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ABSTRACT OF THE DISSERTATION

The Double Copy:

From Scattering to Radiation

by

David Alan Chester III

Doctor of Philosophy in Physics

University of California, Los Angeles, 2018

Professor Zvi Bern, Chair

This thesis discusses consequences of color-kinematics duality and applications towards com-

puting quantum scattering amplitudes and classical radiation fields. Stemming from this

duality, tree-level Bern-Carrasco-Johansson amplitude relations can be extended to one-loop

integral coefficient relations for scattering in Yang-Mills theory. The double copy, which also

follows from color-kinematics duality, allows for graviton scattering amplitudes to be found

from scattering amplitudes in Yang-Mills theory. Additionally, a classical radiative double

copy for obtaining gravitational waves in various theories is discussed. As a warm-up, a

classical double copy of the Lienard-Wiechert potential in electrodynamics is found within a

specific context, which allows for gravitational waves in linearized gravity to be found. Next,

radiation in Yang-Mills and Yang-Mills-biadjoint-scalar theories is found, and the radiative

double copy of these results allows for radiation in general relativity and Einstein-Yang-

Mills theory, repsectively. In light of the recent detection of gravitational waves by the

LIGO collaboration, this motivates the search of efficient analytic techniques for computing

gravitational radiation. The double copy offers a way to apply methods from particle physics

to gravitational-wave astronomy.
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CHAPTER 1

Introduction

Physicists are looking for the relationship between the four fundamental forces of nature. The

standard model successfully describes the quantum field theory of electromagnetic, weak, and

strong interactions, which includes Maxwell’s linear electrodynamics and Yang-Mills theory,

a nonlinear gauge theory. Gravity is accurately described by Einstein’s theory of general

relativity, and string theory contains a high-energy completion of gauge theory and general

relativity. While the Lagrangians and equations of motion for Yang-Mills theory and general

relativity appear to be different, the solutions of the two theories remarkably seem to be

related. The “double copy” construction discussed in this thesis uses gauge theory solutions

to find gravity solutions for quantum scattering amplitudes and classical radiation fields.

The double copy originates from ideas in string theory. The tree-level Kawai-Lewellen-

Tye (KLT) relations in string theory relate the scattering amplitudes of closed strings to two

copies of open-string amplitudes [1]. By taking the low-energy limit, it was then realized

that similar relations hold at tree-level for quantum field theory, which relate gravitons to

gluons [2]. This was applied to loop level of quantum field theories via generalized unitar-

ity [3, 4], which led to various studies of perturbative quantum gravity and the UV properties

of various supergravity theories [5–10].

Shortly after KLT relations were found, factorization of color and kinematics simplified

Yang-Mills amplitudes for specific gluon scattering processes [11–14]. As particle colliders

scattered nucleons at high energies, theorists pursued precision quantum corrections due to

gluon background processes, which led to efficient recursive methods [15]. Over a decade

later, investigations of string theory in twistor space [16] inspired modern on-shell recursive

methods for computing tree-level amplitudes that exploits factorization of color and kinemat-
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ics [17–20]. A systematic bootstrapping of one-loop QCD amplitudes had phenomenological

applications for colliders [21–23], including detailed analysis of QCD jets in search of new

physics [23–27] prior to the LHC’s detection of the Higgs boson [28, 29].

A kinematic analog of the Jacobi identity for color factors was found, which led to the

Bern-Carrasco-Johannson (BCJ) relations between tree-level color-ordered partial ampli-

tudes in Yang-Mills theory [30–32]. This included the development of the double copy at

tree level, a procedure for finding gravity amplitudes from gauge theory amplitudes. The

double copy helps with understanding the relationship between supersymmetric gauge and

gravity theories at loop level [33–48]. In particular, the double copy helped compute addi-

tional UV properties of supergravity theories [49–55]. Related progress was made in string

theory, including the development of additional monodromy relations and loop-level KLT

relations [56–66].

Color-kinematics duality and the double copy have simplified and related scattering am-

plitudes amongst a wide class of theories, including the nonlinear sigma model and Born-

Infeld theory [67–71]. A biadjoint scalar field theory can be added to Yang-Mills theory

to find scattering amplitudes in Einstein-Yang-Mills theory [72–74]. The CHY formalism

allows for KLT/string-inspired amplitude relations between Yang-Mills and general rela-

tivity [75–77], which also shows how Einstein-Yang-Mills theory, Dirac-Born-Infeld theory,

special Galileon theory, the nonlinear sigma model, and biadjoint scalar theory are all in-

terrelated [69, 78–81]. Additionally, Z-theory has been proposed to bring additional double

copy structure to string theory amplitudes [82–84].

While progress has been made to investigate the origins of the double copy [85–89],

the precise relationship between gauge and gravity theories is not fully understood. More

practically, the double copy could be useful for computations of gravitation radiation from

physical sources [90–92]. As LIGO continues to collect more gravitational wave data, ever

more complex precision calculations will be needed. The double copy approach offers the

possibility of greatly simplifying such computations, given that gauge-theory calculations are

simpler than those in general relativity. We look to address this topic by first introducing

color-kinematics duality and the double copy for scattering amplitudes in quantum field
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theory, followed by a brief overview of gravitational radiation and the radiative double copy

for classical gravitational waves.

1.1 Color-Kinematics Duality and the Double Copy for Scattering

Amplitudes

The double copy is based on the duality between color and kinematics. Factorization of color

and kinematics allows for Yang-Mills tree amplitudes to have the following representation,

Atree
n = gn−2

∑
i∈Γ

1

Si

nici
Di

, (1.1)

where g is the coupling constant, i sums over all Feynman diagrams Γ with only three-

point vertices, Si is the symmetry factor associated with the ith diagram, ni is a kinematic

numerator, ci is a color numerator, and Di is a denominator comprised of inverse propagators.

The color factors ci are comprised of the structure constants fabc from the non-Abelian gauge

theory with SU(N) symmetry. Since the structure constants satisfy Jacobi relations, various

color factors also satisfy the following simple identity,

ci + cj + ck = 0, (1.2)

where i, j, and k are labels for three different diagrams which have color factors satisfying a

Jacobi relation.

Since the four-point gluon vertex contains two factors of fabc, these contributions can be

represented by combinations of two three-point gluon vertices which only contain one factor

of fabc. As such, summing over all Feynman diagrams contains redundant information,

and the tree-level amplitudes are spanned by a basis with only trivalent graphs Γ3. Once

this representation is chosen, the kinematic numerators are found to satisfy the following

relationship dual to the Jacobi relations,

ni + nj + nk = 0. (1.3)

This color-kinematics duality also led to the discovery of tree-level Bern-Carrasco-Johansson

(BCJ) amplitude relations [30]. At four points, this leads to the following simple BCJ
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relationship for color-stripped partial amplitudes Atree
n ,

s24A
tree
4 (1, 2, 4, 3) = s14A

tree
4 (1, 2, 3, 4), (1.4)

where sij = (pi + pj)
2 are inverse propagators in terms of external momenta. The BCJ

amplitude relations are most easily noticed when the amplitudes are put in a representation

that allows the kinematics factors to satisfy relations analogous to the color-factor Jacobi

relations, which can occur when all contributions are represented as trivalent graphs. When-

ever such a representation is found, graviton amplitudes can be found perturbatively via the

double copy, which was later extended to loop level via unitarity methods [35].

To introduce the double copy, the general form of an n-point L-loop gauge theory am-

plitude in d dimensions is put in the following representation

A(L)
n = iLgn−2+2L

∑
i∈Γ3

∫ L∏
l=1

ddpl
(2π)d

1

Si

nici
Di

, (1.5)

where i sums over all diagrams Γ3 with at most three-point vertices, L loop momenta are

integrated over for perturbative quantum corrections. This representation of the amplitude

is not unique, as generalized gauge transformations allow for the transfer of terms between

the different ni. In this representation, contact terms such as the four-point gluon vertex are

absorbed into trivalent diagrams by multiplying and dividing by appropriate propagators.

The double copy states that a gravity solution can be found by replacing color factors

with appropriate kinematic factors. For scattering amplitudes, the color numerator ci is

replaced with a distinct kinematic numerator ñi which may be found from a different gauge

theory, such that

ci → ñi, g → κ

2
. (1.6)

The corresponding n-point L-loop gravity amplitude is given by

M(L)
n = iL+1

(κ
2

)n−2+2L∑
i∈Γ3

∫ L∏
l=1

ddpl
(2π)d

1

Si

niñi
Di

. (1.7)

In order to apply the double copy procedure, it was initially thought that the gauge theory

amplitude must be put in a canonical BCJ form, which states that the kinematic numerators
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satisfy an analogous Jacobi identity, such that the kinematic numerators and the color factors

satisfy the same algebraic properties. The original conjecture states that at least one choice

of numerators exists such that the duality is manifest. More recently, the color-kinematics

duality constraint has been relaxed, so that the duality only needs to hold manifestly on the

unitarity cuts, rather than on the entire multiloop integral [93]. This allows for more general

ansatzs to be formed, making it easier to find a representation of the amplitudes that allows

for a double copy. Most recently, the UV properties of N = 8 supergravity has been found

to five loops [55].

1.2 Motivating a Radiative Double Copy

Finding exact solutions in general relativity, in particular for gravitational wave emission, is

often difficult. The post-Newtonian (PN) approximation was introduced by Einstein in 1916

and studied by de Sitter and Lorentz as a weak-field nonrelativistic expansion, see Ref. [94]

for a more detailed history. This led to the discovery of the quadrupole moment method for

finding gravitational waves in linearized gravity, presented in Section 3.1.1. The quadrupole

moment method is a nonrelativistic weak-field approximation found from the linearized wave

equation. The post-Newtonian (PN) approximation refers to assuming v/c � 1 and allows

for relativistic corrections to be added to the solution found by the quadrupole moment

method via a multipole expansion. For bound-state sources, the virial theorem states that

v2

c2
=
Gm

rc2
, (1.8)

where G is Newton’s gravitational constant, m is the total mass of the system, and r is the

typical size of the system. Therefore, the PN approximation also expands in powers of
√
G,

which assumes weakly interacting gravitational fields. As such, linearized gravity describes

the lowest (zeroth) order of the PN approximation.

The post-Minkowskian (PM) approximation makes no assumption about v/c, yet makes

a weak-field approximation by expanding in powers of
√
G. For weak fields, retardation

effects are negligible in the near zone, which allows for the PN approximation to be utilized
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for the first few lowest orders. However, radiation is in the far zone and necessitates retar-

dation effects. Since the PN approximation to lowest order utilizes an instantaneous Green

function from Newtonian gravity, naively utilizing the PN approximation to find radiation at

arbitrarily high orders fails to satisfy the proper boundary conditions and causes unphysical

divergences due to neglecting gravitational backreaction.

In 1986, Blanchet and Damour addressed these difficulties by considering a post-Minkowski

(PM) approximation in vacuum for regions of spacetime with radii larger than d [95], corre-

sponding to the intermediate and radiation zones. The PN approximation is utilized in the

near and intermediate zones, and boundary conditions are utilized to connect this solution

with the PM approximation, which allows for gravitational radiation to be found in the far

zone to higher orders in v/c [96–103]. Alternatively, Will, Wiseman, and Pati have presented

the Direct Integration of the Relaxed Einstein equation (DIRE) approximation [104–107],

which gives equivalent results to those found by Damour and Blanchet.

While results within the PN approximation have been found up to fourth order [108–

116], using the PM approximation with physical sources in the near zone and properly

utilizing a retarded Green function to find radiation in the far zone has only been found

to first order [117–124]. While the PN approximation is typically simpler, perturbing in

two different parameters causes an explosion of terms at higher orders. If the technical

difficulties of the PM approximation were properly dealt with, such a formalism may allow

for more compact expressions at higher orders. Due to these technical challenges and the

fact that most physically relevant sources of radiation come from bound states, the PN

approximation has received more focus. However, scattering processes are not bound by

the same virial theorem, which allow for the possibility of relativistic weak-field scenarios.

Graviton scattering amplitudes found in perturbative quantum field theory takes a weak-field

approximation similar to the PM approximation.

Even though the issue of matching boundary conditions at infinity has been solved, it

is still difficult to calculate gravitational waves to high orders in perturbation theory due

to complexity of general relativity. The double copy has proven to be efficient for high-

order calculations of perturbative graviton scattering amplitudes. The radiative double copy
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takes inspiration from the double copy of scattering amplitudes by finding rules which replace

charge/color factors with appropriate kinematic factors. In particular, the charge of a particle

is replaced by its corresponding momentum, as suggested from color-kinematics duality. It

was first shown that any metric in Kerr-Schild form, an infinite family of classical solutions

to Einstein’s field equations, has a single copy in electromagnetism after subtracting away

the Lienard-Wiechert potential [90].

Further investigations have been made for more exotic solutions and in higher dimensions.

The electric charge density is the single copy of the Komar energy density [125]. A dyon

is a single copy of the Taub-NUT spacetime, as the NUT charge is the double copy of the

magnetic charge [126]. The Taub-NUT double copy is exposed when put in a double Kerr-

Schild form, adding a term for the magnetic charge contributions. It was also found that the

single copy of Plebanski gravity allowed for the Yang-Mills equations to be solved in curved

space as well, which may be expected from the perspective of E8 unification [127–129]. The

de Sitter metric can be written in a Kerr-Schild form, showing that the cosmological constant

is the double copy of a uniform electric charge density.

Recent work has also generalized the static point particle solution to trajectories with ar-

bitrary accelerations [91]. The authors also showed that the Coulomb/Schwarzschild double

copy is indeed the same double copy as the scattering amplitudes double copy. The zeroth

copy can be used to find a biadjoint scalar field, which allows for some promising nonper-

turbative studies [130]. The Kerr-Schild double copy construction was extended to curved

spacetime [131, 132], as well as scattering amplitudes on background plane waves [133].

A perturbative double copy from Yang-Mills theory for arbitrary radiation metrics was

introduced by Goldberger and Ridgway [92]. Within this construction, biadjoint scalar field

theory solutions can give radiation in Yang-Mills theory [134], and progress has been made

with bound states [135] and spinning black holes [136, 137]. Another perturbative spacetime

approach allowed for a radiative double copy [138], and adding ghost fields to Yang-Mills

theory allows for the dilaton to be removed from inelastic black hole scattering to lowest

order [139].
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1.3 Outline

This thesis focuses on consequences of color-kinematics duality. In Chapter 2, the implica-

tions of the tree-level BCJ relations are studied at next order. When a one-loop Yang-Mills

amplitude is spanned by a basis of integrals with corresponding coefficients, the BCJ relations

provide a wide variety of one-loop integral coefficient relations. Similar integral coefficient

relations should exist at arbitrary loop order, demonstrating that color-kinematics duality

helps simplify perturbative calculations. Furthermore, since the double copy holds, similar

relations could be found in theories of gravity.

The rest of the thesis focuses on understanding how the double copy can be used to

find gravitational waves in a perturbative weak-field approximation. Chapter 3 focuses on

comparing radiation in electrodynamics to radiation in linearized gravity. While the radiation

fields do not exhibit a straightforward double copy, a gravitational analogue of the Lienard-

Wiechert potential is found within a specific context. Subtleties of the Lienard-Wiechert

potential for relativistic phenomena are mentioned, which may be related to the difficulties

of extending the PM approximation to higher orders.

In Chapter 4, radiation in nonlinear gauge and gravity theories is studied via Feynman

diagrams with a worldline parametrization. A radiative double copy allows for gravitational

radiation to be found from Yang-Mills radiation. Furthermore, it is shown that radiation in

Yang-Mills-biadjoint-scalar theory allows for a double copy to correctly reproduce radiation

in Einstein-Yang-Mills theory. Additionally, a scalar field is added to Yang-Mills, and an

ansatz for its solution is found to remove the dilaton within the formalism of of Ref. [92],

which is analogous to what was found in Ref. [139]. Chapter 5 states concluding remarks

and potential for further development.
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CHAPTER 2

Scattering Amplitudes and One-Loop Integral

Coefficient Relations

This chapter reviews work previously published by the author [140], which investigates the

color-kinematics duality at loop level in Yang-Mills theory.

2.1 From Trees to Loops

Devising efficient methods for calculating scattering amplitudes has been useful to confirm

the validity of the Standard Model. Even at tree level, the number of Feynman diagrams dra-

matically increases as the number of legs increases. For seven, eight, and nine external gluons

there are already 2485, 34300, and 559405 Feynman diagrams needed at tree level [141]. Of

course, with modern techniques we can obtain the amplitude An without calculating any

Feynman diagrams. At tree-level, the amplitude is decomposed into a color-stripped partial

amplitude An, which separates the color from the kinematics. The Parke-Taylor formula gives

simple form of maximally helicity violating (MHV) or anti-MHV partial amplitudes [11, 14].

On shell recursion developed by Britto, Cachazo, Feng and Witten (BCFW) can be used

to find any helicity [17, 18]. To compute the total amplitude An, we need to compute the

n! partial amplitudes An, corresponding to the different permutations of the legs. However,

not all n! partial amplitudes are independent. Since we have a trace over the color gen-

erators, the partial amplitudes have cyclic symmetry, leaving (n − 1)! independent partial

amplitudes. The partial amplitudes also satisfy a reflection property and the U(1) photon

decoupling identity, which reduces the number of independent partial amplitudes. (See e.g.

Refs. [141, 142].) Remarkably, there are more tree level partial amplitude identities. The

9



Kleiss-Kuijf relations [143] reduces the number of independent partial amplitudes to (n−2)!.

Furthermore, the Bern-Carrasco-Johansson (BCJ) amplitude relations [30, 56, 57, 144] give

(n − 3)! independent partial amplitudes. This chapter applies these ideas to reduce the

number of independent integral coefficients at one loop.

At one loop, we consider on-shell diagrams instead of Feynman diagrams. We apply

the unitary method finding the value of the loop amplitude with the loop momentum on-

shell. Furthermore, when we apply the unitarity cuts, one-loop amplitudes with massless

external legs can be reconstructed in terms of products of tree amplitudes. The coefficients of

basis integrals are fully determined from four-dimensional tree amplitudes [3, 4] and rational

remainders fromD-dimensional ones [145–149]. For a modern review of on-shell and unitarity

methods for one-loop QCD amplitudes, we refer the reader to Ref. [150].

Since tree amplitudes determine the integral coefficient within the unitarity approach,

we expect that the integral coefficients satisfy similar identities as the tree amplitudes them-

selves. In particular, we show that the tree-level BCJ amplitude relations can be used to

derive integral coefficient identities. Since the loop momenta always have two on-shell solu-

tions, we have to decompose the integral coefficient into two pieces. It is these pieces which

actually satisfy the coefficient relations, rather than the total coefficient.

We demonstrate that tree-level identities significantly decrease the total number of inde-

pendent integral coefficients. These relations could be used to either improve the efficiency

of one-loop amplitude calculations or to provide a stability or other cross checks for the

integral coefficients (e.g. see Ref. [23]).

There has been some work of extending tree-level relations to the loop level already.

Tree-level monodromy relations have been applied to create loop level relations [151]. Boels

and Isermann have applied the tree-level Kleiss-Kuijf identities to one-loop partial ampli-

tudes [152, 153]. They have also extended the BCJ relations to relate one-loop integral

bases. This present chapter is somewhat similar, except we apply the BCJ relations to the

coefficients. Furthermore, work has been done to relate the two-loop nonplanar amplitude

to the planer amplitude through the use of a BCJ type of relation [154].
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This chapter is organized as follows: To demonstrate that the one-loop integral coefficients

satisfy BCJ integral coefficient relations, we start by reviewing the tree-level BCJ relations

and the unitarity method in section 2.1. In section 2.2, we derive the general expressions for

the one-loop BCJ integral coefficient relations from the tree-level BCJ amplitude relations.

In section 2.3, we explicitly provide examples and confirm that the BCJ integral coefficient

relation is satisfied.

2.1.1 Introduction to Tree-Level BCJ Amplitude Relations

In this section, we review the spinor-helicity formalism, the unitarity method, and tree-level

identities. In the next section, we will show that the BCJ amplitude relations can be used

with the unitarity method to find new relations between integral coefficients.

The spinor-helicity formalism allows for simple expressions of scattering amplitudes. The

spinors take advantage of the isomorphism between Spin(3, 1) and SL(2,C), allowing for C2

spinors in projective space. These two components spinors allows for dimensional analysis

and spin content uniquely determine massless amplitudes. When working with three- and

four-point amplitudes at tree level with the spinor-helicity formalism, the amplitudes can

be uniquely written down by counting particles and their spin. Recursive techniques are

used to generalize to n-point amplitudes. Unitarity methods are applied to evaluate one-

loop amplitudes, which recycle tree amplitudes. On-shell recursion relations allow for finite

loop amplitudes. As such, it is possible to recursively calculate any n-point one-loop gluon

amplitude simply by knowing three- and four-loop amplitudes along with a couple simple

recursive techniques.

Two component complex spinors are used to represent massless fermions and vector

bosons. A photon or gluon is a spin-one particle, but since it has no mass, there are only

two independent spin states and can be represented by a two component spinor λi. The

4-component Dirac field ψ and its free massive Lagrangian,

L = ψ̄(i/∂ −m)ψ, (2.1)

11



when varied gives the Dirac equation

(i/∂ −m)ψ = 0,

i∂µψ̄γ
µ +mψ̄ = 0,

ψ(x) = u(p)eipx + v(p)e−ipx,

(/p+m)u(p) = 0,

(/p−m)v(p) = 0. (2.2)

If the particle is assumed to be massless, then the two independent helicity states u(p) and

v(p) follow the same equation of motion, which allows for the theory to be represented in

terms of spinor-helicity states with the Weyl equation,

/pu(p) = /pv(p) = 0. (2.3)

Recall that v± is an outgoing antifermion, ū± is an outgoing fermion. For all amplitudes,

the momenta will be assumed to be outgoing. The ± subscript refers to the helicity of the

fermion. For massless fermions, we have u± = v∓ and v̄± = ū∓.

The spinor-helicity formalism is introduced below,

u+(ki) = v−(ki) =
∣∣k+
i

〉
= |i〉 = λ(ki),

u−(ki) = v+(ki) =
∣∣k−i 〉 = |i] = λ̃(ki),

ū+(ki) = v̄−(ki) =
〈
k+
i

∣∣ = [i| = λ(ki),

ū−(ki) = v̄+(ki) =
〈
k−i
∣∣ = 〈i| = λ̃(ki). (2.4)

As shown, there are 3 different notations for writing the spinors, with |i〉 being simpler

than
∣∣k+
i

〉
or λ(ki),

〈ij〉 =
〈
k−i
∣∣ k+

j

〉
= ū−(ki)u+(kj) = λa(ki)λa(kj) = λ(ki)λ(kj),

[ij] =
〈
k+
i

∣∣ k−j 〉 = ū+(ki)u−(kj) = λ̃ȧ(ki)λ̃
ȧ(kj) = λ̃(ki)λ̃(kj). (2.5)

(2.6)

The spinors are nice to work with, as complex conjugation flips the helicity state. These

spinors are antisymmetric,

〈ij〉 = −〈ji〉 , [ij] = − [ji] , 〈ii〉 = [jj] = 0. (2.7)
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Channels such as s, t, and u as well as dot products of momenta are written as

〈ij〉 [ji] = 2ki · kj = (ki + kj)
2 = sij. (2.8)

Charge conjugation can be applied via

〈ki| γµ |kj] = [kj| γµ |ki〉 . (2.9)

The Gordon identity also is useful since

[i| γµ |i〉 = 〈i| γµ |i] = 2kµi . (2.10)

Also, projection operators are given by

|i〉 [i| = 1

2
(1 + γ5)/ki, |i] 〈i| = 1

2
(1− γ5)/ki, |i〉 [i|+ |i] 〈i| = /ki. (2.11)

The Fierz rearrangement identity is also needed for simplification,

〈i| γµ |j] 〈k| γµ |l] = 2 〈ik〉 [lj] . (2.12)

The non-linear Schouten identity is also useful for simplifying complicated amplitudes,

〈ij〉 〈kl〉 = 〈ik〉 〈jl〉+ 〈il〉 〈kj〉 . (2.13)

Finally, momentum conservation in an n-point amplitude is written as the following,

n∑
i=1,6=j,k

[ji] 〈ik〉 = 0. (2.14)

Note that massive fermions can be represented as two massless fermions by using the

light-cone decomposition. This will not be discussed, but it is possible and is discussed on

pages 9 and 10 in Ref. [155].

For representing polarization vectors for massless gauge bosons of helicity ±1,

ε+µ (k, q) =
〈q| γµ |k]√

2 〈qk〉
, (2.15)

ε−µ (k, q) =
〈k| γµ |q]√

2 [kq]
, (2.16)
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where k is the vector boson’s momentum and q is a reference momentum containing any

on-shell gauge transformation. Therefore, q is any momentum such that ε±(k, q) ·q = 0. The

polarization vectors satisfy

ε±(k, q) · k = 0, (2.17)

(ε+µ )∗ = ε−µ , (2.18)

ε+ · ε− = −1, (2.19)

ε+ · ε+ = 0. (2.20)

Recursive and on-shell methods will provide relations for amplitudes with more external legs

and at higher orders in perturbation theory. The simplest amplitudes can be written down

in terms of spinor inner products by counting essentially the spin, or the phase weight of

each particle.

A scattering amplitude gives the probability on an n-point particle interaction and is a

function of n momenta and spins for n external legs. The tree diagrams represent the zeroth

order interactions, which only includes the classical solution in the path integral. Some

quantum corrections are contained in one-loop diagrams, which contain one power of ~ from

the first order of perturbation theory.

An({λ1, λ̃1, h1}, {λ2, λ̃2, h2}, . . . , {λn, λ̃n, hn}) = Atree
n + ~A1-loop

n +
∞∑
L=2

~LAL-loop
n . (2.21)

Consider Yang-Mills theory, which has a local SU(N) gauge symmetry. For example,

QCD has a gluon, which is an SU(3) gauge vector boson. The theory is non-Abelian and

therefore has nontrivial color algebra. The gauge field Aµ can be stripped of its color, such

that Aµ = AaµT
a, where T a represent the 8 generators of SU(3). Similarly, the amplitudes can

be stripped of color, leaving behind a partial amplitude. A trace of the color matrices averages

over all possible color arrangements and factors out the color dependence of the amplitude.

The remaining color-stripped partial amplitude An is only dependent on kinematic quantities

such as momenta and helicities [142]

Atree
n = gn−2

∑
σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) . . . T aσ(n))Atree
n (σ(1), σ(2), . . . , σ(n)), (2.22)
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where Sn/Zn represents the n! permutations of external legs divided by the n cyclic permu-

tations which are removed because they would give the same color trace. Partial amplitudes

only depend on kinematic variables, and the labels of the partial amplitude signify the mo-

menta and helicities of the particles. For simplicity, we will only work with gluons, but a

similar construction can be done to add quarks.

