
UCLA
UCLA Electronic Theses and Dissertations

Title
An Energy-Efficient Sparse-BLAS Coprocessor using STT-MRAM

Permalink
https://escholarship.org/uc/item/1vg227w6

Author
Dorrance, Richard William

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vg227w6
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

An Energy-Efficient Sparse-BLAS

Coprocessor using STT-MRAM

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Richard William Dorrance

2015

© Copyright by

Richard William Dorrance

2015

Abstract of the Dissertation

An Energy-Efficient Sparse-BLAS

Coprocessor using STT-MRAM

by

Richard William Dorrance

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Dejan Marković, Chair

Sparse linear algebra arises in a wide variety of computational disciplines, including med-

ical imaging, 3D graphics, compressive sensing, neural networks, bioinformatics, and various

optimization problems. In recent years, tuned software libraries for multi-core microproces-

sors (CPUs) and graphics processing units (GPUs) have become the status quo for perform-

ing sparse linear algebra in high-performance computing (HPC) environments. However,

the computational throughput of these libraries for sparse matrices tends to be significantly

lower than that of dense matrices, mostly due to the fact that the compression formats re-

quired to efficiently store sparse matrices mismatches traditional computing architectures.

This presents a problem, particularly in a mobile environment, where consumer demand

for smart phones and tablets has dictated ever increasing computational performance on a

limited energy budget.

To address this issue, we have carefully modeled the computational efficiency of sparse al-

gorithms on CPUs and GPUs to identify the computational and memory bottlenecks in their

architectures. Using this we have developed a sparse linear algebra kernel that is scalable to

efficiently utilize the available memory bandwidth and computing resources. Benchmarking

results on a Virtex-5 SX95T field-programmable gate array (FPGA) prototype demonstrate

an average computational efficiency of 91.85%. The kernel achieves a peak computational

efficiency of 99.8%, a >50x improvement over state-of-the-art CPUs and a >300x improve-

ii

ment over state-of-the-art GPUs. In addition, the sparse linear algebra FPGA kernel is

able to achieve higher performance than its CPU and GPU counterparts, while using only

64 single-precision processing elements, with an overall 23-30x improvement in energy effi-

ciency.

An ASIC implementation, in a 40nm 1P10M CMOS process, of the sparse linear algebra

kernel is able to achieve a maximum performance of 4.12 GFLOP/s. The minimum energy

point (190.31 GFLOP/s/W at 0.6V and 160MHz) shows an energy efficiency improvement

of more than a 3,073x, 2,262x, and 66.6x over the CPU, GPU, and FPGA implementations,

respectively. Additionally, a data stream reordering scheme was able to eliminate over 99%

of data hazards in 14 test matrices for an average boost of 20% in computational efficiency

over the FPGA implementation. Further improvements in the energy efficiency could be

made by replacing the on-chip SRAM with spintronic memories. Fabrication results from

three STT-MRAM chips and two MeRAM chips are also reported.

iii

The dissertation of Richard William Dorrance is approved.

Yaroslav Tserkovnyak

William Kaiser

Kang L. Wang

Dejan Marković, Committee Chair

University of California, Los Angeles

2015

iv

“I’ll be honest – we’re throwing science at the wall

here to see what sticks. No idea what it’ll do.”

—Cave Johnson, Portal 2

v

Table of Contents

1 Introduction . 1

1.1 Sparse-BLAS . 2

1.2 Spintronic Memories . 3

1.3 Dissertation Outline . 5

2 Sparse Basic Linear Algebra Subprograms 7

2.1 Sparse Matrix Representation . 9

2.1.1 Coordinate List (COO) . 10

2.1.2 Compressed Sparse Row (CSR) . 10

2.1.3 Compressed Sparse Column (CSC) 10

2.2 Sparse Matrix-Vector and Matrix-Matrix Multiplication 11

2.3 Current State-of-the-Art . 12

2.3.1 Case Study: Efficiency of SpMxV on CPUs 13

2.3.2 Case Study: Efficiency of SpMxV on GPUs 17

2.4 Sparse Matrix Algorithms in Bioinformatics 19

2.4.1 Markov Clustering Algorithm . 20

2.4.2 PageRank Algorithm . 23

2.4.3 Compressive Sensing . 25

2.4.4 Electron Tomography . 26

3 A Scalable Architecture for Sparse Linear Algebra 29

3.1 Energy Efficiency . 30

3.2 Architectural Trade-offs for Sparse-BLAS . 31

3.2.1 Identifying Key CPU/GPU Architectural Inefficiencies 31

vi

3.2.2 Minimizing Memory Accesses . 33

3.2.3 Strategies to Reduce Data Hazards 34

3.2.4 Memory Size vs. Energy Efficiency 37

3.3 Proposed Architecture . 39

3.3.1 Processing Element . 39

3.3.2 Sparse-BLAS Controller . 42

4 FPGA Implementation . 44

4.1 Field Programmable Gate Arrays . 45

4.1.1 Reconfigurable Computing Building Blocks 46

4.1.2 Prior Art Using FPGAs for Sparse-BLAS 50

4.1.3 Reconfigurable Open Architecture Computing Hardware (ROACH) . 52

4.2 SpMxV Architecture . 55

4.2.1 Processing Element . 57

4.2.2 Data Hazard and Memory Management 59

4.3 Sparse-BLAS Architecture . 60

4.3.1 Processing Element . 61

4.3.2 Data Hazard and Memory Management 62

5 ASIC Implementation . 63

5.1 Overall Architecture . 64

5.2 Processing Element . 64

5.2.1 Floating-Point Unit . 65

5.2.2 Dual-Port Memory . 65

5.2.3 The “Shuffler” . 67

5.3 Sparse-BLAS Controller . 67

vii

5.3.1 Memory Controller . 68

5.4 Testing and Configuration Considerations . 68

5.4.1 FPGA Interface . 68

5.4.2 Scan Chain . 69

5.4.3 Memory Cache . 70

6 Testing and Performance Results . 71

6.1 Data Sets . 72

6.1.1 Sparse Matrix Collection . 72

6.1.2 Bioinformatics Algorithms . 74

6.2 Hardware and Software Test Platforms . 76

6.3 Performance Results . 77

6.3.1 Sparse Matrix Collection . 77

6.3.2 Bioinformatics Algorithms . 80

6.4 Energy Efficiency . 84

6.4.1 FPGA SpMxV Kernel . 84

6.4.2 FPGA Sparse-BLAS Kernel . 85

6.4.3 ASIC Sparse-BLAS Kernel . 86

7 Magnetic Tunnel Junctions . 89

7.1 Introduction to Spintronics . 90

7.1.1 History . 90

7.1.2 Principle of Operation . 92

7.1.3 Other Devices and Applications . 93

7.2 The Magnetic Tunnel Junction . 94

7.2.1 Resistance Hysteresis . 94

viii

7.2.2 Critical Switching Current . 95

7.2.3 Tunnel Magnetoresistance Temperature Dependency 97

7.2.4 Bias Voltage Effects . 99

7.2.5 Other Important MTJ Characteristics 99

7.3 Spintronic Memories . 101

7.3.1 Field-Induced Magnetic Switching . 101

7.3.2 TAS-MRAM . 101

7.3.3 STT-MRAM . 103

7.3.4 MeRAM . 103

7.4 Modeling MTJ Characteristics . 105

7.4.1 Magnetization Dynamics . 105

7.4.2 Effective Magnetic Field . 107

7.4.3 Tunnel Magnetoresistance . 111

7.4.4 Heun’s Method . 112

7.4.5 Statistical Characterization of MTJ Devices 113

7.5 Model Verification . 115

7.5.1 Comparison to Measured Devices . 117

7.5.2 Comparison to Micromagnetic Simulations 117

8 STT-MRAM and MeRAM . 121

8.1 MTJ/CMOS Integration . 122

8.2 STT-MRAM Memory Architectures . 122

8.2.1 Cell Architectures . 124

8.2.2 Subarraying . 126

8.3 STT-MRAM Memory Design . 129

ix

8.3.1 90nm Bulk CMOS . 130

8.3.2 65nm Bulk CMOS . 132

8.3.3 45nm SOI CMOS . 134

8.3.4 Design Comparison . 134

8.4 MeRAM Memory Architectures . 135

8.4.1 1T-1MTJ Array . 135

8.4.2 1D-MTJ Crossbar Array . 138

8.5 MeRAM Memory Design . 139

8.5.1 1T-1MTJ Array . 139

8.5.2 1D-MTJ Crossbar Array . 141

9 Conclusion . 145

9.1 Research Contributions . 146

9.2 Future Work . 147

A MTJ Verilog-A Model Code . 149

References . 163

x

List of Figures

1.1 Comparison of memory technologies. 3

1.2 SEM photo of an MTJ. 4

1.3 MTJ in (a) parallel and (b) antiparallel configuration. 4

2.1 Example sparse matrix A. 9

2.2 COO representation for example matrix A. 9

2.3 CSR representation for example matrix A. 10

2.4 CSC representation for example matrix A. 11

2.5 A graphical representation of SpMxV. 11

2.6 SpMxV performed using the CSR format on CPUs and GPUs. 12

2.7 A toy example of a 5-stage pipelined datapath. 13

2.8 Timing diagram for a 5-stage pipelined datapath. 14

2.9 Thread organization on a CUDA-enabled NVIDIA GPU. 18

2.10 An example of the Markov Clustering algorithm. 21

2.11 Saccharomyces cerevisiae protein-protein interaction network. 24

2.12 Diagram of compressive sensing. 25

2.13 Diagram of image acquisition and reconstruction for Electron Tomography. . 27

3.1 Energy per operation for memory and logic. 30

3.2 Computational efficiency breakdown for a CPU and GPU. 31

3.3 Timing diagram for calculating the SpMxV without data stream reordering. 35

3.4 Timing diagram for calculating the SpMxV with data stream reordering. . . 36

3.5 Bandwidth overhead vs. memory size. 37

3.6 Energy overhead vs memory size. 38

xi

3.7 Top-level schematic of the proposed sparse-BLAS kernel. 39

3.8 Block diagram of the proposed processing element. 40

4.1 Power, area, and delay breakdown for a 90nm FPGA. 46

4.2 An example of an Island-Style, or 2-D Mesh, FPGA. 47

4.3 An example of a Hierarchical FPGA. 48

4.4 A simplified example of an FPGA logic cell. 49

4.5 An example of a disjoint switch block. 49

4.6 An example of re-encoding or reordering a sparse matrix. 51

4.7 A block diagram of the “ROACH” FPGA platform. 53

4.8 A picture of the “ROACH” FPGA platform. 54

4.9 A graphical representation of how SpMxV is performed using the CSC format. 55

4.10 Top-level schematic of the SpMxV kernel. 57

4.11 Block diagram of the SpMxV processing element. 58

4.12 Top-level schematic of the sparse-BLAS kernel. 60

5.1 Top-level schematic of the sparse-BLAS ASIC chip. 65

5.2 Block diagram of the sparse-BLAS processing element. 66

5.3 Layout view of the fabricated processing element with data reordering. . . . 67

5.4 A picture of the ASIC test PCB. 69

6.1 Matrix Test Data. 73

6.2 Raw computational performance of sparse-BLAS kernels. 77

6.3 Computational efficiency of sparse-BLAS kernels. 78

6.4 Normalized execution time for the MCL algorithm. 81

6.5 Normalized execution time for the PageRank algorithm. 82

6.6 Normalized execution time for compressive sensing problems. 83

xii

6.7 Normalized execution time for SIRT. 84

6.8 Sparse-BLAS chip micrograph. 87

6.9 Shmoo plot of operating frequency vs. core voltage. 88

6.10 Chip power vs. operating frequency. 88

7.1 Spintronic operation of a spin polarizer. 91

7.2 Spintronic operation of a spin filter. 92

7.3 Resistance hysteresis of an MTJ. 95

7.4 MTJ switching regimes. 96

7.5 Switching probability vs. pulse duration. 98

7.6 The cross-sectional view of a FIMS-MRAM in a crosspoint architecture. . . . 102

7.7 The cross-sectional view of two STT-MRAM cells with shared source lines. . 103

7.8 Measured probability of switching curves for the VCMA-based MTJs. 104

7.9 Sketch of basic MTJ structure. 106

7.10 Efficiency factor of spin-polarization vs. θ. 107

7.11 Unipolar writing of VCMA-based MTJs. 109

7.12 Normalized magnetization saturation. 111

7.13 Measured MTJ devices. 114

7.14 Fitted MTJ parameters. 116

7.15 TMR vs. temperature. 116

7.16 TMR vs. bias voltage. 117

7.17 R-H hysteresis. 118

7.18 Process flow for evaluating Verilog-A model. 118

7.19 Resistance vs. time. 119

8.1 MTJ/CMOS integration at M4. 123

xiii

8.2 1T-1MTJ memory cell architectures. 123

8.3 Shared memory cell architecture. 125

8.4 Stacked memory cell architecture. 125

8.5 A 256-kbit building block. 126

8.6 Shared architecture with subarraying. 128

8.7 Worst-case writing configurations for sharing. 129

8.8 Block diagram of the 90nm STT-MRAM test chip. 131

8.9 Read/Write driver for short-pulse reading. 132

8.10 Cadence layout of the 65nm STT-MRAM test chip. 133

8.11 Chip micrograph of the 65nm STT-MRAM test chip. 133

8.12 Cadence layout of the 45nm STT-MRAM test chip. 134

8.13 Chip micrograph of the 45nm STT-MRAM test chip. 135

8.14 Design comparison of STT-MRAMs. 136

8.15 Schematic of an array of MeRAM cells. 137

8.16 Timing diagram for a back-to-back reads. 138

8.17 Timing diagram for a 2-word burst writing scheme. 139

8.18 Schematic and layout views of the MeRAM crossbar array structure. 140

8.19 Layout view of a 4kbit 1T-1MTJ MeRAM array. 141

8.20 Chip micrograph of the fabricated MeRAM cells. 142

8.21 Testing setup for the MeRAM crossbar array. 143

8.22 Measured transient waveforms for reading and writing MeRAM. 144

xiv

List of Tables

4.1 Prior Art Using FPGAs . 50

6.1 Summary of unstructured matrices used for benchmarking performance. . . . 74

6.2 Data Sets* used for MCL and PageRank . 74

6.3 Synthetic Data Sets used for Compressive Sensing 75

6.4 Test Platforms . 75

6.5 Energy Efficiency . 85

6.6 Memory Bandwidth Utilization . 86

7.1 Measured device statistics. 114

8.1 Time to read RP (90nm) . 130

8.2 Time to read RAP (90nm) . 132

xv

List of Algorithms

2.1 C pseudo-code for SpMxV. 15

2.2 x86-64 pseudo-code for SpMxV. 16

2.3 CUDA-like pseudo-code for SpMxV. 17

A.1 MTJ Verilog-A Model Code. 149

xvi

Acknowledgments

First, I would like to thank my advisor, Professor Dejan Marković, without whom this

dissertation could never have been written. I am sincerely grateful for the help and support

he has given me over that past 6 years at UCLA.

This work was only possible due to the infrastructure and support provided by current

and former members of the Parallel Data Architectures research group at UCLA. In no

particular order, I would like to whole heartedly thank Henry Chen, Yuta Toriyama, Sina

Basir-Kazeruni, Hariprasad Chandrakumar, Dejan Rozgic, Vahagn Hokhikyan, Dr. Cheng

C. Wang, Dr. Fang-Li Yuan, Dr. Vaibhav Karkare, Dr. Sarah Gibson, Dr. Tsung-Han

Yu, Dr. Rashmi Nanda, Dr. Victoria Wang, and Professors Fengbo Ren and Chia-Hsiang

Yang. Furthermore, I would also like to thank Dr. Yousr Ismail, Dr. Rodney Chandler, Dr.

Mansour Rachid, Neha Sinha, Sameed Hameed, Qaiser Nehal, Alireza Yousefi, Dr. Henry

Park, Dr. Amir Amin Hafez, and Preeti Mulage.

I would like to thank colleagues Dr. Juan G. Alzate, Dr. Pramey Upadhyaya, Dr. Sergiy

Cherepov, Hochul Lee, Mark Lewis, and Professors Kang L. Wang, Pedram Khalili, and

Yaroslav Tserkovnyak for their work in spintronics. They provided an extensive number of

discussions, device characterizations, simulations, and support for the development of my

MTJ macro-model and the experimental demonstration of my MeRAM crossbar array.

I am eternally grateful to all of the staff in the Electrical Engineering Department for

their help behind the scenes, particularly: Kyle Jung, Deeona Columbia, and Mandy Smith.

Most of all, I would like to thank my parents, Gary Dorrance and Karen Lawrence, for

all the love and support they have provided over the years. Last, but certainly not least, I

would like to thank my brother, William Dorrance, and his adorable cat, Ellie. He’s always

managed to keep me well grounded and focused despite all of life’s obstacles.

And finally, I would like to thank my ER Surgeon, Dr. Daniel Tseng, and the all of the

doctors and nurses of the Good Samaritan Medical Center for saving my life. No Ph.D. goes

xvii

off without a hitch. In my case, life decided that I’d been having things a little too easy

and felt that acute appendicitis (with peritonitis) three weeks before my defense would be

an excellent way to build character.

xviii

Vita

2001 – 2005 Valhalla High School, El Cajon, California.

2008 Teaching Assistant, EE140: Linear Integrated Circuits,
University of California, Berkeley.

2008 ONR NRIEP Intern, SPAWAR Systems Center, San Diego, CA.
Signal Analysis, NOAA costal hydrophones arrays.

2009 B.S., Electrical Engineering and Computer Sciences,
University of California, Berkeley.

2009 – 2015 Graduate Student Researcher, Department of Electrical Engineering,
University of California, Los Angeles.

2011 M.S., Electrical Engineering,
University of California, Los Angeles.

2012 – 2014 Teaching Assistant, EEM216A: Design of VLSI Circuits and Systems,
University of California, Los Angeles.

2012 University Fellowship,
University of California, Los Angeles.

2013 Teaching Assistant, EE215B: Advanced Digital Integrated Circuits,
University of California, Los Angeles.

2013 IEEE Solid-State Circuits Society Student Travel Grant

2013 Visiting Scholar, imec, Leuven Belgium.
Circuit Designer, STT-RAM development.

2013 SRC Intern, GLOBALFOUNDRIES Inc., Sunnyvale, CA.
Circuit Designer, STT-RAM development.

2013 2014 Qualcomm Innovation Fellowship Finalist

2014 2013-2014 Henry Samueli Excellence in Teaching Award

xix

Publications

H. Lee, J.G. Alzate, R. Dorrance, D. Marković, P.K. Amiri , and K.L. Wang, “Design of
a Fast and Low-Power Sense Amplifier and Writing Circuit for High-Speed MRAM,”
IEEE Trans. Magn. (TMAG), vol. 51, no. 5, pp. 1-7, May 2015.

P. K. Amiri, R. Dorrance, D. Marković, K. L. Wang, “Nonvolatile Magneto-Electric Ran-
dom Access Memory Circuit with Burst Writing and Back-to-Back Reads,” US Patent,
US 20140071732 A1, Mar. 2014.

P. K. Amiri, R. Dorrance, D. Marković, K. L. Wang, “Read-Disturbance-Free Nonvolatile
Content Addressable Memory (CAM),” US Patent, US 20140071728 A1, Mar. 2014.

R. Dorrance, F. Ren, and D. Marković, “An Efficient Sparse Matrix-Vector Multiplica-
tion (SpMxV) Kernel for Sparse-BLAS on FPGAs,” in Proc. 2014 ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays (FPGA’14), pp. 161-170, Feb. 2014.

F. Ren, R. Dorrance, W. Xu, and D. Marković, “A Single-Precision Compressive Sensing
Signal Reconstruction Engine on Reconfigurable Platform,” in Proc. 23rd Int. Conf.
on Field-Programmable Logic and Applications (FPL’13), pp. 1-4, Sep. 2013.

R. Dorrance, J.G. Alzate, S. Cherepov, P. Upadhyaya, I.N. Krivorotov, J.A. Katine, J.
Langer, K.L. Wang, P.K. Amiri, and D. Marković, “A Diode-MTJ Crossbar Mem-
ory Cell Using Voltage-Induced Unipolar Switching for High-Density MRAM,” IEEE
Electron Device Lett. (EDL), vol. 34, no. 6, pp. 753-755, Jun. 2013.

