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Abstract

Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA-

seq, ChIP-seq, and genome-wide CRISPR analysis to map molecular dependencies of pancreatic 

cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and 

progression. This integrated genomic approach revealed an unexpected utilization of immuno-

regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor 

RORγ, known to drive inflammation and T-cell differentiation, was upregulated during pancreatic 

cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in 

pancreatic cancer growth, and a marked improvement in survival. Further, a large-scale 

retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer 

aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these 

data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem 

cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for 

pancreatic cancer patients.
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In Brief

Pancreatic cancer stem cells co-opt immunoregulatory pathways, a vulnerability that could be 

exploited therapeutically by agents currently in trials for autoimmune diseases

Introduction

While cytotoxic agents remain the standard of care for most cancers, their use is often 

associated with initial efficacy, followed by disease progression. This is particularly true for 

pancreatic cancer, a highly aggressive disease, where current multidrug chemotherapy 

regimens result in tumor regression in 30% of patients, quickly followed by disease 

progression in the vast majority of cases (Conroy et al., 2011). This progression is largely 

due to the inability of chemotherapy to successfully eradicate all tumor cells, leaving behind 

subpopulations that can trigger tumor re-growth. Thus, identifying the cells that are 

preferentially drug resistant, and understanding their vulnerabilities, is critical to improving 

patient outcome and response to current therapies.

In previous work, several groups have focused on identifying the most tumorigenic 

populations within pancreatic cancer. Through this, subpopulations of cells marked by 

expression of CD24+/CD44+/ESA+ (Li et al., 2007), cMet (Li et al., 2011), CD133 

(Hermann et al., 2007), Nestin (Kawamoto et al., 2009), ALDH (Rasheed et al., 2010), and 

more recently DCLK1(Bailey et al., 2014) and Musashi (Fox et al., 2016), have been shown 
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to harbor stem cell characteristics, in being enriched for the capacity to drive tumorigenesis 

and recreate the heterogeneity of the original tumor (Reya et al., 2001). Importantly, these 

tumor propagating cells or cancer stem cells have been shown to be highly resistant to 

cytotoxic therapies, such as gemcitabine, consistent with the finding that cancer patients 

with a high cancer stem cell signature have poorer prognosis relative to those with a low 

stem cell signature (Grosse-Wilde et al., 2015). Although pancreatic cancer stem cells are 

epithelial in origin, these cells frequently express EMT-associated programs, which may in 

part explain their over-representation in circulation and propensity to seed metastatic sites 

(Fox et al., 2016; Hermann et al., 2007). Because these studies define stem cells as a 

population that present a particularly high risk for disease progression defining the 

molecular signals that sustain them remains an essential goal for achieving complete and 

durable responses.

Here we have used a combination of RNA-seq, ChIP-seq and genome-wide CRISPR 

screening to define the molecular framework that sustains the aggressive nature of pancreatic 

cancer stem cells. These studies identified a network of key nodes regulating pancreatic 

cancer stem cells, and revealed an unanticipated role for immuno-regulatory genes in their 

self-renewal and maintenance. Among these, the retinoic acid receptor-related orphan 

receptor gamma (RORγ) a nuclear hormone receptor known for its role in Th17 cell 

specification and regulation of inflammatory cytokine production (Ivanov et al., 2006), 

emerged as a key regulator of stem cells. RORγ expression increased with progression, and 

its blockade via genetic or pharmacologic approaches depleted the cancer stem cell pool and 

profoundly inhibited human and mouse tumor propagation, in part by suppressing a super-

enhancer (SE) associated oncogenic network. Finally, sustained treatment with a RORγ 
inhibitor led to a significant improvement in autochthonous models of pancreatic cancer. 

Together, our studies offer a unique comprehensive map of pancreatic cancer stem cells and 

identify critical vulnerabilities that may be exploited to improve therapeutic targeting of 

aggressive, drug resistant pancreatic cells.

Results

Transcriptomic and epigenetic map of pancreatic cancer cells reveals a unique stem cell 
state

In previous work, we used the KPf/fC mouse model (Hingorani et al., 2003) of pancreatic 

ductal adenocarcinoma (PDAC) to show that a reporter mouse designed to mirror expression 

of the stem cell signal Musashi (Msi) could identify tumor cells that are preferentially drug 

resistant and can drive tumor re-growth (Fox et al., 2016). Consistent with this, Msi2+ tumor 

cells were 209-fold enriched in the ability to give rise to organoids in limiting dilution assays 

(Figure 1A, S1A–B) (Boj et al., 2015). Because Msi+ cells were enriched for tumor 

propagation and drug resistance -classically defined properties of cancer stem cells- we 

postulated that Msi reporters could be used as a tool to understand the molecular 

underpinnings of this aggressive subpopulation within pancreatic cancer.

To map the functional genomic landscape of the stem cell state, we utilized a combination of 

RNA-seq, ChIPseq and genome-wide CRISPR screening (Sanjana et al., 2014). Pancreatic 

cancer cells were isolated from Msi2-reporter (REM2) KPf/fC mice based on GFP and 
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EpCAM expression and analyzed by RNA-seq (Figure 1B). Principal component analysis 

showed that KPf/fC reporter+ tumor cells were distinct from reporter- tumor cells at a global 

transcriptional level, and were defined by a unique set of programs in turn driven by the 

differential expression of over a thousand genes (Figure 1C–D). We focused on genes 

enriched in stem cells in order to understand the transcriptional programs that may 

functionally maintain the stem cell state. Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005) was used to compare this PDAC stem cell transcriptomic 

signature with other cell signatures (Table S1). This revealed that the transcriptional state of 

PDAC stem cells mapped closely with other developmental and stem cell states, indicating 

molecular features aligned with their observed functional traits (Figure 1E–F). Additionally, 

the transcriptional signature of PDAC stem cells was inversely correlated with cell 

proliferation signatures (Figure S1C–D), consistent with our finding that stem cells become 

quiescent following chemotherapy (Figure S1E). Stem cells also harbored metabolic 

signatures associated with tumor aggressiveness including increased sulfur amino acid 

metabolism (Ryu et al., 2011), and enhanced glutathione synthesis, pathways that enable 

survival following radiation and chemotherapy (Lu et al., 2017) (Figure 1G–H). Finally, the 

stem cell transcriptome bore similarities to signatures from relapsed cancers of the breast, 

liver, and colon programs (Figure 1I–J); aligned with this, stem cells showed a significant 

overlap with mesenchymal cells in single cell RNA-seq analysis of pancreatic tumors 

(Figure 1K). These molecular properties may collectively underlie the ability of PDAC stem 

cells to survive chemotherapy and drive tumor recurrence.

Analysis of H3 lysine-27 acetylation (H3K27ac, Figures 1B, S1F), a histone mark associated 

with active enhancers (Hnisz et al., 2013), revealed that the differential gene expression 

programs in stem cells and nonstem cells were driven by changes at the chromatin level. 

Thus, genomic regions enriched for H3K27ac coincided with regions where gene expression 

was increased in each cell type (Figure S1G–J; stem cells: R2=0.28, p=7.1×10−14, non-stem 

cells R2=0.46, p=22×10−16). Because SEs have been proposed to be key drivers of cell 

identity (Hnisz et al., 2013; Whyte et al., 2013), we mapped shared and unique SEs in stem 

and non-stem cells (Figure 1L–O). This analysis revealed that SE associated H3K27ac 

marks were predominantly restricted to either stem cells or non-stem cells, with 65% of all 

SEs being unique to each population (364 unique SEs in stem cells/388 unique SEs in non-

stem cells). In contrast, almost all promoter and conventional enhancerassociated H3K27ac 

marks were shared between stem and non-stem cells, with less than 5% being unique. 

Further, while SEs in the stem cell population were clearly demarcated by peaks with 

substantially greater relative enrichment than the same regions in non-stem cells (Figure 

1M), the SEs found in non-stem cells showed a peak intensity that was only marginally 

greater than the corresponding regions in stem cells (Figure 1O). These data suggest that 

stem cells in pancreatic cancer have a more specialized SE landscape than nonstem cells, 

and raise the possibility that SE linked genes and their regulators may serve to control stem 

cell identity in pancreatic cancer. In support of this, key transcription factors and programs 

that underlie developmental and stem cell states, such as Tead4, Wnt7b and Msi2 (Figure 

1L) and Foxp, Klf7, and Hmga1 (Table S2) were associated with SEs in KPf/fC stem cells.
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Genome-wide CRISPR screen identifies core functional programs in pancreatic cancer

To define which of the programs uncovered by the transcriptional and epigenetic analyses 

represented true functional dependencies of stem cells, we carried out a genome-wide 

CRISPR screen. Thus, primary cell cultures enriched for stem cells (Figure S2A) were 

derived from REM-KPf/fC mice and transduced with the mouse GeCKO CRISPRv2 sgRNA 

library (Sanjana et al., 2014) (Figure 2A). The screen was multiplexed in order to identify 

genes required in conventional 2 dimensional cultures, as well as in 3 dimensional stem cell 

sphere cultures (Rovira et al., 2010) that selectively allow stem cell growth (Fox et al., 2016) 

(Figure 2A). The screens showed clear evidence of selection, with 807 genes depleted in 2D 

(Figure 2B, C) and an additional 178 in 3D stem cell cultures (Figure 2B, D). Importantly, 

the screens showed a loss of oncogenes and an enrichment of tumor suppressors in 

conventional cultures (Figures 2C, S2B), and a loss of stem cell signals and gain of negative 

regulators of stem signals in stem cell conditions (Figures 2D, S2C).

Computational integration of the transcriptomic and CRISPR-based functional genomic data 

was carried out using a network propagation method similar to one developed previously 

(Vanunu et al., 2010). First, the network was seeded with genes that were preferentially 

enriched in stem cells and also identified as essential for stem cell growth (Figure 2E). The 

genes most proximal to the seeds were then determined using the mouse STRING 

interactome (Szklarczyk et al., 2015) based on known and predicted protein-protein 

interactions using network propagation. Fold-change in RNA expression from the RNA-seq 

was overlaid onto the resulting subnetwork. The network was subsequently clustered into 

functional communities based on high interconnectivity between genes, and gene set over-

representation analysis was performed on each community; this analysis identified seven 

subnetworks built around distinct biological pathways, thus providing a sytems level view of 

core programs that may be involved in driving pancreatic cancer growth. These programs 

identified stem and pluripotency pathways, developmental and proteasome signals, lipid 

metabolism/nuclear receptors, cell adhesion/cell-matrix/cell migration, and immuno-

regulatory signaling as pathways integral to the stem cell state (Figures 2E, S2D).

Hijacked immunoregulatory programs as direct regulators of pancreatic cancer cells

Ultimately the power of such a map is the ability to identify and understand key new 

functional dependencies. Thus, we used the network map as a framework to select an 

integrated gene set based on the transcriptomic, epigenomic and the CRISPR analysis (Table 

S3). Selected genes were subsequently targeted via viral shRNA delivery into KPf/fC cells, 

and the impact on pancreatic cancer propagation assessed by sphere assays in vitro or 

tracking tumor growth in vivo. While many genes within the pluripotency/development core 

program were known to be important in pancreatic cancer (e.g. Wnt, Hedgehog and Hippo 

pathways), others such as Onecut3 and Tudor3, genes previously implicated in motor neuron 

development or in stress response, presented new opportunities for discovery and emerged as 

signals essential for pancreatic cancer stem cell growth (Figures 3A, S3A, Table S4). 

Further, novel metabolic factors such as Sptssb, a key contributor to sphingolipid 

metabolism (Zhao et al., 2015), and Lpin2, an enzyme involved in generation of pro-

inflammatory very-low density lipoproteins (Dwyer et al., 2012), were found to be critical 

stem cell dependencies, implicating lipid metabolism as a key point of control in pancreatic 
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cancer (Figure 3B, Table S4). This analysis also identified new gene families in pancreatic 

cancer: thus within the adhesion/cell-matrix core program (Figures 3C–J, S3B), several 

members of the multiple EGF repeat (MEGF) subfamily of orphan adhesion G protein 

coupled receptors (8 of 12) were preferentially expressed in stem cells (Figure 3E). Among 

this set, inhibition of Celsr1, Celsr2 (Figure S3C–D), and Pear1/Jedi (Figure S3E) triggered 

apoptosis, depleted Msi+ stem cells and potently blocked cancer propagation in vitro and in 
vivo (Figures 3G–J, S3F–J, Table S4). These pathways will likely be important to explore 

further, especially because GPCRs can frequently serve as effective drug targets.