Working with these partial amplitudes greatly simplifies calculations. Note that this de-

construction only holds for tree-level, but there exists higher loop expressions for connecting

partial amplitudes with the true amplitude. The partial amplitudes are color ordered and

therefore only have poles in s channels for adjacent momenta. For example, a four-point

partial amplitude Atree
4 (1, 2, 3, 4) can only have poles in s12, s23, s34, or s41, but not s13 or

s24. The partial amplitudes have a cyclic Zn symmetry,

Atree
n (1, 2, . . . , n) = −Atree

n (2, 1, . . . , n) = Atree
n (2, . . . , n, 1) = (−1)nAtree

n (n, . . . , 2, 1). (2.23)

One can also obtain a “photon decoupling equation” or “dual Ward identity” from con-

sidering some group theory of equation 28. The equation also holds for U(N) as well as

SU(N), so summing over the identity must give zero,

0 = Atree
n (1, 2, 3, . . . , n) +Atree

n (2, 1, 3, . . . , n) +Atree
n (2, 3, 1, . . . , n) + · · ·+Atree

n (2, 3, . . . , 1, n).

(2.24)

The rest of this manuscript will work with partial amplitudes, and the term amplitude will

now refer to partial amplitudes. Analytic structure and phase weight determines amplitudes

explicitly. First, we will consider three-point and four-point tree amplitudes.

Due to the symmetry of the amplitudes, there are only a few independent helicity configu-

rations. For three-point tree-level, we have Atree
3 (1−, 2−, 3−) and Atree

3 (1−, 2−, 3+) as the only

two independent amplitudes. To switch all of the helicities, a complex conjugate is taken,

and particle numbers can be swapped and permuted to get all other configurations. The

analytic poles from adjacent external legs forces s12, s23, and s31 to be in the denominator
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of the amplitude. Counting the phase weight uniquely determines the resulting numerator.

Atree
3 (1−, 2−, 3−) = 0, (2.25)

Atree
3 (1−, 2−, 3+) =

i 〈12〉4
〈12〉 〈23〉 〈31〉 , (2.26)

Atree
3 (1+, 2+, 3−) =

−i [12]4

[12] [23] [31]
. (2.27)

For four-point tree-level, we haveAtree
4 (1−, 2−, 3−, 4−), Atree

4 (1−, 2−, 3−, 4+), andAtree
4 (1−, 2−, 3+, 4+)

as the three possibly independent amplitudes.

Atree
4 (1−, 2−, 3−, 4−) = Atree

4 (1−, 2−, 3−, 4+) = 0, (2.28)

Atree
4 (1−, 2−, 3+, 4+) =

i 〈12〉4
〈12〉 〈23〉 〈34〉 〈41〉 =

i [34]4

[12] [23] [34] [41]
, (2.29)

Atree
4 (1−, 2+, 3−, 4+) =

i 〈13〉4
〈12〉 〈23〉 〈34〉 〈41〉 . (2.30)

There are no other independent helicity configurations. Larger n-point amplitudes can

be built up by recursive methods. First, BCFW recursion will stitch diagrams together by

shifting the poles in the complex plane properly. A second method is the CSW relations,

which build n-point amplitudes out of on-shell MHV subamplitudes, with a leg given a

complex momentum shift.

The BCJ amplitude relations at tree level are connected to color-kinematics duality [30].

The duality forces the Jacobi identity on the kinematic numerators, which naturally provide

tree-level partial amplitude relations beyond what is contained in the Kleiss-Kuijf relations.

The BCJ relations imply that only (n − 3)! of the partial amplitudes are independent. A

convenient choice is to fix the first 3 legs. At four and five points, the BCJ tree amplitude

relations are

Atree
4 (1, 2, {4}, 3) = Atree

4 (1, 2, 3, 4)
s14

s24

,

Atree
5 (1, 2, {4}, 3, 5) =

Atree
5 (1, 2, 3, 4, 5)(s14 + s45) + Atree

5 (1, 2, 3, 5, 4)s14

s24

,

Atree
5 (1, 2, {4, 5}, 3) =

−Atree
5 (1, 2, 3, 4, 5)s34s15 − Atree

5 (1, 2, 3, 5, 4)s14(s245 + s35)

s24s245

.(2.31)
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The original BCJ paper also includes general n-point formulas for generating the BCJ re-

lations. Notice how the BCJ amplitude relations fixes the first three legs for the set of

independent partial amplitudes.

To express amplitudes, we will use the spinor-helicity formalism, which gives remark-

ably compact expressions for certain tree amplitudes. Tree amplitudes with zero or one

plus/minus helicities are zero (except for the three-point amplitudes). The n-point Parke-

Taylor formula [11, 14] expresses the MHV partial amplitudes in a remarkably simple manner,

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) = i

〈ij〉4
〈12〉 〈23〉 . . . 〈n1〉 . (2.32)

To find all other helicity configurations, BCFW recursion, for example, can be applied to

calculate any amplitude from the Parke-Taylor formula [17]. (See, for example, Ref. [156]

for an exhaustive review with examples.)

2.1.2 Unitary Cuts and One-Loop Integral Basis Coefficients

We now review the unitarity method, which is used find one-loop amplitudes as a linear

combination of integral coefficients times basis integrals. At one loop any massless amplitude

can be decomposed into a set of basis integrals consisting of scalar boxes, triangles, and

bubbles, plus rational terms for QCD [157–159]. This reduces the problem of calculating

one-loop amplitudes to determining a set rational coefficients.

Britto, Cachazo, and Feng showed how generalized unitarity could be used to find the

box coefficients [160]. The work of Ossola, Papadopolous, and Pittau [22] and Forde [161]

extends this to the triangle and bubble coefficients. Unitarity cuts can be used to recycle tree

amplitudes into the loop-level integral coefficients. Therefore, we can generate all one-loop

amplitudes from tree amplitudes; the coefficients are simply products of tree amplitudes with

loop momenta on-shell.

We will study the boxes, triangles, and bubbles necessary for massless QCD in the fol-

lowing subsections. In particular, we are interested in the total number of cuts needed as

well as the loop momentum solutions for such cuts. In order to apply unitarity cuts to a

diagram, we put the loop momenta on shell which is imposed on all internal lines in Fig. 2.1.
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Figure 2.1: The box, triangle, and bubble cuts. At each corner there are an arbitrary of

external lines.

To calculate the full one-loop amplitude, each possible unitary cut must be evaluated.

Using generalized unitarity this allows us to determine the coefficients of basis integrals in

terms of which the color-stripped partial amplitude is expressed,

A =

nb∑
i=1

ciInti +R , (2.33)

where i runs over the total number of basis integrals nb, Inti is a scalar integral, and R

represents the rational terms which will be neglected throughout this chapter. Also, the word

amplitude will also refer to the color-stripped partial amplitude throughout this chapter.

2.1.2.1 Box Cuts

To start our study of QCD amplitudes, we focus on the box coefficients which can be deter-

mined from the box cuts shown in Fig. 2.1. Next, we classify the different types of box cuts.

There are zero-mass, one-mass, two-mass-e, two-mass-h, three-mass, and four-mass box cuts,

which is shown in Fig. 2.2. Only the four-point amplitudes have a zero-mass box. There are

n n-point one-mass boxes for n ≥ 5, since there are n ways that the n− 3 particles could be

put together in the corner. For two-mass-h boxes, there are (n− 5)n ways with n ≥ 6. The

number of two-mass-e boxes would be the same, but we are now overcounting by a factor

of two due to the symmetry of the two single legs being across from each other. Therefore,

there are (n−5)n/2 two-mass-h boxes with n ≥ 6. When n ≥ 7, there are n
(
n−5

2

)
three-mass
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Figure 2.2: The zero-mass, one-mass, two-mass-e, two-mass-h, three-mass, and four-mass

box cuts are shown above. Two-mass-e and two-mass-h stand for ‘easy’ and ‘hard’. The Ki

are sums of massless momenta and the ki is the momentum of a single external massless leg.
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boxes. For four-mass boxes, there are three contributing boxes. If n ≥ 8 and n mod 4 = 0,

then there are n/4 contributing boxes. This corresponds to when all four corners of the box

cut have the same number of legs, such as the only four-mass eight-point cut would have.

If n ≥ 9 and n is even, then there are an additional n/2. Finally, if n ≥ 9, then there are∑n−8
i=1 n

(b(i+1)/2c+1
2

)
additional four-mass boxes.

The unitarity cuts put the loop momenta on-shell, which gives a quadratic equation with

two solutions. If there is at least one massless leg on the cut, we utilize the following compact

solution [23, 162],

l±,µ0 =
〈1∓| /K2 /K3 /K4γ

µ |1±〉
2 〈1∓| /K2 /K4 |1±〉

, l±,µ1 = −〈1
∓| γµ /K2 /K3 /K4 |1±〉
2 〈1∓| /K2 /K4 |1±〉

,

l±,µ2 =
〈1∓| /K2γ

µ /K3 /K4 |1±〉
2 〈1∓| /K2 /K4 |1±〉

, l±,µ3 = −〈1
∓| /K2 /K3γ

µ /K4 |1±〉
2 〈1∓| /K2 /K4 |1±〉

. (2.34)

Note that the ‘−’ solution is simply the complex conjugate of the ‘+’ solution. If we have a

four-mass box, then we must resort to using the more lengthy solution provided by Britto,

Cachazo, and Feng [160]. (See Ref. [163] for loop momentum solutions in d = 4− 2ε.)

To obtain an arbitrary box coefficient, we simply apply a unitarity cut and multiply the

four corresponding tree amplitudes together:

Aone-loop
n

∣∣∣
boxes

=
m∑
i=1

diBoxi =
m∑
i=1

(d+
i + d−i )Boxi,

d±i;box =
1

2
Atree±

1,i Atree±
2,i Atree±

3,i Atree±
4,i , (2.35)

where the ± on the coefficients refers to the two one-loop solutions, Atree±
j,i are the tree

amplitudes from the cuts, and m is the total number of boxes. Note that the true integral

coefficient di;box is the sum of the two coefficients d±i;box, but we must keep these separate to

find the coefficient relations.

2.1.2.2 Triangles

Next consider the triangle integral coefficients. We start with the triangles by counting the

number of triangle cuts. There are the one-mass, two-mass, and three-mass triangle cuts,

which are shown in Fig. 2.3. Once again, there are n one-mass cuts. Similar to the two-
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Figure 2.3: The one-mass, two-mass, and three-mass triangle cuts are shown above.

mass-e box cut, there are (n − 4)n two-mass triangle cuts. Finally, for the three-mass, we

have an equation similar to the four-mass box cut, but no choose function is needed since it

would have been choose 1. If n mod 3 = 0 and n > 5, then we have n/3 contributing cuts.

Furthermore, if n > 6, then we have an additional
∑n−5

i=1 nb i+1
3
c.

For finding the loop solutions for triangle diagrams, a parameter t is introduced to rep-

resent the undetermined degree of freedom from having only three unitarity cuts. After

converting Forde’s loop solution [161] into our notation, we find

〈
l+i
∣∣ = t

〈
K[

1

∣∣+ αi1
〈
K[

3

∣∣ , ∣∣l+i ] =
αi2
t

∣∣K[
1

]
+
∣∣K[

3

]
,

α01 =
S1(γ13 + S3)

γ2
13 − S1S3

, α02 = −S3(γ13 + S1)

γ2
13 − S1S3

,

α11 = α01 −
S1

γ13

, α12 = α02 − 1,

α21 = α01 + 1, α12 = α02 +
S3

γ13

, (2.36)

where i = 0, 1, 2, Si = Ki·Ki, and γ±13 = K1·K3±
√

(K1 ·K3)2 −K2
1K

2
3 . The four-momentum

representation of the loop momentum solution is

l+,µi = αi2K
[,µ
1 + αi1K

[,µ
3 +

t

2

〈
K[

1

∣∣ γµ ∣∣K[
3

]
+
αi1αi2

2t

〈
K[

3

∣∣ γµ ∣∣K[
1

]
. (2.37)

We can in principle consider four triangle loop solutions, since there are two loop momenta

and two gammas. However, if S1 or S3 = 0, then there is only one non-zero solution for

gamma. In either case, we simply average over the two or four solutions, including the two
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Figure 2.4: The needed two-mass bubble cut is shown above. The one-mass bubble cuts

vanish.

loop momenta. To find the second loop solution, we can take the complex conjugate, or

simply switch all of the angle brackets with the square brackets.

Note that our αij’s are a bit different than Forde, since we use different conventions for

the loop and external momenta. Just as Forde showed, we find that αi1αi2 = αj1αj2, for

i, j = 0, 1, 2. Our conventions match those of Refs. [23, 163].

Following Forde’s procedure to find the t-independent triangle coefficient we take

c±i;tri(t) =
1

nsol

Atree±
1,i Atree±

2,i Atree±
3,i ,

c±i;tri = [Inftc
±
i;tri(t)]|t=0, (2.38)

where nsol is two or four, depending on if there are one or two independent values for gamma.

The symbol Inft instructs one to Taylor expand with respect to t around infinity and keep

the t0 = 1 term to obtain the triangle integral coefficients.

2.1.2.3 Bubbles

Next, we review the extraction of the bubble coefficient. Counting the number of bubble

cuts is much simpler, since there are only one-mass and two-mass diagrams. There are n

one-mass cuts and n−3
2
n two-mass cuts, shown in Fig. 2.4. The bubble loop momentum

solution has two arbitrary parameters, t and y. Instead of using K[,µ
2 , any arbitrary massless
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vector χµ can be used. It is often convenient to choose it to be the last leg on K1, which

gives a simple K[,µ
1 and χµ. We define K[,µ

1 in terms of the massless spinor.

K[,µ
1 = Kµ

1 −
S1

2K1 · χ
χµ = Kµ

1 − χ[,µ. (2.39)

Now, we are ready to express the loop solution in terms of K[,µ
1 and χ[µ.

〈
l+0
∣∣ = t

〈
K[

1

∣∣+ (1− y)
〈
χ[
∣∣ , ∣∣l+0 ] =

y

t

∣∣K[
1

]
+
∣∣χ[] ,〈

l+1
∣∣ =

〈
K[

1

∣∣− y

t

〈
χ[
∣∣ , ∣∣l+1 ] = (y − 1)

∣∣K[
1

]
+ t
∣∣χ[] . (2.40)

From these we can find loop momenta,

l+,µ0 = yK[,µ
1 + (1− y)χ[,µ +

t

2

〈
K[

1

∣∣ γµ ∣∣χ[]+
y(1− y)

2t

〈
χ[
∣∣ γµ ∣∣K[

1

]
,

l+,µ1 = (y − 1)K[,µ
1 − yχ[,µ +

t

2

〈
K[

1

∣∣ γµ ∣∣χ[]+
y(1− y)

2t

〈
χ[
∣∣ γµ ∣∣K[

1

]
. (2.41)

To find a bubble coefficient, we first find the bubble cut contribution to the bubble coefficient,

leaving in the y and t dependence,

b±i;bub(t, y) =
1

2
Atree±

1,i (t, y)Atree±
2,i (t, y). (2.42)

To obtain the full bubble coefficient independent of y or t, one can use the methods described

in Refs. [22, 23, 149, 161, 163]. The expression for the bubble cut contribution to coefficient

is

b±i;bub = [Inft[Infyb
±
i;bub(t, y)]|yi=Yi ]|t=0,

Y0 = 1, Y1 =
1

2
, Y2 =

1

3
, Y3 =

1

4
, Y4 =

1

5
. (2.43)

The bubble coefficient includes contributions from the triangles, but we will show that these

contributions also satisfy the BCJ integral coefficient relations when we review the triangles.

We will not review the bubble extraction in full detail, since we show that the triangle

coefficient satisfies the new coefficient relations for all orders of t, implying that it hold for

the total bubble coefficient as well.

Our goal is to understand how tree-level amplitude relations can be used to create loop-

level integral coefficient relations. The BCJ amplitude relations are needed, since the ordering
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of the two loop momenta for any tree amplitude is already fixed. Since the relations fix the

third leg, we can fix one of the external legs for any of the isolated tree amplitudes. We see

that one-loop integral coefficient relations naturally arise from the tree-level BCJ relations.

2.2 One-Loop Amplitude Coefficient Relations

Now that we reviewed the calculation of integral coefficients in arbitrary one-loop amplitudes,

we focus on relations between these coefficients. To start, we count the number of integral

coefficients needed before the BCJ integral coefficient relations are introduced.

Since the coefficient relations we will derive are independent of the external helicities, we

will typically focus on MHV amplitudes for simplicity. Fixing the external helicity config-

uration, there are n! external leg orderings, but the properties of the color trace leave only

(n − 1)!/2 to consider. The (n − 1)! factor comes from the cyclic symmetry and the factor

of 1/2 comes from the reflective symmetry of the trace over the color generators. Therefore,

one would naively expect there to be m(n − 1)!/2 independent integral coefficients, where

m = mbox + mtri + mbub is the number of cuts made per ordering of external momenta. In

this section, we will show that the number of independent integral coefficients and tree am-

plitudes is actually smaller, since the BCJ relations can be recycled into the one-loop level

by the unitarity method.

Since each di contains two adjacent loop momenta, the BCJ amplitude relations may be

easily used if we fix the loop momenta to be the first two legs of the tree amplitude. Let us

start by systematically considering possible box cuts of increasing complexity.

2.2.1 BCJ box integral coefficient identities

We start by considering the simplest box cuts. The first non-trivial example is a five-point

one-loop amplitude, which contains only one-mass box cuts. After taking into account the

cyclic and reflective symmetries of the partial amplitudes, one would expect (n− 1)!/2 = 12

independent partial amplitudes. Furthermore, for each of these twelve amplitudes, there are
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Figure 2.5: We consider two box cuts needed, which are identical up to a twisting of the K3

leg. These two coefficients have the same loop solution, which allows for a tree level BCJ

amplitude relation to be used to relate the two integral coefficients.

five box cuts, giving 60 coefficients to compute. We would like to demonstrate that after

taking the BCJ relations into account, we can reduce the number of independent coefficients

to 30.

Consider the following two integral coefficients d±(1,2,34,5) and d±(1,2,43,5), shown in Fig. 2.5.

Not only do they have the same loop solution, but they share three tree amplitudes. Note

that the total box coefficient is found by summing the two loop solutions, but we keep these

two solutions separate to expose the tree-level BCJ amplitude relations. Let us take a closer

inspection at the dissimilar tree amplitudes containing K3

d±3,(1,2,34,5) = Atree
4 (l±3 ,−l±2 , 3, 4),

d±3,(1,2,43,5) = Atree
4 (l±3 ,−l±2 , 4, 3). (2.44)

Since the two amplitudes have the same loop momentum solution, we can use the four-point

BCJ relation, Eq. (2.31), to relate the box coefficient. That is,

d±1,2,43,5 =
sl±3 4

s−l±2 4

d±1,2,34,5. (2.45)
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We look to find all possible five-point box integral coefficient relations. After considering

reflection symmetry as well as this new“twist symmetry” for the legs located on the tree, we

find that there are 30 independent five-point coefficients instead of 60. Finding the form of

the 30 integral coefficient relations at five points is as trivial as finding the correct four-point

tree-level BCJ amplitude identity, so we will not review the one-mass boxes any further.

Next, consider six-point amplitudes. There are one-mass boxes and two-mass diagrams

to consider. We start with the one-mass diagrams. In most cases, there will be multiple one-

mass diagrams which have the same loop solution. Consider the following six coefficients:

d±1,2,345,6, d±1,2,354,6, d±1,2,435,6, d±1,2,453,6, d±1,2,534,6, and d±1,2,543,6. It is clear that we can use the

BCJ relations to remove the calculation of four coefficients. Using Eq. (2.31),

d±1,2,435,6 = d±1,2,345,6

sl±3 4 + s45

s−l±2 4

+ d±1,2,354,6

sl±3 4

s−l±2 4

,

d±1,2,453,6 = −d±1,2,345,6

s34sl±3 5

s−l±2 4s−l±2 45

− d±1,2,354,6

sl±3 4(s−l±2 45 + s35)

s−l±2 4s−l±2 45

,

d±1,2,534,6 = d±1,2,354,6

sl±3 5 + s45

s−l±2 5

+ d±1,2,345,6

sl±3 5

s−l±2 5

,

d±1,2,543,6 = −d±1,2,354,6

s35sl±3 4

s−l±2 5s−l±2 54

− d±1,2,345,6

sl±3 5(s−l±2 54 + s34)

s−l±2 5s−l±2 54

. (2.46)

We see that at six-points, there are even more integral coefficient relations, since there

are more cuts with the third leg of the tree amplitude fixed. For counting the number of

independent box coefficients needed, it is important to note that not all of the six-point

one-mass boxes have six coefficients with the same loop solution. In some cases, there will

only be three independent coefficients with the same solution.

Note that at six points there are 360 one-mass coefficients, yet there are many fewer

unique loop solutions. The BCJ relations relate a majority of the coefficients with the same

loop momenta. We can see that if there are more than two six-point one-mass box coefficients

with the same loop solution up to an overall minus sign to account for reflections, then those

extra are dependent on two coefficients. In some cases, you may need to calculate a coefficient

which is not needed, but this inconvenience decreases the number of coefficients calculated

in the long run. For example, the one-loop solution has the following three coefficients:
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d±4,5,612,3, d±4,5,126,3, and d±4,5,261,3. Notice how we can use d±4,5,612,3 and d±4,5,621,3 as independent

basis coefficients, even though we do not need to calculate the second coefficient. It is

beneficial, since we are still only calculating two instead of three.

Next, we consider the six-point two-mass-e coefficients. These are a bit more complicated,

since there are potentially two tree amplitudes K2 and K3 which can be different for the same

loop solution. Once again, we group all of the coefficients with the same loop coefficient.

At most, we could have four coefficients which have the same loop solution. For example,

consider the following coefficients: d±1,23,45,6, d±1,23,54,6, d±1,32,45,6, and d±1,32,54,6. It is clear that

we can relate the second and third coefficient to the first, but the fourth has two twisted

corners on K2 and K3. Expanding the fourth coefficient in terms of tree amplitudes makes

the identity more apparent:

d±1,32,54,6 =
1

2
Atree

3 (l±1 ,−l±, 1)Atree
4 (l±2 ,−l±1 , 3, 2)Atree

4 (l±3 ,−l±2 , 5, 4)Atree
4 (l±,−l±3 , 6). (2.47)

From expanding the coefficient in terms of tree amplitudes, we see that two four-point BCJ

relations can be used to find this coefficient in terms of d±1,23,45,6. The three relations between

the four coefficients mentioned above are

d±1,23,54,6 = d±1,23,45,6

sl±3 5

s−l±2 5

,

d±1,32,45,6 = d±1,23,45,6

sl±2 3

s−l±1 3

,

d±1,32,54,6 = d±1,23,45,6

sl±3 5sl±2 3

s−l±2 5s−l±1 3

. (2.48)

Therefore, we have demonstrated that even if multiple corners of a cut have different order-

ings, the BCJ relations can still be used multiple times, as long as the related coefficients

have the same loop solution.

When continuing this analysis to higher-point amplitudes, we find that the simplification

gets better as we increase n. The simplification occurs because there are more possible dia-

grams with the same loop solution. At seven-point, there are 12600 needed box coefficients,

but only 1785 independent coefficients. For example, there are 24 permutations of K3 for

the coefficient d±1,2,3456,7, yet there are only six independent coefficients needed. We will not
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write out these 18 relations, but it is clear that the BCJ amplitude relations could be used

to reduce the number of coefficients. Also, at seven-point we introduce three-mass box coef-

ficients, which could have up to eigth coefficients with the same loop solution. For example,

consider twisting K2, K3, and K4 on the coefficient d±1,23,45,67. These eight coefficients can all

be related to one coefficient, which gives seven relations. Once again, we will not write them

down, but it would be easy to generate with the BCJ relations. One would have to be a bit

more careful with writing down the relations for the twelve coefficients corresponding to the

loop solution contained in d±1,23,456,7. The K3 term gives a dependence on two coefficients,

while the K2 would add an overall factor of inverse propagators from Eq. (2.31).

Interesting eight-point amplitudes to consider would be the four-mass and d±1,432,765,8,

since that coefficient would depend on four coefficients. We will not go into deriving the

identities, because it is fairly straightforward. Nothing new arises for higher-point boxes

besides applying more complicated BCJ relations.

In Fig. 2.6, we plot the number of box coefficients needed before and after the BCJ

integral coefficient relations have been taken into consideration. The log plot shows that

as the number of external legs increases, the relations reduce a higher percentage of the

coefficients. We see that by eight-points, the number of independent coefficients needed to

calculate is roughly an order of magnitude less than what was naively expected.

Finally, we would like to present a formula to count the total number of independent

coefficients, after applying the BCJ relations. The boxes are a bit complicated, as there

is different counting for the one-mass, two-mass-e, two-mass-h, three-mass, and four-mass

boxes. We found the following expression which gave the total number of independent

coefficients C(n) for n ≥ 4.

C(n) =

bn−4
4
c−1∑

i=1

bn−4
3
c−1∑

j=1

bn−4
2
c−1∑

k=1

n!

ijk(n− i− j − k)sym(i, j, k)
, (2.49)

where bxc is the floor function and sym is a symmetry factor which depends on whether i,

j, k, and n− i− j − k, are the same or not. Note that i, j, k, and n− i− j − k represent

the number of external legs on each corner of the box. Naively, we would expect that there

would be n! for each cut topology, but we know that the BCJ relations allow for this new
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Figure 2.6: The number of box coefficients. The red line represents the number of inde-

pendent coefficients before using the BCJ integral coefficient relations, and the blue line

represents the number of independent coefficients needed after the relations are taken into

consideration.
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type of twist symmetry, which, up to symmetry factors, divides the number of diagrams

by the number of legs on all corners. To get the counting exactly right, we introduced a

symmetry factor sym,

sym =



8 : if i = j = k = n− i− j − k
2 : if i = j = k, or any other 3 equal

1 : if i = j and k = n− i− j − k, or any other two pair equal

2/3 : if i = j, or any other two equal

1/3 : else

(2.50)

The symmetry factor is chosen to properly count the number of needed diagram as well as

reflection symmetry. For example, consider a five-point box cut. There is only one type of

diagram possible with one corner having two legs and three corners with one leg. There is only

one diagram for this specification, yet there is a reflection symmetry, making sym = 2. For

other cases, there could be more diagrams needed, each with their own symmetry properties.

As we have shown, it is no surprise that the box coefficients should satisfy BCJ integral

coefficient relations. Next, we investigate how similar identities can be found for the less

trivial triangle coefficients.