R. Dorrance, J.G. Alzate, S. Cherepov, P. Upadhyaya, K.L. Wang, P.K. Amiri, and D.
Marković, “Voltage-Controlled MRAM for 3D Stackable Non-Volatile Memories,”
IEEE Int. Solid-State Circuits Conference Student Research Preview (ISSCC’13),
Feb. 2013.

J. G. Alzate, P.K. Amiri, P. Upadhyaya, S.S. Cherepov, J. Zhu, M. Lewis, R. Dorrance,
J. A. Katine, J. Langer, K. Galatsis, D. Marković, I. Krivorotov, and K. L. Wang,
“Voltage-Induced Switching of Nanoscale Magnetic Tunnel Junctions,” in Proc. Int.
Electron Devices Meeting (IEDM’12), pp. 29.5.1-29.5.4, Dec. 2012.

R. Dorrance, F. Ren, Y. Toriyama, A.A. Hafez, C.-K.K. Yang, D. Marković, “Scalability
and Design-Space Analysis of a 1T-1MTJ Memory Cell for STT-RAM,” IEEE Trans.
Electron Devices (TED), vol. 59, no. 4, pp. 878-887, Apr. 2012.

F. Ren, H. Park, R. Dorrance, Y. Toriyama, A. Amin, C.-K.K. Yang, D. Marković, “A
Body-Voltage-Sensing-Based Short Pulse Reading Circuit for Advanced Spin-Torque

xx

Transfer RAMs (STT-RAMs),” in Proc. 13th Int. Symp. on Quality Electronic De-
sign (ISQED’12), pp, 275 282, Mar. 2012.

H. Park, R. Dorrance, A. Amin, F. Ren, D. Marković, C.-K.K. Yang, “Analysis of STT-
RAM Cell Design with Multiple MTJs Per Access,” in Proc. ACM/IEEE Int. Symp.
on Nanoscale Arch. (NANOARCH’11), pp. 32-36, Jun. 2011.

R. Dorrance, F. Ren, Y. Toriyama, A. Amin, C.-K.K. Yang, D. Marković, “Scalability
and Design-Space Analysis of a 1T-1MTJ Memory Cell,” in Proc. ACM/IEEE Int.
Symp. on Nanoscale Arch. (NANOARCH’11), pp. 53-58, Jun. 2011.

xxi

CHAPTER 1

Introduction

1.1 Sparse-BLAS . 2

1.2 Spintronic Memories . 3

1.3 Dissertation Outline . 5

1

1.1 Sparse-BLAS

With the proliferation of smart phones and tablets over the past several years, there has been

an increased demand for mobile devices to support computationally intensive applications,

such as augmented reality, neural networks, 3D graphics, portable medical imaging, mobile

health monitoring, and various optimization problems–all of which rely on manipulating very

sparse data sets [1, 2]. Recently, this persistent challenge of delivering increasing computa-

tional complexity in a hand-held form-factor, using a finite power source (i.e. a battery), has

been further complicated by the limited or nonexistent improvements in energy efficiency

offered by technology scaling. As we scale below 22-nm, energy efficiency by design becomes

a necessity for the next generation of mobile system-on-a-chips (SoCs).

The efficient manipulation of sparse data sets is particularly important for the future

of compressive sensing (CS) in energy-efficient, mobile, multi-core microprocessors (CPUs)

and graphics processing units (GPUs). CS is a technique that exploits the sparsity (in a

particular sampling domain) present in most natural signals to simultaneously sample and

compress a signal during the data acquisition process. CS allows for data sampling at a

much lower frequency, surpassing the traditional limits of Nyquist sampling theory. This

has huge implications for traditional communications-based digital signal processing (DSP)

applications. Ultra-wide-band communications, spectrum sensing for cognitive radios, and

multi-antenna (MIMO) channel estimation are just beginning to incorporate CS into their

wireless communications framework to enable low-power, high-data-rate data links [3].

In recent years, tuned software libraries for multi-core microprocessors (CPUs) and graph-

ics processing units (GPUs) have become the status quo for performing sparse linear algebra

in high-performance computing (HPC) environments. However, the computational through-

put of these libraries for sparse matrices is significantly lower than that of dense matrices,

due to a fundamental mismatch between the compression formats required to efficiently store

sparse matrices and traditional Von Neumann computing architectures.

This dissertation presents a scalable sparse linear algebra kernel that alleviates the com-

putational and memory bottlenecks present in CPUs and GPUs. Prototyped on an field-

2

SRAM DRAM
Flash

(NOR)

Flash

(NAND)
FeRAM MRAM PRAM RRAM

STT-

MRAM

Non-volatile

Cell Size [F2]

Read Time [ns]

Write/Erase

Time [ns]

Endurance

Write Power

Other Power

Consumption

High Voltage

Required

Existing Products Prototypes

No No Yes Yes Yes Yes Yes Yes Yes

50-120

1-100

1-100

10
16

Low

No

Leakage

6-10

30

15

10
16

Low

3V

Refresh

10

10

1μs/1ms

10
5

Very High

6-8V

None

5

50

1ms/0.1ms

10
5

Very High

16-20V

None

15-34

20-80

50/50

10
12

Low

2-3V

None

16-40

3-20

3-20

>10
15

High

3V

None

6-12

20-50

50/120

10
8

Low

1.5-3V

None

6-10

10-50

10-50

10
8

Low

1.5-3V

None

6-20

2-20

2-20

>10
15

Low

<1.5V

None

Figure 1.1: Comparison of memory technologies (source: Wolf et al. [4]).

programmable gate array (FPGA) and implemented as an application specific integrated

circuit (ASIC), our proposed architecture is able to increase the energy efficiency of sparse

linear algebra by 3 to 4 orders of magnitude over state-of-the-art CPUs and GPUs running

the latest software libraries. In the future, integration with spintronics memory devices

should improve the energy efficiency by another 1 to 2 orders of magnitude.

1.2 Spintronic Memories

Magnetoresistive Random Access Memories (MRAMs) have attracted a significant amount of

interest as a commercially viable universal memory technology. With the density of DRAM,

the speed of SRAM, and the non-volatility of Flash it is easy to see why [5] (see Figure 1.1).

MRAMs require zero standby power and boast a nearly unlimited programming endurance

(> 1015 cycles) [6]. Such a memory would eliminate the need for multiple application-specific

memories, improving system performance and reliability, while also lowering cost and power

3

25nm

Figure 1.2: SEM photo of an MTJ, courtesy of Mark Lewis.

(a) (b)

Figure 1.3: MTJ ferromagnetic layers in (a) parallel and (b) antiparallel configurations.

consumption in everything from mobile devices to datacenters [4].

The non-volatile storage element of an MRAM is the Magnetic Tunnel Junction (MTJ).

Structurally, an MTJ is a pair of ferromagnets separated by a thin insulating layer. Data

storage is achieved by exploiting the magnetic orientation of these ferromagnetic layers [7].

Figure 1.2 shows a scanning electron microscope (SEM) photo of a single MTJ nanopillar.

The spintronic operation of the MTJ is discussed later in this work. For now, it is sufficient

to understand the MTJ as a pair of ferromagnets separated by a thin insulating layer. Two

possible magnetic states arise, the parallel combination of the two layers (Figure 1.3a) and

the antiparallel combination (Figure 1.3b).The parallel configuration leads to a low resistive

4

state (RP), while the antiparallel configuration leads to a high resistive state (RAP) [8].

The discovery of spin-transfer torque (STT) based switching has enabled MRAM to

scale below 90nm. Rather than using an indirect current to generate a magnetic field, STT

uses a spin-polarized current through the MTJ to accomplish device switching [9]. Tog-

gling of the MTJ is roughly determined by the current density [10]. As the area of the

MTJ device decreases, so does the writing current. Spin-Transfer Torque Random Access

Memories (STT-RAMs) have the added benefit of being architecturally much simpler than

conventional MRAMs [11]. However, with the recent discovery of a voltage-controlled mag-

netic anisotropy (VCMA) switching mechanism, Magnetoelectric Random Access Memories

(MeRAMs) promise to be much dense and more energy efficient that current STT-MRAM

technologies. As such, this work discuses the possible integration of both STT-MRAM and

MeRAM with our proposed sparse linear algebra kernel.

1.3 Dissertation Outline

Chapter 2 introduces the Basic Linear Algebra subprograms (BLAS) and their sparse-

BLAS counterparts. The most common and basic sparse matrix formats are introduced

as a prelude to detailing the current state-of-the-art in sparse-BLAS hardware. The final

section introduces a variety of sparse matrix algorithms used in bioinformatics.

Chapter 3 takes an in-depth look at the different architectural trade-offs for sparse-

BLAS. Key architectural deficiencies in CPU and GPU are first identified. Several

strategies are presented for minimizing the number of memory accesses, memory latency,

and data hazards to increase the computational efficiency of sparse-BLAS. The chapter

concludes with a detailed description of the proposed sparse-BLAS architecture.

Chapter 4 details the development and design of two versions of the proposed archi-

tecture on a field programmable gate array (FPGA) system. The first version includes

only partial support for sparse-BLAS [12]. The second version expands upon the first to

provide full sparse-BLAS compatibility, with the addition of several related scalar func-

5

tions, capable of executing the sparse bioinformatics algorithms presented in Chapter

2. The basics of reconfigurable computing blocks and prior attempts to use them for

sparse-BLAS are also discussed.

Chapter 5 details the implementation of the application specific integrated chip (ASIC)

for the proposed algorithm. Details of the processing element, including the data “shuf-

fler,” and the memory control scheme for achieving 100% computational efficiency (i.e.

utilization) are explained. Design considerations for chip testing and configuration are

detailed at the end of the chapter.

Chapter 6 shows the measurement and performance results for both the FPGA imple-

mentations and the ASIC implementation for the sparse-BLAS architecture. The FPGA

system is able to achieve more than a 50x and 38x improvement in energy efficiency

over state-of-the-art CPU and GPU implementations. The ASIC implementation shows

a 55x improvement in energy efficiency over our FPGA system, representing more than a

2,750x and 2,085x improvement in energy efficiency over state-of-the-art CPU and GPU

implementations, respectively.

Chapter 7 introduced the magnetic tunnel junction (MTJ), and the field of spintronics,

specifically focusing on its applications in memories (STT-MRAM and MeRAM). The

characteristics and properties of the MTJ device are discussed, with a Verilog-A model

capable of capturing these behaviors is presented. The final section of the chapter ver-

ifies this model with qualitative and quantitative comparisons to measured devices and

detailed micromagentic simulations. The entirety of the source code for the Verilog-A

model is presented in Appendix A of this dissertation.

Chapter 8 discusses the design and fabrication results of STT-MRAM and MeRAM in

detail. Their integration with CMOS and the sparse-BLAS kernel is also discussed.

Chapter 9 concludes the dissertation and provides some possible directions for future

research.

Appendix A contains the Verilog-A code for the MTJ model introduced in Chapter 7.

6

CHAPTER 2

Sparse Basic Linear Algebra Subprograms

2.1 Sparse Matrix Representation . 9

2.1.1 Coordinate List (COO) . 10

2.1.2 Compressed Sparse Row (CSR) . 10

2.1.3 Compressed Sparse Column (CSC) . 10

2.2 Sparse Matrix-Vector and Matrix-Matrix Multiplication 11

2.3 Current State-of-the-Art . 12

2.3.1 Case Study: Efficiency of SpMxV on CPUs 13

2.3.2 Case Study: Efficiency of SpMxV on GPUs 17

2.4 Sparse Matrix Algorithms in Bioinformatics 19

2.4.1 Markov Clustering Algorithm . 20

2.4.2 PageRank Algorithm . 23

2.4.3 Compressive Sensing . 25

2.4.4 Electron Tomography . 26

7

The Basic Linear Algebra Subprograms (BLAS) is a machine-independent, standard ap-

plication interface developed to help facilitate the portability of linear algebra software across

different computer architectures [13]. First published as a Fortran library in 1979, BLAS was

later extended to support sparse matrix operations (sparse-BLAS). Sparse matrices arise in

a wide variety of computational disciplines, including medical imaging, circuit and economic

modeling, industrial engineering, compressive sensing, neural networks, bioinformatics, and

algorithms for least squares and eigenvalue problems [14,15,16].

Sparse-BLAS operations are categorized into 3 levels [13]. Level 1 operations consist of

vector operations: i.e. dot products, vector norms, and vector-vector addition of the form:

y =← αz + y, (2.1)

where y is a dense column vector, z is a sparse column vector, and α is a scalar. Level 2

operations consist of matrix-vector operations, the most important being a general sparse

matrix/dense vector multiplication (SpMxV) in the form of:

y =← αAx+ βy, (2.2)

where A is a sparse matrix, x is a dense column vector, and β is a scalar. Level 3 operations

consist of matrix-matrix operations, the most important being a general sparse matrix/dense

matrix multiplication (SpMxM) in the form of:

y =← αAB + βC, (2.3)

where B and C are dense matrices. Together, these 3 levels of operations can be used to

implement any algorithm involving linear algebra [13].

This chapter is broken up into 4 parts. The first section introduces the simplest and most

common sparse matrix storage formats. Section 2 discuss the SpMxV and SpMxM routines

8

0 2 3 0 0

5 0 0 7 8

0 0 9 0 6

1 4 0 0 0

A =

Figure 2.1: Example sparse matrix A.

7 8 9 61 4 2 3 5DATACOO =

2 2 3 30 0 1 1 2ROWCOO =

3 4 2 40 1 1 2 0COLCOO =

Figure 2.2: COO representation for example matrix A.

in detail. Current state-of-the-art for sparse-BLAS is discussed in Section 3. Section 4

introduces a variety of Bioinformatics algorithms whose performance is closely tied to that

of sparse-BLAS.

2.1 Sparse Matrix Representation

There are a variety of ways to represent the sparse matrix for storage purposes. However, the

few computationally efficient formats are restricted to highly structured matrices, such as

diagonal or banded matrices. As such, our focus is on boosting the computational efficiency

of SpMxV and SpMxM for generic sparse matrices. Therefore, we only present general sparse

storage schemes in this section. Figure 2.1 shows a sample sparse matrix that will be used

to illustrate various sparse matrix storage schemes in the following sections.

9

7 8 9 61 4 2 3 5DATACSR =

3 4 2 40 1 1 2 0COLCSR =

0 2 4 7 9PTRCSR =

Figure 2.3: CSR representation for example matrix A.

2.1.1 Coordinate List (COO)

The simplest storage scheme, shown in Figure 2.2, is the coordinate (COO) format. The

row indices, column indices, and values of the nonzero matrix entries are explicitly stored in

3 separate arrays: row, col, and data. Ideally, the entries are sorted (first by the row index,

then by the column index) to improve random access times.

2.1.2 Compressed Sparse Row (CSR)

The compressed sparse row (CSR) format (Figure 2.3) is the most commonly used sparse

storage scheme, which also stores the column indices and nonzero values into the arrays: col

and data. Unlike the COO format, the row indices are not explicitly stored, but rather as

an array of row pointers, ptr. The ith element of ptr corresponds to the offset of the ith

row into the col and data arrays. For example, in Figure 2.3 the first element of ptr is 0,

indicating that the first element in row 0 is 1 and is located in column 0; the second element

of ptr is 2, indicating that the first element in row 1 is 2 and is located in column 1; the third

element of ptr is 4, indicating that the first element in row 2 is 5 and is located in column

5; and so on. For an M × N matrix, ptr has M + 1 elements in the CSR format, with the

final element indicating the total number of nonzero entries in the matrix.

2.1.3 Compressed Sparse Column (CSC)

The compressed sparse column (CSC) format is a variation of the CSR format (Figure 2.4).

Instead of storing the column indices and an array of row pointers, the CSC stores the row

indices and an array of column pointers. For any matrix A, the CSR storage of A is exactly

10

90 2 4 6 7PTRCSC =

3 2 2 30 2 0 1 1ROWCSC =

9 7 8 61 5 4 2 3DATACSC =

Figure 2.4: CSR representation for example matrix A.

Figure 2.5: A graphical representation of SpMxV.

the same as the CSC storage of AT .

2.2 Sparse Matrix-Vector and Matrix-Matrix Multiplication

SpMxV is one of the most widely used computational kernel that dominates the performance

of many scientific applications [14,15,16,17,18]. Figure 2.5 shows a graphical representation

of SpMxV. SpMxM is a major building block for high-performance graph-based algorithms

[19,20,21,22,23,23,24]. Unfortunately, the performance of SpMxV and SpMxM algorithms

tends to be much lower than that of dense matrices, mostly due to the mismatch between the

memory access patterns of sparse matrices and the compression formats required to efficiently

store them [16, 25]. Numerous efforts have been made to accelerate the performance of

SpMxV on multi-core microprocessors (CPUs) [1,26] and graphics processing units (GPUs)

over the years [2, 27, 28]. The next section discusses the architectural details of CPUs and

GPUs performing sparse-BLAS.

11

Figure 2.6: A graphical representation of how SpMxV is performed using the CSR format

on CPUs and GPUs. Each element in yi is calculated as the dot product between the ith

row of A and the vector x.

2.3 Current State-of-the-Art

One very important metric for gauging the performance and effectiveness of an architecture is

its computational efficiency for the target algorithm. Computational efficiency is a measure

of the percentage of the total hardware resources available that are actively being used by an

algorithm. Computational efficiency correlates very highly with energy-efficiency. Therefore,

an implementation of an algorithm with a higher computational efficiency will be the more

energy-efficient solution. As such, in this section, we will be using computational efficiency in

order to make meaningful comparisons between the performance of different computational

architectures.

Specialized software libraries for solving dense and sparse linear algebra problems are very

popular for high performance computing. These libraries, such as MKL [26] for CPUs, and

cuBLAS [27] and cuSPARSE [28] for GPUs, provide a standardized programming interface,

with subroutines optimized for the target platform.

12

P
ip

e
l
in

e
 R

e
g
is

t
e
r

P
ip

e
l
in

e
 R

e
g
is

t
e
r

P
ip

e
l
in

e
 R

e
g
is

t
e
r

Address

Instruction

Memory

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

Register

File Data

Memory

Address

Write
Data

Read
Data

0

1

M

U

X

ALU

Zero

Result

PC

Sign

Exten d

Shif t

Le ft 2

0

1

M

U

X

1
MUX

0

ADD

ADD

4
IN

ST
R

U
C

TI
O

N

IF: Instruction Fetch

ID: Instruction Decode MEM: Memory Access

EX: Execute WB: Write Back

3216

P
ip

e
l
in

e
 R

e
g
is

t
e
r

Figure 2.7: A toy example of a 5-stage, pipelined datapath (IF, ID, EX, MEM, WB) for a

MIPS microprocessor (based on Figure 6.11 in [29]), with each stage color coded.

2.3.1 Case Study: Efficiency of SpMxV on CPUs

To better illustrate the root cause of computational inefficiencies for performing sparse lin-

ear algebra on modern multi-core systems, we will take a detailed look at how modern CPU

architectures execute instructions. Figure 2.7 shows a toy example of a 5-stage pipelined dat-

apath in a 32-bit MIPS microprocessor corresponding to the 5 conceptual steps in executing

an instruction on a CPU:

(1) Instruction Fetching (IF): Fetch an instruction from (instruction) memory.

(2) Instruction Decoding (ID): Simultaneously decode the instruction and read necessary

data from the register file.

(3) Instruction Execution (EX): Execute the specified operation, calculate an address, or

pass data through from the register file.

(4) Memory Access (MEM): Read from or write to (data) memory.

13

ALUIM Reg RegDM

ALUIM Reg RegDM

ALUIM Reg RegDM

ALUIM Reg RegDM

ALUIM Reg RegDM

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8CC0

Time (in clock cycles)

add $12 $3 $4

P
ro

g
ra

m
 E

x
e
c
u
ti

o
n

 (
li
n
e
s
 o

f
c
o

d
e

)

NOP

add $11 $5 $12

NOP

NOP

1

2

5

3

4

Figure 2.8: Timing for a 5-stage, pipelined datapath demonstrating a stall for a data

hazard using NOP (no operation) commands.

(5) Data Write Back (WB): Store the result to the register file.

Pipelining allows multiple instructions to overlap their execution in order to achieve higher

performance (i.e. time multiplexing), at the cost of some computational latency. It should

also be noted that both the ID and WB stages access the register file at the same time.

This can cause a conflict, or hazard, if both the ID and WB steps want to access the same

register at the same time. Modern processors handle this situation by forwarding the data

to be written from the WB step to the ID step. However, the processor must stall several

clock cycles if an instruction wants to access the register file, but, due to the latency of the

pipeline, the previous instruction has yet to finish calculating the correct value (see Figure

2.8).

