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ABSTRACT OF THE DISSERTATION

Code Representation and Performance of Graph-Based Decoding

by
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(Communications Theory and Systems)
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Professor Paul H. Siegel, Chair

Key to the success of modern error correcting codes is the effectiveness of message-

passing iterative decoding (MPID). Unlike maximum-likelihood (ML) decoding, the perfor-

mance of MPID depends not only on the code, but on how the code is represented. In par-

ticular, the performance of MPID is potentially improved by using a redundant representation.

We focus on Tanner graphs and study combinatorial structures therein that help explain the per-

formance disparity among different representations of the same code. Emphasis is placed on the

complexity-performance tradeoff, as more and more check nodes are allowed in the graph. Our

discussion applies to MPID as well as linear programming decoding (LPD), which we collec-

tively refer to as graph-based decoding.

On an erasure channel, it is well-known that the performance of MPID or LPD is

determined by stopping sets. Following Schwartz and Vardy, we define the stopping redundancy

as the smallest number of check nodes in a Tanner graph such that smallest size of a non-empty

stopping set is equal to the minimum Hamming distance of the code. Roughly speaking, stopping

redundancy measures the complexity requirement (in number of check nodes) for MPID of a

redundant graph representation to achieve performance comparable to ML decoding (up to a

constant factor for small channel erasure probability).

General upper bounds on stopping redundancy are obtained. One of our main contri-

bution is a new upper bound based on probabilistic analysis, which is shown to be by far the

strongest. From this bound, it can be shown, for example, that for a fixed minimum distance, the

xii



stopping redundancy grows just linearly with the redundancy (codimension). Specific results on

the stopping redundancy of Golay and Reed-Muller codes are also obtained.

We show that the stopping redundancy of maximum distance separable (MDS) codes

is bounded in between a Turán number and a single-exclusion (SE) number — a purely combi-

natorial quantity that we introduce. By studying upper bounds on the SE number, new results

on the stopping redundancy of MDS codes are obtained. Schwartz and Vardy conjecture that the

stopping redundancy of an MDS code should only depend on its length and minimum distance.

Our results provide partial confirmation, both exact and asymptotic, to this conjecture.

Stopping redundancy can be large for some codes. We observe that significantly fewer

checks are needed if a small number of small stopping sets are allowed. These small stopping

sets can then be dealt with by “guessing” during the iterative decoding process. Correspondingly,

the guess-g stopping redundancy is defined and it is shown that the savings in number of required

check nodes are potentially significant. Another theoretically interesting question is when MPID

of a Tanner graph achieves the same word error rate an ML decoder. This prompts us to define

and study ML redundancy.

Applicability and possible extensions of the current work to a non-erasure channel

are discussed. A framework based on pseudo-codewords is considered and shown to be rele-

vant. However, it is also observed that the polytope characterization of pseudo-codewords is not

complete enough to be an accurate indicator of MPID performance.

Finally, in a separate piece of work, the probability of undetected error (PUE) for

over-extended Reed-Solomon codes is studied through the weight distribution bounds of the

code. The resulting PUE expressions are shown to be tight in a well-defined sense.
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Chapter 1

Introduction

1.1 Background

Transmission and storage of digital data has become an integral part of our daily lives.

Whether it is watching a DVD movie, or making a phone call from a cellular handset, messages

in digital form are effectively transmitted through a channel to be reconstructed at the receiver’s

end. Unfortunately, the channel is often inherently less reliable than we hope it is. For example,

the read-back signal from a DVD may contain bursts of errors caused by scratches on the disc

surface. The wireless communication channel, on the other hand, often exhibits shadowing,

fading, and multicell and multiuser interference.

Transmitting information reliably over an unreliable channel has been a central topic

of information theory. In his landmark paper [1], Shannon showed that, contrary to common

beliefs, information can be transmitted arbitrarily reliably at any rate (bits per channel use)

lower than a number he called the channel capacity, which is determined by the statistics of the

channel, and conversely, reliable transmission is not possible at rates higher than the channel

capacity. Shannon’s key idea to reliable communication is to use coding to add redundancy

to the messages to be transmitted, such that if this is done over many uses of the channel, the

law of large numbers sets in and ensures that errors introduced by the channel can be corrected

with high probability at the receiver’s end. Figure 1.1 shows this (much) simplified view of

a communication system. Here, u ∈ Uk is the message to be sent. The encoder maps u to

x ∈ C ⊂ X n, which is transmitted through the channel and received as y ∈ Yn, and the decoder

is a deterministic mapping from all possible received sequences to Uk in order to reconstruct

1
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encoder channel p(y|x) decoder
u x y û

Figure 1.1 Simplified view of a communication system over a discrete memoryless channel

the original message. The channel is a stochastic device defined by the conditional probability

distribution p(y|x), x ∈ X , y ∈ Y , for each channel use. We assume that the channel is

memoryless in the sense that conditioned on the current channel input, the current channel output

is statistically independent of all past and future channel inputs. An error occurs in the system

when û 6= u . The set of all possible transmitted sequences, C, is called a codebook, or simply, a

code.

Shannon proved that good codes exist by showing that a randomly chosen code is good

on average (in fact also with high probability). However, what he didn’t show was how to find

and to encode and decode good codes efficiently. Much of the research in coding theory has been

devoted to solving the above problems.

Elias [2] showed that the capacity of a discrete memoryless channel (DMC) can be

approached by using linear codes, which are linear vector (sub)spaces. This essentially solves

the encoding problem, since linear codes can be encoded by multiplying the input vector by a

generator matrix. What remain to be solved are efficient code construction and efficient decod-

ing. These two requirements, however, for a long time seemed to be at odds with each other. To

quote popular folk wisdom in the coding theory community, “all codes are good, except those

that we know of. [3]” One interpretation of this difficulty is that the algebraic structure that af-

fords simplified decoding algorithms for many linear code constructions at the same time makes

the codes less random-like. To make things worse, it was recognized [4] early on that maximum

likelihood decoding for the general class of linear codes is NP-hard. In fact, most of the alge-

braically constructed linear codes are decoded using a suboptimal bounded distance decoder,

which only corrects up to a certain number of errors in each codeword.

Significant breakthrough was made in the 1990s with the discovery of Turbo codes

[5], and later with the rediscovery of low-density parity-check (LDPC) codes [6] [7], or more

generally, codes on graphs [8] [9]. What these coding schemes have in common is that they are

overall random-like, but at the same time have well structured, very simple partial descriptions.

For Turbo codes, randomness is introduced by pseudo-random interleaver(s), and a partial de-



3

scription is that of a constituent code, usually a recursive systematic convolutional code with a

small constraint length. For LDPC codes, randomness is built in by pseudo-random construction

of parity checks, and a partial description of the code is (usually) simply that of a single parity-

check code corresponding to each (low-weight) parity check. In both cases, randomness ensures

that the code construction is likely to be good for a reasonably long block length, while the sim-

ple partial descriptions (whose optimal decoding is low-complexity) allow for a computationally

efficient, iterative decoding algorithm that works well in practice. The two long-standing re-

quirements of efficient code construction and efficient decoding are finally at peace with each

other.

In a sense, the code construction problem was an easy one — just pick a code at

random. It is arguably the decoding problem that is more significant. Indeed, the decoding

principles that underlie the success of Turbo and LDPC codes are not so much tied to their

particular constructions, and have found application to many other areas. For example, the

so-called “Turbo principle” has been applied to equalization [10], and to multiuser detection

[11], and similar algorithms for decoding LDPC codes have also been proposed to decode other

algebraically constructed linear codes [12].

Essentially, what happens in the decoding of Turbo or LDPC codes is that “constituent

decoders” that have knowledge of only a partial description of the code exchange beliefs about

which symbols were transmitted at which position within the codeword in an iterative fashion.

For most codes of interest, there is no guarantee that such a process will converge, and when

it does, that it converges to the most probable codeword (or symbols). However, in practice

these algorithms work extremely well with properly designed codes and their chosen partial

descriptions. For the moment, let’s refer to such an algorithm as message-passing iterative

decoding (MPID).

One immediately notices that the performance of MPID depends not only on the code,

but also on the partial descriptions that we choose to represent the code. In the case of Turbo

codes, the choice of partial descriptions is clear. In other cases, especially the case of parity-

check codes (i.e. linear codes), there is much flexibility in our choice. This flexibility comes

from the fact that a linear code may be defined by many different sets of parity check equations.

Interestingly, the choice of representation — using different sets of parity check equations — can

indeed have a significant impact on the performance of MPID. As an example, Figure 1.2 shows
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Figure 1.2 Five representations of the (1, 3)–RM code

five different Tanner graphs [8] all representing the same (1, 3)–Reed Muller (RM) code. Each

graph corresponds to a different set of parity check equations. Figure 1.3 shows the performance

of sum-product decoding (a specific form of MPID) using these different representations on an

additive white Gaussian noise (AWGN) channel. It can clearly be seen that the performance

differential between different code representations can be significant.

A particularly interesting aspect that can be seen when comparing performances of

different code representations is that by allowing the use of redundant parity checks (thus using

more than the minimal number of partial descriptions for the code), the performance of MPID

can potentially be improved. As seen in Figure 1.3, going from 4 to 5 parity checks yields a

significant performance improvement, and another notable improvement is obtained going from

5 to 6 checks, etc. Clearly, a complexity-performance tradeoff is at play here — by using more

partial descriptions (parity checks), better performance may be achieved, but at the cost of higher

decoding complexity. A large part of this dissertation has been motivated by this observation, and

can be viewed as an attempt at characterizing the complexity-performance tradeoff in redundant

code representation, especially on the minimal number of partial descriptions to use in order to

achieve a certain performance goal.

One should be cautioned as to not be given the impression that the addition of parity

checks always improves the performance of MPID. Although this is true for some special cases

(for example, on an erasure channel), there is no simple guarantee in general. In fact, it is easy to
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find examples to the contrary where the performance of MPID on an AWGN channel degrades

as a result of additional parity checks [13]. Nevertheless, graph-cover decoding (GCD) [14]

[15] has been proposed as an analysis tool to understand MPID, and the performance of GCD

can only improve with the addition of parity checks. Same can be said for linear programming

decoding (LPD) of binary linear codes [16], which is equivalent to GCD [15]. The fact that

LPD/GCD and MPID are closely related [16] [15] [17] [13] gives justification to the potential

performance benefit of redundant parity checks for MPID.

A precise understanding of how MPID is affected by code representation is a difficult

if not near impossible task. We thus make two simplifications to the problem. First, we fo-

cus on erasure channels, where it is well-known [18] that the performance of MPID (as well as

GCD/LPD) is determined by the distribution of stopping sets [19] [18]. Note that although the

erasure channel is unique in many regards, it has proved a fruitful starting point to gain the most

fundamental insights into how MPID works, especially in the case of LDPC codes. Comments

on how relevant our study is to other channels and how the framework may be extended are

made in 6.3. Secondly, we will pay special attention to a minimum-distance-equivalent metric

for MPID performance, which in the case of an erasure channel is the stopping distance [20]

to be defined later. Just as minimum distance is to maximum likelihood (ML) decoding, stop-

ping distance is the appropriate figure of merit for the “high SNR” regime, i.e. in the case of

the erasure channel, when the channel erasure probability is small. From a practical point of

view, this attention on the “high SNR” asymptotic performance is justifiable since it addresses

the “error-floor” problem [21], an important challenge that faces many modern error correcting

codes for critical applications such as data storage, where error rates on the order of 10−15 are

often required.

1.2 Dissertation Overview

After a brief review of some preliminaries, in Chapter 2 the concepts of stopping dis-

tance and stopping redundancy are motivated and defined.

Chapter 3 is devoted to general upper bounds on stopping redundancy. These bounds

are general as they apply to all linear block codes. A bound based on the probabilistic method

will be presented, together with a few explicitly constructive bounds. The probabilistic bound
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is further improved by a more elaborate probabilistic analysis, and is compared to various other

bounds in the literature.

In Chapter 4 we study the stopping redundancy of maximum distance separable (MDS)

codes. It is quickly realized that this problem is highly combinatorial, and in fact we will define

and show that the single-exclusion (SE) number is naturally an upper bound on the stopping

redundancy. Through elaborate combinatorial analysis, we obtain a number of bounds on the

SE number, which in turn lead to improved upper bounds on the stopping redundancy of MDS

codes. By essentially a sandwiching argument, we show that the conjecture by Schwartz and

Vardy [22] that the stopping redundancy of MDS codes only depends on length and minimum

distance is true for certain limited cases either exactly or in an asymptotic sense.

In Chapter 5 some results on the stopping redundancy of Reed-Muller (RM) codes

[20] [23] are rediscovered through a geometric approach. The new perspective is more intuitive,

and lends itself to extension to other finite geometry codes.

Chapter 6 is devoted to extending the work on stopping redundancy in a number of

ways. First, we define guess-g stopping redundancy based on ideas in [24] [25], and show that

“guessing” can significantly reduce the number of checks required in a Tanner graph to achieve

the same performance target as in the case of stopping redundancy. Next, we ask the question

how many check nodes are needed in a Tanner graph for MPID to have the same performance as

ML decoding, and study the ML redundancy of codes. Finally, we comment on how the study on

stopping redundancy may be extended to a non-erasure channel. A framework of study based on

pseudo-codewords [14] [16] is described. The results for the erasure channel thus have relevance

to the non-erasure case, since stopping sets and pseudo-codewords are closely related. On the

other hand, it is shown that the set of pseudo-codewords as we define them, though sufficient

to derive LPD performance, is not complete enough for an accurate characterization of MPID

performance (as was noted in [13]).

Chapter 7 is a self-contained study on the probability of undetected error for over-

extended Reed-Solomon (OERS) codes. Bounds on the probability of undetected error are ob-

tained through bounds on the weight distribution of OERS codes, and are shown to be tight. This

chapter is rather independent from all other chapters, and is included here for completeness.
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Chapter 2

Stopping Redundancy

2.1 Preliminaries

For this thesis, an [n, k]q code C is a k-dimensional linear subspace of Fn
q , where Fq is

a field of size q. C is said to have block length (or length) n, dimension k, and redundancy (or

codimension) r = n− k. The minimum distance of C is

d(C) def= min
{
dH(x ,y) : x ,y ∈ C,x 6= y

}
,

where

dH(x ,y) def=
∣∣{i : xi 6= yi}

∣∣
is the Hamming distance between x and y . An [n, k]q code with minimum distance d is also

referred to as an [n, k, d]q code.

Let x be a vector. The support of x is the set of coordinates1 where the components

of x are nonzero, and is denoted by

supp(x ) def= {i : xi 6= 0}.

The weight of x is

wt(x ) def= | supp(x )|.

Note that due to linearity, we have

d(C) = min
{
dH(0, c) : c ∈ C, c 6= 0

}
= min

{
wt(c) : c ∈ C, c 6= 0

}
.

1We use the convention that the coordinates are indexed starting from one.

10



11

Since a code is nothing but a vector subspace of Fn
q , it is conveniently represented by

a basis, usually arranged as row vectors in a k × n generator matrix G, such that

C = {uG : u ∈ Fk
q}.

Alternatively, C is fully described by its orthogonal complement, C⊥, commonly known as its

dual code, or a basis of which, arranged as row vectors in an r × n parity-check matrix H , such

that

C = {xHT = 0 : x ∈ Fn
q }.

We will relax the definition of a parity-check matrix such that H may contain more than r rows,

as long as they form a spanning set of C⊥. That the choice of H , although immaterial for defining

the code, can have a significant impact on the performance of MPID or LP decoding is a main

motivating observation for this work.

Consider the communication system shown in Figure 1.1. To minimize the word error

probability (WER)

Pr{u 6= û},

an optimal decoder selects u ∈ Fk
q that maximizes the a posteriori probability (APP) Pr{u |y}.

Hence, (note that x is a function of u)

û = arg max
u∈Fk

q

Pr{u |y} = arg max
u∈Fk

q

Pr{x |y}.

We refer to the above as the word maximum a posteriori (MAP) rule. Another very useful

decoding criteria is the word maximum likelihood (ML) rule:

û = arg max
u∈Fk

q

Pr{y |u} = arg max
u∈Fk

q

Pr{y |x}.

ML decoding is useful when the a priori distribution of information words are not known, or

when all information words are equally likely a priori, in which case word ML becomes equiv-

alent to word MAP. Similarly, to minimize the error probability for the i-th information symbol

Pr{ui 6= ûi}, we obtain the symbol MAP decoding rule:

ûi = arg max
ui∈Fq

Pr{ui|y} = arg max
ui∈Fq

∑
x∈Ci(ui)

Pr{x |y},
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where Ci(ui) is the set of codewords corresponding to information words whose i-th component

is ui. When all information symbols are equally likely a priori, symbol MAP becomes equivalent

to symbol ML:

ûi = arg max
ui∈Fq

Pr{y |ui} = arg max
ui∈Fq

∑
x∈Ci(ui)

Pr{y |x}.

Throughout the rest of this dissertation, “ML” without a qualifier refers to word ML, while

“MAP” refers to symbol MAP.

Unfortunately, it is well known [1] that ML decoding of linear codes as a general

problem is NP-hard, and remains NP-hard even with unlimited pre-processing [2]. Although

this does not preclude the possibility that efficient ML decoding may exist for certain classes of

codes, evidence both empirical and theoretical [3] seems to suggest the contrary.

2.2 Codes on Graphs

Finding good codes with efficient decoding algorithms has been a central issue in

coding theory. The more traditional practice tries to reduce decoding complexity by adding

intricate algebraic structures to the code. However, for most such constructions, ML decoding

is still intractable. A classic solution is then to use a bounded distance decoder, which only

corrects errors up to a certain number, typically half the minimum distance of the code. Probably

the most famous example for such coding systems is the BCH codes with a Berlekamp-Massey

type decoding algorithm [4] [5]. Although a bounded distance decoder that corrects errors up to

half the minimum distance of the code is comparable in performance to an ML decoder as the

channel approaches error-free, at practical channel conditions and reasonable error rate targets

this solution leaves a significant gap from what is promised by the channel capacity.

A different route, pioneered by Gallager [6], is to divide and conquer. The basic idea

is to factor the codeword membership constraint into a number of much simpler constraints (that

certain symbols within the codeword belong to some other code), for example single-parity-

check constraints, such that for each of the much simpler constraints, exact probabilistic infer-

ence within the “partial code” that it defines is computationally feasible. This breaks down the

hard problem of decoding into a number of tractable problems. However, how to synthesize

these simpler problems is not straightforward. Fortunately, an iterative procedure works very

well in practice. In such an algorithm, each simpler constraint gives rise to a constituent decoder
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that does probabilistic inference based only on the knowledge of its own associated constraint

and the inputs from the channel, and the constituent decoders exchange extrinsic likelihood in-

formation about the symbols in the codeword in an iterative fashion until some stopping criterion

is met. Although this algorithm is suboptimal in almost all practically interesting cases, it per-

forms surprisingly well for certain classes of codes, with notable examples including low-density

parity-check (LDPC) codes [6] [7] [8], Turbo codes [9], and repeat accumulate (RA) codes [10].

We will generally refer to such an iterative decoding procedure as message-passing iterative

decoding (MPID).

The principles of MPID are better described using a Tanner graph [11]. Let C be an

[n, k]q linear code, and let H = (hij)l×n be a parity-check matrix for C. As noted before, we

only require that the rows of H span the dual code C⊥. Thus, l may be strictly larger than (n−k).

The Tanner graph G(H) is a bipartite graph with n variable nodes, each corresponding to one

column of H , and l check nodes, each corresponding to one row of H , such that variable node j

is adjacent to check node i if and only if hij 6= 0.

Example 2.1 The graph shown in Figure 2.1 represents an [8, 4, 4]2 extended Hamming code

with parity-check matrix

H =


1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1

 .

�

Corresponding to our earlier discussion, here in a Tanner graph each check node gives

rise to a constituent decoder for what is basically a single-parity-check code involving symbols

from its variable node neighbors. Each variable node also gives rise to a constituent decoder

for a repetition code — as all its incident edges correspond to the same symbol. For either a

repetition code or a single-parity-check code, exact probability inference is well formulated. In

a typical decoding schedule, check node decoders will decode first, estimating the likelihoods

of each symbol involved in the parity check based on all other symbols in the parity check,

and pass this extrinsic information to the variable node decoders. The variable decoders then

perform similarly probabilistic inference for all their incident edges and pass back their estimated
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Figure 2.1 Tanner graph of an [8, 4, 4] extended binary Hamming code

extrinsic likelihoods, and the process is iterated. More details of MPID, which is based on the

sum-product algorithm or one of its variants, can be found in [12].

From the above description, it should be intuitively clear that the performance of MPID

can be impacted by the Tanner graph chosen to represent a given code. In Chapter 1, we have

seen that this performance impact is potentially significant. Particularly, notable performance

improvements may be obtained by using a Tanner graph with redundant check nodes. And we

would like to understand this complexity-performance tradeoff in code representation.

2.3 Stopping Redundancy

We will start with an erasure channel, which has proved to be a good place to get

an intuitive understanding of MPID as well as insight into its performance on other channels.

On an erasure channel, it is well known [13] that the performance of MPID is determined by

combinatorial structures in Tanner graphs known as stopping sets. A stopping set in G(H) is a

set of variable nodes such that all check nodes adjacent to the set are connected to the set at least
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Figure 2.2 Example of a stopping set. The subgraph induced by variable node set {2, 3, 4} is
highlighted.

twice. We usually use the corresponding coordinate indices to denote the variable nodes, so a

stopping set becomes a subset of [n] def= {1, . . . , n}.

Example 2.2 Figure 2.2 shows an example of a stopping set. Note that in the subgraph induced

by variable nodes {2, 3, 4}, all check nodes have degree two or higher. Equivalently, observe

that the submatrix of H consisting of columns 2, 3 and 4 have no rows of weight one. Therefore,

{2, 3, 4} is a stopping set.

H =


1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1

 .

�

It is well known [13] that iterative erasure decoding is successful if and only if the

set of erasures does not contain a stopping set. The size of a smallest non-empty stopping set,

known as the stopping distance [14] and denoted by s(H), is therefore an important parameter

governing the performance of the iterative decoder. Note that the stopping distance is not a
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property of the code C itself, but rather of the specific choice of a parity-check matrix H for C.

Since the support of any codeword is a stopping set, we have s(H) ≤ d, and it is not difficult to

see that equality can be achieved for any code, for example when all nonzero vectors in the dual

code C⊥ are chosen as rows of H . This motivates the following definition.

Definition 2.1 Let C be a linear code with minimum distance d. The stopping redundancy of C,

denoted by ρ(C), is the smallest integer such that there exists a parity-check matrix H for C with

ρ(C) rows, and s(H) = d.

The stopping redundancy of a linear code characterizes the minimum “complexity”

(number of check nodes) required in a Tanner graph for the code, such that iterative erasure de-

coding achieves performance comparable to (up to a constant factor, asymptotically) maximum-

likelihood (ML) decoding. It can be viewed as a basic measure of the complexity-performance

tradeoff in the use of redundant parity checks (RPCs) in an iterative decoder on the erasure

channel.

It is also interesting to note that there is always a “bad” choice of H , for which s(H) ≤
3. The following result was shown in [15] for binary codes, but is clearly also true for codes over

any finite field. Here, we prove it using a slightly different argument.

Proposition 2.1 Let C be an [n, k, d]q code with d ≥ 4. There exists a parity-check matrix H

for C such that s(H) ≤ 3.

Proof: Let H be a parity-check matrix for C. If s(H) ≤ 3, then there is nothing to prove.

Otherwise, since 3 < d, the first three columns of H are linearly independent. Therefore, by

elementary row operations we can change the first row of H such that its first three components

are all nonzero. Now, with this modified parity-check matrix, if {1, 2, 3} is not a stopping set

already, for each row that has a single weight in its first three components, add the first row to it.

Let H ′ denote the parity-check matrix obtained at this point. Clearly, s(H ′) ≤ 3, since {1, 2, 3}
is a stopping set. �

The importance of s(H) has been widely recognized [13], [16], [17], [18]. The rela-

tionship of s(H) to the performance of iterative erasure decoding is similar to that of minimum

distance to the performance of maximum-likelihood (ML) decoding. For better performance, it

is desired that s(H) be maximized.
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Stopping redundancy was introduced by Schwartz and Vardy [14], [19], who derived

general upper and lower bounds, as well as more specific bounds for Reed-Muller codes, Go-

lay codes, and maximum distance separable (MDS) codes. The stopping redundancy of Reed-

Muller and related codes was further studied by Etzion [20]. Effects of parity-check matrices

on stopping set distribution were discussed by Weber and Abdel-Ghaffar [15], who found that

by adding a small number of redundant parity checks, one can minimize the number of stopping

sets of size 3 for a binary Hamming code. In related work, Hollmann and Tolhuizen [21], [22]

consider collections of parity checks that correct all correctable erasure patterns up to a certain

size for binary codes. There, emphasis was placed on (essentially) finding a generic r-column

matrix with the least number of rows, having the property that when multiplied to any matrix H

with r independent rows, it produces a parity-check matrix that corrects all correctable erasure

patterns up to size m ≤ r for the code defined by the null space of H .
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Chapter 3

General Bounds on Stopping

Redundancy

It is of general interest to know how large the stopping redundancy is. In this chapter

we derive bounds that apply generally to all linear codes. Stopping redundancy of special classes

of codes will be discussed in subsequent chapters.

By definition, when the stopping distance is maximized, there are no stopping sets of

size (d− 1) or smaller, where d is the minimum distance of the code. This is to say that for each

X ∈
⋃d−1

i=1 [n]i, there exists a row h in the parity-check matrix H , such that | supp(h)∩X| = 1.

Let w denote the weight of h . The number of i-subsets of [n] that intersect supp(h) at a single

element is

w

(
n− w

i− 1

)
.

By a simple set covering argument, the following lower bound on ρ(C) was obtained in [1]. Let

d⊥ denote the minimum distance of C⊥. For each i ∈ {1, . . . , d− 1},

ρ(C) ≥
(

n

i

)/
wi

(
n− wi

i− 1

)
,

where

wi = max
{⌈

n + 1
i

⌉
− 1, d⊥

}
.

Despite its simplicity, improvement to this lower bound appears difficult.

On the other hand, an upper bound on the stopping redundancy is arguably more in-

teresting as it shows what can be done, rather than what cannot. In this chapter, we consider two

19
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approaches to obtaining an upper bound on the stopping redundancy. The first approach is ex-

plicitly constructive. Starting with a basis of C⊥, certain linear combinations of the basis vectors

are judiciously selected to form a set of parity check constraints. The second approach is based

on probabilistic methods [2] [3], in which we show the probability of the desired parity-check

matrix is bounded away from zero over a finite ensemble. In general, much tighter upper bounds

are possible using the second approach.

The rest of the chapter is arranged as follows. We start with binary codes. In Sec-

tion 3.1 we propose an upper bound based on the explicit constructive approach, and relate it

to several other known bounds in the literature. In Section 3.2, we obtain our first probabilis-

tic bound, and compare it to the constructive bounds obtained in Section 3.1 as well as other

known bounds based on different probabilistic arguments. Section 3.3 is devoted to improving

the main bound obtained in Section 3.2, mostly by using a more elaborate probabilistic analysis.

Section 3.4 shows how most of the results in this chapter can be extended to linear codes over

an arbitrary field. Section 3.5 concludes the chapter.

3.1 Constructive Bounds

The first natural thought for an upper bound is to start with a non-redundant parity-

check matrix, and add additional rows as linear combinations of the existing ones in a controlled

manner such that all stopping sets with size smaller than d are guaranteed to have been elim-

inated. This idea was precisely that proposed in [4], and our first bound, as presented in the

following theorem, goes along similar lines.

Theorem 3.1 Let C be an [n, n− r, d]2 code with d ≥ 2. Then

ρ(C) ≤
bd/2c∑
i=1

(
r

2i− 1

)
. (3.1)

Proof: Take any basis of C⊥ as rows to form an r × n parity-check matrix H . For every set of

i rows of H , where i is an odd number less than d, take their sum, and use the resulting vectors

as rows to form a new parity-check matrix H ′. By construction, the number of rows of H ′ is∑bd/2c
i=1

(
r

2i−1

)
.

It suffices to show that s(H ′) = d. For any X ⊆ [n], let H(X) denote the submatrix

consisting of columns of H indexed by elements of X . If |X| < d, then the columns of H(X)
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are linearly independent. Hence, H(X) contains a |X| × |X| full-rank submatrix, which we

denote by A. Note that A−1 is full-rank, and hence must contain a row of odd weight. Since

A−1A gives the identity matrix, this implies that among sums of an odd number of rows of A, at

least one has weight one. By construction, this shows that H ′(X) contains a row of weight one,

and hence X is not a stopping set. �

The bound in (3.1) has been motivated by and can be viewed as a variant of [4, Theo-

rem 4], which is provided below for reference.

Theorem 3.2 ([4]) Let C be an [n, n− r, d]2 code with d ≥ 3. Then

ρ(C) ≤
d−2∑
i=1

(
r

i

)
. (3.2)

Another very related bound is due to Hollmann and Tolhuizen, who studied a some-

what different problem of constructing “generic erasure-correcting sets” [5, 6, 7, 8]. Nonetheless,

their results can be interpreted as bounds on the stopping redundancy hierarchy (cf. [9, 10]) of

general linear codes, and then specialized to bounds on ρ(C). In particular, Hollmann and Tol-

huizen prove in [7, Theorem 5.2] and [8, Theorem 4.1] the following result.

Theorem 3.3 ([7, 8]) Let C be an [n, n− r, d]2 code with d ≥ 3. Then

ρ(C) ≤
d−2∑
i=0

(
r − 1

i

)
. (3.3)

The proof of Theorem 3.3 is similar to the proof of Theorem 3.1 or Theorem 3.2, but

uses a different criterion in selecting the sets of rows to be summed in forming the new parity-

check matrix.

Using the fact
(
r
i

)
=
(
r−1

i

)
+
(
r−1
i−1

)
, it is easy to draw the following comparisons

among the bounds (3.1), (3.2) and (3.3):

• If d is odd, then (3.1) and (3.3) are equivalent, and both are stronger than (3.2).

• If d is even, then (3.3) is generally stronger than either (3.1) or (3.2). In this case, the

comparison between (3.1) and (3.2) can go both ways, since (3.1) includes the term
(

r
d−1

)
while (3.2) does not. For example, if we let r grow with n and d be fixed, then compared

to (3.2), the bound in (3.1) is asymptotically weaker.
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Hollmann and Tolhuizen [5] also showed that Theorem 3.3 can be improved for the

special case of even weight codes.

Theorem 3.4 ([5]) Let C be an [n, n − r, d]2 code with d ≥ 3. If all codewords of C have even

weight,

ρ(C) ≤ 2
d−3∑
i=0

(
r − 2

i

)
. (3.4)

3.2 Probabilistic Bounds

We now turn to a different approach, better known as the probabilistic method [2]

[3]. The basic idea is that in order to show the existence of an object with a certain property, it

suffices to show that the property holds with positive probability over a finite random ensemble

of objects.

Theorem 3.5 Let C be an [n, n− r, d]2 code. Then

ρ(C) ≤ ρ∗(n, d) + r − d + 1, (3.5)

where ρ∗(n, d) is the smallest integer t such that

d−1∑
i=1

(
n

i

)(
1− i

2i

)t

< 1 (3.6)

Proof: First, let’s agree on some language. For a matrix H with n columns and X ⊆ [n], we

say that X is covered by H if H(X) contains a row of weight one. Clearly, if H is a parity-

check matrix for C, then X is a stopping set if and only if it is not covered by H . Also, an i-set

is generally any set that contains i elements. Similarly, an i-subset is a subset that contains i

elements. For convenience, we will often use the term i-set to refer specifically to an i-subset of

[n], unless made clear otherwise. Hence, with the above notations, we have that a parity-check

matrix H satisfies s(H) = d if and only if H covers all i-sets, for i = 1, . . . , d− 1.

Now, for a given positive integer t, let Ht be a t × n matrix whose rows are drawn

independently from C⊥ at random. Note that if H∗ denotes a matrix whose rows consist of all

vectors in C⊥, then H∗ is an orthogonal array of strength d−1 [11, p. 139], i.e. for any i-set X ,

i ≤ d − 1, all 2i binary i-tuples appear as rows in H∗(X) the same number of times. Hence, a

randomly chosen vector from C⊥ covers any given i-set with probability i/2i, i = 1, . . . , d− 1,
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and the probability that a given i-set is not covered by Ht is (1 − i/2i)t, i = 1, . . . , d − 1. We

have

Pr
(
{Ht covers all i-sets, i = 1, . . . , d− 1}

)
= 1− Pr

(
{∃X ⊆ [n], 1 ≤ |X| < d, not covered by Ht}

)
= 1− Pr

( d−1⋃
i=1

⋃
X∈[n]i

{X is not covered by Ht}
)

≥ 1−
d−1∑
i=1

∑
X∈[n]i

(
1− i

2i

)t

= 1−
d−1∑
i=1

(
n

i

)(
1− i

2i

)t

.

If
∑d−1

i=1

(
n
i

)(
1 − i/2i

)t
< 1, then Pr

(
{Ht covers all i-sets, i = 1, . . . , d− 1}

)
> 0,

which implies that there exists at least one realization of Ht that covers all i-sets, i = 1, . . . , d−1.

Let H denote one such realization. Note that to ensure the rows of H be a spanning set of C⊥, we

need to append no more than r− d + 1 additional rows to H . This is because rank(H) ≥ d− 1,

which comes from the fact that H covers all i-sets up to i = d−1. Therefore, ρ(C) ≤ t+r−d+1,

for all t such that
∑d−1

i=1

(
n
i

)(
1− i/2i

)t
< 1. �

The upper bound given in Theorem 3.5 involves solving an inequality. A closed form

expression would be desirable. This is addressed in the following corollaries.

