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ABSTRACT 

When applied to time series processes containing occasional level shifts, the log-

periodogram (GPH) estimator often erroneously finds long memory. For a stationary 

short-memory process with a slowly varying level, I show that the GPH estimator is 

substantially biased, and I derive an approximation to this bias. The asymptotic bias lies 

on the (0,1) interval, and its exact value depends on the ratio of the expected number of 

level shifts to a user-defined bandwidth parameter. Using this result, I formulate the 

Modified GPH estimator, which has a markedly lower bias. I illustrate this new 

estimator via applications to soybean prices and stock market volatility. 

 
Key Words: structural break, fractional integration, mean shift. 
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1. INTRODUCTION  

 The study of long memory in time series processes dates back at least to Hurst (1951), 

and Granger and Joyeux (1980) and Granger (1981) introduced it to econometrics. Long-

memory models prove useful in economics as a parsimonious way of modeling highly 

persistent yet mean-reverting processes. They apply to stock price volatility, commodity 

prices, interest rates, aggregate output, and numerous other series. Recently, Diebold and 

Inoue (2001), Liu (2000), Granger and Hyung (1999), Granger and Ding (1996), Lobato 

and Savin (1998), Hidalgo and Robinson (1996), Breidt and Hsu (2002), and others have 

suggested that the apparent long memory in many time series is an illusion generated by 

occasional level shifts. If this suggestion is correct, then a few rare shocks induce the 

observed persistence, while most shocks dissipate quickly. In contrast, all shocks are 

equally persistent in a long memory model. Thus, distinguishing between long memory 

and level shifts could dramatically improve policy analysis and forecasting performance.  

Despite much anecdotal evidence that implicates level shifts as the cause of long 

memory, the properties of long-memory tests in the context of level shifts are not well 

understood. In this paper, I show formally that a popular test for long memory is 

substantially biased when applied to short memory processes with slowly varying means. 

This bias leads to the erroneous conclusion that these processes have long memory. I 

derive an approximation to the bias and show that it depends only on the ratio of the 

expected number of level shifts to a user-defined bandwidth parameter. This result 

illuminates the connection between long memory and level shifts, and it leads directly to 

a simple method for bias reduction. 
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A long-memory process is defined by an unbounded power spectrum at frequency 

zero. The most common long memory model is the fractionally integrated process, for 

which the elasticity of the spectrum at low frequencies measures the fractional order of 

integration, d. This feature motivates the popular log-periodogram, or GPH, regression 

(Geweke and Porter-Hudak, 1983). Specifically, the GPH estimate of d is the slope 

coefficient in a regression of the log periodogram on two times the log frequency.   

Figure 1 illustrates why estimators such as GPH may erroneously indicate long 

memory when applied to level-shift processes. The upper panel shows the power spectra 

of a fractionally integrated long-memory process and a short-memory process with 

occasional level shifts. A sequence of Bernoulli trials determines the timing of the level 

shifts, and a draw from a distribution with finite variance determines each new level. The 

curves cover frequencies, ω, between zero and 1000/2π , which is the range 

recommended by a common rule of thumb for GPH regression with a sample of 1000 

observations. For all but the very lowest frequencies, the spectrum of the level-shift 

process closely corresponds to that of the fractionally integrated process. 

The lower panel of Figure 1 shows the log spectrum evaluated at the log of the first 

32 Fourier frequencies, i.e., Tjj /2π=ω , j = 1,2,…,32, T = 1000. These points represent 

the actual observations that would be used in a GPH regression based on the 

aforementioned rule of thumb. I did not incorporate sample error into these graphs, but it 

is already apparent that d = 0.6 fits this level-shift process better than the true value of 

zero. The fact that the spectrum of the level-shift process is flat at frequency zero only 

becomes evident at the very lowest Fourier frequencies. To obtain a GPH estimate near 

the true value of zero, one would need to focus on the far left portion of the spectrum, 
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either by including a very low number of frequencies in the regression or by increasing 

the sample size T.  

Figure 1 demonstrates the dominant source of bias in the GPH estimator. The short-

memory components create bias because the estimator includes parts of the spectrum 

away from zero. A second source of bias is induced by the use of the log periodogram, 

which is a biased estimator of the log spectrum. In Section 3, I demonstrate that the first 

source of bias clearly dominates the second, even in small samples.  Further, I show that, 

when the shifts are rare relative to the sample size, the dominant component of the GPH 

bias converges to a value on the interval (0,1) as the sample size grows. This result 

applies to a general class of mean-plus-noise processes, which I present in Section 2. 

In Section 4, I use the asymptotic bias result to propose the Modified GPH estimator, 

which has smaller bias than the GPH estimator. I derive the asymptotic properties of the 

proposed method and illustrate it with applications to the relative price of soybeans to 

soybean oil and to volatility in the S&P 500. Section 5 provides concluding remarks, and 

an appendix contains proofs of all theorems. 

 
2. A GENERAL MEAN-PLUS-NOISE PROCESS 

This section presents a general mean-plus-noise (MN) process with short memory, 

which can be written as 

  ttty ε+µ=                   (1) 

  ttt pp ηµµ +−= −1)1( ,               (2) 

where εt and ηt denote short memory random variables with finite nonzero variance. 

Without loss of generality, I assume that εt and ηt have mean zero. I also assume that εt 
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and ηs and are independent of each other for all t and s. The parameter p determines the 

persistence of the level component, µt. If p is small, then the level varies slowly. To 

prevent the variance of µt from blowing up as p goes to zero, I scale the innovation in (2) 

by p . Assuming Gaussianity, the GPH estimator is consistent and asymptotically 

normal when applied to this process (Hurvich et al., 1998). However, I show in Section 3 

that the estimator is substantially biased when p is small, even for large T.  

The MN process with small p and a fractionally integrated process with d < 1 are both 

highly dependent mean-reverting processes. Thus, they compete as potential model 

specifications for persistent mean-reverting data. However, the application of GPH 

regression to non-mean-reverting processes with level shifts has received some attention. 

Granger and Hyung (1999) and Diebold and Inoue (2001) studied the random level-shift 

process of Chen and Tiao (1990). Diebold and Inoue (2001) also studied the stochastic 

permanent breaks (STOPBREAK) model of Engle and Smith (1999). 

The MN process in (1) and (2) places few restrictions on how the level component 

evolves. For example, if ηt is Gaussian, the level evolves continuously and the process is 

a linear ARMA process with autoregressive and moving average roots that almost cancel 

out. However, the MN process also encompasses nonlinear models with discrete level-

shifts. Two prominent examples are stationary random level shifts (Chen and Tiao, 1990) 

and Markov switching (Hamilton, 1989), each of which I discuss in more detail below. 

 
2.1 Random Level Shifts 

 Consider the following random-level-shift (RLS) specification for µt: 

  ttttt ss ξµµ +−= −1)1( ,                (3) 
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where st ~ iid Bernoulli(p) and ξt denotes a short-memory process with mean zero and 

variance 2
ξσ . Each period, the level either equals its previous value or is drawn from 

some distribution with finite variance. To see that (2) encompasses (3), rewrite (3) as 

ttt pp ηµµ +−= −1)1( , where 1)( −−+≡ ttttt spsp µξη  and 22 )2()( ξση pE t −= . Note 

that the variance of µt equals 2
ξσ , and thus it does not blow up as p goes to zero. 