Algorithm 2.1 contains the skeleton code for executing SpMxV using a CSR sparse matrix.

When the code from Algorithm 2.1 is compiled for an Intel Core i7 processor, it produces

14

1 float btemp;

2 float *Apos = &A[0][0];

3 for(int i=0; i<M; i++)

4 {
5 float *xpos = &x[0];

6 btemp=0;

7 for(int j=0; j<N; j++)

8 {
9 btemp += (*Apos++) * (*xpos++);

10 }
11 b[i] = btemp;

12 }

Algorithm 2.1: C pseudo-code for SpMxV.

the x86-64 shown in Algorithm 2.2. By consulting published instruction tables [30] (for

instruction latency, throughput, and resource usage) and examining the cache structure of

each CPU, we can accurately estimate the number of cycles it will take to perform the

SpMxV algorithm. For example, on the i7-2600 processor, line 2 in Algorithm 2.2 takes 2

cycles to execute and must be completed before line 5. However, line 3 can be executed

simultaneously with line 2 because they use non-overlapping resources. Similarly, lines 6, 8,

10, 13, and 14 can be executed concurrently with the preceding lines. Line 5 takes one clock

cycle, plus the memory fetch latency, to load the value into the floating point unit (FPU).

This value needs to finish loading before line 7 can execute. Line 7 takes five clock cycles,

plus the memory fetch latency, to load the value into the FPU and multiply it. Line 9 must

wait for line 7 to complete, and takes 3 clock cycles to add the values sitting in the FPU.

The branching statements in lines 11 and 15 predict a jump and only take two clock cycles,

if it is taken. However, if the branch is not taken, a penalty of 18 cycles of latency is incurred

to flush the pipeline. Therefore, for an inner loop of length j, it takes:

2× j ×MEMORYlatency + 15× j + 23 (2.4)

15

1 loop_i: ;

2 fldz ; btemp = 0

3 mov eax, hXXXX ; j = N

4 loop_j: ;

5 fld dword ptr [edx] ; A_ij

6 add edx, 4 ; Apos++

7 fmul dword ptr [ecx] ; A_ij*x_j

8 add ecx, 4 ; xpos++

9 faddp st(1), st ; btemp = btemp+A_ij*x_j

10 dec eax ; j--

11 jnz short loop_j ; loop if j!=0

12 fst dword [ebx] ; b_i = btemp

13 add ebx, 4 ; bpos++

14 dec esi ; i--

15 jnz short loop_i ; loop if i!=0

Algorithm 2.2: x86-64 pseudo-code for SpMxV.

clock cycles to execute 2× j floating-point operations in the SpMxV algorithm. Ideally, the

FPU can perform one floating-point operation per clock cycle. Dividing the ideal 2×j number

of clock cycles by the number of clock cycles in Equation 2.4 results in a computational

efficiency of:

1

/(
MEMORYlatency +

15× j + 23

2× j

)
. (2.5)

For a very large A matrix (i.e. ≫ cache size), due to the random, non-sequential memory

accesses for the CSR format, the L1 and L2 caches will frequently miss and hit either the

L3 cache or DRAM. Therefore, the average memory access latency of the algorithm will

be roughly equal to that of the L3 cache, or 28 clock cycles for a i7-2600 processor [31].

Furthermore, if we assume a range of approximately 1 to 100 nonzero elements per row,

we can estimate the i7-2600 processor’s computational efficiency to be between 2.12% and

3.46% for SpMxV. This poor efficiency is due to the SpMxV kernel spending roughly 77.6%

of the time waiting for memory fetches, 18.5% of the time waiting for the FPU to calculate

an intermediary result (i.e.stalling to resolve a data hazard), and 1.9% of the time executing

loops and other control flow. A first-order estimation of the computational efficiency, using

a 1-to-1 FLOP to memory fetch ratio and a memory latency of 28, for SpMxV on the i7-2600

16

1 mov reg1, hXXXX ; (j) reg1 = M

2 mov reg2, h0000 ; (b_i) reg2 = 0

3 mov reg3, hXXXX ; (A_ij ptr)

4 mov reg4, hXXXX ; (X_j loc ptr)

5 loop: ;

6 load reg3 into reg5 ; (A_ij ptr) reg5 = A_ij

7 load reg4 into reg6 ; (X_j loc) reg6=loc X_j

8 add reg3, 4 ; (A_ij ptr) ++

9 add reg4, 4 ; (X_j loc ptr) ++

10 load reg6 into reg7 ; (X_j ptr) reg7 = X_j

11 fma reg2 reg5 reg7 ; b_i = b_i + A_ij*x_j

12 dec reg1 ; j--

13 jnz reg1 loop ; loop if j˜=0

Algorithm 2.3: CUDA-like pseudo-code for SpMxV.

processor is 3.44%, which is in good agreement with our previous calculations.

2.3.2 Case Study: Efficiency of SpMxV on GPUs

GPUs process data in a very different fashion from CPUs—which have a handful of FPUs

that operate independently of each other. GPUs typically have hundreds or thousands of

FPUs that process data in a single-instruction/multiple-data (SIMD) fashion. In a CUDA-

enabled GPU, processes are broken up into threads, which are organized into warps or thread

blocks (see Figure 2.9(a)). These thread blocks are further grouped into grids, which are

executed on streaming multiprocessors (a collection of FPUs executing the same instruction

on different threads). Each CUDA core (FPU) in the streaming multiprocessors continues

to execute a single thread until either it finishes, requires a memory fetch, or encounters a

hazard. In a CPU, each of these events would necessitate a pipeline stall. However, in a

CUDA-enabled GPU, the CUDA core will instead switch to a new thread waiting in the

queue to be processed (see Figure 2.9(b)). By doing this, a CUDA-enabled GPU is usually

able to hide the large latencies associated with memory accesses and branching statements

which are on the order of hundreds of clock cycles.

When the code from Algorithm 2.1 is compiled for an NVIDIA CUDA-enabled GPU,

17

Thread Thread Block Grid

(a)

TN Processing

Waiting

for data

Ready to be

processed

T1

T2

T3

T4

T5

(b)

Figure 2.9: The (a) organization and (b) execution of multiple threads on a CUDA-enabled

NVIDIA GPU.

it produces the pseudo-CUDA code shown in Algorithm 2.3. For a large A matrix, with a

large number of threads dedicated to calculating the SpMxV, we can ignore the latency of

the arithmetic/operation pipeline due to thread switching. Therefore, lines 1-4, 8, 9, 12, and

13, in Algorithm 2.3, take only one clock cycle each to execute. Line 11 takes an average of

1.2 cycles to execute, because only 160 of the 192 CUDA cores can perform floating-point

math on a streaming multiprocessor [32]. Since we are accessing memory sequentially, lines

6 and 7 take roughly a single L1 cache latency to load. This latency cannot be masked by

thread switching, because every other thread will also be trying to access memory. Line 10

takes approximately a single L3 latency to load its value do to the random, non-sequential

nature of its access pattern. For a GTX TITAN GPU, the L1 and L3 latencies are 15 and

215 clock cycles, respectively [32]. This results in a computational efficiency of 0.40%, with

the kernel spending roughly 98% of the time waiting for memory fetches, 0.1% of the time

waiting for the FPU to calculate an intermediary result, and 1.5% of the time executing

18

loops and other control flow. A first-order estimation of the computational efficiency, using

a 1-to-1 FLOP to memory fetch ratio and a memory latency of 215, for SpMxV on the

GTX TITAN GPU is 0.46%. From this we can deduce that GPUs are roughly 6 times

less computationally efficient than CPUs for memory-bounded algorithms, like the SpMxV

kernel, precisely because off-chip memory latencies are roughly 6 times longer in GPUs than

CPUs.

2.4 Sparse Matrix Algorithms in Bioinformatics

Sparse matrix operations are the dominant computational kernel for most graph-based and

compressive sensing algorithms. The two most common operations are the SpMxV,

y ← αAx+ βy, (2.6)

and SpMxM,

Y ← αAX + βY, (2.7)

where α and β are scalars, A is an M×N sparse matrix, x and y are N×1 (sparse or dense)

vectors, X is an N × K (sparse or dense) matrix, and Y is an M × K (sparse or dense)

matrix.

This section reviews several algorithms for building, searching, and clustering interac-

tomes, as well as high resolution tomographic imaging, whose computation is dominated by

SpMxV and SpMxM. We also introduce an algorithm complexity metric corresponding to the

number of FLOP per memory access. If we know the ratio of FLOP per memory fetch for an

algorithm and the underlying hardware architecture it is being executed on, we can estimate

the computational efficiency of the system. For example, an algorithm with a 10-to-1 FLOP

to memory access ratio, executing on a system with memory latency of 2 and a logic latency

of 1, would have an expected computational efficiency of 100%× 10/(10 + 2) = 83.3%.

19

2.4.1 Markov Clustering Algorithm

SpMxM forms the core of the Markov Clustering algorithm (MCL), an important bioinfor-

matics algorithm for determining cluster information in graph networks [19, 21]. MCL has

been applied to a wide range of interactomes, such as gene-regulatory and protein-protein

interaction networks [22,23]. MCL is not only fast, but also more robust to noise and graph

uncertainty than other clustering algorithms [23,24].

The MCL algorithm preforms unsupervised clustering by simulating the process of ran-

dom walks (or flow) within a graph via the alteration of two operations: expansion and

inflation [21]. In a graph theory, a natural cluster is a group of nodes that contain many

edges between members of the cluster. Additionally, the shortest path (number of edges)

between nodes of the cluster and any arbitrary node not in the cluster should be high. In

other words, a random walk of a graph will infrequently move from one natural cluster to

another.

These random walks are achieved using the column stochastic (Markov) matrix M asso-

ciated with the graph G. M is defined by normalizing all columns of the adjacency matrix

(A) corresponding to G (see Figure 2.10(a)-(d)). Expansion corresponds to computing the

expected location of an observer after p steps of a random walk within the graph. To do this,

the MCL expansion operator takes the pth power of the square matrix M ∈ Rn×n [21]:

ExppM = Mp. (2.8)

Inflation seeks to strengthen the probability of intra-cluster walks and weaken inter-cluster

walks by taking the Hadamard power of M , following by a normalization step to maintain

column stochasticity, to create a new Markov matrix. Given a matrix M ∈ Rm×n, M ≥ 0

and a number r ∈ R, r > 0, the inflation operator Γr (Rm×n → Rm×n) of M , with power

20

X Y

A C E G

B D F H

(a)

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

(b)

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

(c)

0.25

0.25

0

0

0

0

0

0

0.25

0.25

0

0

0

0

0

0

0.5

0.5

0

0

0.25

0.25

0.5

0.5

0

0

0

0

0.25

0.25

0

0

0.25

0.25

0

0

0.25

0.25

0

0

0.25

0.25

0.5

0.5

0

0

0

0

0.25

0.25

0.5

0.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.2

0

0

0.2

0.2

0

0.2

0

0.2

0

0.2

0

0.2

0

0.2

0

0.2

0

0.2

0

(d)

0.48

0.20

0.06

0

0.06

0

0.06

0

0.07

0.07

0

0

0

0

0.05

0.05

0.45

0.45

0

0

0.48

0.20

0.45

0.45

0.06

0

0

0

0.07

0.07

0.05

0.05

0.07

0.07

0.05

0.05

0.07

0.07

0.05

0.05

0.48

0.20

0.45

0.45

0.06

0

0

0

0.48

0.20

0.45

0.45

0.06

0

0

0

0.06

0

0

0

0.06

0

0

0

0.06

0

0

0

0.06

0

0

0

0.06

0

0

0

0.06

0

0

0

0.40

0.28

0.28

0.40

0.06

0.02

0.06

0.02

0.06

0.02

0.06

0.02

0.06

0.02

0.06

0.02

0.06

0.02

0.06

0.02

(e) chaos = 0.647

0.60

0.19

0.03

0

0.03

0

0.03

0

0.06

0.06

0

0

0

0

0.03

0.03

0.63

0.31

0

0

0.60

0.19

0.63

0.31

0.03

0

0

0

0.06

0.06

0.03

0.03

0.06

0.06

0.03

0.03

0.06

0.06

0.03

0.03

0.60

0.19

0.63

0.31

0.03

0

0

0

0.60

0.19

0.63

0.31

0.03

0

0

0

0.03

0

0

0

0.03

0

0

0

0.03

0

0

0

0.03

0

0

0

0.03

0

0

0

0.03

0

0

0

0.45

0.39

0.39

0.45

0.04

0

0.04

0

0.04

0

0.04

0

0.04

0

0.04

0

0.04

0

0.04

0

(f) chaos = 0.472

0.83

0.11

0

0

0

0

0

0

0.03

0.03

0

0

0

0

0.01

0.01

0.85

0.13

0

0

0.83

0.11

0.85

0.13

0

0

0

0

0.03

0.03

0.01

0.01

0.03

0.03

0.01

0.01

0.03

0.03

0.01

0.01

0.83

0.11

0.85

0.13

0

0

0

0

0.83

0.11

0.85

0.13

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.46

0.46

0.46

0.46

0.02

0

0.02

0

0.02

0

0.02

0

0.02

0

0.02

0

0.02

0

0.02

0

(g) chaos = 0.204

0.97

0.03

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.98

0.02

0

0

0.97

0.03

0.98

0.02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.97

0.03

0.98

0.02

0

0

0

0

0.97

0.03

0.98

0.02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.5

0.5

0.5

0.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(h) chaos = 0.029

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.5

0.5

0.5

0.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(i) chaos = 1.83× 10−8

X Y

A C E G

B D F H

(j)

Figure 2.10: The Markov Clustering algorithm for (a) an example graph G with 10 nodes.

The corresponding (b) adjacency matrix of G (Step 1)and it’s modification to (c) include self

loops for convergence (Step 2). Normalizing the all of the columns produces the (d) Markov

matrix M (Step 3). The result of the (e) first and (i) final iteration of the expansion and

inflation operations with their corresponding chaos (Steps 4-6). And finally, the example

graph G with (j) the identified clusters highlighted (Step 7).

21

coefficient r, is defined by [21]:

(ΓrM)ij = (Mij)
r

/
m∑
k=1

(Mkj)
r , (2.9)

for i = 1 . . .m and j = 1 . . . n. ΓrM is the inflation matrix of M with a power coefficient

r. Iterating the expansion and inflation processes results in a idempotent matrix, with

the steady-state separation of the graph into different segments. Since no paths (or edges)

exist between these segments, they are interpreted as clusters. The steady-state condition is

numerically achieved when the global chaos, according to Equation 2.10 and Equation 2.11,

of the kth column of matrix M in the current iteration is less then a minimum threshold

value e, for all k [19]:

chaosk =
max((ΓrM)ik)∑m

i=1(ΓrM)2ik
(2.10)

for i = 1 . . .m and

glb chaos = max(chaosk) (2.11)

for k = 1 . . . n.

To summarize the MCL algorithm for a graph G, an expansion power p, an inflation

parameter r, and a chaos threshold of e, the steps are:

Step 1: Create an Adjacency matrix A corresponding to the graph G.

Step 2: (optional) Add self loops to each node of A.

Step 3: Normalize the columns of A to produce the Markov matrix M .

Step 4: Expand M by taking the pth power.

Step 5: Inflate the resulting matrix from step 4 using parameter r.

Step 6: Repeat steps 4 and 5 until a steady state is reached (i.e. glb chaos ≤ e).

Step 7: Interpret the resulting matrix to discover clusters.

22

An example of the MCL algorithm for simple graph is given in Figure 2.10. For Nnz

nonzeros in M , the SpMxM of the expansion operation requires at most 2pNnzN FLOP

and at least pNnzN memory fetches, a 2-to-1 FLOP to memory access ratio. Together, the

inflation and the chaos calculation require 8Nnz FLOP and Nnz memory fetches, an 8-to-1

FLOP to memory access ratio. The computational complexity of the expansion operation

clearly dominates the performance of the MCL algorithm. However, as we will show, MCL

has a much higher ratio of FLOP per memory access than other sparse algorithms.

2.4.2 PageRank Algorithm

PageRank is a link analysis algorithm that assigns a numerical weight to each node in a

graph G denoting its relative importance within the set. Originally developed to rank the

relative importance of web pages for Internet searches [34], the PageRank algorithm has

become an increasingly popular tool for investigating the complex interactions present in

large biological networks [35,36] (see Figure 2.11). The algorithm’s stability in the presence

of a large number of false positive and false negative interaction edges makes it very attractive

for protein-protein interaction networks.

The algorithm assumes a random surfer model [34]: i.e. a person will continue to ran-

domly click web links with a probability d and will randomly teleport to another web page

with a probability (1− d)/N , where N is the total number of web pages. The PageRank of

each node at time t is represented by the vector R(t) ∈ Rn×1 with the probability of clicking

each link represented by the stochastic (Markov) matrix M ∈ Rn×n (constructed in the same

manner as MCL). The PageRank algorithm iterates:

R(t+ 1) = dMR(t) +
1− d

N
v, (2.12)

where v is a column vector of all ones, until some minimum difference e:

|R(t+ 1)−R(t)| < e, (2.13)

23

Figure 2.11: Visualization of the network of 2,358 protein-protein interactions for the yeast

Saccharomyces cerevisiae reported in [33]

24

Nyquist
Sampling

Information
(Sparse Represent.)

Compressive
Sampling

Digital

Compression
e.g. JPEG-200,
MPEG-4, etc.

Analog

Figure 2.12: Diagram demonstrating the concept of compressive sensing.

is satisfied between successive iterations. The computation of each of these iterations is

dominated by SpMxV. For Nnz nonzeros in M , each iteration requires 2Nnz+2N FLOP and

2Nnz + 2N memory fetches, a 1-to-1 FLOP to memory access ratio.

The concept of a Personalized PageRank can obtained by modifying the column vector

v to be 1 for nodes of interest and 0 otherwise [34]. For M < N nodes of interest, the

Personalized PageRank PR is computed as:

PR(t+ 1) = dMPR(t) +
1− d

M
v, (2.14)

with the same stopping conditions. The computational complexity of Personalized PageRank

is exactly the same as PageRank.

2.4.3 Compressive Sensing

Compressive Sensing (CS) is a signal processing technique in sampling theory for the efficient

acquisition and recovery of sparse signals by finding solutions to underdetermined linear sys-

tems [37]. CS has many applications in statistics, information theory, theoretical computer

25

science, various engineering disciplines, and bioinfomatics where it has found its niche in

group testing and DNA microarrays [38, 39] for DNA-DNA hybridization experiments [40],

studying gene expression [41,42], and building gene interaction networks [43].

In CS theory, a signal x that is k-sparse (i.e. a signal with n elements and k ≪ n nonzero

elements) can be perfectly reconstructed from m ≥ k log(n) measurements via [37]:

min
y=x̃Φ
∥x̃∥ℓ1 , (2.15)

where x̃ is the reconstructed signal and Φ ∈ Rm×n is the sampling matrix. Additionally,

for a random sparse Φ, x̃ can be iteratively reconstructed via SpMxV in linear time (O(k))

with, roughly, a 5-to-3 FLOP to memory access ratio [44].

2.4.4 Electron Tomography

Electron Tomography is a commonly used technique in the field of structural biology to

obtain detailed 3D images of complex biological structures at molecular resolutions by com-

bining 2D images taken from various angles [45, 46]. Iterative reconstruction techniques,

like the Simultaneous Iterative Reconstruction Technique (SIRT), preform very well when

handling incomplete and noisy data sets for high resolution imaging [47]. However, the poor

computational efficiency of the SpMxV kernel in SIRT leads to long reconstruction times

and has limited its adoption.

For a 2D image X ∈ Rn×n with B ∈ RΘ×d projection measurements, where Θ is the

number of projection angles and d is the number of detectors, and x = vec(X) ∈ Rn2×1

and b = vec(B) ∈ Rθd×1, where x and b are obtained by stacking the columns of X and B

respectively, the data acquisition process A ∈ Rθd×n2
is given by [48]:

Ax = b. (2.16)

26

(a)

(b)

Figure 2.13: A diagram demonstrating the (a) acquisition and (b) reconstruction of a

subcellular structures for 3D Electron Tomography.