2.2.2 BCJ triangle integral coefficient identities

Next, we study how the BCJ relations can be used to simplify triangle integral coefficients.

Exactly how the BCJ relations will come into play is less clear, since the loop solutions contain

the parameter t. In particular, the inverse propagators in the BCJ relations contain loop

momenta, and therefore we will end up with expressions for dependent triangle coefficients

in terms of the parameter t.

We start by considering two coefficients with the same loop solution, say c±(12,34,56) and

c±(12,34,65). We would like to find a way to relate these coefficients by propagators, such that

c(12,34,56) = sl5
s−l25

c(12,34,56), but we need to be careful with the t dependence of the amplitude

and the inverse propagators. The first natural guess would be to keep the t dependence

in the inverse propagators and the coefficient and apply the proper expansion of t around

30



infinity, followed by extracting the t0 term. It turns out that this precisely works, as we

confirmed numerically. The coefficient identity is

c±(12,34,65)(t) =
sl6(t)

s−l26(t)
c±(12,34,56)(t). (2.51)

Finding this t-dependent coefficient, taking limit as t goes to infinity, and taking the t0 term

allows for the triangle coefficient to be found:

c±(12,34,65) = [Inftc
±
(12,34,65)(t)]|t=0 (2.52)

This shows that the triangle contributions to the bubbles should also satisfy this BCJ identity.

Now that we understand how to properly deal with the t parameter, generating triangle

coefficient identities is essentially the same as the box coefficients. We group all of the

coefficients with the same loop solution together, find the set of independent coefficients,

and write down the analogous BCJ relations needed to find the dependent coefficients.

Now that we have demonstrated that the BCJ relations indeed hold for triangle coef-

ficients with Forde’s analytic approach [161], we would like to investigate how we can use

them to speed up numerical calculations.

When considering if the BCJ relations speed up performance, there is a caveat since the

triangle coefficient only needs the zeroth order term. However, finding c(12,34,65) with BCJ

requires that we keep all of the coefficients in the expansion of t for c(12,34,56), since the factors

of inverse propagators have t dependence and will change the zeroth order dependence of

the undetermined triangle coefficient. Fortunately, all of these coefficients would be saved

for the evaluation of bubble diagrams. Therefore, the only extra computational cost for

determining c(12,34,65) involves finding the coefficients from expanding sl5(t)
sl25(t)

with respect to

t. Furthermore, it appears that all of the factors of inverse propagators in all of the BCJ

relations, even for higher than four-points, will never have a tn term for n > 0. Even if

we did not extract out the boxes and numerically evaluated the coefficients in a Laurent

expansion of t, we would only need to calculate the zeroth and first three negative powers of

the inverse propagator terms. Thus, we have shown that the only extra computation needed

the four coefficients for sl5(t)
sl25(t)

= O( 1
t4

) +
∑0

i=−3 ait
i, since c(12,34,56) only goes up to powers of

t3 for Forde’s method.
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Figure 2.7: The number of triangle coefficients. The red line represents the number of

independent coefficients before using the BCJ integral coefficient relations, and the blue line

represents the number of independent coefficients needed after the relations are taken into

consideration.
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In Fig. 2.7, we plot the number of triangle coefficients needed before and after the BCJ

integral coefficient relations are taken into account. We notice that the number of triangle

coefficients is reduced even less than the boxes. This is due to the fact that less cuts puts

more legs on a particular tree amplitude, which makes the BCJ relations more plentiful. We

found that the absolute value of the Stirling number of the first kind S3
n gives the correct

number of independent n-point coefficients. Next, we review the bubble integral coefficient

identities.

2.2.3 BCJ bubble integral coefficient identities

We now look to see if the BCJ relations can be utilized with the bubbles. Typically, to

calculate the bubble coefficient, one has to subtract out the triangle contributions to the

bubble coefficient. However, since we already showed that the triangles follow the BCJ

coefficient relations for all orders of t, we only need to show that the identity is valid for the

bubble cut component of the bubble integral coefficient.

In particular, we analytically and numerically checked that the solution works for the

(41, 23) cut for the amplitude Aone-loop(1−, 2−, 3+, 4+). For example, we would like to see

how the coefficient b(41,32) of Aone-loop(1−, 3+, 2−, 4+) could be found from b(41,23) using the

BCJ relations,

b±(12,43)(y, t) =
sl4(t, y)

s−l14(t, y)
b±(12,34)(t, y). (2.53)

Note that to find the true bubble coefficient, we must properly remove the y and t depen-

dence, such that

b±(12,43) =

[
Inft

[
Infy

sl4(t, y)

s−l14(t, y)
b±(12,34)(t, y)

]]∣∣∣∣
t=0,yi=Yi

. (2.54)

In Fig. 2.8, we plot the number of bubble coefficients needed before and after the BCJ

integral coefficient relations are taken into consideration. As expected, the bubbles are

simplified even more heavily than the triangles and boxes. Similar to the triangles, we can

use the Stirling number of the first kind S2
n to count the number of independent coefficients,

but this also includes one-mass coefficients. To find the numbers shown in Fig. 2.8, we

subtracted n(n− 2)!.
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Figure 2.8: The number of bubble coefficients. We did not include one-mass coefficients,

since the corresponding integrals integrate to zero.

We have clearly demonstrated that the tree-level BCJ amplitude relations can be used

to create one-loop integral coefficient relations. However, we note that these BCJ integral

coefficient relations are only useful for amplitudes with multiple identical particles, which

often is the case for QCD jet processes. However, there will always be other particles

interacting with these gluons, which would lessen the number of identities which are suggested

by the figures shown throughout this section. These relations could be useful for improving

the efficiency of QCD calculations or to check the stability of numerical code.

2.3 Examples of BCJ integral coefficient relations

2.3.1 Box integral coefficient relation example

Let us consider the box integral coefficients d(1,2,34,5) and d(1,2,43,5) and show explicitly that

these coefficients satisfy the integral coefficient relation provided in this chapter. We start
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Figure 2.9: The one non-zero loop helicity configuration is shown above for the coefficient

d(1,2,34,5).

by calculating the d(1,2,34,5) diagram explicitly, shown in Fig. 2.9. In principle, there are eight

possible loop helicity configurations, but only one is non-zero for this specific cut. We can

write down the coefficient by multiplying by the four tree amplitudes:

d(1,2,34,5) =
i 〈1l1〉3

〈l1−l〉 〈−l1〉
−i [l2−l1]3

[−l12] [2l2]

i 〈l3−l2〉3
〈−l23〉 〈34〉 〈4l3〉

−i [−l35]3

[5l] [l−l3]
=

〈1| l1l2l3 |5]3

〈34〉 〈1| l |5] 〈3| l2 |2] 〈4| l3ll1 |2]
,

(2.55)

where l = l0 throughout. We can use the loop solution from Eq. (2.34) and find l to be

l+ =
1

2

[21]

[25]
〈1| γµ |5] ,

l− =
1

2

〈21〉
〈25〉 〈5| γ

µ |1] . (2.56)

Right away, it is clear that the positive solution gives zero, since 〈1l+〉 = 0. We continue by

only considering the negative loop solution. We can make a choice for 〈l−| and |l−],

〈
l−
∣∣ = 〈5| , |l−] =

〈21〉
〈25〉 |1] ≡ α|1], (2.57)

which allows us to simplify the calculation in terms of external spinors.

Furthermore, we can use momentum conservation to express all other loop momenta in
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terms of l:

d−(1,2,34,5) =
〈1| l |2]3 〈2| l |5]3

〈34〉 〈1| l |5] 〈3| l − 1 |2] 〈45〉 〈1| l |5] [12]

=
〈15〉3 α3 [12]3 〈25〉3 α3 [15]3

〈34〉 〈45〉 (〈15〉α [15])2(〈35〉α [12]− 〈31〉 [12]) [12]

= is51s12
i 〈12〉3

〈23〉 〈34〉 〈45〉 〈51〉 = is51s12A
tree
5 (1−, 2−, 3+, 4+, 5+). (2.58)

In the last line, we used the Schouten identity to simplify the denominator. Similarly, we

can immediately write down the equation for the box coefficient c(1,2,43,5) since p3 and p4

have the same helicity, which is given by

d−(1,2,43,5) = is51s12
i 〈12〉

〈24〉 〈43〉 〈35〉 〈51〉 = is51s12A
tree
5 (1−, 2−, 4+, 3+, 5+). (2.59)

Next, we check that the coefficient cut relation d−(1,2,43,5) =
s
l−3 4

s−l−2 4

d−(1,2,34,5) holds. To start,

sl−3 4

s−l−2 4

=
〈4| l3 |4]

〈4| − l2 |4]
=
〈4| l + 5 |4]

〈4| 1 + 2− l |4]
,

sl−3 4

s−l−2 4

=
− 〈45〉
〈25〉(〈2| 1 + 5 |4])

[14]
〈25〉(〈45〉 〈21〉 − 〈41〉 〈25〉)− 〈4| 2 |4]

= −〈45〉 〈23〉
〈24〉 〈35〉 . (2.60)

Schouten identities and momentum conservation are used throughout to simplify these ex-

pressions. We can see that this is the exact factor which is needed to find d−(1,2,43,5) from

d−(1,2,34,5), since

d+
(1,2,43,5) =

sl+3 4

s−l+2 4

d+
(1,2,34,5) = 0,

d−(1,2,43,5) =
sl−3 4

s−l−2 4

d−(1,2,34,5) = is51s12
i 〈12〉

〈24〉 〈43〉 〈35〉 〈51〉 . (2.61)

As we have demonstrated, the BCJ integral coefficient identity holds for this five-point box

cut example.

2.3.2 Triangle integral coefficient relation example

Next, we will show how the BCJ integral coefficient relation holds for a triangle cut. We

will choose a four-point cut c(1,23,4) which has a zero triangle coefficient, but does have non-

zero terms for powers of t greater than zero. These higher power terms contribute to the
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Figure 2.10: Diagrams needed for the coefficient c(1,23,4).

bubble coefficient, so we must confirm this in order to show that the BCJ integral coefficient

relations work on the total bubble coefficient. In this example, the BCJ relations will be

used to find a non-zero triangle integral coefficient from a zero triangle integral coefficient,

which is possible since the inverse propagator ratio has t dependence.

We will calculate the triangle cut from the amplitude Aone-loop
4 (1−, 2−, 3+, 4+). There are

three nonzero loop helicities which we must consider. We have the three diagrams, which

we will label as A1, A2, and A3 and are shown in Fig. 2.10, which when evaluated gives

A1 =
−i 〈l1〉3
〈1l1〉 〈l1l〉

〈l12〉3
〈23〉 〈3l2〉 〈l2l1〉

[4l]3

[ll2] [l24]
,

A2 =
−i [l1l]

3

[l1] [1l1]

〈l12〉3
〈23〉 〈3l2〉 〈l2l1〉

〈ll2〉3
〈l24〉 〈4l〉 ,

A3 =
−i 〈1l1〉3
〈l1l〉 〈l1〉

〈2l2〉4
〈23〉 〈3l2〉 〈l2l1〉 〈l12〉

[l24]3

[4l] [ll2]
. (2.62)

Choosing K[,µ
1 = pµ1 and K[,µ

3 = pµ4 , we find that the following loop solution is

〈l+| = t 〈1| , |l+] = |4],〈
l+1
∣∣ = t 〈1| , |l+1 ] = |4]− 1

t
|1],〈

l+2
∣∣ = t 〈1|+ 〈4| , |l+2 ] = |4]. (2.63)

This leaves three non-zero contributions after considering the positive and negative loop
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Figure 2.11: Diagrams needed for the coefficient c(1,32,4).

solutions,

A+
2 =

i [41] 〈12〉3
〈23〉 (t 〈31〉+ 〈34〉) ,

A−1 =
−i(〈42〉 − 1

t
〈12〉)3t3 [41]

〈23〉 〈34〉 ,

A−3 =
i 〈24〉4 t3 [14]

〈23〉 〈34〉 (〈42〉 − 1
t
〈12〉) . (2.64)

After expanding about t = ∞, we find that only the negative solution has non-zero contri-

butions to the triangle and bubble coefficients. Next, we can calculate c(1,23,4)(t), which is

the same as c(1,23,4) before picking the t0 term after the expansion about infinity. We find

c+
(1,23,4)(t) = 0 +O

(
1

t

)
,

c−(1,23,4)(t) =
2i 〈24〉 [41]

〈23〉 〈34〉 (〈24〉2 t3 + 〈24〉 〈12〉 t2 + 2 〈12〉2 t) +O
(

1

t

)
. (2.65)

The fact that there is no zeroth order term shows that there is no triangle coefficient, yet

the higher powers of t would feed into the bubble coefficient. Let us check the BCJ integral

coefficient relation by first calculating the coefficient c±(1,32,4)(t) and then confirming that the

two coefficients satisfy the corresponding BCJ relation.

Once again, we can write down expressions for the three amplitudes, which we will refer

to as B1, B2, and B3 and are shown in Figure 2.11.
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B1 =
−i 〈l1〉3
〈1l1〉 〈l1l〉

〈2l1〉4
〈2l2〉 〈l2l1〉 〈l13〉 〈32〉

[4l]3

[ll2] [l24]
,

B2 =
−i [l1l]

3

[l1] [1l1]

〈2l1〉4
〈2l2〉 〈l2l1〉 〈l13〉 〈32〉

〈ll2〉3
〈l24〉 〈4l〉 ,

B3 =
−i 〈1l1〉3
〈l1l〉 〈l1〉

〈2l2〉3
〈l2l1〉 〈l13〉 〈32〉

[l24]3

[4l] [ll2]
. (2.66)

Similarly, there are three non-zero contributions to the triangle/bubble integral coefficient,

which are shown below. We used the same loop solution as previously and find

B+
2 =

i [41] 〈12〉4
〈13〉 〈32〉 (t 〈21〉+ 〈24〉) ,

B−1 =
−i
(
〈24〉 − 1

t
〈21〉

)4
t3 [41]

〈24〉 〈32〉
(
〈43〉 − 1

t
〈13〉

) ,
B−3 =

it3 〈24〉3 [14]

〈32〉
(
〈43〉 − 1

t
〈13〉

) . (2.67)

Once again, we find that the positive solution has no contribution to the bubble or triangle

coefficient. The negative solution does have a non-zero triangle integral coefficient. Since

the analytic expression for this amplitude is a bit lengthy, we will only report the zeroth

order term, which corresponds to the triangle integral coefficient.

c+
(1,32,4) = 0,

c−(1,32,4) =
2is41(〈13〉 〈24〉 〈14〉 〈23〉+ 2 〈12〉2 〈34〉2)

〈34〉4
. (2.68)

Next, we show that we get the same result if we were to use the BCJ integral coefficient

relations. The ratio of inverse propagators
sl23
s−l13

for the positive and negative loop solution

are

sl+2 3

s−l+1 3

=
[43] (t 〈13〉+ 〈43〉)
〈13〉 (t [34]− [31])

,

sl−2 3

s−l−1 3

=
〈34〉 (t [31] + [34])

[31] (t 〈43〉 − 〈13〉) . (2.69)

We see that these two are complex conjugates of each other, if t is real. Next, we will multiply

these by b±(1,23,4), expand about t approaches infinity, and keep the zeroth order term. S@M
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Figure 2.12: The non-zero helicity configurations for the coefficient b(41,23).

and Mathematica easily allow for this analytic expansion to be performed [155], which gives

c+
(1,32,4) = Inft

[
sl+2 3(t)

s−l+1 3(t)
c+

(1,23,4)(t)

]∣∣∣∣∣
t=0

= 0,

c−(1,32,4) = Inft

[
sl−2 3(t)

s−l−1 3(t)
c−(1,23,4)(t)

]∣∣∣∣∣
t=0

=
2is41(〈13〉 〈24〉 〈14〉 〈23〉+ 2 〈12〉2 〈34〉2)

〈34〉4
.(2.70)

After some factoring and application of the Schouten identity, one can get the BCJ integral

coefficient relation to give the correct expression for the coefficient c±(1,32,4). Furthermore, we

numerically confirmed that the coefficients agree for all orders of t, not just for the t0 term.

This ensures that the triangle contributions to the bubbles will also satisfy the BCJ integral

coefficient relations.

2.3.3 Bubble integral coefficient relation example

In this subsection, we present a calculation of a four-point bubble coefficient and show that

it satisfies a BCJ integral coefficient relation. We start by considering the b(41,23) integral

coefficient of the amplitude Aone-loop
4 (1−, 2−, 3+, 4+), which is shown in Figure 2.12.

We have two non-zero internal helicity configurations to consider, which we will refer to
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as C1 and C2.

C1 =
i 〈1l〉4

〈1l1〉 〈l1l〉 〈l4〉 〈41〉
i 〈l12〉3

〈23〉 〈3l〉 〈ll1〉
,

C2 =
i 〈1l1〉3

〈l1l〉 〈l4〉 〈41〉
i 〈2l〉4

〈23〉 〈3l〉 〈ll1〉 〈l12〉 . (2.71)

Each also has two loop solutions, giving C±1 and C±2 . We chose χµ = pµ1 , which makes

K[,µ
1 = pµ4 . The loop solutions are

〈
l+
∣∣ = t 〈4|+ (1− y) 〈1| , |l+] =

y

t
|4] + |1],〈

l+1
∣∣ = 〈4| − y

t
〈1| , |l+1 ] = (y − 1)|4] + t|1]. (2.72)

Plugging these solutions in and simplifying, we find

C+
1 =

t(t 〈42〉 − y 〈12〉)3

〈23〉 〈41〉 (1− y)(t 〈34〉+ (1− y) 〈31〉) ,

C+
2 =

t(t 〈24〉+ (1− y) 〈21〉)4

〈23〉 〈41〉 (1− y)(t 〈34〉+ (1− y) 〈31〉)(t 〈42〉 − y 〈12〉) ,

C−1 =

(
y
t

)4
((y − 1) 〈42〉+ t 〈12〉)3

〈23〉 〈41〉 (y − 1)
(
y
t
〈34〉+ 〈31〉

) ,
C−2 =

(y − 1)3
(
y
t
〈24〉+ 〈21〉

)4

〈23〉 〈41〉
(
y
t
〈34〉+ 〈31〉

)
((y − 1) 〈42〉+ t 〈12〉) . (2.73)

To calculate the bubble coefficient, one must typically subtract away the corresponding trian-

gle contributions. However, we have already shown that the triangle contributions will cancel

at all orders of t, not just the component contributing to the triangle coefficient. Therefore,

to confirm that the BCJ integral coefficient relation holds for the bubble coefficient, we will

just focus on the bubble cut contribution to the bubble coefficient.

We find the coefficient b+
(41,23) is zero by applying Eq. (2.43) to C+

1 +C+
2 . For b−(41,23), we

get

b−(41,23) =
2 〈13〉2 〈24〉2 − 〈12〉 〈13〉 〈24〉 〈34〉+ 11 〈12〉2 〈34〉2

3 〈34〉4
. (2.74)

Next, we would like to calculate b±(41,32) and see if it can be found from b±(41,23). The former

coefficient has four contributions D±1 and D±2 , which is shown in Figure 2.13.
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Figure 2.13: The non-zero helicity configurations for the coefficient b(41,32).

D1 =
i 〈1l〉4

〈1l1〉 〈l1l〉 〈l4〉 〈41〉
i 〈2l1〉4

〈2l〉 〈ll1〉 〈l13〉 〈32〉 ,

D2 =
i 〈1l1〉3

〈l1l〉 〈l4〉 〈41〉
i 〈2l〉3

〈ll1〉 〈l13〉 〈32〉 . (2.75)

We can use the same loop solution as before and evaluate D1
± and D2

± to find

D+
1 =

t4
(
〈24〉 − y

t
〈21〉

)4

〈32〉 〈41〉 (1− y)(t 〈24〉+ (1− y) 〈21〉)
(
〈43〉 − y

t
〈13〉

) ,
D+

2 =
(t 〈24〉+ (1− y) 〈21〉)3

〈32〉 〈41〉 (1− y)
(
〈43〉 − y

t
〈13〉

) ,
D−1 =

(
y
t

)4
((y − 1) 〈24〉+ t 〈21〉)4

〈32〉 〈41〉 (y − 1)
(
y
t
〈24〉+ 〈21〉

)
((y − 1) 〈43〉+ t 〈13〉) ,

D−2 =
(y − 1)3

(
y
t
〈24〉+ 〈21〉

)3

〈32〉 〈41〉 ((y − 1) 〈43〉+ t 〈13〉) . (2.76)

Finally, we can use Eq. (2.43) and find the contribution to the bubble coefficient b±(41,32). It

is no surprise that b+
(41,32) is zero, and we find

b−(41,32) =
−11 〈13〉2 〈24〉2 + 13 〈12〉 〈13〉 〈24〉 〈34〉 − 14 〈12〉2 〈34〉2

3 〈34〉4
. (2.77)

Next, we would like to calculate b±(41,32) from b±(41,23) by using the BCJ integral coefficient

relation Eq. (2.54) and confirm that we get the correct result. First, we find the needed ratio
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of inverse propagators, which are

sl+3

s−l+1 3

= −(t 〈43〉+ (1− y) 〈13〉)
(
y
t

[34] + [31]
)(

〈43〉 − y
t
〈13〉

)
((y − 1) [34] + t [31])

,

sl−3

s−l−1 3

= −
(
y
t
〈43〉+ 〈13〉

)
(t [34] + (1− y) [31])

((y − 1) 〈43〉+ t 〈13〉)
(
[34]− y

t
[31]
) . (2.78)

We can apply the BCJ integral coefficient relation to confirm that we get the right result.

b±(41,32) = Inft

[
Infy

[
sl±3(t, y)

sl±1 3(t, y)
b±(41,23)(t, y)

]]∣∣∣∣∣
t=0,yi=Yi

,

=
−11 〈13〉2 〈24〉2 + 13 〈12〉 〈13〉 〈24〉 〈34〉 − 14 〈12〉2 〈34〉2

3 〈34〉4
. (2.79)

We confirmed that the two solutions agree numerically, thus showing that the BCJ integral

coefficients work on bubble coefficients as well. Around the same time of this work, similar

relations were utilized to find rational terms as well [164].

This chapter demonstrates that color-kinematics duality, which motivated tree-level am-

plitude relations, provides more structure to one-loop amplitudes via integral coefficient

relations. While this work has only focused on Yang-Mills theory, in principle, these con-

cepts could be carried over to scattering amplitudes in gravity via the double copy [30, 38,

39, 43, 51].

One-loop graviton scattering in general relativity is miraculously UV finite [165], yet

adding matter causes unphysical divergences. Perhaps the divergences are due to the ne-

glection of gravitational spin-spin interactions of quantized angular momentum via torsion

in Einstein-Cartan theory. The double copy of the Yang-Mills boson in Riemannian geom-

etry gives the graviton, axion, and dilaton. In 1974, Scherk and Schwarz showed that the

Einstein-Hilbert action in Cartan geometry allows for spin-spin interactions between fermions

via torsion, which when placed in Riemannian geometry results in the axion [166, 167].

Einstein-Cartan theory is a very natural extension of general relativity with semi-classical

applications of quantized angular momentum [168].

While it has been argued that Einstein-Cartan theory treated as a quantum field theory

provides a UV cutoff for matter via a Cartan radius [169, 170], scattering amplitudes have
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only been computed in Einstein-Cartan theory at tree level [171]. Asymptotically safe quan-

tum gravity as well as UV fixed points in theories with torsion and non-metricity have been

investigated [172–174], as well as the short-scale differences caused by quantum gravity [175].

Finite entanglement entropy has been found in asymptotically safe quantum gravity [176].

A U(1) gauge symmetry was found in the trace of the torsion tensor, suggesting some con-

netion to a gauge-gravity duality [177], which also allows for a U(1) × SU(2) symmetry to

be found when considering the four-fermion interaction term [178, 179]. Dark matter, dark

energy, and the hierarchy problem also may be addressed with Einstein-Cartan theory [180–

183]. While it would be interesting to investigate the UV properties of quantum gravity with

matter via generalizations of Einstein-Cartan theory that also encode the standard model,

such a topic is outside the scope of this thesis.
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CHAPTER 3

Radiation in Linearized Gravity and Electrodynamics

In this chapter, linearized gravity and the quadrupole moment method for gravitational

waves are introduced. Interest in a radiative double copy motivates studying the connec-

tion between electromagnetic radiation and gravitational radiation in linearized gravity. By

comparing with the quadrupole moment method, a generalization of the Lienard-Wiechert

potential in electromagnetism is found in this section for relativistic gravitational sources.

While such a formula would not be a valid approximation of general relativity for relativis-

tic bound states, it could be applicable for gravitational wave production from relativistic

scattering processes. While the simple classical solutions presented could be calculated with

traditional methods, the hope is that a radiative double copy could help with more difficult

calculations and provide new insight.

3.1 Gravitational Waves in Linearized Gravity

In 1893, Heaviside considered the possibility of gravitational waves in a linearized theory of

gravity analogous to Maxwell’s equations. With knowledge of the modern color-kinematics

duality we can see an echo of some charge-mass duality between Maxwell’s equations and

Heaviside’s theory of gravity. By 1905, Poincare proposed that gravitational waves would

move at the speed of light. By 1915, Einstein developed his general theory of relativity,

stating that all forms of stress, energy, and momentum curves the spacetime metric gµν .

Einstein’s field equations are

Rµν −
1

2
gµνR = Gµν =

8πG

c4
Tµν , (3.1)
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where Rµν is the Ricci tensor, Gµν is the Einstein tensor, Tµν is the stress-energy-momentum

tensor, G is Newton’s gravitational constant, and c is the speed of light. Around the same

time, Hilbert developed a simple action, which gives Einstein’s field equations when varied

with respect to gµν . The Einstein-Hilbert action is

SEH =

∫
d4xLEH = − c3

16πG

∫
d4x
√
−det(gµν)R, (3.2)

where R = gµνRµν is the Ricci scalar. In 1916, Einstein demonstrated the transport of energy

via gravitational waves. While claims of indirect experimental confirmation were made in

the 1970’s, it was not until 2015 that LIGO directly detected gravitational waves, which was

publicly announced in February of 2016, coincidentally on the hundred-year anniversary of

Einstein’s discovery [184]. In this section, we look to linearize Einstein’s field equations and

study the associated gravitational wave equation.

Note that g µ
ν = δ µν , which means that g µ

µ = d, where d is the number of dimensions.

Throughout this chapter, we will work in d = 4 dimensions. As Einstein’s field equations

are a set of 16 nonlinear equations, calculating exact solutions is often quite cumbersome.