The stationary RLS process in (3) resembles the random-level-shift process of Chen 

and Tiao (1990). The only difference is that Chen and Tiao specify the level as 

tttt s ξµµ += −1 , which is not mean reverting. As Chen and Tiao (1990, pg. 85) state, this 

model “provides a convenient framework to assess the performance of a standard time 

series method on series with level shifts.” They study ARIMA approximations to the RLS 

process and apply the model to variety store sales. McCulloch and Tsay (1993) use the 

Gibbs sampler to estimate a RLS model of retail gasoline prices. Such simulation 

methods are necessary to make inference with this model because integrating over the 2T 

possible sequences of the state process {st} is infeasible, even for moderate sample sizes. 

Chib (1998) and Timmermann (2001) analyze a hidden Markov process that is 

observationally equivalent to the RLS process. However, they condition on the states, µt, 

and treat them as parameters to be estimated. They do not assume that the timing of the 

breaks is fixed, unlike the conventional deterministic break-point analysis (e.g., Bai and 

Perron, 1998), which conditions on both the timing (st) and the level (ξt) of the breaks. 

When one conditions on st or ξt, the moments of yt are time varying and it is unclear what 

the spectrum represents or if it exists. For this reason, I treat st and ξt as realizations from 

a stationary stochastic process to obtain a well-defined spectrum.  
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2.2 Markov Switching 

In a Markov-switching process (Hamilton, 1989), the level switches between a finite 

number of discrete values. Since Hamilton’s seminal paper, Markov-switching models 

have been applied extensively in economics and finance. For a two-state model, the level 

equation is 

10)1( msms ttt +−=µ ,                 (4) 

where m0 and m1 denote finite constants and the state variable st ∈ {0,1} evolves 

according to a Markov chain with the transition matrix 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

10

10

1
1

pp
pp

P . 

If the parameters p0 and p1 are small, then level shifts are rare.  

 Following Hamilton (1994, pg. 684), we can express st as an AR(1) process  

  ttt vppsppps 101100 )1( ++−−+= −                  (5) 

where E(νt|st-1) = 0 and 

  2
2

10

10102

)(
)2()( vt pp

ppppE σν ≡
+

−−
= .   

Combining (4) and (5) yields an AR(1) representation for µt 

 ttt ppmmppmpmp νµµ 10011100110 )()1( +−+−−++= − .      (6) 

Without loss of generality, we can set 00110 =+ mpmp  and it follows that the MN 

process in (2) encompasses (6). This illustration can easily be extended to allow for more 

than two states. Thus, the MN specification incorporates models with discrete as well as 

continuous state space. 
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3. BIAS IN THE GPH ESTIMATOR 

Given the independence of εt and ηs for all t and s, the spectrum of the MN process at 

some frequency ω is  

)(
))cos(22)(1(

)()()()( 2 ω
ω

ωωωω ηεµε f
pp

pffff
−−+

+=+= ,    (7)  

where )(ωεf , )(ωµf , and )(ωηf  denote the spectra of εt, µt, and ηt, respectively. The 

order of integration, d, can be computed from the elasticity of the spectrum at frequencies 

arbitrarily close to zero, i.e., 

ω∂
∂

−=
→ω log

loglim5.0
0

fd  

    ( )⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
−−+

′
+

−−+

−
−′−=

→ ))cos(22)(1(
)(

))cos(22)(1(

)()sin()1(2
)(

)(
lim5.0 2220 ω

ω

ω

ωω
ω

ω
ω ηη

εω pp
fp

pp

fpp
f

f
 

    = 0. 

Thus, as for any short-memory process, the correct value of d equals zero. 

The GPH estimate of d equals the least squares coefficient from a regression of the 

log periodogram on ( ) 2log)cos(22log jjjX ω−≈ω−−≡  for j = 1, 2, …, J where 

Tjj /2π=ω  and J < T. For this estimator to be consistent, it must be that J → ∞ as 

∞→T . However, because long memory reveals itself in the properties of the spectrum 

at low frequencies, J must be small relative to T; that is, a necessary condition for 

consistency is that J/T → 0 as T → ∞. A popular rule of thumb is 2/1TJ = , as 

recommended originally by Geweke and Porter-Hudak (1983).  

The GPH estimate is  

∑ −

∑ −
+=

=

=
J

j
j

J

j
jjj

XX

ffXX
dd

1

2

1
*

)(

)/ˆlog()(
ˆ , 
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where jf̂  denotes the periodogram evaluated at ωj, fj  denotes the spectrum evaluated at 

ωj, and 

  
∑

∑

=

=

−

−
≡ J

j
j

J

j
jj

XX

fXX
d

1

2

1
*

)(

log)(
.                    (8) 

For the MN process, the true value of d equals zero and the bias of the GPH estimator is 

  
( )

∑ −

∑ −
+=

=

=
J

j
j

J

j
jjj

XX

ffEXX
ddbias

1

2

1
*

)(

)/ˆlog()(
)ˆ( .              (9) 

The first term, d*, represents the bias induced by the short-memory components of the 

time series. The second term arises because the log periodogram is a biased estimator of 

the log spectrum.  

Hurvich et al. (1998) proved that, for Gaussian long memory processes, the second 

term in (9) is )/(log3 JJO  and therefore negligible. Deo and Hurvich (2001) obtain 

similar asymptotic results for the GPH estimator in a partially non-Gaussian stochastic 

volatility model. However they require the long memory component of the model to be 

Gaussian. For fully non-Gaussian processes, such as the RLS process in (3), existing 

theoretical results require that the periodogram ordinates be pooled across frequencies 

before running the log periodogram regression (Velasco, 2000). This pooling enables the 

second term to be proved to be negligible. Thus, for non-Gaussian processes like RLS or 

Markov-switching, current theoretical results do not allow formal treatment of the second 

component in (9). Nonetheless, the simulations in Section 3.1 suggest that this 

component is unimportant. 
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3.1 Illustrating the GPH Bias 

To demonstrate the GPH bias, I simulate data from the stationary RLS process for 

various parameter settings and apply the GPH estimator using the rule-of-thumb value 

2/1TJ = . I present the results from GPH estimation in Table 1. The rows labeled GPH 

contain the mean values of d̂  over 1000 Monte Carlo trials, and the rows labeled Exact 

contain the values d* computed from the population spectrum as in (8). The sample size, 

T, ranges from 1000 to 10,000. This range corresponds to the samples sizes that typically 

arise in economics and finance with data measured at weekly or daily frequencies.  

For p less than 0.05, the GPH estimator is substantially biased. In almost all cases, 

however, the exact value d* closely corresponds to the average GPH estimate. This 

proximity shows that d* dominates the GPH bias, and it indicates that we can ignore the 

contribution of the second term in (9). Akiakloglou et al. (1993) demonstrated the same 

phenomenon for stationary AR(1) processes.  

The only case in Table 1 where the average GPH estimate deviates from d* is when 

1000=T  and p is very close to zero. In this case, some of the Monte Carlo realizations 

contain no level shifts, causing d̂  to be close to zero for those realizations. However, 

conditional on there being at least one break in a sample, the average GPH estimate is 

close to d*. This bisection leads to a bimodal distribution for d̂ , a feature that Diebold 

and Inoue (2001) also documented. This bimodal property results from the discontinuity 

in the spectrum of the process at the point where the probability of a break equals zero.  

