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Abstract

Sensing Classical Motion with Quantum Mechanical Precision
by

Joshua Giovanni Anthony Casara
Doctor of Philosophy in Physics
University of California, Merced
Professor Jay Sharping, Chair

The application of quantummechanics provides the most precise measurements of physical
phenomena ever devised. As an example, the atomic clock only loses one second of time per
one hundred billion years. This is possible due to the extraordinarily long coherence times
of the super cooled atoms involved in the measurement. It is this very precision that makes
quantummechanical techniques highly coveted in the field of metrology. The drawbacks to
atomic clocks are their large size, expense, and lack of scalability. A more readily scalable
architecture is required to mass produce sensors of this type; epitaxial semiconductor quan-
tum dots provide such a scalable architecture. quantum dots are nanoscale semiconducting
crystals that behave more like a single atom than like bulk material. Due to their atom-like
nature, it becomes possible to controllably study quantum effects in a solid-state architec-
ture, which allows for straightforward incorporation into conventional electronic devices.
Quantum dots are a promising candidate for solid-state sensors due to their long charge and
spin state coherence times. A recent study has shown that single particle charge and even
spin states in quantum dots embedded in mechanical resonators couple to the mechanical
motion of their local environment through strain. This realization allows for the measure-
ment of classical motion via a quantum mechanical system. Until now, only spectral shifts
have been quantified, leaving unknown the amplitudes of the mechanical motion inducing
such shifts. In the Quantum Matter Group at UC Merced, we have developed a technique
to quantify the strain-induced spectral shifts of the charge and spin states in quantum dots
using nanoindentation atomic force microscopy in concert with photoluminescence spec-
troscopy. Our initial strain-shifted photoluminescence measurements indicate a spectral
shift of 3 meV, readily resolved by standard spectroscopic techniques. Further experiments
aim to quantify the displacement, force, and strain imposed on the quantum dots to obtain
a better understanding of the system’s sensitivity to such effects. In addition to the overall
spectral shifts, other optical properties such as linewidth or fine structure can be monitored
under the application of strain. The ability to spectrally shift charge and spin states in quan-
tum dots using strain opens the door to novel techniques of sensing classical motion with
quantum mechanical precision.
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Chapter 1

Introduction

When the first quantum dots (QDs) were synthesized in the early 1990’s, they were studied
in large clusters or ensembles, yielding characteristic averages of the ensembles as a whole
[1, 2]. Toward the end of the 1990’s, advances in QD fabrication included incorporation into
solid-state device structures; this led to optical studies of individual QD emitters [3, 4, 5].
These studies revealed that QDs have discrete fine structure similar to atomic spectra and
can be made to behave like a resonantly driven two-level system [6, 7, 8]. The early part of
the 21st century saw an increase in studies observing the effects of external fields (such as
electric, magnetic and optical) on the properties of the QDs. For this reason, QDs have been
coined “artificial atoms”. Due to their atom-like properties and the advances made in semi-
conductor fabrication technologies, there has been a large push in applied research to make
use of electronic and spin states in QDs as qubits and single-photon emitters in quantum
information technologies [9, 10, 11]. The focus of this dissertation is to explore methods of
coupling classical and quantummechanical systems in ways that enable quantum-enhanced
precision and resolution to the sensing of the classical motion [12].

In the past decade, single two-level emitters, such as QDs, have proven to be excel-
lent quantum mechanical objects for coupling to classical systems [13, 14, 15, 16, 17]. As
a result, QDs have been embedded in a number of different device structures to either en-
hance their properties or to utilize their properties for the purpose of sensing. Examples
include embedding QDs in photonic crystal cavities [18], cantilever and bridge structures
[13], nanometer-thin membranes [19, 20], distributed Bragg reflectors [21, 22], waveguides
[23], and micropillars [22, 24, 25].

One of the major goals of this dissertation is to establish a set of tools for characteriz-
ing the effects these structures have on the properties of QDs. For example, QDs embedded
in tuning fork or micro pillar structures can be driven at their mechanical resonance frequen-
cies, causing the optical properties of the QD to oscillate in time. This enables direct control
of the QD energy via driven mechanical motion. Taking this a step further, the quantum
mechanical spin of the holes in these quantum dots can be manipulated via the mechani-
cally induced motion in the tuning fork structure, opening the door for the use of QDs in
spintronics [13, 26]. These interesting discoveries are made possible by experimental tools
created in the lab.

The dissertation is setup in the following way:

1



CHAPTER 1. INTRODUCTION 2

Chapter 2 starts with the Schrödinger equation and how to use it to calculate the energy
levels of the electronic band structure. The chapter continues with the effect of angular
momentum on the valence band and the nature of QDs themselves. The excitation and
emission of light through the photoluminescence (PL) effect is discussed before bringing
attention to the effects of phonons and polarons on the optical properties of QDs. By the end
of this chapter one should have a basic understanding of the fundamental physics governing
the properties of QDs.

Chapter 3 begins with a description of the fabrication technique used to create self-
assembled QDs and the field effect structures used to control their electronic properties.
The chapter ends with a look at the different nanostructures patterned into the surface of
the samples for the purpose of coupling the QDs to mechanical motion. This chapter will
familiarize the reader with the materials being studied.

In chapter 4, experimental techniques are described, as are their purposes in probing
various properties of the QDs. This chapter discusses the fundamentals of photolumines-
cence spectroscopy and how to utilize an AFM probe or an amplitude modulated laser to
impart static or dynamic strain, respectively, on the mechanical structures within which the
QDs are embedded. The end of the chapter describes the use of a Fabry-Perot cavity to in-
crease the resolution of a photoluminescence experiment beyond that of the spectrometer.
Lastly, the chapter touches upon the technique of time-correlated single photon counting,
which can be used to gather information on the population dynamics of a system, as well
as to synchronize PL measurements with mechanical modes of oscillation. After reading
this chapter, one will be knowledgable in the different experimental techniques used in this
dissertation to probe the fundamental physics of semiconductor QDs.

In chapter 5, a technique for enhancing the resolution of a typical PL spectroscopy
setup is described. The technique involves utilizing the effect of phonons on the QD charge
states to perform resonant absorption measurements with an experimental apparatus that is
typically used to measure emission. There are three different methods of performing the
technique and each is described in its own section of the chapter. This chapter provides
the reader with a step by step walkthrough on how to perform high resolution spectroscopy
with a basic spectroscopic setup.

Chapter 6 describes the use of an atomic force microscope probe to impart static strain
on QDs through nanoindentation of the encompassing mechanical resonators. A method
for an in situ calibration procedure is described which utilizes the optical beam deflection
method. Lastly, the chapter covers the main findings of the static strain measurements
and how the quantitative results could be used to compare to other, less direct, methods of
imparting strain. This chapter will impart upon the reader an understanding of the method-
ology used to apply mechanical force to a QD embedded in a thin membrane.

Chapter 7 discusses the experimental techniques used to modulate a mechanical res-
onator using an optically induced mechanical drive. A theoretical model for calculating the
displacements caused by the optical driving is described. The chapter ends by discussing the
use of the optical drive mechanism in dynamic strain measurements of the optical properties
of QDs. This chapter will elucidate the methods and techniques used to optically induce
mechanical strain on a QD embedded in a micromechanical resonator and the information
gained from studying systems experiencing these effects.
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Chapter 8 makes some concluding remarks and is followed by the appendix. The
appendix contains derivations for the many mathematical models used throughout the dis-
sertation, including derivations for the Euler-Bernoulli beam bending theory, atomic force
microscope sensitivity and beam deflection method, the resolution of a spectrometer, and
equations for the resolution enhancement afforded by a Fabry-Perot interferometer.



Chapter 2

Theoretical Background

This dissertation aims to detail the fundamental physics involved in the interactions between
quantum mechanical systems and classical systems. To do so, QDs are embedded in nu-
merous optical, electrical, mechanical structures, or a combination thereof. Embedding the
QDs in these structures gives scientists the tools necessary to probe a quantum mechanical
system at the single-particle level. Studying the interactions involved requires knowledge
of condensed matter, semiconductors, optics, and structural mechanics. The following sec-
tions provide an overview of the underlying physics related to the interactions between a
QD and its environment.

2.1 The Schrödinger Equation
In quantummechanics, the time evolution of a system is given by the Schrödinger equation,

ĤΨ(r⃗, t) = ih̄
d

dt
Ψ(r⃗, t), (2.1)

where h̄ is the reduced Planck’s constant, Ĥ is the Hamiltonian operator and Ψ(r⃗, t) is the
wavefunction, which contains all information about the system.

The Hamiltonian for a single particle of massm with potential energy U(r⃗, t) is

Ĥ =
−h̄2

2m
∇2 + U(r⃗, t), (2.2)

where ∇2 is the Laplace operator. Combining equations (2.1) and (2.2) yields the time-
dependent Schrödinger equation for a single particle,[

−h̄2

2m
∇2 + U(r⃗, t)

]
Ψ(r⃗, t) = ih̄

d

dt
Ψ(r⃗, t). (2.3)

Equation (2.3) can be simplified further if we assume the potentialU = U(r⃗) is independent
of time. This allows for the application of separation of variables. First, we let the wave-
function be a product of spatial and temporal functions Ψ(r⃗, t) = ψ(r⃗)ϕ(t). Application of
these assumptions yields:
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[
−h̄2

2m
∇2 + U(r⃗)

]
ψ(r⃗) = Eψ(r⃗), (2.4)

and

ih̄
d

dt
ϕ(t) = Eϕ(t). (2.5)

Equation (2.4) is the time-independent Schrödinger equation. With a known set of boundary
conditions, the time-independent Schrödinger equation can be solved to yield the stationary
eigenstates ψ(r⃗) of the system and their corresponding energies E. Equation (2.5) can be
easily solved to yield ϕ(t) = e−iEt/h̄. This solution describes the time evolution of the
stationary state ψ(r⃗).

2.2 Electronic Band Structure
While QDs are often called artificial atoms, this is somewhat of a misnomer. QDs are in
fact nanoscale semiconductor crystals composed of hundreds or thousands of atoms; as a
result, they exhibit many quantum behaviors that deviate from the case of a single atom.
Atomic and molecular energy levels are typically discussed in the context of valence bond
theory or molecular orbital theory; both theories make use of quantum mechanics to de-
scribe covalent bonding of atoms. For example, when two hydrogen atoms bond to form
an H2 molecule, the wavefunctions of the electrons in the individual hydrogen atoms be-
gin to overlap and can either be symmetric or antisymmetric. Consequently, the hydrogen
molecule forms two molecular orbitals, the bonding (symmetric) and anti-bonding (anti-
symmetric) orbitals. The bonding orbital is lower in energy due to the symmetry of the
overlapping wavefunctions corresponding to an increase in the probability of the electron
residing between the hydrogen nuclei, while the anti-bonding orbital is higher in energy due
to an antisymmetric overlapping of wavefunctions lowering the probablity of the electron
residing between the two hydrogen nuclei.

In a semiconductor crystal, a large ensemble of atoms coalesces into one very large
molecule. For a crystal composed ofN atoms, each atomic orbital must split intoN molec-
ular orbitals of distinct energies. Because matter at the macroscopic scale contains approx-
imately 1023 atoms, the number of available energy levels becomes enormous, and can be
treated as a continuum of states. A continuum of energy states is usually referred to as a
band, and a band gap is an energy range that is inaccessible to the electrons making up the
crystal.

Calculating the energies of these bands would require solving the Schrödinger equa-
tion for every atom in the crystal, which would be unfeasible even with modern compu-
tational power. Instead, an assumption known as the independent particle approximation
simplifies the problem by only considering the electrons in the outermost, valence shell of
the atoms. Because of this, the inner shell electrons and the nuclei of the atoms are treated
as stationary ions situated at the lattice sites of the crystal structure. The valence shell elec-
trons are then treated as if they are trapped within the electrostatic potential of the nearest
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lattice ion. If you consider the interaction of a single valence electron with the crystal, the
Coulomb potential becomes a periodic function of the electrons distance to the nearest lat-
tice ion U = U(r⃗), turning an N -body problem into N one-body problems. Because of
the periodicity of the lattice, once an electron moves outside of the potential of one ion, it
experiences the influence of the next. To calculate the stationary energy eigenvalues and
eigenstates of a valence shell electron in a crystal, we must solve the time-independent
Schrödinger equation for an independent particle in the vicinity of the periodic potential
U(r⃗ + a) = U(r⃗), where a is the lattice constant. For an electron of massme the equation
we must solve becomes: [

−h̄2

2me

∇2 + U(r⃗)

]
ψ(r⃗) = Eψ(r⃗). (2.6)

The solution to this equation yields the well known Bloch wavefunctions,

ψn,⃗k(r⃗) = eik⃗·r⃗un,⃗k(r⃗), (2.7)

and energies
En,⃗k = En(k⃗), (2.8)

where r⃗ is the position of the electron and k⃗ is the wavevector. The Bloch wavefunction is
the product of a plane wave with a periodic function. The exponential term is known as the
envelope of the wavefunction and is a slowly oscillating sinusoid that modulates the rapidly
varying part, un,⃗k(r⃗), which describes the behavior of the wavefunction near the atomic
cores of the crystal lattice. The electron energy En(k⃗) as a function of the wavevector k⃗
defines the dispersion relation.
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Figure 2.1: Energy band structure and electron occupancy of different types of crystalline
material at absolute zero temperature. For the different crystalline materials, the valence
band, conduction band, and fundamental band gap are indicated.
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Some common examples of band gap energies are that of the semiconductors silicon
and gallium arsenide, respectively, at 1.11eV and 1.43eV near room temperature (∼ 300K),
while diamond, a known insulator, has a band gap of 5.4eV near absolute zero (∼ 0K) [27].
Figure 2.1 shows the electron occupancy of the valence and conduction bands at absolute
zero for a metal, semiconductor, and insulator, as well as the band gap for semiconductors
and insulators.

2.3 The Effective Mass Approximation
A common problem of interest for semiconductor physics is an electron provided enough
energy to span the bandgap and enter the conduction band. The dispersion relation, Eq.

�SO

EBG

E(~k)

Light Holes

Split-Off Band

�C

Heavy Holes

s-like

p-like

~k

Conduction Band

Figure 2.2: Schematic representations of the band structure for gallium arsenide. The upper
energy band (blue) is the conduction band, while the lower energy bands are the valence
bands. The valence band itself is split into three bands: the heavy-hole band (orange), the
light-hole band (green), and the split-off band (red).
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(2.8), describes the energy of an electron as it moves through an energy band. Near the
conduction band minimum, the dispersion relation is approximately parabolic and the en-
ergy of the electron can be modeled as a free electron, whose energy is

Efree(k⃗) =
h̄2

2me

k⃗2. (2.9)

The curvature of this parabola, according to Eq. (2.9), can be expressed as an inverse mass
1/me. However, an electron at the energy minimum of the conduction band has a different
curvature than a free electron. As such, the effective mass approximation treats the behavior
of the electron near the energyminimum of the conduction band in a crystal as a free electron
with an effective mass whose dispersion relation can be written as:

Ec(k⃗) =
h̄2

2me,eff

k⃗2. (2.10)

The effective mass of an electron in a semiconducting crystal can differ greatly from that
of the free-electron. For example, in GaAs and InAs the effective mass of the electron in
the conduction band is 0.067me and 0.023me, respectively [28]. The effective mass is an
important simplification for semiconductor physics because it is generally considered to
be valid due to conduction band electrons preferentially occupying energy states near the
conduction band minimum, also known as the conduction band-edge.

When an electron is excited from the valence band into the conduction band it leaves
behind a hole. Similar to the conduction band electron, a hole near the energy maximum
of the valence band, called the valence band-edge, is approximately parabolic. A missing
electron in a sea of electrons carries a positive charge, and therefore a missing electron in
the valence band can be thought of as a positive hole. It carries the same magnitude of
charge as the electron, but it travels in the opposite direction in an electric field. Using
the effective mass approximation, the energy of a hole at the valence band-edge of a direct
bandgap semiconductor, such as GaAs and InAs, can be written as

Ev(k⃗) = − h̄2

2mh,eff

k⃗2. (2.11)

Equation (2.11) is similar to Eq. (2.10) except that it carries a negative sign and contains
the effective mass for a hole. A hole is at its energy minimum when it is at the valence band
maximum, k⃗ = 0, and its energy gets larger as one moves downward along the valence
band. The effective mass of a heavy hole in the valence band is significantly larger than an
electron in the conduction band. For example, the heavy hole effective masses for GaAs and
InAs are 0.62me and 0.60me respectively [28]. Figure 2.2 displays the dispersion relation
for GaAs near k⃗ = 0

2.4 Effect of Angular Momentum on the Band Structure
The energy levels of a crystal arise from the linear combination of atomic orbitals, much
like the molecular energy levels of a hydrogen molecule arise from the linear combina-
tion of the two constituent hydrogen atoms. For a hydrogen molecule, there are only two
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atoms whose energy levels are combined resulting in a discrete energy level spectrum. For
a bulk crystal, there are significantly more atoms involved such that the combination of the
individual atomic orbitals results in a continuum of states yielding the energy bands. Ac-
cording to Kreibig et al., the crystal energy levels retain the same symmetries as their atomic
constituents [29]. For semiconductors with a cubic crystal lattice, such as the zincblende
structures of GaAs and InAs, the k⃗ = 0 states of the conduction band exhibit s-like or-
bitals. This leads to an angular momentum quantum number of l = 0. Correspondingly,
the energy states of the valence band exhibit p-like orbitals, where the angular momentum
quantum number is l = 1.

In atomic physics, the magnetic quantum number can take on a range of integer values
equal toml = [−l, l], including zero. For states exhibiting a p-like orbital shape, this results
in magnetic quantum numbers of ml = (−1, 0,+1), which is triply degenerate when no
magnetic field is present. Also similar to atomic physics, the spin-orbit interaction couples
the intrinsic angular momentum (spin) of a quantum particle to its orbital angular momen-
tum. This coupling creates a new quantum number, the total angular momentum quantum
number j, which takes on the range of values in the range of |l− s|≤ j ≤ |l+ s|. As a con-
sequence, S⃗ and L⃗ are no longer conserved properties on their own, only the total angular
momentum J⃗ = L⃗+ S⃗ is conserved.

Due to the spherical symmetry of the s-like orbital, there is no orbital angular momen-
tum, and the spin-orbit interaction has no effect on the conduction band states j = s = 1/2,
which remains doubly degenerate. The p-like orbitals, however, result in a spin-orbit inter-
action that splits the valence band into two states with total angular momenta of j = 3/2,
which is quadruply degenerate, and j = 1/2 which is doubly degenerate. At the k⃗ = 0
valence band-edge the spin-orbit interaction reduces the energy of the doubly degenerate
state by the so-called split-off energy equal to ∆SO. For InAs, the split-off energy at cryo-
genic temperatures T < 4K is equal to ∆SO = 380meV , which is close in magnitude to
the bandgap energy itself EBG = 410meV [30, 31].

The remaining, quadruply degenerate, valence band states correspond to what are
called the heavy-hole and light-hole bands. As the wavevector ventures away from zero
the mj = ±3/2 and the mj = ±1/2 states begin to separate. The state that has the larger
curvature is coined the light hole band and the state that has the smaller curvature is coined
the heavy hole band. In QD systems, the dots are grown under strain and also exhibit
confinement potentials due to their size. This breaks the degeneracy of the heavy and light
hole bands by an amount ∆C [32]. The contents of this discussion are summarized in Fig.
2.2 [32, 33, 34].

2.5 Nature of Quantum Dots
QDs have acquired the nickname of “artificial atoms” due to their atom-like energy spectra.
The smaller bandgap of the material comprising the QD relative to that of the surrounding
material creates a potential well for nearby charges. Since the dots are nanometers long in all
three dimensions, the number of available states for a trapped charge is very small resulting
in a discretized energy spectrum. To understand the properties of QDs, some fundamentals
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Conduction Band

Valence Band

Conduction Band

Valence Band

|CGSi

|CGSi(a)

(b)

|X0i

|X0i

Figure 2.3: Schematic representations of exciton formation in QDs. (a) This representa-
tion treats the valence band as an ensemble of electrons in the ground state and shows the
absorption of a photon promotes an electron to the conduction band leaving behind a hole.
(b) This representation treats the valence band as empty in the ground state and shows the
absorption of a photon creating an electron-hole pair.

of low dimensional solid-state physics must first be described.

Exciton Formation

When a QD system is cooled to near absolute zero temperatures, it is in the so-called crystal
ground state where all of the electrons reside at the valence band edge. If the constituent
atoms of the QD absorb a photon of sufficient energy, then one of the valence band electrons
is promoted to the conduction band. The excitation of this electron leaves behind a vacancy,
or a hole, in the valence band. A commonly used mathematical abstraction that simplifies
the conceptualization of this system is to imagine the hole as a particle with a positive
charge (see Fig. 2.3). This removes the burden of considering the valence band as an
ensemble of electrons with one missing, and also allows for the crystal ground state to be
thought of as a state completely void of charges. Due to the quantum well-like nature of the
QD, the charges are trapped in space. This is how excitons are formed in QDs. In a bulk
semiconductor, the exciton is said to be hydrogenic, meaning that it is similar in form to a
hydrogen atom, where the positive hole acts like the proton of the hydrogen atom and the
electron experiences Coulombic attraction toward the hole. However, the binding energy
between an electron and a hole in a bulk semiconductor is much smaller than that of a proton
and an electron in hydrogen due to the screening effect of nearby electrons, known as the
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dielectric potential, and also due to the smaller effective masses of the constituent particles.
The particle size of an exciton is also much larger than that of a hydrogen atom and can be
used as the criteria for determining whether or not a crystal is small enough to be classified
as a QD. If the Bohr radius of the electron-hole pair is the same size, or larger than, the
crystal in which it exists, then one has a QD.