The SIRT reconstruction algorithm then iterates [48]:

xk+1 = xk − λAT (Axk − b) , (2.17)

where λ is a scalar and xk is the kth estimation of x, for a predefined number of cycles. 3D

image reconstruction can be obtained by substituting X ∈ Rn×n×n and B ∈ RΘ×d×d. For all

practical tomographic recording processes, A is a very sparse matrix and every iteration of

27

SIRT requires two SpMxV. For Nnz nonzeros in A, each iteration of SIRT (for a 2D image)

requires 4Nnz+2n2+Θd FLOP and a minimum of 4Nnz+2n2+2Θdmemory fetches, less than

a 1-to-1 FLOP to memory access ratio. As such, SIRT is an extremely memory-bounded

algorithm.

28

CHAPTER 3

A Scalable Architecture for Sparse Linear Algebra

3.1 Energy Efficiency . 30

3.2 Architectural Trade-offs for Sparse-BLAS 31

3.2.1 Identifying Key CPU/GPU Architectural Inefficiencies 31

3.2.2 Minimizing Memory Accesses . 33

3.2.3 Strategies to Reduce Data Hazards . 34

3.2.4 Memory Size vs. Energy Efficiency . 37

3.3 Proposed Architecture . 39

3.3.1 Processing Element . 39

3.3.2 Sparse-BLAS Controller . 42

29

Fixed Single Double
SRAM

Cache
DRAM

Algebraic Operations

Memory Accesses

1.5x 3.6x 2.0x 2.7x

Sequential Random
5.0x

Increasing Energy Cost per Cycle

Figure 3.1: Energy cost per clock cycle for algebraic and memory operations.

This chapter takes an in-depth look at the different architectural trade-offs for sparse-

BLAS. The first section delves into energy efficiency by quantifying the relationship between

the amount of energy per logical and memory operations. The second section takes a look

at the architectural trade-offs for sparse-BLAS and identifies the key deficiencies in CPU

and GPU limiting their energy efficiency. Several strategies are presented for minimizing the

number of memory accesses, memory latency, and data hazards to increase the computational

efficiency of sparse-BLAS. The final section concludes the chapter with a detailed description

of the proposed sparse-BLAS architecture.

3.1 Energy Efficiency

Energy efficiency is the most important issue facing the field of HPC today [49]. The expo-

nential growth in computational performance of super computers has had a corresponding

exponential growth in their electrical usage. The world’s largest super computers require tens

of megawatts to power and cool them, at a cost of millions of dollars a year to operate [50].

The high financial cost of energy delivery and cooling ultimately limits the scalability and

peak performance of many HPC systems. For example, a single 42U server rack, common to

most university labs, still requires tens of kilowatts to power and many thousands of dollars

a year to operate [50]. Improving the energy efficient of HPC systems would increase their

scalability and peak performance, while simultaneously reducing their operation costs.

30

CPU

77.6%

18.5%

1.9%

2%

98%

0.1%

1.6%

0.3%

GPU

Memory Fetch Data Hazards Control Flow Floating-Point Calculation

Figure 3.2: Computational efficiency breakdown for a CPU and GPU. Only the floating-

point calculations are considered “useful” work. Memory fetches, data hazards, and program

control flow are viewed as wasted clock cycles.

From Figure 3.1, we can see that memory accesses are very costly; 15-30x less energy

efficient that fixed-point arithmetic [51, 52, 53, 54]. Their energy efficiency is even worse if

we must access memory randomly, rather than in a sequential fashion [54]. In a modern cell

phone, more than half of the power burned is from static (standby) power dissipation [55].

Following sections look at these architectural trade-offs for sparse-BLAS.

3.2 Architectural Trade-offs for Sparse-BLAS

This section focuses on the architectural trade-offs for sparse-BLAS. Key architectural defi-

ciencies in CPU and GPU are first identified. We then take a look at several strategies to

reduce memory accesses, data hazards, and optimizing memory sizes.

3.2.1 Identifying Key CPU/GPU Architectural Inefficiencies

For SpMxV (and SpMxM) on CPUs and GPUs, yi (Yi,j) is almost exclusively calculated as

the dot product of the ith row of A and the vector x (j th column of X = Xj). This is

31

because each computing core usually contains only a handful of general purpose registers

and a single floating-point unit (FPU). Additionally, off-chip memory accesses incur a large

latency penalty, typically dozens of clock cycles for CPUs and hundreds of clock cycles for

GPUs. Using the CSC format would require more off-chip memory accesses than the CSR

format, due to the limited number of registers. Because of this, CSR is one of the most

computationally efficient storage options for sparse matrices on CPUs and GPUs. The CSR

format has the added benefit of being easily parallelizable: each computing core can be

independently assigned a different value of yi (Yi,j) to calculate. Unfortunately, SpMxV and

SpMxM have several drawbacks on CPUs and GPUs that hurts their overall computational

efficiency [16]:

(1) The SpMxV and SpMxM kernels are memory-bounded. Additionally, CPUs and GPUs

typically have much larger computational throughput than available memory band-

width. This leads to a very low utilization rate for the computing resources, and

subsequently, poor energy efficiency.

(2) The indirect (global) memory references for the vector x (Xj) present in col adds

uncertainty to the memory access pattern, ultimately delaying the computation via

unmaskable latency. Each element of col must first be loaded from memory and added

to the address of x (Xj) as an offset. Only then can the correct value of x (Xj) be

loaded into the FPU for computation.

(3) Irregular memory access of vector x (Xj) causes a large number of cache misses. In

CPUs, this cache miss can add tens of cycles of latency. In GPUs, a cache miss can

add hundreds of cycles of latency. GPUs typically try to hide these large latencies

by interleaving dozens of threads on a single computational core. This works well

for computation-bounded algorithms, but not memory-bounded algorithms like those

with SpMxV and SpMxM. As a result, random memory accesses are 5 times less energy

efficient than sequential memory accesses [54].

(4) Short row lengths (i.e. very few nonzero elements per row) can cause serious perfor-

mance degradation. When rows are short, the overhead associated with calculating

32

each element of y (Y) becomes significant.

Due to these drawbacks, CPUs and GPUs reach less than 5% of their theoretical peak

processing throughput and utilize less than 50% of their available memory bandwidth for

sparse linear algebra [1, 2].

3.2.2 Minimizing Memory Accesses

The optimization of memory accesses is critical for improving the computational efficiency

of sparse linear algebra. However, as we saw in the previous section, CPUs and GPUs are

limited to CSR matrix storage formats (and their derivatives) due to hardware architecture

limitations. Additionally, from Chapter 2, we saw that the maximum attainable performance

of the row-wise dot product between A and x (Equation 2.2) for the CSR format is dictated

by the worst-case system memory latency. In an attempt to reduce the number of mem-

ory accesses, the proposed sparse-BLAS kernel instead relies on the CSC matrix format to

calculate SpMxV and SpMxM as a series of column-wise vector additions of A weighted by

each element of x. Fundamentally, this allows us to directly address the major limitations

present in current CPU and GPU systems:

(1) The architecture allows for much better balancing of system resources. The number

of processing elements (PEs) and operating frequency can be tailored to match the

available memory bandwidth to optimize energy efficiency.

(2) What used to be indirect (global) memory references for x in the col vector (for the

CSR format) are now direct (local) memory references for y in the row vector. In other

words, when a column of A is weighted by an element of x, we know exactly which

elements of y the partial products will contribute to. This allows us to almost halve

the number of required memory accesses, one of the largest bottlenecks in the SpMxV

and SpMxM kernels.

(3) Memory access to the x vector is no longer irregular, but sequential. By using the

CSC format to store A, both A and x can be placed in a large off-chip memory and

33

sequentially streamed into the co-processor (eliminating the time and energy overheads

of a cache miss present in CPUs and GPUs).

(4) Short row or column lengths have much less impact on the performance, since the PEs

are rarely idled thanks to the balanced memory bandwidth and computing capability.

However, the performance can be degraded if the memory bandwidth of x approaches

that of A, as in the case of extremely sparse matrices (nonzero densities <0.0001%).

In the rare case of M ≫ N , the performance of CSC is no better than that of CSR

due to the significant increase in the memory bandwidth required by x.

A simple proof of claim (2), that we can in most cases halve the number of memory

accesses, is as follows: The number of memory accesses required for x and A using the CSR

format is 2×NNz. For the CSC format it is (1+NNz per Column)×Ncolumn = NNz+Ncolumn.

Taking the ratio of CSC to CSR memory accesses we get:

1

2
+

Ncolumn

2×NNz

. (3.1)

Using the matrices from Table 6.1 in Chapter 6, used to benchmark the proposed architec-

ture, we find ratio from Equation 3.1 to be between 0.50 and 0.66, with an average of 0.54.

In the extreme case that Ncolumn = NNz, then the ratio if Equation 3.1 is equal to 1. thus

confirming claim (4).

3.2.3 Strategies to Reduce Data Hazards

One strategy to reduce the number of data hazards is data stream reordering. This is not

possible with the CSR data format, forcing us to stall the processor whenever a data hazard

occurs. An example of this stalling behavior (for the CSC format) is shown in Figure 3.3 for a

single processing element performing SpMxV between the example A matrix from Figure 2.1

and the vector x = [0.1 0.2 0.3 0.4 0.5]T . In the example, the latency of the floating-point

multiplier and adder are both 2 clock cycles. Additionally, the simple dual-port memory

34

CLK

Aij

Xj

i

Valid

Ptr

Y

0 2 4 6 7 9

1 5 4 2 3 9 7 8 6 X

0.1 0.2 0.3 0.4 0.5 X

0 2 0 1 3 2 3 X

1 0 1 0 1 0 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

0

0

0

0.1

0

0

0

0.1

0

0.5

0

0.9

0

0.5

0

0.9

0.4

0.5

0

0.9

1.3

0.5

0

0.9

1.3

0.5

2.7

0.9

1.3

3.3

2.7

0.9

1.3

7.3

2.7

0.9

1.3

7.3

5.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hazard Hazard Hazard

Figure 3.3: Timing diagram for calculating the SpMxV of the example A matrix from

Figure 2.1 and x = [0.1 0.2 0.3 0.4 0.5]T using a single PE, without data stream reordering.

For this example, the floating-point adder and multiplier both have a latency of 2 clock cycles

and the simple dual-port memory (Y) has a latency of 1 clock cycle.

(Y) has a latency of 1 clock cycle. In cycle 2, a hazard is detected due to the proximity

of the partial product of 1 × 0.1 and the partial product of 4 × 0.2. We must stall for 1

cycle—by deasserting Valid and holding the values of Aij, Xjk, and i—to ensure that partial

product of 1× 0.1 is added to Y before continuing. If the co-processor had not stalled, the

partial product of 4× 0.2 would have added itself to the current value of Y , 0, producing an

incorrect final value of 0.8 (instead of 0.9). Computation resumes in cycle 4, after the hazard

has passed. Additional hazards are detected in cycles 5 and 10, with each hazard resulting

in 2 clock cycles of stalling.

However, with the CSC data format, we aren’t forced to operate on the same row. This

allows us to switch processing to an alternate row whenever a data hazard occurs. Figure

35

CLK

Aij

Xj

i

Valid

Ptr

Y

0 2 4 6 7 9

1 5 42 39 7 86 X

0.1 0.2 0.3 0.4 0.5 X

0 2 1 0 X

1 0 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

0

0

0

0.1

0

0

0

0.1

0

0.5

0

0.9

0.4

0.5

0

0.9

0.4

0.5

0

0.9

1.3

0.5

2.7

0.9

0.4

0.5

2.7

0.9

1.3

3.3

2.7

0.9

1.3

7.3

5.7

0.9

1.3

3.3

5.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Hazard

3 1 2 3 2

Figure 3.4: Timing diagram for calculating the SpMxV of the example A matrix from

Figure 2.1 and x = [0.1 0.2 0.3 0.4 0.5]T using a single PE, with data stream reordering.

For this example, the floating-point adder and multiplier both have a latency of 2 clock

cycles and the simple dual-port memory (Y) has a latency of 1 clock cycle.

3.4 shows an example of this behavior for a single processing element performing SpMxV

between the example A matrix from Figure 2.1 and the vector x = [0.1 0.2 0.3 0.4 0.5]T .

In the example, the latency of the floating-point multiplier and adder are both 2 clock cycles.

Additionally, the simple dual-port memory (Y) has a latency of 1 clock cycle. In cycle 2,

a hazard is detected due to the proximity of the partial product of 1 × 0.1 and the partial

product of 4× 0.2. Instead of stalling, the processor swaps in the partial product of 2× 0.2,

pushing the partial product of 4 × 0.2 back one clock cycle. In cycle 4, another hazard is

detected due to the proximity of partial product 2× 0.2 and the partial product of 3× 0.3.

Again instead of stalling, the partial product of 9 × 0.3 is substituted, pushing back the

calculation of the partial product of 3× 0.3 by one clock cycle. Finally, in cycle 8, another

36

E
n

e
rg

y
 O

v
e
rh

e
a
d

 [
%

]

64

0

10

20

30

40

50

60

70

80

Memory Size [words]

128 256 512 1k 2k 4k 8k 16k

90

100

Figure 3.5: Bandwidth overhead vs. memory size.

hazard is detected due to the proximity of partial product 7× 0.4 and the partial product of

8 × 0.5. However, since we have reached the end of the data stream, we are forced to stall

the processor one clock cycle to allow the data hazard to resolve itself.

The simple examples in Figure 3.3 and Figure 3.4 demonstrate an 23% speedup for

calculating SpMxV through the use of data stream reordering.

3.2.4 Memory Size vs. Energy Efficiency

It should be noted that Equation 3.1 assumes that the system has a large enough memory

to fit the entirety of the y vector in it. However, this does not necessarily hold true for a

37

B
a
n

d
w

id
th

 O
v

e
rh

e
a
d

 [
%

]

64

0

100

200

300

400

500

600

700

800

Memory Size [words]

128 256 512 1k 2k 4k 8k 16k

Figure 3.6: Energy overhead vs memory size.

finite memory size. If the y vector is larger than the memory we are using, then we will need

to partition the A matrix into blocks to accommodate the smaller memory. The result is

an increase in the required memory bandwidth, which is detrimental to bandwidth limited

mathematical kernels like sparse-BLAS. Therefore, it is necessary to carefully optimize the

size of our memories to limit this degradation.

Figure 3.5 shows the average memory bandwidth overhead for various memory sizes, when

compared to the ideal case, for the matrices from Table 6.1 in Chapter 6. Assuming that this

overhead is directly proportional to the execution time of sparse-BLAS and that the leakage

energy of a memory is directly proportional to it’s size, then we can calculate the energy

efficiency loss (or overhead) for a particular memory size. The results of this calculation

for the matrices from Table 6.1 are shown in Figure 3.6, which has been normalized to the

optimal memory size (512 words).

38

Scalar Core

 | |
2

÷

×

±

 Sparse-BLAS

Controller

Scheduling and

Hazard Detection

Memory

Controller

()

Floating-Point PEs

rd_en

wr_en
wr_addr

rd_addr

data_in

data_out

BlockRAM

Dual-Port RAM

Aij

Xj

i

Valid

Figure 3.7: Top-level schematic of the proposed sparse-BLAS kernel.

3.3 Proposed Architecture

Figure 3.7 shows the top level schematic of the proposed sparse-BLAS kernel. It consists of a

sparse-BLAS controller, with an integrated memory controller, various processing elements

for the CSC data format, and an optional scalar core to support non-BLAS math operations

for executing more complex algorithms. The following sections with look into the details of

each of these blocks.

3.3.1 Processing Element

Each processing element (PE) contains a single Floating-Point Unit, as well as a simple

dual-port RAM, and a data-stream reorderer (or “Shuffler”). To perform sparse-BLAS, each

PE multiplies an element of the data vector (Aij) and the corresponding element of the

x vector (xj) together. The resulting partial product is then added to the address in the

row vector (i), before being stored back into the dual-port RAM. Due to the latency of the

multiplication and addition operations, a Valid signal is used to prevent data corruption

39

Aij

Xj

i

Valid

Ready

en0en1en2en3

sel
en0en1en2en3

sel
en0en1en2en3

sel

Shuffle FSM

selen0en1en2en3

en0en1en2en3

sel

STALL (0)

rd_en

wr_en

wr_addr

rd_addr

data_in

data_out

BlockRAM

Simple Dual-Port RAM

Aij

Xj

i

Valid

Data Stream Reorderer

(Shuffler)

FP Multiplier

FP Adder

Figure 3.8: Block diagram of the proposed processing element with a floating-point unit,

dual-port memory, and data “shuffler.”

due to hazards. The “Shuffler” attempts to reduce the number of data hazards by first

monitoring for them, and then swapping in alternative partial products (instead of stalling)

until the data hazard is resolved. Using this strategy, data can be continuously streamed

into each PE (directly from the CSC format) with a small startup overhead equal to the

combined latency of the adder, multiplier, and “Shuffler”.

3.3.1.1 Floating-Point Unit

The Floating-Point Unit (FPU) of each PE contains a floating-point adder and multiplier.

The purpose of the FPU is to perform the partial product multiplication and accumulation

40

for each element of the data vector (Aij) and the corresponding element of the x vector (xj).

In this work, we use the single-precision floating point format (binary32) specified by the

IEEE 754-2008 standard [56]. We use the default rounding mode: round to nearest, ties to

even.

3.3.1.2 Dual-Port Memory

Since each PE can only store a finite number of elements, each PE will need to contain a

partial working copy of the vector being computed. To facilitate this, blocking is performed

along the rows of A (i.e. each PE is assigned a subset of rows of A for computation). The

final vector is then assembled by concatenating the output of each PE during memory write-

back (requiring no additional latency). This parallelization strategy (essentially a block CSC

matrix storage format) preserves the property of sequential memory accesses across all PEs

to ensure high computational efficiency.

To ensure that we can both compute and update the partial products in the same clock

cycle, a dual-ported memory is required. The first port of the memory is set to a read-only

state to provide data for the partial product accumulation. This port is also used to write

out the contents of the dual-ported memory to main system memory. The second port is

fixed into a write only state, with a write enable signal, to write back the updated partial

products. This port can also be used to zero-out the memory, or load a predefined vector in

the most general case of SpMxV and SpMxM.

3.3.1.3 The “Shuffler”

The data-stream reordering unit, or “Shuffler, consists of a buffer for N items each of Aij,

Xj, i, and V alid data used to calculate a partial product, and a FSM to control the flow

of data in the buffer. The FSM monitors each piece of data in the buffer to see if it will

create a data hazard further down the pipeline if it is issued to the FPU. Every clock cycle

the FPU requests a new piece of data. The FSM will issue the first element in the buffer

41

that will not create a data hazard. If the buffer is empty or if every valid piece of data in

the buffer would create a data hazard, the FSM will issue a stall command to the FPU. An

example of this type of behavior can be seen in Figure 3.4.

3.3.2 Sparse-BLAS Controller

The primary purposes of the sparse-BLAS controller are scheduling and hazard detection.

The following sections will discuss data flow and memory management of the controller.

3.3.2.1 Memory Management

The memory controller acts as a slave to the sparse-BLAS controller, ensuring a continuous

stream of data into the PEs. As we have see before, data hazards arise when two or more

partial products want to write to the same memory address of the dual-port RAM in the

PE in a short period of time. Due to the latency of the floating-point adder of the PE,

shown in Figure 3.8, the existing sum of the partial products in the dual-port RAM must be

prefetched. If two partial products that contribute to the same term are allowed to proceed,

the second product will prefetch a sum that does not include the first product. The result

is that the final sum of products will not include the first conflicting partial product.

In simpler designs, in which there is no data “Shuffler” in the PE, the sparse-BLAS

controller must detect these hazards and correct them. In this case, when a data hazard is

detected, the controller issues a stall command to the PE (by deasserting the Valid signal,

and holding the values of Aij, Xjk, and i). This behavior is shown in Figure 3.3.

3.3.2.2 Data Flow

To provide a scalable, high speed data interface between main memory and each PE, simple

FIFOs are used. Each FIFO has a push/pop data interface with full and empty data signals,

and is encapsulate with a ready/valid interface. Due to the sequential nature of the memory

accesses, outline in Section 3.2.2, can continuously stream data into each FIFO as long as it

42

isn’t full. Additionally, by using an asymmetric FIFO (a FIFO when the read-in bitwidth

in different than the read-out bitwidth), we can store an entire burst of DDR memory

accesses in one clock cycle into the FIFO. This allows us to have the energy benefits of

a sequential memory access with the freedom to have essentially random memory accesses

between different PEs.