There are several other notable features in Table 1. First, as T increases, the average 

GPH estimate approaches zero. This convergence is not surprising, given that the 

dominant term in the bias, d*, is )/( 22 TJO  and therefore converges to zero as T → ∞ 
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(see Hurvich et al., 1998, Lemma 1). Second, the standard errors monotonically decrease 

in T in all cases. Third, the average estimate of d increases in 2
ξσ , the size of the level 

shifts. This association arises because larger shifts increase the importance of the 

persistent µt term relative to the iid εt term. However, the effect of shift size on the GPH 

bias diminishes as T increases. This diminution is consistent with Theorem 1 below, 

where I show that shift size does not matter asymptotically. 

 
3.2 Asymptotic GPH Bias 

Hurvich et al. (1998, Lemma 1) showed that d* converges pointwise to zero as T 

increases, i.e., d* → 0 as we move from left to right along the rows in Table 1. For large 

p, this convergence occurs quickly. However, d* can be far away from zero when p is 

small, even for large T. When p = 0, the value of d* is identically zero for all T. Thus, the 

pointwise limit of d* provides a satisfactory approximation when p = 0 and when p is 

large, but we need a better approximation when p lies in a local neighborhood of zero. 

This problem parallels that of estimating the largest root in an autoregression when 

that root is near unity. Both cases involve an estimator that exhibits substantial bias in the 

neighborhood of a point of discontinuity. Influential work by Phillips (1988) and 

Cavanagh et al. (1995) showed that by specifying the autoregressive parameter as lying in 

a local neighborhood of unity, a better large-sample approximation to the distribution of 

the least squares estimator could be obtained.  

Diebold and Inoue (2001) used a similar technique to analyze a Markov-switching 

process with rare shifts. They specified the switching probability within a local 

neighborhood of zero and showed that the variance of partial sums is of the same order of 

magnitude as the variance of partial sums of a fractionally integrated process. However, 
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this result does not admit a particular order of magnitude for the local neighborhood of 

zero that contains p. Thus, it implies that a Markov-switching process can be 

approximated by an integrated process of any nonnegative order, depending the chosen 

neighborhood. Breidt and Hsu (2002) provided similar results for the RLS process. 

In Theorem 1 below, I show that the appropriate choice of neighborhood size depends 

critically on J, the number of terms in the GPH regression. This dependence on J 

emanates from the denominator of the second term in the spectrum (7), which is 

222 ))cos(22)(1( ω+≈ω−−+ ppp  for small ω and p. By setting p to the same order of 

magnitude as ω, I isolate the dominant component of the spectrum. This isolation 

produces a good approximation to d* for small values of p. Specifically, it is appropriate 

to set TcJpT /= , where c is a positive constant. Because TpT T
T
t t /)var( 2

1
1

ησµ =∑ =
− , 

this condition implies that )()var( 1
1

1 −
=

− =∑ JOT T
t tµ . The following theorem formalizes 

these arguments and obtains the asymptotic bias of the GPH estimator. 

 
Theorem 1: Consider the MN process in (1) and (2) and suppose that ∞<< 0

~)( Bf ωε , 

∞<< 0
~)( Bf ωη , and ∞<<′ 1

~|)(| Bf ωη  for all ω in a neighborhood of zero. Assume that 

0)log(1 →− JJT  and let TcJpT /=  where c > 0. Then 

   ( )( )5.0,2,/225.01lim 2
*,

cd
TJ

π−Φ−=
∞→

, 

where ),,( asxΦ  denotes the Lerch transcendent function. 

 

Theorem 1 provides an approximation to the bias in the GPH estimator when a 

general mean-plus-noise process generates the data. This asymptotic bias is a function of 
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the Lerch transcendent function, also known as the Lerch zeta function, which is a 

generalization of the Riemann zeta function (Gradshteyn and Ryzhik, 1980, pg 1072). 

The only parameter in the asymptotic bias is JTpc T /= . This result indicates that the 

reduction in bias from decreasing J asymptotically equals the decrease in bias from a 

proportionate increase in p or T. Figure 2 plots the asymptotic bias and shows that it 

ranges between zero and one and monotonically decreases in c. This graph emphasizes 

the fact that the GPH bias depends both on the properties of the data and on the 

specification of the estimator. One cannot say that a level-shift process appears to be 

fractionally integrated of some order d without reference to the bandwidth J. 

Theorem 1 implies that d* does not converge to zero uniformly in p ∈ [0, 1], i.e., 

*]1,0[, 10
sup dpp ∈  does not converge to zero as ∞→T . In other words, for every T there 

exists a value of p such that d* > 0, despite the fact that d* converges pointwise to zero. 

Thus, traveling from left to right along the rows of Table 1, one sees d* decreasing 

towards zero, but there exists a path through the table in a southeast direction for which 

d* does not converge to zero.  

 
4. MODIFIED GPH REGRESSION 

 As shown in Section 3, the GPH statistic may erroneously indicate long memory 

when the MN process generates the data. In this section, I use the result in Theorem 1 to 

suggest a simple modification to the GPH estimator that reduces bias when the data 

generating process contains level shifts. An important advantage of the Modified GPH 

estimator is its simplicity. It can be implemented easily by adding an extra regressor to 

the GPH regression. This straightforwardness makes it a useful diagnostic tool to signal 

whether a fully specified model with level shifts could outperform a long-memory model.  
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The asymptotic bias in Theorem 1 derives from the fact that, when p is small, the 

dominant component of the spectrum at low frequencies is )log( 22 ω+− p  plus a 

constant. This dominant term is nonlinear in log(ω), so adding )log( 22 ω+− p  as an extra 

regressor in the GPH regression would reduce the bias caused by level shifts. However, 

this strategy is infeasible because p is unknown. I create a feasible estimator by setting 

TkJpT /=  for some constant k > 0 and running the regression 

  jkjjj uZdXf ˆˆlog +++= βα , 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω+−= 2

2

2)(log jkj T
kJZ , 

and ( ))cos(22log jjX ω−−=  as before.  

 The Modified GPH estimator is 

  ( ) ( )ffMXXMXdd ZZ
kk ˆlog~~~ˆ 1
* ′′+=

−
, 

where XXX −≡~ , kkkkZ ZZZZIM ′′−= − ~)~~(~ 1 , kkk ZZZ −≡~ , ∑= =
− J

j jXJX 1
1 , 

∑= =
− J

j kjk ZJZ 1
1 , and kd*  denotes the estimator computed from the spectrum rather than 

the periodogram. Next, I derive the asymptotic properties of the Modified GPH estimator.  

 
4.1 Asymptotic Properties of the Modified GPH Estimator 

 The MN process includes Gaussian processes as a special case. However many useful 

models, such as RLS or Markov switching are non-Gaussian. As discussed in Section 3, 

current theoretical results do not allow formal treatment of the second component of the 

bias for log periodogram regression with non-Gaussian data. Thus, as in Theorem 1, I 

focus on the dominant component of the bias, kd* . I derive an approximation to kd*  for 

the potentially non-Gaussian MN process. 
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Theorem 2: Consider the MN process in (1) and (2) and suppose that ∞<< 0
~)( Bf ωε , 

∞<< 0
~)( Bf ωη , and ∞<<′ 1

~|)(| Bf ωη  for all ω in a neighborhood of zero. Assume that 

0)log(1 →− JJT  and let TcJpT /=  where c > 0. Then 
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5.0,2,)/2(25.011lim 2
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π , 
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   ( ))5.0,2,)/2((25.011 2krv kk π−Φ−−≡ , 

),,( asxΦ  is the Lerch transcendent function, Im(x+iy) ≡ y, and Li2 is the dilogarithm. 

