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Abstract

Embedding Security into Systems After Their Design

by

D J Capelis

Security is rarely designed into systems and architectures from the beginning. Typi-

cally, security enters into the design process only after applications are built and security

issues arise. While security is often dependent on specific use cases, decades of develop-

ment provide an opportunity to synthesize common security needs into a set of critical

features and embed them into the core underlying systems.

The advantages of doing so are fourfold:

1. Security features need only be implemented in one common place. Instead of each

application implementing its own security features—often complex and difficult

code where small bugs can result in large failures—only one implementation needs

to be security-critical.

2. Instead of many application specific interfaces, applications present compatible

and consistent security configuration implementations. Greatly reducing the dif-

ficulty of configuring, maintaining and understanding security policies across a

system or network.

3. Instead of spending limited developer time on implementing the same security

features in every application, security mechanisms integrated into the system

reduce the burden on the application developer. Further, the quality of these

mechanisms can exceed what a specific application developer would otherwise

chose to invest their time in building for their own application.

4. By expanding the mechanisms available, some features which would otherwise be

impossible to implement, become possible.

I explore this approach in two of the most fundamental areas of computer science: the

network and the computer organization. Both of these areas provide decades-old inter-

faces with long-standing security needs. The applications which have grown on top of
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these systems are mature and represent a range of needs, development effort, developer

skill and solutions. This provides a diverse range of software to distill new security

features from.

During my research, I embedded authentication, session encryption and role-based net-

work visibility and access control into the Internet, reviving the concept of a session

layer. Using the knowledge we have today, this set of primitives allows applications to

solve problems that weren’t as relevant when the networking community first examined

the session layer. This foundation reduces the complexity of writing working, secure

and authenticated network services.

I also explored architectures which provide the ability for an application to store data

in a manner that is not vulnerable to interception and compromise by management

software (the operating system, a hypervisor, etc) running on the machine. This capa-

bility does not exist in systems today and would allow more resilient systems to provide

limited security assurances even in the case of compromised management software.

In this document, I show embedding security into existing systems yields tangible ben-

efits over building solutions on top of systems without altering the underlying status

quo.
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Chapter 1

Introduction

Security is a hard problem, often difficult to describe in a rigorous fashion,

much less easily quantify. Market forces usually dictate that what works now is more

important than what works well. These structural issues mean the design of security

technologies most often only occurs after the need becomes obvious. As security con-

cerns are so often use-case specific, security is seen as an application concern, not a

fundamental one. The result: many specific security problems are seen as solved in

theory, but the lack of security as an integral part of system-level design have led to

continued security issues in practice.

In this dissertation, I explore two areas of computer science with the aim

of migrating security responsibilities away from applications and into the underlying

systems they run on. For some of these security issues, existing techniques provide a

solution, but the deployment of these technologies is far from ubiquitous or the interface

to use them is far from simple. Other security issues can be solved by technologies that

exist today, but are solved in a piecemeal approach in which every specific use case

opts for different and frustratingly incompatible security technologies. Finally, some

technologies provide solutions to security issues which cannot be solved on existing

systems, no matter how the existing primitives are used.
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1.1 New Possibilities

Perhaps most critical are those features which cannot be implemented on top

of existing core technologies and require change to exist. Providing new ways to secure

software that are not available in current systems is what advances forward not only

security, but our definition of the types of tasks computer can do securely.

There are two features I focused on that the current architecture cannot sup-

port:

1. The ability for a network to make access control and visibility determinations

based on who a user is as opposed to which IP address happens to be making

a request. Current layering relies on applications to construct a user’s identity.

Lower layers cannot use that information and access determinations are based on

the identity of the requesting machine instead of the identity of the person at the

keyboard.

2. The ability of an application running in an operating system to protect data from

compromise even when the operating system and other management software

cannot be trusted. The current architecture provides the operating system with

complete privilege over applications running within its environment. An applica-

tion which runs on a computer is required to trust the security of the operating

environment, an aspect that it and sometimes even its user may have little control

over.

Adding these types of features is not possible without revision to the funda-

mental core technologies which compose our systems. Between enhancing security on a

system-wide level and the possibilities these features provide in terms of changing how

security is done and the types of activities that would become possible, revision of core

technologies is necessary.

1.2 Ease of Deployment

Application support is one of the most common barriers to deploying security

technologies. Application developers aren’t always aligned with the security needs of
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their users. Even when the developers agree that a security feature should be imple-

mented, the development team does not always have the skill, time or resources required

to implement a feature. Finally, when a feature does get implemented, developers often

stop as soon as a minimal level of security has been achieved. For instance, it is rare for

an application to add support for authentication mechanisms beyond a username and

password, even though research [58] has shown that passwords are not a particularly

good authentication mechanism. The two decades it took to bring modern security prac-

tices to NFS [63] provides a good example of how difficult it can be to deploy security

beyond a minimal level.

However, once standard security primitives are available in a lower layer, appli-

cations support security features that are as advanced as the underlying framework can

support. Most importantly, integrating security features into a lower layer often results

in requiring less work for a developer to implement a feature than if that developer

were to write a basic level of functionality themselves. This leads to wider deployment

of security technologies and increasing levels of sophistication and flexibility.

Further, structural changes to an architecture allows a series of important se-

curity features to be implemented and easily available for applications. The incentive

for code libraries run towards doing one thing very well. This means application devel-

opers using a library that accomplishes one specific task must use a different library to

accomplish another security task. By incorporating a series of features into one funda-

mental layer, the marginal effort to incorporate each additional security feature drops

as the base reference set for what the lower layer accomplishes expands.

1.3 Consolidation

From a software engineering standpoint, while security issues can be produced

by bugs in a wide range of code paths, bugs in code which provide security features have

a greater tendency to directly and immediately result in an exploitable security issue.

Even worse, since “security” is hard to formalize and define, tests to determine whether

security code is functioning properly are frequently difficult or even impossible to write.

This means not only do the bugs in these sections of code tend to be high impact, but

they’re also difficult to find using standard code testing methods.
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To mitigate this danger, many projects have dedicated teams of security ex-

perts that conduct audits and review changes for security-critical code sections. The

outcome of this practice varies widely from team to team, depending in large part on

the level of security expertise available and the priority of security issues within the

project’s management. For small projects, this type of review can be prohibitive and

even large projects are forced to invest resources in focusing on security issues which

may be better invested in providing a more compelling product. The outcome: security

critical code sections slow down development progress.

This means projects are well served by writing as little security-critical code

as possible. One option of doing this is simply not to implement that many security

features, a surprisingly popular option which is often determined by externalities, de-

velopment culture, the level of security in competing products and market forces rather

than technical or security concerns. The other option is to share as much security criti-

cal code as possible so the expense and cost of review is amortized over as many projects

as possible.

The most common mechanism to share security critical code between applica-

tions is to implement security code into programming language libraries. Unfortunately

this leads to different applications using vastly different APIs, depending on the pro-

gramming language of the code, the frameworks available on the system and the porta-

bility of the respective components. In addition, many applications use only a small set

of features within a large and complex API. For instance with SSL/TLS [24], one of the

many security issues this work impacts, OpenSSL [19] is one of the best known cryp-

tographic libraries. It is frequently used to set up TLS and SSL connections. However

much has been written about how frustrating it can be to produce working code with

this library [49].

While this may seem like merely an implementation issue, alternative libraries

are plentiful and frequently suggested [2] by practitioners. Some have met moderate

success and made commendable improvements, the real issue is lost: the libraries are

all trying to layer security on top of the system instead of integrating it in the layer it

belongs. The complexity of these libraries are in part due to a structural lack of these

security features in the core stack.
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Not only will solving this structural defect likely lead to easier and better sup-

port for these types of security features, it will help migrate the responsibility away from

applications to a lower level of the software stack. A system running multiple security-

critical code sections all trying to do the same thing is as strong as the weakest code

section. Allowing all the applications to use one highly reviewed and well considered

code section or feature could reduce the system-wide risk profile considerably.

1.4 Consistency

From an individual application’s perspective, a lack of consistency is not that

large of an issue. The security protocols themselves are often standardized to allow inter-

operability. Unfortunately on a system-wide level, the various applications, frameworks

and libraries implementing various security-critical functions using various levels of ab-

straction produce a remarkably frustrating experience. Configuring a system-wide se-

curity policy becomes extremely difficult, with either complex policy management tools

which try to apply a unified policy across the system or a large amount of duplication

as each system is configured separately.

For instance, one example of this complexity is restricting the use of network

services to certain users. The mechanism to accomplish this is typically different for

every service on the system. It is not uncommon for services to use their own indepen-

dent user database for authentication, separate from any others on the system. Even

those services which use the standard system user database have their own unique syn-

tax, configuration files and mechanisms for specifying authorization. To some degree,

authorization must be an application issue, but basic restrictions on who should be

allowed to access a service is an issue every network service shares and every adminis-

trator must concern themselves with. And for this, there is no fundamental access layer

beyond inflexible firewall control using IP addresses.

Integrating security features into lower layers allows for usable system-wide

policies. This provides administrators the tools they need to give specific users abilities

on the system without fear of exposing a large attack surface to the rest of the world.

In addition, the consistency of having security functions in the underlying software

layers provides users of the machine with a uniform experience for interacting with
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security systems, lessening the cognitive burden of remembering the various steps and

incantations different software services require of users before recognizing their identity

and allowing them access to data and resources.

In the network, I use a prototype called fived to discuss the consistency and

consolidation benefits of integrating identity into the network. I also discuss increased

consistency for network mobility, encryption, service discovery and distributed identi-

ties, among others. In the computer organization, I outline hardware changes required

to provide resistance against complete operating system or hypervisor compromise. All

of these changes require fundamental change or addition to how these systems operate.
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Chapter 2

Changing Networking

On today’s network, an unwieldy array of different components are tasked

with security responsibilities. Application developers routinely make mistakes in their

security critical code, leading to bugs that manifest as worms and malware. Access

control mechanisms on the network typically rely on where a user’s computer is located,

not on who that user is. The systems that authenticate users remain separated from

the firewalls tasked with controlling access to various network services. The network

is without the information required to make intelligent access control decisions. These

problems are compounded by the Internet’s remarkable resistance to change. Many

security technologies have failed to achieve adoption over the years. Fived is a design

for a unified session layer that integrates security features into the core of the Internet,

one user, one network or one application at a time.

Let’s begin with the problem of access control. Firewalls, the main source

of access control in most deployed networks, dictate access control policies based on

the host’s IP address. Any network that wishes to support legitimate users’ ability to

access services from networks not directly owned by the organization must support a

mechanism to bypass the security perimeter; this is typically provided in the form of

a Virtual Private Network (VPN) [31] connection. Likewise, organizations that wish

to offer courtesy access to guests have to institute registration processes and network

partitioning just to allow visitors to check their e-mail without exposing internal services.

In more complex organizations, where users have various levels of access, clearance or

affiliation, network partitioning can get even more complex, arduous and brittle.
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A session layer design provides the user with the notion of a session, but more

importantly, allows them to authenticate and open up the range of services available to

them. This layer makes access control decisions based on who the user is, what groups

or roles that user may be a part of and any number of additional policies the network

administrator might wish to support. This provides the type of comprehensive access

control modern networks need.

Yet the benefits of a robust session layer extend beyond simplifying the lives

of network administrators and reducing the complexity of security configuration. The

current Internet architecture forces each individual network application to write large

amounts of sensitive code to provide security features, including authentication and

encryption. Applications often simply omit some of these features, while the remainder

provide a wide array of encryption and authorization solutions of varying quality in

terms of usability or security. A session layer puts security features on-par with core

networking concepts like congestion control. With a session layer in place, applications

can take advantage of one unified codebase to perform these types of sensitive operations.

Support for new authentication mechanisms, new encryption technologies, or other new

security features, can be added in one place and made immediately available to all

applications running on the session layer.

One of the hardest problems of changing the Internet is adoption. Worse, in the

next several years, new architectures which seek to gain acceptance on the Internet face

several specific challenges. IANA has allocated their last free block of IP addresses [38]

to the Regional Internet Registries and each has put in place emergency procedures to

manage their last remaining IPv4 addresses. Over the next years, the Internet will reel

as it reactively deploys the solutions networking researchers converged on 15 years ago.