An unexpected discovery from this map was the identification of immune pathways/cytokine 

signaling as a core program. In line with this, retrospective analysis of the RNA-seq and 

ChIP-seq analysis revealed that multiple immunoregulatory cytokine receptors and their 

ligands were expressed in stem/non-stem tumor epithelial cells (Figure S3K). This was of 

particular interest because many genes associated with this program, such as IL-10, IL-34 

and CSF1R have been previously studied in context of the tumor microenvironment, but 

have not been reported to be produced by, or to functionally impact, pancreatic epithelial 

cells directly. Single-cell RNA-seq analysis of KPR172H/+C tumor cells (Figure 1K, 3K, 

S3L) confirmed the presence of IL10Rβ, IL34 and CSF1R in epithelial tumor cells (Figure 

3L), as well as in Msi2+ cancer stem cells (Figure S3M). Consistent with expression in stem 

cells, inhibition of IL10Rβ and CSF1R led to a marked loss of sphere forming capacity and 

reduced stem cells (Figure 3M, N, S3N–O) in vitro and impaired tumor growth and 

propagation in vivo (Figure 3O–Q, Figure S3P–Q). The activity of IL10Rβ and CSF1R may, 

at least in part, be ligand-dependent as their ligands were both expressed in epithelial cells 

(Figure S3R), and the impact of ligand and receptor inhibition mirrored each other (Figure 

3R). Collectively, these findings demonstrate an orthogonal co-option of inflammatory 

mediators by pancreatic cancer stem cells and suggest that agents that modulate cytokine 

networks may directly impact pancreatic cancer propagation.

RORγ, a mediator of T cell fate, is a critical dependency in pancreatic cancer

To understand how the gene networks defined above are controlled, we focused on 

transcription factors because of their broad role in initiating programs key to cell fate and 

identity (Neph et al. 2012). Of the 53 transcription factors identified within the map, 12 were 

found to be enriched in stem cells by transcriptomic and epigenetic parameters (Figure 

S4A), and included several pro-tumorigenic pioneer factors such as Sox9 (Kopp et al., 2012) 

and Foxa2 (Bailey et al., 2016). Among transcription factors with no known role in 

pancreatic cancer (Arntl2, Nr1d1 and RORγ), only RORγ was actionable in the near term, 

with clinical-grade antagonists currently available (Table S5) (Gege, 2016). Motif 

enrichment analysis identified RORγ sites as preferentially enriched in chromatin regions 

uniquely open in stem cells (Figure S4B) and in open chromatin regions that corresponded 

with enriched gene expression in stem cells (Figure S4B). These findings were consistent 

with RORγ having a preferential role in controlling gene expression programs important for 

defining the stem cell state in pancreatic cancer.

RORγ was an unanticipated dependency as it is a nuclear hormone receptor that has been 

predominantly studied in Th17 cell differentiation (Ivanov et al., 2006) as well as in 
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metabolism in context of the circadian rhythm (Cook et al., 2015); consistent with this, it 

mapped to both the hijacked cytokine signaling/immune subnetwork and the nuclear 

receptor/metabolism subnetwork (Figures 2E, S2D). While RORγ expression was low in 

normal murine pancreas (data not shown), it rose dramatically in KPf/fC tumors. Within 

epithelial tumor cells, RORγ expression was highly enriched in stem cells relative to non-

stem cells (Figures 4A, S4C–D), mapping to individual EpCAM+Msi+ cells in single cell 

RNA-seq analysis (Figure S4E). RORγ was also expressed in KPR172H/+C tumor cells (not 

shown) suggesting it is active across models of pancreatic cancer. Importantly, RORγ 
expression in mouse models was predictive of expression in human pancreatic cancer: thus, 

while RORγ expression was low in the normal human pancreas and in pancreatitis, its 

expression increased significantly in epithelial tumor cells with disease progression (Figures 

4B–C, S4F). Interestingly RORγ levels decreased with inhibition of IL1R signaling 

suggesting that the upstream regulators of RORγ in pancreatic cancer and in Th17 cells may 

be shared (Figure S4G). Functionally, shRNA-mediated knockdown (Figure S4H) confirmed 

the role of RORγ identified by the genetic CRISPR-based screen as it decreased stem cell 

sphere formation in both KPR172H/+C and KPf/fC cells (Figure 4D–E). At a cellular level, 

RORγ inhibition led to increased cell death (Figure S4I), decreased proliferation (Figure 

S4I) and an ultimate depletion of Msi+ stem cells (Figure 4F). Importantly, tumor cells 

lacking RORγ showed a striking defect in tumor initiation and propagation in vivo, with a 

11-fold reduction in final tumor volume (Figures 4G, S4J). Finally, analysis of KPf/fC mice 

crossed to either RORγ null (Ivanov et al., 2006) or wild type controls revealed that targeted 

genetic deletion of RORγ can trigger an overall decrease in tumor burden; this ranged from 

reduced tumor weight or cellularity to the presence of more normal and benign PanIN 

lesions and reduced areas of adenocarcinoma in the pancreata (Figure 4H–I).

To define the transcriptional programs RORγ controls in pancreatic cancer cells, we used a 

combination of ChIP-seq and RNA-seq and found that RORγ knockdown led to extensive 

changes in transcriptional programs key to driving cancer growth: this included stem cell 

signals such as Wnt, BMP, and Fox (Figure 4J), and pro-tumorigenic signals such as Hmga2 

(Figure 4K). Further, 28% of stem cell SE linked genes were downregulated in cells lacking 

RORγ (Figure 4L). Consistent with this, ChIP-seq analysis of active chromatin regions 

identified RORγ binding sites as disproportionately present in stem cell SEs compared to 

other transcription factors such as CBFB, or even the pioneer factor Sox9 (Figure 4M). 

Additional SE-linked stem cell genes regulated by RORγ included Msi2, Klf7 and Ehf 

(Figures 4N–O), potent oncogenic signals that can control cell fate. Mechanistically, loss of 

RORγ did not markedly impact the stem cell SE landscape in two independent KPf/fC 

derived lines (Figure S4K–M), suggesting that it may instead bind a preexisting landscape to 

preferentially impact transcriptional changes. These data collectively suggest that RORγ is 

an upstream regulator of a powerful SE-linked oncogenic network in pancreatic cancer stem 

cells.

The finding that RORγ is a key dependency in pancreatic cancer was particularly exciting, 

as multiple inhibitors have been developed to target this pathway in autoimmune disease 

(Huh and Littman, 2012). Pharmacologic blockade of RORγ using the inverse agonist 

SR2211 (Kumar et al., 2012) decreased sphere and organoid formation in both KPf/fC and 

KPR172H/+C cells (Figures 5A–D). To assess the impact of the inhibitor in vivo, SR2211 was 
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delivered, either alone or in combination with gemcitabine, into immunocompetent KPf/fC 

derived tumor bearing mice (Figures 5E, S5A). SR2211 significantly reduced tumor growth 

as a single agent (Figures 5F–G); further, while gemcitabine alone had no impact on the 

stem cell burden, SR2211 triggered a 3-fold depletion in CD133+ and Msi+ cells, and an 11-

fold depletion of CD133+ and 6 fold depletion of Msi2+ cells in combination with 

gemcitabine (Figure 5H, I). This suggests the exciting possibility that SR2211 can eradicate 

chemotherapy resistant cells (Figure 5H, I). Finally, to assess any impact on survival, we 

delivered the RORγ inhibitor into autochthonous, tumor-bearing KPf/fC mice; while none of 

the vehicle-treated mice were alive 25 days after the initiation of treatment, 75% of mice that 

received SR2211 were still alive at this point and 50% were alive even at 45 days after 

treatment initiation. SR2211 not only doubled median survival −18 days for vehicle-treated 

mice and 38.5 days for SR2211-treated mice- but also led to a 6-fold reduction in the risk of 

death (Figure 5J, HR=0.16). Hmga2, identified originally from the RNA-seq as a 

downstream target of RORγ, was downregulated in pancreatic epithelial cells following 

SR2211 delivery in vivo, suggesting effective target engagement at mid-point during 

treatment, although this was less apparent in end stage tumors and may explain why treated 

mice ultimately succumbed to disease (Figure S5B–C). Collectively, these data show that 

pancreatic cancer stem cells are profoundly dependent on RORγ and suggest that its 

inhibition may lead to a significant improvement in disease control. Further, the fact that its 

impact on tumor burden was amplified several fold when combined with gemcitabine 

suggests that it may synergize with chemotherapy to more effectively target tumors that 

remain refractory to therapy.

To visualize whether RORγ blockade impacts tumor progression by targeting stem cells, 

SR2211 was delivered in REM2-KPf/fC mice with late-stage autochthonous tumors and 

responses tracked via live imaging. In vehicletreated mice, large stem cell clusters could be 

readily identified throughout the tumor based on GFP expression driven by the Msi reporter 

(Figures 5K–L). SR2211 led to a marked depletion of the majority of large stem cell clusters 

within 1 week of treatment (Figures 5K–L), with no increased necrosis observed in 

surrounding tissues. This unique spatio-temporal analysis suggests that stem cell depletion is 

an early consequence of RORγ blockade and highlights the REM2-KPf/fC model as an 

effective platform to assess the impact of new agents on therapy resistant cells.

Since treatment with the inhibitor in immunocompetent mice or in patients in vivo could 

have an impact on both cancer cells and immune cells we tested the effect of SR2211 in the 

context of an immunocompromised environment. SR2211 significantly impacted growth of 

KPf/fC tumors in an immunodeficient background (Figure 6A–B) suggesting that 

inflammatory T cells were not necessary for its effect. Further, in chimeric mice where wild 

type tumors were transplanted into either wild type or RORγ null recipients, tumors grew 

equivalently (Figure 6C–D), suggesting that loss of RORγ in only the immune cells (such as 

Th17) and microenvironment, has no detectable impact on tumor growth. Finally, we 

delivered SR2211 into these chimeric mice to test if RORγ antagonists may influence tumor 

growth via Th17 cells, and found that the impact of SR2211 on tumor growth, cellularity, 

and stem cell content was equivalent in chimeric wild type and RORγ recipient mice (Figure 

6E–L). These data collectively suggest that most of the observed effect of RORγ inhibition 

is tumor cell specific and not indirect through an environmental/Th17 dependence on RORγ 
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(Figure 6E–L, S6A–B). Consistent with a primarily epithelial cell impact, we did not detect 

any significant impact of SR2211 on nonneoplastic cells such as CD45+, CD31+, MDSC, 

macrophage, dendritic, or T cells within the tumors at early time points (Figure S6C–M). 

These data do not preclude the possibility that RORγ inhibitors may act on both tumor cells 

and immune cells in human tumors if more inflammatory T cells were present.

To further explore the functional relevance of RORγ to human pancreatic cancer, RORγ was 

inhibited through both genetic and through pharmacologic means in human PDAC cells. 

CRISPR based disruption of RORγ led to a ~3 to 9-fold loss of colony formation in human 

FG PDAC cells (Figure 7A). To test if RORγ inhibition could block human tumor growth in 
vivo, we transplanted human PDAC cells into the flanks of immunocompromised mice and 

allowed tumors to become palpable before beginning treatment (Figure 7B). Compared to 

vehicle-treatment, SR2211 delivery was highly effective and tumor growth was essentially 

extinguished with a nearly 6-fold reduction in growth in mice receiving SR2211 (Figure 

7C). Primary patient tumor cells were also remarkably sensitive to RORγ blockade, with a 

~300 fold reduction in total organoid volume following SR2211 treatment (Figures 7D–F) 

and a severe reduction of in vivo tumor growth in primary patient-derived xenografts (Figure 

7G). Mechanistically, RNA-seq and Gene Ontology (GO) analysis of human FG and KPf/fC 

cells identified a set of cytokines/growth factors as key common RORγ driven programs: 

thus Semaphorin 3c, its receptor Neuropilin2, Oncostatin M, and Angiopoietin, all highly 

pro-tumorigenic factors harboring RORγ binding motifs were shared targets of RORγ in 

mouse and human pancreatic cancer (Figure S7A–D). The dependence of human pancreatic 

tumors on RORγ function are exciting in light of the fact that genomic amplification of 

RORC occurs in ~12% of pancreatic cancer patients (Figure 7H). This raises the possibility 

that RORC status could serve as a biomarker for patients who may be particularly responsive 

to RORC inhibition.