Corollary 3.6 Let C be an [n, n− r, d]2 code. If 1 < d < n/2, then

ρ(C) ≤
nH2(δ) + 1

2 log δ
2πn(1−δ)(1−2δ)2

− log
(
1− d−1

2d−1

) + r − d + 1,

where δ = d/n, and H2(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

Proof: First, note that (1− i/2i) is non-decreasing for i ∈ N, so that

d−1∑
i=1

(
n

i

)(
1− i

2i

)t

≤
(

1− d− 1
2d−1

)t d−1∑
i=1

(
n

i

)
. (3.7)
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Next, for 0 < δ = d/n < 1/2, it can be shown that

d−1∑
i=1

(
n

i

)
<

δ

1− 2δ

(
n

δn

)
. (3.8)

Further, by Stirling’s approximation it is known that ([12])(
n

δn

)
≤ 1√

2πnδ(1− δ)
2nH2(δ). (3.9)

Now, by putting together (3.7), (3.8), and (3.9), and referring to (3.6), we see that a positive

solution for t to the equation

δ

1− 2δ

1√
2πnδ(1− δ)

2nH2(δ)

(
1− d− 1

2d−1

)t

= 1

must be an upper bound on ρ∗(n, d). We thus obtain

ρ∗(n, d) ≤
nH2(δ) + 1

2 log δ
2πn(1−δ)(1−2δ)2

− log
(
1− d−1

2d−1

) . (3.10)

Plugging (3.10) in (3.5) we get the desired bound. �

A weaker but much simpler closed form is also possible, without requiring d < n/2.

Corollary 3.7 Let C be an [n, n− r, d]2 code with d > 1. Then

ρ(C) ≤ n

− log
(
1− d−1

2d−1

) + r − d + 1. (3.11)

Proof: The argument is almost identical to the proof of Corollary 3.6, except that we instead

bound
∑d−1

i=1

(
n
i

)
by

d−1∑
i=1

(
n

i

)
< 2n. �

Independently, Hollmann and Tolhuizen employed a different random-coding argu-

ment in [6, Theorem 4.2] and [8, Theorem 3.2] to show that

ρ(C) ≤
log2

(
(2r−1)(2r−2)(2r− 22) · · · (2r− 2d−2)

)
(d−1)− log2

(
2d−1 − (d−1)

) (3.12)

As pointed out by Ludo Tolhuizen, another probabilistic bound on stopping redundancy, namely

ρ(C) ≤
(r− 1)(d−2) − log2

(
(d−2)!

)
(d−2) − log2(2d−2 − 1)

+ 1 (3.13)
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Table 3.1 Upper bounds on the stopping redundancy of the [24, 12, 8]2 Golay and the [48, 24, 12]2
QR codes

[24, 12, 8]2 Golay [48, 24, 12]2 QR
Schwartz-Vardy (3.2) 2, 509 4, 540, 385
Han-Siegel (3.1) 1, 816 4, 194, 304
Hollmann-Tolhuizen (3.3) 1, 486 2, 842, 226
Hollmann-Tolhuizen (3.4) 1, 276 2, 195, 580

Hollmann-Tolhuizen (3.13) 2, 488 147, 712
Hollmann-Tolhuizen (3.12) 1, 034 33, 978
Han-Siegel (3.5) 232 4, 440

follows by combining Proposition 6.2, Lemma 6.5, and Theorem 6.14 of [7].

Although the various bounds in (3.1) – (3.5), (3.12), (3.13) are difficult to compare

analytically, the following claims seem to be justified:

• For most code parameters, the probabilistic bounds (3.12), (3.13), (3.5) are much better

than the constructive bounds (3.1) – (3.4).

• Among the probabilistic bounds, our bound (3.5) is by far the strongest.

Using the tables of [13], we have verified that these claims hold for all possible code

parameters n, k, and d with d > 4 and n ≤ 256. A representative picture is shown in Table 3.1,

where we computed the bounds (3.1) – (3.5), (3.12), (3.13) for the [24, 12, 8]2 Golay code and

for the [48, 24, 12]2 quadratic-residue code. Thus the new bound (3.5) appears to be the best

currently known bound on the stopping redundancy of general linear codes.

On the other hand, the asymptotic behavior of the various upper bounds (as functions

of n, r, and d, as n→∞) is relatively easy to obtain. Here, we consider two cases. The first case

corresponds to “good” codes, i.e. codes whose rate is bounded away from zero and whose min-

imum distance is non-diminishing relative to the code length. The second case concerns codes

with fixed minimum distance, an example of which is the family of extended binary Hamming

codes.

Case 1: d = δn, r = γn, where 0 < δ < 1/2, 0 < γ < 1 are constants.
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Noting that− log(1−x) ∼ x/ ln 2 as x→ 0, we see the upper bound (3.11) is O(2d),

hence so is the bound (3.5). On the other hand, note that

d−1∑
i=1

(
n

i

)(
1− i

2i

)t

≥
(

n

d− 1

)(
1− d− 1

2d−1

)t

.

Setting (
n

d− 1

)(
1− d− 1

2d−1

)t

= 1,

and solving for t, one can readily show that ρ∗(n, d) is also Ω(2d). Therefore, the bound (3.5) is

indeed Θ(2d).

In comparison, all the constructive bounds (3.1) – (3.4) are

Ω
((

r

d

))
= Ω

((
γn

δn

))
= Ω

(
1√
n

2H2

(
δ
γ

)
γn
)

.

By the asymptotic Plotkin bound, we have γ ≥ 2δ for 0 < δ < 1/2. Noting further that

H2(x) ≥ 2x for all 0 ≤ x ≤ 1/2, we have

Ω
(

1√
n

2H2

(
δ
γ

)
γn
)

= Ω
(

1√
n

2
2δ
γ
·γn
)

= Ω
(

22d

√
n

)
.

This is clearly much worse than (3.5).

Finally, it is not hard to show that the bounds (3.12) and (3.13) are both Θ
(
n2d
)
, thus

both weaker than (3.5).

Case 2: d is a fixed constant.

Using Corollary 3.6, it is simple to show that the bound (3.5) is Θ(log n + r). In

comparison, among the constructive bounds, (3.1) is Θ
(
rd−2

)
if d is odd, Θ

(
rd−1

)
if d is even,

(3.2) is Θ
(
rd−2

)
, (3.3) is Θ

(
(r − 1)d−2

)
, and (3.4) (for even weight codes) is Θ

(
(r − 2)d−3

)
.

The other probabilistic bounds (3.12) and (3.13) are both Θ(r).

Let’s interpret the above results for d > 4. For d ≤ 4, much more specific results are

known for ρ(C), hence a comparison of the general bounds is less interesting. (In particular, it is

known [4] that ρ(C) = r for all d ≤ 3. And for d = 4, it was shown in [14] that ρ(C) ≤ 2r − 3,

and that this bound is tight.) By the sphere-packing bound, we have r > 2 log n − 1. From

here, it is easy to deduce that (3.5) is asymptotically tighter than any of the constructive bounds

(3.1) – (3.4). For the probabilistic bounds, note that (3.5), (3.12) and (3.13) all grow linearly
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with the redundancy of the code. A more detailed analysis shows that (3.5) is asymptotically at

most r + c1(d − 1) log n, while (3.12) is asymptotic to c1(d − 1)r, and (3.13) is asymptotic to

c2(d− 2)r, where c1, c2 are constants that depend only on d, and c2 > c1 > 1 for d > 4. Since

r > 2 log n− 1, bound (3.5) is asymptotically stronger than (3.12) or (3.13).

Before ending this section, we give another look at the [24, 12, 8]2 Golay code, one

of the most famous binary codes known. We present here a parity-check matrix with 34 rows

that maximizes stopping distance and corrects more low-weight erasure patterns than the parity-

check matrix given in [4].1 The details of our parity-check matrix, denoted by HHS, are given in

Table 3.2. It was found by a greedy computer search. The idea is to start with a random selection

of codewords from G24 (note that G24 is self-dual), and in each iteration, replace one codeword

in the selection so that as many more i-sets (1 ≤ i ≤ 7) as possible are covered. When no such

improvements can be made, an additional codeword is added to the selection and the iteration

continues. The process is stopped when the desired stopping distance is achieved. We find that it

is enough to only consider covering 7-sets, and verify in the end that the matrix obtained indeed

covers all smaller i-sets as well. (Note that since G24 is maximal, there is no need to check the

rank of the parity-check matrix. (cf. Proposition 3.12.))

Table 3.3 compares the number of undecodable erasure patterns by weight w (number

of erased bits) for iterative decoders based on HHS, H ′
24 (the 34-row parity-check matrix reported

in [4]), and the maximum-likelihood decoder. We see that the iterative decoder based on HHS

corrects considerably more lower weight erasure patterns than does the one based on H ′
24, which

implies that it will perform better when the erasure probability is small. For a binary erasure

channel with erasure probability p, a detailed comparsion shows that for all p < 0.349, the

iterative decoder based on HHS has a smaller probability of decoding failure.

3.3 Improvements to the Bound (3.5)

In this section, we present several improvements upon the probabilistic bound (3.5)

using a number of ideas, most of which are based upon a more careful probabilistic analysis.

Given a linear code C, in Theorem 3.5 we construct a parity-check matrix H for C
by drawing codewords independently and uniformly at random from the dual code C⊥. The

1In early versions of [4] and [1], a 35-row parity-check matrix was initially proposed, which was improved to 34
rows following our comments.
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Table 3.2 Parity check matrix with 34 rows for G24 that achieves stopping distance 8

HHS =



0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0
1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1
1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0
0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0
1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0
0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1
0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1
0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1
1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0
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Table 3.3 Number of undecodable erasure patterns by weight w for different iterative decoders
for G24

w ΨHHS
(w) ΨH′

24
(w) ΨML(w)

≤ 7 0 0 0

8 3284 3598 759

9 78218 82138 12144

10 580166 585157 91080

11 1734967 1717082 425040

12 2569618 2556402 1313116

≥ 13
(
24
w

) (
24
w

) (
24
w

)

resulting bound (3.5) can be put in the following alternative form:

ρ(C) ≤ min {t ∈ N : En,d(t) < 1} + (r− d +1) (3.14)

where

En,d(t)
def=

d−1∑
i=1

(
n

i

)(
1− i

2i

)t
(3.15)

Our first observation is this: such random choice is efficient at first, but becomes less

and less efficient as successive rows of H are drawn from C⊥. At some point, deterministic

selection becomes superior. This leads to the following result.

Theorem 3.8 Let C be an [n, k, d]2 code. Let ∆(C) denote the deficiency of C, that is ∆(C) def=

n− k + 1− d. Let En,d(t) be the expectation function defined in (3.15). Then

ρ(C) ≤ min
t∈N

{
t + bEn,d(t)c

}
+ ∆(C) (3.16)

Proof: Let

U
def=

d−1⋃
i=1

[n]i. (3.17)

Let Ht be a t×n matrix whose rows are drawn from C⊥ independently and uniformly at random.

If S ∈ U is a fixed i-set and h is a fixed row of Ht, then the probability that h covers S is i/2i.

Again, this is so because C⊥ is an orthogonal array of strength d− 1 (cf.[11, p. 139]), which

means precisely that for all S ∈ U , a codeword drawn at random from C⊥ is equally likely to
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contain each of the 2i possible vectors on the i positions indexed by S. Let Xt denote the number

of sets S ∈ U that are not covered by Ht. Then Xt is a random variable, and the expected value

of Xt is given by

E[Xt] =
∑
S∈U

Pr
{
S not covered by Ht

}
=

d−1∑
i=1

(
n

i

)(
1− i

2i

)t
The right-hand side of the above expression is En,d(t), by definition. It follows that there exists

a realization H of Ht that covers all but at most bEn,d(t)c sets in U . For each uncovered set

S, there is a codeword of C⊥ that covers S (again, since C⊥ is an orthogonal array). Thus

we can adjoin bEn,d(t)c rows to H to create a matrix H ′ with s(H ′) = d. It is possible that

rank(H ′) <n− k, so H ′ is not necessarily a parity-check matrix for C. However, it is easy to

see that rank(H ′) ≥ d− 1. Hence, by adjoining at most ∆(C) = (n− k)− (d− 1) rows to H ′,

we finally obtain a parity-check matrix H ′′ for C with at most t + bEn,d(t)c + ∆(C) rows and

s(H ′′) = d. �

Since the minimization in (3.16) contains the bound (3.5) as a special case, Theo-

rem 3.8 is at least as strong as (3.5). In fact, it is often substantially stronger (cf. Table 3.4).

The bound of Theorem 3.8 involves solving a minimization problem; a closed-form

expression would be desirable. This is addressed in the following corollary, which is similar in

spirit to Corollary 3.6 and improves upon it.

Corollary 3.9 Let C be an [n, k, d]2 code. Let ∆(C) be the deficiency of C, as before, and define

C
def=

d−1∑
i=1

(
n

i

)
' 2nH2( d

n)

D
def= − ln

(
1− d−1

2d−1

)
' d−1

2d−1

where H2(x) def= −x log2x − (1−x) log2(1−x) is the binary entropy function. Then

ρ(C) ≤
⌈

lnC + lnD + 1
D

⌉
+ ∆(C) (3.18)

Proof: In order to solve the minimization problem in (3.16), albeit approximately, we upper-

bound En,d(t) as follows

En,d(t) ≤
d−1∑
i=1

(
n

i

)(
1− d−1

2d−1

)t
= Ce−Dt
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Table 3.4 Improved bounds on the stopping redundancy of the [24, 12, 8]2 and the [48, 24, 12]2
codes

[24, 12, 8]2 Golay [48, 24, 12]2 QR
Han-Siegel (3.5) 232 4, 440

Theorem 3.8 198 3, 655
Corollary 3.9 213 3, 738
Theorem 3.10 194 3, 655
Theorem 3.11 187 3, 577
Proposition 3.12

182 3, 564
Theorem 3.14

where the inequality follows from the fact that i/2i is non-increasing in i. Let f(t) = t+Ce−Dt.

Then f(t), regarded as a function from R to R, is convex and attains its global minimum at t0 =

(lnC + lnD)/D. It is easy to see that t0 is always positive and f(t0) = (lnC + lnD + 1)/D.

Since f(dte) ≤ df(t)e for all t, the corollary now follows from Theorem 3.8. �

Next, we observe that the random choice method used in Theorem 3.5 and Theorem 3.8

is not optimal. It would be better to select the rows of Ht from C⊥ \{0}, rather than C⊥, without

replacement, rather than with replacement. This leads to the following bound.

Theorem 3.10 Let C be an [n, k, d]2 code, let ∆(C) be the deficiency of C, and let r = n − k.

Then

ρ(C) ≤ min
t∈N

{
t + bFn,d,k(t)c

}
+ ∆(C) (3.19)

where

Fn,d,k(t)
def=

d−1∑
i=1

(
n

i

) t∏
j=1

(
1− i2r−i

2r− j

)
(3.20)

Proof: We construct a parity-check matrix for C in the same way as in Theorem 3.8, except

that the initial matrix Ht is selected differently. Specifically, the rows h1,h2, . . . ,ht of Ht are

selected as follows. Suppose that we have already chosen the first j − 1 rows h1,h2, . . . ,hj−1,

then the j-th row hj is selected uniformly at random from

C⊥ \
{
0,h1,h2, . . . ,hj−1

}
(3.21)

Now let S ∈ U be a fixed i-set that is not covered by any of h1,h2, . . . ,hj−1. What is the

probability that the j-th row covers S? The total number of possible (equally likely) choices for
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hj is 2r − j. Of these, precisely i2r−i cover S. This is so because there are exactly i2r−i code-

words in C⊥ that cover S (again, since C⊥ is an orthogonal array), and none of these is among

h1,h2, . . . ,hj−1 by assumption. Hence, the probability that hj covers S is i2r−i/(2r− j). It

follows that for any fixed i-set S ∈ U , the probability that Ht does not cover S is

Pr
{
S is not covered by Ht

}
=

t∏
j=1

(
1− i2r−i

2r− j

)

Thus Fn,d,k(t) in (3.20) is the expected number of sets S ∈ U that are not covered by Ht, and

the theorem follows. �

Since (3.20) is extremely close to (3.15), it is somewhat surprising that Theorem 3.10

yields any improvements upon Theorem 3.8. But it does, at least for small code parameters (cf.

Table 3.4).

We now improve the construction of a parity-check matrix for C described in Theo-

rem 3.10 in yet another respect. Let H0 be a fixed t × n matrix whose rows h1,h2, . . . ,ht are

nonzero codewords of C⊥, and let U0 denote the subset of the set U in (3.17) consisting of

those sets that are not covered by H0. Let X0 = |U0|. Suppose we adjoin another row ht+1 to

H0, selected uniformly at random from C⊥ \
{
0,h1,h2, . . . ,ht

}
as in (3.21), and let H ′

1 denote

the resulting random matrix. Let X ′
1 be the number of sets S ∈ U that are not covered by H ′

1.

Then, arguing as in the proof of Theorem 3.10, we find that

E[X ′
1] =

∑
S∈U0

Pr
{
S is not covered by ht+1

}
≤ X0

(
1− (d−1)2r−d+1

2r − (t +1)

)
It follows that there exists a (t+1)× n realization H1 of H ′

1 that covers all but at most

X1 =
⌊
X0

(
1− (d−1)2r−d+1

2r − (t +1)

)⌋
(3.22)

sets in U . The process can be now iterated. That is, given H1, we can construct a (t+2) × n

matrix H2 that covers all but at most

X2 =
⌊
X1

(
1− (d−1)2r−d+1

2r − (t +2)

)⌋
(3.23)
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sets in U . And so on. To formalize this process, let us define for all j = 1, 2, . . ., the function

Pj : N→ N as follows

Pj(k) def=
⌊
k

(
1− (d−1)2r−d+1

2r − (t + j)

)⌋
for all k ∈ N

where the parameters d, r, and t are regarded as constant. Then, after i iterations of the foregoing

procedure, we will construct a (t + i)× n matrix Hi that covers all but at most

Qi(X0)
def= Pi

(
Pi−1

(
· · · P2

(
P1(X0)

)))
(3.24)

sets in U . If Qi(X0) = 0, we are done. This establishes the following upper bound on stopping

redundancy.

Theorem 3.11 Let C be an [n, k, d] binary linear code, with deficiency ∆(C). Then the stopping

redundancy ρ(C) is at most

min
t∈N

{
t + min

{
i ∈ N : Qi

(
bFn,d,k(t)c

)
= 0
}}

+ ∆(C) (3.25)

where Fn,d,k(t) is the expectation function defined in (3.20) while Qi(·) is the function defined

in (3.24).

Although the definition of Qi(·) in (3.24) appears to be rather involved, we observe

that the minimization over i in (3.25) is, in fact, very easy to compute: all it takes is a single-line

while loop. The bound of Theorem 3.11 clearly includes Theorem 3.10 as a special case, and

improves upon it (cf. Table 3.4).

Finally, we would like to get rid of the small, but annoying, deficiency term ∆(C)
in Theorems 3.8 – 3.11. To this end, the following simple observation often suffices. A code

C ⊆ Fn
2 is said to be maximal if it is not possible to adjoin any vector in Fn

2 to C without

decreasing its minimum distance.

Proposition 3.12 Let C be an [n, k, d]2 code. Let H be any matrix with s(H) = d whose rows

are codewords of C⊥. If C is maximal, then rank(H) = n− k.

Proof: Assume to the contrary that rank(H) < n − k. Then H is a parity-check matrix for

a proper supercode C′ of C. Since s(H) = d, the minimum distance of C′ is also d, which

contradicts the fact that C is maximal. �
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Proposition 3.12 implies that if C is maximal, we can drop the deficiency term ∆(C)
in Theorems 3.5, 3.8 – 3.11. We can also (effectively) get rid of this term using a more elaborate

probabilistic argument. It is intuitively clear that if we draw sufficiently many codewords uni-

formly at random from the dual of an [n, k, d] code C, the resulting matrix is likely to have rank

close to r = n− k. This observation is made formal in the following lemma.

Lemma 3.13 Let C be an [n, k, d]2 code, and let Ht be a t × n matrix whose rows are drawn

uniformly at random (either with or without replacement) from the dual code C⊥. Let r = n− k,

and define the random variable Yt = r − rank(Ht). Then for all t ≥ 0, we have

E[Yt] ≤ Dr(t), (3.26)

where

Dr(t)
def=

{
6/7 if t = r

(r − t)+ + 1
2|t−r|

(
1 + 2/3

2|t−r|+1−1

)
if t 6= r

(3.27)

and (x)+ def= max{x, 0}.

Proof: See Appendix Appendix 3.A. �

In order to combine Lemma 3.13 with our earlier results, let us define the function

Gn,d,k(t)
def= Fn,d,k(t) + Dn−k(t) (3.28)

where Fn,d,k(t) and Dr(t) are as defined in (3.20) and (3.27), respectively. We can now modify

the proofs of Theorem 3.10 and Theorem 3.11 accordingly, thereby establishing the following

result.

Theorem 3.14 Let C be an [n, k, d]2 code, and let r = n− k. Then the stopping redundancy of

C is bounded by

ρ(C) ≤ mint≥r

{
t + bGn,d,k(t)c

}
(3.29)

Moreover, if (r− 1)(d− 1) ≤ 2d−1 then

ρ(C) ≤ min
t≥r

{
t + min

{
i ∈ N : Qi

(
bGn,d,k(t)c

)
= 0
}}

(3.30)

where the functions Gn,d,k(t) and Qi(·) are as defined in (3.28) and (3.24), respectively.
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Proof: Use the same argument as in the proof of Theorem 3.10, but with respect to the random

variable Zt = Xt + Yt, which is the sum of the number of sets S ∈ U not covered by Ht

and its rank deficiency r − rank(Ht). Further, note that the condition (r− 1)(d− 1) ≤ 2d−1

is sufficient for the argument in (3.22), (3.23), and (3.24) to be applicable in this case as well,

which can be seen as follows.

Let H0 be a fixed t×n matrix whose rows h1,h2, . . . ,ht are nonzero codewords of C⊥,

and let U0 denote the subset of the set U in (3.17) consisting of those sets that are not covered

by H0. Let X0 = |U0|. Let Y0 = r − rank(H0) denote the rank deficiency of H0. Suppose we

adjoin another row ht+1 to H0, selected uniformly at random from C⊥ \
{
0,h1,h2, . . . ,ht

}
as

in (3.21), and let H ′
1 denote the resulting random matrix. We would like to apply the argument

in (3.22) now to X0 + Y0. For that we may ssume Y0 6= 0. Let Y ′
1 be the rank deficiency of H ′

1.

Then we have

E[Y ′
1 ] =

2r−Y0 − (t + 1)
2r − (t + 1)

Y0 +
2r − 2r−Y0

2r − (t + 1)
(Y0 − 1)

= Y0

(
1− 1

Y0
· 2r − 2r−Y0

2r − (t + 1)

)
.

Thus, to apply the argument in (3.22) to X0 + Y0, it suffices to require

(d− 1)2r−d+1

2r − (t + 1)
≤ 1

Y0
· 2r − 2r−Y0

2r − (t + 1)

which is equivalent to
d− 1
2d−1

≤ 1− 2−Y0

Y0

for all Y0 = 1, 2, . . . , r − 2. (We may assume r > 2, because if r ≤ 2 then Y0 = 0 for all t ≥ r.

Note that for t ≥ r > 2 we necessarily have Y0 ≤ r − 2.) Now, note that the right-hand side of

the above equation is non-increasing in Y0. Hence,

1− 2−Y0

Y0
≥ 1− 2−(r−2)

r − 2
≥ 1

r − 1
.

So as long as
d− 1
2d−1

≤ 1
r − 1

there exists a (t+1) × n realization H1 of H ′
1 whose number of uncovered sets in U plus rank

deficiency is at most ⌊
(X0 + Y0)

(
1− (d−1)2r−d+1

2r − (t +1)

)⌋



36

The process can now be iterated, so that (3.23) and (3.24) are applicable as well. �

It is not immediately apparent that (3.29) produces a better bound on stopping redun-

dancy than Theorem 3.10. However, we can show that this is always so, except for a few trivial

cases. In fact, comparing (3.20) and (3.26), we see that the second term in (3.28) decreases with

t exponentially faster than the first term. Thus, unless the minimum in (3.29) and/or (3.30) is

achieved for t very close to r (in which case ρ(C) must be close to r as well), the second term in

(3.28) has essentially no effect on the minimization — this term is a tiny fraction, which disap-

pears when taking the floor of Gn,d,k(t). It follows that for virtually all code parameters, the net

effect of (3.29) and (3.30) consists of eliminating the deficiency term ∆(C) in Theorems 3.10

and 3.11.

3.4 Nonbinary Codes

Up to now, we have considered only binary codes for the convenience of discussion.

However, all bounds that have been obtained so far can be extended to the case of nonbinary

codes rather straightforwardly. As such, we will give just a few examples in this section to

illustrate the idea.

The principles behind the constructive bounds in Theorems 3.1 – 3.3 apply to non-

binary codes equally well. However, and a bit unfortunately, the various tricks to reduce the

number of constructed parity checks that made these bounds different are apparently specific to

binary codes. Thus, we end up with the following constructive bound on the stopping redun-

dancy for codes over Fq.

Theorem 3.15 Let C be a linear code over Fq. Then

ρ(C) ≤
d−1∑
i=1

(
r

i

)
(q − 1)i−1.

Proof: The proof is similar to that of Theorem 3.1. Here we take a basis of C⊥ and construct H

such that its rows consist of linear combinations of every set of i basis vectors, i = 1, . . . , d− 1,

with nonzero coefficients. Note that for each set of i basis vectors, we may fix the coefficient of

one of the vectors as 1. �
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For a linear code C over Fq, the codewords of C⊥ are known to form an orthogonal

array of strength d − 1 with q levels ([15, ch. 4]). Therefore, the argument we used to prove

Theorem 3.5 also extends directly to nonbinary codes.

Theorem 3.16 Let C be an [n, n− r, d]q code. Then

ρ(C) ≤ ρ∗(n, d, q) + r − d + 1,

where ρ∗(n, d, q) is the smallest integer t such that

d−1∑
i=1

(
n

i

)(
1− (q − 1)i

qi

)t

< 1.

Proof: Omitted. �

Corollary 3.17 Let C be an [n, n− r, d]q code with 1 < d < n/2. Then

ρ(C) ≤
nH2(δ) + 1

2 log δ
2πn(1−δ)(1−2δ)2

− log
(
1− (q−1)(d−1)

qd−1

) + r − d + 1,

where δ = d/n, and H2(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

Proof: Omitted. �

Corollary 3.18 Let C be an [n, n− r, d]q code with d > 1. Then

ρ(C) ≤ n

− log
(
1− (q−1)(d−1)

qd−1

) + r − d + 1.

Proof: Omitted. �

Example 3.1 Let G12 denote the [12, 6, 6]3 Golay code. The bound of Theorem 3.15 gives

ρ(G12) ≤ 332, while the bound of Theorem 3.16 gives ρ(G12) ≤ 160. The best known result (by

a greedy search, see [1]) is ρ(G12) ≤ 22. �

We comment on the asymptotic comparison between the bounds of Theorem 3.15 and

Theorem 3.16 as n→∞. Here we will only treat the case of “good” codes.
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Let d = δn, r = γn, where 0 < δ < (q − 1)/q and 0 < γ < 1 are constants. Let

θ = (q − 1)/q. For 0 < δ < θ, we have 0 < δ/γ ≤ θ by the asymptotic Plotkin bound. Noting

that H2(p) ≥
(
H2(θ)/θ

)
· p for all 0 < p ≤ θ, 0 < θ < 1, we see that the upper bound of

Theorem 3.15 is
d−1∑
i=1

(
r

i

)
(q − 1)i−1

= Ω
((

r

d− 1

)
(q − 1)d−2

)
= Ω

(
1√
n

2H2

(
δ
γ

)
·(γn) · (q − 1)d

)
= Ω

(
1√
n

2
H2(θ)

θ
· δ
γ
·γn · (q − 1)d

)
= Ω

(
1√
n

q
qd

q−1

)
.

On the other hand, similar to the binary case, one can show that the bound of Theorem 3.16

is Θ(qd). Hence, for “good” codes, the probabilistic bound of Theorem 3.16 is asymptotically

tighter than the constructive bound of Theorem 3.15.

3.5 Discussion and Concluding Remarks

In this chapter we have obtained several general upper bounds on the stopping redun-

dancy. There have been two main approaches. The first one follows the idea of Schwartz and

Vardy [4] (independently Hollmann and Tolhuizen [7]), and is based on explicitly constructing a

parity-check matrix by taking linear combinations of basis vectors of the dual code. The second

approach, which is our main contribution, is based on probabilistic methods. We have shown

through direct and asymptotic comparisons that the upper bounds obtained through the second

approach are generally much tighter than those based on the first approach. Although most of

our results were stated and proved herein for binary linear codes, they extend straightforwardly

to linear codes over an arbitrary finite field, and we have given a few examples.

Extension to bounds on the stopping redundancy hierarchy [9, 10] is also straightfor-

ward: simply replace all occurrences of d in the theorems by the corresponding index of the

hierarchy. Generalization to bounds on the trapping redundancy [16] should be relatively easy

as well, although, perhaps, less straightforward.
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In Section 3.3, we have tried to push the limits of probabilistic analysis, and have

presented several improvements upon the “basic” probabilistic bound (3.5). While these im-

provements are not dramatic, we have seen in examples that they can be substantial in practice.

We point out that, in addition to the results presented in Section 3.3, we have investigated several

other ideas. For example, one could construct a parity-check matrix for a linear code C by select-

ing each codeword of the dual code C⊥ independently with some probability p, and then optimize

the value of p. However, we have found that while this method, as well as other probabilistic-

choice variants, improve upon (3.5), they are generally less efficient than the bounds presented

in Section 3.3. We note that well-known techniques in “probabilistic method,” such as Lovász

local lemma [3, p. 64] and Rödl nibble [3, p. 53], do not seem to be applicable in our context.

Thus we believe that further improvements, if any, would require drastically new ideas.

Though the various probabilistic bounds are much stronger than their explicitly con-

structive counterparts, it is still difficult to say if they are tight bounds in general. Particularly,

all upper bounds we obtained for the case of “good” codes grow exponentially with the length

of the code. Although for some codes it is known [1] that this exponential growth is necessary,

it remains an interesting question whether there exist “good” codes whose stopping redundancy

grows only polynomially with block length.

Improving the general lower bound on stopping redundancy seems difficult. Straight-

forward application of the probabilistic methods yields the same bound as in [1].

Appendix 3.A Proof of Lemma 3.13

Proof: First assume that the rows of Ht are drawn from C⊥ uniformly at random with replace-

ment (as in Theorem 3.8). It is known (see [17], for example) that

Pr
{
rank(Ht) = j

}
=

1
2(r−j)(t−j)

j−1∏
i=0

(1− 2i−r)(1− 2i−t)
1− 2i−j

(3.31)

for all j = 0, 1, . . . , r. Basically, rank(Ht) = j if and only if Ht can be written as Ht = AB,

where A is t× j, B is j × n and both are of rank j. There are (2r − 1)(2r − 2) . . . (2r − 2j−1)

ways to choose rows of B from C⊥ such that rank(B) = j. Similarly, there are (2t − 1)(2t −
2) . . . (2t− 2j−1) ways to choose A such that rank(A) = j. Now, for any j× j binary matrix C
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that is full-rank, Ht = (AC)(C−1B). So, by choosing A and B in separate steps, each rank-j

realization of Ht is counted (2j − 1)(2j − 2) . . . (2j − 2j−1) times. As there are a total of 2rt

possible realizations of Ht, we have

Pr
{
rank(Ht) = j

}
=

1
2rt

∏j−1
i=0 (2r − 2i)

∏j−1
i=0 (2t − 2i)∏j−1

i=0 (2j − 2i)

and (3.31) follows.

Now, we prove (3.26). If t ≥ r, we have

E[Yt] =
r∑

j=0

(r − j)2−(r−j)(t−j)
j−1∏
i=0

(1− 2i−r)(1− 2i−t)
1− 2i−j

≤
r∑

j=0

j2−j(t−r+j)
j∏

i=1

1
1− 2−i

≤ 2−(t−r) +
r∑

j=2

j2−j(t−r+j)
j∏

i=1

1
1− 2−i

≤ 2−(t−r) +
4
3

r∑
j=2

2−j(t−r+1) (3.32)

≤ 2−(t−r) +
4
3

2−2(t−r+1)

1− 2−(t−r+1)

= 2−(t−r)

(
1 +

2/3
2t−r+1 − 1

)
(3.33)

where (3.32) follows from the fact that

j2−j2
j∏

i=1

1
1− 2−i

≤ 4
3
2−j , ∀j ≥ 2.

Similarly, if t < r, we have

E[Yt] = (r − t) + E
[
t− rank(Ht)

]
= (r − t) +

t∑
j=0

(t− j)2−(r−j)(t−j)
j−1∏
i=0

(1− 2i−r)(1− 2i−t)
1− 2i−j

≤ (r − t) +
t∑

j=0

j2−j(r−t+j)
j∏

i=1

1
1− 2−i

≤ (r − t) + 2−(r−t)

(
1 +

2/3
2r−t+1 − 1

)
.
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For the special case where t = r, equation (3.33) shows that E[Yr] ≤ 5/3. We show that this

upper bound can be improved as follows.