Due to this unfortunate timing, any realistic deployment of new networking technologies

reliant on commercial network operators to adopt new equipment, standards or practices

will be challenged for several years to come. Yet the switch to IPv6 will not solve many

of the pressing problems that have become more apparent over the last decade and a half

since IPv6 was designed. The Internet can’t wait another 15 years for new technologies

to reach deployment.

In an environment where developing a compelling improvement is merely a
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necessary, but not sufficient condition for deployment it is critical that any proposed

changes provide a realistic transition plan. Fived ’s key deployability advantage is that

it follows the end-to-end principle [56] allowing progress to trickle in from the edges of

the network to the core. Potentially lethargic core network operators do little to harm

the adoption of fived. Another key component of a deployment plan is that the system

must not require a large critical mass before organizations begin seeing benefits. Users

of fived gain some benefit right away. Downloading code is enough to allow users to

start controlling access to their internal services. A set of compatibility libraries, layers

and runtime tools can provide users the ability to obtain advantages from fived even

before applications are adapted to interact with the session layer natively.

The final defining feature of a viable architecture change is its ability to lead

us away from the current level of stagnation on the Internet. A new architecture change

not only needs to overcome its own deployment challenges, but should attempt to open

up the Internet in ways that allows increased flexibility in the future. The Internet’s

resistance to change isn’t sustainable and without modifications, the network will not

be flexible enough to head toward the future. Future technologies must be designed so

if they succeed, the Internet can absorb new ideas, innovations and technologies at a

higher rate than the current network.

The session layer as implemented in fived is extendable. Creating a new service

can be as simple as picking a name for it, adding some lines to a configuration file and

writing as little as 10 lines of code. This architecture is considerably more flexible

than the fixed size headers most of our modern Internet protocols use today. The core

services in this document should be useful for years to come, but future researchers can

experiment with new variants on these services merely by adding it to their local session

layer and beginning to use it. Standards can spread either organically or via vendors

working together in a formal process. Innovative ideas can be demonstrated easily and

adopted quickly as consensus develops.

In addition to ensuring that our own additions are flexible, fived aims to ensure

that the underlying components of the current Internet grow easier to replace. This is

the job of the session initiator, the component that establishes a session. The session

initiator resolves names to addresses, deals with various transport protocols and sets up

9



connections or an ability to send datagrams in future networks. Adding a new transport

protocol or changing Internet addressing merely requires modifications to the session

initiator and any application using it can adapt. This allows the layers underneath the

session layer to change and accept new technologies as well.

Fived provides solutions to a broad range of recent problems, with specific

focus on embedding trustworthiness into the fabric of the Internet. The design has

a transition plan, a design which allows for a suite of compatibility tools and has the

potential to bypass many of the roadblocks during what’s likely to be a messy transition

process to IPv6. Finally, the design serves as a catalyst for past, present and future

technologies by ensuring that if fived is successful, the deployment barrier on the Internet

is reduced.

2.1 Related Work

One of the challenging parts about explaining fived has been in comparing it

to existing technologies. Fived ’s design goals revolve around incorporating solutions

to problems where we know the network has needs. The solutions fived implements

often aren’t particularly different than existing technologies. It isn’t in the choice of

encryption algorithm or the protocol that fived ’s contributions are really understood.

It is in the way this session layer enables the use of these technologies in a way that

creates a coherent architecture between every application using fived. It is in the way

that fived shifts the responsibility into the underlying layers and eliminates sections of

security critical code required in many of today’s applications. It is in the way fived

strictly adheres to the end-to-end principles and eschews any requirement that the core

networking hardware know about our protocol for it to succeed. It is in the way the

session layer architecture enables application access to these technology in a uniform

way across the deployment base.

Which isn’t to say no other projects have had these goals. Service-oriented

network designs, such as those seen in Planetlab [17] and GENI [50] often have similar

design goals. Chandrashekar’s paper on a Service Oriented Internet [13] comes up

with a strikingly similar design in some respects. In this paper, a session layer with a

service-oriented architecture is fairly clearly proposed and outlined. The main difference
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between these works and those of fived is a difference in how these systems interact

with legacy technology. Many of these designs fall under the category of “clean slate”

networking architectures, where the goal of the research is to clean up the Internet and

switch to a “better” architecture. Fived on the other hand, is what I like to call a

“dirty slate” design. The goal of fived is to add the features into the existing network

that seem to be missing. When there’s a way to do it that seems to prod the network

towards a cleaner architecture, fived takes the opportunity, but the guiding goal is to

get the features into the network. The resulting systems turn out fairly different.

On a feature by feature basis, there are many comparisons between fived and

other systems:

Service discovery allows a computer to query whether a service is running. Tradi-

tionally this is done via attempting to establish a connection on a standardized

port number and assuming that if a service exists on the machine, it will be lis-

tening there. Fived allows a user to instead specify services using a name, a minor

improvement to usability that shifts the namespace from numbers to characters.

Other software that has tried this approach includes the portmap [66] service,

which protocols like NFS [67] rely on.

Encryption on the Internet is hardly a new feature, SSL [29] and later TLS [24] have

been providing encryption services on the network for awhile. Newer protocol pro-

posals, like MinimaLT [51], CurveCP [12] and QUIC [70] offer transport security

with improved cryptographic properties. Fived implementations can include any

or all of these protocols. Since the session layer is application protocol agnostic,

it’s transparent to layer 7 applications. This is similar to how Stunnel [76] or SSH

tunnels [78] work. Those tools, of course, have few ambitions beyond providing

transparent encryption.

Authentication and access control on a network level is currently a problem solved

by a combination of VPNs [31] and firewalls [14]. Surprisingly, existing networks

have made these technologies work from time to time, but it seems not unrea-

sonable to point out that in practice networks experience problems using access

control technologies which only make decisions based on what number a user’s
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computer currently is assigned by their network. A VPN exists on most networks

to allow an end-user to borrow a number from another network when the one their

computer has doesn’t allow them to access the resources they want. Fived on the

other hand, ties traffic streams directly to a user’s identity and uses that to make

access control decisions.

Network mobility is a feature which allows a device to switch underlying network

transports without breaking their network connections. This feature is used today

in cell phone networks [41] where devices roam between cells routinely and so

mobility is built into the low-level network protocol. OpenFlow [47] is another

system which has mobility features, allowing devices to move network flows from

endpoint to endpoint. Both require extensive levels of support in the networking

hardware. Fived implements these features in the session layer.

Stream multiplexing has become common again with the introduction of HTTP/2.0

[10] which formalized SPDY’s [9] approach of multiplexing multiple HTTP streams

over a single TCP connection. Fived ’s multiplexing is somewhat different, since

it is protocol agnostic. This allows any traffic between two endpoints to share a

transport stream.

Virtual hosts allows application protocols servers to host more than one hostname on

the same IP address. [42] This technique is present in some application proto-

cols, like HTTP and SMTP, but is not uniformly deployed through the network.

Generally, when an application connects to a port on a host, the service is not

given hostname information to allow it to appropriately determine which con-

tent to send. Fived introduces protocol-agnostic virtual hosting by enabling the

hostname the user specifies to alter service routing in the session server.

Distributed identity has increased in prevalence since the launch of OpenID [53]

a decade ago. Since then, many large web companies have shipped their own

incompatible distributed identity systems, from Facebook [28] to Twitter [74] to

Google [33] there’s as many different identity protocols as there are companies that

want to control identity information. Fived also includes a light-weight distributed

identity protocol, which allows users to use an authenticated session to prove their
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identity to third-parties. One difference with fived ’s protocol however, is that it

eliminates the direct communication between the third party identity consumer

and the identity provider, thus allowing for distributed identities that don’t require

users reveal to the identity provider where they’re using the identity.

2.2 Technical Detail

2.2.1 Core Services

The following core services are the primitives I’ve selected to put into fived ’s

default set. Fived ’s session layer protocol is loosely derived from the tcpmux protocol

specified in RFC 1078 [45], from 1988. The basic tcpmux protocol is simple and can

be implemented in under 100 lines of C. Each of the core services fived adds take

anywhere from tens of lines of code to several hundred lines of code. These services

work together to provide a broad range of session services. The essential features include

service multiplexing, role-based authenticated access control, transparent session-wide

encryption, mobility, virtual hosting and distributed identities.

Let’s examine each of the core services in depth:

2.2.1.1 LIST

Figure 2.1: LIST Command

LIST enabled service discovery. LIST outputs a multi-line message which must

be a list of the service names of the supported services, one name per line.[45] “Supported

services” means services which the user is able to access. Services with restrictions only

appear in LIST after a user has authenticated themselves with an authorized set of

credentials. When LIST is followed by a service name, fived returns the service name if

it exists. These two modes allow for dynamic service and extension discovery.
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�LIST�
LIST

MULTIPLEX

TLS

HOST

http

Example Usage: A typical use of the LIST command on a fived daemon which supports

a the core features LIST, MULTIPLEX, TLS and HOST as well as a service called

“http.”

2.2.1.2 AUTH

AUTH allows a user to authenticate a session. The exact mechanism to do this

is server-specific as each organization tends to have their own requirements for creden-

tialing users. The current fived prototype uses the Pluggable Authentication Modules

(PAM) [3] system in place on most UNIX machines. The AUTH service negotiates

authentication technologies and proceeds to engage the client in a mutually agreed

challenge/response protocol. When the back-end authentication service is satisfied of

the client’s identity, the AUTH service relays the results to the client and attaches an

identity to the session. After a session has been granted a certain identity, they may be

authorized to access restricted services or other resources. The fived daemon can also

Figure 2.2: AUTH Command

include a mechanism to pass the session’s authenticated identity information through

to underlying services they connect to.

Finally, depending on the service provider’s setup, they may not wish this

service be supported until after the user gains a secure channel for their session using

the TLS service which is described in the following subsection. In this case, AUTH itself

acts as a restricted service until after TLS or another acceptable encryption scheme is

invoked.
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2.2.1.3 TLS

TLS allows for session encryption. As the name might indicate, the TLS service

is a command to the session server to start a TLS handshake. After the client requests

this service, the session server and the client immediately engage in a TLS handshake

and set up a secure channel. The client should retain the certificate offered by the

server for future connections to ensure security. This is similar to how SSH handles key

verification and has been moderately more successful than the web-based model for TLS.

However, the client should feel free to use other mechanisms, such as the existing TLS

PKI, to verify the certificate during first connect. After both the client and the server

has completed the TLS handshake, the session continues over an encrypted channel. In

Figure 2.3: TLS Command

addition, the server may choose to authenticate the client on the basis of a client-side

certificate they present during the handshake.

Here is an example of a user using the TLS service, then authenticating using

AUTH and receiving access to the service telnet which they then access over a secure

and authenticated session:

�LIST�
TLS
AUTH
�TLS�
+ SUCCESS
a TLS handshake takes place and the session continues over a secure chan-
nel:
�AUTH <up,ext,pubkey>�
+ SUCCESS <up>
Enter Username: �researcher�
Enter Password: �secret�
Authentication as researcher successful
�LIST�
telnet
research-service
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�telnet�
researcher@researchbox $

2.2.1.4 MULTIPLEX

MULTIPLEX allows more than one service on a session. In the basic protocol,

when a client requests a service, the connection is taken over by the service and there

is no further interaction with fived. Multiplexing allows a user to connect to a session

server, encrypt their session, authenticate and then access as many services as they

need.

Figure 2.4: MULTIPLEX Command

Figure 2.4 shows a multiplexed session where multiple services are interacting

with multiple clients. The client computer runs a session manager that handles the client

connections from that machine while the service provider runs services through the fived

daemon. There is no requirement that the session manager and the clients be on the

same machine, nor is there a requirement that the session server and service daemons be

on the same machine. This network-transparent interaction allows for organizations to

create unified session servers that are the frontend for all of that organization’s services.

This allows for centralized authentication and also could allow a session server to act

as a load balancer for various backend services.