As physicists often do, it helps to approximate the spacetime metric as the sum of a back-

ground metric and a weak gravitational field κhµν . We take the background metric to be

the Minkowski metric, giving

gµν = ηµν + κhµν , (3.3)

where use the convention that κ =
√

32πG
c3

. The Minkowski metric is chosen to be

ηµν = ηµν = diag(−1, 1, 1, 1), (3.4)

Our assumption is that |κhµν | � 1, which allows us to neglect all terms after leading order

in κh. With this assumption, we find that the inverse metric is

gµν = ηµν − κhµν +O(κ2), (3.5)

where hµν ≡ ηµαηνβhαβ and linearized gravity ignores metric contributions of the order κ2

and higher. Since ηµν is a constant tensor, we can now develop a theory of linearized gravity,

which treats hµν as the dynamical field. The linear theory has a simpler set of field equations,
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and all indices can be raised and lowered with the constant Minkowski metric. The linearized

gravity action is

SLG =

∫
d4x

(
1

2
∂αhµν∂αhµν − ∂µhµα∂νhνα + ∂µhµν∂

νh− 1

2
∂µh∂

µh

)
, (3.6)

where we see that κ was conveniently chosen such that it drops out of the linearized gravity

action. A short calculation shows that Eq. (3.6) is equivalent to

SLG =

∫
d4x

(
1

2
∂αh̄µν∂αh̄µν −

1

4
∂µh̄∂

µh̄

)
. (3.7)

As a brief side note, physicists will often write down the Lagrangian

SGF =

∫
d4x

(
1

2
∂αhµν∂αhµν −

1

4
∂µh∂

µh

)
. (3.8)

A field redefinition of hµν → h̄µν can be made to find this Lagrangian. Since there is

additional gauge freedom, many prefer to work in the transverse-traceless gauge defined

later. If the metric is traceless, then h̄µν = hµν , which makes the two Lagrangians equivalent

in this gauge. This demonstrates that one does not necessarily need to gauge fix at the

Lagrangian level to get the above action.

Varying the linearized gravity Lagrangian in Eq. (3.6) gives the equation of motion in

vacuum

∂α∂αh̄
µν − ∂µ∂αh̄αν − ∂ν∂αh̄αµ + ηµν∂α∂βh̄

αβ = 0, (3.9)

where h̄µν = hµν− 1
2
ηµνh is the trace-reversed metric. Alternatively, the trace-reversed metric

in linearized gravity is given by gµν
√
|det(g)| = ηµν − κh̄µν .

No gauge fixing was used yet to find the above equation of motion. By applying the

harmonic, de Donder, Hilbert, Lorenz, Lorentz, or Fock gauge ∂µh̄
µν = 0, we remove the

longitudinal degrees of freedom and find

∂α∂αh̄
µν = 0, (3.10)

which is just the linearized wave equation in vacuum. A simple route to getting the equation

of motion in the presence of sources is to linearize Einstein’s field equations, giving

κ∂α∂αh̄µν = −16πG

c4
Tµν , (3.11)
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where once again, we have restricted our metric to the harmonic gauge. There is still much

gauge freedom left over, as a propagating gravitational wave only has two independent

degrees of freedom. Due to diffeomorphism invariance or the coordinate independence of

general relativity, a gauge transformation of hµν will not change any physical degrees of

freedom. When x′µ = xµ + ξµ, we have

κh′µν = κhµν − ∂µξν − ∂νξµ,

κh̄′µν = κh̄µν − ∂µξν − ∂νξµ + ηµν∂
αξα. (3.12)

The gauge transformed metric can remain in the harmonic gauge, provided that ∂α∂αξ
µ = 0.

The general solution to the equation of motion can be found using a retarded Green

function, which gives

κh̄µν(t, ~x) =
4G

c4

∫
d3x′

Tµν(tret, ~x
′)

|~x− ~x′| , (3.13)

where tret = t−|~x−~x′|/c is the retarded time. Next, we focus on the wave solutions emitted

by arbitrary sources Tµν in linearized gravity via the quadrupole moment method.

3.1.1 Radiation and the Quadrupole Moment Tensor

To introduce gravitational waves, we start by noting that they are solutions of the vacuum,

found from Eq. (3.10). Since ∂α∂αh̄µν = 0, this suggests that plane waves e±ikαx
α

times a

constant polarization tensor εµν may work. Plugging the ansatz κh̄µν = εµνe
ikαxα+ε∗µνe

−ikαxα

gives

kµk
µ = 0, (3.14)

and the harmonic gauge condition gives

kµεµν = 0. (3.15)

Since the polarization tensor is symmetric, we have potentially ten independent components.

The harmonic gauge condition above removes four, leaving potentially six independent com-

ponents. We still have additional gauge freedom. By choosing ξµ(x) = ζµeikαx
α− ζµ∗e−ikαxα ,

we find

ε′µν = εµν − ikµζν − ikνζµ + ηµνik
αζα, (3.16)
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which leaves us with only two independent degrees of freedom in the polarization tensor.

From a particle physics perspective, we know that the spin-2 graviton is massless. While a

massive spin-2 particle would have five degrees of freedom, the massless graviton has only

two degrees of freedom, and so does a massless photon.

Since there are only two physical degrees of freedom, it helps to choose a gauge that makes

this simplicity more apparent. The transverse-traceless gauge does exactly that. Since it is

traceless, h̄µν = hµν . Without any loss of generality, we will assume that the plane wave is

travelling in the z direction. Considering a single plane wave, the transverse-traceless gauge

gives

κh̄TTµν = eikαx
α


0 0 0 0

0 εxx εxy 0

0 εxy −εxx 0

0 0 0 0

 . (3.17)

To put a metric in the transverse-traceless gauge from the harmonic gauge, one can utilize

the spatial projection operator Plm = δlm − nlnm, where nl = xl/r, such that

h̄TTjk = Pjlh̄lmPmk −
1

2
Pjk(Plmh̄lm). (3.18)

Similar to light, gravitational waves can be linearly or circularly polarized. The linear

polarizations of gravity are called “plus” and “cross”, due to how they affect a ring of massive

test particles. While most texts would label these as εµν+ and εµν× , we will denote them as εµνp

and εµνc , saving the + label for right-handed circularly polarized gravitational waves. The

dimensionful linear-polarization tensors are proportional to unit tensors ε̂µν , given by

εµνp = εxxε̂
µν
p = εxx


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , εµνc = εxy


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 . (3.19)

Similar to the polarization vectors of electromagnetism, we can define the circular-polarization

tensors from the linear, giving ε̂µν± = 1√
2

(
ε̂µνp ± iε̂µνc

)
. With each component displayed ex-
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plicitly, we find

εµν± = ε±ε̂
µν
± =

ε±√
2


0 0 0 0

0 1 ±i 0

0 ±i −1 0

0 0 0 0

 . (3.20)

Now that we have established that gravitational waves are a solution to the linearized

field equations in vacuum, it is time to see how sources can radiate these waves. A multipole

expansion is used to take a nonrelativistic expansion. While the retarded time t− |~x− ~x′|/c
is conceptually intuitive, it helps to expand |~x− ~x′|, such that

|~x− ~x′| = r − ~x′ · n̂+O
(
d2

r

)
,

1

|~x− ~x′| =
1

r
+O

(
d

r2

)
, (3.21)

where ~x = rn̂ and d is the characteristic size of the near zone, which is the region where ~x′ is

integrated over. Since T µν(t− |~x− ~x′|/c, ~x′) is needed in Eq. (3.13) yet we want to evaluate

it in terms of the average retarded time t− r/c, a Taylor expansion in ~x′ · n̂/c can be taken,

which is small in comparison to r/c, giving

T µν
(
t− r

c
+
~x′ · n̂
c

, ~x′
)

=
∞∑
n=0

1

n!

(
~x′ · n̂
c

d

dt

)n
T µν

(
t− r

c
, ~x′
)
. (3.22)

It helps to imagine Fourier modes such that the nth time derivative would correspond to

n factors of iω, with ω~x′ · n̂/c � 1 for nonrelativistic sources. Since this unitless quantity

appears in the Taylor expansion, we only need the lowest order term with n = 0 to obtain

an accurate approximation.

As we will show, in order to find the gravitational waves in the transverse-traceless gauge,

the quadrupole moment tensor will correspond to this lowest-order term, which is defined

by

Ijk(t) =

∫
d3x

T 00(x)

c2
xjxk, (3.23)

where Latin indices only run over the three spatial dimensions. Since the stress-energy-

momentum tensor is locally conserved in linearized gravity, ∂µT
µν = 0, we can derive the
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identity

Ïjk =
d2

dt2

∫
d3xxjxk

T 00

c2
= −

∫
d3xxjxk

∂2

c∂t∂xa
T a0(x) = 2

∫
d3xT jk(x). (3.24)

If we restrict ourselves to the transverse-traceless gauge, h̄0µ = 0 and

κh̄TTjk =
2G

c4r
Ïjk(tret). (3.25)

This formula finds gravitational radiation for nonrelativistic sources in linearized gravity

from the quadrupole moment. Relativistic sources necessitate higher multipole moments,

such as the octupole moment; however, relativistic bound systems also introduce nonlinear

fields, which is outside the scope of this current chapter.

3.2 Generalizing the Lienard-Wiechert Potential

Next, we investigate if a linearized double copy can be found to relate gravitational radiation

to electromagnetic radiation. A derivation of the Lienard-Wiechert potential of electrody-

namics for arbitrary trajectories is given. While simply replacing the electric charge with

the momentum of a particle does not result in gravitational radiation, a nontrivial connec-

tion is found between the sources of electrodynamics and linearized gravity. This allows for

a generalized Lienard-Wiechert metric, which is found to at least hold for nonrelativistic

point-particle masses.

As one might expect, the plane waves from electromagnetism are related to plane waves

in linearized gravity. Electromagnetism also has unit polarization vectors, which can be

linear or circular. For waves propagating in the z direction, we define the electromagnetic

unit polarization vectors as

ε̂µx = (0, 1, 0, 0),

ε̂µy = (0, 0, 1, 0),

ε̂µ± =
1√
2

(
ε̂µx ± iε̂µy

)
=

1√
2

(0, 1,±i, 0). (3.26)

Interestingly enough, we can form the unit polarization tensors of gravity from the polariza-
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tion vectors above. For the plus and cross polarizations, we find

ε̂µνp = ε̂µx ε̂
ν
x − ε̂µy ε̂νy ,

ε̂µνc = ε̂µx ε̂
ν
y + ε̂µy ε̂

ν
x. (3.27)

While it has been known for quite some time that these electromagnetic polarization vectors

can be used to find the gravitational polarization tensors, we assert that the circular polar-

ization tensors of linearized gravity are a double copy of the circular polarization vectors of

electromagnetism, which can be seen by

ε̂µν± =
√

2ε̂µ±ε̂
ν
±. (3.28)

Once again, this relationship is well known, but within the language of the double copy,

circularly-polarized gravitational plane waves are a double copy of circularly-polarized elec-

tromagnetic plane waves.

To start with electromagnetism, the Lorentz-Heaviside units will be most appropriate for

giving a canonically normalized kinetic term without any bizarre factors of ε0 or µ0, which

SI would have. In fact, Lorentz–Heaviside units can be thought of as natural units with the

factors of c left in, such that both SI and Lorentz–Heaviside units have the same equations

when taking ε0 = µ0 = c = 1. Also, we will choose the mostly-positive Minkowski metric to

agree with above, which is not typical for electromagnetism. Starting with the free Maxwell

action, we find

SM = −1

4

∫
d4xFµνF

µν , (3.29)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor, and Aµ is the electromagnetic

potential.

The Euler-Lagrange equations derive the equations of motion, and continuing with no

sources, the equation of motion is

∂µFµν = ∂µ∂
µAν + ∂ν∂

µAµ = 0. (3.30)

Similar to gravity, electromagnetism has gauge freedom. The Lorenz gauge (∂µAµ = 0) is

analogous to the harmonic gauge (∂µh̄µν = 0) in gravity, which both remove the longitudinal
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degrees of freedom from the potentials. Adding the interaction term −1
c
JµA

µ and applying

the Lorenz gauge in the presence of sources Jµ gives

∂α∂
αAµ = −Jµ

c
, (3.31)

where Jµ is the electromagnetic four-current, which describes the density and momentum of

electrical charge, just as Tµν describes the stress, density and momentum of mass and energy.

Comparing the above equation of motion with Eq. (3.11), it seems fruitful to consider that

the solutions of these two wave equations will be similar.

Furthermore, point particle sources located at xi with either charges qi or mi for the

electromagnetic current and stress-energy-momentum tensor are remarkably similar, given

by

Jµ(x) =
N∑
i=1

qi

∫
dτvµi δ

(4)(x− xi(τ)),

T µνfree(x) =
N∑
i=1

mi

∫
dτvµi v

ν
i δ

(4)(x− xi(τ)), (3.32)

where the four-velocity vµi =
∂xµi
∂τ

is the standard Lorentz-invariant four-vector and dt
dτ

= γ.

While the Lienard-Wiechert potential utilizes this electromagnetic current as a source, it is

clear that this stress-energy-momentum tensor for free point particles cannot give the full

gravitational radiation, as it neglects inter-particle interactions that may lead to stress and

strain. However, we will carry through with the derivation of the Lienard-Wiechert potential

and see what is missing in gravity.

The appropriate Green function for the wave equations is given by

�G(~x− ~x′, t− t′) = −δ(3)(~x− ~x′)δ(t− t′),

G(~x− ~x′, t− t′) =
1

4π|~x− ~x′|δ
(
t− t′ − |~x− ~x

′|
c

)
. (3.33)

The Green function allows us to find the fields at positions and times far away from the

sources, giving

Aµ(x) =
1

c

∫
d4x′G(x− x′)Jµ(x′),

κh̄µν(x) =
16πG

c4

∫
d4x′G(x− x′)T µν(x′). (3.34)
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Plugging in the Green function and source for a single particle gives

Aµ(x) = qi

∫
dt′
δ
(
t− t′ − |~x−~xi(t′)|

c

)
4πcγ|~x− ~xi(t′)|

vµα. (3.35)

Switching integration variables to t̃ ≡ t′ − |~x−~xi(t′)|
c

allows for a Jacobian factor dt′

dt̃
to be

added, which is found to be

dt̃

dt′
= 1−

d~xα(t′)
dt′
· (~x− ~xα(t′))

c|~x− ~xα(t′)| ,

dt′

dt̃
=

1

1− ~β · n̂
, (3.36)

where ~β ≡ d~xα(t′)
dt′

and n̂ ≡ ~x−~xα(t′)
|~x−~xα(t′)| . This allows for a simple integration over δ(t− t̃), giving

Aµ(x) =
qiβ

µ

4π(1− ~β · n̂)R

∣∣∣∣∣
t′=tret

=
qiv

µ
i

4πvρiRρ

∣∣∣∣
t′=tret

, (3.37)

where βµ ≡ (1, ~β), R ≡ |~x− ~xα(t′)|, and Rµ ≡ xµ − xµi (t′). Doing the same calculations for

gravity gives an incomplete generalization of the Lienard-Wiechert potential,

κh̄µν 6= 4Gmi

c3

vµi v
ν
i

vρiRρ

∣∣∣∣
t′=tret

. (3.38)

While this result is based off of the same derivation going back to the original days of

Lienard and Wiechert, the gravitational generalization above does not address gravitational

interactions that contribute stress and strain. This is expected, since T µνfree is technically only

conserved if all of the particles are at the exact same location, which is only valid during the

moment of a collision. Maggiore also points out that the gravitational potential energy must

be included [94]. Since the equivalence principle states that gravity is indistinguishable from

acceleration, one might expect that an effective energy-momentum tensor which includes the

acceleration may help, as the four-acceleration represents worldline curvature.

For relativistic sources, Whitney has pointed out that the Lienard-Wiechert derivation

is a correct solution, but does not adequately apply boundary conditions in a Lorentz-

invariant fashion, as Rρ is the distance between the observer and the time-retarded source,

which is combined with the time-retarded proper-velocity [185]. As a result, the radiation

found by the collision of many particles may give inconsistent results, which can create
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unphysical infinities in the radiative fields. Note how similar issues originally occurred in

gravitational wave analyses when utilizing the post-Newtonian approximation due to time-

retardation issues. While the PN approximation completely neglects retardation effects,

Whitney asserts that the common derivation of the Lienard-Wiechert potential does not

deal with retardation in a Lorentz-invariant manner necessary for describing relativistic

phenomena in full generality. While we will elaborate on Whitney’s claim in the following

subsection, we first will correct the above generalization, ignoring Whitney’s claim.

Comparison with the quadrupole moment method will allow for a more general formula

that builds off of Eq. (3.38). While our construction will only apply to point particles, it

may allow for gravitational fields to be found within a larger class of gauge conditions, as

the quadrupole moment method assumes a transverse-traceless gauge. To find the additional

terms, the quadrupole moment method will be investigated for point particles, and this will

allow for a Lorentz-invariant generalization. The quadrupole moment method is given by

κh̄jk =
2G

c4r
Ïjk(tret). (3.39)

Solving for the quadrupole moment tensor gives

κh̄jk =
2G

c4r

N∑
i=1

mi
∂2

∂t2
(xjix

k
i ) =

2G

c4r

N∑
i=1

mi(x
j
ia
k
i + 2vji v

k
i + ajix

k
i ). (3.40)

Generalizing the Lienard-Wiechert metric to include gravitational forces adds terms propor-

tional to mia
µ
i gives

κh̄µν =
N∑
i=1

4Gmi

c3vρiRρ

(
1

2
xµi a

ν
i + vµi v

ν
i +

1

2
aµi x

ν
i

)
, (3.41)

where aµi ≡
d2xµi
dτ2

and Eq.(3.41) will be referred to as the generalized Lienard-Wiechert metric.

Looking back at this result, it appears it was generated by the following tensor

T̂ µν(x) =
N∑
i=1

∫
dτ

d

dτ

(
x

(µ
i p

ν)
i

)
δ(4)(x− xi(τ)). (3.42)

Analogous to color-kinematics duality and the double copy, the substitution of momentum

for electric charge is made (pµi → qi) to find Jµ in electrodynamics, giving

Jµ(x) =
N∑
i=1

∫
dτ

d

dτ
(xµi qi) δ

(4)(x− xi(τ)). (3.43)
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Assuming no particle creation/annihilation, dqi
dτ

= 0, which gives Jµ as shown in Eq. (3.32).

In this sense, the generalized Lienard-Wiechert metric for linearized gravity, Eq. (3.41),

can be thought of as the double copy of the Lienard-Wiechert potentials of electrodynam-

ics, Eq. (3.37). However, this analogy has some quantitative differences from what will be

presented in Chapter 4, as the time derivative must be factored out in order to show this

resemblance. Since we have only compared this result with the quadrupole moment, it is

clear that the above formula only applies to nonrelativistic phenomena, as higher multipole

contributions such as octupole radiation have been omitted.

3.2.1 Limitations of the Nonperturbative Lienard-Wiechert Potentials

While the perturbative multipole expansion is quite rigorous in treating radiation from

charged macroscopic media in motion, the Lienard-Wiechert potential is for point parti-

cles and is apparently exactly correct in the relativistic limit. While this may be true, the

argument eventually breaks down when considering a collection of many particles, especially

if the interactions become strong. The Lienard-Wiechert potentials provide merit because

it is a nonperturbative relativistic result. This subsection briefly exemplifies some possible

limitations of the Lienard-Wiechert potentials. Fixing these limitations suggests a dual-

ity between retarded fields and instantaneous effects, which is then compared to aspects of

D0-branes in M-theory, a nonperturbative formulation of quantum gravity.

To start, Whitney claims that the Lienard-Wiechert potentials do not satisfy proper

boundary conditions at infinity for relativistic phenomena, as they do not use the proper

time of the source [185, 186]. If Whitney’s claim is valid, then the problem would be more

experimentally relevant in gravity than electrodynamics. Whitney states that a Jacobian

was missed in the current density,

Jµ(x) =
N∑
i=1

qic

∫
ds0

i δ
(4)(x− xi(s0

i ))v
µ
i (s0

i ), (3.44)

where vµi = dxµi /ds
0
i and s0

i is the source’s proper time. She claims that distribution theory
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or generalized functions suggest that the following object would be Lorentz invariant [186],

d(4)(s− (s0
i , 0)) = δ(4)(x− xi(s0

i ))

∣∣∣∣∂x∂s
∣∣∣∣ , (3.45)

as the expression on the left-hand side is explicity in the rest frame of the source with proper

time s0
i . Taking into account this Jacobian, Whitney states that the following solution to

Maxwell’s equations is Lorentz-invariant and satisfies the appropriate boundary conditions

for relativistic sources at infinity [185],

Aµ(x) =
N∑
i=1

qiv
µ
i

4πcR′i
, (3.46)

where R′i =
√
R2
⊥ + γ2R‖ is a Lorentz-invariant distance found most easily in the rest frame

of the ith particle, which came from the Jacobian, giving a factor of γ(1− ~β · n̂)R/R′i from

the result given in most textbooks. Whitneys result also appears to be manifestly Lorentz

invariant and appears to be more directly in terms of intertial frames of the sources. The

analogous equation for linearized gravity is given by

κh̄µν =
N∑
i=1

4Gmi

c4R′i

(
1

2
xµi a

ν
i + vµi v

ν
i +

1

2
aµi x

ν
i

)
. (3.47)

While the above equation would not be a valid approximation for relativistic bound sources

in general relativity, it may be interesting to compare the difference between Eqs. (3.41)

and (3.47) for radiation emitted from relativistic scattering processes.

Around 1987, Whitney wrote several articles pointing out related issues [186–189]. Inter-

estingly enough, two independent authors later have suggested the same correction. Field

claims to have shown that Lienard and Wiechert derived their formula from one of Heavi-

side’s formula, which turns out to be inconsistent with Feynman’s QED [190, 191]. In related

work, Field concludes that notions of instantaneous fields are needed [192]. Chubykov and

Smirnov-Rueda have also found similar inconsistencies with the Lienard-Wiechert potential,

which they claim necessitates a dualistic action at a distance and field theoretic approach

that is completely self-consistent with Maxwell’s equations [193].

While Jackson and others have argued that Chubykalo’s argument is completely nullified

on the basis of the assumption that the Lienard-Wiechert potentials are not a solution to

57



Maxwell’s equations [194, 195], Whitney has pointed out over a decade earlier that both

methods are a solution to the differential equations, yet they have different boundary condi-

tions. As such, Chubykalo misrepresented the issues of the Lienard-Wiechert potential and

potentially made some mathematical errors, and Jackson is valid in refuting Chubykalo yet

does not address Whitney’s complaints, as Jackson only considres a single proper time τ ,

which is valid for a single particle. In fact, Aspden previously followed up on the work of

Whitney and argued that instantaneous fields would be needed only if the electrodynamics

of hadrons and leptons at close ranges are different [196]. Our perspective is not that instan-

taneous dynamics is needed, but perhaps a nonperturbative approach for multiple particles

could be found from Whitney’s result instead of the perturbative multipole expansion.

The distinction of instantaneous action at a distance vs time-retarded fields has been

heavily discussed over the past two centuries. In 1947, Feynman and Wheeler recall how

Gauss first envisioned action at a distance propagating at the speed now known as the speed

of light precisely one hundred years prior [197]. They state that fully understanding radiation

in the action-at-a-distance picture is what is holding back the unification of field theory and

action at a distance, which may allow for a new duality in nature. Tetrode states that an

absorber is needed in order to radiate energy, fields only arise from other sources, and these

fields are represented by one-half of the retarded Lienard-Wiechert solution plus one-half of

the advanced Lienard-Wiechert solution.

Gauss, Weber, and Ampere developed a theory of electrodynamics that is an action-

at-a-distance theory that predated Maxwell and was sophisticated in its abilities to obtain

relativistic-looking phenomena in powers of v/c that satisfies Newton’s third law [198]. In

fact, Ampere’s law currently taught was not discovered by Ampere, but rather is the law of

Grassmann; Ampere’s law was contained in Weber electrodynamics. Nasilovski and Graneau

have performed experiments, including the study of exploding wires and Ampere’s hairpin

experiment, both arguing for Ampere’s original law. However, properly accounting for ther-

moelectric effects describe the discrepancies in the exploding wire experiments [199]. Jack-

son points out that while certain gauge choices can allow for instantaneous phenomena, they

are not needed [194] for classical electrodynamics. Jackson states on page 671 of his text-
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book [200] that “the radiation emitted by a charge particle in arbitrary, extreme relativistic

motion is approximately the same as that emitted by a particle moving instantaneously

along the arc of a circular path.” Assis and Bueno were able to show an equivalence between

Ampere’s law and Grassmann’s law and provide further resolution to how field theory and

action at a distance can agree [201].

While Einstein struggled with notions of entanglement and action at a distance in quan-

tum mechanics, a string theorist may find some solace in these notions. 11-dimensional

M-theory is said to be described by a matrix model of D0-branes, which exist in one time di-

mension zero spatial dimensions. When the light-cone frame is taken, which takes a Lorentz

boost in one of the spatial dimensions, nine Galilean-invariant transverse dimensions with

SO(9) symmetry remain [202]. Galilean invariance also gives an instantaneous Green func-

tion, which may be useful for depicting nonlocal interactions of strongly-correlated systems.

Holography admits a gauge theory description that encodes gravity via noncommutative

membranes [203–205]. Furthermore, closed strings contain tachyons, which are often thought

to be troublesome. Time-advanced fields from the absorber pointed out by Wheeler and

Feynman are claimed to be related to tachyons [206]. If spacetime is emergent, then the

time-retarded fields contained within spacetime must also be emergent. Without making

any connection to M-theory and the light-cone frame, Stefanovich has also suggested that

action at a distance would help unite general relativity and quantum mechanics, the ultimate

goal of string theory [207]. Since ultra-relativistic phenomena seemingly necessitate stronger

fields, perhaps it is not coincidental that string theorists are also emerging on notions of

action at a distance for the description of strongly-interacting systems.

Finally, to make connections back to theories of gravity in four dimensions, it is interesting

to note that Newton-Cartan gravity in 4D gives Galilean symmetry [208–210], which can be

recovered from 5D Einstein gravity theory by taking a Kaluza-Klein reduction along a null-

like direction [211]. This reduction is related to a non-relativistic AdS/CFT model [212].

Such a reduction from 5D suggests that Newton-Cartan and 4D general relativity are both

limiting cases of 5D de Sitter space. Perhaps certain gravitational phenomena may be

modelled with Galilean or Lorentz symmetry, even though relativistic Lorentz symmetry is
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most commonplace.

