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A DECOMPOSITION METHOD FOR
WEIGHTED LEAST SQUARES LOW-RANK APPROXIMATION

OF SYMMETRIC MATRICES

JAN DE LEEUW

A. We discuss an alternating least squares algorithm that uses
both decomposition and block relaxation to find the optimal positive
semidefinite approxation of given rank p to a known symmetric matrix of
order n. Each iteration of the algorithm involves minimizing n quartics
and solving n secular equations of order p.

1. I

Least squares approximation of a symmetric matrix C by a symmetric posi-
tive definite matrix Ĉ of rank at most p is a classical problem. It is typically
solved by computing an eigen-decomposition of C and by truncating the
eigen-decomposition by only using the eigenvectors and associated with
the min(p, q) largest positive eigenvalues of C. Here q is the number of
positive eigenvalues. Thus if q ≤ p we have rank(Ĉ) = q and if q ≥ p we
have rank(Ĉ) = p.

Eigen-decomposition cannot be used, however, if we use weighted least
squares, in which the squared deviation for each matrix element (i, j) is
weighted by a non-negative number wi j. This has, as a special case, incor-
poration of missing data, where we set wi j = 0. And an even more special
case has

wi j =

1 if i , j,

0 if i = j
.
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2 JAN DE LEEUW

This occurs in least squares factor analysis, and special case algorithms
have been developed a long time ago by Thomson (Iterative Refactoring)
and Harman (MINRES).

As we shall see below, the case in which the diagonal elements are missing
is indeed quite special and leads to considerable simplification. If all non-
zero weights are equal, then we can we can iteratively alternate imputing the
missing elements and using eigen-decomposition on the completed matrix.
But this does not cover all cases. It seems useful to give an algorithm for the
case of general matrices of weights, and general patterns of missing data,
where the only restriction we impose is that the weights are non-negative.

2. P

We want to solve

(1) min
X∈Rn×p

σ(X) =
n∑

i=1

n∑
j=1

wi j(ci j − x′i x j)2,

where both C and W are symmetric of order n, and the elements of W are
non-negative.

We use decomposition to construct a simple, and hopefully efficient, algo-
rithm. Write X as X = ΛZ, where Λ is diagonal and Z satisfies diag(ZZ′) =
I. Thus Λ contains the lengths and Z the directions of the n points in X. The
problem becomes

(2) min
λ≥0,diag(ZZ′)=I

σ(λ,Z) =
n∑

i=1

n∑
j=1

wi j(ci j − λiλ jz′iz j)2.

After decomposition, the next step is block relaxation. We will solve the
minimization problem P, by cycling through a sequence of problems Pi.
Problem Pi minimizes σ(λ,Z) over λi and zi, while keeping the x j = λ jz j

with j , i fixed at the current best values. Let us separate out the part of the
loss function that depends on point i. Clearly

σi(λ,Z) = wii(cii − λ
2
i )2 + 2

n∑
j,i

wi j(ci j − λiλ jz′iz j)2.
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By collecting terms, and ignoring parts that do not depend on the unknowns,
we find that problem Pi is minimization of

(3) f (λi, zi) = λ4
i wii + 2λ2

i (z′i Aizi − wiicii) − 4λiz′ibi,

where

Ai =

n∑
j,i

wi jx jx
′
j,

bi =

n∑
j,i

wi jci jx j.

To minimize f (λi, zi) over λi and zi satisfying z′izi = 1 we again apply block
relaxation. Minimization over λi and zi are alternated.

So the structure of the algorithm is clear. One iteration to update X in-
volves solving n problems Pi. One problem Pi involves a number of inner
iterations, in which we alternate updating λi for given zi and zi for given
λ. Depending on the iterative nature of the algorithms chosen to solve the
two substeps of a single inner iteration, we may also have to use innermost
iterations.

3. I I

Solving for the optimal λi for given zi means finding the minimum of the
quartic (3). Let’s first deal with the case wii = 0 which makes the quartic a
quadratic. Decomposition is not really necessary, and we can just set

xi = A−1
i b.

If less than p of the weights in row i are positive, then Ai will be singular,
and we have to use a generalized inverse. This result makes the case with a
hollow weight matrix so much simpler. No inner iterations are needed.

In the general case the quartic has no cubic term, which makes the explicit
formula for the location of the minimum of Jeffrey [1997, Theorem 3] es-
pecially attractive. So we use this in our algorithm.
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The optimum zi for given λi must be computed by minimizing

g(z) = z′Az − 2z′b,

where A = λ2
i Ai and b = λibi and where we require z′z = 1. Using a

Lagrange multiplier µ shows

(4a) z = (A − µI)−1b

where µ must satisfy

(4b) b′(A − µI)−2b = 1

For the minimum we must have, in addition, A − µI positive definite, i.e. µ
must be stricty smaller than the smallest eigenvalue ωp of A. On (∞, ωp) the
function b′(A − µI)−2b is convex and increases from zero to +∞, and thus
crosses the line µ = 1 exactly once. The bounds on the solution can be im-
proved [Hager, 2001, page 190]. If A = KΩK′ is the eigen-decomposition
of A, and β = K′b, then

ωp −

√√ p∑
s=1

β2
s ≤ µ ≤ ωp −

√∑
ωs=ωp

β2
s .

Our algorithm uses a standard root finding method to locate µ in this inter-
val.

Equation (4b) is one of the secular equations, which have been studied
in great detail. There is a huge literature, which is excellently reviewed
in Conn et al. [2000, Chapter 7].

