξi)

−1.

It now becomes clear that the MM updates (5) remain unchanged except replacing ri by ỹi and n

by n− s.

S.5 Approximating null distributions of eLRT and eRLRT

We evaluate the performance of our approximation for eLRT and eRLRT using simulations. Scatter

plots of pvalues from approximation method against no approximation are shown in Figure 1.

Phenotypes are simulated under the null hypothesis with fixed covariates (e.g. scenario (2) in

Table 3 of the manuscript). We also provide zoom-in plots excluding the cases whose pvalues are

equal to one. Across 1000 simulation replicates, for eLRT and for sample size 500, 1000, and 2000,

the absolute differences range from 1.03 × 10−4 to 4.07 × 10−2, 1.72 × 10−4 to 3.74 × 10−2, and

1.14× 10−5 to 4.47× 10−2, respectively. Mean of the absolute differences is around 1.2× 10−3 for

all three sample size cases while standard deviation is around 4×10−3. There are 10% among 1000

replicates approximation method generate conservative pvalues than no approximation, while 5%

approximation method generate smaller pvalues than no approximation method. For eRLRT, the

absolute differences range from 1.01×10−5 to 3.59×10−2, 2.97×10−5 to 4.48×10−2, and 2.26×10−5

to 3.56 × 10−2, for sample size 500, 1000, and 2000 respectively. Mean of the absolute differences

for eRLRT is around 3× 10−3 for all three sample sizes while standard deviation is 5× 10−3. This

simulation indicates that our approximation method works well for generating pvalues and reducing

computation burden.

S.6 Simulation

Simulation constant c average over simulation replicates for different models (Table 1).

S.7 Analysis of COPDGene exome sequencing data

Descriptive statistics of the 3 traits being analyzed (Table 2).
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n

Average c

Model II and III Model V and VI

h2 = 5% h2 = 10% h2 = 5% h2 = 10%

Causal variants Causal variants Causal variants Causal variants

10% 30% 10% 30% 10% 30% 10% 30%

500 0.14(0.03) 0.07(0.02) 0.21(0.05) 0.10(0.03) 0.18(0.04) 0.09(0.02) 0.26(0.06) 0.13(0.03)

1000 0.14(0.04) 0.07(0.02) 0.20(0.05) 0.10(0.03) 0.19(0.05) 0.10(0.02) 0.26(0.06) 0.14(0.03)

2000 0.14(0.04) 0.07(0.02) 0.20(0.06) 0.10(0.02) 0.18(0.05) 0.10(0.02) 0.26(0.07) 0.14(0.03)

Table 1: Simulation constant c average over simulation replicates for different models.
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Trait Mean SD n

Height (cm) 168.59 9.59 399

PackYears 50.05 19.73 399

BMI 26.92 5.04 399

Table 2: Descriptive statistics of 3 phenotypes in COPDGene exome sequencing study.
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Figure 1: Pvalues comparisons with and without χ2 approximation for sample size 500, 1000, and 2000. Pvalues

from eLRT tests are shown in columns one and two, while pvalues from eRLRT are shown in columns three and

four. Second and forth columns are the zoom-in plots when pvalues are less than one. 1000 simulation replicates are

included. Phenotypes are simulated under the null hypothesis and 10kb testing region is used for evaluation (e.g.,

scenario (2) in Table 3 of the manuscript). Red line represents the line with slope 1 and intercept 0.
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