 
The asymptotic bias of the Modified GPH estimator is a function of c and k. Figure 3 

plots this asymptotic bias for various k, along with the asymptotic bias of the GPH 

estimator for comparison. The asymptotic bias equals zero when k = c, so there exists a 

value of k that completely eliminates bias. For k > c, the bias is positive and for k < c the 

bias is negative. There are some other notable features of the asymptotic bias. First, the 

absolute bias of the Modified GPH estimator is less than the GPH bias for all k. Second, 

as level shifts become more frequent, i.e., as c→ ∞, the asymptotic bias goes to zero for 
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all k. Third, the asymptotic bias increases in k, and it converges to the GPH bias in 

Theorem 1 as k → ∞.  

The curves in Figure 3 indicate that the Modified GPH estimator can markedly reduce 

the bias in the GPH estimator due to occasional level shifts. However, such bias reduction 

only becomes useful if the requisite loss in precision is acceptable. To address this issue, 

I derive the asymptotic properties of the Modified GPH estimator under the alternative 

model of Gaussian long memory. 

 
Theorem 3: Consider the fractionally integrated process t

d
t uLy −−= )1( , where {ut} is a 

stationary short-memory process and d ∈ (–0.5, 0.5). Suppose that 0)0( =′uf , 

∞<<′′ 2
~|)(| Bfu ω , and ∞<<′′′ 3

~|)(| Bfu ω  for all ω in a neighborhood of zero. Assume yt is 

Gaussian and that 0)log(1 →− JJT .   Then 
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 and rk and vk are as defined 

in Theorem 2. 

 
Corollary 3: Consider the process in Theorem 3 and assume also that )( 5/4ToJ =  and 

)(log2 JoT = . Then )24/,0()ˆ( 22/1
k

dk vNddJ π⎯→⎯− . 

 
Except for the scale factors bk and vk, the asymptotic bias and variance expressions in 

Theorem 3 are the same as those of Hurvich et al. (1998) for the GPH estimator. The bias 
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factor bk takes the values –0.65, –0.41, –0.28, –0.21, and –0.15 for k = 1, 2, 3, 4, and 5 

respectively. Thus, the bias of the Modified GPH estimator is much smaller than the GPH 

bias. This bias reduction arises because the extra term in Modified GPH regression picks 

up some of the curvature in the log spectrum that causes bias in the GPH estimator. The 

variance factor vk takes the values 0.17, 0.26, 0.31, 0.35, and 0.37 for k = 1, 2, 3, 4, and 5, 

respectively. Thus, for a given J, the variance of the Modified GPH estimator is larger 

than the GPH variance. However, a suitable choice of J mitigates this efficiency loss. 

I simulate the performance of the Modified GPH estimator in two settings; the RLS 

process and a fractionally integrated process. I illustrate the performance of the estimator 

across different values of J for one set of parameter values. In Section 4.2, I give results 

for a range of parameter values, sample sizes, and methods for choosing J.  

Figure 4 shows the performance of the Modified GPH estimator as a function of J 

when applied to a RLS process with T = 5000 and p = 0.02. Comparing panels A and B, 

we see that the asymptotic bias from Theorem 2 closely corresponds to the actual bias. 

For all values of k, this bias is markedly lower than for the GPH estimator. Panel E also 

reveals the lower bias of the Modified GPH estimator. It shows that a standard t-test 

based on the Modified GPH estimate erroneously rejects the null hypothesis that d = 0 

less often than the GPH estimator. The size of this test increases in k because the 

estimator bias increases in k. Panel C shows that RMSE for the Modified GPH estimator 

is minimized for larger values of J than for the GPH estimator. The minimum RMSE 

values are similar across the values of k and are less than those of the GPH estimator.  

Panels D, E, and F illustrate that the variance and asymptotic normality results in 

Theorem 3 and its corollary also apply to the RLS process. Panel D shows that the 



 17

estimated standard error of kd̂ closely corresponds to the actual standard error. I measure 

the actual standard error as the standard deviation of kd̂  across the Monte Carlo draws. 

The estimated standard error is computed as 2/1)~~)(6/( −′ XMX Zπ , which has a limiting 

value of kJv24/π , from Theorem 3. As J increases towards 200, the estimated standard 

error becomes slightly biased downwards and the ratio of the estimated standard error to 

actual standard error decreases towards 0.85. However, for J < 60, the ratio exceeds 0.95.  

Panels E and F show that a standard t-test rejects the null hypothesis that d = 0 with a 

similar frequency to a hypothetical test that assumes normality. The rejection frequency 

of this hypothetical test equals the probability that the estimate exceeds the one-sided 5% 

critical value, assuming that the estimator is normally distributed. The normal 

approximation appears to be adequate, especially for small values of J. 

To assess the efficiency loss from the Modified GPH estimator, I simulate from a 

fractionally integrated process with d = 0.3, where the innovations follow an AR(1) 

process with autoregressive parameter 0.4. I present the results in Figure 5 for various J. 

Excluding the long memory component, this process exhibits less dependence than the 

RLS process in Figure 4 so the RMSE in Figure 5 is minimized for greater values of J 

than in Figure 4. Panels D, E, and F of Figure 5 corroborate the theoretical variance and 

asymptotic normality results in Theorem 3 and its corollary. 

Panels A and B of Figure 5 show that the bias of the GPH estimator exceeds the 

Modified GPH bias for all k, as predicted by Theorem 3. However, for large J the 

asymptotic bias overestimates the actual bias because the second order terms in the bias 

expression become non-negligible. Furthermore, the asymptotic bias overestimates the 

actual bias by more for the Modified GPH estimator than for the GPH estimator, which 
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implies that the asymptotic results overstate the finite sample RMSE efficiency loss of 

the Modified GPH estimator. I study this point further in Section 4.2. 

 
4.2 Choosing J and k 

From Theorem 3, the mean squared error of kd̂  for Gaussian long memory is  
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ignoring the remainder terms and assuming that 0)0( ≠′′uf . The MSE-optimal value of J 

in (10) equals that for the GPH estimator (see Hurvich et al., 1998), except for the scale 

factor 5/12 )( −
kkbv . This scale factor takes the values 1.69, 1.88, 2.09, 2.33, and 2.58 for k = 

1, 2, 3, 4, and 5 respectively. Thus for example, if k = 3, the MSE-optimal choice of J is 

approximately double the MSE-optimal choice for the GPH estimator.  Hurvich and Deo 

(1999) propose a consistent estimator for the ratio )0(/)0( uu ff ′′ , which enables plug-in 

selection of the MSE-optimal J. Their estimator is the coefficient on 25.0 jω  in a 

regression of the log periodogram on Xj and 25.0 jω .   

If J equals its MSE-optimal value, then for Gaussian long memory 
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excluding the remainder terms. Thus, the root mean square error (RMSE) of the Modified 

GPH estimator equals 5/12 )/|(| kk vb  times the RMSE of the GPH estimator when J is 

chosen to be MSE optimal. This scale factor takes the values 1.86, 1.44, 1.24, 1.11, and 
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1.02 for k = 1, 2, 3, 4, and 5, respectively. Thus, there is negligible asymptotic efficiency 

loss when k = 5.  