E[Yr] =
r∑

j=0

(r − j)2−(r−j)2
j−1∏
i=0

(1− 2i−r)2

1− 2i−j

=
r∑

j=1

j2−j2
r−j−1∏

i=0

(1− 2i−r)2

1− 2i−(r−j)

=
r∑

j=1

j2−j2 φ(1/2)∏j
i=1(1− 2−i)2

∏r
i=r−j+1(1− 2−i)∏∞
i=r+1(1− 2−i)

≤ φ(1/2)
r∑

j=1

j2−j2∏j
i=1(1− 2−i)2

(3.34)

≤ φ(1/2)

1298
441

+
r∑

j=4

j2−j2∏j
i=1(1− 2−i)2


≤ φ(1/2)

1298
441

+
1
4

r∑
j=4

2−2j

 (3.35)

≤ 0.29
(

1298
441

+
1

768

)
<

6
7
,

where φ(q) def=
∏∞

k=1(1− qk) is the Euler’s function. Note that (3.34) is obtained by noting

∞∏
i=r+1

(1− 2−i) ≥ 1− 2−r,

and (3.35) is based on the fact that

j2−j2∏j
i=1(1− 2−i)2

≤ 2−2j−2, ∀j ≥ 4.

Finally, we show that if the rows of Ht are drawn uniformly at random from C⊥ \ {0}
without replacement (as in Theorem 3.10), this can only reduce the expected value of Yt.

This result is intuitively clear, since when all-zero rows and duplicate rows are avoided,

the expected rank of Ht can only be higher. For a formal proof, let H ′
t be a t× n matrix whose

rows are drawn at random from C⊥ \ {0} without replacement. Let Ht still denote the t × n
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matrix whose rows are drawn independently and uniformly from C⊥ with replacement. It suffices

to show E
[
rank(H ′

t)
]
≥ E

[
rank(Ht)

]
.

Consider the following random experiment:

H ← empty matrix; H ′ ← empty matrix; H ← {0};
for i = 1 to t

h ← random vector from C⊥; H ←
[

H

h

]
;

while h ∈ H
h ← random vector from C⊥;

end

H ′ ←
[

H ′

h

]
; H ← H∪ {h};

end

Clearly, at the end of the experiment, H has the same distribution as Ht and H ′ has the same

distribution as H ′
t. Effectively, the above experiment describes a way of obtaining the distribu-

tion of Ht from the distribution of H ′
t. In other words, it defines a stochastic matrix M , such

that

p ′ = pM,

where p =
(
Pr{Ht = ω}

)
ω∈Ω

, p ′ =
(
Pr{H ′

t = ω′}
)
ω′∈Ω′

, and Ω and Ω′ are the sample

spaces for Ht and H ′
t, respectively. By construction of the random experiment, Mω,ω′ > 0 only

if rank(ω) ≤ rank(ω′). Hence,

E
[
rank(H ′

t)
]

=
∑

ω′∈Ω′

Pr{H ′
t = ω′} rank(ω′)

=
∑
ω∈Ω

Pr{Ht = ω}
∑

ω′∈Ω′

Mω,ω′ rank(ω′)

≥
∑
ω∈Ω

Pr{Ht = ω}
∑

ω′∈Ω′

Mω,ω′ rank(ω)

=
∑
ω∈Ω

Pr{Ht = ω} rank(ω)

= E
[
rank(Ht)

]
. �
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Chapter 4

Stopping Redundancy of MDS Codes

4.1 Introduction

A code is maximum distance separable (MDS)1 if it achieves the Singleton bound [1].

Hence, an [n, n − r, d] code is MDS if and only if d = r + 1. It turns out that very interesting

things can be said about the stopping redundancy of MDS codes, which we study in detail in this

chapter.

For the rest of the chapter, let C be an [n, k = n− d + 1, d]q MDS code. In [2], it was

shown that for all d ≥ 3,

1
d− 1

(
n

d− 2

)
< ρ(C) ≤ max{d⊥, d− 1}

n

(
n

d− 2

)
, (4.1)

where

d⊥ = n− d + 2

is the minimum distance of C⊥, the dual code of C. The authors of [2] then made an intriguing

conjecture that ρ(C) should in fact be a function of just n and d, independent of the actual code.

We show that the upper bound on ρ(C) can be improved by exploiting its relation to

a new combinatorial quantity, the single-exclusion number, which will be introduced shortly.

Before doing so, we first recall two related, well-studied combinatorial constructs. For positive

integers n ≥ s ≥ t, and an n-set2N , an (n, s, t)-Turán system (also known as Turán (n, s, t)-
1For this thesis, an MDS code always refers to a linear MDS code, unless otherwise noted.
2An n-set is a set that contains n elements. Similarly, if A is any set, then a t-subset of A is a subset of A that

contains t elements.
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system) [3] is a collection of t-subsets of N , called blocks, such that each s-subset of the n-set

contains at least one block. The (n, s, t)-Turán number, denoted hereafter by T (n, s, t), is the

smallest number of blocks in an (n, s, t)-Turán system. A concept “dual” to that of a Turán

system is that of a covering design [4]. Specifically, for n ≥ s ≥ t and an n-set N , an (n, s, t)-

covering design is a collection of s-subsets of N , also called blocks, such that each t-subset of

the n-set is contained in at least one block. The (n, s, t)-covering number, denoted by C(n, s, t),

is the smallest number of blocks in an (n, s, t)-covering design. Clearly, by definition,

T (n, s, t) = C(n, n− t, n− s).

The stopping redundancy of an MDS code is closely related to covering / Turán num-

bers. In fact, as observed in [2], suppose H is a parity-check matrix for C and s(H) = d. Since

C⊥ is also MDS and hence has minimum distance n−d+2, a (d−1)-set is a stopping set unless

its complement is contained in the support of some row of H that has weight n − d + 2. Since

there are no stopping sets of size d − 1, the supports of minimum-weight rows of H form an

(n, n − d + 2, n − d + 1)-covering design (equivalently, the complements of supports form an

(n, d− 1, d− 2)-Turán system). Therefore,

ρ(C) ≥ C(n, n− d + 2, n− d + 1) = T (n, d− 1, d− 2). (4.2)

The lower bound in (4.1) was shown as a consequence of the above fact [2].

We now introduce the notions of single-exclusion system and single-exclusion number.

Definition 4.1 For an n-set N and t < n, an (n, t)-single-exclusion (SE) system is a collection

of t-subsets of N , called blocks, such that for each i-subset of N , i = 1, . . . , t+1, there exists at

least one block that contains all but one element from the i-subset. The (n, t)-single-exclusion

(SE) number, S(n, t), is the smallest number of blocks in an (n, t)-SE system.

Note that an (n, t)-SE system is a special type of (n, t + 1, t)-Turán system. Its rele-

vance to the stopping redundancy of MDS codes is given in the following theorem.

Theorem 4.1 Let C be an [n, n− d + 1, d] code. Then

ρ(C) ≤ S(n, d− 2).
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Proof: Let S ⊆ [n]d−2 be an (n, d− 2)-SE system of smallest size. Hence, |S| = S(n, d− 2).

Since C⊥ is MDS with minimum distance n − d + 2, for each S ∈ S, we can find h ∈ C⊥,

such that supp(h) = [n] \ S. Choose one such h for each element of S, and use these vectors

as rows to form an S(n, d − 2) × n matrix H . We show that s(H) = d. Indeed, for each

i ∈ {1, . . . , d − 1}, and X ∈ [n]i, by definition there exists S ∈ S, such that |X \ S| = 1, i.e.

|X∩([n]\S)| = 1. By the construction of H , there exists one row h , such that supp(h) = [n]\S.

Hence, |X ∩ supp(h)| = 1, so X is not a stopping set. Finally, s(H) = d implies that up to row

and column permutations, H contains a (d−1)× (d−1) upper triangular submatrix. Therefore,

rank(H) = d− 1 = r. �

With (4.2) (cf. [2, equation (24)]) and Theorem 4.1, we have “sandwiched” ρ(C) in

between two combinatorial quantities that only depend on n and d. Namely,

T (n, d− 1, d− 2) ≤ ρ(C) ≤ S(n, d− 2). (4.3)

Clearly, any upper bound on S(n, d− 2) is also an upper bound on ρ(C). This reduction proves

useful, as it allows us to invoke powerful combinatorial tools in tackling the problem. We will

see that in some cases, the upper and lower bounds become so close that definitive conclusions

may be drawn about ρ(C), an example of which is given below, which also serves to show why

a tighter upper bound on ρ(C) is hopeful.

Theorem 4.2 For all fixed d > 1, as n→∞,

S(n, d− 2) = T (n, d− 1, d− 2)
(
1 + O(n−1)

)
.

Proof: Let T be an (n, d− 1, d− 2)-Turán system of smallest size. WLOG, let [n] be the n-set.

We show that no more than O(nd−3) blocks need to be added to T to make it an (n, d − 2)-SE

system.

Let T ′ = {Z ∈ [n]d−2 : Z ∩ [d− 2] 6= ∅}. Let S = T ∪ T ′. Clearly,

|T ′| =
d−3∑
m=0

(
d− 2

d− 2−m

)(
n− d + 2

m

)
= O

(
nd−3

)
.
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For any X ⊆ [n] such that 1 ≤ |X| ≤ d− 1, if |X| = d− 1, then by definition of Turán system,

there exists Y ∈ T , such that |X \ Y | = 1. Otherwise, if |X| < d− 1, define

Y =
(
X \ {x}

)
∪
{(

d− |X| − 1
)

smallest elements of
(
[n] \X

)}
,

where x ∈ X is an arbitrary element. It is easy to verify that Y ∈ T ′ and |X \ Y | = 1. Hence,

S is an (n, d− 2)-SE system with T (n, d− 1, d− 2) + O
(
nd−3

)
blocks. Finally, note that

1
d− 1

(
n

d− 2

)
≤ T (n, d− 1, d− 2) ≤

(
n

d− 2

)
.

Thus T (n, d− 1, d− 2) = Θ(nd−2), and the result follows. �

Katona, Nemetz and Simonovits [5] showed that T (n, s, t)/
(
n
t

)
is non-decreasing in n

and hence there exists the limit

τ(s, t) def= lim
n→∞

T (n, s, t)(
n
t

) .

By Theorem 4.2 and (4.3), for any fixed d > 1, both S(n, d − 2) and ρ(C) are asymptotic to3

T (n, d− 1, d− 2) and hence asymptotic to

τ(d− 1, d− 2) ·
(

n

d− 2

)
.

The value of τ(t + 1, t), although unknown for t > 2, is well-studied. In fact, the

determination of τ(s, t) for s > t > 2 has been one of the most challenging open problems in

combinatorial theory (for the solution of which Erdős offered a $1000 award; see [6]). Some of

the known bounds on τ(t + 1, t) are summarized in Table 4.1 (cf. [7], [8], [3], [9], [10], [11],

[12], [13]).

In comparison to Table 4.1, note that the upper bound in (4.1) is never better than

1
2

(
n

d− 2

)
.

This suggests room for improvement in the upper bound, at least for the case where d is much

smaller than n.
3Functions f(x) and g(x) are said to be asymptotic to each other as x→ x0 if limx→x0

f(x)
g(x)

= 1, and is denoted
by f(x) ∼ g(x). In this thesis we usually talk about integer functions of n and the condition n → ∞ is sometimes
omitted where there is no confusion.
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Table 4.1 Some known bounds on τ(t + 1, t)

t Lower Bound Upper Bound

2 1
2

1
2

3 9−
√

17
12

4
9

4 37
143

5
16

5 37−
√

345
80

5
16

6 1
6

17
64

asymp. 1
t

(
1
2 + o(1)

)
ln t
t

We show that it’s indeed true that much stronger upper bounds can be obtained by

studying the SE number S(n, t). Consequently, the new upper bounds are used to show that as

n→∞, ρ(C) is asymptotic to S(n, d− 2) if d = o(
√

n), or if k = o(
√

n)→∞.4 Hence, in an

asymptotic sense, the Schwartz-Vardy conjecture is proved in these cases. In addition, for 1 <

d ≤ 5, we show that ρ(C) = S(n, d− 2) holds exactly. We conjecture that ρ(C) = S(n, d− 2)

is a general result for all MDS codes.

The rest of the chapter is arranged as follows. Section 4.2 is devoted to upper bounds

on S(n, t). The upper bounds are obtained through three approaches: combinatorial construc-

tions, probabilistic methods, and recurrent inequalities. Interesting asymptotics are observed and

discussed, some of which effectively confirm the Schwartz-Vardy conjecture in an asymptotic

sense. The (computable) upper bounds are compared numerically for n up to 512, and the best

bounds are found. In Section 4.3, we derive a lower bound on S(n, t) and observe its implica-

tions. Section 4.4 focuses on the Schwartz-Vardy conjecture. We prove the conjecture for all

MDS codes with 1 < d ≤ 5, and comment on why S(n, d− 2) may be a reasonable estimate of

ρ(C). Section 4.5 concludes the chapter.

4We adopt the standard “O-notation” and related asymptotic expressions [14, Ch. 9]. Functions f(n) and g(n)
are said to be asymptotic to each other, denoted by f(n) ∼ g(n), if limn→∞ f(n)/g(n) = 1, or equivalently, if
f(n) =

`
1 + o(1)

´
g(n), where o(1) stands for any function that goes to zero as n goes to infinity. More generally,

we write f(n) = o
`
g(n)

´
if limn→∞ f(n)/g(n) = 0.
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4.2 Upper Bounds on S(n, t)

We start with some preliminaries. For any set A, let [A]i denote the set of all i-subsets

of A. With some abuse of notation, we say that a set A covers a set B if |B \A| = 1. (Note that

previously we have defined that a matrix H covers a set X if H(X) contains a row of weight

one.) Hence, if N is an n-set, then S ⊆ [N ]t is an (n, t)-SE system if and only if for each

i = 1, . . . , t+1 and X ∈ [N ]i, there exists a block in S that covers X . A covering design/Turán

system/SE system (with prescribed parameters) is minimal if it contains the least number of

blocks.

By definition, an (n, t)-SE system is also an (n, t + 1, t)-Turán system. Hence, we

have

S(n, t) ≥ T (n, t + 1, t) ≥ 1
n− t

(
n

t + 1

)
=

1
t + 1

(
n

t

)
, (4.4)

where the second inequality [5] follows by noting that each block in the Turán system is con-

tained in (n− t) distinct (t + 1)-subsets.

Let C be an [n, k = n− d + 1, d] MDS code. Note that (4.3) can be written as

T (n, n− k, n− k − 1) ≤ ρ(C) ≤ S(n, n− k − 1).

Occasionally, when it’s convenient to do so, we will state our results in terms of S(n, n−k−1).

4.2.1 Probabilistic Bounds

Let N be an n-set. Consider the following random experiment in which we build an

(n, t)-SE system, S ⊆ [N ]t. In the first step, for a prescribed real value p ∈ [0, 1], insert into S
each element of [N ]t with probability p. The expected size of S at this point is p

(
n
t

)
, but some

i-subsets, i = 1, . . . , t + 1, may not be covered. The probability that a given i-subset is not

covered equals (1− p)ϕ(n,t,i), where

ϕ(n, t, i) = i

(
n− i

t− i + 1

)
= i

(
n− i

n− t− 1

)
.

So, as a second step, for each X ∈ [N ]i, i = 1, . . . , t + 1, that is not yet covered, insert into S
some element of [N ]t that covers X . The expected size of S is then bounded from above by

p

(
n

t

)
+

t+1∑
i=1

(
n

i

)
(1− p)ϕ(n,t,i).
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This implies the following upper bound on S(n, t).

Theorem 4.3 For all 0 ≤ p ≤ 1,

S(n, t) ≤ p

(
n

t

)
+

t+1∑
i=1

(
n

i

)
(1− p)i( n−i

t−i+1). (4.5)

Alternatively, in the first step of the random experiment, we may instead make l ran-

dom drawings from [N ]t. At the end of the first step, the probability that a given i-subset is not

covered equals (
1− ϕ(n, t, i)(

n
t

) )l

if the drawing is done with replacement, and equals

l−1∏
j=0

(
1− ϕ(n, t, i)(

n
t

)
− j

)+

,

where (x)+ def= max{x, 0}, if the drawing is done without replacement. The results are the

following bounds.

Theorem 4.4 For all l ∈ N,

S(n, t) ≤ l +
t+1∑
i=1

(
n

i

)(
1−

i
(

n−i
t−i+1

)(
n
t

) )l

. (4.6)

Theorem 4.5 For all l ∈ N, l ≤
(
n
t

)
,

S(n, t) ≤ l +
t+1∑
i=1

(
n

i

) l−1∏
j=0

(
1−

i
(

n−i
t−i+1

)(
n
t

)
− j

)+

. (4.7)

Theorem 4.5 is clearly stronger than Theorem 4.4, and is closely related to Theo-

rem 4.3. In fact, since for all x ∈ R, m ∈ N, x > m > 0,

m∑
i=0

1
x− i

=
1
x

m∑
i=0

∞∑
j=0

(
i

x

)j

=
1
x

∞∑
j=0

x−j
m∑

i=0

ij

≥ 1
x

∞∑
j=0

x−j · m
j+1

j + 1
=

∞∑
j=0

1
j + 1

(m

x

)j+1

= − ln
(
1− m

x

)
,
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we have, for l ≤
(
n
t

)
,

l−1∏
j=0

(
1−

i
(

n−i
r−i+1

)(
n
t

)
− j

)+

= exp

 l−1∑
j=0

ln
(

1−
i
(

n−i
t−i+1

)(
n
t

)
− j

)+


≤ exp

− l−1∑
j=0

i
(

n−i
t−i+1

)(
n
t

)
− j


≤ exp

(
i

(
n− i

t− i + 1

)
ln
(

1− l − 1(
n
t

) ))

=

(
1− l − 1(

n
t

) )i( n−i
t−i+1)

.

So the upper bound (4.7), when minimized over l, is no greater than

min
l∈Z

0≤l≤(n
t)

{
l +

t+1∑
i=1

(
n

i

)(
1− l(

n
t

))ϕ(n,t,i)
}

+ 1.

Note that we have strategically allowed l to take the value
(
n
t

)
in the above expression.

On the other hand, letting l = p
(
n
t

)
in (4.5), we see the minimum value of the upper

bound (4.5) is

min
l∈R

0≤l≤(n
t)

{
l +

t+1∑
i=1

(
n

i

)(
1− l(

n
t

))ϕ(n,t,i)
}

.

Now, suppose the minimum value of the above expression is y, achieved at l = l∗. Then its

value at l = dl∗e is less than y + 1. Therefore, we conclude that the upper bound (4.7) (when

minimized over l) is less than the upper bound (4.5) (when minimized over p) plus two. In

practice, the difference between the two bounds is very small, while the upper bound in (4.5) is

usually easier to compute.

The upper bound in (4.5) can be written as(
p + (1− p)t+1 n− t

t + 1

)(
n

t

)
+

t∑
i=1

(1− p)ϕ(n,t,i)

(
n

i

)
. (4.8)

The first term in (4.8) is minimized when p takes the value

pmin = 1− (n− t)−1/t,
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in which case (4.8) becomes

(
1− (n− t)−1/t + η(n, t)

)
·
(

n

t

)
, (4.9)

where

η(n, t) =
(

n

t

)−1

·
t+1∑
i=1

(1− pmin)ϕ(n,t,i)

(
n

i

)

=
n− t

t + 1
·

t+1∑
i=1

(
(n− t)−

i
t(

n−i
n−t−1)

) (
t+1

i

)(
n−i

n−t−1

) . (4.10)

As n → ∞, it can be shown that (see Appendix Appendix 4.A) if t < n − lnn, then the term

corresponding to i = t + 1 prevails in the sum (4.10). Therefore,

η(n, t) =
(
1 + o(1)

)
· (n− t)−1/t

t + 1
.

Plugging the above into (4.9), we conclude that as n→∞, the bound (4.9) is5
(
1 + O(n−1/t)

)(
n
t

)
, if t ≺ lnn(

1− e−1/c + o(1)
) (

n
t

)
, if t =

(
c + o(1)

)
lnn(

1 + O
( ln(n−t)

t

)) ln(n−t)
t

(
n
t

)
, if lnn ≺ t < n− lnn

where c > 0 is any constant. By the choice of pmin, and the fact that for p = pmin the (t + 1)-st

term prevails in (4.10), no other values of p give asymptotically tighter bounds than the above.

For the case when t ≥ n − lnn, a different asymptotic analysis (see Appendix Ap-

pendix 4.B) shows that the bound (4.5), when minimized over p, is O
(

ln n
n

(
n
t

))
for all t such that

2 < n− t = o
(
(n ln lnn)/ lnn

)
, and is, particularly, Θ

(
ln n
n

(
n
t

))
for all t = n−Θ(1).

4.2.2 Constructive Bounds

Kim and Roush [15] proposed the following construction for Turán (n, t + 1, t)-

systems.

Construction 4.1 ([15]) Let N be an n-set. For a prescribed positive integer l, partition N

into l subsets, Ni, i = 0, . . . , l − 1, as equally as possible. Thus, N =
⋃l−1

i=0 Ni, such that

5We write f(n) ≺ g(n), if f(n) = o
`
g(n)

´
, and similarly, f(n) � g(n), if g(n) = o

`
f(n)

´
, as n→∞.
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bn/lc ≤ |Ni| ≤ dn/le for all i. For all X ⊆ N , define

w(X) def=
l−1∑
i=0

i|X ∩Ni|.

For all j = 0, 1, . . . , l − 1, let

Kj = E ∪Wj ,

where

E =
{
X ∈ [N ]t : ∃i, X ∩Ni = ∅

}
,

Wj =
{
X ∈ [N ]t : w(X) ≡ j mod l

}
. (4.11)

We observe thatKj in Construction 4.1 is an (n, t)-SE system as long as l ≥ n/(n− t− 1).

Theorem 4.6 For all j,Kj as defined in Construction 4.1 is an (n, t)-SE system if l ≥ n/(n− t− 1).

Proof: We show that for any X ⊆ N such that 1 ≤ |X| ≤ t + 1, there exists Y ∈ Kj such that

|X \ Y | = 1.

If there exists i such that X ∩Ni = ∅, we’d like to find a superset Z ⊇ X of size t+1,

such that Z ∩Ni = ∅ as well. This is possible as long as n− |Ni| ≥ t + 1, which is guaranteed

in our case by l ≥ n/(n− t− 1). Now, let x ∈ X be an arbitrary element and let Y = Z \ {x}.
Then |X \ Y | = 1, and Y ∈ Kj .

Otherwise, X ∩Ni 6= ∅ for all i. Let xi ∈ X ∩Ni be arbitrarily chosen. Let Z be any

superset of X such that |Z| = t + 1. For all i, let Yi = Z \ {xi}. Since

w(Yi) = w(Z)− i, ∀i = 0, . . . , l − 1,

by choosing i we can realize all possible values of
(
w(Yi) mod l

)
. Therefore, for any j, there

exists i such that Yi ∈ Kj . By construction, |X \ Yi| = |{xi}| = 1. �

As in [15], the smallest number of blocks in Kj can be estimated as follows.

min
0≤j≤l−1

|Kj | ≤ |E|+ min
0≤j≤l−1

|Wj |

≤
l−1∑
i=0

∣∣∣{X ∈ [N ]t : X ∩Ni = ∅
}∣∣∣+ 1

l

(
n

t

)
≤
(
l −Rl(n)

)(n−
⌊

n
l

⌋
t

)
+ Rl(n)

(
n−

⌊
n
l

⌋
− 1

t

)
+

1
l

(
n

t

)
(4.12)

≤ l

(
n−

⌊
n
l

⌋
t

)
+

1
l

(
n

t

)
,
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where Rl(n) = n mod l. Hence, we have the following upper bound on S(n, t).

Theorem 4.7 For all integers l ≥ n/(n− t− 1),

S(n, t) ≤ l

(
n−

⌊
n
l

⌋
t

)
+

1
l

(
n

t

)
. (4.13)

Let’s look at the asymptotic behavior of the above bound as n → ∞. Consider the

following cases.

1. t > 1 is fixed:

By choosing l = dt/(2 ln t)e, one can show that the upper bound (4.13) is asymptotically

at most 1+2 ln t
t

(
n
t

)
. This is stronger than (4.1) for all d− 2 = t > 3.

2. t/n = δ < 1 is fixed:

Choosing l = dt/(2 ln t)e, we see that the upper bound (4.13) is O
(

ln n
n

(
n
t

))
. At t = d−2,

this is tighter than the Θ
((

n
d−2

))
upper bound given by (4.1). Note that the corresponding

lower bound in (4.1) is Θ
(

1
n

(
n

d−2

))
.

3. n− t− 1 = k > 3 is fixed:

Theorem 4.7 requires that l ≥ n/k. Since k > 3, we can choose l = bn/3c (when n is

large enough). Then bound (4.13) becomes, asymptotically,

S(n, n− k − 1) ≤ l

(
n−

⌊
n
l

⌋
n− k − 1

)
+

1
l

(
n

n− k − 1

)
≤
⌊n

3

⌋(n− 3
k − 2

)
+

3
n− 3

(
n

k + 1

)
= O(nk−1) +

3
n− 3

(
n

k + 1

)
= O(nk−1) +

3
k + 1

(
n

k

)
,

which is asymptotic to 3
k+1

(
n
k

)
. In comparison, at d = n−k+1, the upper bound in (4.1)

is asymptotic to
(

n
k+1

)
, while the lower bound is 1

k+1

(
n
k

)
.

The last part of the discussion above is interesting because the upper bound becomes

asymptotically very close to the lower bound (up to a factor of 3). We summarize this result in

the following theorem.
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Theorem 4.8 For all fixed k, as n→∞,

S(n, n− k − 1) ≤
(
1 + O

(
n−1

))
· 3
k + 1

(
n

k

)
.

Proof: We have just seen the upper bound holds for all k ≥ 4. For k = 3, by (4.12),

S(n, n− k − 1) ≤
(
l −Rl(n)

)( n−
⌊

n
l

⌋
n− k − 1

)
+ Rl(n)

(
n−

⌊
n
l

⌋
− 1

n− k − 1

)
+

1
l

(
n

n− k − 1

)
.

Choosing l = dn/3e gives the desired result. (Note in this case l −Rl(n) < 3 if 3 - n.)

For k = 2, we show that we can construct an (n, n − 3)-SE system using less than
2
3

(
n
2

)
blocks. Let n = 3a+ b, b = 0, 1, 2. Consider the n-set N = ([a]×{0, 1, 2})∪ ({a+1}×

{0, . . . , b− 1}). Choose as blocks the complements of the following triples (if they exist in N )

to construct S:

1. {(x, 0), (x, 1), (x, 2)}, for x = 1, . . . , a;

2. {(x, i), (y, i), (y, i+1)} and {(x, i), (x, i+1), (y, i)}, for x, y ∈ [a+1], x < y, i = 0, 1, 2;

3. {(x, 0), (x, 2), (a + 1, 0)}, for x = 1, . . . , a, if b > 0.

(In the above, i + 1 is modulo 3.) We claim that S is an (n, n − 3)-SE system. Let X ⊂ N be

such that 1 ≤ |X| ≤ n − 2. We show that X is covered in that there exists Y ∈ S such that

|X \ Y | = 1, i.e. such that |Xc ∩ Y c| = 2. Let’s call the set of points in N that share a common

first coordinate a bin. By the construction of S, it is easy to verify that if Xc intersects some

bin at exactly two points, then X is covered. It can also be shown that if Xc intersects some

two bins each at a single point, then X is also covered. Now, excluding the two cases discussed

above, we may assume that Xc intersects no bins at two points, and at most one bin at a single

point. Since |Xc| ≥ 2, this implies that Xc must intersect some bin at three points. This fact,

however, also implies that X is covered (by construction rule number 2). Finally, some simple

algebra shows that |S| < 2
3

(
n
2

)
.

For k = 1, it is easy to see that S(n, n − 2) = n − 1. (Note in this case T (n, n −
1, n− 2) = dn/2e.) �

The proof of Theorem 4.8 shows that for k = 1, 2, a stronger result holds, namely,

S(n, n− k − 1) ≤ 2
k + 1

(
n

k

)
.
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We shall see that the above is indeed true asymptotically for all fixed k, based on the following

construction, which is modified from Construction 4.1 and improves upon it.

Construction 4.2 Let N be an n-set. Assume t < n − 2. Let Ni, i = 0, . . . , l − 1 and w(X),

∀X ⊆ N be defined as in Construction 4.1. For each j ∈ {0, . . . , l − 1}, let

K′j = E ′ ∪Wj ,

where (subscripts of N are modulo l, and similarly hereafter)

E ′ =
{
X ∈ [N ]t : ∃i, X ∩Ni = ∅, Ni−1 * X

}
,

andWj is as defined in (4.11).

Proposition 4.9 For all j and all l ≥ n/(n − t − 2), K′j as given in Construction 4.2 is an

(n, t)-SE system.

Proof: We show that any X ⊆ N , 1 ≤ |X| ≤ t + 1 is covered by a block in K′j . If X ∩Ni = ∅
for some i, let Y ∈ [N \ Ni]t+1 be selected such that X ⊆ Y and |Y ∩ Ni−1| is as small as

possible. Since l ≥ n/(n − t − 2), we have n − |Ni| ≥ t + 2, which ensures that Y exists and

that if Ni−1 * X then Ni−1 * Y . Now, choose x ∈ X such that if Ni−1 ⊆ X then x ∈ Ni−1,

otherwise arbitrarily. Note that X is covered by Y \ {x}. But we also have (Y \ {x})∩Ni = ∅,
and Ni−1 * (Y \ {x}). Therefore, Y \ {x} ∈ E ′.

On the other hand, if X∩Ni 6= ∅ for all i, select one element in each such intersection,

say xi ∈ X ∩ Ni. Now, choose Y ∈ [N ]t+1 such that X ⊆ Y , and consider Y \ {xi}, i =

0, . . . , l−1. All these sets cover X , and since w(Y \{xi}) = w(Y )−i, the set
{
w(Y \{xi})

}l−1

i=0

contains l consecutive integers, one of which must be congruent to j modulo l. Hence, for all j,

there exists i such that X is covered by Y \ {xi} ∈ Wj . �

Theorem 4.10 For all integers l ≥ n/(n− t− 2),

S(n, t) ≤ 1
l

(
n

t

)
+ l

[(
n− bnl c

t

)
−
(

n− bnl c − d
n
l e

t− dnl e

)]
. (4.14)

Proof: From Proposition 4.9, for all l ≥ n/(n− t− 2),

S(n, t) ≤ min
0≤j<l

|K′j |.
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Note that

E ′ =
l−1⋃
i=0

(
Ei \ E ′i

)
,

where

Ei =
{
X ∈ [N ]t : X ∩Ni = ∅

}
,

E ′i =
{
X ∈ [N ]t : X ∩Ni = ∅, Ni−1 ⊆ X

}
.

Thus, we have

min
0≤j<l

|K′j | ≤ |E ′|+ min
0≤j<l

|Wj |

≤
l−1∑
i=0

[(
n− |Ni|

t

)
−
(

n− |Ni| − |Ni−1|
t− |Ni−1|

)]
+ min

0≤j<l
|Wj |

≤ l

[(
n− bnl c

t

)
−
(

n− bnl c − d
n
l e

t− dnl e

)]
+

1
l

(
n

t

)
. �

An alternative (slightly weaker) form of the upper bound is given in the following

theorem.

Theorem 4.11 For all integers l ≥ n/(n− t− 2),

S(n, t) ≤ 1
l

(
n

t

)
+ l
⌈n

l

⌉(n− bnl c − 1
t

)
. (4.15)

Proof: Note that

E ′ =
l−1⋃
k=0

⋃
α∈Nk−1

[
N \

(
Nk ∪ {α}

)]t
.

The rest of the proof is similar to that of Theorem 4.10. �

Corollary 4.12 For all fixed k, as n→∞,

S(n, n− k − 1) ≤
(

2
k + 1

+ O
(
n−1

))(n

k

)
.

Proof: Theorem 4.11 applies provided that l ≥ n/(k−1). If k ≥ 4, let l = bn/2c. From (4.15),

we have

S(n, n− k − 1) ≤ 2
n− 2

(
n

n− k − 1

)
+

3n

2

(
n− 3

n− k − 1

)
=

2
k + 1

(
n

k

)
+ O(nk−1).
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For k = 3, let l = dn/2e. If n is even, the above derivation is still valid. If n is odd,

note that there is one bin that contains a single element, and the remaining (n − 1)/2 bins all

contain two elements. From the proof of Theorem 4.11, we have

|E ′| ≤
dn/2e−1∑

i=0

|Ni−1| ·
(

n− |Ni| − 1
n− 4

)
= (n− 2) ·

(
n− 3
n− 4

)
+ 2 ·

(
n− 2
n− 4

)
= O

(
n2
)

Hence,

S(n, n− 4) ≤ 2
n + 1

(
n

n− 4

)
+ O

(
n2
)

=
1
2

(
n

3

)
+ O

(
n2
)

For k < 3, the result is already shown in the proof of Theorem 4.8. �

Note that the above bound is sharp for k = 1. For k > 1, stronger results can be

obtained using recurrent inequalities, which are discussed in the next section.

We remark that Construction 4.2 also serves as a construction for Turán systems. In

that sense, it is an improved version of the construction by Kim and Roush [15].

Proposition 4.13 For all l and j,K′j as given in Construction 4.2 is an (n, t+1, t)-Turán system.

Proof: The proof is similar to that of Proposition 4.9. �

Our next two constructions for SE systems are inspired by the following construction

for (n, t + 1, t)-Turán systems due to Frankl and Rödl [16].