A QD can absorb more than a single photon and may contain multiple excitons at one
time. There exist charge states known as trions and biexcitons. A trion is an electronic state
in a QD consisting of three charges. The positive trion is an exciton with an extra hole, and
the negative trion is an exciton with an extra electron. A biexciton is an electronic state
consisting of two holes in the valence band and two electrons in the conduction band, or
more concisely two excitons.

Quantum Dot Molecules

Quantum dot molecules (QDMs) are formed when two or more QDs are grown in close
enough proximity for their wavefunctions to overlap, creating symmetric and anti-symmetric
states analogous to natural molecules. For the purposes of this dissertation, only binary
QDMs will be considered. Figure 2.4 shows a schematic of the neutral exciton formation
in QDMs.

Conduction Band

Valence Band

|CGSi

Conduction Band

Valence Band

|CGSi

|X0i

|iX0i

Figure 2.4: Schematic representation of exciton formation in QDMs. The QDMs crystal
ground state |CGS⟩ can absorb a photon and create one of two types of neutral excitons, a
direct exciton |X0⟩ or an indirect exciton |iX0⟩.
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Stark Shifts in Quantum Dot Molecules

The valence and conduction band energy levels of a QDM can be manipulated via applica-
tion of an electric field. The bending of the electronic band structure shifts the energy levels
of the two dots relative to one another. This shift has a larger effect on the indirect excitons
than on the direct excitons. This can be explained by considering the dipole moments of
the charge states:

pState(F ) = qd(F ) = q(dState,0 + βF ). (2.12)
Here, q is the charge of the dipole, dState,0 is the separation between charges at zero field
for that state, and the product of the polarizability β and the electric field F is the field
induced separation. The polarizability is proportional to the height of the individual dots
[35], and due to the QDMs in this study consisting of dots of roughly equal heights, the
polarizability for direct and indirect excitons is roughly equivalent. Therefore, only the
separation between charges should differ between the two configurations. The direct exci-
ton sees the electron and hole confined to the same QD, and due to the anisotropic shape of
the QD there exists a small distance between charges and a correspondingly small dipole
moment [36]. The indirect exciton, however, sees the electron and hole in separate QDs,
yielding a relatively large dipole moment. The larger dipole moment of the indirect exciton
is more strongly influenced by the electric field produced within the field-effect structure,
and thus experiences a larger energy shift with applied bias. For this reason, charge states
that are isolated to a single QD exhibit a quadratic response to electric field, while charge
states that are spread across a QDM exhibit a linear response to the electric field. Fig. 2.5
shows a simplified plot of energy as a function of applied electric field for the direct and
indirect states of a neutral exciton. The quadratic shift of the direct exciton is a result of the
magnitude of the induced dipole moment surpassing that of the inherent dipole moment.

This graph was created by considering the direct and indirect excitons as independent
energy states of the QDM system. The energies of the two states were calculated by as-
signing individual zero field energies EState,0 and dipole moments pState to the following
equation:

EState(F ) = EState,0 + pState(F )F = EState,0 + qdState,0F + qβF 2. (2.13)

In this equation F is the electric field, and EState(F ) is the energy of the state as a function
of the electric field F . The experimental values used to generate this plot are provided in
Table 2.1. In all cases a charge of q = −e was used, where e = 1.6 × 10−19 C is the
elementary charge of an electron.

EState,0 (meV ) dState,0 (nm) β ( nm
kV/cm

)
X0 1300 0.5 0.01
iX0 1310 5.0 0.01

Table 2.1: Table of parameters used to calculate the Stark shifts for the direct neutral exciton
X0 and the indirect neutral exciton iX0. The values shown match observed values obtained
from InAs QDs grown in a GaAs matrix and embedded in an n-I Schottky diode.
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Figure 2.5: Energy as a function of applied electric field for the direct and indirect exciton.
The indirect exciton has a steeper slope due to its larger electrical dipole moment.

Tunneling in Quantum Dot Molecules

When the QDs making up a QDM are close enough for their wavefunctions to overlap, the
independent energy states begin to mix, yielding symmetric and anti-symmetric states simi-
lar to those found in natural molecules. Mathematically, this mixing of states can be derived
by treating the QDM as a two-level system. The Hamiltonian for such a configuration is
then

Ĥ =

[
EX0(F ) t

t EiX0(F )

]
. (2.14)

The independent basis states of the direct and indirect exciton are

|X0⟩ =
[
1
0

]
, and |iX0⟩ =

[
0
1

]
. (2.15)

Diagonalizing the Hamiltonian reveals a set of eigenstates resembling a molecular basis
consisting of bonding and anti-bonding modes:

Ĥ =

[
E−(F ) 0

0 E+(F )

]
. (2.16)

The new molecular eigenenergies are defined as,

E±(F ) =
1

2

[
(EX0(F ) + EiX0(F ))±

√
(EX0(F )− EiX0(F ))2 + (2t)2

]
. (2.17)
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�E = 2t

Figure 2.6: Energy as a function of applied electric field for the bonding X− and anti-
bonding X+ modes of the new molecular basis of the neutral exciton. In particular, take
note of the avoided crossing at the resonance of the two states. For this graph a tunnel
coupling of t = 2 meV was used.

and the new molecular eigenstates are defined as

|X±⟩ =
1√
2

[
1
±1

]
. (2.18)

The energy gap at the anticrossing can be calculated by taking the difference between anti-
bonding and bonding modes at the electric field value of the anticrossing. This leads to an
anticrossing energy of

∆E = 2t, (2.19)

and provides a method for experimentally measuring the tunnel coupling strength. Fig. 2.6
depicts the energy as a function of applied electric field for a QDMwhere the QDs are close
enough for the wavefunctions to overlap, enabling tunnel coupling.

Effect of Temperature on the Band Gap

Increasing temperatures are associated with growing amplitudes of vibration for the con-
stituent atoms of a crystal. These larger vibrations lead to larger average interatomic spac-
ings. This causes the electrons to experience smaller average potentials, thereby lowering
the band gap energy. Varshni’s law [37] is an empirical formula that relates the band gap
energy of a semiconductor to its temperature:

Eg(T ) = Eg(0)−
αT 2

β + T
. (2.20)
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Figure 2.7: Bandgap energy as a function of temperature for GaAs, Ge, and InAs materials.
Values from Table 2.2 were used to generate these plots.

In this equation, Eg(0) is the bandgap energy at 0 K and T is the temperature. Eg(0), α,
and β are used as fit parameters. Table 2.2 contains literature values for gallium arsenide
(GaAs) , germanium (Ge) , and indium arsenide (InAs) semiconducting materials. Figure
2.7 shows the dependence of the bandgap on the temperature of the material for GaAs, Ge,
and InAs.

GaAs Ge InAs
Eg(0) (eV ) 1.519 0.724 0.415

α (10−4eV K−1) 5.405 4.8 2.76
β (K) 204 235 83

Table 2.2: Table of parameters used to calculate band gap energies as a function of temper-
ature for GaAs, Ge, and InAs [38, 39, 40].

2.6 Photoluminescence
PL is the emission of light from a material following the absorption of a photon. During
the absorption process, an electron from the material’s ground state is promoted to a higher-
lying excited state. Luminescence occurs during the emission process, due to the excited
electron emitting a photon while relaxing back to the ground state. As a spectroscopic
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technique, PL is a straightforward and non-destructive method of accessing information re-
garding a system’s electronic energy level structure. Fig. 2.8 displays a schematic diagram
which illustrates the absorption and emission processes that occur during the PL of a QD.

The energy levels of the valence and conduction bands can be approximated by mod-
eling the system as a particle in a box. Mathematically this is known as the one-dimensional
infinite square well because the potential energy is treated as zero inside the box and infinite
everywhere else, i.e.

U(z) =

{
0, if 0 < x < L

∞, otherwise.
(2.21)

Solving Schrödinger’s equation for the particle in a box yields the wavefunctions

ψn(z) =

√
2

L
sin (

nπz

L
), (2.22)

~!0 ~!1

✏e

✏bg

✏h

EX0 = ✏e + ✏bg + ✏h

Figure 2.8: Schematic diagram detailing the various transitions that occur during the PL
process of a QD. Absorption of a photon (blue) of energy h̄ω0 excites an electron from
the valence band into the conduction band, leaving behind a hole. The electron and hole,
together known as an exciton, undergo non-radiative relaxation through the emission of
phonons (black), putting the charges into the lowest energy configuration. Emission of a
photon (red) of energy h̄ω1 < h̄ω0 occurs when the electron returns to the valence band
and recombines with the hole. For neutral excitons in InAs QDs grown in GaAs, typical
radiative relaxation times are around 800ps [41].
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and the energies

En =
π2ℏ2n2

2meffL2
, (2.23)

where n = 1 corresponds to the lowest possible state. For a realistic QD system, such as
InAs QDs grown in GaAs, the potential energy outside of the well is finite. However, the
key points are present, namely the energy of the bound states are inversely proportional to
the mass of the particle meff and the size of the box L. At first glance this allows us to
assign a smaller confinement potential to the holes due to their larger effective mass, as can
be seen in Fig. 2.3.

Exciton recombination

The phenomenon of PL, in the context of QDs, occurs when the electron-hole pair that
makes up an exciton recombines and emits a photon. Detection of this photon allows for
measurements to be made on the energy level structure of the QDs. For example, a QD in
the crystal ground state consisting of no extra charges can undergo photoexcitation into an
excited state consiting of an electron-hole pair. This excited state is known as the neutral
exciton and upon recombination emits a photon whose energy is equal to the difference
between excited and ground states. By setting the energy of the crystal ground state equal
to zero, the transition energies can be directly mapped to the state energies.

Identifying Charge States

As well as neutral excitons, charged excitons can be created through the use of electric field
tuning and optical excitation. Radiative recombination still occurs in these charged exci-
tons, leaving behind a bare charge in the ground state. The relative energy shifts of the QD
system due to adding charges can be calculated theoretically and compared to experimental
data. Through comparisons with the theoretical model, it is possible to identify the individ-
ual charge states of a QD. The different charge states are only stable within specific electric
field values, outside of which the charges tend to tunnel to the doped substrate layers. These
so-called charge stability regions can also aid in identifying the different charge states of a
QD. When the electric field is applied to the sample, the different charge states of the QD
will emit within these charge stability regions. As the field progresses in magnitude, nega-
tive charge states will dim out as neutral charge states begin to brighten. When the neutral
states begin to finally dim, the positive charge states will begin to brighten [42]. This will
continue to occur with a charging mechanism that charges the QDs one charge at a time as
a function of the applied electric field.
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Effects of Tunneling and Fine Structure
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Figure 2.9: Simple schematic depicting the four different spin states of a neutral exciton in
a QD and the total sum ofmj for each state.

A neutral exciton is made up of a conduction band electron and a valence band hole, typ-
ically a heavy hole due to their lower energies. These particles possess properties other
than their charge, which can be leveraged to learn more about the system. The angular mo-
mentum of these particles is of particular interest. The conduction band electrons exist in
an s-like orbital with no spin orbit coupling, yielding a z-component of the total angular
momentum ofmj = ±1/2. The heavy holes in the valence band, however, exist in a p-like
orbital with strong spin-orbit coupling, yielding mj = ±3/2 [42]. Therefore, a neutral ex-
citon in a QD can exist in one of four degenerate angular momentum states as shown in Fig.
2.9.

If QDMs are being studied, fine structure can be observed in the avoided crossings
of the electric field dispersed photoluminescence spectra, even at zero magnetic field [43,
44, 45]. Identification is possible due to the nature of tunneling and the Pauli exclusion
principle. Quantum states containing pairs of holes or electrons cannot undergo tunneling
if the two charges have identical spin projections. This prevents the tunneling of triplet
states and leads to emission lines that pass through avoided crossings.

Bright and Dark States

As can be seen from Fig. 2.9, there are two main types of neutral excitons, bright and
dark. The bright excitons have a z-projection of the total angular momentum of mj = ±1
while the dark excitons have projection mj = ±2. Optical selection rules for electronic
transitions dictate that only changes of∆mj = 0,±1 are allowed. This is why themj = ±2
excitons are known as dark transitions; their recombination does not result in the emission
of a photon.
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Electron-Hole Exchange

Exchange interactions are a quantum mechanical phenomenon that occur between identi-
cal particles. Because the hole in the valence band is really a mathematical abstraction of
a missing electron, there can exist an exchange interaction between electrons and holes.
The effect is a result of the wavefunctions of indistinguishable particles being subject to
exchange symmetries. One can think of it like the effect of inverting the sign of the ar-
gument of an even or odd function. The result is that the wavefunction either remains un-
changed (symmetric) or inverts its sign (antisymmetric) when two particles are exchanged.
Fermionic and Bosonic particles can both experience exchange interactions. In Fermions
the exchange interaction results in a repulsion of the two particles, known as Pauli repulsion,
and is related to the Pauli exclusion principle. In Bosons the exchange interaction results
in an attraction of the particles and leads to identical particles swarming together resulting
in a Bose-Einstein condensate.

As an example, we will derive the exchange energy for the two electrons in a hydro-
gen molecule-like system. We begin by assuming that the two electrons are independent
particles and expressing their wavefunctions in position space. The wavefunction for the
first electron will be denoted Φa(r⃗1) and the wavefunction for the second electron will be
denotedΦb(r⃗2). It is assumed thatPhia andPhib are orthogonal and that eachwavefunction
is an eigenfunction of the corresponding electron. The wavefunction for the entire system
can be constructed using symmetric and antisymmetric combinations of the products of
these two wavefunctions:

ΨS(r⃗1, r⃗2) =
1√
2
[Φa(r⃗1)Φb(r⃗2) + Φb(r⃗1)Φa(r⃗2)] , (2.24)

and
ΨA(r⃗1, r⃗2) =

1√
2
[Φa(r⃗1)Φb(r⃗2)− Φb(r⃗1)Φa(r⃗2)] . (2.25)

If we treat the exchange interaction in the hydrogen molecule using the perturbation
method, we can write the overall Hamiltonian as:

H = H(0) +H(1). (2.26)

The unperturbed Hamiltonian can be written as

H(0) = − h̄2

2m

(
∇2

1 +∇2
2

)
− e2

r1
− e2

r2
, (2.27)

and the perturbation term can be written as

H(1) =

(
e2

Rab

+
e2

r12
− e2

ra1
− e2

rb2

)
. (2.28)

Solving for the eigenvalues of the Hamiltonians yields

E± = E(0) +
C ± Jex
1±B2

, (2.29)



CHAPTER 2. THEORETICAL BACKGROUND 20

where B is the overlap integral, C is the Coulomb integral, and Jex is the exchange integral.
The sum in Eq. (2.29) describes the symmetric solution and the difference describes the
spatially antisymmetric solution. The overlap, Coulomb, and exchange integrals are defined
as:

B =

∫
Φb(r⃗2)Φa(r⃗2d

3r2, (2.30)

C =

∫
Φ2

a(r⃗1)

(
1

Rab

+
1

r12
− 1

ra1
− 1

rb2

)
Φ2

b(r⃗2)d
3r1d

3r2, (2.31)

and

Jex =

∫
Φ∗

a(r⃗1)Φ
∗
b(r⃗2)

(
1

Rab

+
1

r12
− 1

ra1
− 1

rb2

)
Φb(r⃗1)Φa(r⃗2)d

3r1d
3r2, (2.32)

respectively. In these equations, the termsRab, r12, and ra1,a2,b1,b2 correspond to the Coulom-
bic repulsion of the two protons of the individual hydrogen atoms, the repulsion of the two
electrons, and the attraction between the individual protons and electrons, respectively.

In addition to the exchange interaction involving the swapping of particle positions,
there also exists a spin exchange interaction that involves the swapping of the spin of two
identical particles. When including the spin, there exists symmetric and antisymmetric
combinations of the spin variables and their combination with the position wavefunctions,
now called the orbital wavefunction, result in the spin-orbitals. The consequence of in-
cluding the spin is that when the orbital wavefunction is symmetric, the spin wavefunction
must be antisymmetric and vice versa. With this in mind, we can see that when the spatial
wavefunction is symmetric the spin wavefunction results in the antisymmetric, spin-singlet,
solution. Whereas the antisymmetric spatial wavefunction must be coupled with the sym-
metric, spin-triplet, solution. The resulting exchange interaction including spin is:

Eex = C − 1

2
Jex − 2Jex⟨S⃗ȧ⃗Sb⟩, (2.33)

where ⟨S⃗a⟩ and ⟨S⃗a⟩ are the spin momenta of the two particles.

2.7 Phonons and Polarons
Phonons are quantized vibrations of a crystal lattice. In nature, there exist two types of
phonons. Acoustic phonons are present in every material and are the coherent motion of
atoms in a lattice away from their equilibrium positions (see Fig. 2.12). Optical phonons,
however, are only present in materials that have at least two atoms contained in a single
lattice basis. This is the result of optical phonons being the out of phase motion of nearby
atoms in a crystal (see Fig. 2.12). The term optical comes from the observation that in
ionic structures, such as potassium chloride, these phonons are excited by infrared radiation.
Each of the two types of phonons has three modes. There are two transverse modes and one
longitudinal mode. The transverse modes of vibration occur when the atoms of a crystal are
vibrating perpendicular to the propagation direction of the wave and the longitudinal modes
occur when the atoms are vibrating parallel to the propagation direction of the wave.
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Until now, we have only considered the stationary electronic states of the system. This
is due to the underlying assumption that the lattice ions remain static. When this assumption
is removed, the solutions to the system must account for vibrations of the ionic cores about
their equilibrium positions. These solutions lead to vibrational waves in the crystal lattice,
which in their quantized form are coined phonons. Additionally, these phonons can cou-
ple with the electronic states of the crystal to produce quasi-particles known as polarons.
Typically, the phonons that exist in QD and QDM systems are regarded as an unwanted
byproduct resulting in the generation of heat. This decoherent expenditure of energy is of-
ten the cause of non-radiative relaxation of excited excitonic states back to the ground state
of the exciton [46, 47], an effect that is not present in the gaseous state of atomic physics,
which is why rubidium vapor-cell atomic clocks have such enormous coherence times [48].
In this section, we derive the equations for a crystal structure experiencing atomic vibra-
tions and discuss the vibrational states of matter that arise. We will begin with a classical
description of a one-dimensional chain of atoms in a diatomic crystal.

Classical Derivation of Phonons

The analysis of a one-dimensional diatomic chain of atoms is a simple system which yields
interesting insights into the nature of vibrations in diatomic structures such as GaAs and
InAs. A diatomic system is one in which two atoms occupy a single basis of the repeating
crystal structure. The normal mode solutions of the vibrations in these structures result in
two sets of waves that depend on the underlying motion of the ion cores involved. There
exist low energy acoustic waves which occur when both ionic species are traveling in the
same direction, and higher energy optical waves which occur when the two ionic species
are traveling in opposite directions. The following derivation will only yield results for the
longitudinal modes, atoms traveling along the axis of propagation of the wave, of these two
sets of vibrational motion; however there also exist transverse modes along each of the axes
orthogonal to the propagation of the wave.

We begin our analysis by considering the one-dimensional crystal depicted in Fig.
2.10 consisting of a repeated basis of two atomic species of mass MA and MB, where
MB > MA. The lattice constant a represents the distance between neighboring bases and
for the sake of simplicity, we will set the two ionic species apart by half the lattice spacing
a/2. By this approximation the bond strength between the two species is assumed to be
the same and is represented by the stiffness coefficient K. This effectively allows us to
treat the individual ions as being held together by tiny springs, an assumption that is called
the harmonic approximation because it implies that the potential energy of the crystal is a
quadratic function of the displacement of the ions. This approximation is valid as long as
the displacements of the ion cores is relatively small. Lastly, the displacement of an in-
dividual ion from its equilibrium position will be represented by um or un depending on
whether the ionic species is of type A or B, respectively.

We start the derivation by writing down the sum of forces on them and nth ions due
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Figure 2.10: Diagram showing the parameters used to derive the normal phonon modes of
a one-dimensional diatomic chain of atoms.

to their nearest neighbors, which sum to:

FA,m =MA
d2um
dt2

= −K(um − un−1)−K(um − un), (2.34a)

FB,n =MB
d2un
dt2

= −K(un − um)−K(un − um+1). (2.34b)

The displacement of a harmonic oscillator is a sinusoidal function of time and space. There-
fore, we can write equations for the displacement of them and nth ions as:

um = A0e
−i(ωt−mka), (2.35a)

un = B0e
−i(ωt−nka), (2.35b)

where ω is the resonant frequency of the vibrational mode and k = 2π/λ is the wavevector.
Thewavevector can only take on specific values and is restricted by the boundary conditions
of the crystal lattice. Because we are not interested in edge effects on the solutions to this
equation, we can make use of the Born-von Karman boundary conditions which treats the
linear chain of ions as having a periodic boundary [49]. This results in the ions of the first
basis being connected to the ions in the last basis, which can be written mathematically as

um=0 = um=N , (2.36a)
un=1 = un=N+1. (2.36b)

This condition treats n = 1 as the first basis and n = N as the last. By substituting Eq.
(2.36) into Eq. (2.35), we find that the following condition must be true:

eiNka = 1. (2.37)

From this condition, it is apparent that k must follow the relation

k =
2π

Na
p, (2.38)

where p is an integer. Due to the periodic nature of Eq. (2.35), the displacements will
be unaffected if k changes by the amount 2π/a. Therefore, there are only N independent
values of k that yield unique solutions. The range of k values, by convention, is set to be
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−π/a ≤ k ≤ π/a. This range of k values is known as the first Brillouin zone of the crystal
lattice.