Lastly, to determine whether expression of RORγ could serve as a prognostic for specific 

clinicopathologic features, we performed RORγ immunohistochemistry on tissue 

microarrays from a clinically annotated retrospective cohort of 116 PDAC patients (Table 

S6). For 69 patients, matched pancreatic intraepithelial neoplasia (PanIN) lesions were 

available. RORγ protein was detectable (cytoplasmic expression only/low or cytoplasmic 

and nuclear expression/high, Figure 7I) in 113 PDAC cases and 55 PanIN cases, 

respectively, and absent in 3 PDAC cases and 14 PanIN cases, respectively. Compared to 

cytoplasmic expression, nuclear RORγ expression in PDAC cases was significantly 

correlated with higher pathological tumor (pT) stages at diagnosis (Figures 7J). In addition, 

RORγ expression in PanIN lesions was positively correlated with lymphatic vessel invasion 

(L1, Figure 7K) and lymph node metastasis (pN1, pN2, Figure 7L) by the invasive 

carcinoma. These results indicate that RORγ expression in PanIN lesions and nuclear RORγ 
localization in invasive carcinoma could be useful markers to predict PDAC aggressiveness.

Discussion

It is an unfortunate truth that the most common outcome for pancreatic cancer patients 

following a response to cytotoxic therapy is not cure, but eventual disease progression and 

death driven by drug resistant stem cellenriched populations (Fox et al., 2016; Van den 
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Broeck et al., 2013). The work we report here has allowed us to develop a comprehensive 

molecular map of the core dependencies of pancreatic cancer stem cells by integrating their 

epigenetic, transcriptomic and functional genomic landscape. This dataset thus provides a 

novel resource for understanding therapeutic resistance and relapse, and for discovering new 

vulnerabilities in pancreatic cancer. As an example, the MEGF family of orphan receptors 

represent a potentially actionable family of adhesion GPCRs, as this class of signaling 

receptors have been considered druggable in cancer and other diseases (Lappano and 

Maggiolini, 2011). Importantly, our epigenetic analyses revealed a significant relationship 

between SE-associated genes and functional dependencies in stem cell conditions; stem cell-

unique SE-associated genes were more likely to drop out in the CRISPR screen in stem cell 

conditions compared to SE-associated genes in non-stem cells (Figure S7D). This provides 

additional evidence for the epigenetic and transcriptomic link to functional dependencies in 

cancer stem cells, and further supports previous findings that SE-linked genes may be more 

important for maintaining cell identity and more sensitive to perturbation (Whyte et al., 

2013).

From the screens presented here, we identified an unexpected dependence of KPf/fC stem 

cells on inflammatory and immune mediators, such as the CSF1R/IL-34 axis and IL-10R 

signaling. While these have been previously thought to act primarily on immune cells in the 

microenvironment (Guillonneau et al., 2017; Wang et al., 2017), our data suggest that stem 

cells may have evolved to co-opt this cytokine-rich milieu, allowing them to resist effective 

immune-based elimination. These findings also suggest that agents targeting CSF1R, which 

are under investigation for pancreatic cancer (Sankhala KK, 2017), may act not only on the 

tumor microenvironment but also directly on pancreatic epithelial cells themselves. Our 

studies also raise the possibility that therapies designed to activate the immune system to 

attack tumors may have effects on tumor cells directly: just as we have learned 

chemotherapy can kill tumor cells but may also impair the immune system, therapies 

designed to activate the immune system such as IL-10 may also promote the growth of 

tumor cells. This dichotomy of action will need to be considered in order to better optimize 

immunomodulatory treatment strategies.

A major new discovery driven by the network map was the identification of RORγ as a key 

immuno-regulatory pathway hijacked in pancreatic cancer. This together with prior work 

implicating RORγ in prostate cancer models (Wang et al., 2016) suggests that this pathway 

may not be restricted to pancreatic cancer but may be more broadly utilized in other 

epithelial cancers. Interestingly, while cytokines such as IL17, IL21, IL22, and CSF2 are 

known targets of RORγ in Th17 cells, none of these were downregulated in Rorc-deficient 

pancreatic tumor cells. The fact that RORγ regulated potent oncogenes marked by SEs in 

stem cells, suggests it may be critical for defining the stem cell state in pancreatic cancer. 

The basis of this intriguing epithelial specific activity of RORγ will be an important area for 

future exploration. In addition, the network of genes impacted by RORγ inhibition included 

other immune-modulators such as CD47, raising the possibility that it may also mediate 

interaction with the surrounding niche and immune system cells. Finally, one particularly 

exciting aspect of this work is the identification of RORγ as a potential therapeutic target in 

pancreatic cancer. Given that inhibitors of RORγ are currently in Phase II trials for 
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autoimmune diseases (Gege, 2016), our findings suggest that repositioning these agents as 

pancreatic cancer therapies warrants further investigation.

STAR METHODS

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Tannishtha Reya (treya@ucsd.edu).

Experimental Model and Subject Details

Mice—REM2 (Msi2eGFP/+) reporter mice were generated as previously described (Fox et 

al., 2016); all of the reporter mice used in experiments were heterozygous for the Msi2 

allele. The LSL-KrasG12D mouse, B6.129S4-Krastm4Tyj/J (Stock No: 008179), the p53flox/

flox mouse, B6.129P2- Trp53tm1Brn/J (Stock No: 008462), and the RORγ -knockout mouse 

(Stock No: 007571), were purchased from The Jackson Laboratory. Dr. Chris Wright 

provided Ptf1a-Cre mice as previously described (Kawaguchi et al., 2002). LSL-R172H 

mutant p53, Trp53R172H mice were provided by Dr. Tyler Jacks as previously described 

(Olive et al., 2004) (JAX Stock No: 008183). The mice listed above are immunocompetent, 

with the exception of RORγ -knockout mice which are known to lack TH17 T-cells as 

described previously (Ivanov et al., 2006); these mice were maintained on antibiotic water 

(sulfamethoxazole and trimethoprim) when enrolled in flank transplantation and drug 

studies as outlined below. Immune compromised NOD/SCID (NOD.CB17-Prkdcscid/J, 

Stock No: 001303) and NSG (NOD.Cg-PrkdcscidIL2rgtm1Wji/SzJ, Stock No: 005557) mice 

purchased from The Jackson Laboratory. All mice were specific-pathogen free, and bred and 

maintained in the animal care facilities at the University of California San Diego. Animals 

had access to food and water ad libitum, and were housed in ventilated cages under 

controlled temperature and humidity with a 12 hour light-dark cycle. All animal experiments 

were performed according to protocols approved by the University of California San Diego 

Institutional Animal Care and Use Committee. No sexual dimorphism was noted in all 

mouse models. Therefore, males and females of each strain were equally used for 

experimental purposes and both sexes are represented in all data sets. All mice enrolled in 

experimental studies were treatment-naïve and not previously enrolled in any other 

experimental study.

Both REM2-KPf/fC and WT-KPf/fC mice (REM2; LSL-KrasG12D/+; Trp53f/f; Ptf1a-Cre and 

LSLKrasG12D/+, ; Trp53f/f; Ptf1a-Cre respectively) were used for isolation of tumor cells, 

establishment of primary mouse tumor cell and organoid lines, and autochthonous drug 

studies as described below. REM2-KPf/fC and KPf/fC mice were enrolled in drug studies 

between 8 to 11 weeks of age, and were used for tumor cell sorting and establishment of cell 

lines when they reached end-stage disease between 10 and 12 weeks of age. REM2KPf/fC 

mice were used for in vivo imaging studies between 9.5–10.5 weeks of age. KPR172HC 

(LSL-KrasG12D/+, ; Trp53R172h/+; Ptf1a-Cre) mice were used for cell sorting and 

establishment of tumor cell lines when they reached end-stage disease between 16–20 weeks 

of age. In some studies, KPf/fC-derived tumor cells were transplanted into the flanks of 

immunocompetent littermates between 5–8 weeks of age. Littermate recipients (WT or 
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REM2LSL-KrasG12D/+, ; Trp53f/f or Trp53f/f mice) do not develop disease or express Cre. 

NOD/SCID and NSG mice were enrolled in flank transplantation studies between 5 to 8 

weeks of age; KPf/fC derived cell lines and human FG cells were transplanted 

subcutaneously for tumor propagation studies in NOD/SCID recipients and patientderived 

xenografts and KPf/fC derived cell lines were transplanted subcutaneously in NSG recipients 

as described in detail below.

Human and mouse pancreatic cancer cell lines—Mouse primary pancreatic cancer 

cell lines and organoids were established from end-stage, treatment-naïve KPR172HC and 

WT- and REM2-KPf/fC mice as follows: tumors from endpoint mice (10–12 weeks of age 

for KPf/fC or 16–20 weeks of age for KPR172HC mice) were isolated and dissociated into 

single cell suspension as described below. Cells were then either plated in 3D sphere or 

organoid culture conditions detailed below, or plated in 2D in 1x DMEM containing 10% 

FBS, 1x pen/strep, and 1x non-essential amino acids. At the first passage in 2D, cells were 

collected and resuspended in HBSS (Gibco, Life Technologies) containing 2.5% FBS and 2 

mM EDTA, then stained with FC block followed by 0.2 µg/106 cells anti-EpCAM APC 

(eBioscience). EpCAM+ tumor cells were sorted then re-plated for at least one additional 

passage. To evaluate any cellular contamination and validate the epithelial nature of these 

lines, cells were analyzed by flow cytometry again at the second passage for markers of 

blood cells (CD45-PeCy7, eBioscience), endothelial cells (CD31-PE, eBioscience), and 

fibroblasts (PDGFR-PacBlue, Biolegend). Cell lines were derived from both female and 

male KPR172HC and WT- and REM2-KPf/fC mice equivalently; both sexes are equally 

represented in the cell-based studies outlined below. Functional studies were performed 

using cell lines between passage 2 and passage 6. Human FG cells were originally derived 

from a PDAC metastasis and have been previously validated and described (Morgan et al., 

1980). Patient-derived xenograft cells and organoids were derived from originallyconsented 

(now deceased) PDAC patients and use was approved by UCSD’s IRB; cells were de-

identified and therefore no further information on patient status, treatment or otherwise, is 

available. FG cell lines were cultured in 2D conditions in 1x DMEM (Gibco, Life 

Technologies) containing 10% FBS, 1x pen/strep (Gibco, Life Technologies), and 1x non-

essential amino acids (Gibco, Life Technologies). 3D in vitro culture conditions for all cells 

and organoids are detailed below.

Patient cohort for PDAC tissue microarray—The PDAC patient cohort and 

corresponding TMAs used for RORγ immunohistochemical staining and analysis have been 

reported previously (Wartenberg et al., 2018). Patient characteristics are detailed in Table S6. 

Briefly, a total of 4 TMAs with 0.6 mm core size was constructed: three TMAs for PDACs, 

with samples from the tumor center and invasive front (mean number of spots per patient: 

10.5, range: 2–27) and one TMA for matching PanINs (mean number of spots per patient: 

3.7, range: 1–6). Tumor samples from 116 patients (53 females and 63 males; mean age: 

64.1 years, range: 34–84 years) with a diagnosis of PDAC were included. Matched PanIN 

samples were available for 69 patients. 99 of these patients received some form of 

chemotherapy; 14 received radiotherapy. No sexual dimorphism was observed in any of the 

parameters assessed, including overall survival (p=0.227), disease-free interval (p=0.3489) 

or RORγ expression in PDAC (p=0.9284) or PanINs (p=0.3579). The creation and use of the 
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TMAs were reviewed and approved by the Ethics Committee at the University of Athens, 

Greece, and the University of Bern, Switzerland, and included written informed consent 

from the patients or their living relatives.