43

CHAPTER 4

FPGA Implementation

4.1 Field Programmable Gate Arrays . 45

4.1.1 Reconfigurable Computing Building Blocks 46

4.1.2 Prior Art Using FPGAs for Sparse-BLAS 50

4.1.3 Reconfigurable Open Architecture Computing Hardware (ROACH) . . . 52

4.2 SpMxV Architecture . 55

4.2.1 Processing Element . 57

4.2.2 Data Hazard and Memory Management 59

4.3 Sparse-BLAS Architecture . 60

4.3.1 Processing Element . 61

4.3.2 Data Hazard and Memory Management 62

44

The first section covers the basics of reconfigurable computing blocks and prior attempts

to use them for sparse-BLAS are also discussed. The remainder of this chapter details

the development and design of two versions of the proposed architecture on a field pro-

grammable gate array (FPGA) system. The first version includes only partial support for

sparse-BLAS [12]. The second version expands upon the first to provide full sparse-BLAS

compatibility, with the addition of several related scalar functions, capable of executing the

sparse bioinformatics algorithms presented in Chapter 2.

4.1 Field Programmable Gate Arrays

Recently, FPGAs have become an attractive option for exploring new architectures for per-

forming sparse linear algebra [14,15,16,25,57,58,59]. FPGAs can perform trillions of floating-

point operations (FLOP) per second, have large amounts of on-chip memory, and an abun-

dant number of high-speed I/O pins capable of providing large amounts of off-chip memory

bandwidth [60]. Additionally, FPGAs have demonstrated a 1 to 2 orders of magnitude

improvement in energy efficiency over CPU and GPU systems [61,62].

FPGAs are semiconductor devices whose functionality can be reconfigured, or programm-

ed, after manufacturing. As such, they provide numerous design advantages over the fixed

functionality present in standard cell Application-Specific Integrated Circuits (ASICs). FP-

GAs are ideally suited for the rapid prototyping and verification of VLSI systems. While

ASICs take months and hundreds of thousands of dollars to design, fabricate, and verify, FP-

GAs can be reprogrammed in the field in a matter of seconds at a fraction of the cost [63,64].

This added flexibility, however, does not come without a price. FPGAs incur significant

penalties in area, speed, and power consumption, requiring roughly 17 to 54 times more area,

run 2.5 to 6.7 times slower, and consume 5.7 to 62 times more power than a typical ASIC [65].

As detailed in Figure 4.1, this overhead is primarily due to programmable interconnects,

which account for over 75% of area and delay, and 60% of the total power, in FPGAs.

To close the performance gap between FPGAs and ASICs, various circuit architectures

45

Clock

19.4%

Logic

21.4%

Interconnect

59.2%

Logic

20.9%

Interconnect

79.1%

(a) Area

(b) Delay (c) Power

Memory

28%

Logic

18%

Mem

4%

Interconnects + Routing

50%

Logic Area Interconnect Area

Figure 4.1: An average (a) Area, (b) Delay, and (c) Power breakdown for a simulated 90nm

FPGA.

and techniques have been proposed [66,67,68,69,70].

4.1.1 Reconfigurable Computing Building Blocks

Conceptually, all FPGAs are constructed from three simple blocks. The first is a pro-

grammable or configurable logic block (CLB), which is used to implement logic functions.

Second, programmable I/O blocks are needed to make off-chip connections. Finally, a pro-

grammable interconnect is required to route signals between logic blocks and I/O blocks.

Two main architectures exist for the global routing of programmable interconnects in

FPGAs [63]. The first, and most widely used architecture in commercial FPGAs, is called

island-style routing or a 2-D Mesh. As shown in Figure 4.2, this architecture receives its

name from the way CLBs are arranged in a regular fashion on a two-dimensional grid with

routing resources evenly distributed throughout it to form a mesh. The second style of

46

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

SB SBSB SB

SB

SB

SB

SB

SB

Figure 4.2: An example of an Island-Style, or 2-D Mesh, FPGA.

routing is called hierarchical routing for the way in which CLBs are organized into distinct

groups or levels. As shown in Figure 4.3, only the lower most levels of routing connect to

the CLB. In subsequent routing levels, the number of wires in the routing channel grows

exponentially.

A CLB is usually constructed out of several logic cells: the combination of a lookup

table (LUT) and a storage element. Depending upon the vender, they sometimes also called

47

CLB

SB

CLB

CLB

SB

CLB

SB

CLB

SB

CLB

CLB

SB

CLB

SB

CLB

SB

CLB

CLB

SB

CLB

SB

CLB

SB

CLB

CLB

SB

CLB

SB

SB

SB

SB

Figure 4.3: An example of a Hierarchical FPGA.

a Logic Element (LE), a Slice, or an Adaptive Logic Module (ALM). Figure 4.4 shows an

example of typical logic cell employing a 4-input LUT, a full adder, and a D-type flip-flop.

The routing is accomplished by programming the various switch boxes (SBs) and switch

matrices (SMs) distributed throughout the FPGA. As shown in Figure 4.5, each SB contains

48

FA
3-input
LUT

3-input
LUT

DFF

D Q

A

B

C

D

OUT

CIN

COUT

Figure 4.4: A simplified example of a logic cell with two 3-input LUT that can be configured

into a single 4-input LUT, a full adder, and a D-type flip-flop.

Figure 4.5: An example of a 5×5 disjoint switch block.

a set of switches to form connections between the wires segments at every horizontal and

vertical intersection of the routing channels. Similarly each CLB also contains a set of

programmable switched, the SM, to connect the CLB to the surrounding interconnect.

49

Table 4.1: Prior Art Using FPGAs

[15] [14] [71] [58] [72] [12]

FPGA
Virtex-5 Stratix-III Virtex-II Virtex-II Virtex-II Virtex-5
LX155T EP3SE260 Pro 70 Pro 100 6000 SX95T

Frequency [MHz] 100 100 200 170 95 150
Mem. Bandwidth [GB/s] 6.5 8.5 8 8.5 1.6 35.74
Number of PE 16 6 4 5 3 64
Peak Perf. [GFLOP/s] 3.2 1.2 1.6 1.7 0.57 19.2
Matrix Format CVBV† COO CSR CSR SPAR* CSC
Matrix Density
MIN-MAX [%] 0.01-5.48 0.51-11.49 0.04-4.17 0.04-0.39 0.01-1.10 0.003-0.33
Average [%] 1.41 3.34 0.87 0.16 — 0.09

Comp. Efficiency
MIN-MAX [%] 1-7 5-7 20-79 50-98.4 1-74 69-99.8
Average [%] 4.48 5.63 42.6 79.4 55.6 91.9

†Variant of CSR. *Variant of CSC.

4.1.2 Prior Art Using FPGAs for Sparse-BLAS

FPGA implementations have attempted to alleviate these inefficiencies by introducing several

architectural changes. In some designs, several processing elements (PEs) work together to

compute a single element of y in parallel [14, 25, 58]. These designs employ novel reduction

circuits in order to combine the intermediary results. Other designs have each PE calculate

several elements of y in a sequential manner in order to mitigate the effects of short rows

[15, 57, 58]. In both cases, the entirety of the x vector, or a large subsection (in the case

of blocking), is buffered in on-chip Block RAM (BRAM) to reduce the effects of irregular

memory accesses [14, 15, 16, 25, 57, 58, 59]. However, these changes mainly focus on reducing

the total resource usage in the design. As such, they only average around 50% of their

theoretical peak processing throughput and memory bandwidth [14,15,16,25,57,58,59].

In Table 4.1, we compare our proposed SpMxV architecture to several published SpMxV

FPGA architectures. The architectures can be categorized into 3 distinct approaches. The

first is to either re-encode, reorder, or preprocess the sparse matrix in such a way as to

reduce data hazards [14,15] (see Figure 4.6). Kestur et al. [15] re-encode the matrix into the

Compressed Variable-Length Bit Vector (CVBV) format (a variation of the CSR format) on

the fly to reduce the required memory bandwidth. However, re-encoding the matrix insures

a significant overhead penalty, resulting in marginal efficiency improvements over CPU and

50

1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1

Accumulator

Accumulator

Accumulator
0 0 1 0

1 1 0 1

0 0 1 1

0 1 0 0

0 0 1 0

1 0 0 1

0 0 1 0

0 1 0 0

Figure 4.6: Examples demonstrating preprocessing on the sparse matrix re-encode or re-

order the matrix in such a way as to reduce either the data rate of the number of data

hazards.

GPU implementations (only 3-10x). Sun et al. [14] preprocess the matrix to reorganize and

optimize the datapath to eliminate hazards. After preprocessing, the matrices achieve a

computational efficiency of 96-99% on the FPGA. Unfortunately, the preprocessing over-

head (datapath optimization, FPGA reconfiguration, and buffering the matrix on BRAM)

is about 20 times greater than that of the SpMxV calculation. This results in an effective

computational efficiency of only 5-7%.

The second approach is to use several PE (each with its own working copy of x) in parallel

with a novel reduction circuit or adder tree to accumulate a single element of y [58, 71]. In

Zhuo et al. [71], the partial product of 4 multipliers are added together via a tree of 3 adders.

The resulting sum is then fed into a novel reduction circuit (accumulator) that handles the

potential read-after-write data hazards. The drawback of this approach is that requires

zero padding to achieve a minimum row size. Combined with blocking along the columns

of A, the design is sensitive to the sparsity structure of the matrix. The computational

efficiency ranges from 20% to 79%, performing particularly poorly for extremely sparse

matrices (<0.1% density). Zhang et al. [58] improves upon this design by having each PE

calculate a different element of y. Their accumulator requires a minimum row length of 8,

51

zero padding when necessary, but can switch between any of several different rows assigned

to it if it encounters a data hazard. This roughly doubles the computational efficiency of the

design as compared to Zhuo et al. [71]. However, it still performs quite poorly for extremely

sparse matrices.

The final approach is to use the method outlined in Chapter 3 to stream CSC matrix

data through several PE. Gregg et al [72] uses a variant of CSC called the sparse matrix

architecture and representation (SPAR) format. In the SPAR format, row and ptr are

combined into a single vector with zero padding introduced at the start of each column of

the data vector. Each PE only buffers a small portion of the y vector (32 elements vs.

3,456 elements in our design) in a local cache. A y-cache miss requires a write-back to high

latency DRAM, incurring a 109 clock cycle penalty. With such a small cache, the design is

very highly sensitive to the sparsity structure of the matrix. Computational efficiency ranges

from 1% to as high as 74%.

4.1.3 Reconfigurable Open Architecture Computing Hardware (ROACH)

The SpMxV and sparse-BLAS kernels were prototyped and demonstrated on the open-source

academic research platform “ROACH” (Reconfigurable Open Architecture Computing Hard-

ware) [73]. The “ROACH” was developed as part of an international collaboration of primar-

ily radio astronomy research institutions as a common high-performance computing platform

for real-time digital signal processing applications [74]. A block diagram of the system is

shown in Figure 4.7. A picture of the “ROACH” FPGA system is shown in Figure 4.8.

This ROACH platform uses a Virtex-5 SX95T FPGA that has been component optimized

for DSP applications. This particular FPGA is equipped with a large number of embedded

multipliers (“DSP48E”) and dual-ported SRAM blocks (“BlockRAMs” or “BRAMs”). In

addition to its 14,720 logic SLICEs1, an SX95T has 640 DSP48Es, and 488 18-kbit BRAMs

[75]. A Virtex-5 DSP48E is a “hard macro”: that is, it is a circuit-level implementation of a

25×18-bit multiplier-accumulator, and consumes no reconfigurable logic resources in order

1A Virtex-5 SLICE is four 6-input lookup tables (LUTs) and four flip-fops (FFs).

52

Figure 4.7: A block diagram of the open-source academic research platform “ROACH”

(Reconfigurable Open Architecture Computing Hardware) [73].

to create a multiplier, adder, or multiply-accumulate unit (MAC).

The “ROACH” system also has two 36Mb QDRII+ SRAMs and 2GB of DDR2 SDRAM

for a combined peak memory bandwidth of 35.74 GB/s. The “ROACH” uses ECC (error-

correcting code) DDR2 memory modules, with each module presenting a 72-bit interface due

to an extra parity byte. The FPGA’s DDR2 controller provides a 144-bit, two-word-burst

interface to the FPGA fabric. Due to the way that the way DDR2 memory is implemented

at the physical level, the “ROACH” can only support operating the modules at a limited

number of frequencies: 150, 200, 266, 300, or 333 MHz.

The QDR memories on “ROACH” have 18-bit data buses with a 4-word DDR burst

of consecutive memory locations. As with the DRAM used, the non-multiple-of-eight data

53

Figure 4.8: A picture of the open-source academic research platform “ROACH” (Recon-

figurable Open Architecture Computing Hardware) [73].

width is nominally for ECC parity bits; in both interfaces, 9 bits is considered to be a single

byte. The FPGA’s QDR controller abstracts this physical layer and presents an interface

with a two-word burst of 36 bits each. The SRAM structure allows the controller to have a

fixed 10-cycle read latency and 1-cycle write latency. The QDR chips have the flexibility to

run at any clock frequency between 150 and 400 MHz.

The “ROACH” system is controlled by an on-board PowerPC 440EPx embedded pro-

cessor with 512 MB of dedicated DDR2 DRAM, non-volatile Flash memory, and a Gigabit

Ethernet interface. This allows the PowerPC to run a full Linux operating system and en-

ables a computer running MATLAB to remotely interface with “software registers,” BRAMs,

54

Figure 4.9: A graphical representation of how SpMxV is performed using the CSC format.

The entire vector y is calculated as a series of vector additions of the columns of A weighted

by the appropriate element from x.

and FIFOs on the FPGA, as well as to load data in and out of the QDRs and SDRAM on

the board.

4.2 SpMxV Architecture

Our first prototype, an FPGA architecture implements only up to level 2 sparse-BLAS

operations (Equations 2.1 and 2.2). Using the CSC data format, the FPGA architecture

abandons the idea of calculating each element of y separately as the row-wise dot product

between A and x (as shown in Figure 2.6). Instead, the entirety of y is calculated as the

column-wise vector additions of A weighted by each element of x, as shown in Figure 4.9.

Fundamentally, this allows us to directly address the major limitations present in current

CPU and GPU systems for the SpMxV algorithm:

(1) An FPGA co-processor allows for much better balancing of system resources. The

number of processing elements (PEs) and operating frequency can be tailored to match

55

the available memory bandwidth to optimize energy efficiency.

(2) What used to be indirect (global) memory references for x in the col vector (for the

CSR format) are now direct (local) memory references for y in the row vector. In

other words, when a column of A is weighted by an element of x, we know exactly

which elements of y the partial products will contribute to. This allows us to halve

the number of required memory accesses, one of the largest bottlenecks in the SpMxV

and SpMxM kernels.

(3) Memory access to the x vector is no longer irregular, but sequential. By using the

CSC format to store A, both A and x can be placed in a large off-chip memory and

sequentially streamed into the co-processor (eliminating the time and energy overheads

of a cache miss present in CPUs and GPUs).

(4) Short row or column lengths have much less impact on the performance, since the PEs

are rarely idled thanks to the balanced memory bandwidth and computing capability.

However, the performance can be degraded if the memory bandwidth of x approaches

that of A, as in the case of extremely sparse matrices (nonzero densities <0.001%). In

the rare case of M ≫ N , the performance of CSC is no better than that of CSR due

to the significant increase in the memory bandwidth required by x.

Figure 4.10 shows the overall architecture of the SpMxV kernel, which serves as a co-

processor attached to an external computer. A dedicated memory controller allows the

elements of A and x to be continuously streamed into the FPGA, while the SpMxV con-

troller’s primary function is scheduling and hazard detection. Hazard detection avoids the

conflict between two partial products that contribute to the same element of y overlapping

due to the latency of the floating-point adder. Each of the 64 PEs contain a single-precision

floating-point adder and multiplier, as well as a simple dual-port RAM for partial product

accumulation.

56

Memory Controller

QDR0

SpMxV

Controller

Processing Element

FPGA

QDR1

Scheduling &

Hazard Detection

DRAM

Processing Element

Processing Element

Processing Element

Processing Element

Processing Element

Figure 4.10: Top-level schematic of the SpMxV kernel, containing 64 single-precision

floating-point processing elements, running on the “ROACH” FPGA platform [73]

4.2.1 Processing Element

As stated previously, each PE (Figure 4.11) contains a single-precision floating-point adder

and multiplier, as well as a simple dual-port RAM. To perform the SpMxV, each PE mul-

tiplies an element of the data vector (Aij) and the corresponding element of the x vector

(Xj) together. The resulting partial product is then added to address in the row vector (i),

before being stored back into the BRAM of the dual-port RAM. Due to the latency of the

multiplication and addition operations, a Valid signal is used to prevent data corruption due

to hazards. Using this strategy, data can be continuously streamed into each PE (directly

from the CSC format) with a small startup overhead latency equal to that of the adder and

57

rd_en

wr_en

wr_addr

rd_addr

data_in

data_out

BlockRAM

Simple Dual-Port RAM

Aij

Xj

i

Valid

Figure 4.11: Block diagram of the proposed processing element without data reordering.

the multiplier.

Since each PE has its own working copy of the vector being computed, there are two

possible strategies for assembling the final vector. The first option is to assign a subset of

the x vector to each PE (i.e. blocking along the columns of A). Each PE computes a partial

sum of the final vector and an adder tree (which can be built from the existing adders in

each PE) is used to combine them at the end. Similar to prior FPGA implementations

[14, 15, 16, 25, 58, 71, 72], this straightforward approach has several drawbacks. First, the

reduction circuit adds a large amount of overhead in terms of latency and additional hardware

(even if existing adders are used, more resources are needed for reconfigurability). Second,

by splitting up computation along the columns, we lose some of the sequential nature of the

memory accesses we had gained with the CSC format. The memory accesses for each PE are

58

still sequential, but globally the memory accesses for all PEs are irregular. To mitigate this,

a more complicated memory controller is required to ensure a balanced load across all of the

PEs. Third, if there are fewer columns than PEs, this approach is effectively no different

than prior FPGA implementations.

The second option for computing the final vector is to assign a subset of rows of A to each

PE (i.e. blocking along the rows of A). Each PE computes a subset of the final vector, which

are then concatenated together at the end (requiring no additional latency). Additionally,

this preserves the property of sequential memory accesses across all PEs, allowing for a much

simpler memory controller (at the cost of a slightly more complicated SpMxV controller to

handle additional scheduling and hazard detection). Finally, with minor modifications to the

SpMxV and memory controllers, this SpMxV kernel can be made to also support SpMxM:

each column of the dense matrix can be assigned to a PE, which each PE computing a

single column of the resulting matrix. This is implemented in our second sparse-BLAS,

FPGA-based architecture.

4.2.2 Data Hazard and Memory Management

The primary purposes of the sparse-BLAS controller are scheduling and hazard detection.

The memory controller acts as a slave to the sparse-BLAS controller, ensuring a continuous

stream of data into the PEs. Hazards arise when two or more partial products want to write

to the same memory address of the dual-port RAM in a short period of time. Due to the

latency of the floating-point adder of the PE, shown in Figure 4.11, the existing sum of the

partial products in the dual-port RAM must be prefetched. If two partial products that

contribute to the same term are allowed to proceed, the second product will prefetch a sum

that does not include the first product. The result is that the final sum of products will

not include the first conflicting partial product. The sparse-BLAS controller detects these

hazards and corrects them by issuing a stall command to the PE (by deasserting the Valid

signal, and holding the values of Aij, Xjk, and i). Figure 3.3 shows this kind of stalling

behavior for a single processing element performing SpMxV between the example A matrix

59

DRAM0

DRAM1

QDR0

QDR1

R

O
A

C
H

 F

P
G

A
 S

y
s

te
m

PC
PHY

Scalar Core

 | |
2

÷

×

±

 Sparse-BLAS

Controller

Scheduling and

Hazard Detection

Memory

Controller

()

Virtex-5 SX95T FPGA

64 Single-Precision Floating-Point PEs

rd_en

wr_en
wr_addr

rd_addr

data_in

data_out

BlockRAM

Dual-Port RAM

Aij

Xj

i

Valid

Figure 4.12: Top-level schematic of the sparse-BLAS kernel, with a vector core containing

64 single-precision floating-point processing elements and a scalar core for vector-vector and

vector-scalar operations, running on the “ROACH” FPGA platform [73]. The “ROACH”

FPGA system runs a bare-bones Linux kernel and acts as a co-processor for a networked

computer running a MATLAB environment.

from Figure 2.1 and the vector x = [0.1 0.2 0.3 0.4 0.5]T .