We can now substitute Eq. (2.35) into Eq. (2.34) to obtain:(
2K −MAω

2
)
A0 −K

(
1 + eika

)
B0 = 0 (2.39a)(

2K −MBω
2
)
B0 −K

(
1 + e−ika

)
A0 = 0. (2.39b)

We can solve this set of equations by taking the ratio of A0 to B0 for each equation and
setting them equal to each other. After some algebra, this yields

(MAMB)ω
4 − 2K(MA +MB)ω

2 + 4K2 sin2(
ka

2
) = 0. (2.40)

Equation (2.40) may be solved for ω2 as a function of the wavevector k by use of the
quadratic formula and some algebra for simplifying, yielding

ω2 = K

[(
1

MA

+
1

MB

)
±

√
1

M2
A

+
1

M2
B

+
2

MAMB

cos (ka)

]
. (2.41)

Equation (2.41) has two distinct solutions. The solution resulting from the sum gives
the optical branch of the phonon dispersion relation while the difference gives the acoustic
branch. Due to the wavevector k being able to take on a total ofN unique values, there are
a total of N normal vibrational modes for the longitudinal phonons.

Some insight can be gained by examining the limiting cases of Eq. (2.41). The first
casewewill look at is the so-called longwavelength limit where k → 0. For the longitudinal
optical phonons this results in

ωoptical|k→0=

√
2K

(
1

MA

+
1

MB

)
, (2.42)

and for the longitudinal acoustic phonons this results in

ωacoustic|k→0=

√
K

2 (MA +MB)
ka. (2.43)

The solution to the long wavelength limit of the acoustic modes requires the use of a Tay-
lor expansion in k to second order. At this point, it is clear how the nomenclature for the
acoustic mode came to be, since sound waves in solid materials exhibit a linear disper-
sion relation. Optical phonons, however, achieved their name through the fact that optical
phonons in ionic crystals, like gallium arsenide and indium arsenide, are excited by infrared
radiation. This is because the electric field of the incident radiation will move all of the pos-
itive ions in the direction of the field and all of the negative ions in the opposite direction,
causing the crystal to vibrate.
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Figure 2.11: Phonon dispersion curve for a one-dimensional diatomic chain of atoms. The
acoustic branch has a linear response to the wavevector at the long wavelength limit, while
the optical branch is approximately dispersionless.

The other limiting case can be examined by setting k = ±π/a. This will shed light
on the value of the optical and acoustic phonon bands at the Brillouin zone edge. For the
optical phonons this leads to a frequency of

ωoptical(k → ±π/a) =
√

2K

MA

, (2.44)

and for the acoustic phonons this leads to a frequency of

ωacoustic(k → ±π/a) =
√

2K

MB

. (2.45)

Figure 2.11 shows the longitudinal optical and acoustic phonon dispersion curves for gal-
lium arsenide. In this case,MA =MGa andMB =MAs andMB > MA.

One final treatment of the equations derived thus far shows an important difference in
the motion between the two vibrational modes. By taking the ratio of the amplitudes of the
displacement of the individual ions um/un in the limiting case of k → 0, we can determine
the relative motions of the ions. This results in :(

um
un

)
optical

=

(
A0

B0

)
optical

= −MB

MA

, (2.46)
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Figure 2.12: Optical and acoustic phonon modes represented by a linear chain of atoms in
a diatomic compound. Although only the longitudinal modes are shown here, there are two
transverse phonon modes for both the optical and acoustic phonons.

for the optical phonons, and(
um
un

)
acoustic

=

(
A0

B0

)
acoustic

= 1, (2.47)

for the acoustic phonons. This result reveals that the optical phonon is a vibrational mode
in which the two ions travel in opposite directions, out of phase, and are weighted by their
masses. For ionic crystals this causes a time-varying oscillation of the dipole moment.
Acoustic phonons, however, are a result of both ions traveling in the same direction with
the same relative amplitude. Figure 2.12 shows the two types of vibrational modes of a
one-dimensional diatomic lattice.

Quantum Mechanical Treatment of Phonons

In this section, we will quantize the linear chain of atoms to better understand the quantum
mechanical nature of vibrations in a crystal lattice. The methods described in this section
adopt the formalism of Altland and Simons [50]. We start by defining the Hamiltonian of
the system as the sum of kinetic and potential energies for all of the atoms along a one-
dimensional monatomic crystal:

Ĥ =
N∑

n=1

[
π2
n

2m
+

1

2
K (ϕn+1 − ϕn)

2

]
, (2.48)

where πn and ϕn are the momentum and displacement operators for the nth atom in the
chain.

Through the use of a Fourier transform, we may obtain a canonically conjugate form
of the Hamiltonian that resembles a quantum harmonic oscillator. This allows us to write
the Hamiltonian as a sum over the normal modes of the wavevector rather than in terms of
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the particle coordinates. The discrete Fourier transforms of the fieldsΠk and Φk are related
to πn and ϕn by:

Πk =
1√
N

∑
n

eiknaπn, (2.49a)

Φk =
1√
N

∑
n

e−iknaϕn, (2.49b)

and

πn =
1√
N

∑
k

e−iknaΠk, (2.50a)

ϕn =
1√
N

∑
k

eiknaΦk. (2.50b)

Substituting Eqs. (2.49a) and (2.49b) into (2.48) yields the discretized form of the
Hamiltonian, which resembled that of a quantum harmonic oscillator:

Ĥ =
∑
k

[
Π̂kΠ̂−k

2m
+

1

2
mω2

kΦ̂kΦ̂−k

]
, (2.51)

where ωk is the frequency of the kth mode. The frequencies ωk can be determined from Eq.
(2.41) by setting both masses equal to each other, halving the lattice spacing, and taking
the subtractive form of the quadratic equation because for a monatomic lattice there are no
optical phonons. This results in a frequency of

ωk =

√
2k

m
(1− cos ka). (2.52)

We can make a simplification to the Hamiltonian by factoring out h̄ωk, and defining the
dimensionless operators

f̂k =
Πk√
2mh̄ωk

, (2.53a)

ĝk =

√
mωk

2h̄
Φk. (2.53b)

The resulting Hamiltonian now looks like

Ĥ =
∑
k

h̄ωk

[
π̂kπ̂−k

2mh̄ωk

+
mωk

2h̄
ϕ̂kϕ̂−k

]
=

∑
k

h̄ωk

(
f̂kf̂−k + ĝkĝ−k

)
. (2.54)

The commutation relation for the operators f̂ and ĝ results in

[f̂k, ĝk′ ] = − i

2
δkk′ . (2.55)
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With the commutation relation known, we can define the creation and annihilation operators
b̂†k and b̂k as

b̂†k = ĝ−k − if̂k, (2.56a)
b̂k = ĝk + if̂−k. (2.56b)

The inverse relations are:

f̂k =
i

2

(
b̂†k − b̂−k

)
, (2.57a)

ĝk =
1

2

(
b̂k + b̂†−k

)
. (2.57b)

Another important commutation relation is[
b̂k, b̂

†
k′

]
= δkk′ . (2.58)

Substituting Eq. (2.57) into Eq. (2.54) and making use of the commutation relation, Eq.
(2.58), yields

Ĥ =
∑
k

h̄ωk

[
b̂†kb̂k +

1

2

]
. (2.59)

This solution takes the form of a quantum harmonic oscillator. If we let |nk⟩ be an eigen-
state of the Hamiltonian for each k, then the creation and annihilation operators cause the
following relations:

b̂†k|nk⟩ =
√
n+ 1|(n+ 1)k⟩, (2.60)

and
b̂k|nk⟩ =

√
n|(n− 1)k⟩. (2.61)

These results suggest that the phonon creation and annihilation operators act to increase
or decrease the number of phonons in a system. The results also allow us to construct
the operator product known as the number operator b̂†kb̂k whose eigenvalue is equal to the
number of phonons n in the eigenstate |nk⟩.

b̂†kb̂k|nk⟩ =
√
nb̂†k|(n− 1)k⟩ = n|nk⟩ (2.62)

We can therefore calculate the vibrational energy due to phonons in each mode by acting
the Hamiltonian on the eigenstate, resulting in

Ĥk|nk⟩ = h̄ωk

(
b̂†kb̂k +

1

2

)
|nk⟩ = h̄ωk

(
nk +

1

2

)
|nk⟩. (2.63)

An interesting feature of this result is that even when the total sum of phonons in all the
modes is equal to zero, there still exists a vibrational energy equal to h̄ωk/2. This energy
is called the zero point energy and is the lowest energy that a quantum mechanical system
can have. The physics in this section described the quantization of phonons in a monatomic
lattice, however this quantization exists in lattices consisting of more than one atom. It
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is therefore possible to create optical phonons in diatomic crystals via laser excitation. In
this type of system an excited excitonic state may emit a phonon prior to photon emission
from its ground state. Since the process of emitting a phonon is on a faster time scale than
the recombination rate of electrons and holes, this enables the experimental technique of
excited state spectroscopy through the observation of the lower energy phonon satellites.

Polarons in QDs

Polarons are quasiparticles consisting of a phonon bound to a charge carrier. When a charge
carrier moves through a dielectric material the nearby atoms of the crystal move slightly
from their equilibrium positions and effectively screen the charge from the rest of the ma-
terial (see Fig. 2.13 [51]). The region of space where the atoms are disturbed from their
equilibrium positions is known as a phonon cloud and is shown as a dark circle in Fig. 2.13.
The combination of the phonon cloud and the mobile charge carrier is called a polaron. A
recent study by Kerfoot et al., has shown the existence of coherent interactions between
phonons and excitons in QDMs [52]. Their experiments demonstrate the coupling of a lon-
gitudinal optical (LO) phonon to a direct neutral exciton, which is also tunnel coupled to an
indirect neutral exciton. This three level “V-type” system creates a “which way” path prob-
lem between a quasi-continuum state (the polaron created by the LO phonon coupled to the
direct neutral exciton) and a discrete state (the indirect neutral exciton). The main findings
of the study describe a Fano-type interference caused by coupling the discrete state to the
quasi-continuum state resulting in a phonon induced transparency. They call this hybrid
state a molecular polaron.
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Figure 2.13: The presence of an electron (black) disturbs the nearby atoms causing positive
atoms (blue) to shift towards, and negative atoms (red) to shift away from, the electron. The
phonon cloud (black ring) and the electron make up the polaron.



Chapter 3

Material System

The samples discussed in this dissertation are, at their most fundamental level, epitaxially
grown InAs QDs embedded in a GaAs matrix. The various samples utilize a variety of
structures that play different roles in the behavior of the device. The electrical properties can
be finely tuned by sandwiching the QD system between p-doped or n-doped layers of GaAs.
Additionally, barrier layers, typically Al0.3Ga0.7As, can be added to fine tune the tunneling
rates of charge carriers into and out of the QDs. Optical properties can be enhanced by
the addition of photonic crystal (PhC) cavities, optical waveguides, or distributed Bragg
reflectors (DBR). Lastly, the mechanical properties can be tuned by embedding the QDs
into resonators such as tuning forks, micro bridges, or drum head-like membrane structures.
The high tunability of these devices derives from the precision of the growth methods and
subsequent nanostructuring techniques.

3.1 Self-Assembled InAs Qauntum Dots
Self-assembled QDs are grown using molecular beam epitaxy (MBE). A popular method of
MBE, known as the Stranski-Krastanov (SK) growth method, relies on the lattice mismatch
between adjacent layers of semiconducting materials. For InAs quantum dots embedded in
a matrix of GaAs, the lattice constant mismatch is approximately 7%. This mismatch causes
the deposited InAs to initially form a 2D wetting layer; which accumulates until the build
up of strain causes it to plateau at 1.7 monolayers resulting in the subsequent deposition of
InAs to pool into droplets [53]. The size of these droplets are on the order of 30nm wide
and typically around 5nm tall. The advantages of self-assembled QDs are that the MBE
technique allows for atomic precision in the size of the dots along the growth direction and
the structures can be easily embedded in other types of semiconducting electronic archi-
tectures, such as field effect structures. This allows the manufacturers of such devices to
control the energy scales of the dots as well as their electrical environments. Figure 3.1
shows a schematic of how the SK growth technique is typically employed in the design of
InAs QDs and QDMs.

29
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Figure 3.1: Schematic of the SK self-assembled growth method of InAs QDs. (a) The
process starts with the deposition of GaAs onto a substrate. (b) Due to strain, the subsequent
deposition of InAs plateaus at a thickness of 1.7 monolayers, creating a wetting layer upon
which InAs droplets form. (c) The additional deposition of GaAs encapsulates the QDs.
The process for fabricating QDMs is to repeat this technique. The build up of lattice strain
causes subsequent layers of InAs to preferentially pool into droplets above the initial seed
layer of QDs. The process can be repeated a number of times to formmulti-dot systems. (d)
The schematic of the MBE machine shows how elemental metals contained in individual
furnaces can be exposed to the growth chamber by mechanical valves.

3.2 Field-Effect Structures
QDs are grown inside the intrinsic region of a field-effect structure where the electric field
will have an effect on the electronic energy levels of the device. By controlling this electric
field, the ability to electrically tune the properties of the QDs is obtained. The simplest diode
is a semiconductor that has one side p-doped and the other side n-doped with an intrinsically
doped region in between. The thickness of the intrinsic region can be precisely controlled by
the growth process and one can ensure that the QDs are placed at the desired position. The
interface between the two oppositely doped sides creates a depletion region where the extra
stationary charge carriers are neutralized by the transition of the mobile charge carriers,
setting up an intrinsic electric field as a result of the separation of charges. The magnitude
of the electric field in this depletion region can be tuned by applying a voltage across the p-
doped and n-doped substrates, providing a convenient means of manipulating the electrical
state of a QD.

Diodes enable the ability to electrically charge the QDs, promoting the formation of
charged excitons. Fig. 3.2 shows the effect of electrical biasing on the conduction and
valence band energy levels of a p-i-n diode structure. In this figure, EC,p (EC,n) is the
energy of the conduction band, EV,p (EV,n) is the energy of the valence band, and EF,p
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(EF,n) is the Fermi energy at the p-doped (n-doped) edge. Lastly, EB is the barrier energy,
the energy required to transport an electron from the n-doped edge to the p-doped edge.

At thermal equilibrium the Fermi energies of the conduction band of the n-doped
substrate and the valence band of the p-doped substrate are degenerate. However, as the
diode is biased in the reverse direction, the Fermi energy of the p-doped edge is raised and
the barrier energy increases, further inhibiting the charges from conducting or tunneling
through the diode. The opposite is true in forward bias. The ability to control the slope
of the intrinsic region of the diode, where the QDMs reside, enables researchers to tune
the energy levels of one QD relative to the other. With proper fabrication, the position of
the QDs along the growth direction of the diode can be selected with extreme precision.
The position of the QDs relative to the doped layers determines whether electrons or holes
will more likely tunnel into the dots. If a QD is positioned closer to the p-doped (n-doped)
substrate, then holes (electrons) are more likely to tunnel into the QDs. Therefore, the
position of a QDM relative to the doped substrates determines which charge carriers can
be injected into the QDM. Bracker et. al. go into more detail regarding the fabrication of a
QDM system and the effects different dot sizes and positions have on the properties of the
system as a whole [54]. In particular they discuss engineering QDM samples in Schottky
diodes that promote the tunneling of one type of charge carrier over the other between dots.
As a quick summary, when the bottom (top) dot is larger than the top (bottom) dot then
electrons (holes) will tunnel under forward bias, while holes (electrons) will tunnel under
reverse bias.

The diode structure itself can be modified in numerous ways to gain access to a larger
parameter space of sample properties, or can be used for purposes of simplifying certain
aspects of an experiment. For example, Schottky diodes, made by the heterojunction of
a conducting material and a semiconducting material, allow for the addition of aluminum
aperture masks. These masks are not used because of their changes to the electrical prop-
erties, rather they are used because they reduce the number of visible QDs in a photolumi-
nescence experiment, creating a spectrum that is less convoluted and easier to analyze. Fig.
3.2 shows the layer structure of a QDM embedded in an n-i Schottky-type diode and topped
with an aluminum aperture mask.
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Figure 3.2: (Top) Band edge diagram and (Bottom) electrical circuit of a pn junction based
diode under the application of (a) reverse bias, (b) zero bias, and (c) forward bias conditions.
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Figure 3.3: Sample layer structure diagram. The aluminum aperture mask provides a 1 µm
diameter window through which PL can be collected. This serves the purpose of reducing
the amount of PL from nearby QDMs reaching the detector [55].

Figure 3.4: Sample layer structure diagram. The sacrificial AlGaAs layer is etched away
to form a 180nm thin free floating surface. This becomes the template upon which further
patterns, such as photonic crystal cavities, waveguides, tuning forks, and micro-bridges,
will be etched. The QDs are in the intrinsic region of an n-i-n-i-p diode structure [13].

Alternative examples are the patterned structures of Carter et. al. [13]. In these sam-
ples, a sacrificial layer of Al0.3Ga0.7As is removed to create thin free-floating membranes,
tuning forks, and micro bridges. Fig. 3.4 shows the layer structure of such a device.

3.3 Patterned Structures
Different types of patterned structures are etched into the surface of these free-floatingmem-
branes. For example, PhC cavity patterns are created because of their ability to enhance the
emission intensity of nearby emitters which are resonant with the cavity through the Purcell
effect [56]. The PhC cavities affect photons in a material similar to the way ionic lattices
affect electrons in solids.
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2µm

Figure 3.5: Scanning electron microscope image of a photonic crystal cavity structure. The
black circles at the corners are drain holes used to remove the sacrificial layer beneath
the photonic crystal cavity pattern to create a suspended membrane that is used to couple
mechanical motion to the QDs [13].

Optical waveguides have been created with nearby PhC cavities for the purpose of
studying cavity coupled modes. The dark-grey semicircular patterns at the left and right
edges of Fig. 3.6 are optical couplers that enhance the input and output efficiency of light.
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Figure 3.6: Scanning electron microscope image of an optical waveguide with two adjacent
PhC cavity structures. On the left and right side of the structure are optical input and output
couplers, allowing for a higher efficiency coupling of light. The dark trenches at the top
and bottom edge are used to remove the sacrificial layer beneath the photonic crystal cavity
pattern to create a suspended membrane that is used to couple mechanical motion to the
QDs [13].
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Path length difference between reflections off the 
first two layers is:


Delta L = 2 d_2 n_2 cos(theta)


for constructive interference between first 
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Figure 3.7: Schematic of a distributed Bragg reflector. This structure is used to enhance the
coupling of light out of the QDs. The index of refraction of the materials are represented by
ni and the thickness of the layers are represented by di. For constructive interference, the
layer thickness must be proportional to the wavelength of light according to di = λ/4ni.

Another type of patterned structure is a DBR, which is also used to enhance emission
of a certain wavelength of light. The addition of multiple layers creates a DBR with a high
quality factor. The constructive interference of the resonant wavelength of light causes the
enhancement.

Mechanical structures such as tuning forks or bridges can also be constructed. Figure
3.8 shows a scanning electron microscope (SEM) image of these structures. Embedding
QDs into tuning fork and bridge structures allows for control of the elastic environment
to which the QDs are exposed. When straining these mechanical structures, a shift in the
optical properties of the QDs is observed. This type of system couples the mechanical
motion of the resonator to the quantum mechanical properties of the QD. One of the major
goals of this research is to create a strain sensor based on this coupling.
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2µm

Figure 3.8: Scanning electronmicroscope image of a tuning fork (top) and a bridge (bottom)
mechanical resonator [13].
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Experimental Techniques and
Procedures

The techniques utilized in this dissertation are, at their core, laser spectroscopy techniques.
The highly coherent and high intensity light emitted from modern lasers enables scientists
to probe the energy states of materials with high resolution [57]. More recently, techniques
such as atomic force microscopy, which came to fruition due to the advent of the laser, have
been utilized to probe the many properties of QDs under various conditions [58, 59, 60].
Figure 4.1 shows a schematic of the laser spectroscopy setup used to probe the QD system.

In Fig. 4.1, the main points are the excitation and collection paths of the experimental
setup. The excitation path begins by fiber coupling the output of a tunable laser to the PL
platform. For the excitation of InAs QDs we use either a titanium sapphire (Ti-Saph) laser
with the cavity in a bow tie configuration and a birefringent filter to tune the wavelength,
or an external cavity tunable diode laser. These have a range of tunable wavelengths from
850 nm to 950 nm for the Ti-Saph laser and 890 nm to 980 nm for the diode laser. The
laser light is first filtered by a short pass filter to remove as much of the low energy tail of
the laser as possible. The light then passes through a polarizer which is used to select the
excitation polarization for the experiment. A 90R:10T cube beamsplitter reflects 90% of
the light onto a power meter for measurement. The other 10% of the light transmits toward
the microscope objective upon which it is focused into the cryostation and onto the sample.
This is an ideal choice because we generally have an abundance of laser power and can
afford to sacrifice this power for the sake of maximizing collection of PL. The QDs within
the sample will absorb the laser light and, upon relaxation, emit PL. This PL is collected
by the microscope objective and directed back toward the 90R:10T beamsplitter. 90% of
the collected PL is reflected toward a collection fiber. Along this path a 45R:55T pellicle
beamsplitter is placed on a flip mount so that it can be easily removed from the setup during
measurement. The light is split such that 45% is reflected toward an imaging camera for
observation and the other 55% is sent toward the fiber collector. Before being collected by
the fiber, the light passes through another polarizer and a long pass filter, both of which
are used to remove as much of the excitation laser from the signal as possible. Finally,
the light is focused into a triple stage spectrometer where it will be dispersed according to
wavelength and focused onto a liquid nitrogen (LN) cooled charge coupled device (CCD)

36
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Figure 4.1: Combined experimental setup for laser spectroscopy, atomic force microscopy
for static strain measurements, and optically induced mechanical resonance measurements.
The setup has the option of focusing the PL into stage 1, 2, or 3 via the addition of flip
mounts on the wedge mirrors. The dashed box is also represented in Fig. 4.13



CHAPTER 4. EXPERIMENTAL TECHNIQUES AND PROCEDURES 38

camera. Having the flip-mounted beamsplitter before the PL collection fiber allows the
experimenter to visually align a region of the sample with the excitation laser at the focal
point of the microscope while simultaneously acquiring PL spectra which can be compared
to previously recorded spectra for identification. The placement of this beamsplitter greatly
enhances the abilities of the experimenter and provides more flexibility when locating QDs.
Because the beamsplitter is on a flip-mount, once the experimenter identifies the correct po-
sition, both through visual evidence and spectral evidence, the beamsplitter may be flipped
down and removed from the optical path, effectively doubling the amount of collected PL.