Construction 4.3 ([16]) Let N be an n-set. Let Ni, i = 0, . . . , l − 1 and w(X), ∀X ⊆ N

be defined as in Construction 4.1. Also, for all X ⊆ N , define Λ(X) def= {i : X ∩ Ni 6= ∅}
and λ(X) def= |Λ(X)|. So λ(X) is the number of partitions that X intersects. Now, for j ∈
{0, . . . , l − 1}, let

Fj =
{

X ∈ [N ]t :
((

w(X) + j
)

mod l
)
∈
{
0, 1, . . . , l − λ(X)

}}
.
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Theorem 4.14 ([16]) For all l and j, Fj constructed according to Construction 4.3 is an (n, t+

1, t)-Turán system.

Proof: Note that in general, if x ∈ (X∩Ni), then w(X\{x}) = w(X)−i. Let X be a (t+1)-set.

Since X intersects λ(X) partitions, {(w(Y ) + j) mod l : Y ∈ [X]t} contains λ(X) distinct

values. Hence, there exists Y ∈ [X]t, such that (w(Y )+j) mod l ∈ {0, 1, . . . , l−λ(X)}. Now,

note that λ(Y ) ≤ λ(X) since Y ⊆ X . Therefore, (w(Y ) + j) mod l ∈ {0, 1, . . . , l − λ(Y )},
which implies that Y ∈ Fj . �

We observe that if l ≤ n/(t + 1), then the above construction actually produces an

(n, t)-SE system.

Theorem 4.15 If l ≤ n/(t + 1), then for all j, Fj constructed according to Construction 4.3 is

an (n, t)-SE system.

Proof: Let X ⊆ N be such that 1 ≤ |X| ≤ t + 1. Choose Z ∈ [N ]t+1, such that X ⊆ Z and

Λ(Z) = Λ(X). This is possible as |
⋃

i∈Λ(X) Ni| ≥ λ(X) bn/lc ≥ t + 1. Consider the class of

t-sets, Y = {Z \ {x} : x ∈ X}. For all Y ∈ Y , we have |X \ Y | = 1. Note that {(w(Y ) + j)

mod l : Y ∈ Y} contains λ(X) distinct values. Hence, there exists Y ∈ Y , such that (w(Y )+j)

mod l ∈ {0, 1, . . . , l − λ(X)}. Now, note that Y ⊆ Z implies that λ(Y ) ≤ λ(Z) = λ(X).

Therefore, (w(Y ) + j) mod l ∈ {0, 1, . . . , l − λ(Y )}, which implies that Y ∈ Fj . �

It was shown in [3] that

l−1∑
j=0

|Fj | =
(

n

t

)
+ l

(
n−

⌊
n
l

⌋
t

)
.

Therefore,

min
j
|Fj | ≤

1
l

l−1∑
j=0

|Fj | =
1
l

(
n

t

)
+
(

n−
⌊

n
l

⌋
t

)
.

Thus, we have the following theorems.

Theorem 4.16 For all positive integers l ≤ n/(t + 1),

S(n, t) ≤ 1
l

(
n

t

)
+
(

n−
⌊

n
l

⌋
t

)
.
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The requirement that l be no greater than n/(t+1) can be rather restrictive, and makes

the upper bound less useful unless t is small relative to n. We may get around this problem

by adding some additional blocks to Fj . One way of doing so is described in the following

construction. For clarity, we first assume l | n.

Construction 4.4 Let N , N0, N1, . . . , Nl−1 and w(X),∀X ⊆ N be defined as in Construc-

tion 4.1. Arrange elements of N into an (n/l) × l array such that the i-th column consists of

the elements of Ni. Note that rows of this matrix also partition N , and we denote the sets of

elements contained in each row by M0, . . . ,Mn/l−1. For all X ⊆ N , define

w′(X) def=
n/l−1∑
i=0

i|X ∩Mi|.

For j = 0, . . . , l − 1 and m = 0, . . . , n/l − 1, let

F ′j,m = Fj ∪Mm,

where Fj is as defined in Construction 4.3, and

Mm =
{
X ∈ [N ]t : w′(X) ≡ m mod (n/l)

}
.

We show that for all l, F ′j,m as defined in Construction 4.4 is an (n, t)-SE system.

Lemma 4.17 Let l ≥ 2 be an integer. Let L = {0, 1, . . . , l − 1}. For all X ⊆ L, define

‖X‖ def=
∑
x∈X

x.

Then, for all i = 1, . . . , l − 1, {
‖X‖ mod l : X ∈ [L]i

}
= L.

Proof: The case for i = 1 is trivial. For i = 2, the claim is proved simply by noting that

j = ‖{0, j}‖ for j = 1, . . . , l − 1, and l = ‖{1, l − 1}‖.
In general, if the claim is true for i, then it is also true for l − i, because{
‖X‖ mod l : X ∈ [L]l−i

}
=
{
(‖L‖ − ‖Y ‖) mod l : Y ∈ [L]i

}
.
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Hence, the claim is also true for i = l − 1 and i = l − 2.

Now, for the general case, let’s assume i ≤ l − 3. The idea is to consider pairs of

elements in L that sum to 0 modulo l. We will only prove the case where l is even. The case for

odd l is similar. Let

Zj
def= {j, l − j}, j = 1, . . . , l/2− 1.

We show that for all m ∈ L, we can find X ∈ [L]i, such that ‖X‖ ≡ m mod l.

Indeed, if i is odd, then we can simply choose X = {m} ∪
⋃

j∈J Zj , where J is any

(i − 1)/2-subset of [l/2 − 1] that does not contain min{m, l −m}. If i is even, then X can be

found by

• X =
⋃

j∈J Zj , for m = 0, where J is an arbitrary (i/2)-subset of [l/2− 1];

• X = {0,m} ∪
⋃

j∈J Zj , for all m 6= 0, where J is any (i/2− 1)-subset of [l/2− 1] that

does not contain min{m, l −m}. �

Theorem 4.18 For all l, j, and m, F ′j,m as defined in Construction 4.4 is an (n, t)-SE system.

Proof: Since it is known [16] that Fj is an (n, t + 1, t)-Turán system, all (t + 1)-subsets of N

are covered. It remains to show that any X ⊆ N , 1 ≤ |X| ≤ t, is covered by a block in F ′j,m. In

the following, let x ∈ X be an arbitrary element.

First, suppose Ni * X for all i. If t ≤ n − l, then we can find a t-set Z ⊇ X such

that Ni * Z for all i. Now, let Yi = (Z \ {x})∪ {yi}, where yi ∈ Ni \Z are arbitrarily chosen.

Clearly, |X \ Yi| = 1 for all i. For any gvien j, by varying i we can realize all l possible values

of
(
w(Yi) + j

)
mod l. Hence, there exists i such that w(Yi) + j ≡ 0 mod l, which implies

that Yi ∈ Fj .

On the other hand, if t > n − l, then we can find an (n − l)-set Z ⊇ X such that

Ni * Z for all i. Clearly, N \ Z intersects each Ni at exactly one element. Consider t-sets that

consist of the union of Z \ {x} and an (t−n + l + 1)-subset of N \Z. By Lemma 4.17, for any

given j, there exists W ∈ [N \ Z]t−n+l+1 such that if Y = (Z \ {x}) ∪W then w(Y ) + j ≡ 0

mod l. Therefore, Y ∈ Fj and clearly |X \ Y | = 1.

Next, consider the case where Ni ⊆ X for some i. By construction, Ni contains

elements from each of M0, . . . ,Mn/l−1. Let Z ⊇ X be a superset of X that contains t + 1
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elements. Let Y =
{
Z \ {x} : x ∈ X

}
. By choosing Y ∈ Y , we can realize any value of w′(Y )

mod (n/l). Hence, for any m, there exists a t-set Y ∈Mm such that |X \ Y | = 1. �

Although our results have been stated assuming l divides n, both Construction 4.4 and

Theorem 4.18 can be straightforwardly extended to the general case. Specifically, if l - n, we

can define M0, . . . ,Mbn/lc−1 by applying Construction 4.4 to some lbn/lc elements of N and

letting Mbn/lc−1 include the remaining (n mod l) elements.

Clearly,
bn/lc−1∑

m=0

|Mm| =
(

n

t

)
.

Hence,

min
m
|Mm| ≤

1
bn/lc

(
n

t

)
.

By the union bound, |F ′j,m| ≤ |Fj |+ |Mm|, hence we arrive at the following bounds.

Theorem 4.19 For all integers l, 1 ≤ l ≤ n,

S(n, t) ≤


(
n−bn/lc

t

)
+ 1

l

(
n
t

)
if l ≤ n

t+1 ,(
n−bn/lc

t

)
+
(

1
l + 1

bn/lc

) (
n
t

)
if l > n

t+1 .
(4.16)

Proof: Omitted, as it is clear from the preceding discussion. �

Note that when l > n/(t + 1), the above bound is never better than 2√
n

(
n
t

)
due to the

second term. This implies that the above bound is still rather weak when t is not significantly

smaller than n.

We now consider a second way of augmenting Construction 4.3.

Construction 4.5 Let N be an n-set. Assume t < n. Let Ni, i = 0, . . . , l − 1, and w(X),

∀X ⊆ N , be defined as in Construction 4.1. We will call each Ni a bin. For all X ⊆ N and

j = 0, . . . , l − 1, define

wj(X) def= (w(X) + j) mod l.

Now, for all j = 0, . . . , l − 1, let

F ′′j = F̃ ′′j ∪ U ,
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where

F̃ ′′j =
{
X ∈ [N ]t : wj(X) ≤ max{e(X), f(X)}

}
,

where

e(X) = |{i : X ∩Ni = ∅}|,

f(X) = |{i : Ni ⊆ X}|

are the number of “empty” and “full” bins for X , respectively, and the set U is constructed as

follows.

Fix an arbitrary total order on N . Let I ⊆ {0, . . . , l − 1} be an index set that satisfies∑
i∈I |Ni| > t, and is minimal in the sense that all proper subsets of I violate this condition.

For each such I and i, j ∈ I , i 6= j, let U include the t-set that consists of all elements from

bins Nm,m ∈ I \ {i, j}, the smallest |Ni| − 1 elements of Ni, and the smallest
(
t + 1 −∑

m∈I,m6=j |Nm|
)

elements of Nj .

Proposition 4.20 For all l and j, F ′′j as given in Construction 4.5 is an (n, t)-SE system.

Proof: We show that any X ⊆ N , 1 ≤ |X| ≤ t+1, is covered by a block in F ′′j . If |X| = t+1,

note that all t-subsets of X can be written as X \ {x}, for some x ∈ X . Since w(X \ {x}) =

w(X)−w({x}) for all x ∈ X , by choosing x from different bins that X intersects, we can make

w(X \ {x}) take on l− e(X) different values. Since no two of these values differ by more than

l− 1, this also means that we can realize l− e(X) different values for wj(X \ {x}). Since only

l − e(X) − 1 numbers in {0, . . . , l − 1} are greater than e(X), there exists x ∈ X such that

wj(X \ {x}) ≤ e(X) ≤ e(X \ {x}), hence X \ {x} ∈ F̃ ′′j , and it covers X .

If i ≤ t, consider two cases. First, let us assume that there exists i, such that X ∩Ni 6=
∅ and Ni * X . In this case, remove from X an arbitrary element in X ∩Ni, add in t−|X| other

elements from N using as few elements from Ni as possible, and call the resulting (t−1)-set X̃ .

That is, X̃ = (X\{x})∪Y , for some x ∈ X∩Ni and some Y ∈ [N \X]t−|X| that has a minimal

number of elements from Ni. Note that the choice of X̃ ensures that f(X̃∪{x}) = f(X̃). Since

w(X̃ ∪ {z}) = w(X̃) + w({z}) for all z /∈ X̃ , by choosing z /∈ X̃ , z 6= x, from different bins

where possible, we can make w(X̃ ∪ {z}) take on l − f(X̃ ∪ {x}) = l − f(X̃) different

values. This also means that we can realize l − f(X̃) different values for wj(X̃ ∪ {z}). Since

only l − f(X̃) − 1 numbers in {0, . . . , l − 1} are greater than f(X̃), there exists z such that

wj(X̃ ∪ {z}) ≤ f(X̃) ≤ f(X̃ ∪ {z}), hence X̃ ∪ {z} ∈ F̃ ′′j , and it covers X .
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Next, if no i exists such that X ∩ Ni 6= ∅ and Ni * X , this means that for all i such

that X ∩ Ni 6= ∅, we have Ni ⊆ X . Figuratively, it means that X consists of a number of full

bins. Let Ni be any bin that X intersects. Let x ∈ Ni be its largest element. Take X \ {x}, and

add to it elements from bins that X does not intersect, one bin after another, from smallest to the

largest within each bin, until X \ {x} is augmented to contain t elements. By construction, the

t-subset thus obtained is contained in U . �

Theorem 4.21 For all positive integers l,

S(n, t) ≤ 1
l

(
n

t

)
+
(

n− bnl c
t

)
+
(

n− bnl c
t− bnl c

)
+ g(n, t, l), (4.17)

where

g(n, t, l) =
∑

t+1
dn/le≤i≤

l
t+1
bn/lc

m
(

l

i

)
i(i− 1).

Proof: Note that ∑
X∈[N ]t

f(X) =
∑

X∈[N ]t

∑
i

1{Ni⊆X}

=
∑

i

( ∑
X∈[N ]t

1{Ni⊆X}

)
≤ l

(
n− bnl c
t− bnl c

)
.

Similarly, ∑
X∈[N ]t

e(X) ≤ l

(
n− bnl c

t

)
.

Each X ∈ [N ]t is contained in precisely 1 + max{e(X), f(X)} of the F̃ ′′j ’s. Therefore,∑
j

|F̃ ′′j | =
∑

X∈[N ]t

(
1 + max{e(X), f(X)}

)
≤
(

n

t

)
+

∑
X∈[N ]t

(
e(X) + f(X)

)
≤
(

n

t

)
+ l

(
n− bnl c

t

)
+ l

(
n− bnl c
t− bnl c

)
.

Hence,

min
j
|F̃ ′′j | ≤

1
l

(
n

t

)
+
(

n− bnl c
t

)
+
(

n− bnl c
t− bnl c

)
.
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Finally, note that U contains |I|(|I| − 1) size-t subsets for each valid I , which must satisfy

|I|dn/le ≥ t + 1 and (|I| − 1)bn/lc < t + 1. Therefore, |U| ≤ g(n, t, l). �

4.2.3 Recurrent Bounds

We now turn to a different approach. The key observation here is that an (n, t)-SE

system can be constructed from an (n − 1, t − 1)-SE system and an (n − 1, t + 1, t)-Turán

system, as shown in the following lemma.

Lemma 4.22 For all 0 < t < n− 1,

S(n, t) ≤ S(n− 1, t− 1) + T (n− 1, t + 1, t),

or equivalently, for all 0 < k < n− 1,

S(n, n− k − 1) ≤ S(n− 1, n− k − 2) + C(n− 1, k, k − 1).

Proof: Let N be an n-set and a ∈ N be an arbitrary element. Let S ⊆ [N \{a}]t−1 be a minimal

(n − 1, t − 1)-SE system, and T ⊆ [N \ {a}]t be a minimal (n − 1, t + 1, t)-Turán system.

Define S ′ = {Y ∪ {a} : Y ∈ S}. Then S ′ ∪T is an (n, t)-SE system. Indeed, for all X ∈ [N ]i,

i = 1, . . . , t + 1, if 1 ≤ |X \ {a}| ≤ t, then there exists Y ∈ S such that |(X \ {a}) \ Y | = 1,

which implies that |X \ (Y ∪ {a})| = 1, i.e. X is covered by a block in S ′. The only cases left

are when X = {a}, and when X ∈ [N \ {a}]t+1. In either case, X is covered by a block in T .�

Theorem 4.23 For all 0 < t < n− 1,

S(n, t) ≤
t∑

i=0

T (n− t + i− 1, i + 1, i), (4.18)

or equivalently, for all 0 < k < n− 1,

S(n, n− k − 1) ≤
n−1∑
i=k

C(i, k, k − 1). (4.19)

Proof: Recursively apply Lemma 4.22. �

Interesting results follow. When k = 1, (4.19) implies that S(n, n−2) ≤ n−1, which

is sharp. When k = 2, since C(i, 2, 1) = di/2e, (4.19) gives

S(n, n− 3) ≤
⌈n

2

⌉ ⌊n

2

⌋
− 1,
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which is asymptotically tighter than Corollary 4.12.

Generally, since exact values of most Turán / covering numbers are not known, the

upper bounds in Theorem 4.23 often cannot be directly evaluated. To get a computable upper

bound, one can simply replace each Turán / covering number in the sum by an explicit upper

bound. We show several ways to do this. The first one is based on a result by Erdős and Spencer

[17].

Theorem 4.24 (“Recurrent A”) For all 0 < k < n− 1,

S(n, n− k − 1) ≤ 1 + ln k

k

((
n

k

)
− 1
)

. (4.20)

Proof: In [17], it was shown that for all n ≥ s ≥ t,

C(n, s, t) ≤
(

1 + ln
(

s

t

)) (n
t

)(
s
t

) . (4.21)

Plugging (4.21) into (4.19), we obtain the claimed result after some algebraic manip-

ulations. �

The second one is based on an upper bound on Turán numbers due to Sidorenko [3,

Construction 4].

Theorem 4.25 (“Recurrent B”) For all 0 < t < n− 1 and positive integers l0, l1, . . . , lt,

S(n, t) ≤
t∑

i=0

fn,t(i, li), (4.22)

where

fn,t(i, li) =

[
1
2li

+
1
2

(
3 +

i

li − 1− li(i−1)
m+i

)(
1− 1

li

)i
]
·
(

m + i

i

)
,

and m = n− t− 1.

Proof: Omitted. �

A third way to obtain an explicit upper bound from Theorem 4.23 is based on a con-

struction of an (n, k, k − 1) covering design due to Kuzjurin [18], although we count blocks in

a slightly different manner.
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Lemma 4.26 For all positive integers n ≥ k,

C(n, k, k − 1) ≤ 1
k

(
n

k − 1

)
+

k − 1
k

(
n− 1
k − 2

)
.

Proof: Let N be an n-set. WLOG, let N = {1, 2, . . . , n}. Let Qi = {X ∈ [N ]k :
∑

x∈X x ≡ i

mod n}, and Ci = {X ∈ [N ]k−1 : @Y ∈ Qi, s.t. X ⊂ Y }, i = 0, 1, . . . , n − 1. For each

X ∈ Ci, we can add one block Y ∈ [N ]k to Qi, such that X ⊂ Y . Hence, by adding no more

than |Ci| blocks to Qi, we construct an (n, k, k − 1) covering design. Therefore, for all i,

C(n, k, k − 1) ≤ |Qi|+ |Ci|.

Now note that for all Y, Z ∈ Qi, Y 6= Z, we have |Y ∩Z| ≤ k−2. Therefore, for all X ∈ [N ]k−1

there is at most one block Y in Qi such that X ⊂ Y ; on the other hand, for every Y ∈ [N ]k

there are k elements X ∈ [N ]k−1 such that X ⊂ Y . Hence,

|Ci| =
(

n

k − 1

)
− k|Qi|.

We have

n−1∑
i=0

(
|Qi|+ |Ci|

)
=

n−1∑
i=0

((
n

k − 1

)
− (k − 1)|Qi|

)
= n

(
n

k − 1

)
− (k − 1)

(
n

k

)
.

Therefore, there exists i, such that

|Qi|+ |Ci| ≤
(

n

k − 1

)
− k − 1

n

(
n

k

)
=

1
k

(
n

k − 1

)
+

k − 1
k

(
n− 1
k − 2

)
. �

Plugging the bound in the preceding lemma into (4.19), we obtain the following theo-

rem.

Theorem 4.27 (“Recurrent C”) For all 0 < k < n− 1,

S(n, n− k − 1) ≤ 1
k

(
n

k

)
+

k − 1
k

(
n− 1
k − 1

)
− 1 (4.23)

=
(

1 +
k2 − k

n

)
· 1
k

(
n

k

)
− 1.
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Proof: Omitted. �

Corollary 4.28 For all 0 < k < n− 1,

S(n, n− k − 1) ≤
(

1 +
1
k

+
k2 − 1

n

)
T (n, n− k, n− k − 1)

In particular, as n→∞, if k = o(
√

n) and 1 = o(k), then

S(n, n− k − 1) ∼ T (n, n− k, n− k − 1).

Proof: Omitted. �

Interestingly, a similar asymptotic relation can be shown between S(n, t) and T (n, t+

1, t) when t is small compared to n. In fact, we have already seen in Theorem 4.2 that S(n, t) is

asymptotically
(
1 + O(n−1)

)
T (n, t + 1, t) for all fixed t. Let’s first revisit the construction in

Theorem 4.2.
Theorem 4.29

S(n, t) ≤ T (n, t + 1, t) +
(

n

t

)
−
(

n− t

t

)
Proof: Let T be a minimal (n, t + 1, t)-Turán system whose blocks are t-subsets of some n-set

N . We show that T can be augmented to an (n, t)-SE system by adding no more than
(
n
t

)
−
(
n−t

t

)
blocks. Let L be a t-subset of N . Let T ′ = [N ]t \ [N \ L]t. For any X ∈ [N ]i, i = 1, . . . , t,

and x ∈ X , consider size-t supersets of X \ {x}. Since t − i + 1 ≥ 1 elements are chosen

freely, at least one of the supersets has non-empty intersection with L, and is thus contained in

T ′. Therefore, T ∪ T ′ is an (n, t)-SE system, and it contains no more than

T (n, t + 1, t) +
(

n

t

)
−
(

n− t

t

)
blocks. �

Now note that(
n

t

)
−
(

n− t

t

)
=

t∑
i=1

(
n− i

t− 1

)
≤ t

(
n− 1
t− 1

)
,

and on the other hand
t
(
n−1
t−1

)
T (n, t + 1, t)

≤
t
(
n−1
t−1

)
1

t+1

(
n
t

) =
t2(t + 1)

n
.
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Hence, for all t = o( 3
√

n), S(n, t) is asymptotic to T (n, t + 1, t).

The above result can be slightly improved using Theorem 4.23 and the following result

relating SE and Turán numbers.

Theorem 4.30 For all 0 < t < n− 1,

S(n, t) ≤
(

1− t

n

)
T (n, t + 1, t) +

(
n− 1
t− 1

)
.

Proof: We will use the fact [19] that

T (n, s, t) ≥ n

n− t
T (n− 1, s, t).

From Theorem 4.23, we have

S(n, t) ≤ T (n− 1, t + 1, t) +
t−1∑
i=0

T (n− t + i− 1, i + 1, i)

≤
(

1− t

n

)
T (n, t + 1, t) +

t−1∑
i=0

(
n− t + i− 1

i

)

=
(

1− t

n

)
T (n, t + 1, t) +

n−2∑
i=n−t−1

(
i

n− t− 1

)
=
(

1− t

n

)
T (n, t + 1, t) +

(
n− 1
t− 1

)
. �

Corollary 4.31 For all 0 < t < n− 1,

S(n, t) ≤
(

1 +
t2

n

)
T (n, t + 1, t),

In particular, as n→∞, if t = o(
√

n), then

S(n, t) ∼ T (n, t + 1, t).

Proof: Simply note that (
n−1
t−1

)
T (n, t + 1, t)

≤
(
n−1
t−1

)
1

t+1

(
n
t

) =
t2 + t

n
.

The result follows immediately from Theorem 4.30. �
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4.2.4 Comparison of Upper Bounds

We numerically computed several of the upper bounds on S(n, d − 2), and hence on

ρ(C), for all 5 < d ≤ n ≤ 512. For each (n, d) pair, the tightest bound is identified, and

the results are shown in Fig. 4.1. In the figure, “Construction 4.2” refers to Theorem 4.10,

“Construction 4.5” refers to Theorem 4.21, “Probabilistic” refers to Theorem 4.3, “Recurrent B”

refers to Theorem 4.25, and “Recurrent C” refers to Theorem 4.27. Other bounds included in

the comparison (but not appearing in the figure) are “Schwartz-Vardy” (4.1), “Construction 4.1”

(Theorem 4.7), “Construction 4.4” (Theorem 4.19), and “Recurrent A” (Theorem 4.24). Wher-

ever a bound contains an auxiliary variable (l, p, etc.), the minimum is taken over the auxiliary

variable. Note that d ≤ 5 is not considered, as in this case S(n, d − 2) (or ρ(C)) is at most

T (n, d − 1, d − 2) + 1, for which either precise formulas are known, or tighter special upper

bounds exist. These will be discussed in detail in Section 4.4,

We observe that the most “successful” bounds are Recurrent B, Recurrent C, Proba-

bilistic, and Construction 4.2. A minor exception is Construction 4.5, which excels occasionally

for certain small values of (n, d). As n gets larger, a trend can be seen. Roughly speaking, for

code rate (n − d + 1)/n ≥ 1/5, Recurrent B is the best bound. For code rate less than 1/5,

the best bounds are Probabilistic, Construction 4.2, and Recurrent C, in that respective order, as

code rate gets progressively smaller.

A few samples of the upper bounds are given in Table 4.2. The tightest are highlighted

in boldface. For comparison, a lower bound on T (n, d − 1, d − 2) (hence on S(n, d − 2) and

ρ(C) as well) has been included, based on (4.24) (see Section 4.3). Compared to upper bounds

previously known, significant improvements can clearly be seen. As a side note, we caution that

while Recurrent C is an excellent bound when d is very close to n, it gets loose quickly as d gets

smaller, and should be avoided if the code rate is greater than 1/2.

4.3 Lower Bounds on S(n, t)

A few other lower bounds on Turán / covering numbers are known, besides the simple

lower bound in (4.4). For example, Schönheim [19] showed that

T (n, t + 1, t) ≥
⌈

n

n− t

⌈
n− 1

n− t− 1

⌈
. . .

⌈
t + 2

2

⌉
. . .

⌉⌉⌉
. (4.24)
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Figure 4.1 Best upper bounds on S(n, d− 2) (hence on ρ(C)), for 5 < d ≤ n ≤ 512.

Table 4.2 Upper bounds on S(n, d− 2) and ρ(C)

(n, d) = (31, 7) (31, 23) (31, 27)
Probabilistic (4.5) 96,112 6,412,596 77,298
Construction 4.1 (4.13) 93,691 7,786,707 106,388
Construction 4.2 (4.14) 93,691 7,693,683 86,148
Construction 4.4 (4.16) 76,986 16,275,110 269,970
Construction 4.5 (4.17) 76,986 12,151,903 299,697
Recurrent A (4.20) 124,250 7,161,809 88,673
Recurrent B (4.22) 71,891 9,665,343 520,847
Recurrent C (4.23) 599,474 7,442,607 55,905

Schwartz-Vardy (4.1) 142,506 31,475,730 617,526
Lower Bound (4.24) 33,981 2,103,660 29,450
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Another useful bound is due to De Caen [20]:

T (n, t + 1, t) ≥ 1
t
· n− t

n− t + 1

(
n

t

)
.

Note that a lower bound on T (n, d−1, d−2) is in turn a lower bound on ρ(C) and on S(n, d−2).

In this section, we study a lower bound result on S(n, t), which is not a lower bound

on T (n, t + 1, t) in general. Note that a lower bound (just) on S(n, d − 2) is not necessarily a

lower bound on ρ(C).

Theorem 4.32 For all 0 < t < n− 1,(
1 +

n− t

n(n− t− 1/2)

)
S(n, t) ≥ T (n− 1, t + 1, t) +

1
n− t− 1/2

(
n− 1

t

)
.

Proof: Let N be an n-set, and S ⊆ [N ]t be a minimal (n, t)-SE system. For each j ∈ N , S can

be partitioned into blocks that contain j and those that do not, namely,

S = Aj ∪ Bj ,

where Aj = {X ∈ S : j ∈ X}, and Bj = {X ∈ S : j /∈ X}. Note that for all j, Bj is an

(n − 1, t + 1, t)-Turán system. Further, if we let A′j = {A \ {j} : A ∈ Aj}, then each t-set in

[N \ {j}]t \ Bj contains at least one element of A′j . To see this, suppose X ∈ [N \ {j}]t \ Bj .

Then X ∪{j} is a (t+1)-set and so there exists Y ∈ S such that Y ⊂
(
X ∪{j}

)
. Since X /∈ S,

we have j ∈ Y and hence A′j 3 (Y \ {j}) ⊂ X .

On the other hand, since each element of A′j is contained in

(n− 1)− (t− 1) = n− t

t-subsets of N \{j}, it is contained in at most (n−t) distinct t-sets in [N \{j}]t\Bj . Therefore,

|Aj | = |A′j | ≥
1

n− t

((
n− 1

t

)
− |Bj |

)
.
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This lower estimate can be improved by a more careful argument as follows. Let

A′j1 = {A ∈ A′j : ∃B ∈ Bj , A ⊂ B},

A′j2 = {A ∈ A′j \ A′j1 : ∃A′ ∈ A′j1, |A \A′| = 1},

A′j3 = {A ∈ A′j \ (A′j1 ∪ A′j2) : ∃A′ ∈ A′j2, |A \A′| = 1},
...

A′ji =
{

A ∈ A′j \
i−1⋃
l=1

A′jl : ∃A′ ∈ A′j(i−1), |A \A′| = 1
}

,

...

Note that A′ji ∩ A′jl = ∅ for all i 6= l. Since A′j is finite, there exists i such that A′jl = ∅ for all

l > i. Regardless, define

Ã′j =
∞⋃
l=1

A′jl.

We claim that on average, an element in Ã′j is contained in at most (n − t − 1) t-sets in

[N \ {j}]t \ Bj . To see this, consider a process in which we enumerate elements of A′j , and

for each element, “mark” the t-sets in [N \ {j}]t \ Bj that contain it. We start with elements

in A′j1 and proceed to A′j2,A′j3, and so on. Each element in A′j1 is contained in (n − t) t-sets

in [N \ {j}]t, at least one of which lies in Bj . Therefore, for each element in A′j1, at most

(n− t− 1) t-sets are marked. Now, for any X ∈ A′j2, by definition, there exists Y ∈ A′j1, such

that |X \ Y | = 1. Hence, among the (n− t) t-sets that contain X , at least one of them, namely,

X ∪ Y , is already marked. Therefore, processing any X ∈ A′j2 marks at most (n − t − 1)

additional t-sets in [N \ {j}]t \Bj . A similar argument shows that among the (n− t) t-sets that

contain an element of A′ji, at least one of them is already marked after elements of A′j(i−1) have

been processed.

For A′j \ Ã′j , we show that on average, each element marks at most (n− t− 1/2) t-

sets in [N \ {j}]t \ Bj . Let X ∈ A′j \ Ã′j . As X ∪ {j} ∈ [N ]t, there exists Y ∈ S, such that

|(X ∪ {j}) \ Y | = 1. Since X /∈ A′j1, we have j ∈ Y and hence Y \ {j} ∈ A′j . In fact,

Y \ {j} ∈ A′j \ Ã′j , since otherwise it would imply that X ∈ Ã′j . Now, let Z = X ∪ Y \ {j},
and denote by l the number of elements of A′j \ Ã′j that are contained in Z. Note that l ≥ 2,

since Z contains both X and Y \ {j}. Therefore, of the l elements that are contained in Z, each
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on average marks

n− t− (l − 1)/l ≤ n− t− 1/2

t-sets in [N \ {j}]t \ Bj . For other elements in A′j \ Ã′j , the above argument can be repeated

until all elements have been considered.

Based on the preceding discussions, we conclude that on average, each block in A′j is

contained in no more than (n− t− 1/2) t-sets in [N \ {j}]t \ Bj . Hence,

|S| = |A′j |+ |Bj |

≥ 1
n− t− 1/2

((
n− 1

t

)
− |Bj |

)
+ T (n− 1, t + 1, t). (4.25)

Since each block of S appears in (n− t) Bj’s, we have∑
j∈N

|Bj | = (n− t)|S|.

Summing (4.25) over all j, dividing both sides by n, and noting that |S| = S(n, t) (since S was

chosen to be minimal) gives the desired inequality. �

Corollary 4.33 For all 0 < t < n− 1, we have

S(n, t) ≥ 1
n− t− (t/n) + 1/2

(
n

t + 1

)
.

Proof: Simply use the facts that

T (n− 1, t + 1, t) ≥ 1
n− t− 1

(
n− 1
t + 1

)
,

and (
n

t + 1

)
=
(

n− 1
t + 1

)
+
(

n− 1
t

)
.

�

Equivalently, if we let k = n− t− 1, then we have that for all 0 < k < n− 1,

S(n, n− k − 1) ≥ 1
k + (k + 1)/n + 1/2

(
n

k

)
.

To relate this to the asymptotic results shown earlier, we note the following corollary.

Corollary 4.34 For all k > 0, as n→∞,

S(n, n− k − 1) ≥
(
1−O(n−1)

) 1
k + 1/2

(
n

k

)
.
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Proof: Trivial. �

For fixed k, T (n, n − k, n − k − 1) is asymptotic to 1
k+1

(
n
k

)
(cf. [21]). So the above

corollary shows that for any fixed k, the ratio S(n, n−k−1) / T (n, n−k, n−k−1) is bounded

away from 1 as n→∞.

4.4 On the Schwartz-Vardy Conjecture

Schwartz and Vardy [2] conjectured that the stopping redundancy of an MDS code

should only depend on its length and minimum distance.

In Section 4.2, using recurrent inequalities, we were able to show that this conjecture

holds true in an asymptotic sense under the following scenarios:

• d = o(
√

n), or

• k = o(
√

n), 1 = o(k).

In both cases, our upper and lower bounds on ρ(C) in (4.3) become asymptotic to each other.

We now show that the Schwartz-Vardy conjecture holds in the exact sense for 1 < d ≤
5. When d = 2, it is straightforward to see that ρ(C) = T (n, 1, 0) = S(n, 0) = 1. The case with

d = 3 is only slightly less obvious.

Theorem 4.35 Let C be an [n, n− 2, 3] MDS code. Then

ρ(C) = S(n, 1) = T (n, 2, 1) = n− 1.