Our perspective is not to object to conventional notions of classical electrodynamics or

relativity, but rather to point out that M-theory seems to provide a unified description of

strongly correlated phenomena based on instantaneous Galilean symmetry, which captures

aspects of classical action at a distance, except with noncommutative geometry allowing for

spacetime uncertainty. If so, perhaps a dualistic picture of time-retardation of energy transfer

via fields and instantaneous information transfer via action at a distance would allow for a

semi-classical approach to nonperturbative gravitational wave emission from ultra-relativistic

or strongly-interacting systems. Investigating the Lienard-Wiechert potential provides hope

for bridging the gaps, as it is a nonperturbative solution applicable for relativistic phenomena.

Friedlander has also utilized distribution theory to find a generalization of the Lienard-

Wiechert potential on curved spacetime [213].

While it would be interesting to study the gravitational radiation from black holes in

a semi-classical theory based upon noncommutative geometry and the dualistic field and

action-at-a-distance principles previously mentioned that is self-consistent with Einstein’s

field equations and is a low-energy limit of the holographic principle from M-theory, such a

direction is outside the scope of this thesis. Next, the gravitational radiation is calculated

for a few simple examples by utilizing the generalized Lienard-Wiechert metric previously

found in Eq. (3.41).

3.3 Simple Examples

3.3.1 Binary Inspiral with Equal Mass

Two particles with mass m are assumed to be in circular orbit with the following trajectories

~x±(t) = ±(a cos(ωt), a sin(ωt), 0), (3.48)

60



where we will assume that the non-relativistic limit εω = aω
c
� 1 holds. The three- and

four-velocities are found by taking the appropriate derivatives, giving

~v±(t) = ±(−aω sin(ωt), aω cos(ωt), 0) = c~β±,

vµ±(t) = γc(1,∓εω sin(ωt),±εω cos(ωt), 0) = γc(1, ~β±), (3.49)

where the scalar quantity γ = 1/
√

1− ε2ω is the same for both masses.

The calculation with the standard quadrupole moment method will be presented first.

The quadrupole moment tensor for the two-particle circular orbit gives

Ijk(t) =

∫
d3x1T

00xj1x
k
1 = 2ma2


cos2(ωt) cos(ωt) sin(ωt) 0

cos(ωt) sin(ωt) sin2(ωt) 0

0 0 0

 . (3.50)

Eq. (3.25) states that we can simply take two time derivatives and multiply by 2G
c4r

to find

the gravitational potential in a gauge where h̄µ0 = 0, giving

Ïjk(t) = 2ma2ω2


−2 cos(2ωt) −2 sin(2ωt) 0

−2 sin(2ωt) 2 cos(2ωt) 0

0 0 0



κh̄jk = −8Gmε2ω
rc2


cos(2ωt) sin(2ωt) 0

sin(2ωt) − cos(2ωt) 0

0 0 0

 . (3.51)

Since h̄µ0 = 0 and h̄ = 0, hµν = h̄µν . For gravitational waves travelling in the z-direction,

this result is in the transverse-traceless gauge.

Next, the generalized Lienard-Wiechert metric, Eq. (3.41), will be used to find the same

result. While this formula is more complicated than the quadrupole moment method, its rela-

tion to relativistic electrodynamics is more clear, which will allow for a deeper understanding

of radiative double copy methods that are applicable to the post-Minkowski method. Taking

care with relativistic quantities allows for a gauge transformation to put the final result in

the transverse-traceless gauge.
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Since the two particles have slightly different locations, their retarded times t± = t −
|~r− ~x±|/c are slightly different. To put these variables into the same coordinate system, the

retarded time from the center of mass tcom = t − |~r|/c will be used. For highly relativistic

processes, the Whitney metric and the Lienard-Wiechert metric would slightly disagree, but

they both are equivalent in the non-relativistic limit, which will be assumed for now. The

denominator of the Lienard-Wiechert metric is

vρ±R±ρ = γc(1− ~β · n̂±)R±. (3.52)

Upon inversion, applying the geometric expansion and taking the radiative limit a� r gives

1

vρ±R±ρ
=

1

γcR±

∞∑
k=0

(
~β± · n̂±

)k
=

1

γcr

∞∑
k=0

(
~β± · n̂±

)k
+O

( a
r2

)
. (3.53)

The Minkowski approximation keeps every term in this infinite sum, but the Newtonian

approximation only needs to keep terms to second order, since ~β± scales with εω. To introduce

more notation, ~x = r(nx, ny, nz) = rn̂, where 1 = n2
x + n2

y + n2
z. In the radiative limit, the

geometric expansion term is

~β± · n̂± = ~β± ·
(
~x− ~x±
R±

)
= ~β± · n̂+O

(a
r

)
= ∓εω(nx sin(ωt±)− ny cos(ωt±)). (3.54)

Time retardation from multiple sources introduces t±, which can be expanded via

ωt± = ω

(
t− |~r − ~x±|

c

)
= ωtave ± εω(nx cos(ωt±) + ny sin(ωt±)), (3.55)

which leads to the necessity of expansions of trigonometric functions in terms of tave, where

sin(ωt±) = sin(ωtave)± εω(nx cos2(ωtave) + ny sin(ωtave) cos(ωtave) +O
(
ε2ω
)
, (3.56)

cos(ωt±) = cos(ωtave)∓ εω(nx sin(ωtave) cos(ωtave) + ny sin2(ωtave)) +O
(
ε2ω
)
.

This allows for the geometric expansion term to be properly expanded,

~β± · n̂± = ∓εω (nx sin(ωtave)− ny cos(ωtave))− ε2ω (nx cos(ωtave) + ny sin(ωtave))
2 . (3.57)

To lowest order in εω, these complications are only needed to properly get the κh̄00 scales as

O(1), while κh̄11 scales as O(ε2ω), since

κh̄µν =
∑
i=±

[
2Gm

γc4r
(xµi a

ν
i + 2vµi v

ν
i + aµi x

ν
i )
∞∑
k=0

(~βi · n̂i)k
]
. (3.58)
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As such, h̄11 only needs the k = 0 terms to lowest order, while h̄00 needs terms up to

k = 2. Introducing the shorthand notation of cn ≡ cos(nωtave) and sn ≡ sin(nωtave), the

radiative field to lowest nontrivial order in εω is found by dropping the simple 1/r term in

κh̄00 corresponding to the Newtonian potential,

κh̄µν =
8Gmγ

c2r
ε2ω


−(n2

x − n2
y)c2 − 2nxnys2 −1

2
(nx(1 + c2) + nys2) −1

2
(nxs2 + ny(1− c2)) 0

−1
2
(nx(1 + c2) + nys2) −c2 −s2 0

−1
2
(nxs2 + ny(1− c2)) −s2 c2 0

0 0 0 0

 .

(3.59)

Since this result is in the harmonic gauge, the projector in Eq. (3.18) can be used to find

the final result in the transverse-traceless gauge with respect to the z-axis, giving

κh̄TTij = −8Gmγ

c2r
ε2ω


c2 s2 0

s2 −c2 0

0 0 0

 . (3.60)

We find that along the z-axis, circularly-polarized gravitational waves are found. By con-

struction, this generalization of the Lienard-Wiechert potential agrees precisely with the

quadrupole moment method.

3.3.2 Two-Mass Oscillating Spring System (Weber Bar)

Consider two point particles denoted by trajectories ~x+(t) and ~x−(t) with mass m connected

by a spring, which are a distance l0 away from each other, on average. We will assume that

they are oscillating at a frequency ω with an amplitude of oscillation A. Since the energy of

the emitted gravitational waves is extremely small, we will assume that the amplitude and

frequency remain constant over time, similar to the previous example. The position of the

particles as a function of time is given by

~x±(t) = ±
(
l0
2

+ A cos(ωt)

)
x̂. (3.61)
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Once again, we will assume that the velocities are nonrelativistic. The velocities and accel-

erations are given by

~v±(t) = ∓Aω sin(ωt)x̂,

~a±(t) = ∓Aω2 cos(ωt)x̂. (3.62)

As we anticipate a simple result in the transverse-traceless gauge, we only look to evaluate

the purely spatial components of Eq. (3.41). In the nonrelativistic limit, the denominator

c3vρiRρ is adequately approximated by c4r, and the only finite component of h̄ij is

κh̄11 =
4Gm

c4r

(
−Al0ω2 cos(ωt)− 2A2ω2 cos2(ωt) + 2A2ω2 sin2(ωt)

)∣∣∣∣
t=tave

,

κh̄11 = −4Gmω2A

c4r
(l0 cos(ωt) + 2A cos(2ωt))

∣∣∣∣
t=tave

, (3.63)

where tave is an averaged retarded time taken from the center-of-mass of the source. Finally,

this term can be projected into the transverse-traceless gauge with respect to the z-axis via

Eq. (3.18), such that

h̄TTjk =
−2Gmω2

c4r
(2A2 cos(2ωtave) + Al0 cos(ωtave))


1 0 0

0 −1 0

0 0 0

 . (3.64)

We find that the gravitational waves are linearly polarized in the “plus” orientation. Note

that this result has radiation with modes of frequency ω and 2ω.

This chapter has demonstrated that there is a connection between electrodynamics and

linearized gravity for radiating point particles via the Lienard-Wiechert potential and its

appropriate generalization. Qualitatively analogous to color-kinematics duality, a simplified

charge-momentum duality was found to connect the two theories. This motivated the in-

troduction of an interacting energy-momentum tensor, which generalizes the commonplace

free-particle energy-momentum tensor. The next chapter is dedicated to the study of the

radiative double copy for nonlinear theories of gravitation, based off of a slightly different

color-kinematics duality.
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CHAPTER 4

The Radiative Double Copy for Nonlinear Gravity

Theories

This chapter contains a review of the author’s publication on the radiative double copy for

Einstein-Yang-Mills theory [214]. To start, the diagrammatic formalism from Goldberger

and Ridgway [92] is elaborated to allow for radiative Feynman diagrams at lowest order in

Section 4.2. Similar to how ghosts were utilized to remove dilatons in Ref. [139], an ansatz for

scalar radiation analogous to ghosts are also introduced to remove the dilaton in Section 4.2.2,

confirming that the two formalisms allow for dilaton removal. Sections 4.3 and 4.4 conclude

with combining concepts in Refs. [92, 134] to compute gravitational radiation for Einstein-

Yang-Mills theory via the radiative double copy.

4.1 Introduction

The Lagrangians and equations of motion for gauge and gravity theories appear to be rather

different. Nevertheless, there are intriguing double-copy connections between their solutions.

This includes the Kawai-Lewellen-Tye (KLT) tree-level relations between gauge and gravity

amplitudes in string theory [1] and the Bern-Carrasco-Johansson (BCJ) double-copy relations

between diagrams in quantum field theory [30]. The BCJ double-copy relations are based on

color-kinematics duality, which gives particularly simple constructions of gravity amplitudes

starting from gauge-theory amplitudes.

At tree level the BCJ amplitude relations are proven [31, 32, 35, 36, 215]. Numerous

calculations at higher loops provide evidence for the loop-level double-copy conjecture [38,

39, 43, 51] and progress has been made to understand analogous monodromy relations,
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extending KLT relations to loop level [56, 57, 60, 61, 64, 216]. Einstein-Yang-Mills scattering

amplitudes [69, 80, 217, 218] can also be found via the double copy [66, 78, 79] using the

Cachazo-He-Yuan (CHY) formalism [219]. Biadjoint scalar fields can be used to find solutions

in Yang-Mills [130], and solutions in a Yang-Mills-biadjoint-scalar theory have been shown

to give scattering amplitudes in Einstein-Yang-Mills [72–74].

With the recent experimental detection of gravitational waves by LIGO [184], precision

calculational tools for gravitational wave emission are essential. Exploiting color-kinematics

duality to relate radiation solutions between Yang-Mills and general relativity is attractive

because general relativity is difficult to solve and the double copy has been shown to work for

a wide variety of gravity theories [46, 220, 221]. The connection between radiation solutions

of gauge theory and gravity has been described recently [90, 91, 125, 126, 131, 133, 139]. The

first example of using the radiative double copy to find nonlinear terms in general relativity

utilized perturbative Yang-Mills solutions [92]. Similarly a biadjoint scalar field can be used

to find Yang-Mills radiation [134].

This chapter builds off the radiative double copy for general relativity found by Gold-

berger and Ridgway [92] to find gravitational radiation in Einstein-Yang-Mills theory. By

comparing the differential equations of the sources and fields in gauge theory and gravity,

radiative diagrams are used to represent specific algebraic terms. Solutions in gravity can be

found from Yang-Mills theory, and the diagrams with three-point vertices can be computed

by stitching lower-order solutions together. At leading order, the trace-reversed metric [222],

h̄µν , is a natural double copy of the Yang-Mills potential Aµa [223]. Motivation for a pertur-

bative double copy can be seen at the Lagrangian level, as the linearized gravity Lagrangian

is quite similar to the QED Lagrangian, a linearized version of the Yang-Mills Lagrangian.

Similarly, these two theories both have an analogous linearized wave equation. Remarkably,

radiation solutions of nonlinear gauge and gravity theories are related, at least when iterated

perturbatively. A double copy of Yang-Mills-adjoint-scalar theory is also briefly mentioned,

which can recover radiation solutions in Einstein-Maxwell theory.

While this paper focuses on classical solutions that could be calculated with more tradi-

tional methods [103, 105, 115, 116, 121–123, 224–226], the hope is that the radiative double
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copy could help with difficult calculations that may be more cumbersome to do in general

relativity alone. As more experimental data for gravitational radiation is collected, new

methods for calculating complicated radiation processes are encouraged.

Section (4.2) focuses on deriving classical Yang-Mills radiation, gravitational radiation in

general relativity with and without a dilaton coupled to matter, and how the radiative double

copy can be used to recover these results from Yang-Mills solutions. Section (4.3) calculates

radiation in Yang-Mills-biadjoint-scalar theory. Section (4.4) calculates radiation in Einstein-

Yang-Mills theory and the double copy is confirmed by direct calculation. Section (A.2)

calculates details of the gravitational contribution to the energy momentum pseudotensor and

Section (A.3) gives radiative Feynman rules for simple diagrams with three-point vertices.

4.2 Radiative Double Copy of Yang-Mills and General Relativity

In this section, the non-Abelian Yang-Mills radiation field Aµa is derived for N colliding point

particles. Similarly, the gravitational radiation field h̄µν is found in general relativity for the

same initial conditions. Following Ref. [92], replacement rules are used to find gravitational

radiation from Yang-Mills via a radiative double copy. We conclude with some brief remarks

on replacement rules for ghost fields to remove the dilaton exchange in the radiative double

copy, which is similar to what was found in Ref. [139].

4.2.1 Radiation in Yang-Mills

The Yang-Mills Lagrangian,

L = −1

4
F a
µνF

µνa − gJµaAaµ, (4.1)

is in terms of the non-Abelian field strength,

F a
µν(x) = ∂µA

a
ν(x)− ∂νAaµ(x)− gfabcAbµ(x)Acν(x), (4.2)

where the the mostly minus metric will be used, such that

ηµν = diag(1,−1,−1,−1). (4.3)
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The covariant derivative is defined as

DµA
a
ν(x) = ∂µA

a
ν(x)− gfabcAbµ(x)Acν(x). (4.4)

Using the covariant derivative, the equations of motion for the non-Abelian field sourced by

a current Jµa are

DµF
µνa(x) = Jνa(x). (4.5)

We look to calculate the radiation created from the collision of N charged particles, which

is sourced by the current

Jµa(x) = g

N∑
α=1

∫
dτvµα(τ)caα(τ)δd(x− xα(τ)), (4.6)

where α is a particle number label, vµα(τ) = dxµα(τ)
dτ

is the velocity, and caα(τ) is the associated

adjoint color charge [227]. The vector source is covariantly conserved, such that DµJ
µa = 0.

In order to solve the equations of motion for the source above, it helps to choose the Lorenz

gauge ∂µA
µa = 0. It also is convenient to define a pseudovector Ĵµa = Jµa + jµa which is

locally conserved and is the source for a simple wave equation, such that

�Aµa = Ĵµa, ∂µĴ
µa = 0. (4.7)

In the Lorenz gauge, the gauge-dependent pseudovector is found by manipulating Eq. (4.5)

to give

jµa = gfabcAbν(∂
νAµc + F νµc), (4.8)

where Ĵµa = Jµa + jµa is the entire pseudovector, and jµa contains the contributions above

from the non-Abelian field.

Next, the initial conditions of the particles at τ → −∞ are chosen to be xµα(τ) = bµα+vµατ ,

where bµαβ = bµα − bµβ is an impact parameter, and vµα is the initial velocity, taken to be a

constant. At arbitrary times near and after the collision,

xµα(τ) = bµα + vµατ + zµα(τ), (4.9)

where zµα(τ) is the deflection to the trajectory due to the fields created by the other particles.

Since the deflections introduce acceleration into the trajectories, they produce a radiation
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field. In the weak-field limit, the sources are assumed to be nonrelativistic such that they

predominately have four-velocities in the time direction and v2
α ≈ 1. Similarly, the color

charges are given by

caα(τ) = caα + c̄aα(τ), (4.10)

where caα is the initial charge, and c̄aα(τ) is the deflection of the charge due to the interacting

fields.

The classical equations of motion for momenta and charges in a Dirac-Yang-Mills system

can be found from Hamilton’s equations [228]. The internal spin of the Dirac fermions will be

neglected, as this would introduce new effective matter interactions [229, 230]. Fortunately,

the equations of motion found for Dirac fermions also are valid for Klein-Gordon scalars

without spin. The following equations can be used to solve for zµα(τ) and caα(τ), which are

mα
d2zµα(τ)

dτ 2
= gcaα(τ)F µνa(xα(τ))vαν(τ),

dcaα(τ)

dτ
= gfabcvµα(τ)Abµ(xα(τ))ccα(τ). (4.11)

The radiation field is solved iteratively by finding the lowest-order field, correcting the

sources, and finding the radiation field created by these corrections and interactions between

the lowest-order field. First, the lowest-order sources are specified in momentum space,

Ĵµa(k)|O(g1) =

∫
ddxeik·xĴ(x)|O(g1) =

∫
ddxeik·xg

N∑
α=1

∫
dτcaαv

µ
αδ

d(x− xα(τ))

= g

N∑
α=1

∫
dτeik·(bα+vατ)caαv

µ
α = g

N∑
α=1

eik·bα(2π)δ(k · vα)caαv
µ
α, (4.12)

which can be utilized to find the fields to lowest order, giving

Aµa(x)|O(g1) = �−1Ĵµa(x)|O(g1) =

∫
l

−1

l2
e−il·xĴµa(l)|O(g1)

= −g
N∑
α=1

∫
l

(2π)δ(l · vα)
e−il·(x−bα)

l2
vµαc

a
α, (4.13)

where
∫
l
≡
∫

ddl
(2π)d

and l is chosen as a momentum variable for the lowest-order fields, as

k will be reserved for the momentum of the radiation field. These fields above do not give

radiation, since the sources are from charges that are moving at constant velocity.
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The lowest-order field can be used to find the deflections of the sources, given by

mα
d2zµα(τ)

dτ 2

∣∣∣∣
O(g2)

= gcaα
(
∂µAνa(xα(τ))|O(g1) − ∂νAµa(xα(τ))|O(g1)

)
vαν . (4.14)

The derivative of the lowest-order field acting on the particle associated with mα is

∂µAνa(x)|O(g1) = −g
∑
β 6=α

∫
l

(2π)δ(l · vβ)(−ilµ)
e−il·(x−bβ)

l2
vνβc

a
β. (4.15)

Plugging in the derivative of the lowest-order field from above gives

mα
d2zµα(τ)

dτ 2

∣∣∣∣
O(g2)

= ig2
∑
β 6=α

caαc
a
β

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ)

l2
[
(vα · vβ)lµ − (vα · l)vµβ

]
. (4.16)

Similarly for the color charges, their first correction to second order in g is given by

dc̄aα(τ)

dτ

∣∣∣∣
O(g2)

= gfabcvµαA
b
µ(xα(τ))|O(g1)c

c
α. (4.17)

Once again, plugging in the lowest-order field gives

dc̄aα(τ)

dτ

∣∣∣∣
O(g2)

= −g2
∑
β 6=α

fabccbβc
c
α(vα · vβ)

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ)

l2
. (4.18)

Now that the lowest-order field and the charge/momentum deflections have been found,

the pseudovector Ĵµa can be found to next order, which sources the radiation field. The pseu-

dovector may be found algebraically and is also represented diagrammatically in Fig. (4.1).

Diagrams (1a) and (1b) are associated with Jµa, and diagram (1c) is associated with jµa,

such that the three diagrams add to give Ĵµa. The matter propagators in the first two dia-

grams should not have the typical rules associated with Feynman diagrams seen in scattering

amplitudes, as a worldline propagator associated with τ and not xµ would be needed to deal

with the radiation emitted along the entire trajectory.1 Scattering amplitudes do not have

this complication, as particle emission is studied at a localized point in time, rather than a

continuous radiative field emission.

In this section, the radiation is found algebraically. In Section (A.3), the diagrammatic

approach is used to calculate (1c) by stitching two lowest-order field solutions with the

three-point vertex, which agrees precisely with the algebraic result found below.

1The author became aware of this through discussions with Jed Thompson.
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α

β

α

(1a) (1b)

β

α

(1c)

β

Figure 4.1: Schematic radiative diagrams are shown above. Diagrams (1a) and (1b) corre-

spond to Jµa, the radiation from the deflection of the sources. Diagram (1c) corresponds to

jµa, the radiation from the nonlinear gluon interactions. The three radiative diagrams sum

to give Ĵµa, the total pseudovector source for radiation. Solid lines represent scalar matter

fields and curly lines represent Yang-Mills fields.

Expanding Eq. (4.6) gives Jµa to next order. Taking the Fourier transform and integrating

over the delta function gives

Jµa(k) = g
N∑
α=1

∫
dτeik·(bα+vατ+zα(τ))

(
vµα +

dzµα(τ)

dτ

)
(caα + c̄aα(τ)) . (4.19)

Expanding to next-to-leading order will be to first order in the deflections zµα and c̄aα, giving

Jµa(k) = g
N∑
α=1

∫
dτeik·(bα+vατ)

(
(1 + ik · zα(τ))vµαc

a
α + vµαc̄

a
α(τ) +

dzµα(τ)

dτ
caα +O(g4)

)
.

(4.20)

The following next-order terms are sources for radiation, giving

Jµa(k)|O(g3) = g
N∑
α=1

∫
dτeik·(bα+vατ)

(
ik · zα(τ)vµαc

a
α + vµαc̄

a
α(τ) +

dzµα(τ)

dτ
caα

)
, (4.21)

where the source for radiation omits the lowest-order term proportional to vµαc
a
α.

To define which terms correspond to diagrams (1a) and (1b), respectively, it helps to

think about expanding f(τ) ≡ eik·zα(τ) and g(τ) ≡ vµα(τ)caα(τ) separately, such that f0 = 1,

f1(τ) = ik · zα(τ), g0 = vµαc
a
α , and g1(τ) = dzα(τ)

dτ
caα + vµαc̄

a
α(τ). To lowest order, two

terms f0g1(τ) and f1(τ)g0 are needed. The interpretation is that sources containing f0g1(τ)

refer to radiation that was emitted after the force interaction between particles α and β,

and sources proportional to f1(τ)g0 refer to radiation that was emitted before the force
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interaction occurred, such that they can be separated into two diagrams given by

(1a)µa ≡ g

N∑
α=1

∫
dτeik·(bα+vατ)

(
vµαc̄

a
α(τ) +

dzµα(τ)

dτ
caα

)
,

(1b)µa ≡ g
N∑
α=1

∫
dτeik·(bα+vατ) (ik · zα(τ)vµαc

a
α) . (4.22)

These diagrams have sensible uncontracted indices, as (1a) contains radiation resulting from

shifts dzµα
dτ

and c̄aα, while (1b) emits a gauge boson before correcting the position and therefore

should be proportional to vµαc
a
α. The first two diagrams will be used as a heuristic guide, and

investigation of the worldline propagator will be postponed to later work.

Integrating Eqs. (4.16) and (4.18) results in dividing by−ik·vα, since the source integrates

over τ and sets lβ · vα = k · vα. To more easily combine these results with diagram (1c), an

extra integral over lα with a momentum conserving delta function is added and l→ lβ, such

that kµ = lµα + lµβ and

Jµa(k)|O(g3) = g3

N∑
α=1
β 6=α

∫
lα,lβ

µα,β(k)
l2α

k · vα
[
ifabccbαc

c
β(vα · vβ)vµα (4.23)

+
cbαc

b
β

mα

caα

{
−vα · vβ

(
lµβ −

k · lβ
k · vα

vµα

)
+ k · vαvµβ − k · vβvµα

}]
,

where µα,β(k) will be used frequently and is given by

µα,β(k) =

[
(2π)δ(vα · lα)

eilα·bα

l2α

][
(2π)δ(vβ · lβ)

eilβ ·bβ

l2β

]
(2π)dδd(k − lα − lβ). (4.24)

Next, contributions to diagram (1c) are found from jµa in Eq. (4.8), giving

jµa(k) = gfabc
∫
ddxeik·xAbν(x) (∂νAµc(x)− F µνc(x)) (4.25)

jµa(k)|O(g3) = gfabc
∫
ddxeik·xAbν(x)|O(g1)

(
2∂νAµc(x)|O(g1) − ∂µAνc(x)|O(g1)

)
,

Plugging in the lowest-order field solution gives

jµa(k)O(g3) = g3

N∑
α=1
β 6=α

ifabccbαc
c
β

∫
lα,lβ

µα,β(k) [2k · vβvµα − vα · vβlµα] , (4.26)
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where the dummy indices α and β were switched to obtain this result.

The pseudovector Ĵµa(k) can be found by summing Jµa and jµa, giving

Ĵµa(k)|O(g3) = g3

N∑
α=1
β 6=α

∫
lα,lβ

µα,β(k)

[
ifabccbαc

c
β

{
2(k · vβ)vµα + (vα · vβ)

(
l2α

k · vα
vµα − lµα

)}

+
cbαc

b
β

mα

l2αc
a
α

k · vα

{
vα · vβ

(
k · lβ
k · vα

vµα − lµβ
)

+ k · vαvµβ − k · vβvµα
}]

. (4.27)

To find the radiation field Aµarad from the source Ĵµa [200],

Aµarad(x) =
1

4πr

∫
dω

2π
e−iωtĴµa(k), (4.28)

where kµ = ω(1, ~x/r).