The filters and polarizers are utilized to remove as much stray laser light from the
signal as possible. This is especially true for more resonant measurements. The closer the
energy of the laser is to the energy of the desired transition, the more noise will exist in the
signal. The removal of scattered laser light will be discussed in more detail during the latter
portion of section 5 on high resolution phonon-assisted quasi-resonance fluorescence spec-
troscopy. A polarizer on the excitation side can also be used to selectively excite specific
polarization states within the sample, and a polarizer on the detection side, when combined
with a half wave plate or liquid crystal retarder, can be used to selectively detect emission
of specific polarization.

4.1 Photoluminescence Spectroscopy
In a typical experiment, a continuous wave (CW) laser illuminates the sample, exciting
an electron into a higher excited state. Upon relaxation to the ground state, the electron
emits a photon that is directed toward a spectrometer by one or more optical elements. The
spectrometer disperses the light that is sent through based on wavelength; once dispersed,
the light is focused onto a detector. Since the typical acquisition time of a PL experiment is
on the order of one billion times the radiative relaxation rate for a neutral exciton in aQD, the
observed spectrum is the sum of many PL events. Because a spectrometer is a dispersive
element, and excitation of the sample is typically non-resonant, PL exhibits better laser
suppression compared to other spectroscopic techniques such as resonance fluorescence.
The signal intensity, proportional to the number of photons striking the detector, can be
plotted as a function of photon energy (or wavelength). Such a plot reveals information
about the electronic energy level structure of the sample, as well as state lifetimes, and
possibly even fine structure if the spectral resolution is high enough. Figure 4.2 shows PL
spectra of an InAs QDM at varying excitation powers. Due to the difficulty of identifying
all of the charge states using a single PL spectrum, a technique known as electric field
dispersed PL is used to capture the changes in the optical spectrum as a function of applied
electric field.
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Figure 4.2: PL spectra of an InAs QDM at different excitation powers.

Electric Field Dispersed Photoluminescence

Dispersing the photoluminescence spectrum of an InAs QDM as a function of applied elec-
tric field causes the electronic energy levels to experience a Stark shift. This shift in the
energy levels can help identify indirect transitions within the QDM system. This is due to
the larger dipole moment of indirect charge states when compared to direct charge states.
The formula for the electric dipole of two charges, equal in magnitude but opposite in sign,
is p⃗ = qed⃗ where q is the magnitude of the electric charge of the particles and d⃗ is the dis-
placement vector that points from the negative charge to the positive charge. In order to
employ field-dispersed PL spectroscopy, one simply collects PL spectra of the QDM sys-
tem at varying values of the applied electric field. To construct an informative electric field
dispersed photoluminescence spectrum, often referred to as a bias map due to the applied
electric field being a function of bias set by the experimenter, tens to hundreds of spectra
are taken at varying bias values and stitched together. The resulting data is plotted as a col-
ormap with the x-axis representing the bias, or electric field, and the y-axis representing the
photoluminescence energy. The intensity is plotted along the z-axis and is represented by
the color of the data point. It is common to find false color maps of electric field dispersed
PL data such as the one in Fig. 4.3.
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Figure 4.3: Electric field dispersed PL spectrum, also known as a bias map. Plotting the data
in this way allows one to clearly discern the indirect transitions from the direct transitions.
Patterns emerge from the data that are much more obvious to the eye than in the single
spectrum case. The red dashed line indicates the bias at which the power series was taken
in Fig. 4.2
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Figure 4.4: Schematic depicting the processes of (a) non-resonant PL spectroscopy and (b)
PLE spectroscopy, as discussed in the main text.
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Photoluminescence excitation (PLE) spectroscopy monitors the emission of light due to an
electron’s transition from the lowest energy excited state to the crystal ground state. This
allows the excited state absorption spectrum to be measured via emission through the lowest
energy transition. When the energy of a blue-detuned laser is scanned through the energies
of the excited states, electrons from the valence band jump into these excited conduction
band states. The excitation of an electron from the valence band to an excited state in
the conduction band is most prominent when the laser energy is tuned into resonance with
the electronic transition energy. Most of these excited electrons do not immediately relax
and emit a photon; they first undergo non-radiative decay through which energy is lost by
the generation of phonons. The electrons quickly lose enough energy to place them in the
lowest energy excited state, at which time the electron radiatively relaxes back to the crystal
ground state and emits a photon.

The experimental setup is very similar to that of regular PL. The only difference is that
now the laser energy is scanned across a range of energies above the transition of interest.
In order to investigate the excited state spectrum of the neutral exciton, one monitors neutral

Intensity (arb. unit)

Figure 4.5: (Top) Electric field dispersed excited state absorption spectrum, also known as
a PLE map, of the neutral exciton in an InAs QD. The PLE map shows the excited state
absorption spectrum of the neutral exciton. (Bottom) Electric field dispersed PL spectrum
of the neutral exciton.
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exciton PL while scanning the energy of the excitation laser. Specifically, the laser should
be set to energies higher than that of the neutral exciton to crystal ground state transition.
Every time the laser energy is shifted, a PL spectrum of the neutral exciton is collected. In
essence, a PLE map is the stitching together of PL as a function of excitation energy. Figure
4.4 shows a comparison of the two techniques of PL and PLE.

The technique of electric field dispersion can be used here as well to produce an
electric field dispersed PLE map. Figure 4.5 shows an electric field dispersed PLE map of
the neutral exciton in an InAs QD along with the sum of all of the electric field dispersed PL
maps used to gather the data. The summed bias map is used as a reference point to compare
energy differences between excited states. The PLE map can be used to gather information
on the properties of the excited states such as the excited state energy level structure or
indirectly measure the excited state lifetimes through the Heisenberg uncertainty principle.

4.2 Mechanically Inducing Static Strain in QDs
Special samples were grown to perform these experiments. Thin film membranes and tun-
ing forks were patterned into the surface of the samples using electron beam lithography and
an inductively coupled plasma etch. Hydrofluoric acid is used to undercut the mechanical
resonators by etching away the Al0.7Ga0.3As layer providing free floating structures capa-
ble of undergoing static and dynamic strains; see Figs. 3.5, 3.6, and 3.8. The procedure for
measuring the PL of statically strained QDs is as follows. First, a QD sample is placed onto
an appropriate sample mount. In our case we utilize a 16-pin chip carrier (see Fig. 4.6).
The chip carrier is then mounted to a stack of nano-positioning stages as shown in Fig. 4.7.
This allows the sample to be translated in all three dimensions. After the sample is secured
to the nano-positioning stages and placed in the cryostation an extra mount is added to hold
an atomic force microscopy (AFM) probe above the sample (see Fig. 4.7). The probe is
held stationary and the nano-positioners are used to raise the sample into the probe for the
purpose of inducing strain in the material. All of this resides inside of the cryostation and
is cooled down to around 5 K. Outside of the cryostation, an optical microscope is focused
onto the AFM probe. Once the probe is in focus, a laser beam at 45◦ incidence is brought
into focus on the tip of the probe. The reflected beam is collected by a Position Sensitive

Figure 4.6: 16-pin dual in-line package chip carrier for QD samples.
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Figure 4.7: (Left) Closeup image of a QDM sample in a 16-pin chip header, attached to
the nano-positioning stages, mounted inside of the cryostation, and situated underneath the
AFM probe holder. (Right) Stack of three nano-positioning stages for translation in x,
y, and z dimensions. The gold ribbons connecting the top plate to the base plate provide
thermal conductivity between the sample and the cold finger of the cryostation.

Detector (PSD) . This type of detector is sensitive to small displacements of the reflected
laser beam caused by nanometer-scale movement at the AFM probe. Alignment and cali-
bration of the setup is performed at this time. For more information on the calibration of
the setup see Appendix B.

Once the setup has been aligned and calibrated, the sample can be raised into the AFM
probe. At this point, it is necessary to lower the sample a fewmicrons so that the sample can
be translated without fear of scratching the surface to perform PL on individual membrane
structures. The microscope needs to be refocused on the surface of the sample to locate
membranes containing QDs for further study. It is important to keep the lateral position
of the microscope objective situated directly above the tip of the AFM probe. Typical PL
techniques are utilized at this point to locate a QD warranting further investigation. Once a
QD with promising properties has been located, the sample is raised toward the AFM probe
until first contact is made (see Fig. 4.8). Upon viewing the image, small adjustments to the
position can be made to center the membrane, within which the QD is located, underneath
the tip of the AFM probe. The full setup has been aligned at this point and PL spectra can
be recorded with the sample pressed into the AFM probe at varying amounts.

Viewing the bottom right corner of Fig. 4.8, one can see the physical damage that
has occurred to the membranes due to penetration of the AFM probe tip with the thin film
membranes. It is our hypothesis that the damage may be caused by AFM probes whose
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Figure 4.8: Microscopy image of the AFM probe situated just above the sample surface.
The inset of the figure shows the tip of the AFM probe aligned with the center of a mem-
brane.

stiffness is much greater than that of the membranes. Other possible reasons for the dam-
age are electrostatic discharge or AFM probe tips whose aspect ratio is sharp enough to
pierce through the membranes. For this reason, electron beam deposition (EBD) tips were
specially ordered. These probes possess a 1 µm diameter sphere that has been deposited
on the tip. This provides a much smoother contact between the AFM probe and the sam-
ple membrane and also removes sharp edges which promote coronal discharges of static
electricity.

4.3 Optically Inducing Dynamic Strain in QDs
A non-contact optical technique has been developed that can drive the mechanical struc-
tures at their resonance frequencies. Below bandgap excitation, at the contact point of a
microcantilever, can induce vibrations in the structure. In coated cantilevers it is believed
that the mechanism behind the driving is photothermal excitation [61, 62]. This is due to
differences in the thermal expansion properties of the dissimilar materials. However, not
much research has been done to understand this phenomenon in structures that are mostly
monolithic. To measure this effect, below bandgap lasers are focused onto the surface of
the cantilever. One laser, henceforth called the drive laser, is focused onto the contact point
of the microcantilever and the bulk material for the purpose of driving the mechanical mo-
tion. The other laser, henceforth called the signal laser, is focused on the free end of the
microcantilever to monitor the spot that will experience the largest amplitude of oscillation.
The positioning of these lasers is shown schematically in Fig. 4.9.

A frequency generator is used to generate the signal responsible for the modulating
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Figure 4.9: SEM image of a micro tuning fork with superimposed beam spots. The drive
laser (green) is focused onto the base of the tuning fork while the signal laser (red) is focused
on one of the tines at the free end of the tuning fork. The white scale bar represents 2 µm.
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Figure 4.10: Schematic of the AOM used to amplitude modulate the drive laser.
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Figure 4.11: Mechanical resonance spectrum of a microcantilever. For the purposes of the
following experiments, only the fundamental mode is used.

the drive laser. The output of the frequency generator connects to the modulation input of
an acousto-optic modulator (AOM) which is used to amplitude modulate the drive laser. A
schematic of this setup is shown in Fig. 4.10. The reflection of the signal laser is collected
by the same fiber that is used to collect the PL in other experiments, but rather than being
focused into the spectrometer it is focused onto an avalanche photodiode (APD) . The output
of the APD is connected to a spectrum analyzer for analysis in the frequency domain. As the
spectrum analyzer sweeps through a range of frequencies while monitoring the APD signal,
the function generator quickly sweeps the AOM through the same range of frequencies.
Typically the spectrum analyzer is set to scan over a 10 MHz frequency range in a 10 s
period while the frequency generator is set to sweep the same frequency range every 10 ms.

The reflection of the signal laser experiences optical interference due to reflection
off of two surfaces. The reflection from the cantilever surface and the reflection from the
substrate. The interference signal changes in intensity most drastically when the microcan-
tilever is excited by a resonantly driven laser beam, and the APD detects these changes. This
method is well suited for determining the mechanical resonance spectrum of the structure
(see Fig. 4.11) prior to searching for a QD that has ideal properties.

Once the mechanical resonance spectrum has been obtained, the interference laser
can be used as an excitation laser and PL is performed at the base of the cantilever where it
connects to the bulk material. With the drive laser off, a QD with ideal emission properties
is identified. The signal from the QD of interest is improved by small adjustments to the
optical alignment. The drive laser is turned back on and is allowed to sweep through a
range of frequencies centered on the mechanical resonance frequency. Meanwhile, PL is
collected at each frequency. With this data, a mechanical resonance frequency dispersed PL
map showing PL intensity as a function of emission energy and mechanical drive frequency
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Figure 4.12: PL map showing the linewidth broadening of the QD emission at the mechan-
ical resonance of the microcantilever.

can be generated. These maps typically show a broadening of the emission peak near the
mechanical resonance (see Fig. 4.12).

4.4 Fabry-Perot Interferometer and Resolution Enhance-
ment

A typical PL experiment will direct the emission from a sample into a spectrometer to be
spectrally dispersed before detection. The resolution with this setup is limited by the focal
length of the spectrometer, the groove density of the diffraction grating, the entrance slit
width, and either the exit slit width or the pixel width, depending on the type of detector.
For a 750 mm focal length spectrometer with an 1100 groove/mm diffraction grating, 20
µm entrance slit width, a LN cooled CCD camera with a 20 µm pixel width, and monitoring
a 950 nm (1305 meV) center wavelength, the resolution is 0.02 nm (27.5 µeV). However,
this resolution is per pixel on the CCD camera and generally even the sharpest atomic tran-
sitions will have a width of 3 pixels due to instrument constraints. This results in a spectral
resolution of 0.06 nm (82.5 µeV).

This resolution can be enhanced by first passing the PL through a Fabry-Perot (FP)
interferometer. In the experiments detailed in this dissertation, we use a FP cavity of length
d = 1.4mm with a free spectral range of 0.322 nm (443 µeV) and a resolution of 0.006 nm
(8.25 µeV). The experimental method which utilizes this order of magnitude improvement
in resolution is described as follows. A 980 nm (1265 meV) locking laser is combined
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with the PL from the sample prior to entering the FP interferometer. This is shown in the
dashed box in Figs. 4.1 and 4.13. The locking laser is an external cavity diode laser whose
frequency is modulated by a piezoelectrically controlled cavity at 1 kHz with an amplitude
of a few µeV. The frequencymodulated locking laser can only transmit through the FPwhen
its wavelength is resonant with the interferometer. Through this mechanism, the frequency
modulated signal is turned into an amplitude modulated signal, which in turn is monitored
by a lock-in amplifier. After exiting the FP, the locking laser is picked off with a 1000 nm
short pass filter that is rotated away from normal incidence so that its cutoff wavelength
is just below the 980 nm locking laser. This maximizes both the reflection of the locking
laser and the transmission of the PL through the short pass filter. The PL, minus the locking
laser, is collected by a fiber optic cable and directed to the entrance slit of the spectrometer,
while the locking laser is collected by a separate fiber optic cable and sent to an APD. The
output signal of the APD is monitored by a lock-in amplifier that is triggered by a reference
from the locking laser. If the length of the FP is shifted by half a wavelength, the original
wavelength can transmit through a higher mode of the FP but shifted in phase by 180◦. The
phase of the lock-in amplifier is set to make the X channel positive when the cavity is red
detuned and negative when the cavity is blue-detuned from the locking laser. When the
locking laser and the FP are resonant, the X channel outputs zero. Therefore, the X channel
can act as an error signal to the resonance of the cavity and the locking laser. An auxiliary
output on the lock-in amplifier is used to control the voltage applied to the range generator
which controls the piezoelectric transducers modulating the length of the FP interferometer.
If the X channel is positive, the auxiliary output of the lock-in amplifier voltage controlling
the FP is increased, and if the X channel is negative, the voltage to the FP is decreased. A
LabViewVI is used to control a feedback loop that keeps the X channel at zero, thus locking
the FP to the locking laser. As the laser is scanned, the FP follows along as long as there are
not any excessive jumps in the tuning that cause the system to lose the lock. A schematic
of this setup is described in Fig. 4.13

With this system in place, the PL that enters the spectrometer has already been filtered
by the FP interferometer to contain only a 9 µeV bandpass of light. Due to the nature of
the FP interferometer, multiple modes of allowable transmission make it through to the
spectrometer, each with a bandpass of 9 µeV. Themodes are spaced apart by the free spectral
range of the FP and can be separated by the dispersion of the spectrometer. Since the free
spectral range of the FP is 0.322 nm (443 µeV) and the spectrometer has a dispersion of 27.5
µeV/pixel on the CCD camera, there exist approximately 16 modes of transmitted light at
the camera. If a single channel detector is used instead, the exit slits can be narrowed to
minimize the number of modes at the detector to one. Figure 4.14 shows the resolution
enhancement of the PL from the negative trion state |X−1⟩ of a single QD through a FP
cavity enhanced experiment versus a typical spectroscopy experiment. For single channel
experiments, a single photon avalanche diode (SPAD) is used as the detector. During a
single channel measurement the FP is scanned through the bandpass of the spectrometer
until the light has dispersed too much to exit the spectrometer. At this point, the diffraction
grating of the spectrometer is rotated so that the light transmitted from the FP is once again
at the beginning of the spectrometer’s bandpass at the exit slit. This process can be repeated
until the FP reaches the end of its free spectral range, at which point the FP is returned to
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Figure 4.13: Schematic of the Fabry-Perot laser locking technique. The purpose of this
technique is to control the thermal drift of the FP over time so that high resolution PL
spectra can be obtained with little-to-no drift noise. The dashed box is a section of the PL
platform depicted in Fig. 4.1.



CHAPTER 4. EXPERIMENTAL TECHNIQUES AND PROCEDURES 50

Figure 4.14: Comparison of the signals captured by a typical spectroscopy experiment
(black) and a FP resolution enhanced spectroscopy experiment (red).

its original length to allow the same wavelength through, but at a higher mode of the FP.
This completes one full cycle of scanning the combined FP interferometer and spectrometer
system and can be repeated as many times as necessary. In our experiments, the signal of
interest typically does not span more than 0.291 nm (400 µeV) and does not require iterating
the process described above more than once.

4.5 Time-Correlated Single Photon Counting
Time correlated single photon counting (TCSPC) is a technique used to measure high fre-
quency and low intensity events such as the emission from individual QDs. Probing the
temporal dynamics of a single emitter such as a QD yields insights into the decay lifetimes
of specific quantum states. Rather than a typical time resolved experiment which will mea-
sure the emission intensity as a function of time, the TCSPC technique measures the time
lapsed between an excitation pulse, typically an ultrafast laser, and the emission of a single
photon from a quantum emitter. Figure 4.15 shows a schematic of the detection mecha-
nism [63]. The device will accumulate this data over a series of emission events and record
a histogram relating the number of photons emitted within specific time bins relative to the
laser pulse (see Fig. 4.16) [64].

The advantage of this technique lends itself to the difficult nature of observing quan-
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Figure 4.15: Measurement schematic for the TCSPC technique. A laser pulse generates an
exciton in a QD which quickly recombines and emits a photon. The photon is tagged by the
electronics in the TCSPC module. The detection rate should be 20 to 100 times less than
the excitation rate and should therefore include cycles that contain no emitted photons. The
situation of a zero decay cycle is depicted as the second laser pulse in the three pulse train.

tum events in general. It is not a simple task to devise an experiment in which a single cycle
of excitation and emission can be recorded by an electronic detector. First, the time scale of
QD emission is on the order of hundreds of picoseconds to a few nanoseconds, much faster
than the temporal resolution of most optical detectors. Second, the light emitted by a QD
during an excitation and emission cycle would be a single photon, much too low of a signal
to be sampled by any analog device in a reliable manner. By continuing the data collection
across many excitation and emission cycles, the TCSPC technique is able to overcome both
of these issues.

The caveat to this technique is that the light levels must be kept low enough so that
multiple photon events rarely occur during a single excitation and emission cycle. This
requirement is so strict that it is recommended to attenuate the emission before striking the
detector such that a photon is only detected 1 out of every 20 to 100 cycles. In other words,
the count rate at the detector should be 1 to 5% of the excitation rate.

The experiments conducted in this dissertation utilize the TCSPC technique to capture
the emission energy of individual spin states as a function of the period of a mechanical
resonator. As described in previous sections, a QD is embedded in a mechanical resonator
which is then driven optically by an amplitude modulated laser. The TCSPC module is
triggered by the frequency generator which controls the AOM that modulates the drive
laser. This synchronizes the mechanical motion to the TCSPC module. PL from the QDs,
which are experiencing strain due to the mechanical motion, is detected by the SPAD then
given a time tag and accumulated by the TCSPC module. This provides data on the optical
shift due to the strain caused by the mechanical motion and allows us to correlate the shifts
in individual spin states at each moment in time. This experiment will be discussed in more
detail in ch. 5.2.
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Figure 4.16: Schematic showing eight excitation and emission cycles of a TCSPC exper-
iment. The original waveform is plotted at the top and the individual cycles collect the
random events of photon emission. At the bottom is the final histogram of recorded photon
collection times relative to the laser pulse.