In response to the MULTIPLEX command, fived begins the session multiplex-

ing protocol. To multiplex more than one application layer datastream on top of the

same reliable bytestream, fived uses a series of headers to delineate datastreams. Figure

2.5 shows the header format:

Datastream IDVer

 0                      8                     16                    24                    31

Length Until Next Header

Flags
3  4  5  6  7

Figure 2.5: MULTIPLEX header format
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The header fits in 64 bits, which allows for easy manipulation on most modern

processing units. The first 3 bits comprise a version number, the next 5 bits contain

flags, the subsequent 24 bits contain the datastream ID which identifies the datastream

which follows the header and the final 32 bits is the length, in octets, until the next

header. The meaning of the flags are as follows:

• Bits 3 & 4 – Reserved for future use.

• Bit 5 – Complete – This flag is set for a one-sided close in a duplex transport

protocol. (As in shutdown() in the standard sockets interface.) The side that

sends this flag is declaring that they no longer will be sending data. The datas-

tream ID is still active, unless or until the other side sends a message with the

complete or close flag. The length to next header field must be set to zero when

this flag is set. (This header may not proceed data using this datastream ID.)

• Bit 6 – Close – This flag is set when the application using this datastream is no

longer willing to communicate. The other side should discontinue use. Any data

for this ID will be dropped. The length to next header field must be zero when

this flag is set.

• Bit 7 – New – This flag is set by the server when the user asks to use a new

service. The datastream ID will be new and identifies data from that service from

now on. The datastream ID of zero is reserved for talking to the fived daemon.

This multiplexing protocol is sufficient for a user to access multiple services

concurrently using their session. Their authentication stays intact and the encryption

continues. The session persists until the user closes their connection to the session

daemon.

2.2.1.5 HOST

Figure 2.6: HOST Command

HOST enables a session server to provide services for many hosts, virtual or

physical. Depending on the host selected, different services can be enabled. When
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a client issues the HOST command they provide a hostname or service-group name.

Assuming the session’s privilege level is sufficient and the name the client requests

exists, the daemon issues an affirmative response and associates the session with the

requested hostname. This allows the session layer to do virtual hosting at a network

level. This allows organizations to centralize sessions into a small set of session servers

which act much like load balancers do in existing networks.

2.2.1.6 DETACHABLE

DETACHABLE allows a client to disconnect from a session without destroying

its state. If allowed by the server, DETACHABLE is a mechanism to request the server

maintain a session’s state while a client disconnects from the server for a time. This

is almost a network equivalent of the UNIX screen [1] command. The DETACHABLE

service provides the user with some sort of secret. This secret could be a cryptographic

certificate, a password, ASCII art or any piece of data appropriate for the security

requirements of the session. When the client disconnects from the session server, the

session’s state persists. Data from services which remain open will be queued. The

amount of time a session’s state is perserved and the amount of traffic it is willing to

queue is up to the administrator of the session server.

2.2.1.7 ATTACH

ATTACH allows a client to resume a previously detached session. The user

provides the secret issued by a previous invocation of the DETACHABLE service along

with the number of bytes they’ve received since the session began. After verifying the

secret, the user will be allowed to resume their session. However, since the user is likely

to want to start a TLS session before providing the secret to the ATTACH service to

prevent man in the middle attacks, resumed sessions will use this new TLS session, if

one exists, instead of resuming an old one. (This also provides a re-key mechanism for

long-standing sessions.)
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2.2.1.8 Broader Uses of DETACHABLE and ATTACH

It is not required to break a session connection before using ATTACH on a

DETACHABLE session. Instead, a user can attach another layer 4 connection to their

existing layer 5 session. This allows different quality of service properties or connection

bonding. DETACHABLE and ATTACH can also be used on one specific connection,

which allows users to gracefully roam networks or even physical machines.

2.2.1.9 PROVEAUTH and GETSIGNKEY

This service provides a lightweight distributed identity system. PROVEAUTH

allows a user to use their session to prove their identity to another system. Where AUTH

creates a system of authentication for the session layer, PROVEAUTH allows a user to

prove that identity elsewhere. This allows users to use an identity from one entity to

authenticate with another.

In these types of protocols, there are three parties:

The identity provider (P) This is the entity providing the identity. It holds an

authoritative notion of identity for its domain and chooses to grant these identities

to users. In fived this entity is the session server providing the PROVEAUTH

service.

The user (U) This is the end-user of the identity. In our session protocol, this is the

user controlling the session client.

The identity consumer (C) This is a separate entity who accepts identities asserted

by the identity provider and wishes to ensure that the user has a right to use a

particular identity.

The protocol for a user to prove an identity to an identity consumer is as

follows:

1. User (U) sends the identity to identity consumer (C) they want to prove is theirs.

2. Consumer (C) responds with a challenge to user (U). The challenge consists of a

nonce chosen by C along with the canonical name for C.
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4: sign(hash + id)

3: hash(nonce + name)

1: id

2: nonce + name

5: signed data

Consumer ProviderUser

Figure 2.7: PROVEAUTH Protocol

3. User (U) concatenates the nonce and canonical names provided by the consumer

(C) and hashes them. User (U) then invokes PROVEAUTH on their authenticated

session with the identity provider (P) and provides this hash.

4. Provider (P) concatenates the hash with the identity the user’s (U) session is au-

thenticated as and signs the result using an RSA keypair whose public component

is known by the consumer (C).

5. User (U) returns this signed data to the identity consumer (C).

6. The identity consumer (C) proves that user (U) has a right to the identity by

verifying the signature on the data and ensuring the contents of the signed message

matches the identity, nonce and canonical name expected.

This protocol allows for something many other distributed authentication pro-

tocols don’t: it allows users to use their identities elsewhere without revealing who they

pass their identity too. Unlike other major protocols (Facebook Connect, Twitter Auth,

etc) where the person who controls your identity has a complete list of where you use it

and when, this protocol omits the ability for identity providers to engage in that level

of tracking.

GETSIGNKEY is a convenience service which offers the public key used to

prove identities in PROVEAUTH. This service provides one mechanism out of many
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that identity consumers could receive the public keys for the signing keypairs for the

identity providers they wish to support.

2.2.2 Session Initiator

Fived ’s session initiator has a larger goal of breaking network applications’

dependence on the lower layers of the Internet. One of the major bottlenecks in the

existing transition in-progress between IPv4 and IPv6 is that applications are required

to be aware of IP addresses. This knowledge is necessary for applications even though

users mostly specify computers by hostname. Yet, the application itself is responsible

for the name resolution. Once it resolves the name, it must pass the correct layer 4

address to the underlying networking APIs.

The session initiator changes this. With it, the session API and session ar-

chitecture take control earlier. The session initiator performs the initial connection

establishment on behalf of the application. This allows applications using the session

stack to move beyond the existing APIs focused on addresses and port numbers and

simply ask the networking stack for a service. The session initiator needs to know two

things: the name of the organization or computer the application would like to com-

municate with and the name of the service the application would like to access. With

that, it does the rest and sets up the session.

Once applications move away from using addresses and port numbers, the

underlying architecture of the Internet can evolve without nearly as much hassle. The

session initiator will be the only thing that needs to change to allow applications to

connect to each other in new ways. Arguably this only moves the problem around,

but importantly it moves it to a place better designed for change, future expansion

and alteration. The session layer is a more appropriate abstraction and interface for

applications on the Internet.

2.3 Performance

Performance is always a critical issue. Users see performance overhead as a cost

to almost any security technology. The cost users are willing to accept varies widely, but
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it seems fairly clear that the higher the performance cost, the more difficult adoption

becomes.

The performance concerns for fived lie in two main areas:

• The increased cost of connection establishment with the session layer.

• The increased overhead during a data transfer across the network.

From the perspective of a user, these two things can be measured with two

metrics. The first is the amount of time required from beginning a request until the

first byte of data is available to the endpoint application. This is commonly referred to

as “Time To First Byte” (TTFB) and generally establishes a lower bound on network

latency. The second metric is the amount of time it takes for a request to complete. This

is harder to establish for fived since a session layer is generic infrastructure that supports

a variety of protocols with a variety of users and uses. There’s no firm definition for

the end of a request. So the metrics I used were Time to Thousandth Byte and Time

to Millionth Byte, which roughly correspond to a small one kilobyte data transfer or a

larger one megabyte data transfer across the network.

Experiments were conducted across the Internet using remote endpoints in

two different cities. Average round-trip latency between the computers was 28.36 mil-

liseconds with a standard deviation of 3.40 milliseconds. No significant packet loss

was measured on the link. The server side computer was connected to the Internet on

a university network which routes to the Internet via fiber, similar to most datacen-

ter environments. The client-side computer was connected to the Internet on a lower

bandwidth connection which is similar to most residential environments.

Measuring 500 datapoints shows the Layer 5 Time To First Byte is larger than

the Layer 4 Time To First Byte, showing the expected performance degradation caused

by needing to interact with a session server before being able to start an application

protocol. While the difference is highly statistically significant, there is also overlap

between the standard deviation of each data set as shown on the graph. Which means

many individual uses of the session layer will not be significantly distinguishable from

ordinary network jitter.

The story gets better when you look at time to completion. The gap between

Layer 4 metrics and Layer 5 metrics narrows as more bytes are transferred across the
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Figure 2.8: Layer 4 vs Layer 5 Performance

connection, which shows the dominating performance impact of the session layer is in

the initial establishment of the session. While this doesn’t show up as much with a

short transfer of a thousand bytes of data, the performance gap at a million bytes of

data is substantially lower.

For an implementation of fived entirely in userspace with no kernel compo-

nents and several remaining optimization opportunities, this is not a particularly bad

performance picture. It seems likely that the performance of fived may be manageable.

Of course, this isn’t the whole performance picture of fived. The opportunities

of a session layer allow us flexibility application protocols otherwise don’t have. The

data we’ve gathered so far tells us the story of what happens when you need to get data

from a peer across the Internet when you don’t have a session established yet and need

to set one up before being able to transfer data, but what of the cases where a session

exists?

The same experiment from above was repeated with a “warm” connection

where a session was already established. In this environment, we show that far from

a negative performance impact, the session layer delivers a significant performance im-

provement. Not only during Time To First Byte connection establishment, but all the

way through the millionth byte of data transferred. Avoiding TCP slow start appears
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Figure 2.9: Layer 4 vs Layer 5 Performance with Warm Connections

to provide substantial benefit that endures through the transfer.

While this benefit isn’t exclusive to fived and application protocols have re-

designed themselves, sometimes substantially, to employ similar tricks (HTTP 1.1 essen-

tially provided persistent connections and HTTP 2.0 essentially provides multiplexing)

the session architecture allows these performance benefits to transparently apply to any

protocol running on it. Instead of always imposing a cost, it’s quite likely that the

session layer can bring performance improvements and optimizations, possibly even tai-

lored to the specific network environment for each computer, without re-writing every

application which implements an application protocol.

2.4 Potential Improvements

2.4.1 Integration into the Kernel

Integrating some parts of the fived client into the kernel may provide consider-

able opportunities for performance enhancements resulting from less context switching,

less copying between buffers and other clever opportunities that occur in kernelspace

with full access to the kernel networking stack. The fived server could be similarly
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accelerated, though it seems fair to say that while demultiplexing might be suitable for

inclusion into the kernel, a good portion of the logic in the fived server could remain in

userspace where it can be customized and easily changed.

2.4.2 Integration into Hardware

For larger networks and integration of fived into switches and routers, it makes

sense to develop specialized hardware. A considerable amount of the active work fived

performs during most connections is reading the multiplexing headers and simply for-

warding traffic. This could be very efficiently implemented in hardware.

Fortunately interacting with the fived server directly is a rare operation. It

seems acceptable to expect that the core routing and forwarding portion use hardware

acceleration, while interacting with the session layer (i.e. requesting new services) can be

an exceptional operation handled outside of hardware or even by a separate machine.

This machine then handles the request using higher level processing power and then

hands down a new forwarding path for the accelerated multiplexer and demultiplexer

to use when there’s a new connection being established.

2.5 Deployment

Deployment needs to be a key concern with any new networking technology.