Proof: It suffices to show that T (n, 2, 1) ≥ n − 1 and S(n, 1) ≤ n − 1. Let N be an n-set. It

is easy to verify that any (n − 1)-subset of [N ]1 is an (n, 1)-SE system. On the other hand, an

(n, 2, 1)-Turán system clearly cannot have (n−2) or fewer blocks, or there would exist i, j ∈ N ,

such that {i, j} does not contain any block. �

The case for d = 4 needs a bit more work.

Lemma 4.36 For all n ≥ 3,

T (n, 3, 2) ≤
(

n− 3
2

)
+ 3.
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Proof: The proof is by construction. Let N be an n-set. Let L be a 3-subset of N , and R =

N \ L. Let T = [L]2 ∪ [R]2. It is easy to verify that T is an (n, 3, 2)-Turán system, and that

|T | =
(
n−3

2

)
+ 3. �

Theorem 4.37 Let C be an [n, n− 3, 4] MDS code. Then

ρ(C) = S(n, 2).

Further, if n ≥ 6, then we also have

ρ(C) = T (n, 3, 2) =
⌊n

2

⌋(⌈n

2

⌉
− 1
)

.

Proof: The formula for T (n, 3, 2) is a well-known result first documented by Mantel [22]. Later,

Turán [7], [8] solved the more general case of T (n, s, 2).

It is not hard to verify that for n = 4, ρ(C) = S(4, 2) = 3, and for n = 5, ρ(C) =

S(5, 2) = 5. (In comparison, note that we have T (4, 3, 2) = 2, and T (5, 3, 2) = 4.)

Now, assume n ≥ 6. To show ρ(C) = S(n, 2) = T (n, 3, 2), it suffices to show that

S(n, 2) ≤ T (n, 3, 2). Let N be an n-set. Let T ⊂ [N ]2 be an (n, 3, 2)-Turán system of smallest

size. We show that T must also be an (n, 2)-SE system. Since T is an (n, 3, 2)-Turán system,

all 3-sets are covered. It remains to show that all 1- and 2-sets are covered as well.

Suppose there is a 1-set, say {i}, that is not covered. Then i is contained in all blocks

of T . But this implies that all 3-subsets of N \ {i} are not covered, contradicting the fact that T
is a Turán (n, 3, 2)-system.

Suppose there is a 2-set, say {i, j}, that is not covered. This implies that blocks of T
either are {i, j}, or are disjoint from {i, j}. Indeed, {i, j} itself must be a block in T , or any of

its size-3 supersets would not be covered. All 2-sets disjoint from {i, j} must also be blocks of

T . Otherwise, if some {a, b} ⊆ N \ {i, j} is not contained in T , then the 3-set {a, b, i} would

not be covered. All together, the above discussion shows that T (n, 3, 2) = |T | =
(
n−2

2

)
+ 1.

But
(
n−2

2

)
+ 1 >

(
n−3

2

)
+ 3 for all n ≥ 6, which contradicts Lemma 4.36. �

Since the precise formula for T (n, 3, 2) is known, Lemma 4.36 may seem unnecessary.

It is nonetheless given here for its simplicity, and the fact that it suffices for the proof even if the

expression for T (n, 3, 2) were not known.

Now, consider d = 5. We first note a couple of bounds on T (n, 4, 3).
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Lemma 4.38

T (n, 4, 3) ≤
⌊n

3

⌋⌊n− 1
3

⌋(
2
⌊n− 2

3

⌋
+ 1
)

,

where equality holds for n ≤ 13.

Proof: The upper bound comes from a construction of Turán (n, 4, 3)-systems due to Ringel

[23], which has been verified to be optimal for n ≤ 13 (cf. [4]). �

Lemma 4.39 For n ≥ 13,

T (n, 4, 3) ≥ 56
143

(
n

3

)
.

Proof: It can be shown [5] that T (n, s, t)/
(
n
t

)
is non-decreasing in n, hence for any given n0,

T (n, s, t) ≥ T (n0, s, t)(
n0

t

) (
n

t

)
, for n ≥ n0.

Choose n0 = 13. Since T (13, 4, 3) = 112 by Lemma 4.38, the result follows. �

Theorem 4.40 Let C be an [n, n− 4, 5] MDS code. Then

ρ(C) = S(n, 3).

Further, if n ≥ 6, then it also holds that

ρ(C) = T (n, 4, 3).

Proof: For n = 5, it is easily verified that ρ(C) = S(5, 3) = 4. (In comparison, note that

T (5, 4, 3) = 3.)

Now, it remains to show that S(n, 3) = T (n, 4, 3) for all n ≥ 6. Let N be an n-set

and T ⊆ [N ]3 be a minimal (n, 4, 3)-Turán system. If T is also an (n, 3)-SE system then we are

done. Otherwise, let X be a smallest uncovered subset of N . Then |X| = 1, 2, or 3. (All 4-sets

are covered since T is a Turán (n, 4, 3)-system.)

First, suppose |X| = 1. Since X is not covered, it is contained in all blocks of T .

Then any 4-subset of N \X is not covered. This is a contradiction.
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Next, suppose |X| = 2, say X = {i, j}. Then any block of T either contains X

or is disjoint from X . Out of the n − 2 size-3 supersets of X , at least n − 3 must be in T .

Otherwise we could find a, b ∈ N \ X such that {i, j, a}, {i, j, b} /∈ T . But then the 4-set

{i, j, a, b} would not be covered. On the other hand, all of the
(
n−2

3

)
3-sets that are disjoint from

X must be blocks of T . Otherwise, if {a, b, c} ⊆ N \X is not a block, then {i, a, b, c} would

not be covered. All in all, we see that T contains at least
(
n−2

3

)
+ n − 3 blocks. But since(

n−2
3

)
+ n− 3 >

⌊
n
3

⌋ ⌊
n−1

3

⌋ (
2
⌊

n−2
3

⌋
+ 1
)

for n ≥ 6, this contradicts Lemma 4.38.

Lastly, suppose |X| = 3, say X = {i, j, k}. Then for all Y ∈ T , |Y ∩X| 6= 2. Note

the following facts:

1. X itself must be a block of T , otherwise 4-sets like {i, j, k, a} would not be covered.

2. For each 2-set {a, b} ⊆ N \ X , at least two of {a, b, i}, {a, b, j}, and {a, b, k} must be

blocks of T . This is true because if, say, {a, b, i} and {a, b, j} both were not blocks of T ,

then {a, b, i, j} would not be covered.

3. All blocks that are disjoint from X form an (n− 3, 4, 3)-Turán system.

Together, these imply that

S(n, 3) ≥ T (n, 4, 3) = |T | ≥ T (n− 3, 4, 3) + 2
(

n− 3
2

)
+ 1.

However, from Theorem 4.23,

S(n, 3) ≤ T (n− 1, 4, 3) + T (n− 2, 3, 2) + T (n− 3, 2, 1) + 1. (4.26)

And since (cf. [3])

T (n, s, t) ≤ T (n− 1, s, t) + T (n− 1, s− 1, t− 1),

we have

T (n− 1, 4, 3) ≤ T (n− 3, 4, 3) + T (n− 3, 3, 2) + T (n− 2, 3, 2).

Plugging the above in (4.26), we obtain

S(n, 3) ≤ T (n− 3, 4, 3) + 2T (n− 2, 3, 2) + T (n− 3, 3, 2) + n− 3.
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Putting the upper and lower bounds on S(n, 3) together, we have

2T (n− 2, 3, 2) + T (n− 3, 3, 2) + n− 3 ≥ 2
(

n− 3
2

)
+ 1.

However, since it is known (cf. [22] [8]) that T (n, 3, 2) = bn/2c(dn/2e−1), the above inequal-

ity results in a contradiction for all n ≥ 9.

For n = 6, 7, 8, a different contradiction results directly from

T (n, 4, 3) = |T | ≥ T (n− 3, 4, 3) + 2
(

n− 3
2

)
+ 1,

in relation to Lemma 4.38 and Lemma 4.39. �

Corollary 4.41 Let C be an [n, n− 4, 5] MDS code. Then

ρ(C) =
⌊n

3

⌋⌊n− 1
3

⌋(
2
⌊n− 2

3

⌋
+ 1
)

, for n = 6, . . . , 13.

Our approach regarding the conjecture has been so far to show that in some cases the

upper and lower bounds on stopping redundancy (SE and Turán numbers, respectively) converge,

either exactly or asymptotically. However, we have seen that in other cases the corresponding SE

and Turán numbers can be provably different, even in the asymptotic sense (for example, when

k is a fixed constant), which shows the limitation of the current approach in fully resolving the

conjecture.

In fact, it is our belief that for an [n, n− d + 1, d] MDS code C,

ρ(C) = S(n, d− 2),

the proof of which would in turn prove the Schwartz-Vardy conjecture. We have shown that this

is true (or close to being true) when either d or k is o(
√

n). A reasonable question to ask is: what

if d and k are both larger than o(
√

n)? For example, what if k/n approaches a constant? The

current approach only bounds ρ(C) to within a factor of up to lnn. For example, using the result

of Theorem 4.24, we have

ρ(C) ≤ n− d + 2
n− d + 1

· 1 + ln(n− d + 1)
d− 1

·
(

n

d− 2

)
,

while, for the lower bound, we saw that

ρ(C) ≥ 1
d− 1

(
n

d− 2

)
.
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Alternatively, let’s make the following observation. Suppose we are given one optimal

parity-check matrix, i.e. one with ρ(C) rows that maximizes stopping distance. It is not apparent

that all rows should have minimum weight, but suppose T ′ rows are of minimum weight and the

rest are not. We can replace each row that is not of minimum weight (and whose weight is, of

course, at most n) with no more than dn/(n−d+2)eminimum-weight rows, such that the union

of supports of these rows is precisely the support of the row they replaced. It is simple to verify

that the replacement procedure does not decrease the stopping distance, which also implies that

the rank of the matrix is not reduced. After all rows that are not of minimum weight have been

replaced, we obtain a parity-check matrix with at most

T ′ +
⌈

n

n− d + 2

⌉ (
ρ(C)− T ′)

rows, all having minimum weight, that achieves maximum stopping distance. Therefore,

T ′ +
⌈

n

n− d + 2

⌉ (
ρ(C)− T ′) ≥ S(n, d− 2).

Now note that

T ′ ≥ T (n, d− 1, d− 2),

so we have

ρ(C) ≥ λ · S(n, d− 2) + (1− λ) · T (n, d− 1, d− 2),

where

λ = λ(n, d) = 1
/ ⌈

n

n− d + 2

⌉
.

Without knowing better how T (n, d− 1, d− 2) compares with S(n, d− 2), if we just ignore the

second term, we obtain

λ · S(n, d− 2) ≤ ρ(C) ≤ S(n, d− 2).

This shows that in many cases S(n, d− 2) is a good estimate of ρ(C). For example, if the code

rate R = (n− d + 1)/n ≥ 1/2, then

1
2

S(n, d− 2) ≤ ρ(C) ≤ S(n, d− 2).

And, clearly, for any constant code rate, ρ(C) is within a constant factor of S(n, d− 2).
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4.5 Concluding Remarks

We have attacked the problem of stopping redundancy of MDS codes from a combi-

natorial perspective, by introducing the single-exclusion (SE) number as a proper upper bound

on the stopping redundancy. We have seen that this proved to be a powerful technique that has

led to much stronger bounds on the stopping redundancy of MDS codes. In some cases, we have

even been able to find the value of ρ(C), either precisely or in an asymptotic sense, as a function

of n and d, thus proving the Schwartz-Vardy conjecture that the stopping redundancy of an MDS

code should only depend on its length and minimum distance.

While we have obtained a fairly good understanding of the stopping redundancy of

MDS codes as well as the SE number, many interesting questions remain unanswered. For

example, what is the asymptotic value of S(n, n − k − 1) for a fixed k? (According to [24], it

can be shown that S(n, n − k − 1) is asymptotic to 1
k+1/2

(
n
k

)
, i.e. the asymptotic lower bound

in Corollary 4.34 is sharp.) And how does S(n, t) compare with T (n, t + 1, t) in general? (Do

they differ by at most a constant factor?) Finally, is it true that the stopping redundancy of an

[n, n− d + 1, d] MDS code equals S(n, d− 2)?

Clearly, besides their application to the stopping redundancy of MDS codes, SE sys-

tems warrant further study for their intrinsic mathematical appeal and interest. They also have

practical relevance; for example, the definition of SE system can be readily mapped to a problem

in the design of experiments. We hope that our results on SE system obtained in this chapter will

become useful in other settings.

Appendix 4.A Asymptotics of (4.10) for t < n− ln n

Rewrite (4.10) as

η(n, t) =
n− t

t + 1
·

t+1∑
i=1

f(i) (4.27)

where

f(i) =

(
t+1

i

)(
n−i

n−t−1

) · (n− t)−
i
t(

n−i
n−t−1)

Assuming

n− t > lnn,
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we show that the (t + 1)-st term,

f(t + 1) = (n− t)−(t+1)/t,

prevails in the sum of (4.27).

It suffices to show that each of the other t terms is a o(1/t) fraction of f(t + 1). For

i = t, it is easy to verify that

f(t) =
t + 1
n− t

· (n− t)−(n−t) = o(1/t)f(t + 1).

In general, we have
f(i)

f(t + 1)
=

(
t+1

i

)(
n−i

n−t−1

) · (n− t)−
i
t(

n−i
n−t−1)+ t+1

t . (4.28)

For i = 1, . . . , t− 1, consider two cases. For i ≤ 2n/ lnn = o(n), we have(
n− i

n− t− 1

)
≥
(

n(1− 2/ lnn)
2

)
= Ω(n2).

In this case, (4.28) decreases super-exponentially with n, and is certainly o(1/t). On the other

hand, for 2n/ lnn < i ≤ t − 1, we show that f(i) < f(t) = o(1/t)f(t + 1), by showing that

f(i) is monotonically increasing for 2n/ lnn < i ≤ t. Indeed, for 2n/ lnn < i ≤ t − 1, we

have

f(i + 1)
f(i)

=
n− i

i + 1
· (n− t)−

i+1
t (n−i−1

n−t−1)+ i
t(

n−i
n−t−1)

=
n− i

i + 1
· (n− t)

1
t (i− t−i+1

n−t−1)(
n−i−1
n−t−2)

>
lnn

n
· (lnn)

1
t ( 2n

ln n
− n

ln n)(ln n
2 )

>

(√
lnn

e

)ln n

> 1.

Appendix 4.B Asymptotics of (4.5) for t ≥ n− ln n

Let k = n− t− 1, and j = t + 1− i. The right-hand side of (4.5) becomes

p

(
n

k + 1

)
+

t∑
j=0

(
n

k + j

)
(1− p)(n−k−j)(k+j

k ). (4.29)



84

Let p = (lnn)/n. Assume that

1 < k = o

(
n ln lnn

lnn

)
(n− lnn ≤ t < n− 2 being a special case). We show that the first term in (4.29) prevails. Note

that (
1− lnn

n

)(n−k−j)(k+j
k )
≤ e−

ln n
n
·(n−k−j)(k+j

k )

= n−
n−k−j

n (k+j
k ).

For 1 ≤ j ≤ n
√

2/ lnn, we have

n− k − j

n

(
k + j

k

)
≥
(
1− o(1)

)(j + 2
2

)
> j + 1.

For j > n
√

2/ lnn, we have

lnn

n
· (n− k − j)

(
k + j

k

)
≥ lnn

n

(
j + 2

2

)
> n.

Noting further that for j ≥ 1, (
n

k + j

)
≤
(

n

k + 1

)
· nj−1,
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we see that the second term in (4.29) is at most

(
n

k

)
· n−

n−k
n +

j
n

q
2

ln n

k∑
j=1

(
n

k + 1

)
· nj−1 · n−

n−k−j
n (k+j

k )

+
r∑

j=
j
n

q
2

ln n

k
+1

(
n

k + j

)
· e−

ln n
n
·(n−k−j)(k+j

k )

≤
(

n

k + 1

)
· n−1+ k

n +
(

n

k + 1

) j
n

q
2

ln n

k∑
j=1

n−2

+ e−n
r∑

j=
j
n

q
2

ln n

k
+1

(
n

k + j

)

≤ 1
n

(
n

k + 1

)(
e

k ln n
n +

√
2

lnn

)
+ 2n · e−n

=
1
n

(
n

k + 1

)(
o(lnn) + o(1)

)
+ o(1)

= o

(
lnn

n

(
n

k + 1

))
.

Hence, at p = (lnn)/n, the upper bound (4.5) is asymptotic to ln n
n

(
n
t

)
for all t such that 2 <

n− t = o
(
(n ln lnn)/ lnn

)
, which implies that for 2 < n− t = o

(
(n ln lnn)/ lnn

)
, the upper

bound (4.5), when minimized over p, is O
(

ln n
n

(
n
t

))
.

Note that the O
(

ln n
n

(
n
t

))
estimate is not always tight. For example, when t ≈ n− lnn,

we have shown using a different analysis that the upper bound (4.5), when minimized over p, is

in fact O
(

ln ln n
n

(
n
t

))
. However, note that by keeping just the i = t term in the sum, the upper

bound (4.5) is at least (
p + (1− p)t(n−t)

)(n

t

)
≥
(
1−

(
1− 1/a

)
· a−1/(a−1)

)(n

t

)
=
[
ln a

a
+ O

(
1
a

)](
n

t

)
,

where a = t(n − t). In particular, this shows that the O
(

ln n
n

(
n
t

))
estimate is tight if n − t is

Θ(1). That is, the bound (4.5) is Θ
(

ln n
n

(
n
t

))
when minimized over p, for all t = n−Θ(1).
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[7] P. Turán, “Egy gráfelméleti szélsőértékfeladatról,” Mat. Fiz. Lapok, vol. 48, pp. 436–452,
1941, (in Hungarian).

[8] P. Turán, “An extremal problem in graph theory,” in Collected Papers of Paul Turán,
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Chapter 5

Stopping Redundancy of Reed-Muller

Codes

The binary Reed-Muller (RM) codes [1] are among the first few classes of codes whose

stopping redundancy has been carefully studied. Let R(l,m) denote the l-th order Reed-Muller

code with parameter m. Schwartz and Vardy [2] showed that

ρ
(
R(l, m)

)
≤

m−l−1∑
i=0

(
l + i

i

)
2i.

The stopping redundancy of RM codes was further studied by Etzion [3]. In both papers, the

arguments were based on the recursive construction of RM codes, using an elaborate analysis of

a specific recursion of parity-check matrices.

In this chapter, we rediscover a number of results in [2] and [3] on the stopping redun-

dancy of RM codes using a geometric approach, which we feel is more intuitive. A couple of

new bounds based on probabilistic methods are also presented.

5.1 Main Results

Recall that R(l, m) has length 2m, dimension
∑l

i=0

(
m
i

)
, minimum distance 2m−l,

and its dual code isR(l, m)⊥ = R(m− l−1,m). R(l, m) is generated by its minimum-weight

codewords, which can be interpreted as incidence vectors of (m − l)-flats in affine geometry

AG(m, 2). For more information about RM codes, the reader is referred to [1].

88



89

First, we show the following result.

Theorem 5.1

ρ
(
R(l, m)

)
≤
(

m

l + 1

)
2m−l−1

Proof: Let S be a set of coordinates with |S| < 2m−l. We think of S as a set of points in

Fm
2 . Let {a1, . . . ,am} be a basis of Fm

2 . We show that there exists an (l + 1)-flat defined

by m − l − 1 linear equations in the form xaT
ij

= bj , bj ∈ F2, j = 1, . . . ,m − l − 1, that

intersects S at a single point. (Recall that any (l + 1)-flat is a minimum weight codeword in

R(l, m)⊥.) For that, it suffices to show that S has a single point contained in a t-flat defined by

xaT
ij

= bj , j = 1, . . . ,m− t where t ≥ l + 1. Indeed, if that single point is denoted by s, then

we can choose any t− l − 1 more basis vectors aim−t+1 , . . . ,aim−l−1
and append the equations

xaT
ij

= saT
ij

, j = m− t + 1, . . . ,m− l− 1. This specifies an (l + 1)-flat contained in the t-flat,

that also contains s.

For any set of points P with |P | > 1, we say that a vector a cuts P if the inner

products of a with points in P yield both 0 and 1. The word “cut” is chosen for the fact that in

this case the two hyperplanes {x ∈ Fm
2 : xaT = 0} and {x ∈ Fm

2 : xaT = 1} partition P into

two nonempty subsets. Referring to this fact, we will also say that a cuts P into two subsets, i.e.

{x ∈ P : xaT = 0} and {x ∈ P : xaT = 1}.
Now, if S itself contains just a single point, then we are done. If S contains more

than one point, then there exists some ai1 that cuts S, otherwise all points of S must satisfy

m independent linear equations, contradicting the fact that |S| > 1. Thus ai1 cuts S into two

subsets. Choose the smaller subset and call it S1. Now note that either |S1| = 1, or else there

exists a vector ai2 ∈ {ai}i6=i1 that cuts S1 into two subsets. Pick the smaller subset and call it S2.

The above process can be iterated until after some p steps, we have |Sp| = 1. Since |S| < 2m−l

and at least half of the points are removed in each step, we have p ≤ m − l − 1. Therefore, we

have found an (m− p)-flat with m− p ≥ l + 1, defined by xaT
ij

= bj , j = 1, . . . , p where bj’s

are constants in F2, which intersects S at a single point.

Finally we need to count the number of (l + 1)-flats for any given set of basis vectors,

which is simply (
m

m− l − 1

)
2m−l−1.

�
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The above theorem is the most natural upper bound on ρ
(
R(l, m)

)
that can be obtained

following this “set-cutting” idea. The bound can be improved by noting that we do not need to

choose all (l + 1)-flats defined by the set of basis vectors, as made precise in the following

theorem.

Theorem 5.2

ρ
(
R(l,m)

)
≤

m−l−1∑
i=0

(
l + i

l

)
2i

Proof: It is clear from the proof of the previous theorem that we are simply looking for a set of

up to m− l− 1 vectors from a basis of Fm
2 , that cut S down to a single point, where S is any set

of points (binary m-tuples) with |S| < 2m−l.

Let {a1, . . . ,am} denote the basis in question. If we can cut S down to a single point

without using a1, then that only requires choosing the(
m− 1

m− l − 1

)
2m−l−1

(l+1)-flats defined by vectors in {a2, . . . ,am}. If a1 has to be used, we claim that we can stick

to using xaT
1 = 0. (The 0 can be replaced by a 1. The point is that we do not need to allow

both.) Indeed, when we cannot cut down the point set any more without using a1, the remaining

points must be a line defined by xaT
i = bi, i = 2, . . . ,m, for some bi ∈ F2. Hence, we can cut

the set down to a single point using a1, and it does not matter what constant term is used. This

results in an additional (
m− 1

m− l − 2

)
2m−l−2

(l + 1)-flats to be chosen.

The above idea can be carried further, so when a1 has to be used and xaT
1 = 0 is

chosen, we further differentiate between whether a2 has to be used, or not. If a2 does not

have to be used, then we just need to choose m − l − 2 vectors from {a3, . . . ,am} and the

corresponding constants, to be appended to the equation xaT
1 = 0, that is(

m− 2
m− l − 2

)
2m−l−2

(l + 1)-flats. On the other hand, if we also must use a2, then for the same reason as before, it

does not matter if we use xaT
2 = 0 or xaT

2 = 1. So we can just stick to using one of them. This
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results in an additional (
m− 2

m− l − 3

)
2m−l−3

(l +1)-flats. Clearly, the case where both a1 and a2 have to be used can be further broken down

according to whether a3 has to be used, and so on. If this is done to the first t basis vectors, then

it shows that ρ
(
R(l,m)

)
is at most

t∑
i=1

(
m− i

m− l − i

)
2m−l−i +

(
m− t

m− l − t− 1

)
2m−l−t−1

It’s not hard to see that this function is nonincreasing in t. For the best result, we choose t ≥
m− l − 1 and the claimed bound is obtained after simple algebra. �

The above theorem gives the same result as was shown in [4] but through a different

approach. Note that the two proofs are related. In fact, one can show that the parity-check matrix

used in the above proof and the one constructed in [4] are essentially the same (up to row and

column permutations). For first-order RM codes, the above result shows that ρ
(
R(1,m)

)
≤

(m − 2)2m−1 + 1. This has been improved to ρ
(
R(1,m)

)
≤
(
(6m − 7)2m−1 + (−1)m−1

)
/9

in [3]. For extended Hamming codes, the above result shows that ρ
(
R(m − 2,m)

)
≤ 2m − 1.

This bound has been shown [3] to be sharp, i.e. ρ
(
R(m − 2,m)

)
= 2m − 1. We now give an

alternative (and shorter) proof of this fact.

Theorem 5.3

ρ
(
R(m− 2,m)

)
= 2m− 1.

Proof: It suffices to show that ρ
(
R(m−2,m)

)
≥ 2m−1. Besides the all-zero and all-one vec-

tors, every codeword in the dual code R(1,m) is the incidence vector of a hyperplane. Clearly,

to use the minimum number of checks, only those corresponding to hyperplanes need to be con-

sidered. It suffices to show that we cannot find a set of 2m− 2 checks that cover all sets of size

up to 3, that is, that we cannot find a set of 2m−2 hyperplanes such that any set of up to 3 points

intersects a hyperplane at a single point.

Suppose we could, then let the 2m− 2 hyperplanes be represented as

{x ∈ Fm
2 : xaT

i = bi}, i = 1, . . . , 2m− 2.
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First, note that {ai}2m−2
i=1 must contain a basis of Fm

2 . Otherwise, choose a maximal independent

set out of {ai}2m−2
i=1 , then the intersection of the corresponding hyperplanes is a coset of dimen-

sion at least one. Any line in this coset contains two points and is not covered. So let’s assume

that {ai}2m−2
i=1 contains a basis. WLOG, assume that {ai}mi=1 is a basis of Fm

2 . Consider the set

of equations

xaT
i = bi + 1, i = 1, . . . ,m,

which can be written in matrix form as

xAT = bc, (5.1)

where

A =


a1

...

am

 ,

bc = (b1 + 1, . . . , bm + 1).

Since {a1, . . . ,am} is a basis, there exists an m×m full-rank matrix K, such that am+1, . . . ,a2m−2

are contained in the linear span of the first m − 2 rows of KA. Multiplying both sides of (5.1)

by KT , we obtain

xΛT = β,

where Λ = KA, β = bcKT . Let Λ1 denote the first m − 2 rows of Λ, and β1 denote the first

m− 2 elements of β. Note that

{x ∈ Fm
2 : xΛT

1 = β1}

defines a two-flat. If we remove from it the point satisfying xΛT = β, we obtain a set, S, of size

three. That is, let

S = {x ∈ Fm
2 : xΛT

1 = β1,xΛT 6= β}.

We claim that none of the 2m − 2 hyperplanes intersect S at a single point, thus resulting

in a contradiction. This is not obvious only for those hyperplanes {x ∈ Fm
2 : xaT

i = bi},
i = 1, . . . ,m, such that ai is linearly independent of the rows of Λ1. In such cases, note that

{x ∈ Fm
2 : xaT

i = bi} intersects the two-flat {x ∈ Fm
2 : xΛT

1 = β1} at two points. It remains

to show that both points are contained in S. Indeed, since both points satisfy xaT
i = bi, they

both satisfy xAT 6= bc and hence xΛT 6= β. �
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Next, let’s try to combine probabilistic methods with the use of designs. A byproduct

of our first theorem is that for RM codes, it is sufficient to choose minimum weight parity

checks in order to maximize the stopping distance. Now, consider R(1,m). Its dual code is

R(m − 2,m), whose minimum weight codewords form a (3, 4, 2m) Steiner system. Let us

choose each minimum weight codeword inR(m− 2,m) independently with probability p. If S

is set of coordinates with |S| < 2m−1, then the probability that S is not covered at this point is

(1− p)f(S),

where f(S) denotes the number of blocks in the Steiner system that intersect S at a single point.

We need to estimate or bound f(S). Let n = 2m. If S contains just a single point, then clearly

f(S) =
1
3

(
n− 1

2

)
.

If S contains two points, we need to add together the number of blocks that contain each point,

then subtract off two times the number of blocks that contain both points. Hence,

f(S) =
2
3

(
n− 1

2

)
− n + 2.

If S contains three points, then we need three times the number of blocks that contain any

particular point, minus two times
(
3
2

)
times the number of blocks that contain any two given

points, and add back three times the number of blocks that contain all three points.

f(S) =
(

n− 1
2

)
− 2
(

3
2

)
n− 2

2
+ 3.

Now it is rather clear that in general,

f(S) =
|S|
3

(
n− 1

2

)
− 2
(
|S|
2

)
n− 2

2
+ 3
(
|S|
3

)
− 4g(S),

where g(S) denotes the number of blocks contained in S. Except for g(S), all terms only depend

on |S|. Unfortunately g(S) apparently depends on the actual choice of S. However, note that

g(S) is at most the size of a (3, 4, |S|) Steiner system (assuming one exists), i.e.

g(S) ≤ 1
4

(
|S|
3

)
.

Therefore, if we let

h(i) =
i

3

(
n− 1

2

)
− (n− 2)

(
i

2

)
+ 2
(

i

3

)
,

then

f(S) ≥ h(|S|).
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Theorem 5.4

ρ
(
R(1,m)

)
≤ min

0≤p≤1

p

4

(
2m

3

)
+

2m−1−1∑
i=1

(
2m

i

)
(1− p)h(i)

+ 2m−1 −m.

Proof (sketch): The result is shown by using probabilistic methods in expectation. The addi-

tional term 2m−1 −m is to ensure that the parity check matrix has maximum rank. �

Unfortunately, this bound is rather weak. One possibility for improvement is to pre-

select a basis and then apply the probabilistic method. Also a better bound on g(S) might be

helpful.

Let’s pursue the first idea. Suppose we pre-selected a basis. We claim that if 2i−1 ≤
|S| < 2i, then there exist i or more (m− i + 1)-flats that intersect S at a single point.

If |S| > 2i−1, then S must be cut by at least i vectors in the basis. (Otherwise S would

be contained in an (i − 1)-flat.) On the other hand, since |S| < 2i, S can be cut down to a

single point in at most i− 1 steps. Let {a1, . . . ,am} denote the selected basis. WLOG, suppose

a1, . . . ,ai cut S. Take all (i − 1)-subsets of {aj}ij=1. If we can cut S down to a single point

by using vectors in each of the i subsets, then we are done. Otherwise, it implies that to cut S

down to a single point, some at has to be used, and hence we can choose to stay in either of the

hyperplanes defined by at. There are (i−1) (i−1)-subsets of {aj}ij=1 that contain at. By fixing

the equation xaT
t = 0 or xaT

t = 1, we get a total number of 2(i− 1) possibilities to potentially

cut S down to a single point. If all of them are successful, then we are done (2(i − 1) ≥ i).

Otherwise, it implies that given xaT
t = 0 (or xaT

t = 1), to cut S down to a single point, some

ap has to be used, and hence we can choose to stay in either of the hyperplanes defined by ap.

Now we can further fix xaT
p = 0 or xaT

p = 1, and continue. Note that the number of “options”

never decrease and in the end all options have to be successful. Since we started with i options,

we have at least i (m− i + 1)-flats constructed at the end.

In the special case where |S| = 2i−1, if there are i or more vectors that cut S then the

above reasoning applies. Otherwise, S must be an (i−1)-flat, to be cut by precisely i−1 vectors

in the basis. Any coset of the subspace orthogonal to these i− 1 vectors intersects S at a single

point, and there are 2i−1 ≥ i of them.

Now, recall that we are looking for (l+1)-flats, which can be constructed by appending

m− i + 1− l − 1 = m− l − i
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linear constraints to the defining equations of the (m − i + 1)-flats. Recall that in constructing

the (m− i + 1)-flats that intersect S at a single point, we have chosen from no more than i basis

vectors. Now, the m− l− i additional equations can be chosen from the rest of the basis vectors.

This results in a total of at least

i

(
m− i

m− l − i

)
= i

(
m− i

l

)
(l + 1)-flats that intersect S at a single point, and it is simple to verify that they are all distinct.

Applying probabilistic methods to the restricted set of
(

m
l+1

)
2m−l−1 (l + 1)-flats cor-

responding to any given basis of Fm
2 , we immediately obtain the following result.

Theorem 5.5

ρ
(
R(l, m)

)
≤ min

0≤p≤1

p

(
m

l + 1

)
2m−l−1 +

2m−l−1∑
i=1

(
2m

i

)
(1− p)α(i)

+ r − 2m−l + 1,

where

α(i) = dlog(i + 1)e
(

m− dlog(i + 1)e
l

)
,

r =
m−l−1∑

i=0

(
m

i

)
.

The above bound is unfortunately not a significant improvement over that obtained

using the whole restricted set we started with. It appears that α(i) is still too small so that p has

to be very close to 1 in order to drive down the second term, so the minimum value for the first

two terms is very close to
(

m
l+1

)
2m−l−1.
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Chapter 6

Beyond Stopping Redundancy

The stopping redundancy is a logical first step towards understanding the complexity-

performance tradeoff in MPID over Tanner graphs with redundant check nodes. On the other

hand, it clearly has its limitations. First of all, it only addresses one particular tradeoff point,

where stopping distance is maximized with the smallest number of check nodes. It will be

interesting to investigate other regions of this tradeoff, especially considering that the number of

check nodes required to maximize stopping distance can be very large (growing exponentially

with block length) for some codes, for example, as shown in [1]. Secondly, the definition of

stopping redundancy is based on erasure channels. How relevant it is to various non-erasure

channels remains to be seen.

In this chapter, we address some of the limitations mentioned above.