4.2.2 Radiation in General Relativity with a Dilaton

Next, we find the radiation field h̄µν in general relativity with matter coupled to a dilaton,

which will be shown later to agree with the radiative double copy [92]. The action is given

by

S =

∫
ddx

[
− 2

κ2

√−gR +
2

κ2
(d− 2)

√−ggµν∂µφ∂νφ
]
−m

∫
dτeφ, (4.29)

where φ is the dilaton field and dτ =
√
gµνdxµdxν . This action also leaves out the coupling

of T µν with the gravitational field. Since Einstein’s field equations,

Rµν − 1

2
gµνR = 8πGT µν , (4.30)

naturally contain the energy-momentum tensor, the Einstein-dilaton field equations can be

found by varying the action in Eq. (4.29), giving

8πGT µν = Rµν − 1

2
gµνR− (d− 2)

(
∂µφ∂νφ− 1

2
gµνgρσ∂ρφ∂σφ

)
. (4.31)

For a classical particle in the absence of gravity, the energy-momentum tensor T µν is

T µν(x) =
N∑
α=1

mα

∫
dτvµα(τ)vνα(τ)δd(x− xα(τ)), (4.32)

where this tensor is only locally conserved when all of the particles collide precisely at a

point.
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To study gravitational interactions, a locally conserved pseudotensor is often introduced.

According to Dirac’s interpretation,
√
|g|T µν is the density and flux of energy and momentum

for matter in general relativity [231] such that in the presence of gravity,

√
|g|T µν(x) =

N∑
α=1

mα

∫
dτvµα(τ)vνα(τ)δd(x− xα(τ)). (4.33)

A locally conserved energy-momentum pseudotensor T̂ µν will be introduced to include con-

tributions from the gravitational field. A weak-field approximation is taken by introducing

hµν as

gµν = ηµν + κhµν ,

gµν = ηµν − κhµν + κ2hµρhνρ + . . . ,

|g| ≡ −det(gµν) = 1 + κh− κ2

2
(hµνhµν − h2) + . . . , (4.34)

where the radiation can be calculated perturbatively in powers of κ and h ≡ hρρ. To lowest or-

der, the weak-field approximation gives a linearized wave equation, except the D’Alembertian

operator does not simply act on hµν . Textbook presentations of gravitational waves often

focus on linearized gravity [222], which introduces the trace-reversed metric,

h̄µν ≡ hµν −
1

2
ηµνh, (4.35)

and find that �h̄µν = −κ
2
T µν . However, this equation is only an approximation of gen-

eral relativity and does not pick up the nonlinear aspects. Post-Newtonian approximation

methods [103, 138] often use a harmonic gravitational field or harmonic metric

κĥµν ≡ ηµν −
√
|g|gµν , (4.36)

which is subject to the harmonic gauge condition ∂µĥ
µν = 0. In terms of relating ĥµν and

h̄µν ,

κĥµν = ηµν −
√
|g|
(
ηµν − κhµν +O(h2)

)
=
(

1−
√
|g|
)
ηµν +

√
|g|κhµν +O(h2), (4.37)

and the lowest-order term in ĥµν is given by h̄µν . If an effective energy-momentum pseu-

dotensor T̂ µν was found to contain contributions from matter and gravitational fields, then
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the following equation of motion can be solved iteratively within the context of the post-

Newtonian approximation

�h̄µν = −κ
2
T̂ µν . (4.38)

Due to the harmonic gauge condition, it is essential that the pseudotensor satisfies ∂µT̂
µν =

0. The gravitational contributions to the pseudotensor tµν will be found from expanding

Einstein’s field equations. This slightly differs from the common pseudotensor used by

Landau and Lifshitz [103, 222, 232] and is closer to ones used previously by Einstein and

Dirac. The properly conserved pseudotensor is given by

T̂ µν = T µν + tµν ≡
√
|g|T µν + t̂µν , (4.39)

where t̂µν is conveniently defined to absorb (1 −
√
|g|)T µν . In this section, the algebraic

method of perturbing Einstein’s field equations and iteratively solving for the radiation field

is presented, leaving some technical details of the calculation of t̂µν to Section (A.2). Since

the three-point graviton vertex is derived from the Lagrangian of the full theory, diagrams

can encode how to find higher order field contributions from linearized field solutions. In Sec-

tion (A.3), radiative Feynman rules are provided for the three-point vertices. The Christoffel

symbol Γρµν and the Ricci tensor Rµν are given by

Γρµν =
1

2
gρσ(gσν,µ + gσµ,ν − gµν,σ),

Rµν = Γρµν,ρ − Γρµρ,ν + ΓρσρΓ
σ
µν − ΓρσνΓ

σ
µρ. (4.40)

After expanding the metric perturbatively in κ and applying the gauge condition ∂µhµν =

1
2
ηµνh

,µ,

Γρµν =
κ

2

(
hρν,µ + hρµ,ν − h ρ

µν, − κhρσ(hσν,µ + hσµ,ν − hµν,σ)
)

+O(κ3), (4.41)

Rµν = −κ
2
�hµν +

κ2

2
[hρσ(hµν,ρσ + hρσ,µν − hσν,µρ − hµρ,σν)

+ hµρ,σh
ρ,σ
ν − hµρ,σhσ,ρν +

1

2
hρσ,µh

ρσ,
ν

]
+O(κ3). (4.42)

This gives the Ricci scalar R,

R = (ηµν−κhµν)Rµν = −κ
2
�h+κ2

(
hρσ�hρσ +

3

4
hρσ,µhρσ,µ −

1

2
hµρ,σhµσ,ρ

)
+O(κ3), (4.43)
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Plugging these results into the Einstein-dilaton field equations, Eq. (4.31), gives(κ
2

)2

Tµν = −κ
2
�h̄µν +

κ2

2

[
hρσ(hµν,ρσ + hρσ,µν − hσν,µρ − hµρ,σν)

+ hµρ,σh
ρ,σ
ν − hµρ,σhσ,ρν +

1

2
hρσ,µh

ρσ,
ν +

1

2
hµν�h

− ηµν
(
hρσ�hρσ +

3

4
hρσ,λhρσ,λ −

1

2
hλρ,σhλσ,ρ

)]
(4.44)

− (d− 2)

(
∂µφ∂νφ−

1

2
ηµν∂ρφ∂

ρφ+
κ

2
(ηµνh

ρσ∂ρφ∂σφ− hµν∂ρφ∂ρφ)

)
+O(κ3),

where all indices have been contracted with the flat spacetime metric ηρσ. Some care is

needed, since T µν and Tµν still are raised and lowered with the full metric gµν . In order to

derive the correct pseudotensor T̂ µν in a way that is compatible with these index contraction

conventions, it helps to find Gµν = Rµν − 1
2
gµνR rather than Gµν . The lower order term

corresponds to −κ
2
�h̄µν , and the rest acts as a piece of the contribution to tµν . Raising the

indices of T µν with gµν and expanding gµν to include extra terms in hµν and splitting the

O(κ2) terms between tµν |∆h and tµν |∆φ gives

tµν |∆h = 2hρσ (hµρ,νσ + hνσ,µρ − hµν,ρσ − hρσ,µν) + hµν�h− 2hµρ�hνρ − 2hνρ�hµρ

− 2hµρ,σ
(
hνρ,σ − hνσ,ρ

)
− hρσ,µh ν

ρσ, + ηµν
[
2hρσ�hρσ + hρσ,λ

(
3

2
hρσ,λ − hρλ,σ

)]
,

tµν |∆φ = (d− 2)

(
2

κ

)2(
∂µφ∂νφ− 1

2
ηµν∂ρφ∂

ρφ

)
, (4.45)

where (κ
2

)2

T µν = −κ
2

(
�h̄µν +

κ

2
tµν
)
. (4.46)

The pseudotensor T̂µν can be defined by bringing all terms of order κ2 to the other side of

the equation, with the harmonic gauge condition ∂µh̄
µν = 0 and Eq. (4.38) satisfied.

The radiative Feynman diagrams separate T̂ µν into six pieces. Similar to the Yang-Mills

calculation, T̂ µν =
√
|g|T µν + t̂µν , where t̂µν contains all of the nonlinear field content. The

graviton and dilaton both contribute to each,
√
|g|T µν =

√
|g|T µν |∆h +

√
|g|T µν |∆φ and

t̂µν = t̂µν |∆h + t̂µν |∆φ. Diagrams (2a), (2b), (2c), (2d), (2e), and (2f) are shown in Fig. (4.2).
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Figure 4.2: (2a) and (2b) correspond to
√
|g|T µν |∆h, (2c) corresponds to t̂µν |∆h, (2d) and

(2e) correspond to
√
|g|T µν |∆φ, and (2f) corresponds to t̂µν |∆φ. The sum over all six gives

the radiation pseudotensor source T̂ µν . Wavy lines represent gravitational fields and dashed

lines represent dilaton fields.

Algebraically, the first three diagrams for the pure gravity contributions are

(2a)µν + (2b)µν =
√
|g|T µν |∆h,

(2c)µν = t̂µν |∆h ≡ tµν |∆h +
(

1−
√
|g|
)
T µν |∆h, (4.47)

while the diagrams with internal dilatons algebraically represent

(2d)µν + (2e)µν =
√
|g|T µν |∆φ,

(2f)µν = t̂µν |∆φ ≡ tµν∆φ, (4.48)

where the definition of diagrams (2a), (2b), (2d), and (2e) individually are given by expres-

sions similar to Eq. (4.22), except replacing caα(τ) with vνα(τ) and g with mα. Furthermore,

since
(

1−
√
|g|
)

is purely gravitational, t̂µν |∆φ ≡ tµν |∆φ.

Similar to the previous section, the position of the particle is given by

xµα(τ) = bµα + vµατ + zµα(τ), (4.49)

where now zµα(τ) is the correction due to the graviton and dilaton. The Christoffel symbol
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can be used to find the force on each particle, giving

mα
d2zµα(τ)

dτ 2

∣∣∣∣
∆h

= −Γµνρmαv
ν
αv

ρ
α. (4.50)

The equation of motion utilized for the dilaton is

mα
d2zµα(τ)

dτ 2

∣∣∣∣
∆φ

= mαvαν∂
µφvνα. (4.51)

While this equation differs slightly from Ref. [92], both of our total pseudotensors agree and

are the physical object that satisfies the gauge-invariant Ward identity. With the equations

of motions for the deflections, the four diagrams associated with
√
|g|T µν are proportional

to

(2a)µν(k) =
N∑
α=1

mα

∫
dτeik·(bα+vατ)

(
dzµα
dτ

∣∣∣∣
∆h

vνα + vµα
dzνα(τ)

dτ

∣∣∣∣
∆h

)
,

(2b)µν(k) =
N∑
α=1

mα

∫
dτeik·(bα+vατ)ik · zα(τ)|∆hvµαvνα,

(2d)µν(k) =
N∑
α=1

mα

∫
dτeik·(bα+vατ)

(
dzµα(τ)

dτ

∣∣∣∣
∆φ

vνα + vµα
dzνα(τ)

dτ

∣∣∣∣
∆φ

)
,

(2e)µν(k) =
N∑
α=1

mα

∫
dτeik·(bα+vατ)ik · zα(τ)|∆φvµαvνα. (4.52)

However, for the purposes of confirming the validity of the radiative double copy to leading

order, it is simple enough to calculate
√
|g|T µν as a whole algebraically.

Continuing with the algebraic derivation, the lowest-order solutions can be found, which

give the deflections and the radiation field iteratively. These are found from the lowest order

of the energy-momentum tensor,

T̂ µν(k)|O(κ0) =
N∑
α=1

mαe
ik·bα(2π)δ(k · vα)vµαv

ν
α. (4.53)

This source can be used to find the fields hµν and φ to lowest order, giving

hµν(x)|O(κ2) =
κ

2

N∑
α=1

mα

∫
l

(2π)δ(vα · l)
e−il·(x−bα)

l2

(
vµαv

ν
α −

ηµν

d− 2

)
,

φ(x)|O(κ2) =
1

(d− 2)

(κ
2

)2
N∑
α=1

mα

∫
l

(2π)δ(l · vα)
e−il·(x−bα)

l2
. (4.54)
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Plugging the lowest-order field solutions into the deflections gives

d2zµα(τ)

dτ 2

∣∣∣∣
∆h

= i
(κ

2

)2∑
β 6=α

mβ

∫
lβ

(2π)δ(lβ · vβ)
e−ilβ ·(x−bβ)

l2β

×
[
2(vα · vβ)k · vαvµβ −

2k · vα
d− 2

vµα −
(

(vα · vβ)2 − 1

d− 2

)
lµβ

]
,

d2zµα(τ)

dτ 2

∣∣∣∣
∆φ

=
−i
d− 2

(κ
2

)2∑
β 6=α

mβ

∫
lβ

(2π)δ(lβ · vβ)
e−ilβ ·(x−bβ)

l2β
lµβ . (4.55)

The corrections to the position are useful for finding
√
|g|T µν(k)|O(κ2),

√
|g|T µν(k) =

N∑
α=1

mα

∫
dτeik·(bα+vατ+zα(τ))

(
vµα +

dzµα(τ)

dτ

)(
vνα +

dzνα(τ)

dτ

)
,

√
|g|T µν(k)|O(κ2) =

N∑
α=1

mα

∫
dτeik·(bα+vατ)

[
ik · zαvµαvνα +

dzµα
dτ

vνα + vµα
dzνα
dτ

]
. (4.56)

Separating the gravity and dilaton contributions gives√
|g|T µν(k)|∆h =

(κ
2

)2∑
α 6=β

mαmβ

∫
lα,lβ

µα,β(k)l2α

×
[
vµαv

ν
α

(
2vα · vβ

k · vβ
k · vα

+
2

d− 2
− lβ · k

(k · vα)2

(
(vα · vβ)2 − 1

d− 2

))
− 2vα · vβ(vµαv

ν
β + vναv

µ
β) +

1

k · vα

(
(vα · vβ)2 − 1

d− 2

)
(vµαl

ν
β + vναl

µ
β)

]
,√

|g|T µν(k)|∆φ =
1

d− 2

(κ
2

)2∑
α 6=β

mαmβ

∫
lα,lβ

µα,β(k)l2α

×
[
−vµαvνα

(
lβ · k

(k · vα)2

)
+

1

k · vα
(vµαl

ν
β + vναl

µ
β)

]
. (4.57)

Adding the two contributions,

√
|g|T µν |O(g2) = −

(κ
2

)2
N∑
α=1
β 6=α

mαmβ

∫
lα,lβ

µα,β(k)l2α

×
[
vµαv

ν
α

(
(vα · vβ)2

(k · vα)2
k · lβ − 2vα · vβ

k · vβ
k · vα

− 2

(d− 2)

)
+ 2vα · vβ(vµαv

ν
β + vναv

µ
β)− (vµαl

ν
β + vναl

µ
β)

(vα · vβ)2

k · vα

]
. (4.58)

Next, the pseudotensor contribution from fields t̂µν is calculated from the lowest-order

field solutions, as they will multiply and contract together to give higher order corrections.
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Starting with t̂µν |∆h, the diagram is calculated algebraically in Section (A.2) and also by the

radiative Feynman rules outlined in Section (A.3), which found

t̂µν(k)|∆h =
(κ

2

)2
N∑
α=1
β 6=α

mαmβ

∫
lα,lβ

µα,β(k)

[
2vµαv

ν
α

(
(k · vβ)2 − l2α

d− 2

)
(4.59)

+
(
vµαv

ν
β + vναv

µ
β

) (
l2αvα · vβ − k · vαk · vβ

)
− 2 (vµαl

ν
α + vναl

µ
α) (vα · vβk · vβ)

+ lµαl
µ
α

(
(vα · vβ)2 − 1

d− 2

)
+ ηµν

(
k · vαk · vβvα · vβ −

l2α
2

(
(vα · vβ)2 − 1

d− 2

))]
.

Similarly, the radiative Feynman rules for diagram (2f) agree with the algebraic expression

for Eq. (4.48), giving

tµν(k)|∆φ =
1

(d− 2)

(κ
2

)2
N∑
α=1
β 6=α

mαmβ

∫
lα,lβ

µα,β(k)

[
−lµαlνβ + ηµν

lα · lβ
2

]
. (4.60)

Summing the diagrams gives the energy-momentum pseudotensor source for radiation,

T̂ µν =
(κ

2

)2
N∑
α=1
β 6=α

mαmβ

∫
lα,lβ

µα,β(k)

[
vµαv

ν
α

(
2(k · vβ)2 + 2k · vβ

l2αvα · vβ
k · vα

− l2α(vα · vβ)2k · lβ
(k · vα)2

)

− (vµαv
ν
β + vναv

µ
β)
(
l2αvα · vβ + k · vαk · vβ

)
− (vµαl

ν
α + vναl

µ
α)(vα · vβ)

(
l2αvα · vβ
k · vα

+ 2k · vβ
)

+ lµαl
ν
α(vα · vβ)2 + ηµν(vα · vβ)

(
l2αvα · vβ

2
+ k · vαk · vβ

)]
. (4.61)

In order to find the radiation field from the source,

h̄µνrad(x) =
−1

4πr

(κ
2

)∫ dω

2π
e−iωtT̂ µν(k), (4.62)

where kµ = ω(1, ~x/r). This result agrees with Ref. [92]. Note that the gravitational polariza-

tion tensor εµν can be contracted with hµν = h̄µν − 1
d−2

ηµν h̄. This allows further equivalent

manipulations, since the harmonic gauge forces kµε
µν = 1

2
kνεσσ in the radiative limit. Next,

we show that taking the double copy of Yang-Mills agrees with this result above.

4.2.3 The Radiative Double Copy

Radiation in general relativity coupled to a dilaton can be acquired by applying the radiative

double copy to the Yang-Mills results found previously. The double-copy replacement rules
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are

caα → pνα,

g → 1

2m
(d−2)/2
Pl

=
κ

2
,

ifa1a2a3 → −1

2
(ην1ν3(q1 − q3)ν2 + ην1ν2(q2 − q1)ν3 + ην2ν3(q3 − q2)ν1),

Ĵµa(k) → T̂ µν(k), (4.63)

where the momenta q1 + q2 + q3 = 0. Similar to the Ward identity kµĴ
µa = 0, we can shift

T̂ µν by terms proportional to either kµ or kν , such that kµT̂
µν = kνT̂

µν = 0, which shifts the

gauge-dependent pseudotensor into the harmonic gauge.

The double copy relates field components of two Yang-Mills fields Aµa to the symmetric

gravitational field hµν , an antisymmetric tensor field Bµν , and a scalar/dilaton φ. To find the

gravitational field from T̂ µν , it helps to put it in a form that is manifestly symmetric. While

it is straightforward to find the gravitational radiation, the only setback is to recognize that

this will include gravitational radiation that was produced by diagrams with internal dilaton

lines.

Applying the double-copy replacement rules gives

T̂ µν(k) =
N∑
α=1
β 6=α

mαmβ

8m
3(d−2)/2
Pl

∫
lα,lβ

µα,β(k)

×
[
vα · vβ

l2αv
ν
α

k · vα

{
vα · vβ

(
k · lβ
k · vα

vµα − lµβ
)

+ k · vαvµβ − k · vβvµα
}

− 1

2

(
2k · vβvνα − 2k · vαvνβ + vα · vβ(lβ − lα)ν

)
×
{

2k · vβvµα + vα · vβ
(

l2α
k · vα

vµα − lµα
)}]

. (4.64)

As this answer does not quite satisfy the analogous Ward identity, this result must shifted

by terms proportional to kµ or kν . This shift results in sending lµβ → (lβ − lα)µ/2 in the
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above expression, giving

T̂ µν(k) =
N∑
α=1
β 6=α

mαmβ

8m
3(d−2)/2
Pl

∫
lα,lβ

µα,β(k)

×
[
vα · vβ

l2αv
ν
α

k · vα

{
vα · vβ

(
k · lβ
k · vα

vµα −
1

2
(lβ − lα)µ

)
+ k · vαvµβ − k · vβvµα

}
− 1

2

(
2k · vβvνα − 2k · vαvνβ + vα · vβ(lβ − lα)ν

)
×
{

2k · vβvµα + vα · vβ
(

l2α
k · vα

vµα − lµα
)}]

. (4.65)

Further simplification and symmetrization in µ and ν gives

T̂ µν(k) =
N∑
α=1
β 6=α

mαmβ

8m
3(d−2)/2
Pl

∫
lα,lβ

µα,β(k)

×
[
vµαv

ν
α

((
vα · vβ
k · vα

)2

l2αk · lβ − 2
vα · vβ
k · vα

l2αk · vβ − 2(k · vβ)2

)
+
(
vµαv

ν
β + vναv

µ
β

) (
k · vαk · vβ + vα · vβl2α

)
+

1

2
lµα(lβ − lα)ν(vα · vβ)2

− (vµα(lβ − lα)ν + vνα(lβ − lα)µ)

(
vα · vβk · vβ +

1

2

(vα · vβ)2

k · vα
l2α

)]
. (4.66)

It is straightforward to show that this correctly satisfies kµT̂
µν = kνT̂

µν = 0 after considering

that terms antisymmetric in α and β will cancel. The radiative double copy can find the same

result as Eq. (4.61), once considering that the gauge condition allows for various equivalent

representations of the gravitational source T̂ µν . Due to the fact that kµ = lµα + lµβ and

the harmonic gauge condition gives kµε
µν = 1

2
kνεσσ, the sources and fields may allow for

substitutions such as vµαk
ν → 1

2
ηµνk · vα. Such transformations do not change the physical

content of the gravitational radiation, which can be used on Eq. (4.61) to agree with the

result above.

4.2.4 Double Copy of Ghost Fields to Remove the Dilaton

A non-Abelian scalar field can be added to the Yang-Mills radiation field construction, and

Ref. [139] found that ghost fields can be used to remove the dilaton. With the appropriate

replacement rules, we show that analogous ghost fields can be used in the double copy to
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remove the dilaton in gravity theories. A ghost contribution to the Lagrangian would be

given by

Lghost = −(d− 2)∂µC̄
aDµCa, (4.67)

where the (d− 2) normalization was chosen to agree with the dilaton normalization on the

gravitational side. While we will not derive a solution to the ghost-field equation of motion,

we find an ansatz for a solution that when utilizing the Feynman rules for ghost fields,

removes the dilaton in the radiative double copy procedure.

For typical scattering processes, ghosts are needed for loop corrections involving fermions,

so it might be surprising that ghosts could be used at all for classical radiation. However,

the classical radiation formulas integrate over lα and lβ, which are not associated with loop

quantum corrections, but will take a similar interpretation to loop integrals in scattering

amplitudes due to the worldline parametrization. An ansatz for the ghost field solution is

given by

Ca(x) =
−g√
d− 2

N∑
α=1

calα

∫
lα

(2π)δ(lα · vα)
e−ilα·(x−bα)

l2α
, (4.68)

where the color charge clα must be used instead of the matter color charge caα. The primary

motivation of this solution is that simple replacement rules can be found to properly remove

the dilaton at leading order.

The ghost field contribution to gluon radiation comes in two pieces associated with differ-

ent diagrams. The first is from ghosts ability to cause apparent deflection from the sources

vµα and caα. Assuming a shift in zµα and caα by Ca gives

d2zµα(τ)

dτ 2

∣∣∣∣
∆C

=
1√
d− 2

caCα∂
µCa,

dc̄aα(τ)

dτ

∣∣∣∣
∆C

=
fabc√
d− 2

cbCαC
c, (4.69)

where caCα is a color charge that will have a double-copy replacement rule specified below.

These shifts create corrections to Jµa, which is in general given by

Jµa|∆C = g

∫
dτeik·(bα+vατ)

(
ik · zα|∆Cvµαcaα +

dzµα
dτ

∣∣∣∣
∆C

caα + vµαc̄
a
α|∆C

)
. (4.70)
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After plugging in for the shifts associated with the ghosts, we find

Jµa(k)|∆C =
−g2

d− 2

∑
α,β

∫
lα,lβ

µα,β(k)l2α

[
k · lβcbCαcblβ

(k · vα)2
vµαc

a
α +

1

k · vα

(
vµαif

abccbCαc
c
lβ
− lµβcaαcbCαcblβ

)]
.

(4.71)

There is also a ghost-antighost-vector boson interaction, which has a three-point vertex

given by

V µ,abc
ghost = −igfabcpµ. (4.72)

The potential field for a trivial ghost emission source can be used to stitch two copies together,

corresponding to particles α and β, respectively. The gluonic radiation current contribution

jµa = Ĵµa − Jµa specifically for ghosts is

jµa|∆C =
ig2

d− 2

∑
α 6=β

fabc
∫
lα,lβ

µα,β(k)cbCαc
c
lβ
lµα. (4.73)

Adding these two contributions together gives

Ĵµa(k)|∆C =
g2

d− 2

∑
α 6=β

∫
lα,lβ

µα,β(k)

×
[
l2α
cbCαc

b
lβ

k · vα

(
k · lα
k · vα

vµαc
a
α + lµβc

a
α

)
− ifabccbCαcclβ

(
l2αv

µ
α

k · vα
− lµα

)]
. (4.74)

Under the double-copy procedure for the ghost, the replacement rule for fabc becomes

linearized to a single term instead of three, since the resulting field will be a scalar dilaton.

To this order, all terms are proportion For the ghost-dilaton correspondence, the following

replacement rules were found to apply:

calα → lνα,

ifabc → −1

2
(ην2ν3(q3 − q2)ν1) ,

caCα → Cν
α = −

lνβ
l2β
, (4.75)

which can be used to find

T̂ µν(k)|∆C =
1

d− 2

(κ
2

)2∑
α 6=β

mαmβ

∫
lα,lβ

µα,β(k)

[
l2α
Cα · lβk · lα

(k · vα)2
vµαv

ν
α + l2α

Cα · lβ
k · vα

lµβv
ν
α

+
1

2
(ηρσ(lβ − lα)ν)

(
l2α
Cρ
αl
σ
β

k · vα
vµα − Cρ

αl
σ
β l
µ
α

)]
, (4.76)
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where in our substitution, we chose q1 = −k, q2 = lα and q3 = lβ. By sending lµβ → (lβ−lα)µ/2

to preserve the Ward identity, we find

T̂ µν(k)|∆C =
1

d− 2

(κ
2

)2∑
α 6=β

mαmβ

∫
lα,lβ

µα,β(k)Cα · lβ (4.77)

×
[
l2α

k · lα
(k · vα)2

vµαv
ν
α +

l2α
2

1

k · vα
(lβ − lα)µvνα +

1

2
(lβ − lα)ν

(
l2α

1

k · vα
vµα − lµα

)]
.

Simplifying further gives

T̂ µν(k)|∆C =
1

d− 2

(κ
2

)2∑
α 6=β

mαmβ

∫
lα,lβ

µα,β(k)Cα · lβ

×
[
l2α

k · lα
(k · vα)2

vµαv
ν
α −

l2α
k · vα

(vµαl
ν
α + vναl

µ
α) +

l2α
2
ηµν + lµαl

ν
α

]
. (4.78)

Setting Cα · lβ = −1 gives the exact contribution that cancels out the dilaton contribution

to gravitational radiation. As pointed out by Ref. [139], it is unclear if this construction will

work at higher orders, but the dilaton can at least be removed with ghosts at this order. This

section demonstrates that ghosts also can be used to remove the dilaton in the formalism of

Goldberger and Ridgway [92].