The goal is to ensure that no network or set of users find themselves unable to benefit

from fived. With the design of fived, an end-user can start gaining the benefits of a session

layer if any of the following occur: 1) Their operating system vendor incorporates it into

the networking environment for the operating system. 2) The network operator deploys

session technology on their network. 3) The user runs any application that natively uses

fived ’s session layer. If any of these conditions apply, compatibility toolsets will allow

most users to gain some of the key protections and benefits of fived. In this section, we

talk about how fived can be successfully deployed in each of these three cases.
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2.5.1 Deploying with Unmodified Applications

Naturally, today’s applications do not already support fived. However, using

a shared library preload unmodified applications can be retrofitted to use the session

layer via a compatibility shim. The shim could intercept calls made to the networking

interface, including name resolutions, sets up a session to the requested destination, and

routes traffic through the session. These applications would then be able to transpar-

ently take advantage of a user’s authentication credentials on a session or any increased

access level, session mobility and reconnection features or transparent encryption ser-

vices supported by the server. In addition, in the case that the application uses an

deprecated connection protocol, the shim could convert its API calls into a request to

the session initiator. This allows applications to use protocols that didn’t exist at the

time the application was written to reach services.

In the case of an unmodified server application, no changes are required since

the interactions servers have with the fived daemon appear no different than any other

network connection. However, a user who wishes to only expose a service through fived

will have to reconfigure their server to bind to a location on the machine only fived can

access. The easiest way to do this is generally to configure servers to bind themselves

to localhost or a local socket. It should be noted though, that users are free to expose

services via fived session layer while still keeping them open to all non-session layer users

via traditional means.

With fived users are not forced to take an all or nothing approach, the migra-

tion to a session layer can happen slowly. Private services that aren’t intended to be

visible to the entire world will generally be the easiest to migrate. Since many private

services are offered by organizations to people affiliated with them, it’s easier for these

organizations to require people install a fived client. For public-facing services, it will

take time to get to a point where all users have migrated and support for direct layer 4

connections can be disabled on legacy services.

2.5.2 Deploying with Unmodified Computers

Another compatibility option allows a network administrator to session-enable

segments of their network without waiting for each of the individual hosts to get their
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own native session support. In this scheme, a DNS proxy (or similar technology) can

point outgoing name resolutions to a session server. This session server can initiate

sessions to the hosts requested. This could allow for the users on the network to access

things they wouldn’t otherwise be able to reach in the case that the network has an

established authenticated session to some other organization, or it could merely ensure

traffic traverses a wide area network over an encrypted link. For mobile vehicles, like

buses, boats or airplanes, networks could also use the mobility features to maintain

connections as the vehicle roams between network points, possibly reconnecting from

an IP in a completely different Autonomous System.

A similar system could be built at the network segment perimeter without a

cooperating DNS server. If the session client is placed along the route for outbound

traffic, it is free to examine the destination of the packets coming from the unmodified

host, open a session to that destination and tunnel the traffic over the session layer.

Whether or not DNS spoofing provides network administrators and users with a more

desirable solution is an open question.
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Chapter 3

Changing the Computer Organization

The realization that modern architectures lack sufficient security features is not

a new one. Many grand visions of “trusted computing” remain unfilled. After millions

of dollars of research money, huge expenditures on the part of industry and rarely

seen levels of cooperation between hardware vendors, users remain without substantial

security features in their systems. Those features that do exist remain unused and few

users urge progress. Even the strongest advocates of trusted computing have quietly

ratcheted down their expectations and the current proposed uses for the TPM [72], a chip

that was supposed to bring about revolutionary security benefits to modern computing,

represent a significant departure from the original vision of the project. Despite a

rapidly increasing need for security, trusted computing systems remain unimplemented,

unrealized or without adoption.

Over the last few years, I designed an alternative system called LockBox. While

it is not possible to fully characterize an unimplemented system, the design represents

what I felt at the time to be the next generation of trusted computing technologies.

And indeed, as the last generation of trusted computing hardware has faded away, Intel

has put Software Guard Extensions (SGX) [4] on their product roadmap. Intel’s SGX

technology presents a surprisingly similar design to LockBox and accomplishes many of

the same goals. The design work we’ve accomplished, along with the preliminary data

we’ve gathered about how a system like LockBox might work, is perhaps even more

critical now that hardware with a very similar design is slated to hit the mass market

within a few years.
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First I explain the design tradeoffs we made in designing LockBox and highlight

where our system made different choices than Intel appears to be making with SGX.

Second, I describe the technical design of LockBox in detail. Finally, I share the design

ideas and data we gathered over our time exploring these types of systems and highlight

a few areas that may be increasingly relevant as we see these systems develop a broader

ecosystem and head towards widespread adoption.

3.1 Goals

A key issue which prevented adoption of the last wave of trusted computing

platforms focused on user control [5]. Almost all previous trusted computing platforms

were proposed as a way to secure content from users. While this may be a valid goal in

some cases, the purpose of these systems is to remove control from the end-user of the

device, which did not make them particularly popular. One of the key design principles

in LockBox is that the end-user is given tools to control the security of their computer.

In a reality where user-error is a large contributor to producing many security issues that

people face, trusting a user to make security decisions is an unfortunately controversial

approach. However, the only way to provide security features that enable users rather

than restrict them involves putting security decisions in their hands. The merits of a

security system that is controlled by someone other than the end-user is irrelevant if the

end-user rejects that system. LockBox ’s approach provides a feasible path to enabling

security features for end-users.

LockBox allows a user to tell the system which applications they trust. LockBox

provides a mechanism for the user to provide sensitive data to the system and ensure

that only the application they trust with that data has access to it. LockBox ensures

that this data remains secure if the trusted application is correctly programmed and it

ensures this security even if the management software between LockBox and the trusted

application is malicious.

LockBox provides these assurances by embedding features for Trusted Load-

ing, Trusted Memory, Trusted Runtime and Trusted Channels into the architecture. The

Trusted Loading features ensure that the user can identify and correctly load trusted

applications. The features for Trusted Memory ensure that only the trusted applica-
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tion can access the secrets assigned to it, and the Trusted Runtime features provide

the trusted application with protection from malicious privileged code. Finally, the

Trusted Channels features provide the user with a way to exchange data with trusted

applications.

LockBox enables users to protect themselves from bugs that result in com-

pletely malicious actions on the part their operating system or even their hypervisors.

This is a critical distinction as many previous trusted platform proposals require an

entire trusted software stack where all management software is required to be correct

and bug-free. Yet, operating system bugs are all too common [34, 52] and as hypervisors

get more complex, we are likely to see a similar progression. LockBox provides a way

for data to remain secure even when these systems fail.

The design of LockBox requires defining a mechanism for the security system

to prevent untrusted management software from compromising sensitive data while

still allowing the management software to do its job. In general, this is accomplished

based on a request/verify procedure where the trusted application makes requests to

the operating system, but LockBox ensures a trusted entity can verify that the request

was properly performed and the management software is properly functioning. Since

LockBox preserves the management software’s abilities to manage the system, malicious

management software is allowed to manage processes and even kill a trusted application.

However, even if the application is killed LockBox ensures that sensitive data cannot

be retrieved. Reclaiming protected memory can only occur after that memory has been

zerofilled.

These features move beyond the old definition of a trusted computing plat-

form and incorporate real features that provide security benefits in computing systems.

Systems that implement these features are necessary to enable an increased range of

activities on computing systems. Current environments don’t achieve the levels of se-

curity required for the full range of tasks users would like to do on their computers.

Systems like LockBox may be necessary to achieve those goals.
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3.2 Related Work

A large body of work has developed around trusted computing. However, the

most visible and well known type of trusted computing platform remains something

very different than what we discuss here. The Trusted Computing Group [73, 72] is a

widespread industry effort supported by virtually every major technology company and

produces a shipping product. For many years, their research dominated the discussion

around trusted computing. There are also academic systems, like Terra [30], with similar

goals, though Terra is implemented entirely in a hypervisor. Like the LockBox design,

these systems provide a mechanism for memory protection called sealed storage and,

in the case of the TCG’s system, involve hardware modifications. Yet, unlike LockBox,

both Terra and the TCG’s system are designed to produce a full trusted software stack

in which software at all levels of the machine is trusted. These types of trusted platforms

are very different from LockBox because of their reliance on this trusted software stack.

Trusted Application Trusted Application

Trusted OS

Trusted Drivers

       LockBoxTrusted Hardware

Untrusted System

Figure 3.1: Full Trusted Stack vs. LockBox Design

Another set of systems, XOM [43, 44], AEGIS [69] and others [7, 20] are all

systems which also embed security features into the hardware. XOM and AEGIS are of

particular interest as they do not require a trusted software stack. Also in this category

are the hypervisor-based systems Overshadow [16] and HARES [71]. While all these

systems wrestled with many of the same issues present in the LockBox design, all of

them chose to implement memory protection using an encryption layer. LockBox takes

a different approach and eschews the use of encryption algorithms. Under LockBox, if

one piece of code isn’t authorized to see the contents of a page, then that piece of code

isn’t allowed to see the data in any form. The hardware returns zeros on reads and

discards writes. This alteration fundamentally changes the relationship between the

operating system and the rest of the computer organization.
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This change requires new solutions in some areas that previous work does not

address. Swapping, for instance, becomes an issue when the operating system isn’t al-

lowed any way to view protected memory. The reason LockBox is different from all other

previous work in this respect is that unfortunately, allowing an operating system even

an encrypted view of memory provides more information than it might seem. While

the operating system may not be able to decode the exact contents, the OS will be

able to track which data changes at which times and how much, which is an overlooked

information leak in these systems. Not only is AES’s 128-bit blocksize an issue, but

memory’s random access nature precludes the use of chaining modes without substan-

tial performance degradation. The information gained by watching which portions of

memory changed can be quite detailed. In Section 3.5, an attack against these types

of systems is outlined and we describe the suite of tools we developed to analyze these

weaknesses. Further, since LockBox doesn’t require the use of encryption to implement

its core security features it not only has the potential to perform better, but the system

does not require specific cryptographic algorithms to be set in stone.

In most systems, the end-user has little control over which applications are

allowed to use these system’s security features. Therefore, the user is often placed in

a situation where an undesired application uses the security infrastructure not just to

prevent them from, say, copying protected content, but also to create powerful rootkits

[48]. Further, this lack of control by the end-user has been a large inhibitor to the

adoption of trusted platforms [5]. LockBox addresses this issue by placing the user

directly in control of the authorization and attestation processes. One of the research

challenges in this proposal is defining how security architectures can directly interact

with users in a sensible way. In Section 3.4 we present data from a user study that

provides insight on how some of these interactions can be made more successful. LockBox

stands alone in involving the user directly in the attestation and authorization workflow

of a trusted platform. This is the only viable way for trusted computing to achieve

acceptance in the marketplace and even by the full security community, parts of which

have grave concerns regarding current systems.

Finally all of these systems specify either a trusted hypervisor or trusted hard-
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ware1. LockBox on the other hand, was designed to be able to run as either a trusted

hardware design or as a pure hypervisor framework. This allows legacy machines to use

LockBox with a microhypervisor while allowing for a smooth transition to a hardware

implementation at a later time.

Some other pieces of the field are relevant to the development of these types

of systems. Single Address Space Operating Systems [75, 15, 40] provide the basis for

LockBox’s SLB structure. Hypervisor monitoring systems like [62, 25] contribute some

implementation level tips and tricks to make closely meshed page tables in hypervisor

systems perform well. Work on hypervisor nesting with bluepill attacks [54] on Xen

[8] as well as KVM’s [39] production level implementation of hypervisor nesting have

paved the way for hypervisors to emulate hardware features without eliminating the

user’s ability to run a more feature-rich hypervisor that accomplishes other objectives.

In addition, various microhypervisor systems like Bitvisor [64] and SecVisor [59] have

provided interesting insights into how security features should be incorporated into small

hypervisors. Systems like vTPM [11] demonstrate the feasibility of simulating security

hardware inside virtual machine monitors.

Multics’s memory protection rings [55, 57] were an early form of memory pro-

tection and an important comparison point for future designs. Other approaches to

system security include operating system hooks to produce fine grained security policy

[65, 46] and better tools [18, 60, 35] to help software eliminate security defects and move

closer towards correctness. These mechanisms will continue to be an important line of

defense in the security of the overall system. Systems like LockBox complement much of

the existing work in the field of security and provide applications with a last additional

line of defense when these other approaches fail.