4.3 Sparse-BLAS Architecture

Figure 4.12 shows the overall architecture of the sparse linear algebra kernel, which serves as

a co-processor attached to an external computer. Computing SpMxV and SpMxM column-

wise allows us to retain an extremely simple PE. In CPUs and GPUs, the main computational

element is a Multiply-Accumulate Unit (MAC). Each MAC consists of a floating-point adder

and multiplier with an accumulation register. In our architecture, the each PE in the vector

core (Figure 4.12) contains a single-precision floating-point adder and multiplier, as well as a

60

simple dual-port RAM. The simple dual-port RAM replaces the accumulation register in the

MAC and can accommodate several hundred to several thousand elements of y, eliminating

the need for costly off-chip memory accesses.

Additionally, data in the dual-port RAM can be accessed in a single clock cycle, compared

to roughly 30 clock cycles for a L3 cache in a CPU and more than 200 clock cycles for a

L3 cache in a GPU. And finally, since the memory accesses are sequential with no data

dependences, our architecture has an effective FLOP to memory fetch ratio of 1-to-0, giving

a theoretical computational efficiency of 100%.

A dedicated memory controller allows the elements of A and x to be continuously

streamed into the FPGA, while the sparse-BLAS controller’s primary function is scheduling

and hazard detection. Hazard detection avoids the conflict between two partial products

that contribute to the same element of y overlapping due to the latency of the floating-point

adder. If such a hazard is detected, we must either stall or provide alternative data to ensure

that the result of y is calculated correctly. A small scalar core is included to provide sup-

port for vector-vector and vector-scalar operations like addition, subtraction, element-wise

division and multiplication, ℓ1 and ℓ2 norms, absolute value, Hadamard power, and logical

comparisons.

4.3.1 Processing Element

As stated previously, each PE contains a single-precision floating-point adder and multiplier,

as well as a simple dual-port RAM (see Figure 4.11). To perform SpMxV, each PE multiplies

an element of the data vector (Aij) and the corresponding element of the x vector (xj)

together. The resulting partial product is then added to the address in the row vector (i),

before being stored back into the block-RAM (BRAM) of the dual-port RAM. Due to the

latency of the multiplication and addition operations, a Valid signal is used to prevent data

corruption due to hazards. Using this strategy, data can be continuously streamed into each

PE (directly from the CSC format) with a small startup overhead equal to the combined

latency of the adder and the multiplier.

61

Since each PE can only store a finite number of elements (several hundred to several

thousand depending upon the FPGA), each PE contains a partial working copy of the

vector being computed. To facilitate SpMxV, blocking is performed along the rows of A

(i.e. each PE is assigned a subset of rows of A for computation). The final vector is then

assembled by concatenating the output of each PE during memory write-back (requiring no

additional latency). This parallelization strategy (essentially a block CSC matrix storage

format) preserves the property of sequential memory accesses across all PEs to ensure high

computational efficiency. It also allows for the same hardware to perform SpMxM: a different

column of the X matrix (Equation 2.3) is assigned to each PE, with each PE computing a

single column of the resulting matrix using the same Aij but different Xjk data (where k is

the column assigned to each PE).

4.3.2 Data Hazard and Memory Management

The primary purposes of the sparse-BLAS controller are scheduling and hazard detection.

The memory controller acts as a slave to the sparse-BLAS controller, ensuring a continuous

stream of data into the PEs. Hazards arise when two or more partial products want to write

to the same memory address of the dual-port RAM in a short period of time. Due to the

latency of the floating-point adder of the PE, shown in Figure 3.7, the existing sum of the

partial products in the dual-port RAM must be prefetched. If two partial products that

contribute to the same term are allowed to proceed, the second product will prefetch a sum

that does not include the first product. The result is that the final sum of products will

not include the first conflicting partial product. The sparse-BLAS controller detects these

hazards and corrects them by issuing a stall command to the PE (by deasserting the Valid

signal, and holding the values of Aij, Xjk, and i). Figure 3.3 shows this kind of stalling

behavior for a single processing element performing SpMxV between the example A matrix

from Figure 2.1 and the vector x = [0.1 0.2 0.3 0.4 0.5]T .

62

CHAPTER 5

ASIC Implementation

5.1 Overall Architecture . 64

5.2 Processing Element . 64

5.2.1 Floating-Point Unit . 65

5.2.2 Dual-Port Memory . 65

5.2.3 The “Shuffler” . 67

5.3 Sparse-BLAS Controller . 67

5.3.1 Memory Controller . 68

5.4 Testing and Configuration Considerations 68

5.4.1 FPGA Interface . 68

5.4.2 Scan Chain . 69

5.4.3 Memory Cache . 70

63

This chapter discusses the details of the ASIC implementation of sparse-BLAS archi-

tecture. Details of the processing element, including the data “shuffler,” and the memory

control scheme for achieving 100% computational efficiency (i.e. utilization) are explained.

Design considerations for chip testing and configuration are discussed in the final section.

5.1 Overall Architecture

Figure 5.1 shows the top level schematic of the ASIC sparse-BLAS kernel. It consists of

a sparse-BLAS controller, with an integrated memory controller, four dedicated processing

elements for the CSC data format, a configuration scan chain, and a 512-kbit dual-port

SRAM for testing. The following sections with look into the details of each of these blocks.

5.2 Processing Element

Each PE contains a single Floating-Point Unit, as well as a simple dual-port RAM (imple-

mented as a 512-word, 32-bit dual-port SRAM) and a data-stream reorderer (or “Shuffler”).

Figure 5.2 shows a block diagram of the PE. Figure 5.3 shows a layout view of the fabricated

PE. To perform sparse-BLAS, each PE multiplies an element of the data vector (Aij) and

the corresponding element of the x vector (xj) together. The resulting partial product is

then added to the address in the row vector (i), before being stored back into the dual-port

RAM. Due to the latency of the multiplication and addition operations, a Valid signal is

used to prevent data corruption due to hazards. The “Shuffler” attempts to reduce the num-

ber of data hazards by first monitoring for them, and then swapping in alternative partial

products (instead of stalling) until the data hazard is resolved. Using this strategy, data can

be continuously streamed into each PE (directly from the CSC format) with a small startup

overhead equal to the combined latency of the adder, multiplier, and “Shuffler”.

64

ASIC

M
e

m
o

ry

C
o

n
tr

o
ll

e
r

Sparse-BLAS

Controller

Processing Element

Processing Element

Processing Element

Processing Element

512-kbit

Dual-Port

SRAM

SCAN CHAIN

FPGA

Figure 5.1: Top-level schematic of the sparse-BLAS ASIC chip.

5.2.1 Floating-Point Unit

The FPU of each PE contains a floating-point adder and multiplier. The purpose of the

FPU is to perform the partial product multiplication and accumulation for each element

of the data vector (Aij) and the corresponding element of the x vector (xj). In this work,

we use the single-precision floating point format (binary32) specified by the IEEE 754-2008

standard [56]. We use the default rounding mode: round to nearest, ties to even.

5.2.2 Dual-Port Memory

Since each PE can only store a finite number of elements, each PE will need to contain a

partial working copy of the vector being computed. To facilitate this, blocking is performed

along the rows of A (i.e. each PE is assigned a subset of rows of A for computation). The

final vector is then assembled by concatenating the output of each PE during memory write-

back (requiring no additional latency). This parallelization strategy (essentially a block CSC

matrix storage format) preserves the property of sequential memory accesses across all PEs

65

Aij

Xj

i

Valid

Ready

en0en1en2en3

sel
en0en1en2en3

sel
en0en1en2en3

sel

Shuffle FSM

selen0en1en2en3

en0en1en2en3

sel

STALL (0)

rd_en

wr_en

wr_addr

rd_addr

data_in

data_out

BlockRAM

Simple Dual-Port RAM

Aij

Xj

i

Valid

Data Stream Reorderer

(Shuffler)

FP Multiplier

FP Adder

Figure 5.2: Block diagram of the fabricated processing element with data reordering.

to ensure high computational efficiency.

To ensure that we can both compute and update the partial products in the same clock

cycle, a dual-ported memory is required. The first port of the memory is set to a read-only

state to provide data for the partial product accumulation. This port is also used to write

out the contents of the dual-ported memory to main system memory. The second port is

fixed into a write only state, with a write enable signal, to write back the updated partial

products. This port can also be used to zero-out the memory, or load a predefined vector in

the most general case of SpMxV and SpMxM.

66

Figure 5.3: Layout view of the fabricated processing element with data reordering.

5.2.3 The “Shuffler”

The data-stream reordering unit, or “Shuffler, consists of a buffer for four items each of Aij,

Xj, i, and V alid data used to calculate a partial product, and a FSM to control the flow of

data in the buffer. The FSM monitors each piece of data in the buffer to see if it will create

a data hazard further down the pipeline if it is issued to the FPU. Every clock cycle the

FPU requests a new piece of data. The FSM will issue the first element in the buffer that

will not create a data hazard. If the buffer is empty or every valid piece of data in the buffer

would create a data hazard, the FSM will issue a stall command to the FPU. An example

of this type of behavior can be seen in Figure 3.4.

5.3 Sparse-BLAS Controller

The primary purpose of the sparse-BLAS controller is scheduling and controlling data flow

between each of the four PEs and the 512-kbit dual-port testing memory.

67

5.3.1 Memory Controller

The memory controller acts as a slave to the sparse-BLAS controller, ensuring a continuous

stream of data into the PEs. To provide a scalable, high speed data interface between main

memory (the 512-kbit dual-port SRAM) and each PE, simple FIFOs are used. Each FIFO

has a push/pop data interface with full and empty data signals, and is encapsulate with

a ready/valid interface. Due to the sequential nature of the memory accesses, outlined in

Section 3.2.2, can continuously stream data into each FIFO as long as it isn’t full. Addition-

ally, by using an asymmetric FIFO (a FIFO when the read-in bitwidth in different than the

read-out bitwidth), we can store an entire burst of DDR memory accesses in one clock cycle

into the FIFO. This allows us to have the energy benefits of a sequential memory access with

the freedom to have essentially random memory accesses between different PEs.

5.4 Testing and Configuration Considerations

This section covers a number of design considerations for the ASIC implementation in order

to facilitate an automated FPGA testing platform with the ability to mimic the memory

conditions expected on an SoC.

5.4.1 FPGA Interface

We use the same “ROACH” FPGA system to test the ASIC implementation [73]. Using the

on-board PowerPC system running Linux, we are a able to use a computer running MATLAB

to remotely interface with “software registers,” BRAMs, and FIFOs on the FPGA. This also

allows us to load data in and out of the QDRs and SDRAM on the board, as well as the two

Z-DOK+ interfaces used to communicate with the ASIC PCB test board. A block diagram

of the system is shown in Figure 4.7. A picture of the “ROACH” FPGA system is shown in

Figure 4.8. A picture of the ASIC test PCB is shown in Figure 5.4.

68

Figure 5.4: A picture of the PCB board used to test the sparse-BLAS ASIC.

5.4.2 Scan Chain

In order to reduce the number of digital I/O required for testing the ASIC implementation

of the sparse-BLAS kernel, a 323-bit scan chain was used. Each processing element requires

64 bits of configuration: the number of elements to process when a command is issued and

four memory addresses (corresponding to the three arrays of the CSC data format data, row,

and ptr, and the x vector). Additionally, 3 bits are used to configure the command that

is issued simultaneously to each of the PE when the start signal is asserted (IDLE = 000,

LOAD = 001, READ = 010, MULTIPLY = 011, and ZERO OUT = 101). The last 64 bits

are used as a clock cycle counter to precisely measure the number of clock cycles used to

finish executing a command.

69

5.4.3 Memory Cache

A 512-kbit dual-port SRAM is used as a memory cache for the main RAM (either the DDR2

or QDR memories) implemented on the FPGA. The Cache memory on the ASIC chip emu-

lates a DDR2 memory interface in order to simulate a much larger DDR2 memory that would

be expected if the kernel were integrated into an SoC. The cache uses a simple sequential

replacement policy for the cache’s eight memory blocks, which, due to the sequential nature

of the CSC data accesses, effectively results in a Least Recently Used (LRU) replacement

policy.

The dual-port SRAM cache also allows us to neatly partition into two clock domains:

the FPGA interface and the sparse-BLAS ASIC core. By decoupling the testing and active

portions of the ASIC chip, we are able to fully characterize the power and speed of the sparse-

BLAS hardware, with voltage scaling, without having to redesign and recompile the FPGA

interface for every testing scenario. This allows for a highly automated testing infrastructure

to reliably and repeatedly test multiple ASIC chips.

70

CHAPTER 6

Testing and Performance Results

6.1 Data Sets . 72

6.1.1 Sparse Matrix Collection . 72

6.1.2 Bioinformatics Algorithms . 74

6.2 Hardware and Software Test Platforms 76

6.3 Performance Results . 77

6.3.1 Sparse Matrix Collection . 77

6.3.2 Bioinformatics Algorithms . 80

6.4 Energy Efficiency . 84

6.4.1 FPGA SpMxV Kernel . 84

6.4.2 FPGA Sparse-BLAS Kernel . 85

6.4.3 ASIC Sparse-BLAS Kernel . 86

71

In order to measure the performance of the sparse-BLAS kernel we will be using a variety

of different data sets to measure the computational and energy efficiency of the proposed

architecture, as well as the raw performance. These data sets are presented in Section 6.1.

Section 6.2 introduces the various software and hardware test platforms that comparisons

are made to. The final Sections 6.3 and 6.4 present performance results and energy efficiency

results for two FPGA implementations and our ASIC implementation.

6.1 Data Sets

This section introduces and discusses the data sets used in our evaluation of the sparse-BLAS

kernels. They consist of two major types of data sets: general sparse matrices and biological

data sets. The general sparse matrices are used to benchmark the computational and energy

efficiency of the sparse-BLAS hardware. The biological data sets are used to evaluate the

performance of several bioinformatics algorithms.

6.1.1 Sparse Matrix Collection

We use a collection of 14 unstructured matrices used by both Williams et al. [1] and Bell

et al. [2] in our performance benchmarking study. Table 6.1 details the size and overall

sparsity structure of each matrix. The matrices range from 100% density to densities as low

as 0.00031%, with as many as 11.5+ million nonzero elements. The largest matrix is the

Webbase matrix, 1,000,005 by 1,000,005 elements, which is a subset of a large world-wide

web connectivity matrix. Figure 6.1 shows a visualization of the sparsity pattern for each

matrix. All of the matrices are publicly available online from the University of Florida Sparse

Matrix Collection [76].

72

(a) Dense (b) Protein (c) LP (d) FEM/Harbor

(e) FEM/Cantilever (f) FEM/Spheres (g) QCD (h) Wind Tunnel

(i) FEM/Ship (j) FEM/Accelerator (k) Circuit (l) Economics

(m) Epidemiology (n) Webbase

Figure 6.1: Matrix Test Data.

73

Table 6.1: Summary of unstructured matrices used for benchmarking performance (publi-

cally available from [76]).

Matrix Rows Columns Nonzeros Nonzeros/Row Density

Dense 2,000 2,000 4,000,000 2,000 100.00000%
Protein 36,417 36,417 4,344,765 119.31 0.32761%
LP 4,284 1,092,610 11,279,748 2,632.99 0.24098%
FEM/Harbor 46,835 46,835 2,374,001 50.69 0.10823%
FEM/Cantilever 62,451 62,451 4,007,383 64.17 0.10275%
FEM/Spheres 83,334 83,334 6,010,480 72.13 0.08655%
QCD 49,152 49,152 1,916,928 39.00 0.07935%
Wind Tunnel 217,918 217,918 11,524,432 52.88 0.02427%
FEM/Ship 140,874 140,874 3,568,176 25.33 0.01798%
FEM/Accelerator 121,192 121,192 2,624,331 21.65 0.01787%
Circuit 170,998 170,998 958,936 5.61 0.00328%
Economics 206,500 206,500 1,273,389 6.17 0.00299%
Epidemiology 525,825 525,825 2,100,225 3.99 0.00076%
Webbase 1,000,005 1,000,005 3,105,536 3.11 0.00031%

Table 6.2: Data Sets* used for MCL and PageRank

Name Type # Nodes # Interactions Density

Yeast1 Protein 2,114 4,480 0.10%
Yeast2 Protein 2,361 13,828 0.25%
Human1 Genetic 22,283 24,669,643 4.97%
Human2 Genetic 14,340 18,068,388 8.79%
Mouse Genetic 45,101 28,967,291 1.42%

*Protein-Protein and Genetic Interaction Data Sets from [77,
78,79]. Publicly available online from [76].

6.1.2 Bioinformatics Algorithms

6.1.2.1 MCL and PageRank

Two protein-protein interaction data sets (Yeast1 [77] and Yeast2 [78]) and three genetic data

sets (Human1, Human2, and Mouse [79]) are used for the MCL and PageRank benchmarks.

The data sets were obtained from the Florida Matrix Market [76]. Their details are shown

in Table 6.2.

74

Table 6.3: Synthetic Data Sets used for Compressive Sensing

Name Rows Columns # Nonzeros Density

CS1 400 1,600 161,206 25.19%
CS2 400 8,000 160,600 5.02%
CS3 2,500 10,000 6,293,543 25.17%
CS4 2,500 50,000 6,274,775 5.02%

Table 6.4: Test Platforms

i7-2600 i7-4770 E5-2667 GTX 660 GTX TITAN SX95T

Platform CPU CPU CPU GPU GPU FPGA
TDP [W] 95 84 130 140 250 25
Tech. Node [nm] 32 22 32 28 28 65
of Cores 4/8* 4/8* 6/12* 960 2688 64
Clock Freq. 3.4GHz 3.9GHz 2.9GHz 980MHz 837MHz 150MHz
Perf. [GFLOP/s] 108.8 217.6 168 1,881.6 4,500 19.2
Memory [GB] 16 32 256 2 6 2.25
Mem. BW [GB/s] 21 25.6 51.2 144.2 288.4 35.75
BLAS Library MKL 11.0 MKL 11.0 MKL 11.0 cuSPARSE 5.0 cuSPARSE 5.0 This Work

*physical/virtual cores

6.1.2.2 Compressive Sensing

Several random sparse sensing matrices (Φ) were generated using the sprand() function

in MATLAB 2013a for the compressive sensing benchmarks. Table 6.3 details the statistics

of each sensing matrix. CS1 and CS2 correspond to a 20 by 20 DNA microarray with a 25%

and 5% sparsity ratio, respectively. Similarly, CS3 and CS4 correspond to a 50 by 50 DNA

microarray with 25% and 5% sparsity ratios.

6.1.2.3 Tomographic Reconstructions

A 3D Shepp-Logan phantom was used to generate synthetic data in MATLAB 2013a for

the SIRT benchmarks. Projections images from an array of 2048× 2048 detectors with 128

projection angles were used to reproduce volumes of 5123, 10243, and 20483.

75

6.2 Hardware and Software Test Platforms

In total, three CPUs, two GPUs, and one FPGA were used in a total of four different

computing platforms. The sparse subroutines from the Intel Math Kernel Library (MKL)

version 11.0 [26] were used in the CPU benchmarks. The sparse subroutines of the NVIDIA

cuSPARSE CUDA library [28] version 5.0 were used for the GPU benchmarks. The FPGA

system was designed using Xilinx ISE 11.5 and controlled via MATLAB 2013a. Table 6.4

summarizes the specifications of the test setups.

The first computer, representative of a mid-range desktop computer, is a 64-bit Linux

desktop equipped with 16GB of memory, an Intel Core i7-2600 processor (4 physical cores

with hyper-threading, for a total of 8 virtual cores), and an NVIDIA GeForce GTX 660

graphics card (960 CUDA cores). The second computer, characteristic of a high-end desktop

computer, is a 64-bit Windows desktop with 32GB of memory, an Intel Core i7-4770 processor

(4 physical cores with hyper-threading, for a total of 8 virtual cores), and an NVIDIA GeForce

GTX TITAN graphics card (2688 CUDA cores). The third computer, a 64-bit Linux server

with an Intel Xeon E5-2667 processor (6 physical cores with hyper-threading, for a total of

12 virtual cores), is typical of a single node in a HPC research cluster.