Chapter 5

High Resolution Phonon-Assisted
Quasi-Resonance Fluorescence
Spectroscopy

A video walkthrough of the following technique as well as a full text of the associated ar-
ticle can be viewed at the Journal of Visualized Experiments [65]. This phonon-assisted
spectroscopy technique provides a system with the effective resolution of a resonant mea-
surement, which is advantageous because it affords such resolution to a system that other-
wise would be dispersion limited. Similar to Raman spectroscopy, this technique utilizes
the phonon sidebands of a quantum state to analyze its properties. It is also similar to the
technique of PLE because you are passing an energy state and a laser through one another
and monitoring the emission at a lower energy. The basic principle of the technique is to
sweep the energy of the excitation source through resonance with the ground state transition
of a QD and observe the emission from either the tail of the acoustic phonon resonance or
the −1 LO phonon satellite.

This technique can be achieved by either holding the energy of a transition fixed and
scanning the laser through the transition, or by holding the energy of the laser fixed and
scanning the transition energy through the laser. Tuning the transition energy across the
laser can be performed in two ways. By changing the sample temperature, the transition
energy of the QD is shifted according to Varshni’s law, causing it to pass through the laser
energy [66]. Alternatively, by applying an electric field to the sample, the exciton’s transi-
tion energy Stark shifts through the laser energy [67]. This latter technique is most useful
for indirect transitions where there is a large dipole moment allowing stronger Stark shifts.
Examples of the different methods of this technique are shown in Figures 5.1 - 5.4 and are
described in detail in the following sections.

Themain technique utilizes dielectric short pass and long pass filters, which are placed
in the excitation and detection paths respectively. These filters provide a versatile feature in
that their cutoff frequencies blueshift when the angle of incidence is incremented away from
normal and they are also useful as di-chromatic beam splitters. Therefore, it is possible to
rotate the short pass filter in the excitation path to remove as much of the low energy tail
of the laser as possible. Similarly, it is possible to rotate the long pass filter in the detection
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path to achieve the same goal. The rotation of these filters is key to removing the noise
caused by stray laser light. Once the rotation of the filters has been optimally aligned, a
signal should be present on the screen. This is the -1LO phonon satellite of the ground state
transition. The signal present is due to resonant excitation of the ground state transition
followed by emission of an LO phonon and subsequently emission of a photon. At this
point, one of the three methods of tuning the transition and laser energy through each other
can be employed.

This technique is a convenient method for investigating features on small energy
scales such as homogenous linewidths, fine structure splittings, or anisotropic e-h exchange
splittings. The convenience comes from the technique being applicable to a standard PL
spectroscopy setup. Besides the dielectric filters, no additional changes to the optical path
must be made prior to performing this technique. Additionally, due to the nature of phonons
not carrying any spin information, the optical emission collected by this technique main-
tains its spin polarity. As an example the neutral exciton ground state of a QD has four
degenerate spin states (see Fig. 2.9). The four-fold degeneracy is lifted when the two spin
2 (dark) states separate from the two spin 1 (bright) states due to isotropic exchange. The
degeneracy of the two bright states is further lifted due to the in-plane asymmetry of the
QD, which is inherent to the growth process. The splitting of these two bright states causes
the neutral exciton to have a doublet whose individual peaks can be determined by its spin
configuration. Anisotropic Exchange Splittings (AESs) in these samples can range from 0
- 30 µeV. Due to the spin-free nature of phonons, a properly polarized detection path can
yield information about an isolated transition. Therefore, this technique can be utilized to
reliably read out stored polarization information with high resolution.

5.1 Laser Resolved
When scanning a tunable diode laser across the transition, the resolution is set by either the
energetic step size of the laser or the laser linewidth itself, whichever is larger [6, 52, 68].
To fully resolve the excited state spectrum, the laser’s energetic step size must be smaller
than the linewidth of the emission.

Figure 5.1 shows a comparison of three different PL techniques. The (Blue) curve
depicts a spectrum acquired with a single stage spectrometer and CCD camera. The resolu-
tion in this case is determined by the spectrometer focal length, diffraction grating groove
density, entrance slit width, and CCD pixel width. A spectral resolution of 26 µeV per pixel
results in only a single peak being discernible using this technique. The (Green) curve was
acquired with a triple stage spectrometer and CCD camera. In this case the resolution is
10 µeV per pixel due to the longer travel length over which light can disperse; however it
is still limited by the diffraction gratings, the entrance slit, and the CCD pixel width. The
method has just enough resolution to show signs of a doublet, but the spectral feature is still
not fully resolved. The (Red) curve displays the −1 LO phonon satellite, which was mon-
itored while the laser was scanned through the ground state transition energy. Because the
resolution of this method does not rely on the dispersion of light, but rather the step size of
the laser∼ 1.8 µeV, it is able to capture the individual peaks through a single spectrometer.
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Figure 5.1: Resolution comparison of three different PL techniques [65].

A mathematical fit to the red curve with a double Lorentzian function (Black) provides an
anisotropic e-h exchange splitting of 23.3 ± 0.1 µeV.

Figure 5.2 shows a bias map of the anisotropic exchange splitting collected using
the laser resolved method of high resolution phonon-assisted quasi-resonance fluorescence
spectroscopy. The ground state of the neutral exciton is swept through a fixed laser energy
by varying the voltage applied in 2 mV increments, creating a single horizontal slice of the

Figure 5.2: Bias map of the anisotropic exchange splitting collected by high resolution
phonon-assisted quasi-resonance fluorescence spectroscopy [65].
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map. The laser energy is then incremented by 1.7 µeV and the experiment is repeated. This
happens 37 times to cover the energy range shown. The average of the e-h exchange energy
(the difference between the two green curves) is 25.4 ± 0.8 µeV over this bias region.

5.2 Temperature Resolved
The resolution of this method is determined by both the slope of the curve relating the
energy of the transition to the temperature of the sample and the precision with which one
can tune the temperature of the sample. The procedure is performed by first identifying the
ground state transition of a QD through non-resonant PL. Once the ground state has been
identified, the excitation laser is centered on the transition energy. This is accomplished
quite easily by placing a cursor on the spectrum where the ground state transition shows up

X+1

X0

iX0

Figure 5.3: (Top) Bias map acquired by triple additive electric field dispersed PL spec-
troscopy under non-resonant excitation. Emission from the neutral exciton (X0), indirect
exciton (iX0), and the positive trion (X+1) are identified. The vertical red dashed line at
−1.75V represents the bias applied to the sample for the phonon-assisted technique, and the
horizontal red dashed line is the energy at which the laser was held constant. (Bottom) High
resolution phonon-assisted quasi-resonance fluorescence spectroscopy at the -1 phonon
satellite of the neutral exciton. The transition energy of the exciton was tuned through
a fixed laser energy of 1301.9 meV (952.4 nm) by stepping the temperature. The -1 LO
phonon satellites appear around 36 meV below the zero phonon lines [65].
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and then tuning the diode laser until the peak overlaps with the cursor. At this point, the
center wavelength of the spectrometer is red shifted from the ground-state transition energy
by the equivalent of 1 LO phonon.

5.3 Bias Resolved
Figure 5.4 shows the results of stepping the bias of the neutral exciton to sweep the reso-
nance through the excitation laser. In this method, the resolution is set by the slope of the
curve relating the energy of the transition to the applied electric field and the precision with
which one can tune the applied electric field. The anisotropic electron hole exchange en-
ergy can be clearly discerned from this treatment as well as the lifetime-limited linewidths
of the transitions (8 µeV and 4 µeV respectively).
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Figure 5.4: (a) Maximum PL intensities of the ground state neutral exciton. The quasi-
resonant laser excitation energy is shown as a horizontal red line. (b) The tail of the acoustic
phonon resonance as the exciton is swept through the laser energy. The benefits of a triple
spectrometer in subtractive mode can clearly be seen as some stray laser light is shown less
than 1 meV above the phonon tails. (c) Averaged PL from (b) showing the high resolution
of this technique. The e-h exchange splitting can clearly be seen and the lifetime-limited
linewidths can be easily extracted from fits of the data [65].



Chapter 6

Statically Strained PL

In the previous chapter, we described a method for improving the resolution of a basic
spectroscopy setup by utilizing the interactions of phonons with the electronic transitions
in QDs. In this chapter, we discuss the application of static strain via a home-built cryogenic
atomic force microscope. In this set of experiments, we are able to determine the sensitivity
of the optical transitions in QDs to strain in their local environment. Most crucially, we
quantify the effect of force on the transition energies of QDs embedded in PhC membranes.
The experimental apparatus discussed in this chapter allows direct measurements of the
strain induced PL shift in QDs and can be used to quantitatively compare the sensitivity of
the QDs to strain with other, less direct, methods of inducing strain.

6.1 Sample Heterostructure
The sample used in these experiments was grown by molecular beam epitaxy. The layer
structure is as follows:

30 nm p-GaAs (Be doped)
10 nm i-GaAs

10 nm n-GaAs (Si doped)
70 nm i-GaAs

2.5 nm QDs InAs
20 nm i-GaAs

40 nm n-GaAs (Si doped)
950 nm Al0.7Ga0.3As
n-GaAs Substrate

The resulting n-i-n-i-p diode structure makes use of an extra n-doped layer for the purpose
of reducing the built-in electric field [69]. This has the effect of lower the forward bias
at which the QDs trap charges resulting in smaller currents and less overall heating of the
structure [70, 71].

58
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Figure 6.1: Layer structure diagram displaying the absence of the sacrificial Al0.7Ga0.3As
layer underneath the resonators as well as the n-i-n-i-p diode layer that makes up the res-
onators. The red line is the QD layer.

6.2 Force Calibration
As the sample approaches the AFM probe, a change in reflectivity is picked up by the QPD
as the reflections of the laser light from the AFM probe and the sample surface contribute
toward an interference signal. The intensity of such a signal can be calculated with:

I = I0 cos
2 (kd cosϕ), (6.1)

where I0 is the intensity in the case of constructive interference, k = 2π/λ is the wave
number, d is the distance between the two surfaces, andϕ is the angle of incidence. Knowing
the angle ϕ = 45◦ and the wavelength λ = 890 nm of the incident laser light, an equation
can be made relating the distance between the two surfaces d and the period of the detected
signal, which for the cosine squared function is π (see Fig. 6.2):

kd cosϕ =

√
2πd

λ
= π → d =

λ√
2
. (6.2)

Equation (6.2) can be used to calibrate the position of the sample as a function of voltage,
the ratio of which is known as the piezoelectric constant:

Cpiezo =
d

∆V
. (6.3)

Combining Eqs. (6.1) - (6.3) yields the calibration of the sample stage position as a function
of the applied voltage, which is Cpiezo = (16.7± 1.2) nm/V. It is important to note that this
measurement is the major source of uncertainty in the force calculations.

Now that the applied voltage has been converted to the sample stage position, the
sample can be pressed into the AFM probe to cause a deflection signal at the QPD. If this
is done on a solid part of the sample, then the response curve should result in a linear
relationship between the sample stage position and the normalized voltage at the QPD,

Vnorm = Ssensord. (6.4)
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Figure 6.2: (a) Interference signal caused by the change in reflectivity of a laser beam due
to the decreasing distance between the two surfaces. The black curve represents a fit to
Eq. (6.1) and is used to extract the piezoelectric constant Cpiezo. (b) OBDM performed
on a solid section of the sample. This curve is fit to Eq. (6.4) and is used to convert the
normalized QPD response to a displacement of the AFM probe. The data from this graph
is used to calibrate Fig. 6.4(b).

The slope of this curve is used to calibrate the sensitivity, Ssensor = (6.96 ± 0.06) × 10−4

nm−1, of the QPD to the deflection of the AFM probe d (see Fig. 6.2(b)). Further experi-
ments can be performed where a portion of the sample containing a PhC cavity membrane
is pressed against the AFM probe to determine the deflection in the probe (see Fig. 6.4(b)),
which can then be converted to the displacement of the PhC cavity membrane. More details
on the calibration method can be found in Appendix B.

Lastly, a calculation of the stiffness of either the AFM probe or the PhC cavity mem-
brane can be used to convert the displacements measured in Fig. 6.4(b) to applied forces.
Due to the uncertainty in the stiffness reported by the manufacturer of the AFM probes
kAFM = (12 − 110) N/m used in our experiments, there was less error if we used the
calculation for the stiffness of the membranes to perform this conversion. This indicates
that as long as one can measure the deflection and the geometry of the resonator, then one
can calibrate the force. The stiffness coefficient k for a membrane whose thickness t is
much smaller than its length L and width w, and whose width is 0.9 times its length, can be
calculated using the equation [72]

k = 15
Et3

w2
, (6.5)

where E = 85.5 GPa is the Young’s modulus of GaAs [73]. Since the PhC membrane is
made by etching holes in a solid free-floating membrane of GaAs, the effective Young’s
modulus is expected to be lower than that of bulk. However, this effect is not expected
to reduce the modulus by more than a factor of two at most. Finite element analysis of a
perforated membrane made of GaAs would provide a good estimate for the Young’s mod-
ulus of the membranes, but for now the calculations are done using the Young’s modulus
of bulk GaAs. For a PhC cavity membrane with a width of 7.6 µm, length of 8.3 µm, and
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thickness of 182.5 nm, the stiffness coefficient is calculated to be k = 136 N/m. This value
is obtained by measuring the dimensions of the membrane using SEM. The uncertainties
in these lengths are less than 1% and are therefore ignored in the force calculations due to
larger sources of uncertainty in the displacements. The forces in the membranes are thus
calculated using Hooke’s law:

|F|= k|d|. (6.6)

6.3 Strain Measurements
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Figure 6.3: (a) Microscope image of the AFM probe situated above the membrane. The
excitation laser is positioned to excite QDs near the center of the membrane. (b) Schematic
representation of the instrument. A closed-cycle helium cryostat contains the sample on
three nanopositioners. An AFM probe is mounted above the sample. The orange laser is
used to perform PL on the QDs embedded in the membranes while the red laser is used to
perform the OBDM for measuring displacements. (c) Schematic of the effect strain has on
the PL of the neutral exciton. (d) Photograph of the OBDM apparatus. (e) Photograph of
the entire PL platform situated above the cryostation.

Static strain measurements are performed using a custom-made cryogenic AFM. The AFM
is constructed by inserting a specially designed sample mount that incorporates an over-
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hanging arm above the sample. This arm accommodates an AFM probe. The entire sample
mount is housed inside of a closed-cycle helium cryostat, which allowed the experiments
to be conducted at a temperature of (14.00± 0.01)K. The detection technique for the strain
measurements utilizes the optical beam deflection method (OBDM) where a probe beam is
reflected off the back of the AFM cantilever and onto a QPD. The small displacements in
the AFM cantilever cause deflection at the reflected laser spot on the QPD, generating a po-
sition sensitive readout. A schematic of this setup as well as photographs of the instrument
are shown in Fig. 6.3.

The sample under study is an InAs QD embedded in a GaAs substrate that has been
doped to create an n-i-n-i-p diode. The n-type layers are doped with Si and the p-type layers
are doped with Be. The diode structure enables control over the electrical environment of
the QDs and allows for tuning of the QD electronic states. Below the diode structure lies
a 950 nm region of Si-doped Al0.7Ga0.3As to act as both a blocking layer, to prevent the
tunneling of charges to the n-doped substrate, as well as a sacrificial layer which is to be
removed by chemical etching for the purpose of creating a free-floating membrane out of
the diode section of the sample. The diode region of the sample is further processed by pat-
terning nanostructures using electron-beam lithography and chemical etching techniques.
PhC cavity membranes, photonic waveguides, and tuning fork and bridge structures are pat-
terned into the surface using these techniques. The QDs themselves are positioned 60 nm
from the bottom of the diode region and 120 nm from the top of the diode region, placing
them 30 nm below the mid plane of the diode. This placement allows the QDs to experience
an in-plane tensile strain as the membrane is depressed downward.

The experiments were conducted on the PhC cavity membrane structures and involve
using a 3D stack of nanopositioners to control the position of the sample beneath the AFM
probe. The sample is positioned such that a PhC is directly beneath the tip of the AFM probe
(see the inset in Fig. 6.4(c)) andwill be raised into the probe to produce a displacement of the
PhC cavity membrane which induces an in-plane tensile strain on the QDs. The deflection
of the AFM probe is monitored on the QPD to quantify the displacement of the membrane
(see Fig. 6.4(b)) while a separate optical setup is used to excite and collect PL from the QDs
embedded in the structure. PL bias maps are created by monitoring the PL while stepping
the voltage applied to the sample. After acquiring a reference PL bias map at zero strain, the
sample is stepped vertically into the AFM probe causing both the probe and the membrane
to displace. Another PL bias map is created and the entire process is repeated. A series of
5 PL bias maps were collected as the force on the membrane reached a total of (65± 9) µN
(see Fig. 6.4(a)). After collecting the PL bias maps, the emission signal from the QDs was
analyzed to measure the shift in PL energy. From these experiments, it has been shown that
the QD PL energy shifts ∆E follow a quadratic curve as a function of the force applied to
the membrane F (see Fig. 6.4(c)). The equation for this curve, in units of µeV/µN, is

∆E(F ) = −0.57F 2 − 6.37F. (6.7)

In these experiments, the spectral resolution was 82.5 µeV, due to the parameters of
the spectrometer, and the force resolution was 0.67 µN due to the membrane geometry and
the vibration amplitude of the cryostation. According to Eq. (6.7), a force of 0.67 µNwould
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Figure 6.4: (a) Electric field dispersed PL spectra of QDs embedded in a 180 nm thin
membrane under in-plane tensile strain. From left to right, the panels represent a QD in
a thin membrane experiencing increasing amounts of transverse force as indicated by the
values above each false color map. The solid green bar at the bottom of the leftmost panel
represents a 0.25 V scale for the horizontal axis of each map. The red dashed vertical lines
represent the bias at which the PL energies were recorded. (b) OBDM measurements of
the AFM probe displacement (blue) and the associated membrane displacement (green).
(c) Quadratic fit to the PL energy shift as a function of applied force. The inset shows the
position of the AFM probe above the membrane.
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cause a QD strain shift of 4.52 µeV. Therefore, the spectrometer would limit the minimum
resolvable force of this experiment to 7.68 µN. There are a number of strategies that could
be employed to improve this measurement. A spectrometer of higher resolution, or adding a
scanning Fabry-Perot interferometer into the initial optical setup, could enhance the spectral
resolution down to the regime where the force resolution becomes the limiting factor. At
this point, membranes with smaller stiffness coefficients could be used to further increase
the resolution. If the QDs are positioned farther from the central plane of the membranes,
they would experience a stronger strain causing their PL to shift by greater amounts. This
would also lead to an increase in resolution.

To get an idea of how this system could be utilized as a sensor, I will describe a
thought experiment which compares the sensitivity of the system to a gravitational force.
The fundamental question this thought experiment addresses would be ‘How close to the
mechanical resonator would a 1 kg mass have to be in order to generate the minimally
detectable force? ’The gravitational force between two objects is given by Newtons’s law
of universal gravitation:

F = G
m1m2

r2
, (6.8)

where G = 6.674 × 10−11N(m
kg
)2 is the gravitational constant, m1 = 1kg and m2 are the

masses of the 1kg object and the mass of the mechanical resonator (in this case the mem-
brane), and r is the distance between the two objects. The mass of the membrane can be
calculated by multiplying the density of the material (GaAs) by the volume of the mem-
brane:

m2 = ρV = 5320
kg

m3
(8.3µm)(7.6µm)(0.2µm) = 67pg. (6.9)

The gravitational force between a 1kg mass and a 67pg mass as a function of separation is:

F (r) =
4.48× 10−24

r2
Nm2 (6.10)

Inserting Eq. (6.10) into Eq. (6.7), setting ∆E = 82.5µeV, and solving for r will yield the
required separation of the two objects in order to resolve the strain shift with the current
experimental setup. This yields a separation of r = 0.48nm. This is an impossible sepa-
ration to achieve when considering that 1kg of the densest metal on Earth, which is gold
with a density of 1932 kg/m3, would have a spherical radius of 5cm. This would require
the membrane to be physically inside of the gold sphere in order to feel a strong enough
gravitational attraction to the center of mass in order to yield a measurable strain shift. Im-
provements can be made to the sensitivity by embedding QDs at the high strain point of
a cantilever and adding a large test mass to the free end of the cantilever. The technique
of phonon assisted quasi-resonant fluorescence spectroscopy could also be utilized to im-
prove the sensitivity of the system to optical shifts. Even more sensitivity can be obtained
if one could couple entangled spin states in QDs to the mechanical strain induced by such
a gravitational force. The beginnings of realizing such a spin-mechanical coupling in QDs
embedded in mechanical resonators is discussed in the following chapter.



Chapter 7

Dynamically Strained PL

In the previous chapter, we described the apparatus and results of an experiment to measure
static strain imparted on QDs using the nanoindentation tip of an AFM. Here, we shift
focus and consider the application of dynamic strain via an amplitude-modulated laser. In
this set of experiments, we are able to determine the mechanical resonance frequency of
the nanoscale structure in which the QDs are embedded. We also visualize a few of the
mechanical oscillation modes of a photonic crystal membrane via strain-induced PL shifts.
Most crucially, we discern the effect of strain on hole spin states of the QD, paving the way
for future experiments of higher precision that may eventually measure electron spin-strain
coupling and have applications in quantummetrology and sensing. More information about
this work can be found in an upcoming article [26].