Method Details

In vitro and in vivo experimental strategies

Tissue dissociation, cell isolation, and FACS analysis : Mouse pancreatic tumors were 

washed in MEM (Gibco, Life Technologies) and cut into 1–2 mm pieces immediately 

following resection. Tumor pieces were collected into a 50 ml Falcon tube containing 10 ml 

Gey’s balanced salt solution (Sigma), 5 mg Collagenase P (Roche), 2 mg Pronase (Roche), 

and 0.2 µg DNAse I (Roche). Samples were incubated for 20 minutes at 37°C, then pipetted 

up and down 10 times and returned to 37°C. After 15 more minutes, samples were pipetted 

up and down 5 times, then passaged through a 100 µm nylon mesh (Corning). Red blood 

cells were lysed using RBC Lysis Buffer (eBioscience) and the remaining tumor cells were 

washed, then resuspended in HBSS (Gibco, Life Technologies) containing 2.5% FBS and 2 

mM EDTA for staining, FACS analysis, and cell sorting. Analysis and cell sorting were 

carried out on a FACSAria III machine (Becton Dickinson), and data were analyzed with 

FlowJo software (Tree Star). For analysis of cell surface markers by flow cytometry, 5×105 

cells were resuspended in HBSS containing 2.5% FBS and 2 mM EDTA, then stained with 

FC block followed by 0.5 µl of each antibody. For intracellular staining, cells were fixed and 

permeabilized using the BrdU flow cytometry kit (BD Biosciences); Annexin V apoptosis 

kit was used for analysis of apoptotic cells (eBioscience). The following rat antibodies were 

used: anti-mouse EpCAM-APC (eBioscience), anti-mouse CD133-PE (eBioscience), anti-

mouse CD45-PE and PE/Cy7 (eBioscience), anti-mouse CD31-PE (BD Bioscience), anti-

mouse Gr-1-FITC (eBioscience), antimouse F4/80-PE (Invitrogen), anti-mouse CD11b-APC 

(Affymetrix), anti-mouse CD11c-BV421 (Biolegend), anti-mouse CD4-FITC (eBioscience) 

and CD4-Pacific blue (Bioglegend), anti-mouse CD8-PE (eBioscience), anti-mouse IL-17-

APC (Biolegend), anti-mouse BrdU-APC (BD Biosciences), and anti-mouse Annexin-V-

APC (eBioscience). Propidium-iodide (Life Technologies) was used to stain for dead cells.

In vitro growth assays: We describe below the distinct growth assays used for pancreatic 

cancer cells. Colony formation is an assay in Matrigel (thus adherent/semi-adherent 

conditions), while tumorsphere formation is an assay in non-adherent conditions. We have 

found that cell types from different sources grow better in different conditions. For example, 

the murine KPR172H/+C and the human FG cell lines grow much better in Matrigel, while 

KPf/fC cell lines often grow well in non-adherent, sphere conditions (though they can also 

grow in Matrigel).

Pancreatic tumorsphere formation assay: Pancreatic tumorsphere formation assays were 

performed and modified from (Rovira et al., 2010). Briefly, lowpassage (<6 passages) WT or 

REM2-KPf/fC cell lines were infected with lentiviral particles containing shRNAs; 

positively infected (red) cells were sorted 72 hours after transduction. 100–300 infected cells 

were suspended in tumorsphere media: 100 µl DMEM F-12 (Gibco, Life Technologies) 

containing 1x B-27 supplement (Gibco, Life Technologies), 3% FBS, 100 µM Β-

mercaptoethanol (Gibco, Life Technologies), 1x non-essential amino acids (Gibco, Life 
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Technologies), 1x N2 supplement (Gibco, Life Technologies), 20 ng/ml EGF (Gibco, Life 

Technologies), 20 ng/ml bFGF2 (Gibco, Life Technologies), and 10 ng/ml ESGRO mLIF 

(Thermo Fisher). Cells in media were plated in 96-well ultra-low adhesion culture plates 

(Costar) and incubated at 37°C for 7 days. KPf/fC in vitro tumorsphere formation studies 

were conducted at a minimum of n=3 independent wells per cell line across two independent 

shRNA of n=3 wells; however, the majority of these experiments were additionally 

completed in >1 independently-derived cell lines n=3, at n=3 wells per shRNA. shRNA 

sequences and average knockdown efficiencies are available in Table S7.

Matrigel colony assay: For FG and KPR172H/+C cells, 300–500 cells were resuspended in 50 

µl tumorsphere media as described below, then mixed with Matrigel (BD Biosciences, 

354230) at a 1:1 ratio and plated in 96-well ultra-low adhesion culture plates (Costar). After 

incubation at 37°C for 5 min, 50 µl tumorsphere media was placed over the Matrigel layer. 

Colonies were counted 7 days later. For RORγ inhibitor studies, SR2211 or vehicle was 

added to cells in tumorsphere media, then mixed 1:1 with Matrigel and plated. SR2211 or 

vehicle was also added to the media that was placed over the solidified Matrigel layer. For 

FG colony formation, n=5 independent wells across 5 independent CRISPR sgRNA and two 

independent non-targeting gRNA. KPR172H/+C cells were plated at n=3 wells per shRNA 

from one cell line.

Organoid culture assays: Tumors from 10–12 week old end stage REM2-KPf/fC mice were 

harvested and dissociated into a single cell suspension as described above. Tumor cells were 

stained with FC block then 0.2 µg/106 cells anti-EpCAM APC (eBioscience). Msi2+/

EpCAM+ (stem) and Msi2-/EpCAM+ (non-stem) cells were sorted, resuspended in 20 µl 

Matrigel (BD Biosciences, 354230). For limiting dilution assay, single cells were 

resuspended in matrigel at the indicated numbers from 20,000 to 10 cells/20uL and were 

plated as a dome in a pre-warmed 48 well plate. After incubation at 37°C for 5 min, domes 

were covered with 300 µl PancreaCult Organoid Growth Media (Stemcell Technologies). 

Organoids were imaged and quantified 6 days later. Limiting dilution analysis for stemness 

assessment was performed using web based- extreme limiting dilution analysis (ELDA) 

software (Hu and Smyth, 2009). Msi2+/EpCAM+ (stem) and Msi2-/EpCAM+ (non-stem) 

organoids were derived from n=3 independent mice and plated at the indicated cell numbers.

Organoids from REM2-KPf/fC were passaged at ~1:2 as previously described (Boj et al., 

2015). Briefly, organoids were isolated using Cell Recovery Solution (Corning 354253), 

then dissociated using Accumax AM105), and plated in 20 µl matrigel (BD Biosciences, 

354230) domes on a pre-warmed 48-well plate. After incubation at 37°C for 5 min, domes 

were covered with 300 µl PancreaCult Organoid Growth Media (Stemcell Technologies). 

SR2211 (Cayman Chemicals 11972) was resuspended in DMSO at 20 mg/ml, diluted 1:10 

in 0.9% NaCl containing 0.2% acetic acid, and further diluted in PancreaCult Organoid 

Media (Stemcell Technologies) to the indicated dilutions. Organoids were grown in the 

presence of vehicle or SR2211 for 4 days, then imaged and quantified, n=3 independent 

wells plated per dose per treatment group.

Primary patient organoids were established and provided by Dr. Andrew Lowy. Briefly, 

patient-derived xenografts were digested for 1 hour at 37°C in RPMI containing 2.5% FBS, 
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5mg/ml Collagenase II, and 1.25mg/ml Dispase II, then passaged through a 70 µM mesh 

filter. Cells were plated at a density of 1.5 × 105 cells per 50 µl Matrigel. After domes were 

solidified, growth medium was added as follows: RPMI containing 50% Wnt3a conditioned 

media, 10% R-Spondin1-conditioned media, 2.5% FBS, 50 ng/ml EGF, 5 mg/ml Insulin, 

12.5 ng/ml hydrocortisone, and 14 µM Rho Kinase Inhibitor. After establishment, organoids 

were passaged and maintained as previously described (Boj et al., 2015). Briefly, organoids 

were isolated using Cell Recovery Solution (Corning 354253), then dissociated into single 

cell suspensions with TrypLE Express (ThermoFisher 12604) supplemented with 25 µg/ml 

DNase I (Roche) and 14 µM Rho Kinase Inhibitor (Y27632, Sigma). Cells were split 1:2 

into 20 µl domes plated on pre-warmed 48 well plates. Domes were incubated at 37°C for 5 

min, then covered with human complete organoid feeding media (Boj et al., 2015) without 

Wnt3a-conditioned media. SR2211 was prepared as described above, added at the indicated 

doses, and refreshed every 3 days. Organoids were grown in the presence of vehicle or 

SR2211 for 7 days, then imaged and quantified, n=3 independent wells plated per dose per 

treatment group. All images were acquired on a Zeiss Axiovert 40 CFL. Organoids were 

counted and measured using ImageJ 1.51s software.

Flank tumor transplantation studies : For the flank transplantation studies outlined below, 

investigators blinded themselves when possible to the assigned treatment group of each 

tumor for analysis; mice were de-identified after completion of flow cytometry analysis. The 

number of tumors transplanted for each study is based on past experience with studies of this 

nature, where a group size of 10 is sufficient to determine if pancreatic cancer growth is 

significantly affected when a regulatory signal is perturbed (see Fox et al., 2016).

For shRNA-infected pancreatic tumor cell propagation in vivo, cells were infected with 

lentiviral particles containing shRNAs and positively infected (red) cells were sorted 72 

hours after transduction. 1000 low passage, shRNA-infected KPf/fC, or 2×105 shRNA-

infected FG cells were resuspended in 50 µl culture media, then mixed 1:1 with matrigel 

(BD Biosciences). Cells were injected subcutaneously into the left or right flank of 5–8 

week-old NOD/SCID recipient mice. Subcutaneous tumor dimensions were measured with 

calipers 1–2x weekly for 6–8 weeks, and two independent transplant experiments were 

conducted for each shRNA at n=4 independent tumors per group.

For drug-treated KPf/fC flank tumors, 2×104 low passage REM2-KPf/fC tumor cells were 

resuspended in 50 µl culture media, then mixed 1:1 with matrigel (BD Biosciences). Cells 

were injected subcutaneously into the left or right flank of 5–8 week-old non-tumor bearing, 

immunocompetent littermates or NSG mice. Tumor growth was monitored twice weekly; 

when tumors reached 0.1–0.3 cm3, mice were randomly enrolled in treatment groups and 

were treated for 3 weeks as described below. After 3 weeks of therapy, tumors were 

removed, weighed, dissociated, and analyzed by flow cytometry. Tumor volume was 

calculated using the standard modified ellipsoid formula ½ (Length x Width2); n=2–4 

tumors per treatment group in immunocompetent littermate recipients and n=4–6 tumors per 

treatment group in NSG recipients.

For chimeric transplantation studies, 2×104 low passage REM2-KPf/fC tumor cells were 

resuspended in 50 µl culture media, then mixed 1:1 with matrigel (BD Biosciences). Cells 
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were injected subcutaneously into the left or right flank of 5–8 week-old RORγ-knockout or 

wild-type recipients; recipient mice were maintained on antibiotic water (sulfamethoxazole 

and trimethoprim). Tumor growth was monitored twice weekly; when tumors reached 0.1–

0.3 cm3, mice were randomly enrolled in treatment groups and were treated for 3 weeks as 

described below. After 3 weeks of therapy, tumors were removed, weighed, dissociated, and 

analyzed by flow cytometry. Tumor volume was calculated using the standard modified 

ellipsoid formula ½ (Length x Width2); n=5–7 tumors per treatment group.

For drug-treated human pancreatic tumors 2×104 human pancreatic FG cancer cells or 2×106 

patientderived xenograft cells were resuspended in 50 µl culture media, then mixed 1:1 with 

matrigel (BD Biosciences). Cells were injected subcutaneously into the left or right flank of 

5–8 week-old NSG recipient mice. Mice were randomly enrolled in treatment groups and 

were treated for 3 weeks as described below. After 3 weeks of therapy, tumors were 

removed, weighed, and dissociated. Subcutaneous tumor dimensions were measured with 

calipers 1–2x weekly. Tumor volume was calculated using the standard modified ellipsoid 

formula ½ (Length x Width2); at minimum n=4 tumors per treatment group.