3.3 Technical Design

The LockBox design outlines a collection of architectural features to improve

system security. Targeted towards implementation in either a nesting hypervisor or

an FPGA, Lockbox is designed to examine how end-users could be provided additional

1XOM specifies that part of the architecture features could be implemented in a hypervisor, but
acknowledges a few important elements would still require specialized hardware.
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hardware security features almost invisibly. The benefit of a nesting hypervisor is that a

user can still run their own hypervisor on top of the system. This means users can still

obtain the benefits of a feature-rich hypervisor without expanding the Trusted Code

Base of LockBox.

In general, LockBox was designed to ensure that once a trusted application

is provided with sensitive data, that data remains secure so long as the trusted appli-

cation was correctly programmed and LockBox ’s features are correctly implemented.

LockBox ’s features are designed to ensure that users will be made aware of whether or

not their secrets are being entrusted to applications running in a secure and trusted

context. Even in the case that the trusted application contains bugs, an attacker no

longer receives complete access upon compromising intermediate software, but is forced

to break both the management software and all of the user’s trusted applications pro-

tecting the data they desire. This substantially raises the bar required to steal sensitive

data on a computer.

The design of LockBox revolves around four different sets of features:

Trusted Loading These features define the concept of an application and an appli-

cation instance, and enables LockBox to identify an application instance when it

makes a request to LockBox. The architecture grants trusted contexts and trusted

identifiers to only the applications a user identifies as one they trust.

Trusted Memory These features protect memory from unauthorized users, including

the operating system and other system level software. These features ensure that

code running in a trusted context can make use of protected memory which cannot

be read or written by other code running on the machine.

Trusted Runtime These features isolate code running in a trusted context from in-

terference from supervisors and/or hypervisors running at a greater privilege level

than the application, but at a lower privilege level than LockBox.

Trusted Channels These features allow code running in a trusted context to receive

input from devices in a manner which identifies the trusted recipient to the user

and ensures that this input cannot be read by any supervisors and/or hypervisors

running at a greater privilege level.
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3.3.1 Trusted Loading

The Trusted Loading features of the LockBox design provide the notion of

identity and allow the architecture to maintain the concept of an application. This

allows low-level components to identify applications and provides the basis on which

access determination can be made.

Determining which applications a user trusts is another fundamental issue

these features address. A trusted platform must be careful about the code it allows to

run within a trusted context. If a trusted platform allows all code to run in trusted

contexts, malware and other types of undesirable software can use the security features

of the architecture to hide data from the end-user. On the other hand, if a trusted

platform doesn’t provide a mechanism for the user to allow code to gain access to

the security features, then these security features are hardly useful. LockBox contains

mechanisms to create secure trusted contexts only for those applications that the end-

user authorizes.

3.3.1.1 User Access Device

Allowing a user to specify exactly which applications they trust requires the

trusted platform design to directly interact with the user to determine their list of trusted

applications. Since users tend to have trouble making trust determinations based on a

set of hexadecimal numbers, a user interface is critical towards allowing the end-user to

comfortably interact with the security system. A human-readable identifier (typically

a unicode string) must be created that the end-user will recognize when prompted to

input data destined for a trusted application.

Fortunately, an existing metaphor can be reused. People are comfortable with

carrying keys to open door locks, car locks and other types of physical security mecha-

nisms. LockBox is designed to interface with end-users using a device that they would

use just like a key; simply inserting the device into a special designated socket. The

key provides digital storage populated with information read directly by LockBox. Typ-

ically, writing to the device should require the user to physically release a hardware

interlock on the key itself once it’s inserted into a machine. Users program their keys

using a computer or device they trust.
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The user’s key contains the following information for each application they

trust:

A human-readable identifier This is the human readable name the architecture will

use to identify the trusted code to the end-user. It should be chosen by the end-

user.

At least one of the following machine-readable identifiers:

A cryptographic hash On architectures which support a hashing mechanism

in hardware, users can simply store a cryptographic hash that the loaded

executable must match.

A full executable image An exact image of what the loaded executable must

look like. The hardware compares this against memory contents to check for

a match.

While the storage itself must be capable of being read directly by the archi-

tecture, the data on the key isn’t secret. It simply contains a list of human-readable

identifiers that correspond to a list of machine-readable identifiers.

The simple case for the User Access Device is that it is a simple storage de-

vice with a hardware interlock which is manually programmed by a user on a trusted

machine. However, more complex possibilities exist. If the LockBox design were widely

deployed it wouldn’t be unreasonable to expect that stores might sell User Access De-

vices pre-populated with hashes for all the most popular trusted programs. In a corpo-

rate environment, an employee’s name badge could serve wirelessly as their User Access

Device. The device could be updated each morning as it interacts with the building’s

security system when the employee enters; signed updates would ensure security and the

employer could transparently provide their employees with consistently up to date User

Access Devices data. LockBox ’s design can support much more complex environments

than covered here.

3.3.1.2 Creating Trusted Contexts

While LockBox ’s design does not trust privileged code to maintain the secu-

rity properties of an application, it does trust privileged code to manage a machine’s
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resources. Creating a new trusted context is something that can only be done by

privileged code. However, in order to assign the human-readable identifier and create

the trusted context the architecture checks that the operating system correctly loads

the program into protected memory and that the program matches the user’s machine-

readable identifier. If LockBox successfully verifies that the privileged code has correctly

loaded a trusted application, a new trusted context is created. Otherwise, the check fails

and the trusted context is not granted. This trust but verify model allows operating

systems and other magnagement software to serve in its traditional resource allocation

and management roles without allowing it to violate security constraints.

3.3.2 Trusted Data

From the moment a new trusted context is created, new protected memory is

allocated for the code that runs the context. The ability to utilize protected memory is

crucial for trusted applications. While this memory is originally managed by privileged

code, once it is actually allocated to a trusted context, it cannot be read or written by

any other code on the machine, including the operating system. This is a change to the

way memory protection works in current architectures. This set of features provides the

Trusted Data part of the design.

3.3.2.1 Security Lookaside Buffer

Code inside a trusted context does not have the same memory model as code

outside a trusted context. Within a trusted context, an architecture-defined portion

of the address space is reserved for protected memory access. Access to addresses

within this range does not use the normal page table or Translation Lookaside Buffer

(TLB) mechanism for virtual memory but instead uses a component called the Security

Lookaside Buffer (SLB), which is a simple variant of a standard TLB. The SLB is backed

by a separate set of memory security tables which determine the security properties of

memory within this address range as well as the mapping of virtual addresses to physical

pages.

This separate set of page tables is necessary to prevent a wide range of attacks

that occur when privileged code is allowed to modify standard page tables for protected
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memory. Instead, when allocating new protected pages, privileged code must specify the

identifier of the trusted context which will own the page and an explicit mapping between

the protected virtual address space and a physical frame. Once LockBox accepts this

allocation it writes the new mapping into a private storage location. Once this mapping

is written, the memory arbiter begins to enforce the stipulation that the newly allocated

physical frame may not be written by anything except a processor core running in a

trusted context. Memory remains protected until either an entire trusted context and

all its associated data is unprotected, in which case a trusted I/O controller overwrites

the entire space, or the trusted context voluntarily releases the page using the page

release mechanism described below.

The SLB can be implemented as a separate component or as extensions to

the TLB. In either case, it must be managed by hardware and contain the following

information:

• A mapping of the virtual page number to a physical frame number

• The identifier for the trusted context which owns the page

• A valid bit

In order to keep the complexity requirements to a minimum, the SLB simply

uses the same set of tables for all code running in a trusted context. Since the SLB

does not allow write and read operations from one trusted context to complete or return

valid data when issued on memory which belongs to another trusted context, there are

no security issues with having a shared mapping. Thanks to the large 64-bit address

space found in modern processors there is plenty of room to allow for partitioning of

the address space.

This maps particularly well to hardware, but can also be implemented easily in

a hypervisor. In a hypervisor prototype these features can be implemented using page

tables. The trusted I/O controller can be virtual, just a piece of software. This would

essentially allow the operating system to use the virtual I/O controller as a hypercall

interface to interact with LockBox. The SLB, while an important part of the hardware

design, can be entirely implemented using the TLB in the hypervisor based design.
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3.3.3 Trusted Runtime

The set of features in the Trusted Runtime section of the LockBox design

ensures that code in a trusted context cannot simply be subverted by the management

software on the machine. This set of features allows the upper portion of a software stack

to run on top of untrusted management software. To keep this trusted code running

inside a trusted context secure, the LockBox design includes several changes. First,

secure data inside registers cannot be exposed on a context switch. Second, as shown

by geometry attacks [61], arbitrary transfer of control into a protected code page cannot

be allowed as it is equivalent to allowing arbitrary code execution from that same page.

Finally, to enable swapping types of operations there needs to be a sensible mechanism

to allow privileged code to deallocate protected pages and flush a representation of them

to disk.

3.3.3.1 Program Status Page

In the LockBox design, Trusted Runtime features are enabled with the help of

a preallocated page within every executable which gets loaded into a trusted context.

This page is called the Program Status Page (PSP) and its address serves as an identifier

for the trusted context. The page contains the following information in a layout defined

by the individual implementation:

Register Flush Set Pointer This is a pointer to an area that will store the working

set of registers when a context switch occurs. It is loaded by the architecture on

entry to the context.

Restore Lock This field contains space for a lock. This lock is set during the restore

handler to avert timing issues and properly deal with concurrency.

Requested Program Counter Contains a copy of what the Program Counter (PC)

was before being overridden when the PC (re)entered the trusted context.

Page Release Address Contains space for a pointer. When set to an address that

is not inside the protected address space, this pointer is invalid. This area is

initialized to an invalid address.
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Swap Handler Address Contains space for a pointer. When set to an address that

is not inside the protected address space, this pointer is invalid and no handler

exists. This area is initialized to an invalid address.

Trusted Data Interrupt Handler Constains space for a pointer. When set to an

address that is not inside the protected address space, this pointer is invalid and

no handler exists. This area is initialized to an invalid address.

Trusted Data Address Contains space for a pointer. When set to an address that

is not inside the protected address space this pointer is invalid and no handler

exists. This area is initialized to an invalid address.

Trusted Data Length Contains an integer set by a trusted I/O controller when a

trusted channel has been closed.

Trusted Device Type Contains an integer set by a trusted I/O controller when a

trusted channel has been opened. The value of zero is invalid.

Default Register Flush Set Space for flushing one set of registers. When the PSP

is initially created, the Register Flush Set Pointer field points to this area.

These fields are used by the trusted application and LockBox to enable the

following features:

3.3.3.2 Protecting Registers

In normal operation, an operating system can pre-empt a process at any point

and view its architectural state. Unfortunately this is no longer acceptable when a

security system is in place which allows a program to place data in its architectural

state which privileged code is not permitted to see. Therefore, any time the processor

forces a transfer of control to a location outside the trusted context, the registers are

flushed to area specified by the trusted context’s register flush set pointer and cleared.

3.3.3.3 Preventing Arbitrary Jumps

Not only is there a need to prevent arbitrary jumps back into code running

in a trusted context for security reasons, but there is also a need to restore the sets of
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registers which get purged every time the control flow unexpectedly leaves the trusted

context. For both issues, the solution is the same. Upon re-entering code that is part

of a trusted context, the processor should override the PC and enter the code at the

beginning. The old PC value gets placed in the program status page in the Requested

Program Counter field. In a hypervisor version, this can be implemented using the NX

bit on the page tables.

This means at the beginning of every program designed to run in trusted mode

there should be either an instruction which transfers control to a restore handler or the

restore handler itself. This handler can take care of such tasks as restoring a program’s

register set from the program status page, resuming execution at the point the program

was interrupted or checking the Requested Program Counter field to determine if control

flow should go to a different location. If the requested program counter is set to a value

permitted by the application, the application transfers control to that location.2

3.3.3.4 Concurrency

The restore handler not only checks for a valid entry point and restores the

registers, but plays a critical role in ensuring that LockBox works correctly with multiple

threads in either a unicore or multicore system. The Restore Lock field in the PSP is

the main tool the handler and architecture use to coordinate. When the architecture

transfers control to a protected memory region, it acquires this lock. If the lock cannot

be acquired, then the architecture may either retry, or return control to the operating

system. This allows the restore handler to ensure that each execution context receives

a unique location to flush its registers.