7.1 Sample Heterostructure
The sample used in these experiments was grown by molecular beam epitaxy. The layer
structure is as follows:

30 nm p-GaAs (Be doped)
10 nm i-GaAs

10 nm n-GaAs (Si doped)
70 nm i-GaAs

2.5 nm QDs InAs
30 nm i-GaAs

30 nm n-GaAs (Si doped)
950 nm Al0.7Ga0.3As
n-GaAs Substrate

The resulting n-i-n-i-p diode structure makes use of an extra n-doped layer for the purpose
of reducing the built-in electric field [69]. This has the effect of lowering the forward bias
at which the QDs trap charges resulting in smaller currents and less overall heating of the
structure [70, 71].
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Figure 7.1: Layer structure diagram displaying the absence of the sacrificial Al0.7Ga0.3As
layer underneath the resonators as well as the n-i-n-i-p diode layer that makes up the res-
onators. The red line is the QD layer.

7.2 Displacement Calibration
The mechanical resonator displacement can be estimated through interference measure-
ments. The signal laser focused onto the mechanical resonators will reflect off both the
top and bottom surfaces of the mechanical resonator, as well as the substrate beneath the
sacrificial layer. The superposition of these reflected waves will create an interference pat-
tern at the detector. This interference pattern will shift as a function of the gap between the
mechanical resonator and the substrate. This interference can be utilized in a manner simi-
lar to Ch. 6 where the force and distance were calibrated using interferometric techniques.
By modeling the system as three parallel surfaces undergoing a sinusoidal change in their
relative positions, the calculated interference signal in the time domain can be matched to
the experimental data.

The experiment is performed by focusing two laser beams onto the mechanical res-
onator. The first is for the purpose of driving the mechanical resonances of the structure
and the second is for measuring the interference signal due to the induced oscillations. With
the optical setup, we have the ability to independently control the positioning of these two
laser beams. This reduces cross-talk between the two optical signals as well as allows us to
probe the generated modes of vibration spatially.

Figure 7.2(a) depicts the scenario where a beam reflects off the three surfaces before
recombining at the detector. The optical signal is detected by an APD which is connected
to an oscilloscope that is triggered at the modulation frequency of the drive laser.

When the drive power is low, the reflected signal is sinusoidal because the change in
reflectivity is in a regime where its response to the changing gap size is linear. At higher
powers, however, there is a saturation effect that occurs near the extrema of the sinusoidal
reflectivity curve. This occurs due to the change in reflectivity being periodic with the gap
height h at a given wavelength with a spatial period of λ/2. The saturation occurs when
∆h = 1/4 period because this is where the reflectivity as a function of gap height has very
little change. This yields a saturation gap height of ∆hsat = λ/8 = 118 nm.

Cantilever reflectivity is calculated by modeling the system as a multilayer dielectric
stack. The plane waves of the laser are assumed to have normal incidence relative to the
stack, which consists of three layers: 180 nm of GaAs (the cantilever), a gap of variable
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Figure 7.2: (a) Schematic of the GaAs cantilever with multiple reflections of the signal laser
from the different surfaces. (b) Fabry-Perot model of reflectivity at 941.3 nm as a function
of the gap between the cantilever and the substrate. The black curve shows the reflectivity
when using the index of refraction for GaAs and the red curve uses an effective index of
refraction. (c) Experimental reflectivity data showing the detected signal amplitude as a
function of time for a series of drive laser powers. (d) Fabry-Perot model of the reflectivity
as a function of time for a series of gap oscillation amplitudes [26].

height h (the sacrificial layer), and a semi-infinite layer of GaAs (the substrate). This model
assumes that the angle of the cantilever relative to the substrate is negligible, the entire slab
fits within a constant portion of the Rayleigh length of the beam waste, and ignores the
multiple layers making up the cantilever. Despite these assumptions, the model is still
useful for comparison to the experimental results.

When modeling the system using the index of refraction for bulk GaAs nGaAs = 3.45
at λ = 941.3 nm the model exhibits too high of a fringe contrast relative to the experimental
results. For this reason an effective index of refraction neff = 0.7nGaAs + 0.3nvac, where
nvac = 1 is the vacuum index, is used. This model was chosen because the effective index of
refraction reduces the fringe contrast of the theoretical reflectance tomatch the experimental
data. The explanation for this effective index is that the beam diameter wb at the cantilever
is likely larger than the width of the cantilever wc = 1.0 µm itself. Knowing the width of
the cantilever and the values for the coefficients of the two indices that produce the closest
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match to experimental data, we can calculate the beam width to be wb = 1.43 µm. The
estimated beam width is consistent with the given input beam parameters and the objective
parameters.

Although this theoretical model seems to capture the observed optical response for
small cantilevers that have widths smaller than the diameter of the focused beam spit, it
does not replicate the expected fringe contrast of a cantilever that has a width equal to or
larger than the focused beam spot. For this reason, an alternative theoretical model can
be used for these structures that is based on the interference of a range of plane waves at
various angles focused onto the cantilever rather than a single plane wave. This range of
plane waves causes a broadening of the interference fringes. Reference [74] provides the
Fourier spectrum of a focused Gaussian beam, and is used in conjunction with the calculated
reflection coefficients for each plane wave component to arrive at the integrated Fourier
spectrum, yielding the reflected power. This method retains the original fringe contrast of
the effective index of refraction method, but also works for the case when the cantilever
width is larger than the focused beam spot size. The calculated reflectivity is plotted as a
function of time for a series of maximum sinusoidal displacements ∆h where

h = h0 +∆h sin(ωt) (7.1)

Figure 7.3: Mechanical response amplitude as a function of drive laser wavelength for a
microcantilever. Note the peak in the response curve on resonance with the wetting layer
for the InAs QDs at λ = 870 nm.
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and ω is the mechanical resonance frequency. We have calculated that the reflectivity best
matches the experimental data for the case of a 40 µW drive when ∆h = 180 nm. This
power was chosen because it was closest to the drive power used in the QD experiments.

In addition to calibrating the amplitude of oscillation as a function of drive power, the
amplitude of the interference signal was also measured as a function of drive wavelength.
It is clear that the resonator is driven more intensely at low wavelengths which could be
due to the higher energy photons creating more phonons in the structure. It is interesting to
note that there is a peak in the response curve at λ = 870 nm, the wavelength of light that is
equivalent to the band gap energy of the InAs wetting layer of the QDs. This suggests that a
photothermal effect for the drive mechanism could potentially map out the electronic states
of a QD sample. Figure 7.3 shows the results of this experiment. For each wavelength the
drive power was adjusted to be 20 µW at the sample. However, the laser spot size was not
adjusted at each wavelength to compensate for the refractive effect of the lenses. This could
introduce errors in the form of intensity variations at the sample due to changes in the area
covered by the laser spot, even though the laser power was kept constant.

7.3 Single Phonon Coupling Strength
According to Aspelmeyer et al. [17], the zero point motion for a cantilever at the free end
is

x0 =

√
h̄

2meffΩm

, (7.2)

where meff is the effective mass of the cantilever and Ωm is the mechanical resonance
frequency. Equating the potential energy of the cantilever to the kinetic energy,

U =
1

2
meffΩ

2
mx

2 = T =
1

2
mΩ2

m⟨d2⟩, (7.3)

where ⟨d2⟩ is the average of the square of the displacement over the cantilever andm is the
total mass of the cantilever, results in an effective mass of

meff = m
⟨d2⟩
x2

. (7.4)

Since x is defined as the displacement at the tip of the cantilever, we obtainmeff = 0.3m,
where the total mass is m = 1.38 × 10−14 kg. This yields a zero-point motion of x0 = 95
fm. Through the use of finite element analysis, the zero-point strain can be calculated at the
position of the QD for a given tip displacement. The results of our model yield a zero-point
strain of ϵ0 = 1.25 × 10−10 and a single phonon coupling strength of g0 = Gϵ0 = 2 kHz,
where G = 16.5 THz/strain.

7.4 Strain Measurements
The first step was to measure the mechanical resonance spectra of the resonators to gather
the frequencies of the various vibrational modes. Figure 7.4 shows a SEM image of a mi-
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crocantilever along with the calculated strain profile, the mechanical resonance spectrum
for a tuning fork along with a closeup of the fundamental mode, and PL from the negative
trion transition of a QD embedded at the high strain point of a tuning fork. One will notice
that the PL has a strong shift in transition energy when the micro resonator is driven on
resonance with the fundamental mode. The resonators were driven by focusing an ampli-
tude modulated drive laser at the point of contact between the micro resonators and the bulk
of the sample. A signal laser was then positioned at the free end of the structure because
this is the point of highest amplitude. The reflection of the signal laser would subsequently
be modulated by the mechanical motion of the resonator. To perform PL, the signal laser
would instead be used to optically excite the electronic states of a QD near the point of

Q ⇠ 3000
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Figure 7.4: (a) SEM image of a cantilever shown with the estimated position of the QD
studied on the left accompanied by a colormap on the right displaying the axial strain at
the QD layer calculated using a finite element method. The colorbar has a scale of 10−4

fractional change in length. (b) Mechanical resonance spectrum of a tuning fork structure
measured by a spectrum analyzer. (c) Closeup of the fundamental mode of a tuning fork
structure. The red curve is a Lorentzian fit to the data and the fit parameters indicate a
quality factor of Q ∼ 3000. (d) PL emission of a QD in a tuning fork as the frequency of
the drive laser is swept through the mechanical resonance [26].
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contact between the mechanical resonator and the supporting material.
The next measurements probing the strain-induced PL shifts of QDs embedded in

mechanical resonators sought to uncover the effect the QD position on the magnitude of
the shift. To do this, the membranes were driven by an amplitude modulated laser near the
middle of the long edge, at the drain lines (or holes), to inducemechanical motion. A second
probe laser was used to excite the electronic states of the QDs along the waveguide. The
PL from the excited QDs would travel down the waveguide and exit the structure along
one of the output couplers. This PL is collected by a microscope objective and sent to
spectroscopic equipment for analysis. The probe laser is moved along the waveguide to
excite QDs at varying positions along the membrane. From this experiment we were able
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Figure 7.5: (a) SEM image of a PhC membrane structure with a waveguide, two cavities,
and output couplers patterned into the surface. For this pattern, the sacrificial layer was
removed through drain lines. (b) SEM image of a PhCmembrane containing a single cavity.
For this pattern, the sacrificial layer was removed through drain holes. (c) Strain induced
PL shift as a function of the position of QDs along a membrane. The images on the right
show colormaps of the displacement of the first three modes [13].
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to map out the strain shift in the PL of the QDs as a function of their position along the
membrane as well as the optical driving frequency used to induce the mechanical motion.
Figure 7.5 shows the results of this experiment for the first three modes of a PhCmembrane.
It can be seen that the strain shift of the PL in these QDs follows the displacement of the
membrane quite closely for the first three fundamental modes. Wherever the displacement
is large, the strain shift is large.

After observing the effect strain has on the electronic states of a QD, our focus shifted
toward observing the effect of strain on the spin states. To perform this experiment, the
negative trion to bare electron transitions were chosen as the prime candidates. These tran-
sitions were chosen due to the fact that the excited state has a pair of electrons locked in
a spin singlet, leaving only the spin of the hole as a variable, while the ground state of the
transition has a single hole. By Zeeman splitting the spin states with a 6T magnetic field
oriented perpendicular to the growth direction of the QDs (Voigt geometry), the transition
energies of the four possible recombinations were measured. Taking the difference between
peaks 1 and 2 or 3 and 4 would yield the value of the hole spin splitting, while taking the
difference between peaks 1 and 3 or 2 and 4 would yield the electron spin splittings. Figure
7.6 shows the transitions of interest as well as a high resolution PL spectrum of the different
transitions of a negative trion. The high resolution PL was collected through a Fabry-Perot
with a resolution of ∼ 9 µeV, dispersed by a 750 mm spectrometer, and detected by a LN
cooled CCD camera.

Themost recent experiments performed utilized TCSPC tomeasure the strain shifts of
the electron and hole spins undergoing mechanical oscillations. Figure 7.7(a) shows the PL
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Figure 7.6: (Left) Simple energy diagram of the spin states of a negative trion X−1 un-
der a magnetic field and the possible transitions. (Right) High resolution PL spectrum of
the negative trion under a magnetic field. The possible transitions have been labeled and
correspond to those on the left [13].
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emission from the transitions of a negative trion as a function of time for an entire period
of oscillation of the mechanical resonator, which in this case was a tuning fork structure
modulated at its fundamental vibrational mode. The main finding of this experiment is
displayed in Fig. 7.7(b), where the spin splitting for the holes exhibit a noticeable shift
along with the overall electronic transitions of the negative trion, while the electron spin
splittings appear to stay relatively constant. This is attributed to the spin-orbit coupling of
the hole states in a semiconductor crystal. Electrons occupying the conduction band are in
s-like orbitals, while the electrons (holes) occupying the valence band are in p-like orbitals
which exhibit spin-orbit coupling. For this reason, the strain coupling of the electron spins is
sometimes below the limit of what can be experimentally measured and has been estimated
to be roughly 3-4 times weaker than that of the hole spins.

In semiconductor QDs, the charges are strongly confined along the growth direction,
and through spin-orbit coupling can cause the p-like orbitals of the holes to preferentially
orient themselves along this axis. With the application of an in-plane magnetic field, the
hole spins slightly shift away from vertical alignment; however differences between differ-
ent atomic locations average out the vertical component, yielding a cumulative spin aligned
closer to the in-plane magnetic field. By applying strain, the individual hole spins shift in
alignment either closer or farther from a vertical orientation. This has the effect of changing
the strength by which the spins couple to the magnetic field, causing a shift in the Zeeman
splittings.

At first glance, it is apparent that the coupling of hole spins to strain is much weaker
than that of the electronic transitions (∼ 1−4%). However, hole spin coherence times have
been shown to be about 3 orders of magnitude longer than those of electronic transitions
τh,spin ∼ τelectronic×103 ∼ 1µs [75, 76, 77]. This suggests that hole spins can bemuchmore
sensitive to strain than the electronic transitions if one takes advantage of the longer hole
spin coherence times. The experiments we have performed thus far utilize the techniques
of PL and do not make use of the advantages gained by the longer coherence times. There
are other experimental techniques which could be performed that would take advantage of
this longer-lived transition, namely Raman spin flip spectroscopy [71, 78, 79] or Ramsey
fringe interferometry [80, 81, 82].

By converting the zero point motion of the cantilever to the strain felt at the QD, we
are able to calculate the coupling strength of the hole spin to a single quantum of mechanical
motion g0 = 2 kHz. This value is orders of magnitude stronger than the spin-strain coupling
of similar quantum systems such as nitrogen vacancy centers in diamond (g0 = 0.04 - 2
Hz) [83, 84, 85, 86]. This value could be increased further by shrinking the size of the
mechanical resonator. If the value of g0 could reach the MHz regime, then the spin-strain
coupling of the zero point motion would be comparable to the coherence times of the spins
themselves. This would open the door to quantum systems sensitive to the motion on the
order of single phonons. These results suggest that QDs embedded in mechanical systems
are a promising candidate for spin-mechanical couplings that allow access to the quantum
limits of motion, and could advance the fields of quantum sensing and coupled quantum
systems.
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Figure 7.7: (a) TCSPCmeasurement of the individual spin states of the negative trion under
6T magnetic field and as a function of the oscillation period of the fundamental mode of
the mechanical resonator [13]. (b) Electron and hole spin splittings as a function of the
oscillation period of the mechanical resonator [13]. The solid red line indicates a sinusoidal
fit to the hole data. (c) Ratio of the change in hole Zeeman splitting to the change in optical
transition energy as a function of the hole Zeeman splitting for 9 different QDs. Red circles
indicate that only one set of lines could be measured, either inner or outer. For these cases,
∆Ee is assumed to be negligible to find ∆Eh. Open (closed) circles indicate the hole and
optical transition shifts are out of phase (in phase). The average drive power varies from
20-40 µW for different QDs, and the PL laser power is 5 µW [26].



Chapter 8

Conclusion

Throughout this dissertation, many techniques of optical spectroscopy were discussed along
with their benefits towards probing the quantum mechanical properties of QDs. Along with
the techniques of optical spectroscopy, this dissertation demonstrated the use of a cryogenic
based atomic force microscope to impart µN forces on PhCmembranes containing QDs and
reported on the observations of the strain induced shifts that occurred as a result. Such a
direct method for probing the coupling of strain to the optical properties of QDs is ideal
for numerous reasons. The method does not rely on any external fields which could act
as sources of noise towards the measurements of the optical transitions of the QDs. The
optical beam deflection method for measuring the displacement of the cantilever has a low
setup cost relative to other optical techniques of straining the mechanical system which
rely on expensive optical modulators, spectrum analyzers, and time correlated detection
devices. The technique of nanoindentation atomic force microscopy was utilized to gather
information on the sensitivity of the quantum system to the mechanically induced strain.

In addition to the atomic force microscope induced strain shifts, all-optical methods
were also utilized to study the strain shifts in QDs. In particular, the spin states of QDs
embedded in microcantilevers were observed to shift along with the electronic states when
strained. Most notably, the spin splittings of holes in QDs exhibit strain shifts and demon-
strate the coupling of quantum mechanical systems to mechanical resonators.

In summary, QDs embedded in mechanical resonator systems have the potential to
enable a new class of precision sensors. These devices can be tailored to exhibit character-
istics sensitive to specific aspects of the environment. The relatively high sensitivity of the
QD properties to mechanical motion compared to other quantum systems, such as nitrogen
vacancy centers in diamond, deems them worthy candidates for a number of technologies,
including accelerometry for inertial navigation, and gravitational gradiometry for detection
of shielded nuclear materials. Since QDs embedded in mechanical resonators are sensitive
to the motion of the structure, one could imagine that the reverse could also be possible. In
particular, the macroscopic mechanical motion could be coherently coupled to the quantum
mechanical degrees of freedom of the QD system. Another avenue of research is to under-
stand the relationship between heat and energy within the hybrid system. It may be possible
to study head dissipation in nanoscale systems. There also exists potential for the research
of these devices to advance the field of quantum information processing.
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Appendix A

Derivation of the Euler-Bernoulli Beam
Theory

The material described in this chapter adopts the formalism of chapter 5 of Bauchau and
Craig’s Structural Analysis [87]. A beam is defined as a rigid object whose length is much
larger than its extent in the other two dimensions. The beam’s axis runs along the longest
dimension. Euler-Bernoulli beam theory examines the relationships between an applied
force at a position along the beam and the corresponding stress and strain fields that result.
This theory begins with the assumptions that the beam is infinitely rigid within the plane
of a cross-section perpendicular to the beam axis, and that the cross-section remains plane
and normal to the beam axis during deformation. Empirical data demonstrates that these
assumptions are generally valid for long, thin beams made of isotropic materials with rigid
cross-sections. Figure A.1 depicts such a beam before and after applying an end bending
momentM .
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Figure A.1: Schematic of a simple beam in (a) unbent and (b) bent positions. The beam has
length L, width w, and thickness t. The bending momentsM cause the beam axis to make
a circular arc with center C.
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Figure A.2: Schematic of the (a) rigid-body translation and the (b,c) two rigid-body rota-
tions of the axial displacement field.

We define a Cartesian coordinate system at the center of the cross-section with the
unit vectors (̂ı, ȷ̂, k̂). The displacement of an arbitrary segment of the beam in each of
these three directions is uijk(x, y, z), where x,y, and z are the coordinates. Examining
the aforementioned assumptions further, we can deduce specific constraints that allow us to
simplify the mathematical model. Due to the assumption of infinite rigidity, the displace-
ment field within the plane of the cross-section is composed of two rigid-body translations
ui(x, y, z) = ūi(y) and uk(x, y, z) = ūk(y). The planar assumption restricts the axial dis-
placement field to one rigid-body translation ūj(y) and two rigid-body rotations ϕi(y) and
ϕk(y), as in Figs. A.2 and A.3. These results yield a displacement field of:

ui(x, y, z) = ūi(y), (A.1)
uj(x, y, z) = ūj(y) + xϕk(y)− zϕi(y), (A.2)
uk(x, y, z) = ūk(y). (A.3)

Therefore, the entire displacement field of the beam can be analyzed using the three cross-
sectional displacements ūi(y), ūj(y), ūk(y) and their derivatives with respect to y. The nor-
mality assumption allows us to relate the slope of the beam to the rotation of the cross-
section as depicted in Eq. (A.4) and Fig. A.3:

ϕi =
dūk
dy

, ϕk = −dūi
dy

. (A.4)

Due to these three assumptions, the Euler-Bernoulli beam theory allows for a one-
dimensional beam model where the unknown displacements are all a function of a single
variable, the beam-axis coordinate y. If we consider the strains ϵ and angular distortions γ
along the in-plane axes, we find:

ϵk =
∂uk
∂z

= 0, ϵi =
∂ui
∂x

= 0, γki =
∂uk
∂x

+
∂ui
∂z

= 0. (A.5)

The in-plane elongations must vanish due to the first assumption of the theory, which states
that the cross-section is infinitely rigid in its own plane. As a consequence of the cross-



APPENDIX A. DERIVATION OF THE EULER-BERNOULLI BEAM THEORY 78

k̂

k̂

ı̂ |̂

ı̂

|̂

�i �k

dūk
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Figure A.3: Relationship between the slope of the beam and the cross-sectional rotation.

section remaining normal during deformation, the transverse angular distortions must van-
ish:

γjk =
∂uj
∂z

+
∂uk
∂y

= 0, γji =
∂uj
∂x

+
∂ui
∂y

= 0. (A.6)

Lastly, the axial strain field results from the assumption that the cross-section must remain
plane during deformation:

ϵj =
∂uj
∂y

=
dūj(y)

dy
− x

d2ūi(y)

dy2
− z

d2ūk(y)

dy2
. (A.7)

We can simplify this equation by rewriting some of the terms. To do this, we introduce
the cross-sectional axial strain ϵ̄j(y) and the cross-sectional curvatures κi and κk about the
x and z axes respectively:

ϵ̄j(y) =
dūj(y)

dy
, κi(y) =

d2ūk(y)

dy2
, κk(y) = −d

2ūi(y)

dy2
. (A.8)

Substituting these terms into Eq. (A.7) yields

ϵj(x, y, z) = ϵ̄j(y) + xκk(y)− zκi(y). (A.9)

So far, we have described the displacement and strain in a beam. We can now intro-
duce the stress by examining the internal forces that are generated by the bending. There
are three resultant forces and therefore three corresponding stresses. An axial force,Nj(y),
acts along the ȷ̂ axis, while the two transverse shearing forces, Vi(y) and Vk(y), act along
the ı̂ and k̂ axes, respectively. The axial force is the result of a stress normal to the (̂ı, k̂)
plane and is defined as

Nj(y) =

∫
σj(x, y, z)dA, (A.10)

where A is the cross-sectional area of the beam. The two transverse forces are due to shear
stresses and are defined as

Vi(y) =

∫
τji(x, y, z)dA, Vk(y) =

∫
τjk(x, y, z)dA. (A.11)
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Lastly, there are two bending moments that result from the normal stress,Mi(y) andMk(y).
They are defined as

Mi(y) = −
∫
zσj(x, y, z)dA, Mk(y) =

∫
xσj(x, y, z)dA. (A.12)

The negative sign inMi(y) stems from the choice of calling the bending moments positive
when they are concave up as viewed from the positive side of the axis. Now that we have
a mathematical framework, we can apply it to the transverse motion of a beam.