In vivo and in vitro drug therapy : The RORγ inverse agonists SR2211 (Cayman 

Chemicals, 11972, or Tocris, 4869) was resuspended in DMSO at 20 mg/ml or 50 mg/ml, 

respectively, then mixed 1:20 in 8% Tween80-PBS prior to use. Gemcitabine (Sigma, 

G6423) was resuspended in H2O at 20 mg/ml. For in vitro drug studies, low passage (<6 

passage) WT- or REM2-KPf/fC cells, (<10 passage) KPR172H/+C cells, or FG cells were 

plated in non-adherent tumorsphere conditions or Matrigel colony conditions for 1 week in 

the presence of SR2211 or vehicle. For KPf/fC littermate, NSG mice, and RORγ-knockout 

mice bearing KPf/fC-derived flank tumors and for NSG mice bearing flank patient-derived 

xenograft tumors, mice were treated with either vehicle (PBS) or gemcitabine (25 mg/kg 

i.p., 1x weekly) alone or in combination with vehicle (5% DMSO, 8% Tween80-PBS) or 

SR2211 (10 mg/kg i.p., daily) for 3 weeks. RORγ-knockout mice and paired wild-type 

littermates were maintained on antibiotic water (sulfamethoxazole and trimethoprim). For 

NOD/SCID mice bearing flank FG tumors, mice were treated with either vehicle (5% 

DMSO in corn oil) or SR2211 (10 mg/kg i.p., daily) for 2.5 weeks. All flank tumors were 

measured 2x weekly and mice were sacrificed if tumors were >2cm3, in accordance with 

IACUC protocol. For KPf/fC autochthonous survival studies, 8 week old tumor-bearing 

KPf/fC mice were enrolled in either vehicle (10% DMSO, 0.9% NaCl with 0.2% acetic acid) 

or SR2211 (20 mg/kg i.p., daily) treatment groups, and treated until moribund, where n=4 

separate mice per treatment group. For all drug studies, tumor-bearing mice were randomly 

assigned into drug treatment groups; treatment group size was determined based on previous 

studies (Fox et al., 2016).

Immunofluorescence staining : Pancreatic cancer tissue from KPf/fC mice was fixed in Z-

fix (Anatech Ltd, Fisher Scientific) and paraffin embedded at the UCSD Histology and 

Immunohistochemistry Core at The Sanford Consortium for Regenerative Medicine 

according to standard protocols. 5 µm sections were obtained and deparaffinized in xylene. 

The human pancreas paraffin embedded tissue array was acquired from US Biomax, Inc 

(BIC14011a). For paraffin embedded mouse and human pancreas tissues, antigen retrieval 
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was performed for 40 minutes in 95–100°C 1x Citrate Buffer, pH 6.0 (eBioscience). 

Sections were blocked in PBS containing 0.1% Triton X100 (Sigma- Aldrich), 10% Goat 

Serum (Fisher Scientific), and 5% bovine serum albumin (Invitrogen).

KPf/fC cells and human pancreatic cancer cell lines were suspended in DMEM (Gibco, Life 

Technologies) supplemented with 50% FBS and adhered to slides by centrifugation at 500 

rpm. 24 hours later, cells were fixed with Z-fix (Anatech Ltd, Fisher Scientific), washed in 

PBS, and blocked with PBS containing 0.1% Triton X-100 (Sigma-Aldrich), 10% Goat 

serum (Fisher Scientific), and 5% bovine serum albumin (Invitrogen). All incubations with 

primary antibodies were carried out overnight at 4°C. Incubation with Alexafluor-conjugated 

secondary antibodies (Molecular Probes) was performed for 1 hour at room temperature. 

DAPI (Molecular Probes) was used to detect DNA and images were obtained with a 

Confocal Leica TCS SP5 II (Leica Microsystems). The following primary antibodies were 

used: chicken anti-GFP (Abcam, ab13970) 1:500, rabbit anti-RORγ (Thermo Fisher, PA5–

23148) 1:500, mouse anti-E-Cadherin (BD Biosciences, 610181) 1:500, anti-Keratin 

(Abcam, ab8068) 1:15, anti-Hmga2 (Abcam. Ab52039) 1:100, anti-Celsr1 (EMD Millipore 

abt119) 1:1000, anti-Celsr2 (BosterBio A06880) 1:250.

Tumor imaging : 9.5–10.5 week old REM2-KPf/fC mice were treated either vehicle or 

SR2211 (10 mg/kg i.p., daily) for 8 days. For imaging, mice were anesthetized by 

intraperitoneal injection of ketamine and xylazine (100/20 mg/kg). In order to visualize 

blood vessels and nuclei, mice were injected retro-orbitally with AlexaFluor 647 anti-mouse 

CD144 (VE-cadherin) antibody and Hoechst 33342 immediately following anesthesia 

induction. After 25 minutes, pancreatic tumors were removed and placed in HBSS 

containing 5% FBS and 2mM EDTA. 80–150 µm images in 1024 × 1024 format were 

acquired with an HCX APO L20x objective on an upright Leica SP5 confocal system using 

Leica LAS AF 1.8.2 software. GFP cluster sizes were measure using ImageJ 1.51s software. 

2 mice per treatment group were analyzed in this study; 6–10 frames were analyzed per 

mouse.

Analysis of tissue microarrays 

Immunohistochemistry (IHC) and staining analysis: TMAs were sectioned to 2.5 µm 

thickness. IHC staining was performed on a Leica BOND RX automated immunostainer 

using BOND primary antibody diluent and BOND Polymer Refine DAB Detection kit 

according to the manufacturer’s instructions (Leica Biosystems). Pre-treatment was 

performed using citrate buffer at 100°C for 30 min, and tissue was stained using rabbit anti-

human RORγ(t) (polyclonal, #PA5–23148, Thermo Fisher Scientific) at a dilution of 

1:4000. Stained slides were scanned using a Pannoramic P250 digital slide scanner 

(3DHistech). RORγ(t) staining of individual TMA spots was analyzed in an independent 

and randomized manner by two board-certified surgical pathologists (C.M.S and M.W.) 

using Scorenado, a custommade online digital TMA analysis tool. Interpretation of staining 

results was in accordance with the “reporting recommendations for tumor marker prognostic 

studies” (REMARK) guidelines. Equivocal and discordant cases were re-analyzed jointly to 

reach a consensus. RORγ(t) staining in tumor cells was classified microscopically as 0 

(absence of any cytoplasmic or nuclear staining), 1+ (cytoplasmic staining only), and 2+ 
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(cytoplasmic and nuclear staining). For patients in whom multiple different scores were 

reported, only the highest score was used for further analysis. Spots/patients with no 

interpretable tissue (less than 10 intact, unequivocally identifiable tumor cells) or other 

artifacts were excluded.

Statistical analysis of TMA data: Descriptive statistics were performed for patients’ 

characteristics. Frequencies, means, and range values are given. Association of RORγ(t) 

expression with categorical variables was performed using the Chi-square or Fisher’s Exact 

test, where appropriate, while correlation with continuous values was tested using the 

nonparametric Kruskal-Wallis or Wilcoxon test. Univariate survival time differences were 

analyzed using the Kaplan-Meier method and log-rank test. All p-values were two-sided and 

considered significant if <0.05.

shRNA lentiviral constructs and production : Short hairpin RNA (shRNA) constructs 

were designed and cloned into pLV-hU6-mPGK-red vector by Biosettia. The target 

sequences are listed in Supplementary Table S7. Virus was produced in 293T cells 

transfected with 4 µg shRNA constructs along with 2 µg pRSV/REV, 2 µg pMDLg/pRRE, 

and 2 µg pHCMVG constructs (Dull et al., 1998; Sena-Esteves et al., 2004). Viral 

supernatants were collected for two days then concentrated by ultracentrifugation at 20,000 

rpm for 2 hours at 4°C. Knockdown efficiency for the shRNA constructs used in this study 

varied from 45–95% (Table S7).

RT-qPCR analysis : RNA was isolated using RNeasy Micro and Mini kits (Qiagen) and 

converted to cDNA using Superscript III (Invitrogen). Quantitative real-time PCR was 

performed using an iCycler (BioRad) by mixing cDNAs, iQ SYBR Green Supermix 

(BioRad) and gene specific primers. Primer sequences are available in Table S7. All real 

time data was normalized to B2M or Gapdh.

Genome-wide profiling and bioinformatic analysis

Primary Msi2+ and Msi2- KPf/fC RNA-seq, data analysis, and visualization

Stem and non-stem tumor cell isolation followed by RNA-sequencing: Tumors from three 

independent 10–12 week old REM2-KPf/fC mice were harvested and dissociated into a 

single cell suspension as described above. Tumor cells were stained with FC block then 0.2 

µg/106 cells anti-EpCAM APC (eBioscience). 70,00–100,00 Msi2+/EpCAM+ (stem) and 

Msi2-/EpCAM+ (non-stem) cells were sorted and total RNA was isolated using RNeasy 

Micro kit (Qiagen). Total RNA was assessed for quality using an Agilent Tapestation, and all 

samples had RIN 7.9. RNA libraries were generated from 65 ng of RNA using Illumina’s 

TruSeq Stranded mRNA Sample Prep Kit following manufacturer’s instructions, modifying 

the shear time to 5 minutes. RNA libraries were multiplexed and sequenced with 50 basepair 

(bp) single end reads (SR50) to a depth of approximately 30 million reads per sample on an 

Illumina HiSeq2500 using V4 sequencing chemistry.

RNA-seq analysis: RNA-seq fastq files were processed into transcript-level summaries using 

kallisto (Bray et al., 2016), an ultrafast pseudo-alignment algorithm with expectation 

maximization. Transcript-level summaries were processed into gene-level summaries by 
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adding all transcript counts from the same gene. Gene counts were normalized across 

samples using DESeq normalization (Anders and Huber 2010) and the gene list was filtered 

based on mean abundance, which left 13,787 genes for further analysis. Differential 

expression was assessed with an R package limma (Ritchie et al., 2015) applied to log2-

transformed counts. Statistical significance of each test was expressed in terms of local false 

discovery rate lfdr (Efron and Tibshirani, 2002) using the limma function eBayes 
(Lönnstedt, I., and Speed, T. 2002). lfdr, also called posterior error probability, is the 

probability that a particular gene is not differentially expressed, given the data.

Cell state analysis: For cell state analysis, Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005) was performed with the Bioconductor GSVA (Hänzelmann et al., 

2013) and the Bioconductor GSVAdata c2BroadSets gene set collection, which is the C2 

collection of canonical gene sets from MsigDB3.0 (Subramanian et al., 2005). Briefly, 

GSEA evaluates a ranked gene expression data-set against previously defined gene sets. 

GSEA was performed with the following parameters: mx.diff=TRUE, verbose=TRUE, 

parallel.sz=1, min.sz=5, max.sz=500, rnaseq=F.

Primary Msi2+ and Msi2- KPf/fC ChIP-seq for histone H3K27ac

Stem and non-stem tumor cell isolation followed by H3K27ac ChIP-sequencing: 70,000 

Msi2+/EpCAM+ (stem) and Msi2-/EpCAM+ (non-stem) cells were freshly isolated from a 

single mouse as described above. ChIP was performed as described previously (Deshpande 

et al., 2014); cells were pelleted by centrifugation and crosslinked with 1% formalin in 

culture medium using the protocol described previously (Deshpande et al., 2014). Fixed 

cells were then lysed in SDS buffer and sonicated on a Covaris S2 ultrasonicator. The 

following settings were used: Duty factor: 20%, Intensity: 4 and 200 Cycles/burst, Duration: 

60 seconds for a total of 10 cycles to shear chromatin with an average fragment size of 200–

400 bp. ChIP for H3K27Acetyl was performed using the antibody ab4729 (Abcam, 

Cambridge, UK) specific to the H3K27Ac modification. Library preparation of eluted 

chromatin immunoprecipitated DNA fragments was performed using the NEBNext Ultra II 

DNA library prep kit (E7645S and E7600S- NEB) for Illumina as per the manufacturer’s 

protocol. Library prepped DNA was then subjected to single-end, 75-nucleotide reads 

sequencing on the Illumina NexSeq500 sequencer at a sequencing depth of 20 million reads 

per sample.

H3K27ac signal quantification from ChIP-seq data: Pre-processed H3K27ac ChIP 

sequencing data was aligned to the UCSC mm10 mouse genome using the Bowtie2 aligner 

(version 2.1.0 (Langmead and Salzberg, 2012), removing reads with quality scores of <15. 

Non-unique and duplicate reads were removed using samtools (version 0.1.16, Li et al., 

2009) and Picard tools (version 1.98), respectively. Replicates were then combined using 

BEDTools (version 2.17.0). Absolute H3K27ac occupancy in stem cells and non-stem cells 

was determined using the SICER-df algorithm without an input control (version 1.1; (Zang 

et al., 2009), using a redundancy threshold of 1, a window size of 200bp, a fragment size of 

150, an effective genome fraction of 0.75, a gap size of 200bp and an E-value of 1000. 