To take care of control transfers during the time the restore handler is running,

the architecture does not enable flushing registers to protected memory until after the

restore lock is released. Instead of flushing the register set, the architecture releases

the Restore Lock and transfers control back to the OS. Normally, the Restore Lock

is released at the end of the restore handler with an atomic write instruction. This

write signals to the architecture that the context is again prepared to receive execution

contexts and the current execution context is ready to writeback its registers to the area

2Implementations with concerns about the performance of this section of the architecture could
implement portions of it in hardware or provide instructions which will accelerate these operations.
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Figure 3.2: Context Switch Handling

specified by the Register Flush Set Pointer.

While the Restore Lock serializes execution in the restore handler, it does not

prevent applications from taking advantage of multiple execution contexts. (i.e. multiple

threads) The operating system is free to pass a thread ID to the restore handler in a

register, (or any other mechanism defined by the OS ABI) which the restore handler can

use to resume the appropriate thread. The architecture reads the value of the Register

Flush Set Pointer field on entering the context to determine where the thread’s register

set will be flushed. The restore handler sets the pointer for where the next thread will

flush its registers and thus can ensure that each thread within the trusted application

flushes their registers to a unique spot. The restore handler should also record the

location of the Register Flush Set Pointer for the current thread in a table so that later

invocations of the restore handler knows where to find the thread’s register flush set

to properly restore execution after a context switch occurs. Lastly, the restore handler

zeros the PC from the register flush set of the current thread so future invocations of

the restore handler can detect whether or not the current thread has finished. (When

the current thread finishes, the non-zero value in the PC will get flushed to the flush

set.)
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In the case of a single threaded application, the locking mechanisms are still

required to prevent overwriting valid register flush sets from context switches inside

the restore handler, but the remaining issues are simplified. The Register Flush Set

Pointer can remain at its default value, pointing to the default Default Register Flush

Set and the restore handler simply returns when the operating system tries to enter the

protected context while an existing thread is running somewhere else in the context.

3.3.3.5 Page Release Mechanism

LockBox ’s design contains a page release mechanism which allows a trusted

context to release a page of protected memory from its control. This is an important

portion of the architecture; without it, an operating system would be unable to swap

protected memory. So this mechanism allows a trusted context to release a page from

security protections. If the context does so, it is responsible for either purging it of

secrets or replacing the data with an encrypted version which can be handled by un-

trusted code. Existing work with encrypted swap shows low overhead and hardware

acceleration instructions are now present in almost all new chips produced by major

vendors. In this environment, the performance of “software encryption” for swap is

likely negligible.

To perform a swap operation, the operating system sends a signal to the process

which lets the process know that the operating system had determined that the page at

a specified address should be swapped out. The program can either refuse to unprotect

the page and risk that the operating system will then decide to kill the entire process

by requesting the architecture destroy the entire trusted context, or it can comply. If

the program chooses to comply, it will likely want to replace the contents of the page

with an encrypted version. The program will then place the address in the Page Release

Address field of the PSP and transfer control back to the operating system, which can

then release protections on the page, and flush it to disk.

If the trusted context ever tries to read or write to a protected address for

which no mapping exists, the processor jumps to the Swap Handler Address listed in

the PSP for the trusted context. The handler should request the operating system

swap the page back in and generate an access violation if the OS does not have the
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page. A well-written handler will also want to verify that the contents are correct

and decrypt them if needed. Various cryptographic mechanisms can be used to verify

integrity, including cryptographic signatures and cryptographic hashes. If the PSP does

not contain a valid handler address, the processor traps to the operating system just as

if it was unable to load a TLB entry for that address.

3.3.3.6 Co-operative Swapping

Trusted computing architectures such as [16, 44] allow operating systems to

swap protected pages without much issue through the use of cryptography. These archi-

tectures provide two views of memory, one encrypted and one decrypted. Applications

within a certain trust domain are given a decrypted view of memory while everything

outside it, including the operating system, is given an encrypted view. This works well

for swapping as the Operating System can simply flush the encrypted copies of the page

to disk and restore the encrypted version as needed. In LockBox ’s design however, the

lack of a PKI or any sort of hardware encryption prevents us from following this model.

Instead, LockBox relies on a co-operative swapping mechanism.

To set up co-operative swapping, an application performs the following steps:

1. The application produces a key based on trusted information requested from the

user through a trusted channel.

2. The application uses mlock() or a similar call to request that the operating system

wire down the pages that contain: 1) The code used to handle swap requests 2)

The code used to encrypt and decrypt pages 3) The page where the key is stored.

3. The application installs a handler for swap-out requests with the operating sys-

tem.3

4. The application places the address of the handler for swap-in requests in the Swap

Handler Address field of the PSP.

3Recall that the Requested Program Counter field allows for applications to permit code from outside
the trusted context to jump to certain well-defined addresses within the protected address space.
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Figure 3.3: Co-operative Swapping

Once these operations are performed, the application continues running as

normal; if at any time the OS wants to swap out a page of protected memory, the

program uses the Page Release Mechanism described in previous section.

3.3.4 Trusted Channels

Trusted Channels are needed for a trusted application to communicate with

the user and obtain secret information. The initial design work around LockBox largely

focused on trusted input. This allows for users to provide secret data to trusted ap-

plications without fear of that data being intercepted. The minimum trusted output

necessary to implement LockBox is the application name. More complex outputs are

only needed if applications need to display confidential data. For some common use-

cases, (i.e. password entry) securing only input is reasonable and allows us to implement

real security features without the complexity of outbound trusted channels.

To create a trusted channel, the application requests one from the operating

system. Assuming the operating system decides to comply with this request, the OS sets

a trusted I/O controller to handle interrupts from the device with which the channel was

requested. The trusted controller writes the type of the device into the Trusted Device

Type field of the trusted context’s program status page. From this point, a trusted

channel is now open.

The trusted DMA engine then provides the device with the human-readable

name associated with the trusted context. The device can then display this information
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to the user. This information allows the user to know two things: 1) Their information

will be going to a trusted application and will be stored in secure memory 2) Their

information will be going to the trusted application they see displayed by the device.

This allows them to determine whether or not to use the device to reveal secrets to

their trusted applications. If there is no name displayed, the user will know that the

hardware is not securing any of the secrets they provide.

When data comes in from the device on the other side of the trusted channel,

the trusted controller places it at a protected page pointed to by the Trusted Data

Address field in the trusted context’s PSP. It then clears the trusted device type field,

writes the length of the data written to the page to the Trusted Data Length field

and closes the channel. Outbound channels will be implemented using a very similar

mechanism, but in reverse.

3.3.5 Designs for Trusted Networking

The LockBox design opens the possibility of protected contexts where a trusted

application can maintain the confidentiality of its data even if the management software

running between LockBox and the application is malicious. Using these channels to

enable trusted applications to securely move data on to and off of a network from their

trusted context opens many possibilities. In this section, various models for interacting

with a network using trusted contexts are examined.

Perhaps the most important property needed is access to the network which

does not require passing sensitive data to management software running between a

LockBox system and the end application. Existing systems require applications pass

network requests to the operating system which multiplexes the network interface with

its own networking driver. In the LockBox design, trusted channels provide direct

channel to a networking interface. A trusted application can pass data directly with a

virtualized network interface and does not rely on the operating system to multiplex

the network interface.

The second security feature important to a trusted context is maintaining a

notion of identity on the network. Being able to securely communicate on the network

is of limited value if the network can’t disambiguate data from a certain trusted context
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with from any other data flowing out the same interface. Enabling a trusted context to

maintain an identity on the network is a key requirement for trusted networking.

There are two different types of identity we think are critical in a modern

trusted system. The first is identity on the local network. This identity allows the

networking infrastructure to disambiguate a trusted context’s traffic from other traffic

on the local network. The second is identity on the global Internet. This identity allows

traffic from a trusted context to be distinguished by other applications running on other

computers anywhere on the Internet. Both types of identity are important to enable a

broad set of applications to use LockBox -like trusted channels.

The trusted networking needs for LockBox -like systems fall into three distinct

modes. These modes can be combined or used separately depending on the security

needs of the application. Each mode requires a different set of storage requirements.

Each is stated, including whether or not the data stored has confidentiality requirements.

3.3.5.1 Local Equivalent

The first mode focuses on a baseline level of protection that allows a trusted

context to communicate on the network without interference or snooping from the Op-

erating System. Single Root I/O Virtualization (SR-IOV) can be used to multiplex a

series of virtual interfaces on one network card out to trusted contexts and the host with

minimal performance overhead. These interfaces can all be managed independently of

each other and traffic sent and received by one interface can be separated from the

others in the software stack. If the networking infrastructure and physical links are
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trusted, this alone can be enough to ensure some level of security for trusted applica-

tions which wish to interface on the local network. If they are not, existing network

security technologies can be deployed.

3.3.5.2 Local Network Identity

Providing an identity for trusted contexts on a network is a step beyond pro-

viding Local Equivalence. Identity information can be present in LockBox ’s User Access

Device, the piece of LockBox that contains human and machine readable identifiers for

each trusted context. The user can include a port and VLAN tag and/or MAC ad-

dress in the User Access Device for each trusted context the user grants a local network

identity. Like other data held in the User Access Device, the security properties of

the system rely on the data’s integrity, but not its confidentiality. LockBox can then

partition traffic from trusted contexts onto a separate physical trusted port (or several

trusted ports, depending on the number of physical ports available on the network in-

terface and the user’s desire for separation) and tag traffic from trusted contexts with

the VLAN tag and/or MAC address specified in the User Access Device.

Many modern network cards have the ability to restrict virtual interfaces so use

of a specific VLAN tag or MAC source address can be specified before yielding control

over the virtual interface [37]. Cards also include functionality to detect malicious

drivers, which allows LockBox to prevent other virtual network interfaces running on

the same trusted physical port from using an identifier which was not assigned. These

features are embedded within the hardware with minimal performance overhead.
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These tags can be used by the hardware in the underlying networking in-

frastructure to make access control decisions. Since LockBox can dedicate a physical

port exclusively to traffic from trusted contexts, the networking hardware can know

that any traffic on that port with the appropriate VLAN or MAC source tags came

from the trusted context associated with those tags. Traffic on other ports can remain

unrestricted.

3.3.5.3 Internet-wide Identity

VLAN tags and MAC source addresses only provide an identity to the local

network infrastructure. While this provides an identity on a local network, many in-

teresting security applications span administrative domains. They need identities that

reach beyond the local network. This can be achieved with TLS client certificates [24]

and like before, can be stored in LockBox ’s User Access Device. Unlike other identity

information stored in the User Access Device however, the confidentiality of this data

does impact the security constraints offered by the system. Only the trusted context

assigned to the TLS client certificate should be able to read the private key material in

the certificate

LockBox ensures that once a trusted context is properly initialized and verified,

the client certificate assigned to the context can be loaded into its protected memory and

remain confidential. The context can then use this certificate to open TLS connections

across the Internet and verify its identity using its certificate. Recently, a large amount

of work has been put in to reduce the overhead of TLS as deployment of HTTPS has
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increased in several major web-based products. (Gmail, facebook and twitter are notable

examples.) This overhead reduction combines hardware features like AES-NI [36], a

series of hardware encryption acceleration instructions available on recent processors,

with a range of software optimizations. Use of TLS in this context provides a high

performance and simple way to provide identities across the Internet.

3.4 Designing Interaction with Users

End-users frequently disregard, respond erratically or don’t even notice the

interfaces that are supposed to help them protect their machine. Here we examine

hardware interfaces that provide end-users with an auxiliary security screen which dis-

plays information from a hardware security system. We are interested in finding out

how users react to such a screen and determine whether or not such an interface allows

user to make good security decisions.