The sparse linear algebra kernel was evaluated on the open-source academic research

platform “ROACH” (Reconfigurable Open Architecture Computing Hardware) [73]. The

“ROACH” platform is equipped with a Virtex-5 SX95T FPGA, a PowerPC running Linux,

two 36Mb QDRII+ SRAMs, 2GB of error correcting DDR2 SDRAM, two gigabit Ethernet

ports, four 10 gigabit Ethernet ports, and two high-speed ZDOK+ connectors. The system

has a total for a combined peak memory bandwidth of 35.75 GB/s. The PowerPC allows a

computer running MATLAB to interface with “software registers,” BRAMs, and FIFOs on

the FPGA, as well as to load data in and out of the board-level QDRs and DRAM (Figure

3.7). The FPGA kernel implements 64 single-precision floating-point processing elements

running at 150MHz for a peak performance of 19.2 GFLOP/s.

76

ASIC w/ Reordering

CPU (i7-2600)

CPU (i7-4770)

GPU (GTX TITAN)

GPU (GTX 660)

FPGA (SX95T)

w/o Reordering

G
F

L
O

P
/s

0

20

10

5

15

Figure 6.2: Raw computational performance of the CPU, GPU, FPGA, and ASIC sparse-

BLAS kernels.

6.3 Performance Results

6.3.1 Sparse Matrix Collection

Figure 6.2 compares the raw computational performance (in GFLOP/s) of the CPU, GPU,

FPGA, and ASIC SpMxV kernels for all of the matrices tested. SpMxV on the two CPUs

showed a performance drop of 20-50% compared to dense matrices, while the two GPUs

showed a performance drop of 30-60%. Figure 6.3 compares the computational efficiency of

the CPU, GPU, and FPGA SpMxV kernels for all of the matrices tested. For a memory

bound algorithm like SpMxV, the computational efficiency is strongly determined by the

77

C
o

m
p

u
ta

ti
o

n
a
l

E
ff

ic
ie

n
c

y
 [

%
]

0.1

10

100

FPGA (SX95T)

w/o Reordering

GPU (GTX TITAN)

GPU (GTX 660)

CPU (i7-4770)

CPU (i7-2600)
1

ASIC w/ Reordering

Figure 6.3: Computational efficiency of the CPU, GPU, FPGA, and ASIC sparse-BLAS

kernels.

memory hierarchy (i.e. the cache structure and size). The computational efficiency is calcu-

lated as the ratio of the measured SpMxV performance, in GFLOP/s, over the theoretical

peak GFLOP/s achievable for each platform.

The Core i7-2600 and Core i7-4770 processors achieved an average performance of 1.72

and 4.08 GFLOP/s, respectively, across all 14 test matrices. The resulting computational

efficiencies were 1.58% and 1.88%. Overall, the computational efficiency of both CPUs was

1-2% for all of the test matrices. The Core i7-4770 processor was able to achieve a 2.37x

speedup over the Core i7-2600, despite only having 22% more memory bandwidth, due to

its more efficient memory accesses with its larger vector processing cores.

78

The largest drops in performance for the CPUs were recorded using the sparsest and most

irregular matrices: LP, Circuit, and Webbase. These matrices had a significantly higher rate

of cache misses due to their large size and overall sparsity. The relativity small number of

nonzero elements per row (especially for the Webbase matrix) also added significant overhead

by having to flush the pipeline more often. The very asymmetric nature of the LP matrix

was also hard for the CPU architectures to handle.

Similarly, the GTX 660 and GTX Titan GPUs achieved an average performance of 5.42

and 13.71 GFLOP/s, respectively across all 10 matrices. The resulting computational ef-

ficiencies were 0.29% and 0.30%. Overall, the computational efficiency of both GPUs was

between 0.2-0.5% for all of the test matrices. The GTX Titan had an average speed up

of 2.53x over the GTX 660 GPU, which is consistent with the GTX Titan having 2x the

memory bandwidth and 2.39x the number of processing cores as the GTX 660. Because

individual process threads are organized differently on the GPU, each CUDA core had to be

flushed far less often than the CPU for the LP, Circuit, and Webbase matrices, leading to

more even performance. However, the Webbase matrix showed the worst performance for

both GPUs.

On the Linux test setup, the GTX 660 had an average speedup of 3.15x over the i7-2600

processor, and on the Windows setup, the GTX Titan had a 3.36x speedup over the i7-4770

processor. Despite the roughly 3x performance increase by the GPUs (Figure 6.2), the CPUs

are about 6x more computationally efficient than the GPUs (Figure 6.3). The GPUs use

100-300x more processing cores to achieve a total, theoretical peak performance roughly

20x greater than that of the CPU, but only have about 8x more memory bandwidth. The

cache structure of a GPU is smaller and has higher latency that of a CPU [80,81]. GPUs are

designed to mask random memory accesses for computationally intensive algorithms, leading

to much larger penalties in efficiency for cache misses when compared to a CPU.

The SpMxV kernel running on the Virtex-5 SX95T FPGA achieved an average perfor-

mance of 14.56 GFLOP/s, for a computational efficiency of 75.82%, across all 14 matrices.

The Dense matrix achieved a peak performance of 19.16 GFLOP/s for a computational ef-

ficiency of 99.8%. This performance represents an average speedup of 8.47x and 3.57x over

79

the i7-2600 and i7-4770 CPUs and a 2.69x and 1.06x speedup over the GTX 660 and GTX

Titan GPUs. Moreover, the computational efficiency of the FPGA SpMxV kernel had an

average improvement of 40x and 252x over the CPUs and GPUs, respectively. The biggest

drops performance were the LP, Circuit, Epidemiology, and Webbase matrices, averaging

only 35.74%, while the other 10 matrices averaged 91.85%. This is due to two factors: (1)

the extremely short column length of the LP matrix, and (2) the very sparse nature of the

Circuit, Epidemiology, and Webbase matrices. This led to a large amount of control overhead

for the LP matrix and a large number of data hazards for the other matrices.

The sparse-BLAS kernel running on the ASIC achieved an average performance of 3.49

GFLOP/s, for a computational efficiency of 90.94%, across all 14 matrices. We were able

to boost the average computational efficiency of the LP, Circuit, Epidemiology, and Web-

base matrices to 82.13% with the use of the “Shuffler.” We were also able to boost the

average efficiency of other 10 matrices to 95.29%. This represents a 20% boost in average

computational efficiency over the more simplistic method of stalling to resolve data hazards

(with a 400% improvement in efficiency for the 4 worst performing matrices). Overall, the

computational efficiency of the ASIC kernel had an average improvement of 48x and 303x

over the CPUs and GPUs, respectively.

6.3.2 Bioinformatics Algorithms

Figure 6.4 shows the normalized execution time for the MCL benchmark on each of the test

platforms. An expansion power of p = 2, an inflation parameter of r = 2, and a chaos

threshold of e = 10−3 was used for each data set. The algorithm converged in 13 iterations

for the Yeast1 data set, 18 iterations for Yeast2, 20 iterations for Human1, 14 iterations for

Human2, and 21 iterations for the Mouse data set. The speedup of the FPGA over the CPUs

and GPUS for the Yeast1 and Yeast2 was rather modest: only 2-4x due to the relatively

small size of the problems. However, the speedups for the genetic data sets increased to 10-

18x for the i7-2600 and i7-4770 desktop CPUs. The substantially larger amount of system

memory greatly improved the performance of the E5-2667 processor, limiting the FPGA

80

E
x
e

c
u

ti
o

n
 T

im
e

 (
n

o
rm

a
li
z
e
d

)
20

10

0

15

5

Yeast1 Yeast2 Human1 Human2 Mouse

FPGA (SX95T)GPU (GTX TITAN)GPU (GTX 660)

CPU (E5-2667)CPU (i7-4770)CPU (i7-2600)

Figure 6.4: Normalized execution time for MCL on each of the test platforms from Table

6.4 using the data sets from Table 6.2.

speedup to 3-4x. For the larger data sets, the superior memory bandwidth of the GPUs

allowed them to excel at the SpMxM computations of the MCL algorithm. In particular,

the GTX TITAN showed a 1.5-2x speedup over the “ROACH” FPGA system. However, this

result is to be expected: the GTX TITAN has 42 times the number of processing cores than

the FPGA, with each core running 5.5 times faster with 8 times the memory bandwidth.

The results of the PageRank algorithm, the first of the SpMxV benchmarks, is summa-

rized in Figure 6.5. For the smaller datasets, the GPUs preformed poorly, with an FPGA

speedup of 16x and 8x for the Yeast1 and Yeast2 datasets respectively. The small problem

sizes simply did not allow the GPUs to leverage all of their available processing cores to mask

the very high memory latency of their GDDR5 memory. However, for the larger problem

sizes, the GPUs were more effective at hiding this latency, with the GTX TITAN showing a

1-1.2x speedup over the FPGA. The Sandy-Bridge architecture of the i7-2600 and E5-2667

81

E
x
e

c
u

ti
o

n
 T

im
e

 (
n

o
rm

a
li
z
e
d

)
20

10

0

15

5

Yeast1 Yeast2 Human1 Human2 Mouse

FPGA (SX95T)GPU (GTX TITAN)GPU (GTX 660)

CPU (E5-2667)CPU (i7-4770)CPU (i7-2600)

Figure 6.5: Normalized execution time for the PageRank algorithm on each of the test

platforms from Table 6.4 using the data sets from Table 6.2.

processors appears to have severely limited their SpMxV performance, because the Haswell

microarchitecture of the i7-4770 CPU was relatively constant across all of the datasets. On

average, the CPUs were 5-20 times slower than the FPGA for the PageRank benchmarks.

The normalized execution time for the compressive sensing reconstructions is shown in

Figure 6.6. Due to the complexity of the reconstruction algorithm, speedups were more

modest compared to other SpMxV algorithms. For the smaller datasets, CS1 and CS2, the

FPGA was consistently 3 to 6 times faster, with a slightly larger speedup for the sparse

dataset CS2. For the larger datasets, CS3 and CS4, the CPUs were roughly 6 to 12 times

slower. The FPGA showed a 2x to 2.5x speedup over the GTX 660 GPU for the CS3 and

CS4 datasets, respectively. While the GTX TITAN showed a 1.12x and a 1.02x speedup

over the FPGA.

The normalized execution time for the 3D SIRT tomographic reconstructions is shown

82

E
x
e

c
u

ti
o

n
 T

im
e

 (
n

o
rm

a
li
z
e
d

)
12

6

0

9

3

CS1 CS2 CS3 CS4

FPGA (SX95T)GPU (GTX TITAN)GPU (GTX 660)

CPU (E5-2667)CPU (i7-4770)CPU (i7-2600)

Figure 6.6: Normalized execution time for compressive sensing reconstructions on each of

the test platforms from Table 6.4 using the synthetically generated data sets from Table 6.3.

in Figure 6.7. It should be noted that the FPGA sparse linear algebra kernel managed to

outperform both the CPUs and the GPUs for all of the problem sizes. For the largest problem

size (20483), the “ROACH” system showed a 4x speedup over the GTX TITAN and a 25x

speedup over the GTX 660. The 2GB of memory on the GTX 660 appears to have been the

limiting factor for the tomographic reconstructions. Again, the Haswell microarchitecture of

the i7-4770 CPU appears to be much better suited for the SpMxV operations that dominate

the SIRT algorithm (with 2 SpMxV per iteration). As expected, the i7-2600 performed the

worst and was almost 50 times slower than the FPGA for the largest reconstruction problem.

83

E
x
e

c
u

ti
o

n
 T

im
e

 (
n

o
rm

a
li
z
e
d

)

20

10

0

15

5

512×512×512 1024×1024×1024 2048×2048×2048

FPGA (SX95T)GPU (GTX TITAN)GPU (GTX 660)

CPU (E5-2667)CPU (i7-4770)CPU (i7-2600)

30

50

Figure 6.7: Normalized execution time for preforming SIRT on each of the test platforms

from Table 6.4 for 3 different resolutions using synthetically generated data in MATLAB

from a 3D SheppLogan phantom.

6.4 Energy Efficiency

6.4.1 FPGA SpMxV Kernel

The average power consumption of the i7-2600 and i7-4770 processors was measured to be

77.2W and 66.3W, respectively. The resulting power efficiencies are 22.3 MFLOP/s/W and

84

Table 6.5: Energy Efficiency

Platform [W] [GFLOP/s] MFLOP/s/W

i7-2600 77.2 2.01 26 (133.1x)
i7-4770 66.3 4.59 69 (50.1x)
E5-2667 103.7 3.42 33 (104.8x)
GTX 660 99.0 5.79 58 (59.7x)
GTX TITAN 163.0 14.86 91 (38.0x)
SX95T 5.1 17.64 3,460 (1x)

61.9 MFLOP/s/W. Similarly, the average power of the GTX 660 and GTX Titan were

measured to be 99W and 163W, respectively. The resulting power efficiencies are 54.8

MFLOP/s/W and 84.1 MFLOP/s/W. The worst case power of the SX95T FPGA was mea-

sured to be 5.1 W, resulting in a power efficiency of 2,854 MFLOP/s/W. This represents

more than a 46x and 34x improvement in energy efficiency over the CPU and GPU imple-

mentations, respectively.

6.4.2 FPGA Sparse-BLAS Kernel

Power and memory utilization are the two most important concerns for building scalable,

HPC, cloud-based computing environment for memory-bounded algorithms. To compare

the average energy efficiency of each platform, we measured the peak, sustained perfor-

mance (in GFLOP/s) and average power consumption for the SIRT tomographic reconstruc-

tion and PageRank benchmarks. The i7-2600, i7-4770, and E5-2667 processors achieved

an average of 2.01, 4.59, and 3.42 GFLOP/s, with an average power consumption mea-

sured to be 77.2W, 66.3W, and 103.7W, respectively. The resulting power efficiencies are

26MFLOP/s/W, 69MFLOP/s/W, and 33MFLOP/s/W. Similarly, the average power of the

GTX 660 and GTX TITAN were measured to be 99W and 163W for a peak performance of

5.79 and 14.86 GFLOP/s, respectively. The resulting power efficiencies are 58MFLOP/s/W

and 91MFLOP/s/W. The average power of the SX95T FPGA was measured to be 5.1W for a

peak performance of 17.64 GFLOP/s, resulting in a power efficiency of 3,460 MFLOP/s/W.

This represents more than a 50x and 38x improvement in energy efficiency over the CPU

85

Table 6.6: Memory Bandwidth Utilization

Platform [GB/s] Peak [%]

i7-2600 9.85 46.9
i7-4770 21.57 84.3
E5-2667 14.7 28.7
GTX 660 71.22 49.4
GTX TITAN 166.43 57.7
SX95T 35.28 98.9

and GPU implementations, respectively. Table 6.5 summarizes the measured power, perfor-

mance, and energy efficiency for each platform.

For the memory bandwidth utilization of the SIRT tomographic reconstruction and

PageRank benchmarks, we could directly measure the average memory bandwidth (in GB/s)

used by the GPUs and the FPGA. However, we had to estimate the bandwidth utilization

from the reported values of the cache- and page-miss counters of the CPUs. For the CPUs,

the sparse algorithms averaged between 30% to 85% of their theoretical peak memory band-

width, while the GPUs averaged between 50% to 60%. The FPGA managed to average 98.9%

of its theoretical peak memory bandwidth. The FPGA-based sparse-BLAS kernel showed a

2.4x improvement in bytes/FLOP (i.e. computation per memory access) compared to the

i7-4770 CPU and a 5.6x improvement in bytes/FLOP over the GTX TITAN GPU. This

result shows that regularizing the memory accesses and minimizing the communication costs

in the FPGA kernel can led to large performance and energy gains. Table 6.6 summarizes

the memory bandwidth utilization for each platform.

6.4.3 ASIC Sparse-BLAS Kernel

Figure 6.8 shows the chip micrograph of the sparse-BLAS ASIC which was fabricated in a

40nm 1P10M CMOS process. With a core area of 513µm by 648µm and almost 7 million

transistors, the chip can operate up to 515MHz with a core voltage between 0.55V and 1V.

Running at 515MHz, the four PEs can achieve a maximum performance of 4.12 GFLOP/s.

A shmoo plot of the operating frequency vs. core voltage for the sparse-BLAS ASIC

86

Sparse-BLAS
Controller

Testing Memory

PE3PE2PE1PE0

1
.8

m
m

1.08mm

51
3

µ
m

648µm Technology
40nm 1P10M CMOS

FO4 16.3ps (TT)

Core VDD 0.55 to 1V

Frequency 515 MHz

Transistor
Count

6.98 million

I/Os
Digital: 60
Power: 60

I/O VDD 1.8V

Core Size 513µm × 648µm

Energy
Efficiency

 190 GFLOP/s/W

Figure 6.8: Sparse-BLAS chip micrograph.

chip can bee seen in Figure 6.9. In the shmoo plot, red indicates failure and green indicates

passing. Figure 6.10 shows a plot of measured power vs. operating frequency for the sparse-

BLAS ASIC chip. The minimum energy point (MEP) occurs with a core voltage of 0.6V

at an operating frequency of 160MHz, with a measured power of 6.73mW. The resulting

energy efficiency is 190.31 GFLOP/s/W. This represents more than a 3,073x, 2,262x, and

66.6x improvement in energy efficiency over the CPU, GPU, and FPGA implementations,

respectively.

87

C
o

re
 V

o
lt

a
g

e
 [

V
]

1.0

500 400 300 200 100

0.9

0.8

0.7

0.6

0.5

Frequency [MHz]

Figure 6.9: Shmoo plot of operating frequency vs. core voltage for the sparse-BLAS ASIC

chip. Red indicates failure and green indicates passing.

P
o

w
e

r
[m

W
]

50

100 200 300 400 500

40

30

20

10

0

Frequency [MHz]

60

70

Energy Efficiency
[GFLOP/s/W]

VCORE [V]

132
0.55

190
0.60

166
0.65

146
0.70

128
0.75

111
0.80

100
0.85

88
0.90

64
1.0

76
0.95

MEP: 160MHz, 6.73mW

Figure 6.10: Chip power vs. operating frequency for the sparse-BLAS ASIC chip.

88

CHAPTER 7

Magnetic Tunnel Junctions

7.1 Introduction to Spintronics . 90

7.1.1 History . 90

7.1.2 Principle of Operation . 92

7.1.3 Other Devices and Applications . 93

7.2 The Magnetic Tunnel Junction . 94

7.2.1 Resistance Hysteresis . 94

7.2.2 Critical Switching Current . 95

7.2.3 Tunnel Magnetoresistance Temperature Dependency 97

7.2.4 Bias Voltage Effects . 99

7.2.5 Other Important MTJ Characteristics 99

7.3 Spintronic Memories . 101

7.3.1 Field-Induced Magnetic Switching . 101

7.3.2 TAS-MRAM . 101

7.3.3 STT-MRAM . 103

7.3.4 MeRAM . 103

7.4 Modeling MTJ Characteristics . 105

7.4.1 Magnetization Dynamics . 105

7.4.2 Effective Magnetic Field . 107

7.4.3 Tunnel Magnetoresistance . 111

7.4.4 Heun’s Method . 112

7.4.5 Statistical Characterization of MTJ Devices 113

7.5 Model Verification . 115

7.5.1 Comparison to Measured Devices . 117

7.5.2 Comparison to Micromagnetic Simulations 117

89

The focus of this chapter is to introduce the MTJ device, and the field of spintronics,

specifically focusing on its applications in memories (STT-MRAM and MeRAM). The first

section provides a brief background on spintronics—its history and fundamental physical

operation. Alternative devices (e.g. spin FETs, MBTs, and spin LEDs) and applications are

also discussed. The second section covers the characteristics and unique properties of the

MTJ device, while the third section introduces various different types of spintronic memories.

The fourth section presents a Verilog-A model capable of capturing these behaviors and

simulating these spintronic memories. The fifth, and final section of this chapter, verifies

this model with qualitative and quantitative comparisons to measured devices and detailed

micromagnetic simulations.

7.1 Introduction to Spintronics

Spintronics, the amalgamation of the words “spin” and “electronics,” involves the active con-

trol and manipulation of electron spin in solid-state electronics [82]. In traditional electronic

devices, information processing works on the principle of control over the flow of charge

through a semiconductor material. Large scale, non-volatile memories (e.g., hard disk drives

or HDDs) exploit ferromagnetism to store information by forcing the spin alignment of many

electrons [83]. Spintronics, as a whole, aims to merge information processing and storage

through the use of spin-polarized currents [4].