Relative H3K27ac occupancy in stem cells vs non-stem cells was determined as above, with 

the exception that the SICER-df-rb algorithm was used.
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Determining the overlap between peaks and genomic features: Genomic coordinates for 

features such as coding genes in the mouse mm10 build were obtained from the Ensembl 84 

build (Ensembl BioMart). The observed vs expected number of overlapping features and 

bases between the experimental peaks and these genomic features (datasets A and B) was 

then determined computationally using a custom python script, as described in (Cole et al., 

2017). Briefly, the number of base pairs within each region of A that overlapped with each 

region of B was computed. An expected background level of expected overlap was 

determined using permutation tests to randomly generate >1000 sets of regions with 

equivalent lengths and chromosomal distributions to dataset B, ensuring that only sequenced 

genomic regions were considered. The overlaps between the random datasets and 

experimental datasets were then determined, and p values and fold changes were estimated 

by comparing the overlap occurring by chance (expected) with that observed empirically 

(observed). This same process was used to determine the observed vs expected overlap of 

different experimental datasets.

RNA-Seq/ChIP-Seq correlation 

Overlap between gene expression and H3K27ac modification: Genes that were up- or 

down-regulated in stem cells were determined using the Cuffdiff algorithm, and H3K27ac 

peaks that were enriched or disfavoured in stem cells were determined using the SICER-df-

rb algorithm. The H3K27ac peaks were then annotated at the gene level using the 

‘ChippeakAnno’ (Zhu et al., 2010) and ‘org.Mm.eg.db’ packages in R, and genes with peaks 

that were either exclusively up-regulated or exclusively down-regulated (termed ‘unique up’ 

or ‘unique down’) were isolated. The correlation between upregulated gene expression and 

up-regulated H3K27ac occupancy, or down-regulated gene expression and down-regulated 

H3K27ac occupancy, was then determined using the Spearman method in R.

Creation of composite plots: Composite plots showing RNA expression and H3K27ac 

signal across the length of the gene were created. Up- and down-regulated RNA peaks were 

determined using the FPKM output values from Tophat2 (Kim et al., 2013), and up- and 

down-regulated H3K27ac peaks were determined using the SICER algorithm. Peaks were 

annotated with nearest gene information, and their location relative to the TSS was 

calculated. Data were then pooled into bins covering gene length intervals of 5%. 

Overlapping up/up and down/down sets, containing either up- or down-regulated RNA and 

H3K27ac, respectively, were created, and the stem and non-stem peaks within these sets 

were plotted in Excel.

Super-enhancer identification: Enhancers in stem and non-stem cells were defined as 

regions with H3K27ac occupancy, as described in Hnisz et al. 2013. Peaks were obtained 

using the SICER-df algorithm before being indexed and converted to .gff format. H3K27ac 

Bowtie2 alignments for stem and non-stem cells were used to rank enhancers by signal 

density. Super-enhancers were then defined using the ROSE algorithm, with a stitching 

distance of 12.5kb and a TSS exclusion zone of 2.5kb. The resulting super-enhancers for 

stem or non-stem cells were then annotated at the gene level using the R packages 

‘ChippeakAnno’(Zhu et al., 2010) and ‘org.Mm.eg.db’, and overlapping peaks between the 

two sets were determined using ‘ChippeakAnno’. Super-enhancers that are unique to stem or 
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non-stem cells were annotated to known biological pathways using the Gene Ontology (GO) 

overrepresentation analysis functionality of the tool WebGestalt (Wang et al., 2017).

Genome-wide CRISPR screen 

CRISPR library amplification and viral preparation: The mouse GeCKO CRISPRv2 

knockout pooled library (Sanjana et al., 2014) was acquired from Addgene (catalog# 

1000000052) as two half-libraries (A and B). Each library was amplified according to the 

Zhang lab library amplification protocol (Sanjana et al., 2014) and plasmid DNA was 

purified using NucleoBond Xtra Maxi DNA purification kit (Macherey-Nagel). For lentiviral 

production, 24 x T225 flasks were plated with 21×106 293T each in 1x DMEM containing 

10% FBS. 24 hours later, cells were transfected with pooled GeCKOv2 library and viral 

constructs. Briefly, media was removed and replaced with 12.5 ml warm OptiMEM (Gibco). 

Per plate, 200 µl PLUS reagent (Life Technologies), 10 µg library A, and 10 µg library B 

was mixed in 4 ml OptiMEM along with 10 µg pRSV/REV (Addgene), 10 µg pMDLg/

pRRE (Addgene), and 10 µg pHCMVG (Addgene) constructs. Separately, 200 µl 

Lipofectamine (Life Technologies) was mixed with 4 ml OptiMEM. After 5 minutes, the 

plasmid mix was combined with Lipofectamine and left to incubate at room temperature for 

20 minutes, then added dropwise to each flask. Transfection media was removed 22 hours 

later and replaced with DMEM containing 10% FBS, 5 mM MgCl2, 1 U/ml DNase (Thermo 

Scientific), and 20mM HEPES pH 7.4. Viral supernatants were collected at 24 and 48 hours, 

passaged through 0.45 µm filter (corning), and concentrated by ultracentrifugation at 20,000 

rpm for 2 hours at 4°C. Viral particles were resuspended in DMEM containing 10% FBS, 5 

mM MgCl2, and 20 mM HEPES pH 7.4, and stored at −80°C.

CRISPR screen in primary KPf/fC cells: 3 independent primary REM2-KPf/fC cell lines 

were established as described above and maintained in DMEM containing 10% FBS, 1x 

non-essential amino acids, and 1x pen/strep. At passage 3, each cell line was tested for 

puromycin sensitivity and GeCKOv2 lentiviral titer was determined. At passage 5, 1.6×108 

cells from each cell line were transduced with GeCKOv2 lentivirus at an MOI of 0.3. 48 

hours after transduction, 1×108 cells were harvested for sequencing (“T0”) and 1.6×108 

were re-plated in the presence of puromycin according to previously tested puromycin 

sensitivity. Cells were passaged every 3–4 days for 3 weeks; at every passage, 5×107 cells 

were re-plated to maintain library coverage. At 2 weeks post-transduction, cell lines were 

tested for sphere forming capacity. At 3 weeks, 3×107 cells were harvested for sequencing 

(“2D; cell essential genes”), and 2.6×107 cells were plated in sphere conditions as described 

above (“3D; stem cell essential genes”). After 1 week in sphere conditions, tumorspheres 

were harvested for sequencing.

Analysis of the 2D data sets revealed that while some genes were required for growth in 2D, 

other genes that were not (detectably) required for growth in 2D were still required for 

growth in 3D (for example, Rorc Sox4, Foxo1, Wnt1 and ROBO3). These findings 

suggested that growth in 3D is dependent on a distinct or additional set of pathways. Since 

only stem cells give rise to 3D spheres, targets within the 3D datasets were prioritized for 

subsequent analyses. Of the genes that significantly dropped out in 3D, some also dropped 

out in 2D either significantly or as a trend.
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DNA isolation, library preparation, and sequencing: Cells pellets were stored at −20°C 

until DNA isolation using Qiagen Blood and Cell Culture DNA Midi Kit (13343). Briefly, 

per 1.5×107 cells, cell pellets were resuspended in 2 ml cold PBS, then mixed with 2 ml cold 

buffer C1 and 6 ml cold H2O, and incubated on ice for 10 minutes. Samples were pelleted 

1300 x g for 15 minutes at 4°C, then resuspended in 1 ml cold buffer C1 with 3 ml cold 

H2O, and centrifuged again. Pellets were then resuspended in 5 ml buffer G2 and treated 

with 100 µl RNAse A (Qiagen 1007885) for 2 minutes at room temperature followed by 95 

µl Proteinase K for 1 hour at 50°C. DNA was extracted using Genomic-tip 100/G columns, 

eluted in 50°C buffer QF, and spooled into 300 µl TE buffer pH 8.0. Genomic DNA was 

stored at 4°C. For sequencing, gRNAs were first amplified from total genomic DNA isolated 

from each replicate at T0, 2D, and 3D (PCR1). Per 50 µl reaction, 4 µg gDNA was mixed 

with 25 µl KAPA HiFi HotStart ReadyMIX (KAPA Biosystems), 1 µM reverse primer1, and 

1 µM forward primer1 mix (including staggers). Primer sequences are available upon 

request. After amplification (98°C 20 seconds, 66°C 20 seconds, 72°C 30 seconds, × 22 

cycles), 50 µl of PCR1 products were cleaned up using QIAquick PCR Purification Kit 

(Qiagen). The resulting ~200bp products were then barcoded with Illumina Adaptors by 

PCR2. 5 µl of each cleaned PCR1 product was mixed with 25 µl KAPA HiFi HotStart 

ReadyMIX (KAPA Biostystems), 10 µl H2O, 1 µM reverse primer2, and 1 µM forward 

primer2. After amplification (98°C 20 seconds, 72°C 45 seconds, × 8 cycles), PCR2 

products were gel purified, and eluted in 30 µl buffer EB. Final concentrations of the desired 

products were determined and equimolar amounts from each sample was pooled for Next 

Generation Sequencing.

Processing of the CRISPR screen data: Sequence read quality was assessed using fastqc 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Prior to alignment, 5’ and 3’ 

adapters flanking the sgRNA sequences were trimmed off using cutadapt v1.11 (Martin, 

2011) with the 5’-adapter TCTTGTGGAAAGGACGAAACACCG and the 3’ adapter 

GTTTTAGAGCTAGAAATAGCAAGTT, which came from the cloning protocols of the 

respective libraries deposited on Addgene (https://www.addgene.org/pooled-library/). Error 

tolerance for adapter identification was set to 0.25, and minimal required read length after 

trimming was set to 10 bp. Trimmed reads were aligned to the GeCKO mouse library using 

Bowtie2 (Langmead and Salzberg, 2012) in the --local mode with a seed length of 11, an 

allowed seed mismatch of 1 and the interval function set to ‘S,1,0.75’. After completion, 

alignments were classified as either unique, failed, tolerated or ambiguous based on the 

primary (‘AS’) and secondary (‘XS’) alignment scores reported by Bowtie2. Reads with the 

primary alignment score not exceeding the secondary score by at least 5 points were 

discarded as ambiguous matches. Read counts were normalized by using the “size-factor” 

method as described in (Li et al., 2014). All of this was done using implementations in the 

PinAPL-Py webtool (Spahn et al., 2017), with detailed code available at https://github.com/

LewisLabUCSD/PinAPL-Py.

gRNA growth and decay analysis: We used a parametric method in which the cell 

population with damaged gene i grows as Ni (t) = Ni(0)e(α0+δi)t, where α0 is the growth rate 

of unmodified cells and δi is the change of the growth rate due to the gene deletion. Since 

the aliquot extracted at each time point is roughly the same and represents only a fraction of 
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the entire population, the observed sgRNA counts ni do not correspond to Ni directly. The 

correspondence is only relative: if we define ci ≡ ni/∑knk as the compositional fraction of 

sgRNA species , the correspondence is ci = Ni/∑kNk. As a result, the exponential can only be 

determined up to a multiplicative constant, e–δti = A∙ci(0)/ cit . The constant is determined 

from the assumption that a gene deletion typically does not affect the growth rate. 

Mathematically, | 1 = A med[ci(0)/ci(t)]. We define the statistic that measures the effect of 

gene deletion as xi ≡ e−δit and calculate it for every gene i from

xi = A
ci 0
ci t .

Since we were interested in genes essential for growth, we performed a single-tailed test for 

xi . We collected the three values of xi , one from each biological replicate, into a vector xi . 

A statistically significant effect would have all three values large (>1) and consistent. If xi 

were to denote position of a point in a threedimensional space, we would be interested in 

points that lie close to the body diagonal and far away from the origin. A suitable statistic is 

s = x · n 2 − x − x · n n 2 , where n = 1, 1, 1 / 3 is the unit vector in the direction of the 

body diagonal and · denotes scalar product. A q-value (false discovery rate) for each gene 

was estimated as the number of s-statistics not smaller than si expected in the null model 

divided by the observed number of s-statistics not smaller than si in the data. The null model 

was simulated numerically by permuting gene labels in xi for every experimental replicate, 

independently of each other, repeated 103 times.

STRING Interactome Network Analysis: The results from the CRISPR 3D experiment were 

integrated with the RNA-seq results using a network approach. We identified likely 

CRISPR-essential genes by filtering to include genes which had a falsediscovery rate 

corrected p-value of less than 0.5, resulting in 94 genes. We chose a relaxed filter here 

because the following filtering steps would help eliminate false positives, and our network 

analysis method would help to amplify weak signals. These genes were further filtered in 

two ways: first, we included only genes which were expressed in the RNA-seq data (this 

resulted in 57 genes), and second, we further restricted by genes which had enriched 

expression in stem cells by >2 log fold change in the RNA-seq (this resulted in 10 genes). 