Transverse Motion of Beams

Here we start with a cantilevered beam that is clamped on one end and free on the other, as
in Fig. A.4. The three assumptions of the Euler-Bernoulli beam theory still apply here and
allow us to write out the displacement field. Since there are no forces in the ı̂ direction, the
(ȷ̂, k̂) plane is a plane of symmetry:

ui(x, y, z) = 0, (A.13)

uj(x, y, z) = −zdūk(y)
dy

, (A.14)

uk(x, y, z) = ūk(y). (A.15)

This results in an axial strain field of:

ϵj(x, y, z) = −zκi(y). (A.16)

The transverse loading of a beam yields only one stress resultant and one bending
moment: the shear stress along the axis the load is applied, Vk(y), and the bending moment
normal to the plane of symmetry,Mi(y). It is also assumed that the material comprising the
beam is made up of a linearly elastic material such that the elastic modulus is simply the
ratio of the stress to the strain. With this in mind, the axial strain can be written as

σj(x, y, z) = Eϵj(x, y, z) = −Ezκi(y). (A.17)

k̂

ı̂ |̂

F

L

Figure A.4: Schematic of an unbent beam of length L with concentrated transverse load F
and coordinate system orientation indicated. The left end of the beam is clamped while the
right end is free to move.
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For a transverse load the beam does not experience an axial force and therefore

Nj(y) =

∫
σj(x, y, z)dA = −κi(y)

∫
EzdA = 0. (A.18)

Because the curvature κi(y) ̸= 0, the integral must vanish:∫
EzdA = 0. (A.19)

The axial strain can be inserted into the bending moment equation for evaluation:

Mi(y) = κi(y)

∫
Ez2dA = κi(y)H

c
11. (A.20)

Hc
11 is the centroidal bending stiffness about axis ı̂ and is defined as

Hc
11 =

∫
Ez2dA. (A.21)

For a homogenous material, the elastic modulus is a constant and can be removed from the
integral, leaving behind the area second moment, Ic11:

Ic11 =

∫
z2dA. (A.22)

Here, the area second moment can be evaluated using Cartesian coordinates:

Ic11 =

∫ w/2

−w/2

∫ t/2

−t/2

z2dzdx =
1

12
wt3. (A.23)

The z-axis is integrated over the cross-sectional thickness, −t/2 to +t/2, while the x-axis
is integrated over the cross-sectional width, from −w/2 to +w/2.

Static Solution

By constructing a shear load and bending moment diagram on an infinitesimal segment of
the beam (see Fig. A.5), these forces and moments can be summed into their respective
equilibrium equations. For the case of a cantilever beam with a load concentrated at the
free end, the sum of forces must be zero everywhere:

dVk(y) + Fδ(y − L)dy = 0. (A.24)

In this equation, δ(y −L) is the delta function, which equals one at the position y = L and
zero everywhere else. The sum of torques due to the shear forces and bending moments
yields

dMi(y)− Vk(y)dy = 0. (A.25)
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Figure A.5: Shear load, Vk(y), and bending moment, Mi(y), diagram for an infinitesimal
segment of the cantilevered beam. Fδ(y − L)dy is a concentrated load treated as a dis-
tributed force. The delta function ensures that the load only takes effect at y = L

These equilibrium equations can be combined to create

d2Mi(y)

dy2
=
dVk(y)

dy
= −Fδ(y − L). (A.26)

Substituting the area second moment, elastic modulus, and the beam curvature for the bend-
ing moment yields the following fourth order ordinary differential equation:

d2

dy2

[
EIc11

d2ūk(y)

dy2

]
= −Fδ(y − L). (A.27)

The elastic modulus will be treated as a constant and the area secondmoment is independent
of y, allowing it to be pulled through the derivative:

EIc11
d4ūk(y)

dy4
= −Fδ(y − L). (A.28)

The solution to this differential equation involves integration constants that must be ob-
tained using boundary conditions. The boundary conditions are a consequence of the sup-
ports and loads distributed throughout the beam. For a cantilevered beam with a concen-
trated load on the free end, the boundary conditions are

ūk(y)|y=0 = 0,
dūk(y)

dy

∣∣∣∣
y=0

= 0,
d2ūk(y)

dy2

∣∣∣∣
y=L

= 0. (A.29)

The first boundary condition comes from the assumption that the fixed end of the cantilever
cannot move. The second boundary condition states that there must be zero slope at the
fixed end, which is a consequence of the first boundary condition. The third boundary
condition states that the bending moment disappears at the loaded end. The solution to this
differential equation is

ūk(y) =
F

6EIc11

(
3Ly2 − y3

)
. (A.30)
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Substituting in the area second moment of inertia and evaluating the displacement at the
loaded end of the cantilever yields

ūk(y = L) =
4FL3

Ewt3
. (A.31)

This equation can be used to determine the amount of force applied to an AFM probe for a
known probe tip displacement.

Dynamic Solution

Dynamic solutions to the static beam equation can be modeled by choosing time-dependent
loading functions. For example, the free vibration of a cantilever beam can be modeled by
introducing the load function

F (y, t) = µ
∂2ūk(y, t)

∂t2
, (A.32)

where µ is the linear mass density of the beam.1 With the substitution of this time-dependent
loading, the beam equation, Eq. (A.28), becomes a partial differential equation:

EIc11
∂4ūk(y, t)

∂y4
= −µ∂

2ūk(y, t)

∂t2
. (A.33)

Dividing by the linear mass density yields

α2∂
4ūk(y, t)

∂y4
= −∂

2ūk(y, t)

∂t2
, (A.34)

where α2 = EIc11/µ. This equation is a coupled partial differential equation that is fourth
order in space and second order in time. However, using separation of variables, we trans-
form the partial differential equation into two ordinary differential equations. If we let
ūk(y, t) = Z(y)T (t), then

α2∂
4Z(y)T (t)

∂y4
= −∂

2Z(y)T (t)

∂t2
. (A.35)

We now isolate each variable on separate sides of the equation. The partial derivatives
become total derivatives, the solutions of which must be a constant. Let this constant be ω2

such that
α2

Z(y)

d4Z(y)

dy4
= − 1

T (t)

d2T (t)

dt2
= ω2. (A.36)

1It is important to note that the linear mass density of the beam results in an effective mass causing the
mathematics to deviate from the massless spring model.
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Temporal Solution

The result for the time-dependent expression is the classical harmonic oscillator:

d2T (t)

dt2
= −ω2T (t), (A.37)

T (t) = C0 cos (ωt) + C1 sin (ωt). (A.38)

The constants C0 and C1 can be solved for given the initial position and velocity of the
beam. If we treat Z(y) as if it carries the information regarding the shape of the beam, then
we can treat T (t) as the amplitude of the deflection of the beam as a function of time. This
treatment effectively normalizes T (t) between −1 and 1, forcing the integration constant
C0 = 1. If we setup the problem with the beam having a slightly bent shape and zero initial
velocity, then

C1 = 0, (A.39)

and we can rewrite Eq. (A.38) as

T (t) = cos (ωt). (A.40)

Spatial Solution

For the solution of the position-dependent expression, we first set β4 = ω2/α2:

d4Z(y)

dy4
= β4Z(y). (A.41)

Here, the solution can be exponential or sinusoidal, so we need a linear combination of all
possible solutions. This yields

Z(y) = C2e
iβy + C3e

−iβy + C4e
βy + C5e

−βy, (A.42)

where the constants C2, C3, C4, and C5 can be solved for with the boundary conditions.
This equation becomes easier to solve if we cast it in its trigonometric form:

Z(y) = C2 sin (βy) + C3 cos (βy) + C4 sinh (βy) + C5 cosh (βy). (A.43)

Before we discuss the boundary conditions, it will be useful to calculate the first three
derivatives of this equation:

dZ(y)

dy
= β [C2 cos (βy)− C3 sin (βy) + C4 cosh (βy) + C5 sinh (βy)] , (A.44)

d2Z(y)

dy2
= β2 [−C2 sin (βy)− C3 cos (βy) + C4 sinh (βy) + C5 cosh (βy)] , (A.45)

d3Z(y)

dy3
= β3 [−C2 cos (βy) + C3 sin (βy) + C4 cosh (βy) + C5 sinh (βy)] . (A.46)
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For completeness, it is shown that the fourth derivative is equal to β4Z(y):

d4Z(y)

dy4
= β4 [C2 sin (βy) + C3 cos (βy) + C4 sinh (βy) + C5 cosh (βy)]

= β4Z(y).

(A.47)

The clamped end of the cantilever is fixed in place and cannot undergo any displace-
ment. Since it cannot undergo any displacement, it stands to reason that it also cannot have
a first derivative either. Therefore

Z|y=0= 0, (A.48)

and
dZ

dy

∣∣∣∣
y=0

= 0. (A.49)

Combining Eqs. (A.48) and (A.43) results in

C3 = −C5, (A.50)

and combining Eqs. (A.49) and (A.44) results in

C2 = −C4. (A.51)

At the free end of the beam, both the bending moment and the shear force must dis-
appear:

d2Z

dy2

∣∣∣∣
y=L

= 0, (A.52)

and
−EIc11

d3Z

dy3

∣∣∣∣
y=L

= 0. (A.53)

Combining Eqs. (A.52) and (A.45) results in

C4 sin (βL) + C5 cos (βL) + C4 sinh (βL) + C5 cosh (βL) = 0, (A.54)

and combining Eqs. (A.53) and (A.46) results in

C4 cos (βL)− C5 sin (βL) + C4 cosh (βL) + C5 sinh (βL) = 0. (A.55)

By rearranging Eq. (A.54) we find

C4 = −C5
cos (βL) + cosh (βL)

sin (βL) + sinh (βL)
. (A.56)

Lastly, by rearranging Eq. (A.55) we obtain the following

C4 = C5
sin (βL)− sinh (βL)

cos (βL) + cosh (βL)
. (A.57)
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Substituting Eqs. (A.50), (A.51), and (A.56) into Eq. (A.43) yields

Z(y) = C5

[(
sinh (βy)− sin (βy)

)[ sin (βL)− sinh (βL)

cos (βL) + cosh (βL)

]
+
(
cosh (βy)− cos (βy)

)]
.

(A.58)

To solve for the final unknown constant C5, we set the static beam equation (Eq.
(A.30)) equal to the dynamic beam equation (Eq. (A.58)) at t = 0 and y = L. Therefore,

C5 =
FL3

[
cos (βL) + cosh (βL)

]
3EIc11

[
cosh2 (βL)− cos2 (βL)−

(
sin (βL)− sinh (βL)

)2] . (A.59)

The trigonometric portion of this equation reduces to 1/2 and a factor of ±1 depending on
the mode number n:

Cn =
FL3

6EIc11
(−1)n, n ∈ N. (A.60)

The natural modes of the cantilever are obtained by combining Eqs. (A.56) and (A.57),

− cos (βL) + cosh (βL)

sin (βL) + sinh (βL)
=

sin (βL)− sinh (βL)

cos (βL) + cosh (βL)
. (A.61)

Multiplying by the denominators results in

cos2 (βL) + 2 cos (βL) cosh (βL) + cosh2 (βL) = − sin2 (βL) + sinh2 (βL). (A.62)

Rearranging this equation yields[
sinh2 (βL)− cosh2 (βL)

]
=

[
sin2 (βL) + cos2 (βL)

]
+ 2 cos (βL) cosh (βL). (A.63)

Simplification leaves
cos (βL) cosh (βL) + 1 = 0. (A.64)

The vibrational modes can be determined by plotting Eq. (A.64) and looking for the
locations where the curve crosses the x-axis. The first four vibrational modes are

β1L = 1.875, (A.65)
β2L = 4.6941, (A.66)
β3L = 7.8548, (A.67)
β4L = 10.9955. (A.68)

Substituting Eqs. (A.65)–(A.68) into Eq. (A.59) and then substituting Eq. (A.59)
into Eq. (A.58) enables us to draw the shapes of the first four modes (see Fig. A.6).

n = 1 n = 2 n = 3 n = 4

Figure A.6: Schematic of the first four vibrational modes of a clamped cantilever.
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Effective Mass Consideration

The methods of this section have been adapted from chapter 2.6 of Voigtländer’s Scanning
Probe Microscopy [88]. Until now, the entire derivation of a cantilever’s motion has as-
sumed an idealized system with a massless cantilever and a massm located at the end. The
real situation is such that the cantilever will have its mass distributed throughout its length.
The concept of effective mass takes this continuous mass distribution and treats it as if it
is concentrated at the end of the cantilever. For this derivation, it is assumed that the mass
is distributed homogeneously along the cantilever’s length. We can calculate the kinetic
energy T (y) of a point along the cantilever system using the mass mcant(y) and velocity
v(y) of that point:

T (y) =
1

2
mcant(y)v

2(y). (A.69)

The kinetic energy of an infinitesimal segment of mass dm can be found by taking the
derivative of T (y) with respect tomcant(y):

dT (y) =
1

2
v2(y)dmcant. (A.70)

Because of the homogeneous distribution of mass, the infinitesimal segment of cantilever
mass dmcant can be related to an infinitesimal segment of cantilever length dy by the rela-
tionship

dmcant =
mcant

L
dy. (A.71)

The velocity distribution along the beam is proportional to the deflection ūk(y), Eq. (A.30):

v(y) = cūk(y) = c
2F

Ewt3
(3Ly2 − y3). (A.72)

The constant of proportionality c is determined from the condition v(y = L) = vmax:

c =
Ewt3

4FL3
vmax. (A.73)

We can now substitute Eq. (A.73) into Eq. (A.72) and then substitute Eqs. (A.72) and
(A.71) into Eq. (A.70) and integrate to obtain

T =
1

2

∫ L

0

mcant

L
(
vmax

2L3
)2(3Ly2 − y3)2dy =

1

2
(
33

140
mcant)v

2
max =

1

2
meffv

2
max. (A.74)

In this equation meff is the effective mass of the cantilever. This effective mass must be
used in the equation of motion and all subsequently derived expressions such as the natural
oscillator frequency

ω0 =

√
k

meff

. (A.75)

It is important to note that if an additional, point-like, mass M is added to the tip of the
cantilever, then the effective mass becomesmeff = ( 33

140
mcant +M).



Appendix B

Derivation of Atomic Force Microscope
Equations

The most common method of detection for AFMs is the beam deflection method. This
involves focusing a collimated laser beam onto the end of a cantilever and detecting the
reflection with a position-sensitive detector. This type of detector contains two semicircular
photodiodes separated by a small distance, as seen in Fig. B.1. By initially aligning the
reflected laser beam onto the center of the detector, the difference in optical signals SA−SB

measured by the two photodiodes,A andB, is proportional to the displacement of the center
of the beam ∆q relative to the axis splitting the photodiodes.

Sensitivity of the Beam Deflection Method

This section follows the methods of chapter 12.3 of Bert Voigtländer’s Scanning Probe
Microscopy [89]. Prior to bending the cantilever, the position-sensitive detector is aligned
such that the reflected laser beam illuminates the center of the detector, yielding an output
of 0 V. Displacing the tip of the cantilever by an amount∆z causes the cantilever to bend by
an amount θ. Since this increases the angle of incidence of the laser beam by the amount θ,
the angle of reflection also increases by the same amount. Therefore, the angular deflection
of the laser beam is twice the angular deflection of the cantilever. Due to the geometry of
the optical setup, the displacement of the laser beam along the detector is

∆q = 2θLdet. (B.1)

A relationship between the cantilever displacement ∆z and the deflection angle θ can be
arrived at by combining the solution to the static beam equation, Eq. A.30 derived in Ap-
pendix A,

∆z(y) = ūk(y) =
F

6EIc11

(
3Ly2 − y3

)
, (B.2)

with its first derivative with respect to y,

θ(y) =
dūk(y)

dy
=

F

6EIc11

(
6Ly − 3y2

)
, (B.3)
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Figure B.1: Schematic of the beam deflection method. The distances shown are necessary
to calculate the sensitivity of the measurement.

and setting y = L,
θ =

3

2L
∆z. (B.4)

The laser beam is initially collimated to a diameter D0 and is focused by a lens of
focal length Lfoc onto the end of the cantilever. The diffraction-limited spot size of the
focused beam is

d =
4λ

π

Lfoc

D0

. (B.5)

Assuming the beam width at the focal point is just smaller than the width of the cantilever,
the width of the beam at the photodiode will be diffraction-limited to

D =
4λ

π

Ldet

d
. (B.6)

For the sake of simplicity, it is assumed that the photodiode is uniformly irradiated
over the entire beam spot and also that the shape of the beam spot is a square of side D.
The power per unit area illuminating the photodiode is Sarea and it is assumed that the
entire beam width is contained within the area of the photodiode such that the total laser
power is S0 = SareaD

2. When the laser beam is displaced by the amount ∆q, the detector
experiences a difference signal of

SA − SB = Sarea2∆qD. (B.7)

Substituting Eqs. (B.1), (B.4), and (B.6) into Eq. (B.7) yields

SA − SB =
S0

D2
4θLdetD = 6

S0Ldet∆z

LD
=

3π

2

S0d∆z

λL
. (B.8)

Each photodiode produces a photocurrent I , in units of Amperes, proportional to the inci-
dent laser power and the responsivity R of the diode, in units of Amperes per Watt:

IA − IB = R(SA − SB) =
3πS0Rd

2λL
∆z. (B.9)
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There are two outputs from the position-sensitive detector. The first is a voltage Vdiff that
is proportional to product of the difference in photocurrents IA − IB and the gain G of the
transimpedance amplifier, in units of kilovolts per Ampere:

Vdiff = G(IA − IB) = GR(SA − SB). (B.10)

The second is a voltage Vsum that is proportional to the product of the total sum of pho-
tocurrents IA + IB and the gain G of the transimpedance amplifier:

Vsum = G(IA + IB) = GR(SA + SB) = GRS0. (B.11)

To remove any fluctuations due to the laser power, the difference is normalized by the sum:

Vnorm =
Vdiff
Vsum

=
(SA − SB)

S0

=
3πd

2λL
∆z = Ssensor∆z. (B.12)

It can be seen from Eq. (B.12) that the detection sensitivity Ssensor can be increased
by using: a shorter wavelength λ of light, a shorter cantilever L, or by increasing the fo-
cused spot size d. It is important to note that neither the distance from the cantilever to the
photodiode nor the distance from the cantilever to the lens are in this final equation.

Although we have calculated an approximate analytical form for the detection sensi-
tivity, the numerous assumptions made and the many parameters involved suggest experi-
mental measurement is the best approach.

Calibration of Atomic Force Microscope

The methods described here adopt the formalism of chapter 12.5.1 of Bert Voigtländer’s
Scanning ProbeMicroscopy [89]. The beam deflection method is relatively straightforward
and ultimately allows a force F to be measured via the deflection ∆z of a cantilever. The
relationship between the force and the deflection is Hooke’s law F = −K∆z. There are
two calibrations that must be performed to reliably use the beam deflection method. First,
the deflection∆z of the cantilever is not directly measured with this method. A normalized
difference signal Vnorm from the position-sensitive detector is what is actually measured,
although it is proportional to the displacement of the cantilever through Eq. (B.12). The
sensitivity of the sensor Ssensor, being the constant of proportionality, is measured by plot-
ting the equation Vsensor versus ∆z, while the sample is in contact with the AFM probe,
and extracting the slope. The second calibration that must be performed is of the stiffness
coefficient k. AFM probes are often provided with large uncertainties in the stiffness co-
efficient, stemming from the fact that thickness of the cantilever carries the largest relative
uncertainty and the uncertainty in the thickness has the largest effect on the uncertainty of
the stiffness coefficient.

Experimentally determining the sensitivity Ssensor requires knowledge of the dis-
placement∆z of the cantilever. This step is typically performed using piezoelectric nanopo-
sitioners with a known piezoelectric constant Cpiezo. This constant allows for precise posi-
tioning of the sample through the application of a known voltage to the piezo,

∆zpiezo = CpiezoVpiezo. (B.13)
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Figure B.2: Calibration curve for the sensitivity Ssensor of the position detector. (Inset) The
boxed region of the main figure is blown up. In the non-contact regime an interference pat-
tern is observed which is used to calibrate the piezoelectric constant of the nanopositioners.