The asymptotic MSE in (11) does not apply to the MN process for small p. In this 

case, as shown in Theorem 2, the bias is O(1) and dominates the variance for all J. The 

Modified GPH estimator often possesses a smaller RMSE than the GPH estimator in this 

case because the extra term in the log periodogram regression mitigates bias. Suppose we 

choose J as in (10), implying that J increases in k. Because the local to zero parameter c 

equals pT/J, a larger value of J implies a smaller value of c. Figure 6 presents the 

asymptotic bias of the Modified GPH estimator from Theorem 2 assuming that J is 

chosen as in (10). Recall that Figure 3 shows the asymptotic bias for the case when J is 

fixed across values of k. Figure 6 is the same as Figure 3, except with the curves stretched 

horizontally to reflect decreasing values of c as k increases.  Figure 6 reveals negligible 

bias reduction for k = 5. However, the bias reduces substantially when k < 5. 

Given a value of J, choosing k = c implies that the asymptotic bias of the Modified 

GPH estimator equals zero. However, c cannot be efficiently estimated because it defines 

a shrinking neighborhood around zero and thus larger samples bring little information 

about it. If one were ignorant about the value of c, then k could be chosen to minimize 

average bias over all possible values of c. To this end, I numerically integrate under the 

absolute value of the asymptotic bias curves in Theorem 2 and find that average bias is 

minimized at k = 3.16; it is decreasing in k for 0 < k < 3.16 and increasing in k for 3.16 < 

k < ∞. Because the asymptotic bias is almost identical for k = 3 as for k = 3.16, I 

recommend rounding to the nearest integer and setting k = 3.  
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For a given choice of J, choosing k = 3 minimizes average bias if the process contains 

rare level shifts. If we choose MSE-optimal J, then k = 3 implies a 24% higher 

asymptotic RMSE than for the GPH estimator if the true process contains long memory 

(see equation 11). However, in simulations below I show that the efficiency loss can be 

much less than 24% in finite samples. In fact, Modified GPH regression possesses a 

lower RMSE than GPH regression in some long-memory cases. 

I simulate the performance of the Modified GPH estimator for various parameter 

settings. I use both the rule-of-thumb value of J = T1/2 and the plug-in method of Hurvich 

and Deo (1999) to select J. Results for the RLS process are presented in Table 2 and 

results for a fractionally integrated process are contained in Table 3. For plug-in selection 

of J, the results for the Modified GPH estimator with k = 5 closely match those for the 

GPH estimator. This correspondence is consistent with the asymptotic bias curves in 

Figure 6 and the similarity between the asymptotic RMSE’s of each estimator. The 

Modified GPH estimator with k = 1 can possess substantially negative bias, which leads 

to high RMSE values in many cases.  

For the RLS process, setting k = 3 results in the lowest RMSE when p > 0.02 and J is 

chosen using the plug-in method.  For example, if T = 10,000 and p = 0.05, the RMSE 

when k = 3 improves by 35% over the GPH estimator. The RMSE improves by 22%  

over GPH when p = 0.02 and by 20% when p = 0.1 for this same sample size. Size 

distortion also reduces substantially relative to the GPH estimator in these cases. 

In the plug-in method, J increases with k according to the relationship in equation 

(10). This feature results in reduced RMSE for the Modified GPH estimator over the 

GPH estimator in many cases, reinforcing the results in Figure 4. The only cases where 
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RMSE for plug-in selection of J exceeds that for rule-of-thumb selection occur for RLS 

when p = 0.01 and for p = 0.02, which corroborates the findings of Hurvich and Deo 

(1999), who state that the plug-in method works well unless the spectrum is too peaked 

near zero frequency.  

For the long-memory process with p = 0.8, the Modified GPH estimator with k = 3 

outperforms the GPH estimator. It possesses a smaller bias and RMSE. Thus, the 

Modified GPH estimator has the power to correct bias caused by pure autoregressive 

processes. When the short memory component is less persistent (p = 0 and p = 0.4), the 

RMSE of the Modified GPH estimator slightly exceeds that for the GPH estimator. In 

summary, the Modified GPH estimator with k =3 and J selected using the plug-in method 

performs well in most settings. 

 
4.3 Applications 

To illustrate the Modified GPH estimator, I apply it to the weekly relative price of 

soybeans to soybean oil and to daily volatility in the S&P 500. The soybean price data 

span January 1, 1953 to June 30, 2001 and contain the average weekly soybean price in 

Central Illinois and the average weekly soybean oil price in Decatur, Illinois. There are a 

total of 2455 observations. Given that soybean oil derives from soybeans, the prices of 

these two commodities should possess a common trend, which implies that the ratio of 

their prices should be mean reverting. Panel A of Figure 7 plots the log relative price 

series and indicates that it is mean reverting with strong positive dependence. This 

structure suggests that potential candidate models for the relative price include long 

memory and short memory with level shifts.  
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Table 4 presents the estimated values of d from the GPH and Modified GPH 

estimators. The estimated value of d for the soybean data equals 0.79 when the plug-in 

method is used to select J and 0.84 when J = T1/2. These values are significantly different 

from zero. The Modified GPH estimates are substantially smaller than the GPH estimates 

for both methods of bandwidth selection. The estimate of d equals 0.16 when J = T1/2 and 

k = 3, and it equals 0.29 when k = 5. These estimates are insignificantly different from 

zero; when k = 1, the estimated value of d is also insignificant. Thus, a short-memory 

model with level shifts is a viable alternative to long memory for these data. 

Liu (2000), Granger and Hyung (1999), Lobato and Savin (1998), and others cite 

financial market volatility as one setting where long memory and level shifts provide 

competing model specifications. I apply the Modified GPH estimator to absolute daily 

returns on the S&P 500. The data are plotted in Panel B of Figure 7. The sample period is 

January 1, 1961 to July 31, 2002 and returns are measured as the log price change. Table 

4 indicates that a short-memory model with level shifts is not a viable alternative to long 

memory for this series. In fact, the Modified GPH estimates exceed the GPH estimates 

for all values of J and k. The GPH estimates are 0.33 and 0.38 for the two methods of 

choosing J, while the Modified GPH estimates range from 0.39 to 0.65. This result is not 

sensitive to the measure of volatility; using squared returns and the log of absolute returns 

leads to same conclusion. Thus, long memory in volatility of S&P 500 returns appears 

not to be illusory. 

 
5. CONCLUSION 

 This paper addresses the illusion of fractional integration, or long memory, in time 

series containing level shifts. I focus on the log periodogram (GPH) estimator, which is 
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used liberally in empirical work. When applied to a short-memory mean-plus-noise 

process, the GPH estimator is biased and often erroneously indicates the presence of long 

memory. I derive a large sample approximation to this bias and use it to formulate a new 

estimator that has markedly smaller bias. I illustrate the Modified GPH estimator with 

applications to the relative price of soybeans to soybean oil and to stock market volatility. 

The Modified GPH estimator requires choosing a value for a nuisance parameter k. 

This parameter proxies for a local-to-zero parameter that cannot be well estimated from 

the data. I recommend setting k = 3, which minimizes average absolute bias across all 

possible values of the true parameter c. For a given bandwidth J, this recommendation 

leads to positive bias in the Modified GPH estimator if c < 3 and negative bias if c > 3. 