4.3 Radiation in Yang-Mills-Biadjoint-Scalar Theory

In the context of scattering amplitudes, the double-copy method has been used to calculate

Einstein-Yang-Mills theory by double copying Yang-Mills with a Yang-Mills-biadjoint-scalar

theory. Just as the Yang-Mills field Aaµ is related to hµν , a biadjoint scalar with trivalent

interactions Φãa is related to a Yang-Mills field Aãν , where a and ã are indices for two different

gauge groups.

In this section, the non-Abelian radiation field for Yang-Mills-biadjoint-scalar field theory

is computed and the radiative double copy is used to find gravitational radiation solutions

in Einstein-Yang-Mills theory. In the next section, the gravitational radiation emitted in

Einstein-Yang-Mills theory is calculated directly and shown to agree with this section, pro-

viding more evidence that color-kinematics duality is useful for understanding the relation

between gauge theories and gravity for classical radiation problems in addition to scattering

amplitudes in effective quantum field theories.
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4.3.1 Equations of Motion and Initial Conditions

To start, the Lagrangian associated with the Yang-Mills-biadjoint-scalar theory is

L = −1

4
F a
µνF

µνa +
1

2
DµΦãaDµΦãa − y

3
fabcf ãb̃c̃ΦãaΦb̃bΦc̃c − gJµaAaµ − yJ ãaΦãa, (4.79)

where fabc and f ãb̃c̃ refer to structure constants of different groups, the biadjoint scalar Φãa

has an index associated with each gauge group, and y = −igg̃/2 relates the conventions of

Ref. [72] with the conventions of Refs. [130, 134]. In principle, there could be an O(Φ4)

term in the Lagrangian, but this would have a different dimensional coupling and will not

be needed. The non-Abelian field strength is given by Eq. (4.2) and the covariant derivative

is given by

DµΦãa(x) = ∂µΦãa(x)− gfabcAbµ(x)Φãc(x). (4.80)

The equations of motion in vacuum is found by applying the Euler-Lagrange equations.

For the vector boson,

DµF
µνa(x)− gfabcΦãb(x)DνΦãc(x) = 0, (4.81)

and for the biadjoint scalar,

∂µD
µΦãa(x)− gfabcAbµ(x)DµΦãc(x)− yfabcf ãb̃c̃Φb̃b(x)Φc̃c(x) = 0, (4.82)

where fabc and f ãb̃c̃ are structure constants in two different gauge groups. To study radiation,

an adjoint vector source Jνa(x) and a biadjoint scalar source J ãa(x) can be added. For the

vector boson, we have

DµF
µνa(x)− gfabcΦãb(x)DνΦãc(x) = Jνa(x). (4.83)

The equation of motion for the biadjoint scalar field in the presence of a source J ãa(x) is

∂µD
µΦãa(x)− gfabcAbµ(x)DµΦãc(x)− yfabcf ãb̃c̃Φb̃b(x)Φc̃c(x) = J ãa(x). (4.84)

The biadjoint source J ãa(x) for N particles is

J ãa(x) = y

N∑
α=1

∫
dτcãα(τ)caα(τ)δd(x− xα(τ)), (4.85)
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where it is assumed that the particles of mass mα travel along the trajectories given by xµα(τ)

and the color charges cãα and caα are in two different gauge groups. Similarly, the vector field

is sourced by

Jµa(x) = g
N∑
α=1

∫
dτcaα(τ)vµα(τ)δd(x− xα(τ)), (4.86)

where vµα = dxµα
dτ

. The vector source is covariantly conserved, such that DµJ
µa = 0.

The Lorenz gauge is taken by setting ∂µA
µa = 0. In order to simplify these equations,

the explicit dependence on the covariant derivatives is removed and gauge dependent sources

Ĵµa and J̃ ãa are defined such that �Aµa(x) = Ĵµa(x) and �Φãa = Ĵ ãa, where � ≡ ∂ν∂
ν .

With these definitions, the pseudo-vector source is

Ĵµa = Jµa + gfabc
[
Abν(∂

νAµc + F νµc) + ΦãbDµΦãc
]
, (4.87)

where the pseudo-vector is locally conserved, ∂µĴ
µa = 0. The pseudo-scalar source is given

by

Ĵ ãa = J ãa + gfabc
[
Abµ
(
∂µΦãc +DµΦãc

)
+ Φb̃b

(
y

g
f ãb̃c̃Φc̃c + gf cdeΦb̃dΦãe

)]
. (4.88)

Specifying the initial conditions, the position of each particle is

xµα(τ) = bµα + vµατ + zµα(τ) + z̃µα(τ), (4.89)

where zµα(τ) is the correction to the trajectory due to the adjoint vector field and z̃µα is the

correction to the trajectory due to the biadjoint scalar field. Similarly, the charges are given

by

caα(τ) = caα + c̄aα(τ) + c̃aα(τ),

cãα(τ) = cãα + c̃ãα(τ), (4.90)

where caα and cãα are the initial charges, c̄aα(τ) is the correction due to the adjoint vector field,

and c̃aα(τ) and c̃ãα(τ) are the corrections due to the biadjoint scalar field.

The additional deflections needed for Yang-Mills-biadjoint-scalar theory are z̃µα, c̃aα, and

c̃c̃α. Following Ref. [134], the time evolution of the momentum is

dpµα(τ)

dτ
= gcaα(τ)F µνa(xα(τ))vαν(τ)− y∂µΦãa(xα(τ))caα(τ)cãα(τ), (4.91)
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and the time evolution of the charges is

dcaα(τ)

dτ
= gfabcvµα(τ)Abµ(xα(τ))ccα(τ)− yfabcΦb̃b(xα(τ))cb̃α(τ)ccα(τ),

dcãα(τ)

dτ
= −yf ãb̃c̃Φb̃b(xα(τ))cbα(τ)cc̃α(τ). (4.92)

These summarize all of the equations needed to iteratively solve for radiation in Yang-Mills-

biadjoint-scalar theory.

4.3.2 Solutions of the Radiation Fields

The radiation field source for Yang-Mills is given by Eq. (4.27), so all that is needed are the

biadjoint scalar contributions. The pseudoscalar current in momentum space is

Ĵ ãa(k)|O(y1) = y
N∑
α=1

eik·bα(2π)δ(k · vα)cãαc
a
α, (4.93)

which can be utilized to find the scalar field to lowest order, giving

Φãa(x)|O(y1) = −y
N∑
α=1

∫
l

(2π)δ(l · vα)
e−il·(x−bα)

l2
cãαc

a
α. (4.94)

The lowest-order fields can be used to find the deflections of the sources, given by

mα
d2zµα(τ)

dτ 2

∣∣∣∣
∆A

= gcaα
(
∂µAνa(xα(τ))|O(g1) − ∂νAµa(xα(τ))|O(g1)

)
vαν ,

mα
d2z̃µα(τ)

dτ 2

∣∣∣∣
∆Φ

= −y∂µΦb̃b(xα(τ))|O(y1)c
b̃
αc
b
α. (4.95)

The derivatives of the lowest-order fields acting on the particle associated with mα are

∂µAνa(x)|O(g1) = −g
∑
β 6=α

∫
l

(2π)δ(l · vβ)(−ilµ)
e−il·(x−bβ)

l2
vνβc

a
β,

∂µΦb̃b(x)|O(y1) = −y
∑
β 6=α

∫
l

(2π)δ(l · vβ)(−ilµ)
e−il·(x−bβ)

l2
cb̃βc

b
β. (4.96)

Plugging in the derivatives of the lowest-order fields from above gives

mα
d2zµα(τ)

dτ 2

∣∣∣∣
O(g2)

= ig2
∑
β 6=α

(caαc
a
β)

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ )

l2
[
(vα · vβ)lµ − (vα · l)vµβ

]
,

mα
d2z̃µα(τ)

dτ 2

∣∣∣∣
O(y2)

= −iy2
∑
β 6=α

(caαc
a
β)cãαc

ã
β

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ )

l2
lµ. (4.97)
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Figure 4.3: The diagrams (3a) and (3b) represent Jµa|∆Φ and (3c) represents jµa|∆Φ. Dou-

bly-dashed lines represent biadjoint scalars and curly lines are used for Yang-Mills fields.

Note that writing the color charge contraction as cα · cβ would be ambiguous with our

notation. The first correction of the color charges to second order in g is given by

dc̄aα(τ)

dτ

∣∣∣∣
O(g2)

= gfabcvµαA
b
µ(xα(τ))|O(g1)c

c
α,

dc̃aα(τ)

dτ

∣∣∣∣
O(y2)

= −yfabcΦb̃b(xα(τ))|O(y)c
b̃
αc
c
α,

dc̃ãα(τ)

dτ

∣∣∣∣
O(y2)

= −yf ãb̃c̃Φb̃b(xα(τ))|O(y)c
b
αc
c̃
α. (4.98)

Once again, plugging in the lowest-order fields gives

dc̄aα(τ)

dτ

∣∣∣∣
O(g2)

= −g2
∑
β 6=α

fabccbβc
c
α(vα · vβ)

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ)

l2
,

dc̃aα(τ)

dτ

∣∣∣∣
O(y2)

= y2
∑
β 6=α

fabccbβc
c
αc
b̃
αc
b̃
β

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ)

l2
,

dc̃ãα(τ)

dτ

∣∣∣∣
O(y2)

= y2
∑
β 6=α

f ãb̃c̃cb̃βc
c̃
αc
b
αc
b
β

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ)

l2
. (4.99)

To find the gluon radiation, three additional diagrams shown in Fig. (4.3) are added to

the three pure Yang-Mills diagrams shown in Fig. (4.1). In principle, there are also diagrams

for biadjoint scalar radiation, but they double copy to give Yang-Mills radiation in Einstein-

Yang-Mills theory, not gravitational radiation. Diagrams (1a)–(3c) represent Ĵµa and satisfy

the Ward identity kµĴ
µa(k) = 0. Since Yang-Mills radiation without the biadjoint scalar is

gauge invariant, (1d) + (1e) + (1f) also satisfies the Ward identity and is orthogonal to kµ.

Expanding Eqs. (4.85)-(4.86) perturbatively by adding in the deflections due to the

lowest-order fields, taking the Fourier transform, and integrating over the delta function
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gives

Jµa(k) = g

N∑
α=1

∫
dτeik·xα(τ)

(
vµα +

dzµα(τ)

dτ
+
dz̃µα(τ)

dτ

)
(caα + c̄aα(τ) + c̃aα(τ)) , (4.100)

Expanding these results gives

Jµa(k) ≈ g

N∑
α=1

∫
dτeik·(bα+vατ)

[
(1 + ik · z̃α)

(
(1 + ik · zα)caαv

µ
α +

(
c̄aαv

µ
α + caα

dzµα
dτ

))
+ (1 + ik · zα)

(
c̃aαv

µ
α + caα

dz̃µα
dτ

)
+
dz̃µα
dτ

c̄aα +
dzµα
dτ

c̃aα

]
, (4.101)

where explicit τ dependence has been suppressed and terms to order g3y2 are included. The

O(g3) term was computed previously, and Jµa|O(gy2) gives

Jµa(k)|O(gy2) = g

N∑
α=1

∫
dτeik·(bα+vατ)

[
ik · z̃α(τ)caαv

µ
α + c̃aα(τ)vµα + caα

dz̃µα(τ)

dτ

]
. (4.102)

Integrating Eqs. (4.97) and (4.99) helps solve for Jµa|∆Φ to lowest order, giving

Jµa(k)|O(gy2) = gy2

N∑
α=1
β 6=α

cãαc
ã
β

∫
lα,lβ

µα,β(k)
l2α

k · vα

[
cbαc

b
β

mα

caα

(
lµβ −

k · lβ
k · vα

vµα

)
− ifabccbαccβvµα

]
.

(4.103)

One more diagram (3c) is needed to obtain the non-Abelian radiation source for Yang-

Mills-biadjoint-scalar theory, which is given by jµa|∆Φ to lowest order,

jµa(k)|O(gy2) = gfabc
∫
ddxeik·xΦãb(x)DµΦãc(x)

= gfabc
∫
ddxeik·xΦãb(x)|O(gg̃)∂

µΦãc(x)|O(gg̃). (4.104)

Once again, the lowest-order field solutions are plugged in to find

jµa(k)|O(gy2) = gy2

N∑
α=1
β 6=α

ifabccbαc
c
βc
ã
αc
ã
β

∫
lα,lβ

µα,β(k)lµα, (4.105)

To prove that the algebraic method presented above agrees with the radiative Feynman rules,

diagram (3c) is computed in Section (A.3) from the three-point vertex with two biadjoint

scalars and one adjoint vector.
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Summing up the three diagrams (3a)–(3c) gives Ĵµa(k)|O(gy2),

Ĵµa(k)|O(gy2) = −gy2

N∑
α=1
β 6=α

cãαc
ã
β

∫
lα,lβ

µα,β(k)

×
[
cbαc

b
β

mα

l2αc
a
α

k · vα

(
k · lβ
k · vα

vµα − lµβ
)

+ ifabccbαc
c
β

(
l2α

k · vα
vµα − lµα

)]
.(4.106)

The radiative field must be gauge invariant and the above expression satisfies the Ward iden-

tity kµĴ
µa(k)|O(gy2) = 0, as the identity must be satisfied order by order. Adding the above

contributions to Eq. (4.27) gives the total source, Ĵµa. Integrating this over all frequencies

as shown in Eq. (4.28) includes the biadjoint-scalar contribution to vector boson radiation.

4.4 Gravitational Radiation in Einstein-Yang-Mills Theory

4.4.1 Equations of Motion and Initial Conditions

The action for the Einstein-Yang-Mills-scalar theory in consideration is

S =

∫
ddx
√−g

[
− 2

κ2
R− 1

4
gµρgνσF ã

µνF
ã
ρσ +

2

κ2
(d− 2)gµν∂µφ∂νφ

]
−m

∫
dτeφ, (4.107)

where φ is the dilaton field and dτ =
√
gµνdxµdxν . By varying the action above, the energy-

momentum pseudotensor contributions from the Yang-Mills field and the dilaton are given

by

8πGTµν = Rµν −
1

2
gµνR + 8πG

(
gρσF ã

µρF
ã
νσ −

1

4
gµνg

ρσgλτF ã
ρλF

ã
στ

)
− (d− 2)

(
∂µφ∂νφ−

1

2
gµνg

ρσ∂ρφ∂σφ

)
. (4.108)

After expanding, the Yang-Mills contribution to the pseudotensor is

tµν |∆A = −F µρãF ν ã
ρ +

1

4
ηµνF ρσãF ã

ρσ−κ
(
hρσF

µρãF νσã − 1

2
ηµνhρσF

ρτãF σ ã
τ +

1

4
hµνF ρσãF ã

ρσ

)
,

(4.109)

where the first two terms give the non-Abelian extension of the well-known electromagnetic

energy-momentum tensor, and the other terms represent interactions between the Yang-Mills

field and the gravitational field.
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Figure 4.4: Diagrams (4a) and (4b) correspond to
√
|g|T µν |∆A and diagram (4c) corresponds

to t̂µν |∆A. The curly lines represent Yang-Mills fields and the wavy lines represent gravita-

tional fields.

In addition to the six diagrams found in Fig. (4.2), three additional diagrams (4a), (4b),

and (4c) are shown in Fig. (4.4), which contribute to gravitational radiation for Einstein-

Yang-Mills theory. Keeping the lower order term of the non-Abelian energy-momentum

tensor gives

tµν |∆A = −F µρãF ν ã
ρ +

1

4
ηµνF ρσãF ã

ρσ. (4.110)

Similar to the previous section, we will assume that the position of the particle is given

by

xµα(τ) = bµα + vµατ + zµα(τ) + z̃µα(τ), (4.111)

where zµα(τ) is the correction due to the graviton and dilaton already computed, and z̃µα(τ)

is the correction due to the gauge field Aµã. The matter is assumed to have a color charge

cãα(τ), but their corrections do not source the lowest-order gravitational radiation field. The

force due to the gauge field is

mα
d2z̃µα(τ)

dτ 2
= g̃cãαF

µνãvαν(τ). (4.112)

4.4.2 Solutions of the Radiation Fields

Reusing a result from a previous section to find Aãµ gives

Aµã(x)|O(g̃) = −g̃
N∑
α=1

∫
l

(2π)δ(l · vα)
e−il·(x−bα)

l2
cãαv

µ
α. (4.113)
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The deflection caused by Yang-Mills is given by

mα
d2z̃µα(τ)

dτ 2
= g̃cãαF

µνãvαν(τ). (4.114)

Plugging the lowest-order field solution into the deflection gives

d2z̃µα
dτ 2

∣∣∣∣
O(g2)

= ig̃2
∑
β 6=α

cãαc
ã
β

mα

∫
l

(2π)δ(l · vβ)
e−il·(bαβ+vατ)

l2
[
(vα · vβ)lµ − (l · vα)vµβ

]
. (4.115)

Focusing on the energy-momentum tensor
√
|g|T µν ,

√
|g|T µν =

N∑
α=1

mα

∫
dτeik·xα(τ)

(
vµα +

dzµα(τ)

dτ
+
dz̃µα(τ)

dτ

)(
vνα +

dzνα(τ)

dτ
+
dz̃να(τ)

dτ

)
.

(4.116)

The corrections to the position are useful for finding
√
|g|T µν |∆A, given by

√
|g|T µν(k)|∆A =

N∑
α=1

mα

∫
dτeik·(bα+vατ)

[
ik · z̃α(τ)vµαv

ν
α +

dz̃µα(τ)

dτ
vνα + vµα

dz̃να(τ)

dτ

]
, (4.117)

Similar to the previous section, corrections from the gravitational, dilaton, gauge fields can

be separated. The deflection z̃µα contributes to the source by

√
|g|T µν(k)|∆A = g̃2

N∑
α=1
β 6=α

cãαc
ã
β

∫
lα,lβ

µα,β(k)
l2α

k · vα

[
vµαv

ν
α

(
vα · vβ

k · lβ
k · vα

− k · vβ
)

+ (vµαv
ν
β + vναv

µ
β)(k · vα)− (vµαl

ν
β + vναl

µ
β)(vα · vβ)

]
. (4.118)

When calculated algebraically from Eq. (4.110), the diagram with internal gauge bosons

gives

t̂µν(k)|∆A = g̃2

N∑
α=1
β 6=α

cãαc
ã
β

∫
lα,lβ

µα,β(k)

[
1

2

(
vµαv

ν
β + vναv

µ
α

)
lα · lβ (4.119)

+ (vµαl
ν
α + vναl

µ
α) k · vβ − lµαlναvα · vβ −

1

2
ηµν (k · vαk · vβ + vα · vβlα · lβ)

]
.

Calculated in Section (A.3), the radiative Feynman rules for the Einstein-Yang-Mills three-

point vertex diagram are shown to agree with the algebraic result above. Similar to the

dilaton, t̂µν |∆A = tµν |∆A, as the difference between t̂µν and tµν only depends on the gravita-
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tional field hµν , not Aµã. Adding
√
|g|T µν |∆A and t̂µν |∆A gives

T̃ µν |O(g̃2) = g̃2

N∑
α=1
β 6=α

∫
lα,lβ

µα,β(k)

[
vµαv

ν
α

(
vα · vβ

k · lβ
(k · vα)2

− k · vβ
k · vα

)
l2α +

1

2
(vµαv

ν
β + vναv

µ
β)l2α (4.120)

+ (vµαl
ν
α + vναl

µ
α)

(
l2αvα · vβ
k · vα

+ k · vβ
)
− lµαlναvα · vβ −

1

2
ηµν
(
k · vαk · vβ + l2αvα · vβ

)]
.

Adding this result to T̃ µν |O(κ2), calculated in Eq. (4.61), gives the total source for grav-

itational radiation for Einstein-Yang-Mills theory. Next, we show that this result agrees

precisely with what is found with the radiative double-copy method.

4.4.3 The Radiative Double Copy

In order to use the double copy to find gravitational radiation in Einstein-Yang-Mills theory,

the same replacement rules used for general relativity may be used with the radiation found in

Yang-Mills-biadjoint-scalar theory. Applying the double copy replacement rules in Eq. (4.63)

to Eq. (4.106) in addition to sending y → g̃ gives

T̂ µν(k)|g̃2 = g̃2

N∑
α=1
β 6=α

mαmβc
ã
αc
ã
β

∫
lα,lβ

µα,β(k)

[
vα · vβ

l2αv
ν
α

k · vα

(
k · lβ
k · vα

vµα − lµβ
)

− 1

2

(
2k · vβvνα − 2k · vαvνβ + vα · vβ(lβ − lα)ν

)( l2α
k · vα

vµα − lµα
)]

.(4.121)

Shifting lµβ → (lβ − lα)µ/2 gives the gauge invariant T̂ µν ,

T̂ µν(k)|O(g̃2) = g̃2

N∑
α=1
β 6=α

mαmβc
ã
αc
ã
β

∫
lα,lβ

µα,β(k)

×
[
vα · vβ

l2αv
ν
α

k · vα

(
k · lβ
k · vα

vµα −
1

2
(lβ − lα)µ

)
− 1

2

(
2k · vβvνα − 2k · vαvνβ + vα · vβ(lβ − lα)ν

)( l2α
k · vα

vµα − lµα
)]

.(4.122)
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Symmetrizing this result gives the appropriate final expression for T̂ µν ,

T̂ µν |O(g̃2) = −g̃2
(κ

2

)2
N∑
α=1
β 6=α

mαmβc
ã
αc
ã
β

∫
lα,lβ

µα,β(k)

×
[
vµαv

ν
α

(
k · vβ
k · vα

− vα · vβ
(k · vα)2

k · lβ
)
l2α −

1

2
(vµαv

ν
β + vναv

µ
β)l2α

− (vµαl
ν
α + vναl

µ
α)

(
vα · vβ
k · vα

l2α + k · vβ
)

+ lµαl
ν
α(vα · vβ) +

1

2
ηµνl2α(vα · vβ)

]
,

where the gauge condition allows for vµαk
ν = 1

2
ηµνk · vα. This result agrees precisely with

what was found in Eq. (4.120), demonstrating that the radiative double copy holds for

Einstein-Yang-Mills theory.

4.4.4 Einstein-Maxwell Theory

Since it is more physically relevant to scatter massive point particles with electric charge

rather than particles with weak-isospin or color, an Abelian U(1) gauge symmetry is also

worth studying. The action for fields in Einstein-Maxwell theory is

S =

∫
ddx
√
|g|
(
− 2

κ2
R− 1

4
gµρgνσFµνFρσ

)
. (4.123)

When comparing with Einstein-Yang-Mills theory, the Maxwell field Aµ can be recovered

from a single component of the Yang-Mills field Aµã. In order to find results in Einstein-

Maxwell theory from Einstein-Yang-Mills theory, care must be taken with the coupling con-

stants. For exampe, the Maxwell current density for point particles is given by

Jµ(x) = e

N∑
α=1

qα

∫
dτvµα(τ)δd(x− xα(τ)), (4.124)

where qα = −1 for electrons, such that eqα represents the electric charge of particle α.

In order to recover Einstein-Maxwell theory from Einstein-Yang-Mills, one must substitute

g̃ → e and cãα → qα, given our conventions for g̃ and the normalization of the Lagrangian

given in Eq. (4.107). Applying these substitutions to Eq. (4.120) would give gravitational

radiation in Einstein-Maxwell theory. At higher orders, f ãb̃c̃ would be sent to zero as well.

In terms of the radiative double copy, an adjoint scalar field Φa could also be seen as

a single component of the biadjoint scalar feld Φãa. Results for Yang-Mills-adjoint-scalar

95



theory can easily be found from Eq. (4.106) by properly sending cãα → qα and reinterpreting

y as the coupling constant of the adjoint scalar theory. It is straightforward to see that the

double copy of Yang-Mills-adjoint-scalar theory gives solutions in Einstein-Maxwell theory

with the replacement rules shown in Eq. (4.63) and y → e.
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CHAPTER 5

Conclusions

This thesis explores methods in quantum scattering amplitudes and classical radiation solu-

tions. In particular, the BCJ relations are connected to color-kinematics duality in scattering

amplitudes, which becomes evident when factoring the amplitude in to color and kinematic

numerators. Chapter 2 applies the tree-level BCJ relations to give loop-level integral coef-

ficient relations. The double copy refers to replacing the non-Abelian charge factor with a

kinematic one, which allows for solutions in gravity theories to be found from solutions in

gauge theories.

To bridge the gap between quantum scattering amplitudes and classical radiation field

solutions, Chapter 3 introduced the study of gravitational waves in linearized gravity. In the

pursuit of a radiative double copy, the Lienard-Wiechert potentials of electrodynamics were

studied, which motivates the inclusion of a Lienard-Wiechert metric for linearized gravity.

While the energy-momentum tensor for free particles did not exhibit a double copy with the

electromagnetic current for particles, an effective energy-momentum tensor for interacting

point particles was found. Within the context of the classical double copy for linearized

gravity, this energy-momentum tensor for interacting point particles can be thought of as

a double copy of the electromagnetic current for particles. It was shown that the Lienard-

Wiechert metric of linearized gravity reduces to the quadrupole moment method for point

particles when taking the nonrelativistic limit.

In Chapter 4, the classical double copy for nonlinear theories is investigated. In previous

work, the double copy has been applied to gravitational radiation in general relativity with

a dilaton, which suggested that schematic radiative diagrams may be useful for depicting

sources of radiation [92]. Similarly, it was shown that the same replacement rules can be
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used to find Yang-Mills radiation from biadjoint-scalar radiation [134]. Building off of the

initial work of Goldberger and Ridgway, gravitational radiation produced by colliding color

charges was found within the context of Einstein-Yang-Mills theory. Our results demonstrate

that the double copy can be used to find radiation in Einstein-Yang-Mills theory from Yang-

Mills-biadjoint-scalar theory. Also, scalar ghost fields were introduced to remove the dilaton,

as shown in Ref. [139], except our results were found in a formalism closer to Refs. [92, 134].

All radiation was derived algebraically, which provided insight on how a radiative diagram-

matic scheme closer to Feynman diagrams used for scattering amplitudes may be possible.

Furthermore, radiation in Einstein-Maxwell theory can be found via similar methods.

This thesis suggests that it is possible to develop systematic rules to calculate radiation

to higher orders. In order to apply a diagrammatic scheme, it appears that Feynman rules

for worldline propagators would be needed, in addition to the typical rules used for scattering

amplitudes. A radiative double copy to higher orders may be possible, which would provide

new calculational tools for precision gravitational wave emission processes.