These results were used to seed the network neighborhood exploration. We used the 

STRING mouse interactome (Szklarczyk et al., 2015) as our background network, including 

only high confidence interactions (edge weight > 700). The STRING interactome contains 

known and predicted functional protein-protein interactions. The interactions are assembled 

from a variety of sources, including genomic context predictions, high throughput lab 

experiments, and co-expression databases. Interaction confidence is a weighted combination 

of all lines of evidence, with higher quality experiments contributing more. The high 

confidence STRING interactome contains 13,863 genes, and 411,296 edges. Because not all 

genes are found in the interactome, our seed gene sets were further filtered when integrated 

with the network. This resulted in 39 CRISPR-essential, RNA-expressed seed genes, and 5 

CRISPR-essential, RNA differentially-expressed seed genes. After integrating the seed 

genes with the background interactome, we employed a network propagation algorithm to 

explore the network neighborhood around these seed genes. Network propagation is a 
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powerful method for amplifying weak signals by taking advantage of the fact that genes 

related to the same phenotype tend to interact. We implemented the network propagation 

method developed in (Vanunu et al., 2010), which simulates how heat would diffuse, with 

loss, through the network by traversing the edges, starting from an initially hot set of ‘seed’ 

nodes. At each step, one unit of heat is added to the seed nodes, and is then spread to the 

neighbor nodes. A constant fraction of heat is then removed from each node, so that heat is 

conserved in the system. After a number of iterations, the heat on the nodes converges to a 

stable value. This final heat vector is a proxy for how close each node is to the seed set. For 

example, if a node was between two initially hot nodes, it would have an extremely high 

final heat value, and if a node was quite far from the initially hot seed nodes, it would have a 

very low final heat value. This process is described by the following as in (Vanunu et al., 

2010):

Ft = W′Ft − 1 + 1−α Y

Where Ft is the heat vector at time t, Y is the initial value of the heat vector, W’ is the 

normalized adjacency matrix, and α ∈ (0,1) represents the fraction of total heat which is 

dissipated at every timestep. We examined the results of the subnetwork composed of the 

500 genes nearest to the seed genes after network propagation. This is referred to as the ‘hot 

subnetwork’. In order to identify pathways and biological mechanisms related to the seed 

genes, we applied a clustering algorithm to the hot subnetwork, which partitioned the 

network into groups of genes which are highly interconnected within the group, and sparsely 

connected to genes in other groups. We used a modularity maximization algorithm for 

clustering (Blondel et al., 2008), which has proven effective in detecting modules, or 

clusters, in protein-protein interaction networks. These clusters were annotated to known 

biological pathways using the over-representation analysis functionality of the tool 

WebGestalt (Wang et al., 2017). We used the 500 genes in the hot subnetwork as the 

background reference gene set. To display the networks, we used a spring-embedded layout, 

which is modified by cluster membership (along with some manual adjustment to ensure 

non-overlapping labels) (Figure 2E). Genes belonging to each cluster were laid out radially 

along a circle, to emphasize the within cluster and between cluster connections. 

VisJS2jupyter (Rosenthal et al., 2018) was used for network propagation and visualization. 

Node color is mapped to the RNA-seq log fold change, with down-regulated genes displayed 

in blue, upregulated genes displayed in red, and genes with small fold changes displayed in 

gray. Labels are shown for genes which have a log fold change with absolute value greater 

than 3.0. Seed genes are shown as triangles with white outlines, while all other genes in the 

hot subnetwork are circles. The clusters have been annotated by selecting representative 

pathways from the enrichment analysis.

KPR172HC single cell analysis: Freshly harvested tumors from two independent KPR172hC 

mice were subjected to mechanical and enzymatic dissociation using a Miltenyi 

gentleMACS Tissue Dissociator to obtain single cells. The 10X Genomics Chromium Single 

Cell Solution was employed for capture, amplification and labeling of mRNA from single 

cells and for scRNA-Seq library preparation. Sequencing of libraries was performed on a 

Illumina HiSeq 2500 system. Sequencing data was input into the Cell Ranger analysis 
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pipeline to align reads and generate gene-cell expression matrices. Finally, Custom R 

packages were used to perform gene-expression analyses and cell clustering projected using 

the t-SNE (t-Distributed Stochastic Neighbor Embedding) clustering algorithm. scRNA-seq 

datasets from the two independent KPR127hC tumor tissues generated on 10xGenomics 

platform were merged and utilized to explore and validate the molecular signatures of the 

tumor cells under dynamic development. The tumor cells that were used to illustrate the 

signal of Il10rb, Il34 and Csf1r etc. were characterized from the heterogeneous cellular 

constituents using SuperCT method developed by Dr. Wei Lin and confirmed by the Seurat 

FindClusters with the enriched signal of Epcam, Krt19 and Prom1 etc (Xie et al., 2018). The 

tSNE layout of the tumor cells was calculated by Seurat pipeline using the single-cell digital 

expression profiles.

KPf/fC single cell analysis: Three age-matched KPf/fC pancreatic tumors were collected 

and freshly dissociated, as described above. Tumor cells were stained with rat anti-mouse 

CD45-PE/Cy7 (eBioscience), rat anti-mouse CD31-PE (eBioscience), and rat anti-mouse 

PDGFRα-PacBlue (eBioscience) and tumor cells negative for these three markers were 

sorted for analysis. Individual cells were isolated, barcoded, and libraries were constructed 

using the 10x genomics platform using the Chromium Single Cell 3’ GEM library and gel 

bead kit v2 per manufacturer’s protocol. Libraries were sequenced on an Illumina 

HiSeq4000. The Cell Ranger software was used for alignment, filtering and barcode and 

UMI counting. The Seurat R package was used for further secondary analysis using default 

settings for unsupervised clustering and cell type discovery.

shRorc vs. shCtrl KPf/fC RNA-seq: Primary WT-KPf/fC cell lines were established as 

described above. WT-KPf/fC cells derived from an individual low passage cell line (<6 

passage) were plated and transduced in triplicate with lentiviral particles containing shCtrl or 

shRorc. Positively infected (red) cells were sorted 5 days after transduction. Total RNA was 

isolated using the RNeasy Micro Plus kit (Qiagen). RNA libraries were generated from 200 

ng of RNA using Illumina’s TruSeq Stranded mRNA Sample Prep Kit (Illumina) following 

manufacturer’s instructions. Libraries were pooled and single end sequenced (1X75) on the 

Illumina NextSeq 500 using the High output V2 kit (Illumina Inc., San Diego CA).

Read data was processed in BaseSpace (basespace.illumina.com). Reads were aligned to 

Mus musculus genome (mm10) using STAR aligner (https://code.google.com/p/rna-star/) 

with default settings. Differential transcript expression was determined using the Cufflinks 

Cuffdiff package (Trapnell et al., 2012) (https://github.com/cole-trapnell-lab/cufflinks). 

Differential expression data was then filtered to represent only significantly differentially 

expressed genes (q value<0.05). This list was used for pathway analysis and heatmaps of 

specific significantly differentially regulated pathways.

shRorc vs. shCtrl KPf/fC ChIP-seq for histone H3K27ac: Primary WT-KPf/fC cell lines 

were established as described above. Low passage (<6 passages) WT-KPf/fC cells from two 

independent cell lines were plated and transduced in triplicate with lentiviral particles 

containing shCtrl or shRorc. Positively infected (red) cells were sorted 5 days after 

transduction. ChIP-seq for histone H3K27-ac, signal quantification, and determination of the 

overlap between peaks and genomic features was conducted as described above.
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Super-enhancers in control and shRorc-treated KPf/fC cell lines as well as Musashi stem 

cells were determined from H3K27ac ChIPseq data using the ROSE algorithm (http://

younglab.wi.mit.edu/super_enhancer_code.html). The Musashi stem cell super-enhancer 

peaks were then further refined to include only those unique to the stem cell state (defined as 

present in stem cells but not nonstem cells) and/or those with RORγ binding sites within the 

peaks. Peak sequences were extracted using the ‘getSeq’ function from the 

‘BSGenome.MMusculus.UCSC.mm10’ R package. RORγ binding sites were then mapped 

using the matrix RORG_MOUSE.H10MO.C.pcm (HOCOMOCO database) as a reference, 

along with the ‘matchPWM’ function in R at 90% stringency. Baseline peaks were then 

defined for each KPf/fC cell line as those overlapping each of the four Musashi stem cell 

peaklists with each KPC control SE list, giving eight in total. The R packages 

‘GenomicRanges’ and ‘ChIPpeakAnno’ were used to assess peak overlap with a minimum 

overlap of 1bp used. To estimate the proportion of super-enhancers that are closed on RORC 

knockdown, divergence between each baseline condition and the corresponding KPf/fC 

shRorc super-enhancer list was assessed by quantifying the peak overlap and then expressing 

this as a proportion of the baseline list (‘shared%’). The proportion of unique peaks in each 

condition was then calculated as 100%-shared% and plotted.

sgRORC vs sgNT human RNA-seq : Human FG cells were plated and transduced in 

triplicate with lentiviral particles containing Cas9 and nontargeting guide RNA or guide 

RNA against Rorc. Positively infected (green) cells were sorted 5 days after transduction. 

Total RNA was isolated using the RNeasy Micro Plus kit (Qiagen). RNA libraries were 

generated from 200 ng of RNA using Illumina’s TruSeq Stranded mRNA Sample Prep Kit 

(illumina) following manufacturer’s instructions. Libraries were pooled and single end 

sequenced (1X75) on the Illumina NextSeq 500 using the High output V2 kit (Illumina Inc., 

San Diego CA).

Comparative RNA-seq and cell state analysis: RORC knockdown and control RNA-seq 

fastq files in mouse KPf/fC and human FG cells were processed into transcript-level 

summaries using kallisto (Bray et al., 2016). Transcript-level summaries were processed into 

gene-level summaries and differential gene expression was performed using sleuth with the 

Wald test (Pimentel et al., 2017). GSEA was performed as detailed above (Subramanian et 

al., 2005). Gene ontology analysis was performed using Metascape using a custom analysis 

with GO biological processes and default settings with genes with a FDR < 5% and a beta 

value >0.5.

cBioportal : RORC genomic amplification data from cancer patients was collected from the 

Memorial Sloan Kettering Cancer Center cBioPortal for Cancer Genomics (http://

www.cbioportal.org).

Quantification and Statistical Analysis

Statistical analyses were carried out using GraphPad Prism software version 7.0d (GraphPad 

Software Inc.). Sample sizes for in vivo drug studies were determined based on the 

variability of pancreatic tumor models used. For flank transplant and autochthonous drug 

studies, tumor bearing animals within each group were randomly assigned to treatment 
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groups. Treatment sizes were determined based on previous studies (Fox et al., 2016). Data 

are shown as the mean ± SEM. Two-tailed unpaired Student’s t-tests with Welch’s correction 

or One-way analysis of variance (ANOVA) for multiple comparisons when appropriate were 

used to determine statistical significance (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).

The level of replication for each in vitro and in vivo study is noted in the figure legends for 

each figure and described in detail in the Method Details section above. However to 

summarize briefly, in vitro tumorsphere or colony formation studies were conducted with 

n=3 independent wells per cell line across two independent shRNA of n=3 wells; however, 

the majority of these experiments were additionally completed in >1 independently derived 

cell line, n=3 wells per shRNA. For limiting dilution assays, organoids were derived from 3 

independent mice; drug-treated mouse and human organoids were plated at n=3 wells per 

dose per treatment condition. Flank shRNA studies were conducted twice independently, 

with n=4 tumors per group in each experiment. Flank drug studies were conducted at n=2–7 

tumors per treatment group; autochthonous KPf/fC survival studies were conducted with a 

minimum of 4 mice enrolled in each treatment group. Live imaging studies were carried out 

with two mice per treatment group.

Statistical considerations and bioinformatic analysis of large data-sets generated are 

explained in great detail above. In brief, primary KPf/fC RNA-seq was performed using 

Msi2+ and Msi2- cells sorted independently from three different end-stage KPf/fC mice. 