4. E

We have taken the correlation matrix in Table 1 from Spearman [1927, page
144]. Anthropometric measurements were made by Doll on 477 boys and
girls.

Four different solutions were computed. In all cases we iterate until the
loss function decreases less than 1e − 6. Plots of the four solutions are
given in Table 2. The first solution has a full weight matrix, with all wi j =

1. Since the program starts with the eigenvalue solution it is done in one
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T 1. Correlation Matrix of the Doll Data

1 2 3 4 5 6
1. Right hand grip 1.000 0.885 0.525 0.579 0.455 0.620
2. Left hand grip 0.885 1.000 0.570 0.595 0.570 0.620
3. Standing height 0.525 0.570 1.000 0.805 0.630 0.430
4. Sitting height 0.580 0.595 0.805 1.000 0.680 0.475
5. Weight 0.455 0.570 0.630 0.680 1.000 0.390
6. Vital capacity 0.620 0.620 0.430 0.475 0.390 1.000

T 2. Four Solutions of the Doll Data
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iteration and gives a minimum loss of .417045. For the second solution we
set the diagonal equal to zero. We now need 10 iterations and find a loss
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of .007540. Third, we define a block of the first three and a block of the
second three variables, and we make the within-block weights zero. This
amounts to computing a singular value decomposition of the off-diagonal
block. After 4 iterations, we have .007148. And finally we use the same
block weights, but now make the diagonal equal to one. This finds .015852
after 12 iterations.

5. C

ipSymLS<− f u n c t i o n (

t a r g e t ,

w=matrix ( 1 , dim ( t a r g e t ) [ 1 ] , dim ( t a r g e t ) [ 2 ] ) ,

ndim=2 ,

5 i n i t =FALSE ,

i tmax =100 ,

eps=1e−6 ,

v e r b o s e=FALSE) {

i f ( i s . matrix ( i n i t ) ) x<− i n i t

10 e l s e {

z<−e i g e n ( t a r g e t ) ; x<−z$ v e c t o r s [ , 1 : ndim ] ; x<−x

%*%diag ( s q r t ( z$ v a l u e s [ 1 : ndim ] ) )

}

n<−dim ( t a r g e t ) [ 1 ] ; xx<− t c r o s s p r o d ( x ) ; o l o s s<−sum (w* (

t a r g e t −xx ) ^2 ) ; i t e l<−1

r ep ea t {

15 f o r ( i i n 1 : n ) {

a i<−crossprod ( x ,w[ i , ] *x )−w[ i , i ] * outer ( x [ i , ] , x [

i , ] )

b i<−colSums ( (w[ i , ] * t a r g e t [ i , ] ) *x )−w[ i , i ]

* t a r g e t [ i , i ] *x [ i , ]

i f ( w[ i , i ] == 0 ) x [ i , ]<− s o l v e ( a i , b i )

e l s e {

20 l i<−sum ( x [ i , ] ^ 2 ) ; z i<−x [ i , ] / s q r t ( l i ) ; wi

<−w[ i , i ] ; c i<− t a r g e t [ i , i ]
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a4<−wi ; a3<− 0 ; a2<−2* ( sum ( z i * ( a i%*%z i )

) −(wi* c i ) ) ; a1<−−4*sum ( z i * b i )

b1<−a1 / (2 * a4 ) ; b2<−a2 / (3 *wi ) ; bb<−as .

complex ( ( b1 ^4 )+2* ( b1 ^2 ) * ( b2 ^3 ) )

s<− ( b1 ^2 ) +( b2 ^3 )+ s q r t ( bb ) ; k f<−s ^ (1 / 3)

+( b2 ^2 ) * s ^(−1 / 3)+b2 ; l i<−Re(−b1 / kf )

x [ i , ]<− l i * z i ; aa<−2* ( l i ^2 ) * a i ; bb<−2

* l i * b i ; e i<−e i g e n ( aa )

25 l<− e i$ v a l u e s ; k<− e i$ v e c t o r ; kb<−drop (

crossprod ( k , bb ) ) ; ml<−min ( l )

u l<−ml− s q r t ( sum ( kb ^2 ) ) ; uu<−ml− s q r t (

sum ( kb [ which ( l==ml ) ] ^ 2 ) ) ; u<−uu

fu<− f u n c t i o n ( u ) sum ( ( kb / ( l −u ) ) ^2 )−1

gu<− f u n c t i o n ( u ) 2 *sum ( ( kb ^2 ) / ( ( l −u ) ^3 )

)

r ep ea t {

30 i f ( abs ( fu ( u ) )<1e−6) break ( )

u<−u− fu ( u ) / gu ( u )

}

x [ i , ]<− l i * ( k%*%( kb / ( l −u ) ) )

}

35 }

xx<− t c r o s s p r o d ( x ) ; n l o s s<−sum (w* ( t a r g e t −xx ) ^2 )

i f ( v e r b o s e )

c a t ( " I t e r a t i o n :� " , formatC ( i t e l , d i g i t s =6 ,

wid th =6) ,

" P r e v i o u s �Loss :� " , formatC (

o l o s s , d i g i t s =6 , wid th =12 ,

format=" f " ) ,

40 " C u r r e n t �Loss :� " , formatC ( n l o s s

, d i g i t s =6 , wid th =12 , format="

f " ) ,

" \ n " )
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i f ( ( ( o l o s s −n l o s s ) < eps ) | | ( i t e l == i tmax ) )

break ( )

o l o s s<−n l o s s ; i t e l<− i t e l +1

}

45 re turn ( x )

}

R
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