Despite this tradeoff, the Modified GPH estimator with k = 3 exhibits less absolute bias 

than the original GPH estimator for all values of c (see Figures 3 and 6). Thus, although it 

does not completely eliminate bias due to level shifts, the Modified GPH estimator with 

3=k  significantly reduces bias relative to the GPH estimator.  

The Modified GPH estimator suggests whether a short-memory model with level 

shifts should be considered as an alternative to long memory. It is based on the spectrum, 

which represents the linear dependence properties of a time series. However, a process 

with discrete level shifts possesses a nonlinear dependence structure because the 

innovations that define break points are much more persistent than other innovations. 

Models that capture this nonlinearity will generate more accurate inference about the 

features of the data than can be achieved with estimators such as Modified GPH.  

Specifying models that identify the persistent innovations in a time series is 

nontrivial, especially given that each of these shocks may have a different origin. They 
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may arise from a political event, a weather event, a war, a new technology, an earnings 

announcement, or a government policy change, to name a few possibilities.  Most 

Markov-switching models and the particular STOPBREAK model in Engle and Smith 

(1999) take an agnostic approach and focus only on the time series characteristics of the 

data when identifying break points. However, Filardo (1994) and Filardo and Gordon 

(1998) estimate Markov-switching models that use observed data to aid in identifying 

break points. Further research in this vein will improve model performance and enable 

better discrimination between models with occasional persistent shocks and linear long-

memory models. 
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APPENDIX 
Proof of Theorem 1 

Recall that TcJpT /= . We can decompose )log( jf  as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−+
+= )(

))cos(22)(1(
)(loglog 2 j

jTT

T
jj f

pp
pff ω

ω
ω ηε  

   ( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−+

+
++++−=

−
−− )(

))cos(22)(1(
1

1)(log1log 2

22
2222

j
jTT

jTT
jTjjT f

pp
pp

pfp ω
ω

ω
ωωω ηε  

   ( ) ( ) )/)~(log(1log)/()/2(1log 22
TJjT pfDJjc ωπ η++++−=  

where )(minarg~
1 jJjJ f ωω η≤≤= , and  

( ) ( )
( ) 1

))cos(22)(1(1)~(
)(1

1)(
)~( 2

22
22 −

−−+

+
++= −

−
−

jTTJ

jjT
jTj

J

T
jT ppf

fp
pf

f
pD

ωω
ωω

ωω
ω η

η
ε

η

. 

Using the fact that, for all j, 232 3/)sin()cos(22 jjjjj ωωωωω ≤−=−  for some jj ωω ≤≤0 , we have 

( ) ( ) ( )
( )))cos(22)(1(1)~(

))cos(22)(1(1)~(1)(
1)(

)~( 2

222
22

jTTJ

jTTJjTj
jTj

J

T
jT ppf

ppfpf
pf

f
pD

ωω
ωωωω

ωω
ω η

ηη
ε

η −−+

−−+−+
++= −

−−
−  

( ) ( ) ( )))cos(22)(1(1)~(
)~()(

)/()/2(1
)~(
)(

)/()/2(1 2
2222

jTTJ

Jj

J

jT

ppf
ff

Jjc
f

fp
Jjc

ωω
ωω

π
ω
ω

π
η

ηη

η

ε

−−+

−
+++= −  

  
))cos(22)(1(1

)sin())cos(22(
2

32
3
11

jTT

jjTjT

pp
pp

ω
ωωω

−−+

+−
+ −

−−

. 

Note that DjT ≥ 0 and, because ωj < π, we have 1)sin(0 ≤ω≤ j , which implies 

( ) 32
3
12122

)~(
)~()()(

)/()/2(1 jTjT
J

JjjT
jT pp

f
fffp

JjcD ωω
ω

ωωω
π

η

ηηε −− ++
−+

+≤  

2

32122

)(3
)2()2(

)~(
)~()()(21

cJT
j

cJT
j

f
fffcJT

J
j

c J

Jjj ππ
ω

ωωωπ

η

ηηε ++
−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+=

−

. 

Now 

∑

∑

=

=

−

−
= J

j
j

J

j
jj

XX

fXX
d

1

2

1
*

)(

log)(
 



 27

         
( )

∑

∑

∑

∑

=

=

=

=

−

+−
+

−

+−−
= J

j
j

J

j
jTj

J

j
j

J

j
j

XX

DXX

XX

JjcXX

1

2

1

1

2

1

22

)(

1log)(

)(

))/()/2(1log()( π
.         (A1) 

The following results from Hurvich and Beltrao (1994):  

)(log)(log TOJOXX j ==− ,    ))1(1(4)(1
2 oJXXJ

j j +=−∑ = ,  

  )/(log2log2 22
1

1 TJOkJjXX J
kj ++−=− ∑ =

− ,   

and the formula )1(1loglog
1

1 oJkJ
J

k
+−=∑

=

−  imply that 

( ) ( )
))1(1(2

)/()/2(1log))1()/log(1(

)(

)/()/2(1log)(
1

22

1

2

1

22

oJ

JjcoJj

XX

JjcXX
J

j
J

j
j

J

j
j

+

+++
=

−

+−− ∑

∑

∑
=

=

=
ππ

 

             ∫ π++→ 1

0
22 ))/2(1log())log(1(5.0 dxxcx  

             )5.0,2,)/2((25.01 2cπ−Φ−= , 

where ),,( asxΦ  denotes the Lerch transcendent function (Gradshteyn and Ryzhik, 1980, pg 1072).   

 For the second term in (A1), note that )(~ ~)~()( 1
1

−=−≤− JTOBff JjJj ωωωω ηη  for all j = 1, 2, …, 

J. Then, using xx ≤+ )1log(  for x ≥ 0 yields 

( )

∑

∑

∑

∑

=

=

−

=

=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

−+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−

≤
−

+−

J

j
j

J

j J

Jjj
j

J

j
j

J

j
jTj

XX

cJT
j

cJT
j

f
fffcJT

cJ
jXX

XX

DXX

1

2

1
2

3212

1

2

1

)(

)(3
)2()2(

)~(
)~()()(21

)(

1log)(
ππ

ω
ωωωπ

η

ηηε

 

     ( )∑
=

−
−

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=

J

j J

j

T
JO

cJ
j

f
fcJT

cJ
jJJO

1

212
1 21

)~(
)(21)log( π

ω
ωπ

η

ε   

⎟⎟
⎠

⎞
++ 22

3

2

322

3
)2()2(

TJ
j

cJT
j

c
ππ   

          ( ) ( ) ( ) ( ))log()log()log()log( 2111 JJTOJJTOJJTOJJTO −−−− +++=  

          ( ))log(1 JJTO −= . 

Thus, under the assumption 0)log(1 →− JJT , we have )5.0,2,)/2((25.01 2
* cd π−Φ−→  as T → ∞. 

 
 



 28

Proof of Theorem 2: 
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and the result follows. 

 
Proof of Theorem 3: 

The log spectrum of the fractionally integrated process is ujjj fdXf loglog += . Thus the Modified 
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where uf ′′  denotes the second derivative of fu. Similarly, 
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where I used the fact that )1(|| OZZ kkj =−  uniformly in j. 
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Theorem 2. 
 