In future work, it would be interesting to investigate if the radiative double copy holds

for higher orders, as the precise replacement rules are not yet known. Additional efforts to

perform the integrals are also needed. Studying the formation of bound states at higher

orders would also be important [135]. Initial conditions with angular momentum could also

be considered. The gravitational interactions between the quantized spin of Dirac particles

would also be an interesting theoretical challenge, while considering the scattering of macro-

scopic mass distributions with classical angular momentum would be more applicable for

experiments such as LIGO.
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APPENDIX A

Additional Details of Nonlinear Radiation

A.1 Conventions for Yang-Mills-Biadjoint-Scalar Theory

In this section, the conventions used for Yang-Mills-biadjoint-scalar theory are provided.

The non-Abelian field strength can be defined up to a sign s1 as

F a
µν = ∂µA

a
ν − ∂νAaµ + s1gf

abcAbµA
c
ν , (A.1)

where Peskin and Schroeder and Chiodaroli et al. choose s1 = +1 [73, 233]. The vacuum

equations for Yang-Mills are typically DµF a
µν = 0. By varying the Lagrangian, we find that

this equation of motion is satisfied when

DµF a
µν = ∂µF a

µν + s1gf
abcAµbF c

µν , (A.2)

where Goldberger and Ridgway have chosen s1 = −1 [92]. Finally, the vector current Jaµ can

be added as a source to the vacuum equations, such that

DµF
µνa = s2J

µa, (A.3)

where Goldberger and Ridgway choose s2 = +1, while some other sources choose c2 = −1.

Finally, different authors choose a different sign convention for the D’Alebertian operator,

� = s3∂µ∂
µ, (A.4)

where Goldberger and Ridgway choose s3 = +1, a common choice with this metric.

In summary, Goldberger and Ridgway [92] choose conventions such that (s1, s2, s3) =

(−1,+1,+1), and we use these conventions in order to not add any minus signs in the

radiative double copy replacement rules. The only major difference in our conventions is
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that a factor of κ is taken out of hµν , such that gµν = ηµν + κhµν . To keep the same

replacement rules, g is absorbed into Jµa, such that DµF
µνa = Jνa instead of gJνa.

A.2 Derivation of Gravitational Radiation from Pseudotensor

In this section, the steps for deriving the gravitational radiation coming from nonlinear

gravitational interactions are provided. In Section (4.4), Einstein’s field equations to first

order for weak gravitational fields was found to be

�h̄µν = −κ
2

(
T µν + t̂µν

)
, (A.5)

where the energy-momentum pseudotensor T̂ µν = T µν + tµν =
√
|g|T µν + t̂µν contains the

nonlinear corrections to the linearized field equations, such that the purely gravitational

component of the pseudotensor tµν is given by Eq. (4.45)

tµν = 2hρσ (hµρ,νσ + hνσ,µρ − hµν,ρσ − hρσ,µν) + hµν�h− 2hµρ�hνρ − 2hνρ�hµρ (A.6)

− 2hµρ,σ
(
hνρ,σ − hνσ,ρ

)
− hρσ,µh ,ν

ρσ + ηµν
[
2hρσ�hρσ + hρσ,λ

(
3

2
hρσ,λ − hρλ,σ

)]
.

In order to solve for this, the lowest-order solution of the gravitational field is used

hµν(x) =
κ

2

N∑
α=1

mα

∫
lα

(2π)δ(lα · vα)
e−ilα·(x−bα)

l2α

(
vµαv

ν
α −

ηµν

d− 2

)
, (A.7)

which gives rise to a source for the nonlinear gravitational interaction via tµν . Each term in

tµν is second order in hµν , so one is related to particle α and another to particle β, giving a

double sum. The summation and integrals on all terms will have the following form

tµν =
(κ

2

)2
N∑
α=1
β 6=α

mαmβ

∫
lα,lβ

µα,β(k)Iµν , (A.8)

where Iµν is the integrand containing many terms. For the integrand, focusing on the

(vµαv
ν
α − ηµν/(d− 2)) portion of the solution to hµν and manually plug these pieces into
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Eq. (A.6) gives

Iµν = 2

(
vβρvβσ −

ηρσ
d− 2

)[
−lναlσα

(
vµαv

ρ
α −

ηµρ

d− 2

)
− lµαlρα

(
vναv

σ
α −

ηνσ

d− 2

)
+ lραl

σ
α

(
vµαv

ν
α −

ηµν

d− 2

)
+ lµαl

ν
α

(
vραv

σ
α −

ηρσ

d− 2

)]
− l2β

(
vµαv

ν
α −

ηµν

d− 2

)( −2

d− 2

)
+ 2l2α

(
vµβv

ρ
β −

ηµρ

d− 2

)(
vαρv

ν
α −

ηνρ
d− 2

)
+ 2l2α

(
vνβv

ρ
β −

ηνρ

d− 2

)(
vαρv

µ
α −

ηµρ
d− 2

)
− 2ilσα

(
vµαv

ρ
α −

ηµρ

d− 2

)[
ilβσ

(
vνβvβρ −

ηνρ
d− 2

)
− ilβρ

(
vνβvβσ −

ηνσ
d− 2

)]
+ lµαl

ν
β

(
vραv

σ
α −

ηρσ

d− 2

)(
vβρvβσ −

ηρσ
d− 2

)
+ ηµν

{
−2l2α

(
vραv

σ
α −

ηρσ

d− 2

)(
vβρvβσ −

ηρσ
d− 2

)
+ ilαλ

(
vαρvασ −

ηρσ
d− 2

)[
3

2
ilλβ

(
vρβv

σ
β −

ηρσ

d− 2

)
− ilσβ

(
vρβv

λ
β −

ηρλ

d− 2

)]}
. (A.9)

Distributing these factors and reorganizing all of the terms with the same tensor index

structure gives

tµν ∝ vµαv
ν
α

(
2(k · vβ)2 − 2l2α

d− 2
+

2l2β
d− 2

−
4l2α + 4l2β
d− 2

− 4lα · lβ
d− 2

)
+
(
vµαv

ν
β + vναv

µ
β

) (
2l2α(vα · vβ) + lα · lβ(vα · vβ)− k · vαk · vβ

)
+ (vµαl

ν
α + vναl

µ
α)

(
−2(vα · vβ)k · vβ +

2k · vα
d− 2

)
+ (vµαl

ν
β + vναl

µ
β)

(
2k · vα
d− 2

)
+ lµαl

ν
α

(
− 4

(d− 2)2
+ 2(vα · vβ)2 − 4

d− 2
+

2d

(d− 2)2

)
+ (lµαl

ν
β + lναl

µ
β)

(
− 1

(d− 2)2
+

1

2
(vα · vβ)2 − 1

d− 2
+

d

2(d− 2)2

)
+ ηµν

[
−2(k · vβ)2

d− 2
+

2l2α
(d− 2)2

−
2l2β

(d− 2)2
+

4l2α
(d− 2)2

+
2lα · lβ

(d− 2)2
(A.10)

−
(

2l2α +
3

2
lα · lβ

)(
(vα · vβ)2 − 2

d− 2
+

d

(d− 2)2

)
+

(
vα · vβk · vαk · vβ +

lα · lβ
(d− 2)2

)]
.

Next, the relation k2 = l2α + 2lα · lβ + l2β = 0 is used to simplify further. The identity

aµlνβ = aµkν − aµlνα and the gauge condition of the gravitational field allows for the gauge-

invariant shift aµlνβ → 1
2
a · kηµν − aµlνα, since dotting this expression with the polarization
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tensor would give the same radiation amplitude. Making such changes gives

tµν ∝ vµαv
ν
α

(
2(k · vβ)2 − 4l2α

d− 2

)
+ (vµαv

ν
β + vναv

µ
β)
(
l2α(vα · vβ)− k · vαk · vβ

)
− 2(vα · vβ)k · vβ(vµαl

ν
α + vναl

µ
α) + lµαl

ν
α

(
(vα · vβ)2 − 1

d− 2

)
+ ηµν

(
2(k · vα)2

d− 2
+
k · lα

2
(vα · vβ)2 − k · lα

2(d− 2)

)
+ ηµν

[
−2(k · vβ)2

d− 2
+

2l2α
(d− 2)2

−
2l2β

(d− 2)2
+

4l2α
(d− 2)2

+
2lα · lβ

(d− 2)2
(A.11)

−
(

2l2α +
3

2
lα · lβ

)(
(vα · vβ)2 − 2

d− 2
+

d

(d− 2)2

)
+

(
vα · vβk · vαk · vβ +

lα · lβ
(d− 2)2

)]
.

By considering that α and β are symmetric, all particle labels may be switched for any term,

which allows further simplification to give the final result

tµν ∝ vµαv
ν
α

(
2(k · vβ)2 − 4l2α

d− 2

)
+ (vµαv

ν
β + vναv

µ
β)
(
l2α(vα · vβ)− k · vαk · vβ

)
− 2(vα · vβ)k · vβ(vµαl

ν
α + vναl

µ
α) + lµαl

ν
α

(
(vα · vβ)2 − 1

d− 2

)
+ ηµν

(
vα · vβk · vαk · vβ −

l2α
2

(
(vα · vβ)2 − 1

d− 2

))
. (A.12)

To more easily compare with the diagrammatic method, t̂µν is found by adding the lowest-

order term of
(

1−
√
|g|
)
T µν , where

T µν(x) ≈
N∑
α=1

mα

∫
lα

(2π)δ(vα · lα)e−ilα·(x−bα)vµαv
ν
α,

h(x) ≈ −κ
d− 2

∑
β 6=α

mβ

∫
lβ

(2π)δ(lβ · vβ)
e−ilβ ·(x−bβ)

l2β
,

(
1−

√
|g|
)
T µν ≈ 1

d− 2

(κ
2

)2∑
mαmβ

∫
lα,lβ

µα,β(k)2l2αv
µ
αv

ν
α. (A.13)

Adding this to tµν gives

t̂µν ∝ vµαv
ν
α

(
2(k · vβ)2 − 2l2α

d− 2

)
+ (vµαv

ν
β + vναv

µ
β)
(
l2α(vα · vβ)− k · vαk · vβ

)
− 2(vα · vβ)k · vβ(vµαl

ν
α + vναl

µ
α) + lµαl

ν
α

(
(vα · vβ)2 − 1

d− 2

)
+ ηµν

(
vα · vβk · vαk · vβ −

l2α
2

(
(vα · vβ)2 − 1

d− 2

))
. (A.14)

102



As shown in the next section, this result agrees precisely with a diagram involving the three-

point graviton vertex.

A.3 Some Radiative Feynman Rules

A.3.1 Yang-Mills and Biadjoint-Scalar Theory

A Feynman diagram approach can be used to find the results for diagrams (1c) and (3c),

shown in Figs (4.1) and (4.3). We will briefly describe this method, as it could be useful for

organizing higher order corrections. It can also be utilized in conjunction with the algebraic

approach to make sure the results are self-consistent. Expanding the kinetic term of the

Lagrangian, the O(A3) term corresponding to the three-point vector boson interaction is

− 1

4
F a
µνF

µνa = −∂µAaνgfabcAµbAνc + . . . . (A.15)

This term in the Lagrangian gives the textbook non-Abelian three-point vector boson vertex,

given by

Γµa,νb,ρc(k, p, q) = gfabc ((kν − qν)ηµρ + (pρ − kρ)ηνµ + (qµ − pµ)ηρν) , (A.16)

where Aaµ is associated with the momentum k, Abν is associated with p, and Acρ is associated

with q.

The three-point vertex for two biadjoint scalars and one adjoint vector field can be used

to efficiently calculate a piece radiation, which comes from the kinetic term of the biadjoint

scalar. Focusing on the terms in the Lagrangian to O(Φ2A),

1

2
(DµΦã)a(DµΦb̃)aδãb̃ = gfabcδãc̃(∂µΦãa)AµbΦc̃c + . . . . (A.17)

Taking the appropriate functional derivatives and properly symmetrizing gives the three-

point vertex for two scalars and one vector, giving

Γãa,νb,c̃c(k, p, q) = gfabcδãc̃ (kν − qν) . (A.18)
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The three-point vertices above can be used to find diagrams (1c) and (3c) shown in Figs. (4.1)

and (4.3), giving

(1c)µa(k) =
1

2

∫
lα,lβ

Abν(lα)|O(g1)iΓ
µa,νb,ρc(−k, lα, lβ)Acρ(lβ)|O(g1)(2π)dδd(k − lα − lβ),

(1f)µa(k) =
1

2

∫
lα,lβ

Φb̃b(lα)|O(y1)iΓ
b̃b,µa,c̃c(lα,−k, lβ)Φc̃c(lβ)|O(y1)(2π)dδd(k − lα − lβ), (A.19)

where a symmetry factor of 1/2 has been added.

The solutions needed for these diagrams were found in Eqs. (4.13) and (4.94), giving

Aµa(lα)|O(g1) = −g
N∑
α=1

(2π)δ(lα · vα)
eilα·bα

l2α
vµαc

a
α,

Φaã(lα)|O(y1) = −y
N∑
α=1

(2π)δ(lα · vα)
eilα·bα

l2α
caαc

ã
α. (A.20)

Plugging in these solutions gives

(1c)µa(k) =
g3

2

∑
α 6=β

ifabccbαc
c
β

∫
lα,lβ

µα,β(k)
[
−2k · vαvµβ + 2k · vβvµα + vα · vβ(lβ − lα)µ

]
,

(1f)µa(k) =
gy2

2

∑
β 6=α

ifabccbαc
c
βc
ã
αc
ã
β

∫
lα,lβ

µα,β(k)(lα − lβ)µ. (A.21)

Due to the antisymmetry of fabccbαc
c
β, switching α ↔ β for a term multiplied by this factor

introduces a minus sign, allowing further simplification,

(1c)µa(k) = g3
∑
α 6=β

ifabccbαc
c
β

∫
lα,lβ

µα,β(k) [2k · vβvµα − (vα · vβ)lµα] ,

(1f)µa(k) = gy2
∑
β 6=α

ifabccbαc
c
βc
ã
αc
ã
β

∫
lα,lβ

µα,β(k)lµα. (A.22)

Note how this result agrees with the algebraic method found in Eqs. (4.26) and (4.105).

A.3.2 General Relativity and Einstein-Yang-Mills Theory

Next, the three-point graviton vertex will be used to stitch together lower order gravitational

field solutions to generate a piece of the gravitational radiation field. The three-point graviton
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vertex from DeWitt [234] and utilized by Sannan [235] is

Vµα,νβ,σγ(k1, k2, k3) = sym

[
−1

2
P3(k1 · k2ηµαηνβησγ)−

1

2
P6(k1νk1βηµαησγ) (A.23)

+
1

2
P3(k1 · k2ηµνηαβησγ) + P6(k1 · k2ηµαηνσηβγ) + 2P3(k1νk1γηµαηβσ)

− P3(k1βk2µηανησγ) + P3(k1σk2γηµνηαβ) + P6(k1σk1γηµνηαβ)

+ 2P6(k1νk2γηβµηασ) + 2P3(k1νk2µηβσηγα)− 2P3(k1 · k2ηανηβσηγµ)
]
,

where P3 and P6 refers to a permutation of k1, k2, and k3 resulting in 3 or 6 terms, respec-

tively, and sym applies a symmetrization across µα, νβ, and σγ. For example,

P3(k1 · k2ηµνηαβησγ) = k1 · k2ηµνηαβησγ + k2 · k3ηνσηβγηµα + k3 · k1ηµσηαγηνβ,

sym[ηµνηαβ] =
1

4
(ηµνηαβ + ηµβηνα + ηναηµβ + ηαβηµν) . (A.24)

Expanding P3 and P6 gives

V µα,νβ,σγ(k1, k2, k3) = sym

[
−1

2
(k1 · k2 + k2 · k3 + k3 · k1) ηµαηνβησγ

− 1

2

(
kν1k

β
1 η

µαησγ + kσ1k
γ
1η

µαηνβkµ2k
α
2 η

νβησγ

+ kσ2k
γ
2η

µαηνβ + kµ3k
α
3 η

νβηγσ + kν3k
β
3 η

µαηγσ
)

+
1

2

(
k1 · k2η

µνηαβησγ + k2 · k3η
νσηβγηµα + k3 · k1η

µσηαγηνβ
)

+
(
k1 · k2η

µαηνσηβγ + k1 · k2η
νβηµσηαγ + k2 · k3η

νβηµσηαγ

+ k2 · k3η
σγηµνηαβ + k3 · k1η

σγηµνηαβ + k3 · k1η
µαηνσηβγ

)
+ 2

(
kν1k

γ
1η

µαηβσ + kσ2k
µ
2 η

νβηγµ + kµ3k
β
3 η

σγηαν
)

−
(
kβ1k

µ
2 η

ανησγ + kγ2k
ν
3η

βσηµα + kβ3k
µ
1 η

γµηνβ
)

+
(
kσ1k

γ
2η

µνηαβ + kµ2k
α
3 η

νσηβγ + kν3k
β
1 η

σµηγα
)

+
(
kσ1k

γ
1η

µνηαβ + kν1k
β
1 η

µσηαγ + kµ2k
α
2 η

νσηβγ

+ kσ2k
γ
2η

νµηγα + kν3k
β
3 η

σµηγα + kµ3k
α
3 η

σνηαβ
)

+ 2
(
kν1k

γ
2η

βµηασ + kµ1k
γ
2η

ανηβσ + kσ2k
α
3 η

γνηβµ

+ kν2k
α
3 η

βσηγµ + kµ3k
β
1 η

ασηγν + kσ3k
β
1 η

γµηασ
)

+ 2
(
kν1k

µ
2 η

βσηγα + kσ2k
ν
3η

γµηαβ + kµ3k
σ
1 η

ανηβγ
)

(A.25)

− 2
(
k1 · k2η

ανηβσηγµ + k2 · k3η
βσηγµηαν + k3 · k1η

γµηανηγσ
) ]

.
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To find the radiative field contribution from this three-point vertex, two instances of the

lowest-order field solution will be stitched together with this vertex to find a higher order

contribution. The lowest-order field in momentum space is given by

hρσ(lα) =
κ

2

N∑
α

mα
eilα·bα

l2α
(2π)δ(lα · vα)

[
vραv

σ
α −

ηρσ

d− 2

]
. (A.26)

The three-point vertex allows for a purely gravitational source to be found, which corresponds

to a component of the pseudotensor, tµν . This component of the source that generates

radiation is given by

tσλ(k) =
1

2

∫
lα,lβ

V µρ,ντ,σλ(−lα,−lβ, k)hµρ(lα)hντ (lβ)δd(k − lα − lβ). (A.27)

Since the lowest-order solutions for lα and lβ are symmetric, the symmetrization is only

needed for indices σ and λ in V µρ,ντ,σλ. Focusing on the integrand and breaking down the

two lowest-order solutions into four terms gives

hµρ(lα)hντ (lβ) ∝
[
vµαv

ρ
αv

ν
βv

τ
β −

1

d− 2

(
vµαv

ρ
αη

ντ + vνβv
τ
βη

µρ
)

+
1

(d− 2)2
(ηµρηντ )

]
. (A.28)

It is straightforward to perform the index contractions with Mathematica to simplify the

result, giving

V µρ,ντ,σλhµρhντ ∝
[
2vσαv

λ
α

(
(k · vβ)2 − l2α

d− 2

)
+
(
vσαv

λ
β + vλαv

σ
β

) (
l2αvα · vβ − k · vαk · vβ

)
− 2

(
vσαl

λ
α + vλαl

σ
α

)
(vα · vβk · vβ) + lσαl

λ
α

(
(vα · vβ)2 − 1

d− 2

)
+ ησλ

(
k · vαk · vβvα · vβ −

l2α
2

(
(vα · vβ)2 − 1

d− 2

))]
, (A.29)

where this result gives the integrand of the diagram (2c).

For calculating the additional gravitational radiation diagrams due to Yang-Mills contri-

butions, the Feynman rules for scattering outlined by Rodigast’s thesis give the necessary

three-point vertex [236, 237]. The Feynman rule for the three-point vertex with two gluons

and one graviton can be found from the interaction term in the Lagrangian,

L =
√−ggµρgνσ∂µAaν∂[ρA

a
σ] + . . .

≈ κ

(
ηµτηρληνσ + ηµρηντησλ − 1

2
ητληµρηνσ

)
hτλ∂µA

a
ν∂[ρA

a
σ]. (A.30)
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Taking the functional derivatives and properly symmetrizing over all indices and momenta

gives

Γτλ,µã,νb̃(k, p, q) = −2iδãb̃
(
p(τqλ)ηµν +

1

2
p · q(ητµηλνητνηλµ − ητληµν)

+
1

2
ητλpνqµ − qµην(λpτ) − pνηµ(τqλ)

)
, (A.31)

where a factor of 2/κ was added to have the same conventions as DeWitt’s three-point

vertex. This allows us to use the same formula for calculating the contribution to the

radiation source. By reusing the lowest-order result for Aµa(l)|O(g1) and switching a → ã,

the solution to diagram (4c) is

(2i)µν =
1

2

∫
lα,lβ

iΓµν,ρã,σb̃(−k, lα, lβ)Aãρ(lα)|O(g1)A
b̃
σ(lβ)|O(g1)δ

d(k − lα − lβ). (A.32)

Plugging in the lowest-order solution gives

(2i)µν = g̃2

N∑
α=1
β 6=α

∫
lα,lβ

µα,β(k)cãαc
ã
β

[
1

2
(vµαv

ν
β + vναv

µ
β − ηµνvα · vβ)lα · lβ

+ vα · vβl(µα lν)
β +

1

2
ηµνk · vαk · vβ − k · vβv(µ

α l
ν)
β − k · vαv

(µ
β l

ν)
α

]
, (A.33)

which can be shown to agree with the algebraic result found in Eq. (4.120).
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[226] Jordan Moxon and Éanna Flanagan. Radiation-Reaction Force on a Small Charged

Body to Second Order. 2017.

[227] P. Sikivie and N. Weiss. Classical Yang-Mills theory in the presence of external sources.

Phys. Rev. D, 18:3809–3821, Nov 1978.

[228] S. K. Wong. Field and particle equations for the classical Yang-Mills field and particles

with isotopic spin. Il Nuovo Cimento A (1965-1970), 65(4):689–694, Feb 1970.

[229] F. W. Hehl and B. K. Datta. Nonlinear Spinor Equation and Asymmetric Connection

in General Relativity. Journal of Mathematical Physics, 12:1334–1339, July 1971.

[230] Friedrich W. Hehl, Paul von der Heyde, and G. David Kerlick. General relativity with

spin and torsion and its deviations from Einstein’s theory. Phys. Rev. D, 10:1066–1069,

Aug 1974.

128



[231] P.A.M. Dirac. General Theory of Relativity. Physics Notes. Princeton University Press,

1975.

[232] L.D. Landau and E.M. Lifshitz. Chaper 11 - The Gravitational Field Equations. In L.D.

Landau and E.M. Lifshitz, editors, The Classical Theory of Fields (Fourth Edition),

volume 2 of Course of Theoretical Physics, pages 259 – 294. Pergamon, Amsterdam,

fourth edition edition, 1975.

[233] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field theory.

Addison-Wesley, Reading, USA, 1995.

[234] Bryce S. DeWitt. Quantum theory of gravity. iii. applications of the covariant theory.

Phys. Rev., 162:1239–1256, Oct 1967.

[235] Sigurd Sannan. Gravity as the limit of the type-II superstring theory. Phys. Rev. D,

34:1749–1758, Sep 1986.

[236] Dietmar Ebert, Jan Plefka, and Andreas Rodigast. Absence of gravitational contribu-

tions to the running Yang-Mills coupling. Phys. Lett., B660:579–582, 2008.

[237] Andreas Rodigast. One-Loop Divergences of the Yang-Mills Theory Coupled to Grav-

itation. PhD thesis, Humboldt University, August 2008.

129


	1 Introduction
	1.1 Color-Kinematics Duality and the Double Copy for Scattering Amplitudes
	1.2 Motivating a Radiative Double Copy
	1.3 Outline

	2 Scattering Amplitudes and One-Loop Integral Coefficient Relations
	2.1 From Trees to Loops
	2.1.1 Introduction to Tree-Level BCJ Amplitude Relations
	2.1.2 Unitary Cuts and One-Loop Integral Basis Coefficients
	2.1.2.1 Box Cuts
	2.1.2.2 Triangles
	2.1.2.3 Bubbles


	2.2 One-Loop Amplitude Coefficient Relations
	2.2.1 BCJ box integral coefficient identities
	2.2.2 BCJ triangle integral coefficient identities
	2.2.3 BCJ bubble integral coefficient identities

	2.3 Examples of BCJ integral coefficient relations
	2.3.1 Box integral coefficient relation example
	2.3.2 Triangle integral coefficient relation example
	2.3.3 Bubble integral coefficient relation example


	3 Radiation in Linearized Gravity and Electrodynamics
	3.1 Gravitational Waves in Linearized Gravity
	3.1.1 Radiation and the Quadrupole Moment Tensor

	3.2 Generalizing the Lienard-Wiechert Potential
	3.2.1 Limitations of the Nonperturbative Lienard-Wiechert Potentials

	3.3 Simple Examples
	3.3.1 Binary Inspiral with Equal Mass
	3.3.2 Two-Mass Oscillating Spring System (Weber Bar)


	4 The Radiative Double Copy for Nonlinear Gravity Theories
	4.1 Introduction
	4.2 Radiative Double Copy of Yang-Mills and General Relativity
	4.2.1 Radiation in Yang-Mills
	4.2.2 Radiation in General Relativity with a Dilaton
	4.2.3 The Radiative Double Copy
	4.2.4 Double Copy of Ghost Fields to Remove the Dilaton

	4.3 Radiation in Yang-Mills-Biadjoint-Scalar Theory
	4.3.1 Equations of Motion and Initial Conditions
	4.3.2 Solutions of the Radiation Fields

	4.4 Gravitational Radiation in Einstein-Yang-Mills Theory
	4.4.1 Equations of Motion and Initial Conditions
	4.4.2 Solutions of the Radiation Fields
	4.4.3 The Radiative Double Copy
	4.4.4 Einstein-Maxwell Theory


	5 Conclusions
	A Additional Details of Nonlinear Radiation
	A.1 Conventions for Yang-Mills-Biadjoint-Scalar Theory
	A.2 Derivation of Gravitational Radiation from Pseudotensor
	A.3 Some Radiative Feynman Rules
	A.3.1 Yang-Mills and Biadjoint-Scalar Theory
	A.3.2 General Relativity and Einstein-Yang-Mills Theory