I designed an experiment where users were prompted to log in to a series of

login forms. The screen displayed various iterations of text and we were able to test

user’s error rates as well as response times to various security displays. I observed both

the timing information and the error rates of each screen. With statistical analysis, we

draw several conclusions from the data. These supported some of our interface design

assumptions, provide insight into phishing type attacks on these types of interfaces and

suggest how the hardware should respond when there is no trusted channel present.

These conclusions validated portions of the LockBox design as well as suggest possible

tweaks for further accuracy in the future.

3.4.1 Experimental Design

There are two very important metrics that determine success for a security

system like this:

Accuracy The user’s ability to come to the correct conclusion.

Cognitive Overhead How much thinking the user is required to do to come to a

conclusion.
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While many, might consider the first metric to be most important, the second can be just

as, or more, important. The amount of cognitive overhead a user experiences determines

their willingness to use the system at all. Since the accuracy rate of a system that a user

doesn’t use is zero, it could be necessary to trade accuracy for lower cognitive overhead.

That said, this data does not support the existence of a tradeoff between these two

variables in this particular interface. Our results are consistent with the hypothesis

that interfaces with lower cognitive overhead are also more accurate.

Accuracy metrics were gathered by recording whether a user reached the cor-

rect decision. Tracking cognitive overhead was more difficult. Since there no neurosci-

entist or MRI machine was present in our lab, I recorded time between responses. This

seems like a reasonable metric for cognitive overhead, but simply observing how quickly

someone reacts is an indirect measure.

3.4.1.1 Subjects

20 subjects participated in the study. They were recruited from the University

of California, Santa Cruz campus and Silicon Valley. The academic participants from

UCSC’s Computer Science department consisted of one professor, one undergraduate

and five graduate students. In addition, two undergraduates and four graduate students

participated from other departments at UCSC. Another was studying an unrelated field

at Stanford. The remaining six participants worked full time for various Silicon Valley

tech companies.

The subjects ranged from 20 to 50 years of age. All were familiar with tech-

nology, but not all had chosen it as their vocation. Most were students. In general, the

subjects were both young and very familiar with computers.

3.4.1.2 Pilot Study

The first six participants were comprised the pilot subjects for the project.

When it was found the pilot study was yielding valid data and the methodology appeared

to be sufficient, we incorporated data from these subjects into our main study. The

methodology did not change after the pilot study. At the conclusion, we verified that the

pilot study participants did not produce significantly different results than the remaining
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users.

3.4.1.3 Test Procedure

The test began by providing the subject with a series of instructions. Included

in these instructions were information on the test, the methodology and the format.

Users were given a username and password and shown an exact picture of contents of

the screen they should accept. The users then moved on to a series of login forms where

they were either able to login, or press a button that stated the form was insecure.

The auxiliary security screen would change at each page and the user’s responses where

tracked. About 2/3rds of the way through the test, users were told that instead of

different types of screens, they would only see two screens: the proper screen and a

screen that said the input was insecure. At the conclusion of the test, the users provided

feedback on a paper survey.

In the first part of the study, the auxiliary screen displayed one of the following

readouts during the study:

• A screen that read firefox. Users were instructed that this screen meant their

input was secure.

• A screen that read Firefox. With the first letter capitalized. Users were in-

structed to press the button that said the form was insecure if the auxiliary

security screen deviated from the lower case “firefox” readout.

• A screen that read f1refox. With the first ‘i’ replaced by a 1.

• A screen that read internet explorer. The name of a complete different, but

related program.

• A blank screen.

In the second half of the test, users were given a screen that read out -INPUT

INSECURE-. This interface of affirming an insecure state was compared to previous re-

sults where the insecure state was discovered by the lack of a proper security notification

on the auxiliary screen.

During the experiment, the subject sat at a computer terminal with a re-

searcher seated behind them jotting observations on a post-it. The researcher had a

view of the screen, the auxiliary screen and the user’s input. Users did not appear to
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pick up on any signals from the observer as several thought they were doing badly when

they were doing well or well when they were doing badly. The observer helped facilitate

this neutrality by wearing a somber expression and a white lab coat.

3.4.2 Data

The first 10 questions were screened out of the data as a training period. Since

the user responded slowly at first and slowly grew better through the first 10 responses,

these responses were screened out as not representative. In addition, we also screened

out outliers where users took greater than 30 seconds. This happened only on a few

datapoints. The observation notes confirmed the majority of these instances occurred

when the subject paused during the test to ask a question or receive clarification.

3.4.2.1 Cognitive Overhead Metrics

Cognitive overhead was based on a measure of time between responses. We

present both the average responses in graph form as well as a few statistically signifi-

cant statements that can be made about users cognitive overheads in one part of the

experiment vs. another.

Figure 3.4: Graph of the averages

The following differences were all statistically significant:

• Users were quicker to respond during the phase of the test when the insecure state

was affirmatively presented. (p=.029)
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Figure 3.5: Graph of the averages, showing negative user responses shaded in blue and
the excluded section of the results

• Users were quicker to determine that the system was insecure when presented

with an explicit warning instead of a blank screen. (p=.017)

• Users were quicker to respond after the training period. (p¡.01)

3.4.2.2 Accuracy Rates

We present both raw and adjusted accuracy rates. The adjusted rates exclude

data from three participants who produced particularly erratic and noisy data. These

three participants either didn’t correctly understand the experiment or mistakenly as-

sumed that one of the fake screens was correct and the right screen was fake through

all or a portion of the experiment. (People seemed inclined to prefer a capital F in

their Firefox and would actually begin reject the lowercase one even though they were

prompted to use that instead.) These types of mistakes would be unlikely to occur in a

design like LockBox ’s, so we excluded these particular cases in the adjusted results.

3.4.3 Findings

While security interfaces are tricky and often involve high rates of user error,

our findings yield two different findings security interfaces should take into account to

increase their success rate.

First, avoid interfaces which allow attackers to pick any strings on the security
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Figure 3.6: The accuracy rate compared to baseline for each security screen using raw
data

Figure 3.7: The accuracy rate compared to baseline for each security screen using
adjusted data

indicator. Both the accuracy and cognitive overhead data that users were faster and

more accurate when they did not have to distinguish between various similar looking
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screens to determine which one was correct. This data supports the design approach

made in LockBox to present users only with strings that they chose if a trusted channel

is secure, or none at all. This design decision sets the interface in LockBox apart from

interfaces which allow attackers to present users with similar name, such as in browser

address bars in web browsers. The problems and challenges that present themselves for

that type of interface are much greater.

Second, when the system is in an insecure mode, affirmatively display this

information to the user. A blank screen was less effective than an explicit message.

Users were both faster and more accurate if the screen displayed an explicit warning

that their input was insecure. This is not as obvious a conclusion as it might seem.

Having the security screen always display one message or another runs a risk of user

fatigue in the long term. A longer term study needs to be done to determine whether

affirmative displays of insecure modes continue to result in increased speed and accuracy

over the long term. However, the short term data in this study is consistent with the

idea that explicit notification helps users reach faster determinations.

These findings provide some hope that while security interfaces have often

fallen short of providing the tools users need to effectively make good security decisions,

better interfaces are possible. Accuracy rates increase significantly when interfaces

avoid specific problems. Many existing systems have not been designed to avoid these

mistakes, so continued poor results for these systems should not come as a surprise.

With further study, security interfaces may one day achieve significantly higher levels

of accuracy at reduced cognitive overhead.

3.5 When Encryption is Not Enough

Systems which provide protected contexts within an untrusted system, such

as HARES [71], Overshadow [16], AEGIS [69], XOMOS [44] and others use memory

encryption to protect the contents of memory. The goal of this protection is memory

opacity, or the property that code which can only see the ciphertext of memory cannot

determine anything about the contents of that memory. Unfortunately, memory en-

cryption does not fully provide memory opacity. It can be shown any system relying on

this assumption loses some degree of memory opacity over time. This class of analysis
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can be called temporal cryptanalysis.

The starting assumptions include that an attacker can read only ciphertext,

all encryption technologies are correctly and competently implemented and provide

sufficient integrity checks to guard against writes. These checks are assumed to be

durable over time, in that it is assumed that an attacker cannot use a previous block

of ciphertext to revert memory to a prior value. These attacks are all problems, but

fundamentally, there are cryptographic solutions to them.

Figure 3.8: The ciphertext contents of RAM change as updates become visible

Temporal Cryptanalysis on the other hand, is driven by the understanding that

data in systems isn’t staic. While one observation of ciphertext yields little information

about the contents of memory, additional observations rapidly begin to leak information

about how the trusted code is changing, updating and interacting with memory. This

information is useful.

None of this is particularly new. Traffic analysis is a very similar technique

which often applies on networks and has been effectively used to break or weaken systems

for decades. Traffic analysis is not unknown when it comes to protecting RAM either.

It has been implemented using FPGAs on live memory busses to break real systems,

notably in the reverse engineering of the Nintendo DS. This exact type of analysis has

been noted in a previous work which built a system to try and mitigate these effects to

some degree [26]. But somehow when it comes to trusted computing technologies, these

risks are rarely discussed when the security properties of the system depend on memory

opacity.
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3.5.1 Proof of Concept

There doesn’t seem to be a realization among the broader community that

memory encryption cannot provide complete protection to memory contents. So maybe

we need a better proof of concept. The goal of a proof of concept is a clear and easily

demonstrated example of the flaw.

If we demonstrate a concrete example of an application’s essential functions

being seen and analyzed through the changes in memory data alone, we can show

this problem is real in a more tangible way. Then we can simply rely on the hard

won understanding the crypto community has demonstrated and embraced for decades:

weaknesses only become more serious with time. Here we briefly present a proof of

concept in a game of chess.

3.5.2 Tools for Temporal Cryptanalysis

One of the challenging aspects of developing a new proof of concept involves

developing the tooling required for examining the problem. Often, new tools are needed

to make things better. While plenty of existing memory snapshot tools do exist, we

built our own targeting this particular issue:

• memsnap [23] is a memory snapshotting tool that provides the ability to dump

the entire memory space of a process at a programmable interval. This allows us

to compare observations at particular granularities. You can find it here: http:

//github.com/djcapelis/memsnap

• memdiff [21] is a memory differencing tool that outputs only the differences be-

tween subsequent memory snapshots with a programmable block size. You can

find it here: http://github.com/djcapelis/memdiff

• memxamine [22] is a triage tool which provides a basic way of narrowing down the

sections of memory that are most likely to be interesting to examine. You can

find it here: http://github.com/djcapelis/memxamine

These tools work together to provide a toolset for exploring memory for these

types of issues. If someone can show that memsnap and friends can produce a successful
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cryptanalysis, then specifically written tools will be able to do even better with lower

overhead.

3.5.3 Would You Like To Play A Game?

So how can we show that playing chess is vulnerable to this issue on systems

which encrypt memory? In this case, we analyzed memory snapshots from xboard, [77]

a gnuchess [32] frontend, running on a Linux system. Once we recorded snapshots of

memory with memsnap, the problem became an issue of figuring out which sections were

important to examine. Thankfully, there are some easy rules to triage our memory

regions:

• Regions of memory that never change are uninteresting.

• Regions of memory that change sometimes are the most interesting.

• Regions of memory that always change are less useful.

In the version of xboard we examined, after looking closely at the regions which

changed periodically and seemed to correlate with the times players made moves in the

memory snapshots, multiple regions seemed ripe for exploitation:

• Offset 0x016e1a0 in memory region 0.

• Offset 0x01702a0 in memory region 0.

• Offset 0x016d6f0 in memory region 0.

These sections tended to change each time a move was made in our traces, but

another section proved even more interesting. At offset 0x007fe20, a datastructure over
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64kb long lies in memory. This structure updates exactly once per move and each move

is recorded array style linearly in this memory section. Not only can one determine how

many moves were made by seeing when this structure updates, if the memory writeback

granularity is low, a clever attacker can recover the number of moves since the last

observation of the ciphertext merely by looking at how much ciphertext changed. This

means even if an attacker fails to make an observation after every move, they can still

determine how many moves have been played.

And of course, given the rules of chess, an attacker that knows how many

moves were made in a chess game also knows which player couldn’t have won the game.

(Technically they can’t say the other player won, because the game might have concluded

in a draw.)