 For the last term in (A2), I use the proof of Lemma 8 of Hurvich et al. (1998). Their proof goes 

through if their XXa jj −=  is replaced by ( )( ))()1(1)( kkjkj ZZorXX −+−−  and their 2Sxx is replaced by 

4Jvk(1+o(1)). These replacements are valid because the substituted terms are of the same order of 

magnitude as their replacements. It follows that ( ) ( ) ( )JJOffEMXXMX ZZ /log)/ˆlog(~~~ 31
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 For the variance, I use the proof of Theorem 1 of Hurvich et al. (1998). Replacing their aj by 

( )( ))()1(1)( kkjkj ZZorXX −+−−  and their 2Sxx by 4Jvk(1+o(1)) leads to  
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Proof of Corollary 3: 

 This result follows directly from Theorems 2 and 3 above and Theorem 2 of Hurvich et al. (1998), with 

their aj replaced by ( )( ))()1(1)( kkjkj ZZorXX −+−−  and their 2Sxx replaced by 4Jvk(1+o(1)). 
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Table 1: Mean Values of d̂  for a Random Level Shift Process 

  12 =ξσ  32 =ξσ  
   T=1000 T=5000 T=10,000  T=1000 T=5000 T=10,000 

p = 0.25 
  

GPH ( d̂ ) 
Std. Error 

Exact (d*) 
 

  

0.053 
(0.137) 

 
0.050 

 

0.012 
(0.083) 

 
0.010 

 

0.005 
(0.072) 

 
0.005 

  

0.059 
(0.136) 

 
0.055 

 

0.012 
(0.082) 

 
0.011 

 

0.006 
(0.070) 

 
0.006 

p = 0.05 
  

GPH ( d̂ ) 
Std. Error 

Exact (d*) 
 

  

0.420 
(0.156) 

 
0.434 

 

0.196 
(0.090) 

 
0.198 

 

0.127 
(0.071) 

 
0.124 

  

0.448 
(0.159) 

 
0.463 

 

0.202 
(0.090) 

 
0.204 

 

0.130 
(0.072) 

 
0.128 

p = 0.01 
  

GPH ( d̂ ) 
Std. Error 

Exact (d*) 
 

  

0.684 
(0.152) 

 
0.717 

 

0.626 
(0.097) 

 
0.635 

 

0.548 
(0.085) 

 
0.550 

  

0.790 
(0.152) 

 
0.814 

 

0.656 
(0.099) 

 
0.663 

 

0.563 
(0.085) 

 
0.565 

p = 0.005 
 

GPH ( d̂ ) 
Std. Error 

Exact (d*) 
 

  

0.634 
(0.205) 

 
0.695 

 

0.735 
(0.095) 

 
0.747 

 

0.697 
(0.080) 

 
0.702 

  

0.769 
(0.199) 

 
0.830 

 

0.788 
(0.097) 

 
0.796 

 

0.726 
(0.081) 

 
0.730 

 
Note:  The rows labeled GPH give the average of the GPH estimate across 1000 realizations of size T from 
the RLS process ttty ε+µ= , ttttt ss ξµµ +−= −1)1( , st ~ iid Bernoulli(p), ),0(~ 2

ξσξ iidt , and 
)1,0(~ Ntε . The GPH statistic is computed with J = T1/2. The rows labeled Std. Error give the standard 

deviation of the GPH estimates across the 1000 realizations. The asymptotic standard errors for Gaussian 
processes are 0.114, 0.076, and 0.064 for samples of size 1000, 5000 and 10,000 respectively (see Hurvich 
et al., 1998). The rows labeled Exact give the GPH estimate computed using the log spectrum in place of 
the log periodogram. 
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Table 2: Properties of Modified GPH Estimator for RLS Process 

   Plug-in selection of J  J = T1/2 
T p  GPH k = 1 k = 3 k = 5  GPH k = 1 k = 3 k = 5 

Bias 

1000 0.01  0.49 0.66 0.56 0.51  0.72 0.69 0.74 0.74 
 0.02  0.52 0.48 0.54 0.55  0.64 0.29 0.49 0.53 
 0.05  0.34 –0.02 0.24 0.35  0.42 –0.13 0.12 0.18 
 0.10  0.17 –0.16 0.05 0.16  0.22 –0.19 –0.02 0.02 
            

10,000 0.01  0.59 0.47 0.58 0.61  0.55 0.01 0.24 0.30 
 0.02  0.40 0.05 0.30 0.40  0.36 -0.12 0.06 0.11 
 0.05  0.15 –0.10 0.05 0.12  0.12 -0.09 -0.02 0.00 
 0.10  0.06 –0.07 –0.01 0.03  0.04 -0.04 -0.01 -0.01 
            

RMSE 

1000 0.01  0.51 0.74 0.58 0.54  0.71 0.91 0.81 0.80 
 0.02  0.54 0.66 0.58 0.57  0.66 0.63 0.60 0.61 
 0.05  0.40 0.50 0.38 0.41  0.45 0.53 0.34 0.33 
 0.10  0.28 0.52 0.31 0.29  0.26 0.56 0.31 0.27 
            

10,000 0.01  0.60 0.52 0.59 0.62  0.56 0.22 0.29 0.33 
 0.02  0.41 0.18 0.32 0.41  0.36 0.24 0.16 0.17 
 0.05  0.17 0.17 0.11 0.15  0.14 0.22 0.14 0.12 
 0.10  0.10 0.14 0.08 0.09  0.08 0.20 0.14 0.12 
            

Rejection Frequency 

1000 0.01  0.98 0.83 0.94 0.98  1.00 0.42 0.76 0.84 
 0.02  0.96 0.61 0.86 0.95  0.99 0.17 0.50 0.62 
 0.05  0.67 0.22 0.44 0.66  0.90 0.27 0.10 0.17 
 0.10  0.41 0.14 0.27 0.39  0.51 0.01 0.03 0.04 
            

10,000 0.01  1.00 0.88 0.99 0.99  1.00 0.06 0.56 0.76 
 0.02  0.99 0.20 0.89 0.99  1.00 0.01 0.12 0.23 
 0.05  0.67 0.00 0.20 0.55  0.58 0.01 0.03 0.04 
 0.10  0.34 0.01 0.07 0.19  0.14 0.02 0.04 0.04 

 
Notes:     (i) Data generating process: ttty ε+µ= , ttttt ss ξµµ +−= −1)1( , st ~ iid Bernoulli(p), 

)1,0(~ iidNtξ , )1,0(~ iidNtε .  
  (ii) The elements in the table are averages across 1000 Monte Carlo realizations. The plug-in 

method was used with L = 0.1T6/7 frequencies in first stage regression. 
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Table 3: Properties of Modified GPH Estimator for Fractionally Integrated Process 

   Plug-in selection of J  J = T1/2 
T p  GPH k = 1 k = 3 k = 5  GPH k = 1 k = 3 k = 5 

Bias 

1000 0  –0.03 –0.10 –0.05 –0.02  0.01 0.01 0.01 0.01 
 0.4  0.01 –0.14 –0.05 –0.00  0.02 0.00 0.00 0.00 
 0.8  0.14 –0.19 0.01 0.11  0.10 –0.09 –0.02 –0.00 
            

10,000 0  –0.01 –0.02 –0.01 –0.01  0.00 0.00 0.00 0.00 
 0.4  0.01 –0.04 –0.02 –0.00  0.01 0.01 0.01 0.01 
 0.8  0.05 –0.08 –0.02 0.03  0.01 0.00 0.00 0.00 
            