Primary KPf/fC ChIP-seq was performed using Msi2+ and Msi2- cells sorted from an 

individual end-stage KPf/fC mouse. The genome-wide CRISPR screen was conducted using 

three biologically independent cell lines (derived from three different KPf/fC tumors). 

Singlecell analysis of tumors represents merged data from ~10,000 cells across two 

KPR172HC and three KPf/fC mice. RNA-seq for shRorc and shCtrl KPf/fC cells was 

conducted in triplicate, while ChIP-seq was conducted in single replicates from two 

biologically independent KPf/fC cell lines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Map of PDAC dependencies using RNA-seq, ChIP-seq and genome-wide 

CRISPR screening

• Expression and direct utilization of cytokine/immune signals in PDAC stem 

cells

• Nuclear hormone receptor RORγ regulates mouse and human pancreatic 

cancer

• Pharmacologic blockade of RORγ reduces tumor burden and improves 

survival
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Figure 1. Transcriptomic and epigenetic map of pancreatic cancer cells reveals a unique stem cell 
state.
(A) Tumor organoid formation from primary Msi2+ and Msi2- REM2-KPf/fC tumor cells. 

Representative images, scale=100um.

(B) RNA-seq and ChIP-seq of EpCAM+GFP+ and Epcam+GFP- REM2-KPf/fC tumor cells 

(n=3 RNA-seq, n=1 ChIP-seq).

(C) Principal component analysis of KPf/fC stem (purple) and non-stem (gray) cells.

(D) Transcripts enriched in stem (red, pink) and non-stem cells (dark blue, light blue). Pink, 

light blue, lfdr<0.3; red, dark blue, lfdr<0.1.

(E-J) GSEA cell states and corresponding heat-maps associated with development (E and 

F), metabolism (G and H), and cancer relapse (I and J). (E, G, and I) Red denotes 

overlapping gene signatures; blue denotes nonoverlapping gene signatures. (F, H, and J) 

Red, over-represented gene expression; blue, under-represented gene expression; shades 

denote fold change.

(K) Single-cell sequencing of KPR172H/+C tumors (left) and map of Msi2 expression in ETC 

and EMT clusters (right); CAF, cancer-associated fibroblasts (red); EMT, mesenchymal 

tumor cells (yellow/green); Endo, endothelial cells (green); ETC, epithelial tumor cells 

(blue); TAM, tumor-associated macrophages (magenta).

(L) Hockey stick plots of H3K27ac occupancy ranked by signal density. Stem cell SEs (left), 

or shared SEs (right) are demarcated by highest ranking and intensity signals.
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(M-O) H3K27ac ChIP-seq reads across genes marked by stem cell SEs (M), shared SEs (N), 

or non-stem SEs (O).
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Figure 2. Genome-scale CRISPR screen identifies core stem cell programs in pancreatic cancer.
(A) Schematic of CRISPR screen.

(B) Number of guides in each replicate following lentiviral infection (gray bars), puromycin 

selection (red bars), and sphere formation (blue bars).

(C and D) Volcano plots of guides depleted in 2D (C) and 3D (D). Genes indicated on plots, 

p<0.005.

(E) Network propagation integrating transcriptomic, epigenetic and functional analysis of 

stem cells. Stemenriched genes by RNA-seq (log2FC>2) and depleted in 3D (FDR-adjusted 

p<0.5) were used to seed the network (triangles), then analyzed for protein-protein 

interactions. Each node represents a single gene; color denotes RNA-seq fold change; stem 

enriched, red; non-stem enriched, blue; not differentially expressed, gray. Labels shown for 

genes enriched in stem cells by RNA-seq and ChIP-seq (Up/Up) or enriched in nonstem 

cells by RNA-seq and ChIP-seq (Down/Down); RNA log2FC absolute value>2.0, ChIP-seq 
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FDR<0.01. Seven core programs were defined by gene groups with high connectivity; 

annotated by GO analysis (FDR<0.05).
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Figure 3. Identification of novel pathway dependencies of pancreatic cancer stem cells.
(A-D) Genes from developmental processes (A), lipid metabolism (B), and cell adhesion, 

motility, and matrix components (C and D) were inhibited via shRNA in KPf/fC cells and 

sphere or flank tumor growth assessed. Sphere, n=3–6; flank transplant, n=4.

(E-I) Relative RNA expression of MEGF family and related (*Celsr1) genes in KPf/fC stem 

and non-stem cells (E). Red, over-represented; blue, under-represented; color denotes fold 

change from median values. Impact of inhibiting Celsr1, Celsr2, and Pear1 on KPf/fC sphere 

formation (F) and flank transplants (G-I). Sphere, n=3–6; flank transplant, n=4.

(J) Impact of shRNA-mediated inhibition of Pear1 in human FG cells on colony formation 

(n=3) and flank tumor propagation assessed (n=4).

(K-L) Single-cell sequencing of KPR172H/+C tumors (K) and tumor cells expressing 

IL10Rβ, IL34, and Csf1R (L). CAF, cancer-associated fibroblasts (red); EMT, mesenchymal 

tumor cells (yellow/green); Endo, endothelial cells (green); ETC, epithelial tumor cells 

(blue); TAM, tumor-associated macrophages (magenta)

(M) Impact of shRNA-mediated inhibition of IL-10rβ and Csf1R on sphere formation of 

KPf/fC cells, n=3–6.

(N) Impact of shRNA-mediated inhibition of IL-10rβ and Csf1R on stem content (Msi2-

GFP+) of KPf/fC cells; in 3D culture assessed, n=3.

(O-P) Impact of shRNA-mediated inhibition of IL-10rβ (Ο) and Csf1R (P) on KPf/fC flank 

transplant growth, n=4.
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(Q) Impact of shRNA-mediated inhibition of IL10Rβ in human FG cells on sphere 

formation, n=3, or flank transplant, n=4.

(R) Impact of shRNA-mediated inhibition of IL-10 and IL-34 on KPf/fC sphere formation, 

n=3.

Data represented as mean +/− S.E.M. * p<0.05, ** p<0.01, *** p<0.001 by Student’s t-test 

or One-way ANOVA.
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Figure 4. The immuno-regulatory gene RORγ is a critical dependency of pancreatic cancer.
(A) Rorc expression in stem and non-stem REM2-KPf/fC tumor cells; representative of three 

biological replicates.

(B) Representative images of RORγ expression in normal adjacent human pancreas (left), 

PanINs (middle), and PDAC (right). RORγ (green), E-Cadherin (red), Dapi (blue), 

scale=50um.

(C) Frequency of RORγ+ cells within E-Cadherin+ epithelial fraction in patient samples 

quantified by immunofluorescence; Normal adjacent, n=3; pancreatitis, n=8; PanIN 1, n=10; 

PanIN 2, n=6; PDAC, n=8.

(D-E) Impact of shRNA-mediated RORγ inhibition on 3D growth of KPR172H/+C (D) and 

KPf/fC (E) cells, n=3 per shRNA.

(F) Impact of shRNA-mediated RORγ inhibition on Msi2-GFP stem cell content of in 

KPf/fC cells in 3D culture (H) n=3.

(G) Impact of shRNA-mediated RORγ inhibition on flank tumor growth of KPf/fC cells, 

n=4.

(H-I) Reduced tumor burden in Rorc−/−KP f/f C mice. Age-matched WT KP f/f C and Rorc
−/−KP f/f C set shown displayed reduced tumor cell number (H), and reduced 

adenocarcinoma content (I); low-grade PanIN indicated with red arrow, PDAC indicated 

with black arrow, scale=100um; n=3 mice from 8–10 wks of age; representative plots and 

images from matched mice are displayed.

(J and K) Relative RNA expression of stem cell programs (J) and pro-tumorigenic factors 

(K) in KPf/fC cells transduced with shCtrl or shRorc. Red, over-represented; blue, under-
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represented; color denotes fold change. (L) Venn diagram of genes downregulated with 

RORγ loss (q<0.05, purple), Stem specific SE-associated genes (green), and genes 

associated with H3K27ac peaks with RORγ consensus binding sites (orange).

(M) Number of RORγ, CBFB, Sox9 binding sites found in stem cell SEs relative to random 

genomic background of equivalent base-pair coverage (p<0.05).

(N) Relative RNA expression of SE-associated oncogenes in KPf/fC cells transduced with 

shCtrl or shRorc. Red, over-represented; blue, under-represented; color denotes fold change 

from median values.

(O) H3K27ac ChIP-seq reads for genes marked by stem cell SEs and downregulated in 

RORγ-depleted KPf/fC cells. Data represented as mean +/− S.E.M. * p<0.05, ** p<0.01, 

*** p<0.001 by Student’s t-test or One-way ANOVA.
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Figure 5. Pharmacologic targeting of RORγ impairs progression and improves survival in mouse 
models of pancreatic cancer.
(A and B) 3D growth of KPf/fC cells (A) and KPR172H/+C cells (B) in the presence of the 

SR2211 or vehicle (n=3).

(C and D) KPf/fC organoid formation in the presence of SR2211 or vehicle. Representative 

images (C) and quantification (D), scale=100um.

(E-I) Analysis of flank KPf/fC tumor-bearing mice treated with SR2211 or vehicle for 3 

weeks. Strategy (E). Total live cells (F), total EpCAM+ tumor cells (G), total EpCAM+/

CD133+ stem cells (H), and total EpCAM+/Msi2+ stem cells (I) (n=4 vehicle, n=2 vehicle

+gemcitabine, n=4 SR2211, n=3 SR2211+gemcitabine).

(J) Survival of KPf/fC mice treated daily with vehicle (gray) or SR2211 (black) (p=0.051, 

Hazard ratio=.16, Median survival: vehicle=18 days, SR2211=38.5 days).

(K) Live imaging of REM2-KPf/fC mice treated with vehicle or SR2211 for 8 days (n=2). 

Msi2-reporter (green), VE-Cadherin (magenta), Hoecsht (blue); Msi2-reporter+ stem cells, 

gray box.

(L) Quantification of stem cell clusters from REM2-KPf/fC live imaging (n=2; 6–10 frames 

analyzed per mouse).
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Figure 6. RORγ is a direct dependency of pancreatic tumor epithelial cells.
(A-B) Analysis of flank KPf/fC tumor-bearing NSG mice treated with SR2211 or vehicle for 

2 weeks. Strategy (A). Flank tumor growth following treatment with vehicle or SR2211 for 2 

weeks (B). Fold change in tumor volume relative to volume at enrollment (n=4–6).

(C-D) Strategy (C). Growth of KPf/fC flank tumors in WT or RORγ−/− recipient mice (D) 

(n=3–4).

(E-L). Strategy (E). Flank tumor growth in WT recipients treated with vehicle or SR2211 

for 2 weeks (F). Flank tumor growth in RORγ−/−- recipients treated with vehicle or SR2211 

for 2 weeks (G). Tumor mass (H), total live cells (I), total EpCAM+ tumor cells (J), total 

EpCAM+/CD133+ stem cells (K), and total Th17 cells (L) in WT and RORγ−/− recipients 

(n=5–7).

Data represented as mean +/− S.E.M. * p<0.05, ** p<0.01, *** p<0.001 by Student’s t-test 

or One-way ANOVA.
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Figure 7. RORγ is required for human pancreatic cancer growth and predicts advanced disease.
(A) Human FG colony formation after RORC CRISPR knockdown, n=5.

(B) Representative images of RORγ expression in human FG tumors, RORγ (green), E-

Cadherin (red), Dapi (blue).

(C) Human FG tumor growth in mice treated with gemcitabine and either vehicle or SR2211 

for 2.5 weeks. Tumor volume fold change is relative to volume at enrollment.

(D-F) Primary patient organoid growth in the presence of vehicle or SR2211. Representative 

images of organoids in Matrigel (D) (scale=100um), following recovery from Matrigel (E) 

(scale=50um), and quantification of organoid circumference (F, left) or volume (F, right).

(G) Growth of primary patient-derived xenografts treated with vehicle or SR2211 for 1.5 

weeks. (n=4)

(H) RORC amplification in tumors of patients diagnosed with various malignancies.

(I-L) Representative TMAs of PDAC and PanINs illustrating scoring for negative, 

cytoplasmic, and cytoplasmic + nuclear RORγ staining (I). Correlation between RORγ 
staining and tumor stage (J), lymphatic invasion (K), and lymph node status (L).

Data represented as mean +/− S.E.M. * p<0.05, ** p<0.01, *** p<0.001 by Student’s t-test 

or One-way ANOVA.
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