You can see a youtube video of this proof of concept here: https://www.

youtube.com/watch?v=Eqrtn7LKuoE

While this section of memory was particularly easy to exploit, it’s important

to note that our analysis highlighted multiple other memory ranges vulnerable to this

type of analysis. This is not a problem with one particular datastructure in xboard.

This is a problem with how transparent memory write patterns are to analyze while

looking at changes in ciphertext.

3.5.4 Game Over: Attacker Wins

It is important for system designers to realize that memory encryption is a

weaker form of protection than denying access to memory outright. While this may seem

like a simple and naive proof of concept, it is especially important to note that this didn’t

require sophisticated machine learning algorithms, complex analysis or even memory

snapshotting tools that are selective in what they capture. If it took sophisticated tools

to show information can leak in memory encryption, that might be more comforting.

But it does not. With a general purpose memory snapshotting tool and a shell

script, some of the most sophisticated trusted computing systems in the world can’t

protect the confidentiality of a chess game. Memory encryption is not sufficient.

60



3.6 Implementation Concerns

While LockBox was never completed as we designed it. If someone were inter-

ested in continuing this work, here are some concerns they might find relevant.

3.6.1 Hardware Cost

Several hardware alterations are required to the processor to implement Lock-

Box. Due to the wide variation in other components of the system, such as the moth-

erboard, memory interface and peripheral devices, I limit my analysis of LockBox ’s

hardware cost to the on-chip modifications.

The following on-chip modifications are present in LockBox:4

Caches The caches must be modified to store an additional flag of metadata. This flag

indicates whether the line’s security properties must be looked up in the Security

Lookaside Buffer.

Security Lookaside Buffer What the TLB does for address translation, this new

structure does for security constraints. This structure queries the memory arbiter

to determine the security properties of the page.

Register File Due to the extremely sensitive timing of this component, it is critical

the changes to the register file be as noninvasive as possible. The only alteration

to the register file is that during a context switch, registers may need to be flushed

by hardware. Instead of modifying the register file directly, a hardware assisted

register flush can be implemented by running code from a small ROM. In this case,

the register file itself will be able to remain unmodified with only the addition of

a small ROM and minor control logic. Engineering challenges for each specific

VLSI design will dictate the level of modifications possible for the register file.

3.6.2 Code Analysis

One way to begin to analyze the performance of systems like these without

a complete prototype to run on is to look at the amount of code that one might split

4In this case I consider the memory controller, despite being on-chip in recent Intel processor designs,
to be an off-chip component.
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out as “security code” in various larger applications. In this section, I present data

from a brief examination of a few applications to see what percentage of the memory

accesses are attributed to encryption-related code. This analysis allows us to understand

approximately how much additional overhead a system like LockBox might impose if

the encryption functions of these applications were split off and run in a trusted context

with some associated performance penalty.

Three applications were profiled:

• A text-based web browser (Lynx 2.8.6rel.4)

• An e-mail client (Evolution 2.10.2)

• An instant messaging client (Gaim 1.5.0)

Each of these applications was run under Valgrind [60] with the callgrind plu-

gin. This tool can decompose all the application’s memory accesses (both code and

data) and map them back to the function which caused them. These accesses were

grouped together by library and the accesses caused by security libraries were separated

from the accesses caused by the remainder of the program. For Lynx, the accesses from

Libcrypto, a library providing SSL were considered “security code”. For Evolution, the

accesses from LibSSL were considered “security code”. For Gaim, the accesses from the

OTR library, providing off-the-record encryption for conversations, were designated as

“security code”.

Program Total Secure Percent

Lynx 74,159,190 10,297,322 13.885%
Evolution 5,341,809,490 669,341 0.013%
Gaim 12,660,199,842 569,526 0.004%

This provides a bound on the amount of accesses which would be exposed to addi-

tional overhead if one incorporated only the encryption functionality of an application

into a trusted context. Fundamentally, the data supports the conclusion that security

code is responsible for only a small portion of memory accesses in an application. Which

means that if applications find the performance impact of trusted contexts unmanage-

able, splitting applications so that only the security-critical sections run inside a trusted

context allow a very substantial section of code to run outside a trusted context without

any associated overhead. For most applications, this seems unlikely to be necessary at
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all, but for high performance applications, this approach may be a better alternative to

eschewing use of security features altogether.

3.6.3 Deployment

Deployment is always a focal point of any change to core technologies. Lock-

Box ’s design has the following deployability advantages:

• LockBox gives control of security to the consumer buying the machine.

• LockBox can be deployed in software if compatible hardware is not available, or

without additional layers of software if compatible hardware is used.

• Security threats against hypervisors and operating systems continue to increase.

LockBox ’s design provides users with a way to keep some security even when these

layers cannot be trusted.

3.6.3.1 Developing the Software Ecosystem

After exploring the tradeoffs with LockBox in a hypervisor, and proving the

feasibility of the hardware design, there remains a need to show the various types of

security features that a system like this would enable. In particular, one of the most

exciting areas of work is designing the modifications which will be needed to implement

support for LockBox in most modern programming languages. There is lots of potential

for integrating this work into mainstream compilers and making the security benefits

of the system usable by adding a compiler flag during the compilation process. The

compiler could emit a program that would invoke the LockBox framework and store

secret data within the hardware. Since there is no requirement for cryptographic signing

of programs, no certificates will be needed and nothing will need to be configured.

Designing this type of high level interface would be key for achieving adoption of this

technology.

There are several other interesting applications that could be developed with

a prototype of this technology. Unfortunately the effort needed to develop these ap-

plications is beyond the time and resources of the initial rounds of my dissertation

work. Future research projects could experiment with the following applications of the

LockBox design:
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Secure Input Libraries A modified input stack for a typical X11 session which can

automatically request secure keyboard input for any trusted application which

comes into focus. This could automatically provide secure keyboard input to any

trusted application which asks for it.

Secure Linking and Loading The linking and loading environment may need to be

modified to support some aspects of LockBox. New methods for using shared code

will need to be found and some changes in this area will be examined.

Secure Web Browsers This application is the one which most inspired this design.

The ability to type passwords into a web browser on public terminals without

concern that the machine has been remotely programmed to store all keystrokes

is something which should be available to all computer users.

Secure Virtual Machine Monitors With the increasing interest in virtualization

and containerization technology, it would be interesting to take a virtualization

or container framework and modify it to allow all of its guest systems to use this

framework. This would allow the construction of a container system which, if

compromised by an attacker, would not reveal data from the guest systems and

be able to provide increased isolation for virtual machines.
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Chapter 4

Final Thoughts

I chose a research area whose true endpoint was always going to be beyond

the reach of my own efforts. These systems are big and change slowly. Computing

systems touch a huge fraction of the global population. The cost of change is growing

larger. It is amazing many of the systems we unquestionably rely on continue to work.

Shared convention, understanding and mere tradition all play large roles in keeping

these systems alive as they grow and evolve.

The explorations I’ve done to poke and prod at these systems and examine

which parts might be best to change are my best guesses about how to improve our

infrastructure. The ideas this document puts forth offer various tweaks and improve-

ments. I suspect some of them will exist one day, in one form or another. Some of them

exist already and I’ve tried to point out where they might interact with other ideas to

create change larger than they would in isolation.

It’s unclear how technology will unfold. It’s unclear what influence, if any, the

work I’ve done will have as these systems evolve. But what I’ve done here is collect,

to the best I was able, a set of systemic evolutions worth implementing in some of the

fundamental computing systems that run our world.

4.1 What Allows Change?

I’d like to take a moment to talk about the factors that drive change in tech-

nology. What leads people to adopt new technology? How does security tie in with
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those motivations? What security concerns do people have around technology? What

types of systems are most likely to bring about security improvements? It is in these

questions that we can better understand how these proposals for change might succeed.

4.1.1 The Problem of Security

When evaluating choices, risk plays a role. Each person has a particular tol-

erance for risk. This tolerance determines when a choice becomes too risky for some-

one. Security describes practices to reduce risk. These practices can allow people to

make choices they woudln’t otherwise feel comfortable making, because the risk of those

choices has been reduced or mitigated. Security changes are motivated when we realize

that our tolerance for risk has been exceeded, or when we wish to be able to make

choices that otherwise would exceed our risk threshold.

Unfortunately when it comes to technology, we’ve seen that people can often

have a difficult time making security decisions. There are two main issues with our

ability to make reasonable decisions about the level of security in our technology:

1. It is extremely difficult to correctly determine the risks involved in using technol-

ogy.

2. When we design technology, we rarely state what level of risk is acceptable.

This does not match well with how humans deal with risk. Risk is something

we not only tolerate, but welcome. While risk thresholds vary widely, people don’t just

adjust their level of risk downward. Risk compensation [68] [27] describes the human

tendency to adjust our levels of risk upward as well. Since we adjust our level of risk

frequently, it is very important to be able to judge our current level of risk.

Unfortunately with technology, this is rarely true. When we design our com-

puting technologies, we don’t articulate clear and reasonable risk thresholds. Our model

of risk is binary, where something is either vulnerable or is not. At the micro level, this

is often the reality we face. Yet, binary risk is hard for humans to engage with. We

make choices to bring risk within our tolerance, but with binary risk, every act exceeds

our tolerance. There is no middle ground.

This is in stark contrast with other fields, especially those with mature engi-

neering practices. For instance, when we build a bridge, there are engineering documents
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that state the estimated risk that the bridge may collapse and kill every individual on

it. Mature engineering practices revolve around accepting this reality and calculating

it. Obviously, we design bridges with the goal that they not collapse, but our ability

to build safe bridges does not come from claims that the bridges we build will never

collapse under any circumstance.

It should be noted that parts of our field live up to these standards. Encryption

is a notable bright spot in security. We have many models to estimate the likelihood

an encryption algorithm would fail. System reliability in VLSI design is another area

where we are able to model risk accurately. Device engineers can tell you the likelihood

that your calculation will be wrong given a certain intensity of cosmic ray strikes on a

given circuit. Likewise, in storage, it is routine to model the likelihood of data loss or

corruption on either an individual component in the storage stack, or across an entire

storage system. Improving these models is part of the everyday work of research groups.

Yet other than encryption, most of security remains an area where we lack the

ability to calculate risk effectively. Fundamentally, this is because so much in security

involves human actions. Security exploits aren’t things that happen to software by

chance. Security exploits are things humans design and outcomes we achieve with a

degree of intention. It is easier to predict whether or not an earthquake will cause a

bridge collapse because we don’t need to model an earthquake with malicious intent.

And the problem with all this is that when we can’t calculate the risk, our

ability to engage in risk compensation is weakened. Our ability to make informed

decisions about the security design of our systems is flawed.

The biggest problem with security is that we don’t know how much we need.

4.1.2 Beyond The Threat Model

If we don’t know how much security we need, when do we make decisions to

add it? Many of the changes in this dissertation were motivated by a desire to allow us

to improve the security of our systems. How do we prioritize the addition of security

against the other goals we have in advancing technology?

After all, the world is more complicated than decisions about security and risk.

While security is an increasingly large problem, it is rarely the main motivation for
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change in technology. Technology is a tool for humanity to increase our ability to cause

change. Technology adoption tends to happen when it provides us new opportunities

to interact with our world.

In this context, changing our technologies with the sole goal of achieving in-

creased security is a difficult proposition. When a large technological change happens,

we often call it a revolution. In a culture where widespread technological change shares

the same terminology we use to describe government overthrow, we are forced to chose:

do we want a revolution to improve security or to increase our ability to change our

environment?

It is no wonder we rarely make large technology changes for the sake of security.

When we do make technological change for security, it is often when we feel

under threat. While we are not very good at estimating our risks around technology,

or how much security we might need in our systems, we do periodically notice when we

have left the bounds of acceptable risk. This is one thing that inspires change.

We also increase security during times of change. Technology’s track record

with security systems that are combined with things that offer increased utility in other

ways is much better. Various new systems from Facetime [6] to QUIC [70] are designing

security features in from the beginning and increase security as those technologies are

deployed for their other features.

So perhaps fundamentally the question is: can we design security technologies

that also make technology simpler, easier and more powerful?
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