6.1 Guess-g Stopping Redundancy

6.1.1 Introduction

The definition of stopping redundancy aims at maximizing the stopping distance.

However, the stopping redundancy may be prohibitively large for certain codes. Even when

the stopping redundancy is at a manageable level, the number of checks could have been sig-

nificantly reduced if we allowed the existence of just a few small stopping sets. The source of

the above issue partly lies in the “principle of diminishing return,” which in this case is to say

that the incremental number of stopping sets that get eliminated by each additional check gets

96
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progressively smaller as the total number of parity checks increases.

A straightforward way to address the above concerns is to have a more moderate per-

formance goal, i.e. to achieve stopping distance t ≤ d rather than d. The sequence of numbers

ρ(t)(C) def= min
{

number of rows of H : C = Null(H), s(H) = t
}
, t = 2, . . . , d

is known as the stopping redundancy hierarchy, and has been studied in [2] [3]. Clearly,

ρ(2)(C) ≤ ρ(3)(C) ≤ · · · ≤ ρ(d)(C) = ρ(C).

A different route is to keep the same performance goal, i.e. to be able to correct all sets

of d− 1 or fewer erasures, but allow a more graceful tradeoff with complexity by modifying the

iterative decoding algorithm. Recall that iterative decoding on an erasure channel is equivalent

to repeatedly finding and solving parity check equations with single unknowns. One way to

generalize this decoding procedure is to let the decoder solve for up to p unknowns, rather

than single unknowns, in each iteration. This idea was proposed in [4], where the concepts of

stopping set and stopping redundancy were correspondingly extended to stopping sets of order

p, and stopping redundancy of order p, respectively. Let ρ{p}(C) denote the stopping redundancy

of order p. It is not hard to show [4] that

ρ(C) = ρ{1}(C) = ρ{2}(C) ≥ ρ{3}(C) ≥ · · · ≥ ρ{d−1}(C) = ρ{d}(C) = n− k.

A slightly different approach, which we will explore, is motivated by another modifi-

cation to the decoding procedure based on the idea of “guessing” [5] [6]. The decoding algorithm

is sometimes known as the Maxwell decoder [7]. The idea is that when the iterative decoder gets

stuck (i.e. when no check equations with a single unknown can be found), instead of declaring

decoding failure, it treats one of the remaining unknown bits as known but with a variable value.

At this point, iterative decoding may be able to resume. If not, the decoder assigns variable

values to more erased bits until it is able to find a parity-check equation with a single unknown,

or until there are no unknown bits left. Note that in the end, all decoded bits are generally linear

combinations of the variable-valued bits and a constant. The variable-valued bits can then be

solved for using the set of parity check equations that they participate in. It can be shown that

this procedure achieves the same performance as maximum likelihood (ML) decoding if there

is no limit on the number of “guesses” (i.e. variable-valued bits). In practice, the decoder usu-

ally puts a limit on the number of guesses, so that a failure is declared if all erased bits are not
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decoded after the maximum number of guesses have been made. Note that the term “guess”

here is somewhat of a misnomer that has its roots in a more brute-force implementation of the

same idea, where instead of assigning variable value to a bit, the bit is assumed to be a 0 or a 1,

so that iterative decoding continues with more bits being guessed as necessary, and the process

backtracks when any parity check is violated.

A similar modification to MPID has been proposed for use on other channels (e.g.

AWGN) with promising results [8] [9].

We would like to understand how guessing helps to reduce the number of redundant

check nodes in the Tanner graph. For all nonnegative integers g, let us define the guess-g stopping

redundancy of a code C as the smallest number of check nodes in a Tanner graph for C, such that

all erasure patterns up to size d − 1 can be decoded with the aforementioned modified iterative

decoding algorithm using at most g guesses. If for some Tanner graph T (parity-check matrix

H) this is the case, then we say that C is guess-g decodable on T (with H). Note that in the

above definitions, it is assumed that the decoder can choose the best set of erased bits to guess.

In practice, to choose a bit to be guessed, heuristic rules usually work well. For example, one

can choose a bit with the largest degree in the subgraph induced by the erased bit nodes and their

check neighbors [5].

Let ρg(C) denote the guess-g stopping redundancy. Clearly, ρg(C) is non-increasing in

g, and is reduced to the normal definition of stopping redundancy when g = 0, i.e. we have

ρ(C) = ρ0(C) ≥ ρ1(C) ≥ · · · ≥ ρd−1(C) = n− k.

Let H be a parity-check matrix for C. If an erasure pattern S ⊆ [n] = {1, 2, . . . , n} is

correctable by the iterative decoder without guessing, then H(S), the submatrix of H constrained

to columns indexed by elements of S, must contain a row of weight one. The submatrix of H(S)

omitting this row and the column where the nonzero entry is must in turn contain a row of weight

one, and so on. This implies that with row and column permutations H(S) can be put into the

following form

H(S) =

 ∆

A


where ∆ is a lower-triangular matrix with nonzero diagonal. Similarly, an erasure pattern S can

be decoded by the iterative decoder while guessing the value of no more than g bits if and only
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if H(S) has the following form up to row and column permutations:

H(S) =

 A ∆

B C

 (6.1)

where A has g or fewer columns, and ∆ is a lower-triangular matrix with nonzero diagonal.

Clearly, if the bits corresponding to columns of A are known, then iterative decoding will suffice

to find the values of the rest.

Note that any matrix M can be viewed as having the form in (6.1), i.e.

M =

 A ∆

B C


where ∆ is a lower-triangular matrix with nonzero diagonal entries (or as a special case, the

empty matrix). Define the triangulation deficiency of M as the smallest number of columns in

A over all column and row permutations of M , and denote it by TD(M). If M is an a × b

matrix, then by definition, 0 ≤ TD(M) ≤ b.

Our definition of guess-g stopping redundancy is now equivalently stated as the small-

est number of rows in H such that for all S ⊆ [n] with 0 < |S| < d, we have TD
(
H(S)

)
≤ g.

6.1.2 Upper Bounds

Note that if all stopping sets have size at least d − g, then after g guesses any set of

d − 1 or fewer erasures is stopping set free and thus can be decoded iteratively. In other words,

relating to the definition of stopping redundancy hierarchy, we have

ρg(C) ≤ ρ(d−g)(C). (6.2)

It turns out that most upper bounds on ρ(C) can be adapted to ρ(d−g)(C) rather straightforwardly,

thus leading to upper bounds on ρg(C). For example, the works by Hollmann and Tolhuizen [10]

[11] directly imply the following result.

Theorem 6.1 ([10] [11]) Let C be an [n, n− r, d]2 code. Then for all 0 ≤ g < d− 2,

ρg(C) ≤
d−g−2∑

i=0

(
r − 1

i

)
.
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Proof: Omitted. �

Corollary 6.2 For all g ≥ d− 3,

ρg(C) = r.

Using probabilistic arguments similar to those used in Theorem 3.5 and Theorems 3.8–

3.14, we can obtain a series of upper bounds on ρg(C). For example, corresponding to Theo-

rem 3.14, we have the following result.

Theorem 6.3 Let C be an [n, k, d]2 code, and let r = n − k. Then the guess-g stopping redun-

dancy of C is bounded by

ρg(C) ≤ mint≥r

{
t + bGn,d−g,k(t)c

}
, (6.3)

where Gn,d,k(t) is as defined in (3.28). Moreover, if (r − 1)(d− g − 1) ≤ 2d−g−1 then

ρ(C) ≤ min
t≥r

{
t + min

{
i ∈ N : Q

(d−g)
i

(
bGn,d−g,k(t)c

)
= 0
}}

(6.4)

where

Q
(d−g)
i (l) def= P

(d−g)
i

(
P

(d−g)
i−1

(
· · · P (d−g)

2

(
P

(d−g)
1 (l)

)))
,

P
(d−g)
j (l) def=

⌊
l

(
1− (d− g − 1)2r−d+g+1

2r − (t + j)

)⌋
, for all l ∈ N.

Proof: Similar to that of Theorem 3.14. �

More upper bounds on ρg(C) can be obtained similarly by utilizing (6.2). However,

note that in using (6.2) we are over-constraining the problem by requiring that no stopping sets

of size less than d − g exist, while by definition of the guess-g stopping redundancy, smaller

stopping sets can exist as long as they are “weak” in the sense that they are “completely broken”

if g bits within the set are known. In the discussion that follows, we try to translate the definition

of ρg(C) in other ways in hope of finding stronger upper bounds.

We first modify Theorem 6.3 using one additional “twist.”

Theorem 6.4 Let C be an [n, k, d]2 code, and let r = n − k. Then the guess-g stopping redun-

dancy of C is bounded by

ρg(C) ≤ mint≥r

{
t + bHn,d,g,k(t)c

}
, (6.5)



101

where

Hn,d,g,k(t)
def= Gn,d−g−1,k(t) +

(
n

d− 1

) t∏
i=1

(
1−

2r−d+1
∑g+1

j=1

(
d−1

j

)
2r − i

)+

(6.6)

where Gn,d,k(t) is as defined in (3.28), and (x)+ def= max{x, 0}.

Proof: To be able to iteratively decode any set of d− 1 or fewer erasures without making more

than g guesses, the following two requirements suffice. First, we require that no stopping sets

of size d − g − 2 or smaller exist. This ensures that any set of d − 2 or fewer erasures can be

iteratively decoded with no more than g guesses. Next, for all S ∈ [n]d−1, we require that H(S)

must contain a row whose weight is at least one and at most g + 1. Thus, if all bits in S are

erased, we can select a row from H(S) with weight j + 1 for some 0 ≤ j ≤ g, guess j of the

bits, and decode one additional bit using just that one parity check. The remaining d − j − 2

erasures can then be iteratively decoded using no more than g − j guesses.

Let Ht be a t×n matrix whose rows are drawn from C⊥ \{0} successively at random,

without replacement. That is, if the row vectors of Ht are denoted by h1,h2, . . . ,ht, then for all

j, hj is chosen uniformly at random from C⊥ \ {0,h1,h2, . . . ,hj−1}. Given Ht, let Xt denote

the number of non-empty stopping sets with size less than or equal to d − g − 2, Yt denote the

number of (d − 1)-sets S such that all rows of Ht(S) have weights less than one or larger than

g + 1, and Zt = r − rank(Ht). For all S ∈ [n]d−1, let At(S) denote the event that all rows of

Ht(S) have weights less than one or greater than g + 1. We have

Pr{At(S)} =
t∏

i=1

(
1−

2r−d+1
∑g+1

j=1

(
d−1

j

)
2r − i

)+

.

Hence, for all t ≥ r,

E[Xt + Yt + Zt] ≤ Gn,d−g−1,k(t) +
(

n

d− 1

) t∏
i=1

(
1−

2r−d+1
∑g+1

j=1

(
d−1

j

)
2r − i

)+

.

The rest of the proof is similar to that of Theorem 3.14. �

Note that Theorem 6.4 can be slightly improved following similar ideas that underlie

Theorem 3.11.

We next modify the probabilistic argument while following the definition of ρg(C)
more closely, rather than trying to eliminate stopping sets of any particular size.
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Theorem 6.5 Let C be an [n, k, d]2 code, and let r = n − k. Then the guess-g stopping redun-

dancy of C is bounded by

ρg(C) ≤ mint≥r

{
t + bIn,d,g,k(t)c

}
, (6.7)

where

In,d,g,k(t)
def= Dr(t) +

d−1∑
i=g+3

(
n

i

)(
1− i

2i

)t
Jt,g(i), (6.8)

Jt,g(i)
def=
{

λi − g + 1 if g < 2

min
{
λi, aiλi + δi, bi(1 + λi) + δi

}
if g ≥ 2

(6.9)

λi
def=

i−2∑
j=0

(
1− 2i−j−1 − i + j + 1

2i − i(i− 1)/2

)t

(6.10)

ai
def=

i−3∑
j=g

1
j

(6.11)

bi
def=

i−2∑
j=g+1

1
j

(6.12)

δi
def=

(2i − i(i− 1)/2− 1)(2t − 1) + 2(
2i − i(i− 1)/2

)t (6.13)

and Dr(t) is as defined in (3.27).

Proof: If g ≤ d− 3, then ρg(C) = r, but clearly mint≥r{t + bIn,d,g,k(t)c} ≥ r.

Now suppose 0 ≤ g < d− 3. Let Ht be a t×n matrix whose rows are drawn from Fi
2

independently and uniformly at random. Corresponding to Ht, let St denote the set of stopping

sets whose sizes are less than d but greater than g + 2. Let

Xt =
∑
S∈St

(
TD
(
Ht(S)

)
− g
)+

and Yt = r− rank(Ht). Then by appending no more than Xt + Yt rows to Ht we can construct

another matrix with which C is guess-g decodable. Indeed, let us first append Yt rows to Ht and

call the resulting matrix H ′. These Yt additional rows are chosen such that rank(H ′) = r. Let E

denote a set of erasures with |E| < d. If E does not contain a stopping set, then all erasures can

be iteratively decoded without making any guesses. Otherwise, let S ⊆ E denote the maximal
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stopping set contained in E. Note that all erasures in E \ S can be decoded without making

any guesses. Now, if |S| ≤ g + 2 and/or Ht(S) ≤ g, then with H ′, all erasures in S can be

iteratively decoded using no more than g guesses. (Note that H ′ does not contain all-zero or

identical columns.) Otherwise we have g + 2 < |S| < d and Ht(S) = j > g. In this case, we

reduce the number of required guesses from j to g by adding at most j − g appropriately chosen

parity checks to H ′, which is possible since C⊥ is an orthogonal array of strength d− 1 (cf. [12,

p. 139]). We do this for each and every stopping set S ∈ St, appending rows to H ′ as needed,

and let H denote the matrix obtained. By construction, H has no more than t + Xt + Yt rows,

and as argued above, C is guess-g decodable with H . Therefore, any realization of t + Xt + Yt

is an upper bound on ρg(C), which also implies

ρg(C) ≤
⌊
E[t + Xt + Yt]

⌋
= t +

⌊
E[Xt] + E[Yt]

⌋
.

From Lemma 3.13, we already know that E[Yt] ≤ Dr(t) for all t ≥ 0. It remains to find an

expression for or an upper bound on E[Xt]. We have

E[Xt] = E
[ ∑

S∈St

(
TD
(
Ht(S)

)
− g
)+ ]

=
∑

S⊆[n]
g+2<|S|<d

E
[
1S∈St ·

(
TD
(
Ht(S)

)
− g
)+ ]

=
d−1∑

i=g+3

∑
S∈[n]i

E
[ (

TD
(
Ht(S)

)
− g
)+ ∣∣S ∈ St

]
Pr{S ∈ St}

For all S ∈ [n]i,

Pr{S ∈ St} =
(
1− i

2i

)t
,

and Ht(S) given {S ∈ St} has the same conditional distribution. Hence,

E[Xt] =
d−1∑

i=g+3

(
n

i

)(
1− i

2i

)t
E
[ (

TD
(
Ht(S)

)
− g
)+ ∣∣S ∈ St

]
(6.14)

Given {S ∈ St}, Ht(S) has a well-defined distribution. However, finding the dis-

tribution of TD
(
Ht(S)

)
appears to be difficult. To simplify the problem, we first introduce an

upper bound on the function TD(·). We say a binary vector ends with a run of j zeros if its last

j + 1 entries are

1 0 . . . 0︸ ︷︷ ︸
j

.
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For any a× b binary matrix M , let Xj(M), j = 0, 1, . . . , b− 1 denote the event that M does not

contain a row that ends with a run of j zeros. Define

TD′(M) def=
b−1∑
j=0

1Xj(M).

Then for all M ,

TD(M) ≤ TD′(M),

since TD′(M) can be interpreted as the number of columns in A when M is put into the form in

(6.1) following a particular procedure (rather than the minimum number of columns in A over

all row and column permutations, as in the case of TD(M)).

For all S ∈ [n]i, g + 2 < i < d, conditioned on {S ∈ St}, Ht(S) is a t × i matrix

whose rows are drawn from {x ∈ Fi
2 : wt(x ) 6= 2} independently and uniformly at random.

Therefore, it is not hard to show that

E
[
TD′(Ht(S)

)
|S ∈ St

]
=

i−1∑
j=0

Pr
{
Xj

(
Ht(S)

)
|S ∈ St

}
= 1 +

i−2∑
j=0

(
1− 2i−j−1 − i + j + 1

2i − i(i− 1)/2

)t

= 1 + λi

In general, we have

E
[ (

TD
(
Ht(S)

)
− g
)+ ∣∣S ∈ St

]
=

i∑
j=g+1

Pr
{

TD
(
Ht(S)

)
≥ j |S ∈ St

}
≤

i−2∑
j=g+1

Pr
{

TD′(Ht(S)
)
≥ j |S ∈ St

}
+ δi (6.15)

≤
i−2∑

j=g+1

1
j

E
[
TD′(Ht(S)

)
|S ∈ St

]
+ δi (6.16)

= bi(1 + λi) + δi

where (it is not hard to show that) δi, as defined in (6.13), is the expression for

Pr
{

TD
(
Ht(S)

)
≥ i |S ∈ St

}
+ Pr

{
TD
(
Ht(S)

)
≥ i− 1 |S ∈ St

}
.
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Note that (6.16) follows from Markov’s inequality.

Since TD′(Ht(S)
)
≥ 1 when S is a stopping set, (6.15) can alternatively be derived

as

E
[ (

TD
(
Ht(S)

)
− g
)+ ∣∣S ∈ St

]
≤

i−2∑
j=g+1

Pr
{

TD′(Ht(S)
)
− 1 ≥ j − 1 |S ∈ St

}
+ δi

≤
i−2∑

j=g+1

1
j − 1

E
[
TD′(Ht(S)

)
− 1 |S ∈ St

]
+ δi

= aiλi + δi

In fact, based on the same observation, for g = 0, 1 we also have

E
[ (

TD
(
Ht(S)

)
− g
)+ ∣∣S ∈ St

]
≤ E

[
TD′(Ht(S)

)
− g

∣∣S ∈ St

]
= 1 + λi − g

In summary, for all S ∈ [n]i where g +2 < i < d, E
[ (

TD
(
Ht(S)

)
−g
)+ ∣∣S ∈ St

]
is bounded

from above by Jt,g(i), as defined in (6.9). Note that the inclusion of λi in the minimization

in (6.9) comes from the observation that E
[ (

TD
(
Ht(S)

)
− g

)+ ∣∣S ∈ St

]
should be non-

increasing in g. Inequality (6.9) can now be plugged in (6.14) to find an upper bound on E[Xt],

which completes the proof. �

Let us apply the bounds we have obtained so far to an example. Let G24 denote the

[24, 12, 8]2 Golay code. Table 6.1 lists various upper bounds on ρg(G24) for different values of

g. We see that the probabilistic bounds in Theorems 6.3, 6.4 and 6.5 all fare very well against

the constructive bound of Theorem 6.1. Among them, Theorem 6.4 gives the tightest bounds

for G24. Also, all but the bound in Theorem 6.5 predict a drastic reduction in the number of

required parity checks as g increases from 0 upwards. Even by allowing just a single guess,

the bounds can be very dramatically lower. This observation is partly corroborated by the “em-

pirical” bounds, which are found via greedy search on a computer (using ideas of the proof of

Theorem 6.4). The fact the bound in Theorem 6.5 decreases slowly with g is due to the use of

Markov’s inequality (e.g. in (6.16)), rather than weakness of the probabilistic model. The true
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Table 6.1 Upper bounds on ρg(G24)

g = 0 g = 1 g = 2 g = 3 g = 4 g ≥ 5

Theorem 6.1 1486 1024 562 232 67 12
Theorem 6.3 182 105 57 31 16 12
Theorem 6.4 189 58 31 16 12 12
Theorem 6.5 196 171 171 163 150 12
Empirical 34 17 13 12 12 12

tail probability Pr
{

TD′(Ht(S)
)
≥ j |S ∈ St

}
decreases much faster than 1/j. Finally, ob-

serve that the bounds given by Theorem 6.4 (almost) coincide with those by Theorem 6.3 using

one more guess. This is because for this example, the second term in (6.6) becomes insignificant

relative to the first term when t is fairly large.

6.2 ML Redundancy

6.2.1 Introduction

The focus on stopping distance is justified only for "high SNR" scenarios, or as in the

case of an erasure channel, for when the erasure probability is small (approaches zero). For the

more general case, maximum likelihood (ML) decoding may be a more appropriate benchmark.

Whereas in general ML decoding performance may never be matched by the iterative decoder, no

matter which Tanner graph is used, on an erasure channel things are particularly well-defined.

As we shall see, if we allow enough check nodes in the Tanner graph, on an erasure channel

iterative decoding can always achieve the same word error rate as ML decoding. It is therefore

a theoretically interesting question to ask how many check nodes are required for this to be

possible, thus leading to the definition of ML redundancy, which will be the subject of this

section.

Let H be a parity-check matrix for some code C. The iterative H-decoder is the

iterative erasure decoder over a Tanner graph defined by H . As noted before, an iterative H-

decoder works effectively by finding, at each iteration, a parity-check equation that involves a

single erasure, solving for the erasure, and repeating the process until either all erasures have
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been decoded, or no such equations can be found (in which case a decoding failure results). We

are interested in when an iterative H-decoder achieves the same failure rate as the word ML

decoder, and the minimum number of rows in H required for doing so.

An erasure pattern, i.e. a set of code coordinates that are erased, can be corrected by

the ML decoder if and only if it does not contain the support of a codeword, in which case we

say that the erasure pattern is correctable. In comparison, for the iterative H-decoder, an erasure

pattern can be corrected if and only if it does not contain a stopping set. Hence, the iterative

H-decoder is ML if and only if none of the correctable erasure patterns contains a stopping

set. Since any subset of a correctable erasure pattern is still correctable, this is equivalent to

requiring that the set of correctable erasure patterns and the set of stopping sets be disjoint. As

in Chapter 3, we say that a matrix M covers a set S if M(S) contains a row of weight one.

(Note that M can be a vector as a special case.) Thus, the iterative H-decoder achieves ML

performance if and only if all correctable erasure patterns are covered by H .

We define the ML redundancy of a code C, denoted by γ(C), as the smallest number

of rows in a parity-check matrix H such that the iterative H-decoder for C achieves ML perfor-

mance. In this section, we will develop bounds on γ(C) both in general and for certain classes

of codes.

Let H∗ denote a matrix consisting of all codewords of C⊥ as rows. The following

lemma is a known result [5], which shows that γ(C) is well-defined, i.e. it is always possible to

achieve ML performance with an iterative decoder on the erasure channel.

Lemma 6.6 The iterative H∗-decoder is ML.

Proof: If S ⊆ [n] is correctable, then for any parity-check matrix H , the column vectors of

H(S) are linearly independent. Hence, the rows of H(S) contain a basis of F|S|q . Therefore,

all possible q-ary |S|-tuples appear as rows in H∗(S) the same number of times. In particular,

H∗(S) must contain a row of weight one. �

The next lemma shows that if a matrix H has all its rows taken from C⊥ and covers all

correctable erasure patterns for C, then it must indeed be a parity-check matrix for C. Hence, to

verify that an iterative H-decoder achieves ML performance, it suffices to verify that H covers

all correctable erasure patterns.
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Lemma 6.7 If C ⊆ Null(H) and H covers all correctable erasure patterns for C, then C =

Null(H), where Null(H) is the null space of H .

Proof: The redundancy of C being r implies that correctable erasure patterns of size r exist.

Let S be such an erasure pattern. Since S is covered by H , it is covered by some row of H ,

say h1. Let s1 denote the coordinate that supp(h1) and S have in common. Then S \ {s1} is

a correctable erasure pattern of size r − 1. And so it must be covered by some other row of

H , say h2. Repeating the above argument shows that up to row and column permutations, H

contains an r × r lower triangular matrix with nonzero diagonal. Hence, rank(H) = r. Since

C ⊆ Null(H), it follows that C = Null(H). �

The following result is obtained as an easy extension of Theorem 3.1.

Theorem 6.8 Let C be a binary code with redundancy r. Then

γ(C) ≤ 2r−1. (6.17)

Proof: Note that any set of r + 1 or more erasures is not correctable. Thus, in the proof of

Theorem 3.1, if we replace d with r+1 in the construction for H ′, then H ′ covers all correctable

erasure patterns for C. Now, it suffices to note that the number of rows in H ′ is

b(r+1)/2c∑
i=1

(
r

2i− 1

)
= 2r−1.

�

Hollmann and Tolhuizen [11] considered general constructions of parity-check collec-

tions for binary codes that correct all correctable erasure patterns up to a given size. Specifically,

the study in [11] focused on finding an r-column matrix A with the least number of rows, having

the property that given any r×n matrix H with rank r, the iterative AH-decoder corrects all cor-

rectable erasure patterns of size m or smaller, for the code defined by the null space of H . Such

a matrix (A), or rather, collection of r-tuples (row vectors of A), was defined as a generic (r, m)-

correcting set, whose smallest size is denoted by F (r, m). It was found that F (r, r) = 2r−1,

which implied Theorem 6.8. The authors of [11] also showed that equality is achieved in (6.17)

for binary Hamming codes.
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Theorem 6.9 ([11]) LetHm denote the [2m − 1, 2m −m− 1, 3]2 Hamming code. Then

γ(Hm) = 2m−1.

Other work related to the subject includes that of [13].

6.2.2 Upper Bounds

Theorem 6.8 can be extended to q-ary codes rather straightforwardly using similar

ideas as in [11].

Theorem 6.10 Let C be a q-ary code with redundancy r > 0. Then

γ(C) ≤ qr−1.

Proof: Let H be an r × n parity-check matrix for C, where n is the length of C. Let the row

vectors of H be denoted by h1, . . . ,hr. Define V
def=
{
h1 + v : v ∈ span({h2, . . . ,hr})

}
.

Clearly, |V | = qr−1. We show that every correctable erasure pattern is covered by some vector

in V .

Let S ⊆ [n] be correctable. Then rank
(
H(S)

)
= |S|. Let B ⊆ {h1, . . . ,hr} be such

that B(S) def= {b(S) : b ∈ B} form a basis of F|S|q . If h1 ∈ B, note that span
(
B(S)\h1(S)

)
has

rank |S| − 1, hence does not contain all weight one |S|-tuples. Therefore, there exists e ∈ F|S|q ,

such that wt(e) = 1 and e = αh1(S) + x(S), where α 6= 0 and x ∈ span(B \ h1) ⊆
span({h2, . . . ,hr}). Since wt(α−1e) = 1, we see S is covered by (h1 + α−1x) ∈ V . Finally,

if h1 /∈ B, simply note that V (S) = span
(
B(S)

)
= F|S|q . �

Many techniques for obtaining bounds on stopping redundancy can be adapted to ML

redundancy as well. One such example is given in the following theorem, which is based on an

idea similar to that of Theorem 4.3.

Theorem 6.11 Let C be an [n, k]q code. Let r = n− k. Then for all 0 ≤ p ≤ 1,

γ(C) ≤ pqr +
r∑

i=1

(
n

i

)
(1− p)i(q−1)qr−i

.
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Proof: For some prescribed real value p, 0 ≤ p ≤ 1, select each codeword in C⊥ with probability

p, and let matrix H consist of all selected codewords as rows (with arbitrary ordering). At this

point, the expected number of rows in H is

p · |C⊥| = pqr.

Not all correctable erasure patterns may be covered by H . Particularly, for any given X ∈ [n]i,

i = 1, . . . , r, that is correctable, the probability that X is not covered by H is

(1− p)i(q−1)qr−i
.

This is because X being correctable implies that C⊥(X) (as a multiset) contains all q-ary i-tuples

the same number of times. To cover all correctable erasure patterns, as a second step, for each

X ∈ [n]i, i = 1, . . . , r, that is correctable but not yet covered by H , append to H a codeword

from C⊥ that covers X , until no such X can be found. At this point, the expected number of

rows in H is at most

pqr +
r∑

i=1

∑
X∈[n]i

Xcorrectable

(1− p)i(q−1)qr−i

≤ pqr +
r∑

i=1

(
n

i

)
(1− p)i(q−1)qr−i

.

Therefore, there exists at least one realization of H with at most the above number of rows. �

We now consider a different approach based on minimal codewords. A nonzero code-

word is minimal if its support does not contain the support of another codeword of smaller

weight.1 The set of minimal codewords of code C is denoted by M(C). Minimal codewords

were introduced by Hwang [14], and have found applications from decoding algorithms [14]

[15] [16] to secret sharing [17]. Basic properties of minimal codewords were studied by Massey

[17], and by Ashikhmin and Barg [16], who also characterized minimal codewords for certain

well-known classes of codes.

Some properties of minimal codewords [17] [16] that we will use are summarized in

the following lemma.
1Some authors require in addition that the first nonzero coordinate of minimal codewords be one.
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Lemma 6.12 Let C be an [n, k]q code. Then

1. For all v ∈ C \ {0}, there exist c1, . . . , cm ∈ M(C), such that v =
∑m

i=1 ci and

supp(ci) ⊆ supp(v), i = 1, . . . ,m.

2. For all c ∈M(C), we have wt(c) ≤ n− k + 1.

We make a key observation that to achieve ML performance, it suffices to select parity

checks fromM(C⊥), which leads to the following upper bound on ML redundancy.

Theorem 6.13 If C is a q-ary code, then

γ(C) ≤ 1
q − 1

∣∣M(C⊥)
∣∣.

Proof: Let HM denote the matrix consisting of all codewords ofM(C⊥) as rows. If S ⊆ [n] is

correctable, then by Lemma 6.6, it is covered by some c ∈ C⊥. If c ∈M(C⊥), then HM covers

S. If c /∈ M(C⊥), then by Lemma 6.12, c can be written as a sum of codewords fromM(C⊥),

whose supports are contained in supp(c). Thus, one of these minimal codewords must cover S.

Finally, note that just one codeword is needed fromM(C⊥) for each support set. �

It is often hard to find the number of minimal codewords in C⊥. Lemma 6.12 tells us

that it suffices to consider codewords of weights k +1 or less, leading to the following corollary.

Note that the same result was also shown in [13, Theorem 3], albeit through a very different

argument.

Corollary 6.14 If C is an [n, k]q code, then

γ(C) ≤ 1
q − 1

k+1∑
i=1

Bi,

where Bi is the number of weight-i codewords in C⊥.

Let us consider a few examples.

Example 6.1 Let Hm denote the binary Hamming code with redundancy m, and Sm denote its

dual code, the [2m − 1,m, 2m−1]2 Simplex code. Since all nonzero codewords of Sm have the
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same weight, all of them are minimal. Theorem 6.13 tells us that γ(Hm) ≤ 2m − 1, which is

trivially true and is about twice the true value of γ(Hm) as given in Theorem 6.9.

On the other hand, it is known [16] that the number of minimal codewords in Hm of

weight w is

Mw =

 1
w!

∏w−2
i=0 (2m − 2i) if 3 ≤ w ≤ m + 1,

0 otherwise.

So by Theorem 6.13, γ(Sm) ≤
∣∣M(Hm)

∣∣ = O
(
2m2

/m
)
, which is much stronger than the

upper bound of 22m−m−2, as given by Theorem 6.8. �

Example 6.2 Let G24 denote the [24, 12, 8]2 self-dual Golay code. It is known [16] thatM(G24) =

{c ∈ G24 \ {0} : wt(c) ≤ 12}. By Theorem 6.13 and the well-known weight distribution of G24

[12], we have γ(G24) ≤ 3335. Note that Theorem 6.8 and Theorem 6.11 both perform better in

this case, yielding γ(G24) ≤ 2048 and γ(G24) ≤ 2435, respectively. A greedy search shows that

in fact γ(G24) ≤ 370. �

Example 6.3 For MDS codes, minimal codewords and minimum-weight codewords are the

same, because all nonzero codewords with weight not exceeding r + 1 are minimum-weight.

Also, ML redundancy and stopping redundancy become equivalent, since no correctable erasure

pattern is of size larger than r = d− 1.

Let C be an [n, k]q MDS code. Then C⊥ is an [n, n − k]q MDS code. Theorem 6.13

gives us γ(C) ≤
(

n
k+1

)
, which was obtained in [1] as an upper bound on ρ(C). Much stronger

upper- and lower-bounds on ρ(C) = γ(C) for MDS codes have been presented in Chapter 4 of

this thesis. �

Example 6.4 Let C be a random code whose (n − k) × n parity-check matrix consists of inde-

pendent and equiprobable entries drawn from Fq. The following result was shown in [16].

Theorem 6.15 ([16]) Let k = Rn, where R ∈ (0, 1) is fixed. Then

lim
n→∞

1
n

logq E
[
|M(C)|

]
=

 Hq(1−R)− (1−R) if R > 1/q

R if R ≤ 1/q

where Hq(·) is the base-q entropy function.
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Theorem 6.15 was proved by noting that the average number of minimal codewords

of weight w is at least a constant fraction (> 0.288) of the average total number of weight-w

codewords, for all w ≤ n−k+1. This shows that Corollary 6.14 in general should give a bound

that is not much larger than that given by Theorem 6.13.

To compare E
[
|M(C)|

]
with the total number of codewords, note that E

[
|C|
]

= qk −
q−r + 1. Therefore, if R ≤ 1/q, almost all codewords in C are minimal; if R > 1/q, the

number of minimal codewords as a fraction of |C| decreases to 0 exponentially fast as n → ∞.

Accordingly, Theorem 6.13 is likely to give us a non-trivial bound if R < (q − 1)/q. This

observation is corroborated by our earlier examples of Hamming, Simplex, and Golay codes. �

6.2.3 Codes with Designs

As before, let Hm and Sm denote the [2m − 1, 2m −m − 1, 3]2 Hamming code and

the [2m − 1,m, 2m−1]2 Simplex code, respectively. We first show that the ML redundancy of

Sm is small — at most quadratic in the length of the code. This is contrasted with the very large

number of available parity checks. It is also much lower than the O
(
2m2

/m
)

bound given by

Theorem 6.13. Interestingly, the stopping redundancy of Sm is also very small. Indeed, it can be

shown [18] that the stopping redundancy of Sm is equal to its redundancy, 2m −m− 1.