RMSE 

1000 0  0.13 0.34 0.19 0.13  0.14 0.52 0.30 0.27 
 0.4  0.14 0.32 0.18 0.14  0.14 0.50 0.30 0.27 
 0.8  0.26 0.40 0.26 0.26  0.17 0.53 0.31 0.27 
            

10,000 0  0.04 0.08 0.05 0.04  0.07 0.21 0.14 0.13 
 0.4  0.04 0.09 0.05 0.04  0.07 0.20 0.14 0.12 
 0.8  0.11 0.11 0.08 0.10  0.07 0.21 0.14 0.13 
            

Rejection Frequency 

1000 0  0.79 0.48 0.69 0.80  0.75 0.14 0.27 0.33 
 0.4  0.79 0.37 0.69 0.80  0.75 0.13 0.27 0.31 
 0.8  0.78 0.27 0.58 0.73  0.89 0.10 0.23 0.29 
            

10,000 0  0.99 0.93 0.99 1.00  0.99 0.46 0.74 0.81 
 0.4  1.00 0.93 0.99 1.00  0.99 0.47 0.75 0.82 
 0.8  1.00 0.79 0.97 0.99  0.99 0.48 0.71 0.80 

 
Notes:     (i)    Data generating process: t

d
t uLy −−= )1( , where d=0.3, ut = p ut-1 + εt, and  

  εt ~ iid N(0,1).  
  (ii) The elements in the table are averages across 1000 Monte Carlo realizations. The plug-in 

method was used with L = 0.1T6/7 frequencies in first stage regression. 
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Table 4: Estimates of the Long-Memory Parameter 

 GPH Modified GPH 

  k = 1 k = 3 k = 5 

     

Relative price of soybeans to soybean oil 

Plug-in 0.79* 

(0.09) 
0.35 

(0.24) 
0.70* 

(0.14) 
0.72* 

(0.11) 

J = T1/2 = 49 0.84* 

(0.10) 
–0.29 

(0.35) 
0.16 

(0.22) 
0.29 

(0.20) 

     

Absolute daily returns on S&P 500 

Plug-in 0.33* 

(0.03) 
0.47* 

(0.06) 
0.42* 

(0.04) 
0.39* 

(0.03) 

J = T1/2 = 102 0.38* 

(0.07) 
0.65* 

(0.20) 
0.55* 

(0.14) 
0.52* 

(0.12) 

 
Note:  The cells contain estimates of d, the long-memory parameter, with standard errors below 
each estimate in parentheses. A * indicates significance at 5%, using standard normal critical 
values and a one-sided alternative. The soybean data span January 1, 1953 to June 30, 2001 and 
contain the average weekly soybean price in Central Illinois and the average weekly soybean oil 
price in Decatur, Illinois. There are a total of 2455 observations. The stock market data span 
January 1, 1961 to July 31, 2002 and contain the absolute daily returns on the S&P 500 stock 
index. There are a total of 10463 observations. The plug-in method was used with L = 0.1T 6/7 
frequencies in first stage regression. For the GPH estimator, the estimated plug-in values of J are 
67 for soybeans and 657 for the S&P 500. The plug-in values of J for the Modified GPH estimator 
equal the scale factors in equation (10) multiplied by 67 (for soybeans) and 657 (for the S&P 500). 
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 Figure 1: Spectra of Level Shift and Fractionally Integrated Processes  
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Notes: (i) Data generating process (level shifts): ttty ε+µ= , ttttt ss ξµµ +−= −1)1( , εt ~ iid (0, 1),  
st ~ iid,Bernoulli(p), p = 0.1, )1,0(~ iidtξ . 

(ii)  Data generating process (FI): tt uLy 6.0)1( −−= , ut ~ iid (0, 0.3 ). 
(iii) The lower panel shows a scatter plot of the log spectrum against the log of the Fourier 

frequencies ω = 2πj/T, for j = 1, 2, …, T1/2, and T = 1000. 
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Figure 2: Asymptotic Bias of the GPH Estimator 
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Note: Applies to data generated by ttty ε+µ= , tTtTt pp ηµµ +−= −1)1( , ~tη short memory, 
~tε short memory, and t = 1,2,...,T. The bandwidth (number of frequencies) in the GPH 

regression is cTpJ T /= . 
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Figure 3: Asymptotic Bias of the Modified GPH Estimator 
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c 

Note: Applies to data generated by ttty ε+µ= , tTtTt pp ηµµ +−= −1)1( , ~tη short memory, 
~tε short memory, and t = 1,2,...,T. The bandwidth (number of frequencies) in the GPH 

regression is cTpJ T /= . 
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Figure 4: Performance of Modified GPH Estimator for a RLS Process 
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Legend:  

 
Note: Data generating process: ttty ε+µ= , ttttt ss ξµµ +−= −1)1( , st ~ iid Bernoulli(p), 

)1,0(~ iidNtξ , )1,0(~ iidNtε , p = 0.02, T = 5000. The curves are generated from 1000 Monte 
Carlo draws as follows: A.) average estimate of d across draws,  B.) from Theorem 2, C.) 
computed from average and variance of estimates of d across draws, D.) Estimated standard error 
equals 2/1)~~)(6/( −′ XMX Zπ , actual standard deviation equals standard deviation of estimate of d 
across draws, E.) proportion of rejections of null hypothesis that d=0 against d>0, nominal 
size=5%, F.) size computed assuming that estimate of d is normally distributed with mean and 
variance given by average and variance of estimates of d across draws, nominal size=5%. 
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Figure 5: Performance of Modified GPH Estimator for a FI Process  
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Legend:  

 
Note: Data generating process: t

d
t uLy −−= )1( , where d=0.3, ut = 0.4ut-1 + εt, εt ~ iid N(0,1), and 

T=5000. The curves are generated from 1000 Monte Carlo draws as follows: A.) average estimate 
of d across draws,  B.) from Theorem 2, C.) computed from average and variance of estimates of d 
across draws, D.) Estimated standard error equals 2/1)~~)(6/( −′ XMX Zπ , actual standard deviation 
equals standard deviation of estimate of d across draws, E.) proportion of rejections of null 
hypothesis that d=0 against d>0, nominal size=5%, F.) power computed assuming that estimate of 
d is normally distributed with mean and variance given by average and variance of estimates of d 
across draws, nominal size=5%. 
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Figure 6: Asymptotic Bias of Modified GPH Estimator for MSE Optimal J 
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c=pT/J 

Note: Applies to data generated by ttty ε+µ= , tTtTt pp ηµµ +−= −1)1( , ~tη short memory, 
~tε short memory, and t = 1,2,...,T. The bandwidth (number of frequencies) in the GPH 

regression is cTpJ T /= . 
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Figure 7: Soybean and S&P 500 Time Series  

 
A.) Log Relative Price of Soybeans and Soybean Oil 

 

 

 

 

 

 

 

 
 

 
 

B.) Absolute Daily Returns on the S&P 500 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: (i)  The soybean data span January 1, 1953 to June 30, 2001 and contain the 
average weekly soybean price in Central Illinois and the average weekly 
soybean oil price in Decatur, Illinois. There are a total of 2455 observations 
and the units of measurement are cents per bushel for soybeans and cents 
per pound for soybean oil. 
(ii)  The S&P 500 data span January 1, 1961 to July 31, 2002 and comprise 
the absolute daily returns on the S&P 500 stock index. There are a total of 
10463 observations. 

 
 