In the case of my setup, the piezoelectric constant was not known and therefore re-
quired a third calibration step. To the benefit of the measurement technique, an oscilla-
tory pattern was identified in the plots of normalized sensor voltage Vnorm versus applied
nanopositioner voltageVpiezo in the non-contact regime. This oscillatory pattern is attributed
to the interference of light reflected from the cantilever with light reflected from the sample
surface. By analyzing the data in Fig. B.2, two of the three calibrations can be accomplished
from a single data set.

To utilize the interference pattern observed in the non-contact regime, a mathematical
model must be created that accounts for the optical path difference of the light reflected from
the two surfaces. Figure B.3 shows a schematic of the optical path of the laser beam during
the beam deflection measurement. As the sample approaches the AFM probe, the path
length difference

√
2d causes the interference pattern at the detector to shift. If one looks

closely at Fig. B.3 b), it is seen that, in this simplified example, the pattern shifts from one
where there are two bright fringes on the bottom detector and three bright fringes on the
top (bottom image) to one where the number of fringes on each detector has flipped (top
image).

The fringes seen in the interference pattern are a result of the superposition of two
electromagnetic waves. One wave emanates from the surface of the AFM probe Etip, and
another from the sample surface Esample. To determine the relationship between the sam-
ple displacement and the detector signal, we must examine the superposition of these two
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Figure B.3: (a) Schematic showing the optical path of the laser beam as it reflects off the two
surfaces. The laser beam reflected from the cantilever is initially centered on the detector
when the sample is far from contact. (b) As the sample approaches, the change in the path
length difference

√
2d causes a shift in the interference pattern at the detector. It is important

to note that the oscillations in Fig. B.2 are a result of the shifting of this interference pattern
as a function of zsample.

electromagnetic waves. Let us define the electric fields of these electromagnetic waves as
plane waves such that

Etip = E0e
i(ωt−kLtip) and Esample = E0e

i(ωt−kLsample−k
√
2d), (B.14)

where E0 is the magnitude of the electric field, ω is the angular frequency of the wave, k is
the wave number, and Ltip and Lsample are the path lengths from the detector to the AFM
probe tip and the sample, respectively. At the detector these two electric fields are summed:

E = Etip + Esample = E0e
iωt

(
e−ikLtip + e−ikLsample−ik

√
2d
)
. (B.15)

The electric field is not what is sensed by the detector, but rather the intensity of light:

I ∝ |E2|= |EE⋆|= E2
0

(
2 + e−ik(Ltip−(Lsample+

√
2d)) + eik(Ltip−(Lsample+

√
2d))

)
. (B.16)

Trigonometric identities simplify this to

I ∝ 4E2
0 cos

2 (
k

2
(Ltip − (Lsample +

√
2d))). (B.17)

Due to the geometry of the setup, the two lengths Ltip and Lsample are equivalent and Eq.
(B.17) simplifies to

I ∝ 4E2
0 cos

2 (

√
2kd

2
). (B.18)
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As the sample approaches the tip, but prior to making contact, the intensity of light
at the detector will oscillate with maxima occurring anytime the argument of the cosine in
Eq. (B.18) is an integer multiple of π:

√
2kd

2
= nπ, where n ∈ N. (B.19)

Substituting k = 2π/λ for the wave vector and solving for d yields

d =
nλ√
2
. (B.20)

From Fig. B.3 we see that
d = ztip − zsample, (B.21)

and we can set ztip = 0 because the AFM tip is stationary at this time. Therefore, Eq. (B.20)
shows that ∆n = 1 indicates a movement of the sample by the amount

|zsample|=
λ√
2
. (B.22)

Fitting the oscillatory pattern in Fig. B.4 to an equation with the form shown in Eq. (B.18)
results in an accurate measure of the piezoelectric constant Cpiezo.

�Vpiezo =
�p

2Cpiezo

Figure B.4: The voltage difference between local maxima of the interference pattern is
proportional to the wavelength of light λ and inversely proportional to the piezoelectric
constant Cpiezo = (36± 1) nm/V.



APPENDIX B. DERIVATION OF ATOMIC FORCE MICROSCOPE EQUATIONS 93

�
V
n
o
r
m

�ztip

Vnorm = Ssensorztip

Ssensor = (4.2± 0.1)⇥ 10�4nm�1

Figure B.5: With the horizontal axis now in units of distance, the position-sensitive detector
can be calibrated to units of distance as well. This measurement is made against a sample
with negligible elasticity, e.g. a silicon wafer, so that the position of the sample is equal to
the position of the tip zsample = ztip.

Now the voltage applied to the piezoelectric nanopositioning stages can be converted
into the z-position of the sample using Eq. (B.13). Figure B.5 shows the graph after con-
verting the x-axis. This plot can now be used to acquire the sensitivity Ssensor by taking the
inverse of the slope of the straight line corresponding to the contact regime. At this point
the position-sensitive detector and piezoelectric nanopositioning stages have been fully cali-
brated. The final plot, Fig. B.6, shows the position of the tip ztip as a function of the position
of the sample zsample.

At this point it is typical to measure the stiffness coefficient k of the AFM probe by
performing one of the calibration methods described in the literature [90, 91, 92]. The most
straight forward method for arriving at the stiffness coefficient of the AFM probe is by
measuring the dimensions of the cantilever and its resonant frequency and then calculating
its stiffness through the equation

k = meffω
2 = 0.2357Lwtρω2. (B.23)

In this equation, 0.2357 is the effective mass constant derived at the end of Appendix A, L,
w, and t are the length, width, and thickness, ρ is the mass density, and ω is the resonant
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Figure B.6: Fully calibrated setup showing a plot of ztip(zsample).

frequency of the cantilever. The plain view dimensions,L andw, are simple enough to mea-
sure with a microscope setup; however, the thickness t of the cantilever typically requires
the use of a scanning electron microscope to get accurate measurements. Furthermore, the
density ρ of the cantilever may not be assumed to be a constant throughout because most
AFM probes are manufactured with a highly reflective metal coating on the top surface
[93]. For our studies, the AFM probes are manufactured as monolithic silicon, removing
the difficulties involved with density gradients.



Appendix C

Derivation of Spectrometer Equations

The methods described here adopt the formalism of the TriVista System User Manual [94].
In this chapter the diffraction grating equation will be combined with the spectrometer ge-
ometry, as well as entrance and exit slit dimensions, to arrive at a spectral resolution for the
instrument. As with other techniques that utilize wave interference, a diffraction grating
will exhibit constructive interference when the path length difference between two waves
are an integer multiple apart (see Fig. C.1). With a diffraction grating, the diffraction occurs
due to small grooves etched into the surface of a reflective or transmissive optical flat with
spacings on the order of the wavelength of light to be diffracted. Fig. C.1 shows that the
path length difference can be calculated to be

mλ = d(sinα + sin βn), (C.1)

wherem is the order number, λ is the wavelength of light, d is the distance between facets
in the diffraction grating, and α and βn are the incident and diffracted angles of the rays of
light. Inside of a spectrometer, blazed diffraction gratings are typically used. These blazed
diffraction gratings will have a series of facets patterned onto the surface of the grating to

d
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�
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�

↵ �

d

�

↵

m� = d(sin↵+ sin�)

GN FN�B

d

Figure C.1: Schematic showing the interference of parallel waves upon transmission
through a diffraction grating.
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Figure C.2: Schematic of a blazed diffraction grating for use in a spectrometer system.

act as the grooves. Fig. C.2 shows a schematic of a reflective blazed diffraction grating for
a spectrometer. In Fig. C.2, the blaze angle ϕB is the angle between the grating normalGN

and the facet normal FN . This type of grating has an optimized geometry when operated in
Littrow condition (α = βn = ϕB) which will retro-reflect them = 0 order diffracted beam
back along the incident beam. This geometry maximizes the amount of power diffracted in
the higher order modes,m > 0.

By considering the diffraction of the grating combined with a collimating and a fo-
cusing mirror inside of a spectrometer system, we can calculate the dispersion as well as the
spectral resolution of the instrument. Consider Fig. C.3, where the geometry of the spec-
trometer system is shown in detail. By adopting a sign convention that gives angles with a
counterclockwise rotation relative to the grating normal GN a positive value, the constant
inclusion angle can be calculated as

γ = βc − α = constant. (C.2)
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Figure C.3: Geometry of a spectrometer system of focal length f , incident angle α,
diffracted angle βc of the center wavelength, inclusion angle γ, and grating angle ψ.
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With this constraint, the incident angle α and central diffracted angle βc can be calculated
as a function of the grating angle ψ:

α = ψ − γ

2
, (C.3)

and
βc = ψ +

γ

2
. (C.4)

Combining Eqs. (C.1), (C.3), and (C.4) allows us to calculate the grating angle ψ at which
a certain wavelength will hit the center pixel of a CCD at the exit plane of the spectrometer.
First we must use a sum-to-product trigonometric identity to calculate the wavelength of
the diffracted beam as a function of the grating ψ and inclusion γ angles,

mλc = d(sin (ψ − γ

2
) + sin (ψ +

γ

2
))

= 2d sinψ cos
γ

2
.

(C.5)

Now, we can rearrange Eq. (C.5) to solve for the grating angle ψ:

ψ = arcsin
mλc

2d cos γ
2

. (C.6)

If we consider the path of a wavelength λn which is not at the center wavelength, we
can calculate the diffracted angle βn for this wavelength (see Fig. C.4). The displacement
of the two beams∆y, λc and λn, can be expressed as the number of pixels n−nc displaced
from the center pixel multiplied by the width of a single pixel wp,

∆y = (n− nc)wp. (C.7)

Using geometry, this displacement can be calculated as

tan δ =
∆y

f
=

(n− nc)wp

f
. (C.8)f
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Figure C.4: Geometry of the spectrometer system used to calculate the pixel location of the
nth diffracted beam.
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By combining Eqs. (C.1) and (C.8), we can arrive at the wavelength of light that strikes the
nth pixel of the CCD:

λn =
d

m
[sinα + sin βn]

=
d

m
[sinα + sin (βc + δ)]

=
d

m

[
sin

(
ψ − γ

2

)
+ sin

(
ψ +

γ

2
+ arctan

(
(n− nc)wp

f

))]
.

(C.9)

Eq. (C.9) can be used to calculate the linear dispersionD across the CCD chip. It is usually
assumed that the dispersion across the entire CCD is approximately equal to the dispersion
at the center pixel of the device, and for the purposes of our calculations we will assume
this relationship is valid. Therefore, by taking the derivative of λn with respect to ∆y and
taking into account that ∆y << f , we arrive at

D =
dλn
d∆y

=
d

m
cos βc

f

f 2 + (∆y)2
=

d

mf
cos βc. (C.10)

For a triple spectrometer system used in subtractive mode, as shown in Fig. C.5, the
first two stages of the spectrometer are used as a high quality bandpass filter. In this case,
the dispersion is the same as that of the third stage of the system because the dispersion
from the first two stages will always cancel each other out.

Triple Subtractive

Figure C.5: Triple spectrometer in the subtractive configuration. Note that the first two
stages are used as a high quality bandpass filter, with the dispersion canceling out before
entering the third stage.
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Triple Additive

Figure C.6: Triple spectrometer in the additive configuration. The dispersion of the spec-
trometer in this configuration is roughly reduced by a factor of three.

For a triple spectrometer system used in the triple additive configuration, as shown in
Fig. C.6, the final linear dispersion is a non-linear function of focal lengths, grating groove
densities, and inclusion angles of all three stages. Typically, the linear dispersion for a
triple additive spectrometer system is either found empirically or calculated using special
ray-tracing software. There are a few special cases where the linear dispersion for a triple
additive system can be approximately calculated. If all three stages have the same focal
length and the same diffraction grating groove density, then the linear dispersion can be
calculated by using an effective focal length in Eq. (C.10), which becomes the sum of the
focal lengths of the individual spectrometers:

feffective = f1 + f2 + f3. (C.11)

The resolution of the spectrometer system can be calculated by examining the band-
pass of the spectrometer on the CCD camera. Fig. C.7 shows the magnification of the
entrance slit at the CCD camera.

Using Fig. C.7 the width of the image of the entrance slit projected onto the exit focal
plane can be compared to the width of a single pixel of the CCD camera in order to calculate
the final bandpass of light to be detected. For a spectrometer whose diffraction grating is
equidistant from both the entrance and exit ports, the width of the entrance slit image is
calculated to be

w′ = w
cosα

cos β
. (C.12)

The final bandpass B of light is then limited by either the width of the entrance slit image
or the CCD pixel width, whichever is larger. The product of the limiting width w′ (wp), and
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Figure C.7: Schematic showing the width of the image of the entrance slit at the CCD
camera. The image is for a spectrometer whose grating is equidistant from the entrance and
exit ports.

the linear dispersion D yield the final bandpass B (Bp):

B = w′D = w
cosα

cos βc

d

mf
cos βc =

wd

mf
cosα, (C.13)

or
Bp = wpD =

wpd

mf
cos βc. (C.14)

The pixel bandpass,Bp, can be viewed as the ultimate spectral resolution of a multi-channel
detector, such as a CCD camera.



Appendix D

Derivation of Fabry-Perot Equations

In order to study the details of the integration of a Fabry-Perot cavity into our spectroscopic
scheme, we use the formalism presented by Born [95] and Guenther [96]. The spectral
resolution of the PL can be improved by passing it through a FP cavity. The cavity length
sets up a constraint on the wavelengths permitted to transmit through the material. The
permitted wavelengths are determined by resonances in the interference pattern resulting
from the superposition of multiple reflections off the two constituent surfaces. Consider a
FP consisting of two optically flat mirrors of thickness T spaced a distance d apart, as in
Fig. D.1.

An electromagnetic wave E0 emanates from a point source in Fig. D.1 and is colli-
mated by the first lens in the system. This collimated wave strikes the first mirror M1 at
an angle α and a fraction of the wave is reflected E ′

1 while the rest is transmitted. We can
consider the incident field to follow the equation of a plane wave such that,

E(t) = E0e
−i(ωt−kz), (D.1)

where E0 is the amplitude, ω is the angular frequency, and k = 2πn/λ is the wave vector.

Point Source

P0

P1E0
1

E0
2

E0

E1

E2M1 M2

R0
S0

↵

nn1 = 1

Q0

Q1

↵
↵

nd
m
m+ 1
m+ 2

Figure D.1: A FP consists of a pair of highly reflective mirrors spaced micrometers to
centimeters apart. The interference pattern shown on the screen is a result of the sum of
multiple reflections off the pair of mirrors.
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If we set z = 0 at the point P0, then we can calculate the path length and phase differences
between the first E1 and second E2 transmitted waves.

First, lets calculate the path length difference between these waves. The path length
difference is

Q0P1Q1 −R0S0 =
2d

cosα
− 2d tanα sinα

=
2d

cosα
(1− sin2 α)

= 2d cosα.

(D.2)

Because E2 reflects off of two surfaces of a higher index of refraction, points Q0 and P1,
the phase difference due to these reflections gives a factor of e2πi = 1 and can be ignored.
The path length difference, however, leads to a phase difference of

ϕ =
2π

λ
× 2d cosα. (D.3)

The intensity of the fringes created at the screen can be calculated by first considering
the amount of light lost to reflections. We can define the reflection coefficientR as the ratio
of reflected light to the incident light

R =
IR
Iinc

. (D.4)

We can translate these intensities to electric field amplitudes by remembering that the in-
tensity is the modulus squared of the electric fields, therefore

ER

Einc

= −
√
R, (D.5)

where the negative sign comes from the phase being flipped by π upon reflection off a
material of higher index of refraction. With the same treatment we can obtain the fraction
of light transmitted, which becomes

ET

Einc

=
√
1−R. (D.6)

Now we can calculate the transmission of the FP by considering the amount of light
lost due to transmission and reflection as well as the phase changes that occur upon propa-
gation. The transmitted wave picks up a factor of

√
1−R for each of the highly reflective

surfaces it crosses. Therefore the transmitted field amplitude of the wave after traveling
through both mirrors becomes

E1 = (1−R)E0e
−i(ωt−k1P0Q0−2kT ). (D.7)

The amplitude only picks up two factors of
√
1−R because the outside surfaces of the FP

mirrors are typically coated with antireflection coatings. We can write the constant phase
k1P0Q0 + 2kT = k1d

cosα
+ 2kT = ϕ0 and rewrite E1 as

E1 = (1−R)E0e
−i(ωt−ϕ0). (D.8)
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The transmitted field amplitude of E2 can be written by first noting that the wave
reflects off the mirrors two times before exiting the FP. This adds an additional factor ofR
to the field amplitude and the path length contributes an additional phase offset of ϕ such
that

E2 = (1−R)RE0e
−i(ωt−ϕ0)e−iϕ. (D.9)

We can now extrapolate the transmitted field amplitudes of additional reflections to pro-
duce an equation for the field amplitude of the N th transmitted wave by recognizing that
successive waves are modified by a factor ofRe−iϕ. Therefore,

EN = (1−R)RN−1E0e
−i(ωt−ϕ0)e−i(N−1)ϕ. (D.10)

The electric field amplitude at the screen will be the sum of all of these transmitted
waves. Without loss of generality we can assume that the number of waves tends toward
infinity such that

ET =
∞∑

N=1

EN . (D.11)

Evaluating this sum becomes trivial once recognizing it as the sum of an infinite geometric
series

ET = (1−R)E0e
−i(ωt−ϕ0)(1 +Re−iϕ +R2e−i2ϕ +R3e−i3ϕ + ...)

=
(1−R)E0e

−i(ωt−ϕ0)

1−Re−iϕ
.

(D.12)

We can now calculate the transmitted intensity IT by taking the modulus squared of
the transmitted field amplitudes, yielding

IT =
(1−R)2I0

1 +R2 −Re−iϕ −Reiϕ

=
(1−R)2I0

1 +R2 − 2R cosϕ

=
(1−R)2I0

(1−R)2 + 4R sin2 ϕ
2

.

(D.13)

Introducing the coefficient of finesse F allows us to simplify this equation to

IT =
I0

1 + F sin2 ϕ
2

, (D.14)

where
F =

4R
(1−R)2

. (D.15)

From the above two equations we can see that the intensity spectrum will have sharper lines
as the coefficient of finesse increases, which in turn becomes larger due to surfaces of higher
reflectance. These results are summarized in Fig. D.2.
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F (R = 0.6) = 14.9

F (R = 0.25) = 1.7

F (R = 0.95) = 1519.9

Figure D.2: Transmission intensity of a FP as a function of phase. The different colors
represent varying values of the coefficient of finesse due tomirrors of different reflectivities.

We can determine where the intensity will be maximum and minimum by finding
when sin2 ϕ

2
is equal to zero and one, respectively:

IT,max = I0, when ϕ = 2mπ, (D.16)

and
IT,min =

I0
1 + F

, when ϕ = (2m+ 1)π, (D.17)

where m is an integer. When the coefficient of finesse is very large, the FP acts as a high
quality bandpass filter, only allowing light to transmit if it enables Eq. (D.3) to be equal to
an integer multiple of 2π.

To understand how well the FP acts as a bandpass filter, we will introduce the concept
of finesse, which is defined as the number of resolvable peaks that can fit into the phase
separation 2π, which is also known as the free spectral range,

F =
2π

ϕw

. (D.18)

Here, ϕw is the full width at half maximum of the transmission peak in phase space and can
be found by setting Eq. (D.14) equal to I0/2 and solving for ϕw:

1

2
I0 =

I0

1 + F sin2 ϕw

4

. (D.19)
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It is easy to see that this equation will hold true only if

F sin2 ϕw

4
= 1. (D.20)

The small angle approximation can be used here because at high coefficients of finesse F
the spectral width of the FP ϕw will be very small compared to the free spectral range 2π,
and the transmission peak half maxima will be located at ϕ = 2mπ ± ϕw/2:

ϕw =
4√
F
. (D.21)

From the definition of finesse F we can see that

F =
2π

√
F

4
=
π
√
F

2
. (D.22)

To see how well the FP acts as a high quality spectrum analyzer we can observe the
shift in the transmission peak as a function of the mirror spacing, which will be set to an
initial value of 1.5mm. Assuming the light source is a diode laser of wavelength 960nm,
and incident normal to the FP (α = 0), the phase difference will be

ϕ =
4dπ

λ
= 6, 250π = 2mπ, where m = 3, 125. (D.23)

The transmission intensity will be at a maximum with these parameters. Subsequent max-
ima will occur at wavelengths of

λ =
2d

m
. (D.24)

From this equation we can see that a change in the spacing between the mirrors d that is
proportional to a change in the mode number by one will result in the same wavelength hav-
ing another transmission maximum through the FP. In a similar fashion, the mode number
can be held constant and the same change in mirror spacing will correspond to a slightly
different wavelength.

Knowing this, we can rearrange the above equation so that the mode number is on one
side, take the derivative with respect to wavelength, and set the change in mode number to
negative one to find the wavelength spacing between transition maxima.

∆m = −1 = −2d

λ2
∆λ, therefore ∆λ =

λ2

2d
. (D.25)

This wavelength spacing is known as the free spectral range of the cavity and is related to
the free spectral range we calculated earlier in phase space. With this in mind, the finesse
of the FP cavity can be calculated by taking the wavelength spacing and dividing it by the
width of the transmission peak, similar to the way it was calculated in phase space.

F =
∆λ

λw
. (D.26)

The above equation shows that the FP will have a FWHM resolution λw equal to the free
spectral range divided by the finesse.
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