Theorem 6.16 For all m,

γ(Sm) ≤ n2 − n

6
,

where n = 2m − 1 is the block length of Sm.

Proof: It is well known [12] that the number of weight-3 codewords in Hm is 1
3

(
n
2

)
= (n2 −

n)/6. We will show that any correctable erasure pattern for Sm is covered by a weight-3 code-

word of Hm. Let S be a correctable erasure pattern. Then there exists c ∈ Hm, such that

wt
(
c(S)

)
= 1. If wt(c) = 3, then we are done. Otherwise, note that the supports of weight-3

codewords inHm form a (2, 3, n) Steiner system [12]. Hence, we can find a weight-3 codeword,

x1 ∈ Hm, that matches c at its nonzero position within S and at least one other nonzero bit. If

wt
(
x1(S)

)
= 1, then we are done. Otherwise, let c1 = c − x1, and note that wt

(
c1(S)

)
= 1

and wt(c1) < wt(c). Now we can repeat the above procedure and find weight-3 codewords
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x2,x3, . . . ∈ Hm, until some xi is found that covers S. This must happen since with each un-

successful step the weight of the codeword that covers S (i.e. ci = ci−1 − xi) is reduced by at

least one. �

The above bound can be slightly improved by noting that a subset of the weight-3

codewords ofHm suffices as parity checks, giving the following result.

Theorem 6.17 For all m,

γ(Sm) ≤ n2 − 4n + 9
6

,

where n = 2m − 1 is the block length of Sm.

Proof: Let Am denote the set of weight-3 codewords ofHm. For j = 1, . . . , n, define Am,j
def=

{x ∈ Am : j ∈ supp(x)}. Let A′m,j
def= Am \

(
Am,j \ {am,j}

)
, where am,j is an arbitrary

element in Am,j . We show that any correctable erasure pattern is covered by a vector in A′m,j

for all j.

Basically, we are saying that among all weight-3 codewords of Hm whose supports

contain the j-th coordinate, we may discard all but one of them, and still cover all correct erasure

patterns. Let S ⊆ [n] be a correctable erasure pattern. Then there exists c ∈ Hm, such that

wt
(
c(S)

)
= 1. Observe that if j /∈ supp(c), then the recursive procedure in the previous proof

can be followed through without using any vectors in Am,j . This is because at each step, we

have multiple choices for xi by varying the choice of the position outside of S, and only one of

the resulting 3-sets possibly contains j.

We now show that either S is trivially covered, or we can find c ∈ Hm such that

wt
(
c(S)

)
= 1 and j /∈ supp(c), so the above observation suffices to complete the proof. We

need the following fact, which can be seen from the proof of Lemma 6.6:

∀s ∈ S, ∃c ∈ Hm, s.t. supp
(
c(S)

)
= {s}. (6.18)

Now, consider two cases. If j ∈ S, then by (6.18), unless S = {j} (in which case S is covered

by am,j), we can always choose c ∈ Hm such that wt
(
c(S)

)
= 1 and j /∈ supp(c). If j /∈ S,

let’s further assume that wt
(
am,j(S)

)
6= 1 (or S is covered by am,j). Thus, wt

(
am,j(S)

)
= 0

or 2. If wt
(
am,j(S)

)
= 0, choose v ∈ Hm such that wt

(
v(S)

)
= 1. If wt

(
am,j(S)

)
= 2, by

(6.18) we can choose v ∈ Hm such that wt
(
v(S)

)
= 1 and supp

(
v(S)

)
⊂ supp(am,j). Now
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note that in either case, v and v + am,j both cover S, but only one of them has j in its support.

The one whose support does not contain j can then be chosen as c.

Finally, since {supp(x) : x ∈ Am} is a (2, 3, n) Steiner system, |Am,j | = (n− 1)/2

for all j. Therefore, |A′m,j | = |Am|−|Am,j |+1 = n(n−1)/6−(n−1)/2+1 = (n2−4n+9)/6.�

The above bound appears to be reasonably good, but is not always sharp. For exam-

ple, Theorem 6.17 shows that γ(S3) ≤ 5 and γ(S4) ≤ 29. While it can be verified using an

exhaustive search that indeed γ(S3) = 5, a greedy search shows that γ(S4) ≤ 21.

Next, consider Reed-Muller (RM) codes. Let R(l,m) denote the l-th order RM code

with parameter m. The first order RM code, R(1,m), is closely related to the Simplex code

Sm. Whereas Sm is the dual code of the Hamming code Hm, R(1,m) is the dual code of the

corresponding extended Hamming code, which we denote by Hext
m . Using similar ideas from

Theorem 6.16 and Theorem 6.17, we obtain the following bound on the ML redundancy of

R(1,m).

Theorem 6.18 For all m,

γ
(
R(1,m)

)
≤ 1

4

(
n

3

)
− n

2
+ 2.

where n = 2m is the block length ofR(1,m).

Proof (Sketch): Let Bm denote the set of weight-4 codewords ofHext
m . It is well known [12] that

{supp(x) : x ∈ Bm} is a (3, 4, n) Steiner system. For each D ∈ [n]2, define Bm,D
def= {x ∈

Bm : D ⊂ supp(x)}, and let B′m,D
def= Bm \

(
Bm,D \ {bm,D}

)
, where bm,D is an arbitrary

element in Bm,D.

Arguing similarly as in the proofs of Theorem 6.16 and Theorem 6.17, one can show

that any correctable erasure pattern is covered by a vector in B′m,D for all D. Finally, note that

|B′m,D| = |Bm| − |Bm,D|+ 1 = 1
4

(
n
3

)
− n−2

2 + 1. �

The essence of Theorems 6.16–6.18 can be generalized to any length-n linear code

whose dual code contains an (n, t + 1, t) covering design (by which we mean precisely that the

supports of weight-(t + 1) codewords in the dual code form an (n, t + 1, t) covering design) for

some t.
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Theorem 6.19 Let C be a linear code of length n over Fq. If for some t ≥ q, C⊥ contains an

(n, t + 1, t) covering design, then

γ(C) ≤
(

n

t

)
+

1
q − 1

t∑
i=1

Bi. (6.19)

In particular, if C⊥ contains a (t, t + 1, n) Steiner system, then

γ(C) ≤ 1
t + 1

(
n

t

)
+

1
q − 1

t∑
i=1

Bi, (6.20)

where Bi is the number of weight-i codewords in C⊥.

Proof: Choose a subset of weight-(t + 1) codewords from C⊥ as parity checks, such that their

supports form an (n, t + 1, t) covering design. This subset can be chosen to contain less than(
n
t

)
vectors (or, precisely 1

t+1

(
n
t

)
vectors, if C⊥ contains a (t, t + 1, n) Steiner system). Choose

also a subset of codewords from C⊥ whose weights are less than (t + 1) (if there are any), such

that exactly one codeword is chosen for each support set. The total number of vectors we have

chosen from C⊥ is no greater than
(
n
t

)
+ 1

q−1

∑t
i=1 Bi (or, 1

t+1

(
n
t

)
+ 1

q−1

∑t
i=1 Bi, if C⊥ contains

a (t, t + 1, n) Steiner system). Let this set of vectors (as parity checks) be denoted by A. We

show that any correctable erasure pattern for C is covered by a vector in A.

If S is correctable, then there exists v ∈ C⊥ such that wt
(
v(S)

)
= 1. Let c = αv

where α ∈ Fq, α 6= 0 is a constant of our choice. If there exists α such that c ∈ A, then we are

done. Otherwise, we have | supp(c)| ≥ t + 1 and | supp(c) \ S| ≥ t. Let X be any t-subset

of
(
supp(c) \ S

)
. Since C⊥ contains an (n, t + 1, t) covering design, there exists x1 ∈ A such

that wt(x1) = t + 1 and supp(x1) ⊃ X . If wt(x1(S)) = 1, then we are done. Otherwise, note

that by choosing α we can ensure that c matches x1 at no less than dt/(q − 1)e positions. Let

c1 = α1(c− x1), where α1 ∈ Fq, α1 6= 0 can be chosen freely. Note that wt(c1(S)) = 1. And

since t ≥ q, we also have

wt(c1) ≤ wt(c)− dt/(q − 1)e+ 1 < wt(c).

Now the above procedure can be repeated to find weight-(t+1) codewords x2,x3, . . . ∈
A, and stopped if some xi is found that covers S. Since at each unsuccessful step the weight of

the parity-check vector that covers S (i.e. ci = αi(ci−1 − xi)) is reduced by at least one, the
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process must terminate in a finite number of steps, at the end of which we will either have found

some xi ∈ A that covers S, or we will be left with some 0 6= ci = αi(ci−1 − xi) that covers

S and has weight no greater than t. In the latter case, note that by construction, there exists αi

such that ci ∈ A. �

The recursive procedure used in the above proof is slightly different from the one used

in the proof of Theorem 6.16, but the two are similar in principle.

If the minimum distance of C⊥ is t + 1, then the second term in (6.19) is zero, as in

the case of Simplex and first order Reed-Muller codes.

As examples, let G11 and G12 denote the ternary and extended ternary Golay codes,

respectively. It is well known [12] that the supports of weight-6 codewords in G12 and those of

weight-5 codewords in G11 form (5, 6, 12) and (4, 5, 11) Steiner systems, respectively. Further-

more, note that G12 is self-dual. By (6.20) we immediately have

γ(G⊥11) ≤ 66,

γ(G12) ≤ 132.

It is worth noting that the recursive procedure used in proving Theorems 6.16 – 6.19

is reminiscent of the zero-neighbors algorithm [19]. It will be interesting to see if such intuition

can be materialized so that instead of using all minimal codewords in the dual code (sans those

with repeated support), an appreciably smaller subset can be used.

6.3 Non-Erasure Channels

It is widely believed [20] [1] [21] that concepts such as stopping sets and stopping

redundancy that are directly motivated by the erasure channel are relevant to other channels as

well. We will see an example that supports this claim later in this section. On the other hand, their

applicability to a non-erasure channel is clearly limited. An erasure channel is fundamentally

different from a non-erasure one in that a symbol transmitted through the channel can be lost but

is never distorted. Consequently, there is no error propagation during message-passing, making

iterative decoding more “well-behaved” on an erasure channel. For example, on an erasure
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channel the addition of parity checks can only improve performance of MPID, while on a non-

erasure channel things can go both ways — it is easy to construct examples where the addition

of parity check degrades the performance of MPID. One such example is given in [22], and we

will see another example later in the section. Also, observe that adding parity checks to a Tanner

graph does not remove any cycles but generally introduces new ones, thus can only reduce its

girth. While girth is not important for choosing Tanner graph representation of a code on an

erasure channel, the presence of small cycles, especially four-cycles, are generally considered

detrimental to the performance of MPID on a non-erasure channel (although this position has

been contended [23]).

For binary codes, a natural way to extend our discussion to the case of non-erasure

channels is to consider pseudo-codewords instead of stopping sets. There are several definitions

of pseudo-codewords, some of which equivalent. The most complete definition, pioneered by

Wiberg [24], is based on valid configurations of computation trees (CT) that arise from iter-

ative decoding. The idea was further studied in [25] and [26]. Here we follow the polytope

characterization introduced by Koetter and Vontobel [27] [21], who essentially showed that a

subset of the CT-based pseudo-codewords, when properly scaled, can be compactly represented

by a polytope which they called the fundamental polytope. Koetter and Vontobel argued that

the main weakness of MPID is that it works locally and cannot distinguish the Tanner graph

from its finite covers, hence the valid configurations on graph covers is a major contribution to

the suboptimality of MPID. They consequently defined graph-cover decoding (GCD) as a tool

for analysis of MPID. It turned out that GCD is equivalent to the linear programming decoding

(LPD) formulated in [28], and the fundamental polytope coincides with the feasible region of

LPD.

We now give a brief description of pseudo-codeword and related concepts following

mainly the language of LPD. For more details, the reader is referred to [28] [27] [21].

Let C ⊆ Fn
2 be a binary linear code. We will also view C as a subset of Rn by simply

mapping 0 ∈ F2 to 0 ∈ R and 1 ∈ F2 to 1 ∈ R. Assuming a binary-input memoryless symmetric

channel and that all information words (hence codewords of C) are equally likely a priori, the

optimal block decoder works according to the (block) ML rule:

x̂ = arg max
c∈C

Pr{y |x = c}, (6.21)
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where x̂ is the estimate of the transmitted codeword x , and y is the received vector of n channel

outputs. Let γ denote the vector of log-likelihood ratios (LLR), i.e. for the i-th bit we have

γi = ln
Pr{yi |xi = 0}
Pr{yi |xi = 1}

.

It can be shown [28] that (6.21) is equivalent to solving the following linear program (LP):

minimize γcT

subject to c ∈ conv(C)
(6.22)

where conv(C), the codeword polytope, is the convex hull of C in Rn. Since an exact description

of conv(C) is often intractable, the following relaxation was proposed. For any given parity

check matrix H , let h1,h2, . . . ,hm denote its rows. Each hi defines a super code of C, that is

Ci
def= {x ∈ Fn

2 : xhT
i = 0},

which we call a local code. Note that C is the intersection of all local codes. The codeword

polytope of a local code can be easily obtained as

conv(Ci) =
{
x ∈ [0, 1]n :

∑
j∈V

xj −
∑

j∈Ui\V

xj ≤ |V | − 1,∀V ⊆ Ui, |V | odd
}

,

where Ui = supp(hi). Now, let

P(H) def=
⋂
i

conv(Ci).

Then instead of solving (6.22), one can solve the following relaxed LP

minimize γcT

subject to c ∈ P(H).
(6.23)

P(H) is known as the fundamental polytope [27]. It can be shown that due to symmetry, we may

assume that the all-zero codeword was transmitted. Then (6.23) has the same error probability

as the following LP

minimize γcT

subject to c ∈ K(H),
(6.24)
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whereK(H) def= conic
(
P(H)

)
, the fundamental cone, is the conic hull of P(H). Following [27]

[21], we call any vector inK(H) a pseudo-codeword. A pseudo-codeword is minimal if it cannot

be expressed as a nonnegative linear combination of other pseudo-codewords. Geometrically,

minimal pseudo-codeword form edges of K(H). Let M be a set that contains one pseudo-

codeword from each edge of K(H). Then 0 is a solution to (6.24) if and only if xγT ≥ 0 for

all x ∈ M . For a given channel, by putting the pairwise (between 0 and x ) error probability

Pr{xγT < 0} into formal analogy to that when x ∈ C, an appropriate definition of pseudo-

weight can be obtained. By the way pseudo-weight is defined, we see that the performance

of LPD (or the equivalent GCD) is largely determined by the pseudo-weight distribution of

minimal pseudo-codewords (i.e. edges of the fundamental cone), much like how ML decoding

performance is governed by the Hamming weight distribution.

For the AWGN channel, the pseudo-weight is defined as

wtAWGN(x ) def=

(∑n
i=1 xi

)2∑n
i=1 x2

i

.

For the binary erasure channel (BEC), the pseudo-weight is

wtBEC(x ) def= | supp(x)|.

For the BSC, a proper definition can also obtained. As expected, if x ∈ {0, 1}n, then pseudo-

weight reduces to the Hamming weight.

Let us revisit the example shown in Figure 1.2. Four of the Tanner graphs representing

the same (1, 3)-RM code are reproduced in Figure 6.1, together with their respective AWGN

pseudo-weight distribution of minimal pseudo-codewords. The corresponding WER curves us-

ing MPID with the min-sum algorithm are shown in Figure 6.2. Note that graph C is based on

the construction in [29] (or equivalently, Theorem 5.2) that maximizes stopping distance (and in

this case uses the least number of check nodes), and D is based on Theorem 5.1 which has a very

neat geometric interpretation. Let HD denote the parity-check matrix corresponding to Tanner

graph D. It can be verified that HD covers all correctable erasure patterns, hence the iterative

HD-decoder is ML. For perspective, the number of stopping sets of size 3 and 4 are listed in

Table 6.2.

We make two qualitative observations. First, we note that there is positive correlation

between the distribution of stopping set size and the distribution of AWGN pseudo-weight. In
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Table 6.2 Number of stopping sets of sizes 3 and 4 for Tanner graphs in Figure 6.1

A B C D

size-3 10 2 0 0
size-4 33 24 18 14

some sense this is not very surprising, since essentially we are looking at the same set of pseudo-

codewords, it is just the pseudo-weight that is defined differently.2 More specific results relating

stopping sets to pseudo-codewords can be found in [21] [22]. Secondly, from the point of view

of pseudo-weight distribution, the fewer the number of smaller-weight pseudo-codewords the

better, and we observe that this prediction matches the WER performance comparison very well

in this example, i.e. a Tanner graph with better pseudo-weight distribution produces less errors

in MPID.

Up to now everything looks very good: the above example seems to suggest that the

stopping set size distribution is a good indicator of the pseudo-weight distribution, which in turn

is a good indicator of MPID performance. While as just shown, there are cases where these

claims are true, it is not very clear to what extent they hold in general.

In fact, there are examples [21] where stopping set size and AWGN pseudo-weight can

be dramatically different. On the other hand, neither is the distribution of pseudo-weight always

an accurate indicator of MPID performance. For example, consider the set of four Tanner graphs

with their respective distribution of AWGN pseudo-weight of minimal pseudo-codewords shown

in Figure 6.3. Two of them, B and C, are replicated from Figure 6.1. The other two, F and G,

are both obtained from B by including one additional check. In fact, C can be viewed in this way

as well. Thus, taking B as baseline, this comparison is targeted at how choice of an additional

parity check may have positive or negative impact on the MPID performance, and how this

impact may or may not be explained by the change in pseudo-weight distribution. For reference,

the number of size-3 and size-4 stopping sets for the graphs in question are provided in Table 6.3.

We observe that while the correlation between distributions of stopping set size and

AWGN pseudo-weight can again be seen, the pseudo-weight distribution no longer gives a sat-
2To be precise, by counting stopping sets we are not distinguishing between pseudo-codewords that have the same

support, i.e. all pseudo-codewords with the same support are counted as just one stopping set.
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Figure 6.1 Four Tanner graphs representing the (1, 3)–RM code and their respective AWGN
pseudo-weight distribution of minimal pseudo-codewords. A is the natural choice if the code is
viewed as an extended Hamming code. B comes from the (u |u + v) recursive construction
of RM codes [12]. C is based on the construction in [29] (or equivalently, Theorem 5.2) that
maximizes stopping distance (in this case with the least number of check nodes). D is based on
Theorem 5.1 which has a neat geometric interpretation. It can be verified that MPID over graph
D in fact achieves ML performance on the binary erasure channel.



123

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
10!6

10!5

10!4

10!3

10!2

10!1

Eb/N0 (dB)

W
ER

(1,3)!RM code, AWGN, Min!Sum Decoding, up to 200 Iterations

 

 
A (4 chks)
B (4 chks)
C (5 chks)
D (6 chks)

Figure 6.2 WER performance for Tanner graphs in Figure 6.1. Min-sum algorithm with up to
200 iterations.
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Table 6.3 Number of stopping sets of sizes 3 and 4 for Tanner graphs in Figure 6.3

B C F G

size-3 2 0 1 2
size-4 24 18 21 20

isfactory explanation of the differences in MPID performance among different Tanner graphs.

In fact, having one additional parity check, graph F recorded worse WER performance than

graph B, despite its superior pseudo-weight distribution. Another unusual comparison is be-

tween graphs C and G. From their pseudo-weight distributions, one would expect C to have

a notable advantage. However, the two graphs perform very similarly under iterative decoding.

And if there was any difference, G seems to perform very slightly better.

The main cause for such inconsistencies, as pointed out in [22], is that the set of

pseudo-codewords as we have defined it is not enough to fully describe the behavior of MPID.

The more general set of pseudo-codewords according to [24], [26] or [25] would be appropriate,

but unfortunately does not have a tractable mathematical characterization.

Despite its limitations, evaluating Tanner graphs based on pseudo-codewords distribu-

tion is certainly appropriate for LPD/GCD, and due to the close relation between LPD/GCD and

MPID, still provides a valuable means to understand the effects of Tanner graph representation

on the performance of MPID. Work on the relation between LPD/GCD and MPID can be found

in [28] [21] [30] [22]. Notably, it is observed in [31] that LPD can be viewed as a high SNR

limit of MPID. Also, similarities in decision regions have been noted for LPD and the min-sum

algorithm, and a detailed discussion of the relation between the two algorithms can be found in

[30]. On the BEC, it can be shown [28] that LPD and MPID are equivalent.

To obtain the WER curves in Figure 6.2 and Figure 6.4, the min-sum algorithm has

been used due to its closer relation to LPD. Although not shown here, similar performance

comparison is observed when the sum-product algorithm is used.

Since performance of LPD/GCD can only improve with the addition of parity checks,

there exists a similar complexity-performance tradeoff as in the case of erasure decoding. At high

SNRs, LPD/GCD performance (and in the limit, MPID performance) is governed by the mini-

mum pseudo-weight among all nonzero pseudo-codewords. Since the set of pseudo-codewords
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Figure 6.3 Four Tanner graphs representing the (1, 3)–RM code and their respective AWGN
pseudo-weight distribution of minimal pseudo-codewords. Graphs B and C are the same as in
Figure 6.1. F and G are both obtained from B by adding one additional check node. Note that
C can be viewed in a similar way. Thus, the difference among C, F and G lies in the choice of
the additional check node to be added to the Tanner graph B.
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contains the code itself as a subset, it can easily be shown that the minimum pseudo-weight for

BSC, BEC and the AWGN channel are all upper bounded by the minimum Hamming distance of

the code. In the case of BEC, this upper bound can always to be achieved and the least number

of check nodes for doing so is the stopping redundancy. Recently, Kelley and Sridhara showed

in [32] that the upper bound is also always achievable on the BSC, and correspondingly defined

the pseudo-weight redundancy for the BSC. It was then shown that many of the results on stop-

ping redundancy extend to the BSC case with little modification (though the proofs can be quite

different).

We have seen that pseudo-weight distribution as an indicator of MPID performance is

not without its limitations. Hence, it may be worthwhile to consider alternatives. Some worthy

candidates include trapping sets [33] [34] and extrinsic message degree (EMD) [35]. An initial

study based on trapping sets can be found in [36] [20]. In [20], the authors defined trapping

redundancy in analogy to stopping redundancy. We note that since trapping sets and EMD share

similar combinatorial structures with stopping sets, much of the the tools and techniques that we

used can be extended rather easily.

6.4 Further Discussion

While the study in this thesis has added to our understanding of how code representa-

tion affects its performance under MPID, many interesting questions remain and further study is

certainly warranted. Some of the open questions are already mentioned in earlier chapters, here

we add a few more.

An important aspect that we have not paid much attention to is how one practically

finds a good representation of a code suitable for MPID. We indeed talked about a very specific

construction for Reed-Muller codes, which, although coinciding with the construction in [29]

up to automorphism, provides an interesting geometric perspective that can be applied to other

finite geometry codes. The more general results in this area so far focused on three approaches.

The first one is based on using parity checks of minimum weight to form the parity-check matrix

[37]. The second method focuses on small loops in the Tanner graph, and form new parity

checks by linearly combining check equations involved in a loop [5] [38]. This method is partly

justified by the fact that additional parity checks obtained by linearly combining less than g/2
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parity checks in a Tanner graph with girth g does not change the fundamental polytope [21] [39].

A third method (e.g. [36]) is to select the additional parity checks based on trapping set analysis.

Due to its clear practical interest, more work to further our understanding in this area is much

desired.

Another interesting pursuit is to find codes that have small stopping/pseudo-weight

redundancy. Clearly, if the stopping redundancy is too large, then it is practically impossible to

use a corresponding Tanner graph for MPID due to complexity reasons. By “small”, we usually

require that the stopping redundancy grow linearly with the redundancy of the code. Some initial

work in this direction can be found in [29] [18]. As shown in [29], for a fixed order l, the stopping

redundancy of Reed-Muller codesR(l,m) is linear in the redundancy of the code. Moreover, as

discussed in Chapter 3, the upper bound (3.5) implies that for a fixed d, the stopping redundancy

of any binary linear code grows linearly with the redundancy of the code. Another example is

the class of LDPC codes based on finite geometries [40]. It can be shown [41] [42] that the

stopping/pseudo-weight redundancy of these codes is at most polynomial in the redundancy.

Note that in all the above examples, either the rate or the distance of the code (as a fraction of

block length) approaches zero as the block length is increased. It remains a question whether

there exists a family of good linear codes whose stopping redundancy grows polynomially with

redundancy of the code.

Moving on to non-erasure channels, we see that pseudo-codewords provide a reason-

able framework for the evaluation of different Tanner graphs. We have seen that the minimum

pseudo-weight is upper bounded by the minimum Hamming distance for any channel. For the

BEC and BSC, it has been shown that this upper bound can always be achieved. It is a the-

oretically interesting question whether the same conclusion holds for other channels, e.g. the

binary-input AWGN channel. We also talked about ML redundancy. Note that when we move

to a non-erasure channel it is usually impossible to achieve ML performance via MPID on any

Tanner graph. Even for the LPD/GCD, there are many codes for which ML performance is not

achievable by adding more parity checks, and a precise characterization of these codes can be

found using results in Matroid theory [43] [44]. For those codes, even when all possible parity

checks are present, the vertex set of the fundamental polytope will still contain non-codeword

pseudo-codewords. Nevertheless, corresponding to ML redundancy, it may still be an interesting

question to consider, for example, the number of parity checks required to minimize the volume
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of the fundamental polytope.

We should also mention that we have focused on just one dimension in varying the

Tanner graph for a code: we choose how many and which parity checks to use. By using redun-

dant parity checks, we expand along the row dimension of a parity-check matrix. Note that we

can also expand along the column dimension to create “auxiliary” variable nodes which are con-

sidered punctured out before transmission, and are treated as erasures at the decoder. This idea

was introduced in [45], and by allowing both redundant rows and redundant columns, the au-

thors defined the generalized parity-check matrix. There are certain benefits of having punctured

variable nodes in a Tanner graph, for example, to break small cycles. How this added dimension

affects the performance-complexity tradeoff in code representation remains to be seen.

Finally, we should be reminded that even pseudo-codewords (as we have defined them)

cannot accurately predict MPID performance, and thus should be used only as an approximate

tool for the analysis. Indeed, an accurate characterization of MPID performance by mathemat-

ically tractable structures in a Tanner graph is likely a near impossible task. As more and more

redundant parity checks are employed, LPD/GCD performance steadily improves, but it is not

clear to what extent the MPID performance will follow suit. When there are many check nodes

in the graph, problems may arise from having too many short cycles and/or too many pseudo-

codewords that are not included in the polytope characterization.

But another way to look at this problem is that in a sense a larger graph never hurts:

in principle we could emulate the performance of a subgraph of it by scheduling. So if in some

case MPID performance degrades due to the addition of parity checks, it really is that we are not

using the over-defined description efficiently. A variation of the normal MPID algorithm may

take better advantage of the redundant representation. One such idea is to represent the same

code with multiple Tanner graphs in a turbo-like fashion [46] or to perform list decoding [47]

[48]. Another powerful idea is to adapt the representation based on the received vector (hence

we are selecting a subset of parity checks to use from a large pool), which was considered in

[49] [50] [38]. Further investigation in these above directions may prove fruitful.
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Chapter 7

Probability of Undetected Error for

Over-Extended Reed-Solomon Codes

7.1 Introduction

In some applications, error correcting codes have been used as pure error detection

codes. In particular, Reed-Solomon (RS) codes have been used for error detection in some

disk drives since the 1990’s because they have excellent error detection capabilities and do not

exhibit the undesirable behavior characteristic of certain shortened binary cyclic redundancy

check (CRC) codes [1]. A further example is the USB interface standard [2], which specifies the

use of a Hamming code for error detection.

Typically, the error detecting capabilities of these codes are guaranteed only when the

codeword length is limited to some maximum number of symbols. For RS codes defined over

a finite field with q elements, Fq, the maximum length is q − 1 symbols (or q symbols for an

extended code). However, for various reasons such as format efficiency, we sometimes use an

over-extended code, where the codeword length is allowed to exceed this maximum length. For

example, a 16-bit, binary CRC is most often used to protect codewords consisting of n = 215−1

or fewer bits. However, the Ultra DMA mode in the ATA standard [3] specifies the use of a 16-bit

CRC for protecting data packets of length much greater than n bits.

When a block code is used solely for error detection, the decoder announces the re-

ceived word to be free of error if it is found in the codebook. However, errors may have occured
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in such a way that the received word is a codeword different from the one transmitted, in which

case the errors will not be detected. The probability of such an event is known as the probability

of undetected error, and is denoted by Pud.

Consider an [n, k] linear block code over Fq, transmitted over a q-ary symmetric chan-

nel, where each transmitted symbol is received correctly with probability 1 − p, and as any of

the other q − 1 symbols with equal probability p/(q − 1). Clearly, for this channel, Pud can be

calculated as a function of p as follows:

Pud(p) =
n∑

i=1

Ai

(
p

q − 1

)i

(1− p)n−i, (7.1)

where Ai is the number of codewords with Hamming weight i. Equation (7.1) relates the prob-

ability of undetected error directly to the weight distribution of the code. Alternatively, Pud(p)

can also be obtained from the weight distribution of the dual code, as follows:

Pud(p) = q−(n−k)
n∑

i=0

A⊥
i

(
1− qp

q − 1

)i

− (1− p)n, (7.2)

where A⊥
i is the number of codewords with Hamming weight i in the dual code. This can be

conveniently shown from (7.1) using the MacWilliams identity [4], [5].

When p = (q − 1)/q, the received symbols appear to be uniformly distributed no

matter which codeword was transmitted. Therefore, undetected error occurs when the received

word is any codeword except the one sent and each such codeword appears with probability q−n.

Since there are qk − 1 such incorrect codewords, we have

Pud

(
q − 1

q

)
= (qk − 1)q−n < q−(n−k).

The same result can be obtained directly from (7.1). Note that this “purely random” case does not

necessarily correspond to the worst-case error detection performance [6], [7], [8], [9], for 0 ≤
p ≤ q−1

q . Intuitively, if the weight distribution of the code is concentrated near certain weights, it

is more likely that a codeword is confused with another when typically certain numbers of errors

occur, rather than when typically an exceedingly large number of errors occur. For the same

reasons, Pud(p) is not guaranteed to be a monotonic function of p for 0 ≤ p ≤ q−1
q , though

in [8] the authors were able to show that except for certain trivial classes of codes, Pud(p) is

well-behaved in the vicinity of q−1
q (i.e. P ′

ud(
q−1

q ) > 0).
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Following [7], [10], [11], we call a code good1 if Pud(p) < q−(n−k) for all 0 ≤ p ≤
q−1

q , and proper if Pud(p) is monotonic in p for 0 ≤ p ≤ q−1
q . (Some authors have used

q−(n−k) − q−n as the goodness threshold. See [12].) Proper codes are necessarily good, but not

vice versa. Properness and goodness properties of certain classes of codes are addressed in [6],

[7], [10], [11], [9]. In particular, MDS codes (e.g. RS codes) are known to be good and proper

[11]. Note also that for the ensemble of all [n, k] linear block codes over Fq, it is known [12]

that the average probability of undetected error is

P avg
ud (p) =

qk − 1
qn − 1

(
1− (1− p)n

)
.

For systematic codes, a similar result is known [13], [8]:

P sys
ud (p) = q−(n−k)

(
1− (1− p)k

)
.

Note that in either case, the average performance of a randomly chosen code satisfies the condi-

tions for both goodness and properness.

In this paper, we consider Over-Extended Reed-Solomon (OERS) codes. From a prac-

tical point of view, these codes are constructed by using a (shift register type) RS encoder but

allowing a longer input. Let C be a RS code over Fq with length n = q−1 and minimum distance

d. Then C can be described as the set of polynomials c(x) such that

c(x) = −r(x) + xd−1u(x), (7.3)

where u(x) is the data polynomial of degree at most n−d, and r(x) is the remainder of xd−1u(x)

divided by g(x), the generator polynomial of C. An OERS code C′ can then be defined simply

by allowing u(x) in (7.3) to have degree higher than n − d, such that the length of the code is

extended to n′ > n. This results in a linear [n′, n′ − d + 1] code over Fq.

The rest of the paper is arranged as follows. In Section 7.2, we derive upper and

lower bounds on the weight distribution of OERS codes. In Section 7.3, we apply the results

of Section 7.2 to obtain bounds on the probability of undetected error for OERS codes on q-ary

symmetric channels. We show that the bounds are asymptotically tight, which is corroborated

by an example. Section 7.4 concludes the paper. Proofs, where not given, are either evident or

can be found in Appendix Appendix 7.A.
1This use of the term “good” is to be distinguished from as in good family of codes that we came across in previous

chapters, which refers a family of codes whose distance and rate (as fractions of block length) are both bounded away
from zero as the block length approaches infinity.
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7.2 Weight Distribution

First, a few remarks on notation. Throughout the rest of the paper, unless otherwise

stated, C is a RS code over Fq with length n = q − 1, minimum distance d, and generator

polynomial g(x); C′ is the OERS code constructed from C with length n′ > n. In most of

our discussions, C and C′ will be interpreted as subsets of Fq[x], the ring of polynomials with

coefficients in Fq. If c(x) ∈ Fq[x], then deg
(
c(x)

)
is the degree of c(x), and wt

(
c(x)

)
is

the number of nonzero terms in c(x), i.e. the Hamming weight of the corresponding vector of

coefficients. For any Euclidean domain D and a, b ∈ D, Ra[b] is the remainder of b divided by

a. Vectors are indicated in bold. If x is a vector, then |x| is the dimension of x.

From the definition of OERS codes given in the previous section, it is easy to show

that C′ is also the set of polynomials in Fq[x] that have degrees less than n′ and are divisible by

g(x). This is the definition that we will use most often.

Since g(x) | xn − 1, we know that xn − 1 ∈ C′ for all n′ > n. Therefore, all OERS

codes contain codewords of weight-2, and thus have minimum distance min(d, 2).

Let A′i denote the set of weight-i codewords of C′. We are interested in finding A′
i =

|A′i| for all i. For very low weights, the problem of determining the corresponding term in the

weight enumerator is tractable – we can fully characterize all codewords of a given low weight

and thereby count them. The results for weight-2 and weight-3 codewords are summarized in

the following propositions.

Proposition 7.1 The number of weight-2 codewords in an OERS code is

A′
2 =


(
a
2

)
(q − 1)2 + ab(q − 1) if d > 2(

n′

2

)
(q − 1) if d = 2(

n′

2

)
(q − 1)2 if d = 1,

where a and b are integers such that n′ = an + b, 0 ≤ b < n.

Proof: See Appendix Appendix 7.A. �

Corollary 7.2 If d > 2 and n | n′, then A′
2 =

(
n′/n

2

)
(q − 1)2.

For example, if the OERS code has twice the length of the original RS code, then A′
2 = (q− 1)2

if d > 2.
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Proposition 7.3 The number of weight-3 codewords in an OERS code is

A′
3 =



((
a
3

)
(q − 1) +

(
a
2

)
b
)
(q − 1)(q − 2) if d > 3[(

n′

3

)
− (n′−2)

((
a
2

)
(q−1) + ab

)
+ q
((

a
3

)
(q−1) +

(
a
2

)
b
)]

(q−1) if d = 3(
n′

3

)
(q − 1)(q − 2) if d = 2(

n′

3

)
(q − 1)3 if d = 1,

where a and b are integers such that n′ = an + b, 0 ≤ b < n.

Proof: See Appendix Appendix 7.A. �

The study of these special cases motivates a general approach to understanding the

entire weight distribution of OERS codes. The following two lemmas, though elementary, are

the basis of much of the discussion that follows.

Lemma 7.4 If c(x) ∈ Fq[x] and deg(c) < n′, then c(x) ∈ C′ if and only if Rxn−1[c(x)] ∈ C.

Proof: Note Rg(x)[c(x)] = Rg(x)

[
Rxn−1[c(x)]

]
. �

Lemma 7.5 For all c(x) ∈ Fq[x],

wt
(
c(x)

)
≥ wt

(
Rxn−1[c(x)]

)
.

Proof: If c(x) =
∑m

i=0 cix
i, then

Rxn−1[c(x)] =
m∑

i=0

cix
Rn[i] =

n−1∑
j=0

rjx
j ,

where rj =
∑

i:Rn[i]=j ci. For each j such that rj 6= 0, there exists i, i ≡ j mod n, such that

ci 6= 0. �

From Lemma 7.4, since 0 ∈ C, if we define B′i
def= {c(x) ∈ Fq[x] : wt

(
c(x)

)
=

i,deg
(
c(x)

)
< n′, xn − 1 | c(x)}, then B′i ⊆ A′i. We first show how B′

i
def= |B′i| can be

calculated. For n′ ≤ 2n, the situation is particularly simple.

Proposition 7.6 If n′ ≤ 2n, then for all i,

B′
i =


(
n′−n
i/2

)
(q − 1)i/2 if i is even

0 if i is odd
(7.4)
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Proof: Note thatB′i =
{
c(x) ∈ Fq[x] : wt

(
c(x)

)
= i, c(x) = (xn−1)a(x), a(x) ∈ Fq[x],deg(a) <

n′ − n
}

. If n′ ≤ 2n, then deg
(
a(x)

)
< n, which implies that a(x) and xna(x) have no powers

of x in common. Therefore, i = wt(c) = 2 wt(a). This is only possible if i is even. And

the number of such c(x)’s is precisely the number of a(x)’s such that deg(a) < n′ − n and

wt(a) = i/2. �

In general, for every c(x) =
∑deg(c)

j=0 cjx
j ∈ Fq[x], denote its support set as

W(c) def= {j : 0 ≤ j ≤ deg(c), cj 6= 0}.

Given a positive integer n, we can write

W(c) =
n−1⋃
l=0

W(c) ∩ (l + nZ) (7.5)

=
⋃

l∈Ln(c)

Wn,l(c) (7.6)

whereWn,l(c)
def= W(c)∩(l+nZ) are those indices in the support set of c(x) that are congruent

to l modulo n, and Ln(c) def= {l : 0 ≤ l < n,Wn,l(c) 6= ∅}. Clearly, (Wn,l)l∈Ln(c) is a partition

of the setW(c). Hence,

wt(c) = |W(c)| =
∑

l∈Ln(c)

|Wn,l(c)|.

Let Ln(c) be ordered such that Ln(c) = {l1, l2, . . . , l|Ln(c)|}, where l1 < l2 < . . . < l|Ln(c)|.

Define the n-ary support profile of c(x) as

wn(c) def=
(
|Wn,l1(c)|, |Wn,l2(c)|, . . . , |Wn,l|Ln(c)|(c)|

)
.

Then wn(c) is an ordered partition of wt(c). We count B′i by counting subsets of B′i corre-

sponding to specific n-ary support profiles. Let Pi be the set of all ordered partitions of i, i.e.,

Pi
def= {δ ∈ N∗ :

∑
j δj = i}, where N∗ =

⋃∞
j=1 Nj is the set of vectors of natural numbers. For

all δ ∈ Pi, define

B′i,δ
def=
{
c(x) : c(x) ∈ B′i,wn(c) = δ

}
.

Then {B′i,δ}δ∈Pi
is a set partition of B′i. Hence, for all i,

B′
i =

∑
δ∈Pi

|B′i,δ|. (7.7)

We are now ready to give the formula for B′
i.
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Lemma 7.7 Let φq(t), t ≥ 1, be the number of solutions to
∑t

j=1 xj = 0, such that xj ∈ Fq,

xj 6= 0, ∀j. Then

φq(t) =
q − 1

q

(
(q − 1)t−1 − (−1)t−1

)
. (7.8)

Proof: See Appendix Appendix 7.A. �

Proposition 7.8 For all i,

B′
i =

∑
δ∈Pi

|δ|∑
j=0

(
b

j

)(
n− b

|δ| − j

) |δ|∏
l=1

(
a + 1{l≤j}

δl

)
φq(δl), (7.9)

where

1{l≤j} =

 1 if l ≤ j

0 otherwise,

φq(t) is as given in (7.8), and a and b are integers such that n′ = an + b, 0 ≤ b < n.

Proof: Note that for all c(x) =
∑n′−1

j=0 cjx
j ∈ Fq[x],

Rxn−1

[
c(x)

]
=

∑
l∈Ln(c)

( ∑
j∈Wn,l(c)

cj

)
xl.

Therefore, codewords in B′i,δ can be enumerated with the following process.

1. Choose Ln(c) ⊆ {0, 1, . . . , n− 1} such that |Ln(c)| = |δ|.

2. For each l ∈ Ln(c), chooseWn,l(c) ⊆ {0, 1, . . . , n′−1}∩ (l+nZ) such that |Wn,l(c)| =
δl.

3. For eachWn,l(c), choose cj ∈ Fq \ {0} for all j ∈ Wn,l(c), such that
∑

j∈Wn,l(c)
cj = 0.

In step 2, δl numbers are chosen from {0, . . . , a} if l ≤ b, and from {0, . . . , a − 1} otherwise.

In step 1, there are
(
b
j

)(
n−b
|δ|−j

)
choices such that Ln(c) contains exactly j numbers that are no

greater than b. For each such choice, there are
∏j

l=1

(
a+1
δl

)∏|δ|
l=j+1

(
a
δl

)
choices in step 2, for

each of which there are φq(δl) choices in step 3. Summing over all possible values of j, and

noting (7.7), we immediately obtain (7.9). �

Corollary 7.9 If n | n′, then for all i,

B′
i =

∑
δ∈Pi

(
n

|δ|

) |δ|∏
l=1

(
n′/n

δl

)
φq(δl). (7.10)
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Remark Note that in (7.7), and consequently (7.9) and (7.10), we have summed over all parti-

tions of i. However, not all partitions of i are valid n-ary support profiles for codewords in B′i.
For example, if δ = wn(c) for some c(x) ∈ B′i, then by definition of the n-ary support profile,

it must be true that |δ| ≤ n, and δl ≤ dn′/ne for all l. Further, since xn − 1 | c(x), we have

δl 6= 1 for all l. Therefore, it suffices to consider

Pi(n′, n) def= {δ ∈ Pi : |δ| ≤ n, 2 ≤ δl ≤ dn′/ne,∀l}. (7.11)

In all our formulas for calculation of B′
i, Pi can be replaced by Pi(n′, n).

We now show that A′
i = B′

i for all i < d.

Proposition 7.10 For all i < d, A′
i = B′

i.

Proof: We show that A′i = B′i. By Lemma 7.4, B′i ⊆ A′i. To show A′i ⊆ B′i, note that if

c(x) ∈ A′i, then Rxn−1[c(x)] ∈ C. On the other hand, wt
(
Rxn−1[c(x)]

)
≤ wt

(
c(x)

)
= i < d,

which implies that Rxn−1[c(x)] = 0. �

For i ≥ d, we find bounds on A′
i.

Proposition 7.11

A′
i ≤


(
n′

i

)
(q − 1)i−d+1 + B′

i if d ≤ i ≤ dn′/ne(d− 2)(
n′

i

)
(q − 1)i−d+1 if i > dn′/ne(d− 2).

(7.12)

Proof: Let c(x) be a polynomial of weight i, denoted by c(x) =
∑i

j=1 ckj
xkj , ckj

6= 0, ∀j.

Recall that the generator polynomial of C has the form g(x) =
∏d−2

l=0 (x − ωs+l), where ω

is a primitive n-th root of unity in Fq, and s is an integer. Hence, c(x) ∈ A′i if and only if

c(ωs+l) = 0, for all 0 ≤ l ≤ d− 2. This condition can be written as

( c̃k1 c̃k2 . . . c̃ki
)


1 ωk1 · · · ω(d−2)k1

1 ωk2 · · · ω(d−2)k2

...
... · · ·

...

1 ωki · · · ω(d−2)ki

 = 0, (7.13)

where c̃kj
= ckj

ωskj for all j. Note that counting ( ck1 ck2 . . . cki
) is equivalent to count-

ing ( c̃k1 c̃k2 . . . c̃ki
).
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Recall that i =
∑

l∈Ln(c) |Wn,l(c)| ≤ |Ln(c)|dn′/ne. If i > dn′/ne(d − 2), then

|Ln(c)| ≥ d − 1, which implies that {ωkj}ij=1 contains at least d − 1 distinct values. Without

loss of generality, assume ωk1 , . . . , ωkd−1 are distinct. Rewrite (7.13) as

(
c̃k1 . . . c̃kd−1

)


1 ωk1 · · · ω(d−2)k1

...
... · · ·

...

1 ωkd−1 · · · ω(d−2)kd−1

 =

−
(
c̃kd

. . . c̃ki

)


1 ωkd · · · ω(d−2)kd

...
... · · ·

...

1 ωki · · · ω(d−2)ki

 . (7.14)

The matrix on the left is a Vandermonde matrix and hence is invertible. For all choices of

(c̃kj
)i
j=d that are nonzero, (c̃kj

)d−1
j=1 is uniquely determined. By enumerating all nonzero (c̃kj

)i
j=d,

we can enumerate all valid choices of (c̃kj
)i
j=1 that satisfy (7.13), possibly more (since (c̃kj

)d−1
j=1

so determined may contain zeros). Therefore, for each given choice of {kj}ij=1, there are at most

(q − 1)i−d+1 codewords of weight i. The total number of weight-i codewords is hence at most(
n′

i

)
(q − 1)i−d+1.

On the other hand, if d ≤ i ≤ dn′/ne(d− 2), we break A′
i into two parts:

A′
i = B′

i + |A′i \ B′i|.

By Lemma 7.4, any codeword c(x) in A′i \ B′i must satisfy 0 6= Rxn−1[c(x)] ∈ C. Therefore,

wt
(
Rxn−1[c(x)]

)
≥ d, which implies that {ωkj}ij=1 contains at least d distinct values. The

reasoning for the first case now applies and we see that |A′i \ B′i| is upper bounded by
(
n′

i

)
(q −

1)i−d+1. �

Proposition 7.12

A′
i ≥

K ′
i(q − d)(q − 1)i−d + B′

i if d ≤ i ≤ dn′/ne(d− 1)(
n′

i

)
(q − d)(q − 1)i−d if i > dn′/ne(d− 1),

(7.15)

where

K ′
i =

i∑
j=0

(
b

j

)(
n− b

i− j

)
(a + 1)jai−j , (7.16)

and a and b are such that n′ = an + b, 0 ≤ b < n.
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Proof: Let c(x) be a polynomial of weight i, denoted by c(x) =
∑i

j=1 ckj
xkj , ckj

6= 0, ∀j. If

i > dn′/ne(d − 1), then |Ln(c)| ≥ d, which implies that {ωkj}ij=1 contains at least d distinct

values. Without loss of generality, assume that ωk1 , . . . , ωkd are distinct. Following the notation

used in the proof of Proposition 7.11, we rewrite (7.14) as

(
c̃k1 . . . c̃kd−1

)


1 ωk1 · · · ω(d−2)k1

...
... · · ·

...

1 ωkd−1 · · · ω(d−2)kd−1

 =

−
(
c̃kd+1

. . . c̃ki

)


1 ωkd+1 · · · ω(d−2)kd+1

...
... · · ·

...

1 ωki · · · ω(d−2)ki

 − c̃kd

(
1 ωkd · · · ω(d−2)kd

)
(7.17)

Call the matrix on the left V and the one on the right W . Note that V is invertible, so we can

write

(
c̃k1 . . . c̃kd−1

)
= −

(
c̃kd+1

. . . c̃ki

)
WV −1 − c̃kd

(
1 ωkd · · · ω(d−2)kd

)
V −1

= r + c̃kd
v,

where r = −
(
c̃kd+1

. . . c̃ki

)
WV −1 and v = −

(
1 ωkd · · · ω(d−2)kd

)
V −1.

We now show that for all choices of (c̃kj
)i
j=d+1 that are nonzero, no matter what r

comes out to be, we always have at least q − d choices of c̃kd
6= 0 to make c(x) a weight-i

codeword, i.e., at least q−d choices of c̃kd
such that the values {c̃kj

}d−1
j=1 determined from (7.17)

are all nonzero.

First, we claim that v does not contain zero elements. Suppose otherwise, that for

some 1 ≤ j ≤ d− 1, vj = 0. By definition,

vV = −
(
1 ωkd · · · ω(d−2)kd

)
(7.18)
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Since vj = 0, we can ignore the j-th row in V and rearrange (7.18) as

(
v1 · · · vj−1 vj+1 · · · vd−1 1

)


1 ωk1 · · · ω(d−2)k1

...
... · · ·

...

1 ωkj−1 · · · ω(d−2)kj−1

1 ωkj+1 · · · ω(d−2)kj+1

...
... · · ·

...

1 ωkd · · · ω(d−2)kd


= 0

Note that since {ωkj}dj=1 are all distinct, the matrix on the left is invertible, which implies that(
v1 · · · vj−1 vj+1 · · · vd−1 1

)
= 0, a contradiction.

Now, since vj 6= 0 for all 1 ≤ j ≤ d− 1, for any given j, there is at most one nonzero

value that c̃kd
can take such that rj + c̃kd

vj = 0. Therefore, there are at least (q−1)− (d−1) =

q − d nonzero values that c̃kd
can take such that c̃kj

= rj + c̃kd
vj 6= 0 for all j. Thus, for any

given {kj}ij=1, there are at least (q − 1)i−d(q − d) codewords of weight i. So the total number

of weight-i codewords is at least
(
n′

i

)
(q − 1)i−d(q − d).

If d ≤ i ≤ dn′/ne(d− 1), we break A′
i into two parts:

A′
i = B′

i + |A′i \ B′i|.

Consider the subset of codewords in A′i whose n-ary support profile is the all-ones vector, i.e.,

wn(c) = (1, . . . , 1). All these codewords must be contained inA′i \B′i, as codewords in B′i have

n-ary support profiles whose elements are no less than 2. There are K ′
i =

∑i
j=0

(
b
j

)(
n−b
i−j

)
(a +

1)jai−j choices of {kj}ij=1 (i.e. W(c)) corresponding to the all-ones support profile and they

all satisfy |Ln(c)| = i ≥ d. Therefore, the reasoning of the first case applies and we see that the

number of codewords in A′i \ B′i is at least K ′
i(q − d)(q − 1)i−d. �

7.3 Probability of Undetected Error

First, note that any term in (7.1) is a lower bound on Pud(p). In particular, for a code

with length n and minimum distance d, we have

Pud(p) ≥ Ad

(
p

q − 1

)d

(1− p)n−d.
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This bound is interesting because for any given code, it is the dominant term in the sum as p→ 0.

From Proposition 7.1, we immediately obtain the following result.

Proposition 7.13 If d > 2, then

Pud(p) ≥ P
(2)
ud (p),

where

P
(2)
ud (p) =

((
a

2

)
+

ab

q − 1

)
p2(1− p)n′−2, (7.19)

and a and b are integers such that n′ = a(q − 1) + b, 0 ≤ b < q − 1.

Note that

max
0≤p≤1

P
(2)
ud (p) =

((
a

2

)
+

ab

q − 1

)(
2
n′

)2(
1− 2

n′

)n′−2

,

which we denote by P
(2)
max. In many cases, we have P

(2)
max > q−(d−1), which implies that the

corresponding OERS codes are not good. For example, if n′/n is fixed, then as q →∞, P
(2)
max ∼

Cq−2, where C is a constant that depends only on n′/n. Therefore, for all d > 3 and q > 1/C,

the corresponding OERS codes are not good. The intuition here is that the number of weight-2

codewords in an OERS code does not depend on the number of parity-check symbols (d − 1 in

this case). While P avg
ud is expected to decrease exponentially with d, P

(2)
max is not affected. For

practical values of q, P
(2)
max can be orders of magnitude larger than q−(d−1), even when d is just

moderately larger than 3.

Next, better bounds can be obtained by simply plugging the results of Proposition 7.10,

Proposition 7.12, and Proposition 7.11 into (7.1).

Proposition 7.14 For OERS codes,

P ud(p) ≤ Pud(p) ≤ P ud(p),

where

P ud(p) =
dn′

n
e(d−1)∑
i=1

B′
i

(
p

q − 1

)i

(1− p)n′−i

+
q − d

(q − 1)d

(
1−

dn′
n
e(d−1)∑
i=0

(
n′

i

)
pi(1− p)n′−i

)

+
q − d

(q − 1)d

dn′
n
e(d−1)∑
i=d

K ′
ip

i(1− p)n′−i, (7.20)
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P ud(p) =
dn′

n
e(d−2)∑
i=1

B′
i

(
p

q − 1

)i

(1− p)n′−i

+
1

(q − 1)d−1

(
1−

d−1∑
i=0

(
n′

i

)
pi(1− p)n′−i

)
, (7.21)

where B′
i is given by (7.9), and K ′

i by (7.16).

The the worst-case probability of undetected error, Pmax
ud

def= max0≤p≤1 Pud(p), is

then bounded between the maximum values of the upper and lower bounds.

Corollary 7.15 For OERS codes,

Pmax
ud ≤ Pmax

ud ≤ P
max
ud ,

where Pmax
ud

def= max0≤p≤1 P ud(p), P
max
ud

def= max0≤p≤1 P ud(p).

We now discuss the tightness of the bounds that we have derived. First, we show that

the bounds given by Proposition 7.14 are asymptotically tight for all p as q →∞.

Lemma 7.16 Let n′/n be fixed. For any fixed i, as q →∞,

K ′
i ∼

(
n′

i

)
, (7.22)

where K ′
i is as defined in (7.16).

Proof: See Appendix Appendix 7.A. �

Proposition 7.17 Let n′/n and d be fixed. Then for all 0 < p ≤ 1, as q →∞,

P ud(p) ∼ Pud(p) ∼ P ud(p). (7.23)

Proof: It suffices to show that P ud(p)− P ud(p) = o
(
P ud(p)

)
.

First, note that P ud(p) can be rewritten as

P ud(p) =
dn′

n
e(d−2)∑
i=1

B′
i

(
p

q − 1

)i

(1− p)n′−i + P1(p) + P2(p),
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where

P1(p) =
1

(q − 1)d−1

(
1−

dn′
n
e(d−1)∑
i=0

(
n′

i

)
pi(1− p)n′−i

)
,

P2(p) =
1

(q − 1)d−1

dn′
n
e(d−1)∑
i=d

(
n′

i

)
pi(1− p)n′−i.

Next, from the expressions above and (7.20), it is easy to show that

P ud(p)− P ud(p) ≤ ∆1(p) + ∆2(p),

where

∆1(p) =
d− 1

(q − 1)d

(
1−

dn′
n
e(d−1)∑
i=0

(
n′

i

)
pi(1− p)n′−i

)
,

∆2(p) =
1

(q − 1)d−1

dn′
n
e(d−1)∑
i=d

((
n′

i

)
− q − d

q − 1
K ′

i

)
pi(1− p)n′−i.

Finally, note that ∆1(p) = o
(
P1(p)

)
. And by Lemma 7.16, ∆2(p) = o

(
P2(p)

)
. Therefore,

P ud(p)− P ud(p) = o
(
P ud(p)

)
. �

Since the result of Proposition 7.17 holds for all p ∈ (0, 1], it follows that Pmax
ud and

P
max
ud are also tight bounds for Pmax

ud .

Corollary 7.18 Let n′/n and d be fixed. Then for all 0 < p ≤ 1, as q →∞,

Pmax
ud ∼ Pmax

ud ∼ P
max
ud .

We now show that in many cases, Pmax
ud consists predominantly of the contribution

from weight-2 codewords.

Lemma 7.19 Let n′/n be fixed. For any fixed i, as q →∞,

B′
i = O(qi). (7.24)

Proposition 7.20 Let n′/n and d, d > 3, be fixed. As q →∞,

P (2)
max ∼ Pmax

ud .
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Proof: Since P
(2)
max ≤ Pmax

ud ≤ P
max
ud , it suffices to show that P

(2)
max ∼ P

max
ud . Note

P
max
ud − P (2)

max

= max
p

P ud(p)−max
p

P
(2)
ud (p)

≤ max
p

{
P ud(p)− P

(2)
ud (p)

}
= max

p

{l
n′
n

m
(d−2)∑

i=3

B′
i

( p

q−1

)i
(1−p)n′−i +

1
(q−1)d−1

(
1−

d−1∑
i=0

(
n′

i

)
pi(1−p)n′−i

)}

≤

l
n′
n

m
(d−2)∑

i=3

max
p

{
B′

i

( p

q − 1

)i
(1− p)n′−i

}
+

1
(q − 1)d−1

=

l
n′
n

m
(d−2)∑

i=3

B′
i

(q − 1)i

(
i

q − 1

)i(
1− i

q − 1

)n′−i

+
1

(q − 1)d−1

=

l
n′
n

m
(d−2)∑

i=3

O(q−i) + O
(
q−(d−1)

)
= O(q−3).

Recall that in the discussion following Proposition 7.13, we have shown that for this case

P
(2)
max = Θ(q−2). Therefore, P

max
ud − P

(2)
max = o

(
P

(2)
max

)
, implying P

(2)
max ∼ Pmax

ud . �

We should note that since RS codes are usually used with relatively short block lengths,

the asymptotic analysis might not seem very useful. However, it is clear from the proofs that as

long as n′ >> dn′n e(d − 1), i.e. n >> d − 1, the actual behavior of the code should be well

approximated by the asymptotic analysis. In applications such as data storage, where high rate

codes are commonly used, this condition is usually satisfied.

The asymptotic results can also be used to simplify the bounds. For example, from

Lemma 7.16 and Lemma 7.19, we see that in the lower bound of (7.15), B′
i is negligibly small

and can be safely ignored. This would reduce the number of B′
i’s that need be calculated in the

lower bound of (7.20).

We end our discussion with an example. Let C′ be an OERS code obtained by doubling

the code length of C, a RS code over F2m with minimum distance d = 4. Fig. 7.1 plots P ud(p)

and P ud(p) together with the true Pud(p) for various values of m. Fig. 7.2 shows more explicitly
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Figure 7.1 Upper and lower bounds on Pud(p) for [2m+1 − 2, 2m+1 − 5] OERS codes over F2m

how the upper and lower bounds converge to the true probability as m increases. The true Pud(p)

values are obtained through equation (7.2), where the weight distribution of the dual code of C′

is found through enumeration of codewords. It should be noted that this brute-force procedure

is only possible when d is small (so that the dual code is of low dimension). Even for d = 4, as

in our case, for m > 6, the enumeration becomes a rather long process.

From the figures, we see that our upper and lower bounds are very tight, except for

very small values of m. As the field size increases, the bounds converge to the true probability

of undetected error very quickly. This is especially true for the bounds on Pmax
ud . Even P

(2)
max

converges rather fast. The numerical values of bounds on Pmax
ud are shown in Table 7.1. Also,

from Fig. 7.1, we note that when p is small, both bounds are tight regardless of the field size.

This is expected because as p → 0, both bounds consist of predominantly P
(2)
ud (p), which is

asymptotically p2.
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Figure 7.2 Convergence of Pud bounds for [2m+1 − 2, 2m+1 − 5] OERS codes over F2m

Table 7.1 Bounds on Pmax
ud for [2m+1 − 2, 2m+1 − 5] OERS codes F2m

Pmax
ud Pmax

ud P
max
ud P

(2)
max

m = 3 3.5120e-03 3.3622e-03 3.7427e-03 3.2095e-03
m = 4 6.8138e-04 6.7156e-04 6.9102e-04 6.4394e-04
m = 5 1.5004e-04 1.4946e-04 1.5054e-04 1.4550e-04
m = 6 3.5204e-05 3.5170e-05 3.5232e-05 3.4647e-05
m = 7 8.5262e-06 8.5241e-06 8.5279e-06 8.4573e-06
m = 8 2.0980e-06 2.0979e-06 2.0981e-06 2.0895e-06
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7.4 Conclusion

OERS codes are of practical interest as they have been used in data storage systems.

In this work, we have examined their performance in terms of probability of undetected error

when the codes are used solely for error detection over a q-ary symmetric channel. We have

obtained upper and lower bounds on Pud(p), which have been shown to be asymptotically tight.

The bounds are also relatively easy to evaluate for high rate codes, which are commonly used in

storage systems.

Our bounds on the probability of undetected error have been derived by bounding the

weight distribution of the code. The techniques involved in obtaining the weight distribution

bounds can potentially be applied to the study of other RS- or BCH-derived codes.

Appendix 7.A Additional Proofs

Proof (Proposition 7.1): If d > 2, we show that every c(x) ∈ A′2 is of the form α(xi − xj),

where i ≡ j mod n. Clearly, if c(x) = α(xi−xj) and i ≡ j mod n, then g(x) | xn−1 | a(x);

hence c(x) ∈ A′2. On the other hand, if c(x) = αxi + βxj ∈ A′2, then g(x) | c(x). For d > 2,

(x − ωs)(x − ωs+1) | g(x) for some primitive n-th root of unity ω ∈ Fq and some integer s.

Hence, c(ωs) = c(ωs+1) = 0, from which it is easy to show that ωi = ωj (hence i ≡ j mod n)

and α + β = 0. Now, note that A′2 can be written as the following union of disjoint subsets:

A′2 =
a⋃

j=1

{
α(xjn+i− xi) : α ∈ Fq\{0}, i = 0, 1, . . . ,max{n′−jn−1, b−1}

}
.

The result follows from simple counting.

If d = 2, then g(x) = x − ωs. A weight-2 polynomial c(x) = αxi + βxj ∈ Fq[x] is

a codeword if and only if c(ωs) = 0. That is, if and only if β = −αωs(i−j). So the number of

weight-2 codewords is simply the number of {i, j} pairs times the number of nonzero choices

of α.

If d = 1, any polynomial in Fq[x] that has degree less than n′ is a codeword. Hence,

A′
2 =

(
n′

2

)
(q − 1)2. �

Proof (Proposition 7.3): For d > 3, the proof is similar in spirit to the first part of the proof

of Proposition 7.1, and the result is a specialization of Proposition 7.8 and Proposition 7.10.
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Details of the proof are thus omitted. Essentially, we show that every c(x) ∈ A′3 has the form

αxi + βxj + γxl, such that α + β + γ = 0 and i ≡ j ≡ l mod n.

If d = 3, then g(x) = (x−ωs)(x−ωs+1) for some primitive n-th root of unity ω ∈ Fq

and some integer s. A weight-3 polynomial c(x) = αxi + βxj + γxl ∈ Fq[x] is a codeword if

and only if c(ωs) = c(ωs+1) = 0, i.e.

( α β γ )


ωsi ω(s+1)i

ωsj ω(s+1)j

ωsl ω(s+1)l

 = 0 (7.25)

If i ≡ j ≡ l mod n, the equation above is satisfied if and only if α + β + γ = 0. This

corresponds to
((

a
3

)
(q − 1) +

(
a
2

)
b
)
(q − 1)(q − 2) weight-3 codewords as has been calculated

for d > 3. Otherwise, without loss of generality, suppose i 6≡ j mod n so that ωi 6= ωj .

From the fact that α, β, γ 6= 0, it is easy to show that it must also be true that j 6≡ l mod n

and l 6≡ i mod n. This implies that if {i, j, l} is chosen, we can fix any non-zero value for

γ and (α, β) will be uniquely determined. From the inclusion-exclusion principle, we see that

the number of {i, j, l}’s such that no two of the numbers are congruent modulo n is
(
n′

3

)
−(

n′−2
1

) [(
a
2

)
(q − 1) + ab

]
+ 2

[(
a
3

)
(q − 1) +

(
a
2

)
b
]
. The result now follows after some algebra.

If d = 2, then g(x) = x−ωs. We have c(x) = αxi +βxj +γxl ∈ Fq[x] is a codeword

if and only if c(ωs) = 0, which is true if and only if γ = −αωs(i−l) − βωs(j−l). There are
(
n′

3

)
choices of {i, j, l}, for each of which there are (q−1) choices of α 6= 0 and subsequently (q−2)

choices of β 6= 0 and β 6= −αωs(i−j). Therefore, A′
3 =

(
n′

3

)
(q − 1)(q − 2).

If d = 1, any polynomial in Fq[x] that has degree less than n′ is a codeword. Hence,

A′
3 =

(
n′

3

)
(q − 1)3. �

Proof (Lemma 7.7): Clearly, φq(1) = 0. For t ≥ 2, note that to satisfy the equation we must

have xt = −
∑t−1

j=1 xj . So xt is determined if (xj)t−1
j=1 are chosen. Among the (q−1)t−1 choices

of (xj)t−1
j=1 that are nonzero, a choice is a valid solution if and only if

∑t−1
j=1 xj 6= 0. By definition

the number of such choices is φq(t). On the other hand, also by definition, the number of choices

corresponding to
∑t−1

j=1 xj = 0 is φq(t− 1). Therefore,

φq(t) + φq(t− 1) = (q − 1)t−1, ∀t ≥ 2. (7.26)
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Consider the sequence of equations

φq(2) = q − 1,

φq(3) + φq(2) = (q − 1)2

...

φq(t) + φq(t− 1) = (q − 1)t−1

Multiplying the equation corresponding to (q − 1)t−1−j by (−1)j and summing up, we obtain

φq(t) =
t−2∑
j=0

(−1)j(q − 1)t−1−j

= (q − 1)t−1
t−2∑
j=0

(
−1

q − 1

)j

=
q − 1

q

(
(q − 1)t−1 − (−1)t−1

)
, ∀t ≥ 2.

It is readily verified that the expression above also holds for t = 1. �

Proof (Lemma 7.16): Let n′ = an + b, where a, b are integers such that 0 ≤ b < n. Note that

for all fixed α and i, as n→∞, (
n

i

)
αi ∼

(
αn

i

)
. (7.27)

If b = 0, we have

K ′
i =

(
n

i

)
ai ∼

(
an

i

)
=
(

n′

i

)
.

If b 6= 0, then b, n− b→∞ as n→∞. Hence, we have

K ′
i =

i∑
j=0

(
b

j

)(
n− b

i− j

)
(a + 1)jai−j

∼
i∑

j=0

(
(a + 1)b

j

)(
a(n− b)

i− j

)

=
i∑

j=0

(
(a + 1)b

j

)(
n′ − (a + 1)b

i− j

)

=
(

n′

i

)
. �
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Proof (of Lemma 7.19): We have

B′
i ≤

∑
δ∈Pi(n′,n)

(
n

|δ|

) |δ|∏
l=1

(
dn′n e
δl

)
φq(δl)

∼
∑

δ∈Pi(n′,n)

q|δ|

|δ|!

|δ|∏
l=1

(
dn′n e
δl

) |δ|∏
l=1

qδl−1

=
∑

δ∈Pi(n′,n)

q|δ|

|δ|!

 |δ|∏
l=1

(
dn′n e
δl

) qi−|δ|

= qi
∑

δ∈Pi(n′,n)

1
|δ|!

|δ|∏
l=1

(
dn′n e
δl

)

≤ qi
∑
δ∈Pi

1
|δ|!

|δ|∏
l=1

(
dn′n e
δl

)
= O(qi) �
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