7.1.1 History

Early work into spintronics began in the mid-1930s with the discovery of unusual resistance

behavior in ferromagnetic materials at extremely low temperatures [82]. Electron tunneling

measurements played a key role in early experimental work, with several key experiments

in the early 1970s demonstrating the viability of spin filters (discussed later). In 1975,

Jullière [84] formulated his now-famous conductance model describing the change of con-

ductance between the parallel and antiparallel states of an MTJ. However, it wasn’t until

90

(1) (3)

(2)

Figure 7.1: A cartoon of the operation of a spin polarizer. A spin unpolarized current enters

at (1). It is then spin polarized in the direction of (2), before exiting the spin polarizer at

(3).

the mid-to-late 1980s that the room temperature magnetoresistive effects were discovered.

Anisotropic magnetoresistive (AMR) layers were first used to construct AMR-MRAM to re-

place bulky and heavy plated-wire radiation-hard memories [4]. AMR was quickly replaced

by the discovery of giant magnetoresistance (GMR) in 1988 [7]. Since the discovory of GMR,

electron spin has formed the basis of almost all electronic information storage [85].

In the early 1990s, MTJ materials with higher TMRs (on the order of 20% at room tem-

perature) were discovered [4]. Since then, MTJ structures (using MgO insulating barriers)

with TMRs on the order of 1000% have been demonstrated at room temperature [86]. Within

ten years of its discovery, spintronics has grown into a billion dollar industry, with commercial

sales exceeding $3 billion in 2005 [7]. Despite these successes, spin injection from ferromag-

netic layers into semiconductors remains a significant bottleneck in semiconductor-based

spintronics. Recently, much emphasis has been placed in trying to induce ferromagnetism

in a semiconductors to produce dilute magnetic semiconductors (DMS) [85]. DMS has the

potential to improve the Curie temperature and magnetic band gap of future spintronic

devices [87].

91

(1) (3)

(2)

(a) Parallel spin filter.

(1) (3)

(2)

(b) Antiparallel spin filter.

Figure 7.2: A cartoon of the operation of a spin filter to a (a) parallel and (b) an antiparallel

current. A spin-polarized current enters at (1) and filters in the direction of (2), before exiting

the spin polarizer at (3).

7.1.2 Principle of Operation

Electron spin is a “pseudovector” with a fixed magnitude but a variable direction (spin

polarization). The spin polarization of an electron can be made bistable by placing it in

a magnetic field. In the presence of a magnetic field, only spin polarizations parallel or

antiparallel to the field are possible [4]. This property introduces the concept of a spin

polarizer (Figure 7.1). A thin ferromagnetic layer can act as a spin polarizer. When a spin

unpolarized current passes through the ferromagnetic layer, it tends to become spin-polarized

in the direction of magnetization [7]. Another key aspect to spintronics is the concept of a

spin filter (Figure 7.2). A spin filter will only pass a current if the two are polarized in the

same direction. If the current and filter are completely antiparallel, no current is passed.

Ferromagnetic films also display the properties of a spin filter [7]. A “spin valve” can be

constructed by using a spin polarizer in conjunction with a spin filter [83]. By controlling

the angle of magnetization between the polarizer and the filter, a magnetically controlled

spin valve can be formed. The spin valve effect is exploited in MRAMs to use MTJs as the

memory storage element [4].

92

7.1.3 Other Devices and Applications

Several kinds of “spin transistors” exist, including the spin field-effect transistor (spin FET),

the magnetic bipolar transistor (MBT), and hot-electron spin transistors [82, 85]. Struc-

turally similar to a MOSFET, a spin FET sandwiches the conducting channel between two

ferromagnetic layers. When the ferromagnets are aligned in the parallel configuration, the

spin FET behaves like a normal MOSFET. However, when configured in the antiparallel

alignment, transistor will be shut off [88]. Spin FETs can be easily integrated into existing

CMOS circuitry and provide much larger ON/OFF current ratios [82]. MBTs are essentially

BJTs with the addition of a ferromagnetic spin injector attached to the emitter. In an MBT,

the gain factor β heavily depends upon nonequilibrium spin polarization and is called mag-

netoamplification [89]. MBTs can be used to generate almost 100% spin-coherent currents

that can be very long lived [82,89].

Another potential application of spintronics is optics, specifically, through the use of spin

light emitting diodes (spin LEDs) and spin selective Kerr rotators [85]. In a spin LED, the

polarization of the light emitted is modulated through the application of an external magnetic

field [90]. Variable polarized LEDs promise to provide more energy efficient displays and sig-

nificantly higher signal-to-noise ratio (SNR) in optical communications [85]. A Kerr rotator

takes advantage of the magneto-optic Kerr effect (MOKE), the unique optically-reflective

properties of magnetic materials, to manipulate the polarity of reflected light. Traditionally,

Kerr rotators have many applications in the microscopic imaging of magnetic domains, mag-

netic media, and terahertz lasers [91]. A spin selective rotator, with the application of a bias

voltage, can be made to reflect incident light either with or without a large Kerr rotation

angle [85].

Spin-based quantum computing makes use of entangled quantum dots (qubits) [82]. A

quantum dot, or a quantum point contact, is a device whose individual quantum states

are freely controllable. Conceptually, a spin-based quantum dot contains a single electron

whose spin orientation (up or down) is user controlled. By entangling several quantum dots

together, a quantum computer can be constructed. Additionally, the boolean logic gates of

93

a spin-based quantum computer can be constructed using with magnetic dots through the

use of dipole-dipole interactions [4].

7.2 The Magnetic Tunnel Junction

This section is intended to describe the major device characteristics observed in MTJs. The

science responsible for each effect, as well as their importance to the MTJ model, is discussed.

7.2.1 Resistance Hysteresis

The large resistance hysteresis present in MTJs makes them very well-suited as a non-

volatile memory element. The source of this hysteresis is very nicely explained by the spin-

valve structure of an MTJ [82]. As mentioned before in Figure 7.9, an MTJ consists of

a thin insulating layer sandwiched between two ferromagnetic layers. The electromagnetic

dynamics of the system allows for only two possible states: parallel or antiparallel [7]. The

two ferromagnetic layers are magnetized in the same direction while in the parallel state

and in the opposite directions while in the antiparallel state. When a current flows through

the MTJ, one ferromagnetic layer acts as a spin polarizer and the other as a spin filter.

In the parallel state, since the two ferromagnetic layers are aligned, the current is passed

undisturbed, creating a low resistive state (RP). However, in the antiparallel state, the spin

filter will block the antiparallel current generated by the polarizing layer, creating a high

resistive state (RAP). Tunnel magnetoresistance (TMR) is a metric for determining the

efficiency of spin-valve operation in an MTJ [8]. TMR is defined as:

TMR =
RAP −RP

RP

. (7.1)

Figure 7.3 shows a sample resistance hysteresis of an MTJ by sweeping the bias voltage.

RP and RAP are clearly evident, along with several other characteristics to be discussed:

critical switching currents, switching asymmetry, and the bias voltage dependence of TMR.

94

R
e

s
is

ta
n
c
e

 [
k
Ω

]

Bias Voltage [V]

-1 -0.5 0 0.5 1
1

2

3

4

5

Figure 7.3: Resistance hysteresis of an MTJ. Switching from P → AP (blue arrows) and

AP → P (red arrows).

7.2.2 Critical Switching Current

7.2.2.1 Asymmetric Switching Currents

It should be noted that the critical switching currents are asymmetric, with IC(P → AP) >

IC(AP → P) [92]. This effect was predicted by Slonczewski [9] with his discovery of the spin-

torque transfer phenomena. This asymmetry is proportional to and increases linearly with

TMR [93]. The simplest explanation of this behavior is that the antiparallel configuration is

a lower energy state than the parallel case [82], making it is easier to switch to the antiparallel

state than the parallel state. Several techniques exist to minimize the asymmetry. Lee et

al. [94] were able to tune the magnetostatic offset field (using an external magnetic field) with

exceptional results, reducing the asymmetric current ratio from 1.51 to 1.04. Yao et al. [95]

95

Precessional
Switching
(T < 10ns)

Thermally Activated
Switching
(T > 10ns)

10-1 100 101 102 103 104 105
0

2

4

6

8

10

12

Pulse Width τ [ns]

C
ri

ti
c

a
l

C
u

rr
e

n
t

D
e

n
s

it
y

 J
C
 [

M
A

/c
m

2
]

Figure 7.4: MTJ switching regimes.

were able to reduce the offset from 1.50 to 1.28 with the introduction of a nanocurrent-

channel layer to the MTJ stack.

7.2.2.2 Switching Regimes

In MTJs, two types of magnetic switching occur due to spin-torque transfer: precessional

and thermally activated switching [96, 97]. Precessional switching occurs on a nanosecond

time scale, while thermally activated switching occurs at much larger time scales [8]. The

transition between these two switching regions lies between 1 and 10ns, which is depicted

in Figure 7.4. The dynamics of precessional switching are well described by the Landau-

96

Lifshitz-Gilbert equation (LLGE) [98,99], given by:

∂m⃗

∂t
= −γMSm⃗×

(
h⃗eff − α

∂m⃗

∂t

)
. (7.2)

Equation 7.2, with the addition of Slonczewski’s spin-torque transfer term [9], will be dis-

cussed in more detail in later sections.

Switching occurs on much longer time scale when the current though the MTJ is less

than the critical switching current [96]. In the thermally activated regime, the switching

current is a function of pulse duration τ :

IC = IC0

[
1− ln (τ/τ0)

∆

]
, (7.3)

where ∆ is the thermal stability of the MTJ, τ0 is the natural time constant, and IC0 is the

critical switching current [100].

7.2.2.3 Probabilistic Switching

Due to thermal agitation, the initial angle between the magnetizations of the fixed and free

layers are in constant flux [102]. Combined with other finite temperature effects, this leads

to a time-varying critical switching current [103]. This effect is very well modeled as a single

critical switching current with a probabilistic distribution [104]. Figure 7.5 shows one such

measurement of the probabilistic distribution for a 135×65nm2 CoFeB/MgO/CoFeB device.

For memory applications, devices exhibiting very sharp transitions are highly desirable [105].

7.2.3 Tunnel Magnetoresistance Temperature Dependency

The sensitivity of TMR to temperature is well documented in literature [84,106,107,108,109].

The effect at zero bias voltage is very well described by the Jullière conductance model

[106]. The Jullière model decomposes the conductance of the MTJ into two parts: (i)

97

Figure 7.5: Switching probability vs. pulse duration for (a) P → AP and (b) AP → P .

Reproduced with permission from Zeng et al. [101].

GT , the conductance due to direct elastic tunneling, and (ii) GSI , the conductance due to

imperfections in the insulating layer (assumed to be unpolarized). The total conductance

(G), as a function of the angle θ is given by:

G (θ) = GT {1 + P1P2 cos (θ)}+GSI , (7.4)

where P1 and P2 are the factors of spin-polarization for the two ferromagnetic layers, and

θ = 0◦ for parallel and θ = 180◦ for anti-parallel magnetization. The temperature dependence

98

of spin-polarazation has been extensively studied and shown to be:

P (T) = P0

(
1− αspT

3/2
)
. (7.5)

It should be noted that variations in GT due to temperature are almost negligible, whereas

GSI ∝ T 4/3 has been confirmed both theoretically and experimentally [110].

7.2.4 Bias Voltage Effects

The Jullière conductance model is not perfect, being only able predict TMR at zero bias

voltage [107]. Figure 7.3 illustrates the effect of the so called “zero bias anomaly” in an

MTJ structure [111]. The source of the bias voltage dependence of TMR is still not very

well understood [112]. However, it is suspected that elastic currents play a role at low

voltages [113] and redistribution of the density of states at higher voltages [112]. At higher

voltages, Simmons’ formula can be used to model the density of states to predict degradation

of TMR to a bias voltage [108].

7.2.5 Other Important MTJ Characteristics

7.2.5.1 Self Induced Heating

Due to small device sizes and large write currents, the power density of a write operation in

an MTJ can be very high. These high power densities can lead to localized heating or self

induced heating in MTJs [114]. Hotspots (weak areas in the insulating barrier) and pinholes

(direct contact between the magnetic layers) cause nonuniform current flow through the

MTJ [115]. This leads to nonuniform heating across the tunneling barrier, affecting spin-

polarization efficiency and causing inelastic electron scattering [115]. Simulations show that

consecutive write opperations produce a 9-15°C increase in the temperature of the MTJ [114].

Additionally, a large number of writes followed by a read leads to degraded sensing margin.

Self induced heating is exploited as the writing mechanism in Thermal Assisted Switching

99

MRAMs (TAS-MRAMs) [116]. However, in STT-MRAMs, lower RAs are generally used to

avoid self induced heating [114].

7.2.5.2 Backhopping

Backhopping is a recently discovered phenomenon, whereby increasing the bias voltage be-

yond the apparent switching threshold causes the MTJ to precess back and forth before

settling to its original state [117]. This results in a lowered probability of switching at

bias voltages beyond the threshold, causing non-monotonicity in the probability switching

curves [118]. Backhopping is also much more pronounced in switching from an antiparallel

to a parallel state [117, 118]. This suggests that backhopping is related to the interlayer

exchange coupling between the free and fixed layers. Backhopping is more pronounced on

longer time scales, where self induced heating could be lowering the thermal energy barrier

and causing hot-electron events [117]. Another explanation is that certain noise processes

(discussed in the next section) might be responsible [118].

7.2.5.3 Noise

Many different mechanisms are responsible for noise in MTJs. Among these are thermal

noise (Johnson-Nyquist), shot noise (current), flicker noise (1/f), random telegraph noise

(RTN), and noise due to charge-trapping in the oxide barrier [105, 119, 120, 121, 122]. Due

to the strong coupling between magnetization and junction resistance in MTJs, noise in the

magnetic domain is responsible for random resistance fluctuations [119]. These resistance

fluctuations are responsible for 1/f noise as well as RTN [122]. Magnetic impurities inside

the tunneling barrier are responsible for charge-trapping [119].

Thermal noise dominates at low bias voltages before quickly being overpowered by shot

noise [121]. At room temperatures, shot noise typically dominates for bias voltages greater

than 50mV [120]. The thermal noise of an MTJ is given by SV = 4kBTRMTJ , where kB is

Boltzmann’s constant, T is in Kelvin, and RMTJ is the resistance of the MTJ [105]. Similarly,

100

shot noise can be expressed as SV = 2eIR2
MTJ , where e is the charge of an electron and I is

the current through the device [105].

Another significant contribution to low-frequency noise is due to domain wall hopping

between pinning sites [105, 119]. These pinning sites are created by edge roughness, in-

terface defects, bulk defects, and random film anisotropy [119]. The low-frequency noise

characteristics of an MTJ can be significantly reduced by improving the smoothness of the

ferromagnetic/insulator interface [122].

7.3 Spintronic Memories

7.3.1 Field-Induced Magnetic Switching

Conventional, first-generation MRAMs use field-induced magnetic switching (FIMS) to tog-

gle the MTJ between its parallel and antiparallel states [123]. Figure 7.6 shows the layout

and cross-sectional view of a FIMS-MRAM, with the word lines and bitlines organized into

a crosspoint architecture. To write a cell, a synchronized pulse of current is applied to the

desired word and bit lines, creating a strong magnetic field at the intersection of the two

wires and causing the MTJ to switch to the desired state [6]. A small access transistor is

also required to read the resistive state of each MRAM cell [124].

Like any crosspoint architecture, conventional MRAMs suffer from a potentially serious

write disturbance problem, or the “half-select” problem [6]. In the half-select problem, a

small amount of noise on the word line (bit line) of any cell whose bit line (word line) is

selected, but whose word line (bit line) is not, might cause accidental writing. Additionally,

as technologies are scaled down, more current is required to write an FIMS-MRAM cell [4].

7.3.2 TAS-MRAM

Thermally assisted switching MRAM (TAS-MRAM) exploits the temperature dependence of

ferromagnetic materials to address the shortcomings of FIMS-MRAMs. Structurally, TAS-

101

Read
WL

N+ N+

VDD

BL

Write WL

BL

WL

Figure 7.6: The cross-sectional view of a FIMS-MRAM in a crosspoint architecture.

MRAM is identical to FIMS-MRAM, with the addition of a heating element or layer next

to the free layer of the MTJ. During the write operation, current is driven through the

MTJ by the read access transistor, causing joule heating of the free layer [125]. Heating

of the MTJ serves two purposes. First, switching of the MTJ free layer becomes easier

to accomplish at higher temperatures, reducing the overall writing current [126]. Second,

since switching now requires heating of the desired memory cell, the half-select problem is

gone [127]. The free layer of an MTJ for TAS-MRAM is also typically engineered to have

a low Currie temperature for enhanced thermal switching, allowing the writing currents to

remain constant and even scale down in more advanced technology nodes [126].

102

WL

N+ N+ N+

WL

SL

BL

Figure 7.7: The cross-sectional view of two STT-MRAM cells with shared source lines.

7.3.3 STT-MRAM

Spin-torque transfer MRAM (STT-MRAM) operates on an entirely different principle from

FIMS-MRAM and TAS-MRAM. Rather than using an indirect current to generate a mag-

netic field, spin-torque transfer (STT) based switching uses a spin-polarized current through

the MTJ to accomplish device switching [9]. In STT-based switching, toggling of the MTJ

is roughly determined by the current density [10]. As the area of the MTJ device de-

creases, so does the writing current, enabling much better scaling than either FIMS-MRAM

or TAS-MRAM. Architecturally, STT-MRAMs are also much simpler than conventional

MRAMs [11]. Figure 7.7 shows the layout of two STT-MRAM cells utilizing a shared source

line for improved density.

7.3.4 MeRAM

It has been observed that the interface between an MgO tunneling oxide and a CoFeB

ferromagnetic layer can exhibit strong perpendicular magnetic anisotropy (PMA) [66, 128,

103

0.3 0.5 0.7 0.9 1.1

Applied Voltage [V]

100

80

60

40

20

0Sw
it

ch
in

g
 P

ro
b

ab
ili

ty
 [

%
]

AP to P
P to AP

Figure 7.8: Measured probability of switching curves for the VCMA-based MTJs. Data

was obtained using 100 repetitions for each voltage with 100ms pulse widths. The com-

bination of VCMA and STT effects allow for a unipolar set/reset switching scheme with

switching voltages 0.5V and 1.1V respectively. Measurements on similar devices with a

thicker MgO barrier (∼20 times larger resistance) showed only the first (VCMA-induced)

switching described in this work, with the second (STT-induced) switching absent at larger

voltages.

129]. Furthermore, it has been discovered that this PMA is sensitive to a voltage applied

across the MgO-CoFeB junction [130,131,132]. Using a voltage to modulate the PMA of an

MTJ is called the voltage controlled magnetic anisotropy (VCMA) effect and it is the basic

principle of operation behind Magnetoelectric (i.e. electric-field-controlled) Random Access

Memory (MeRAM). Fundamentally, no current flow is required for the VCMA effect. As

such, MeRAM has the potential to be significantly more energy and area efficient compared

to STT-MRAM. However, VCMA is often used in conjunction with to traditional STT

switching [130, 132, 133, 134, 135]. The use of VCMA and STT allows the MTJ to switch

in both directions (write opposite bits of information) using voltages of the same polarity,

but with different magnitudes. This enables a diode-MTJ crossbar architecture, with the

104

potential for a sub-1F2 effective cell size, significantly denser than traditional (purely current-

switched) STT-MRAM. The probability of writing as a function of applied voltage for the

MTJs used in such a crossbar array is shown in Figure 7.8, demonstrating their unipolar

set/reset characteristics.

7.4 Modeling MTJ Characteristics

Recent advances in MgO-based MTJs show strong potential for STT-MRAMs [136]. STT-

MRAM and MeRAM have the potential to rival the densities of DRAM, the speed of SRAM,

and is non-volatile without degrading over time like Flash [5]. The greatest hindrance in the

design of spintronics circuits is the lack of a compact MTJ model capable of accurately mod-

eling temperature and voltage dependencies. Capturing these dependencies, in a compact

model compatible with circuit simulators, is crucial for performing accurate Monte Carlo

simulations to place yield and performance bounds on STT-MRAM and MeRAM. This sec-

tion presents such a model implemented in Verilog-A. The model’s simulation results were

also compared to a model implemented using the LLG Micromagnetics Simulator [137] and

actual device measurements from 135nm by 65nm CoFeB/MgO/CoFeB MTJs.

7.4.1 Magnetization Dynamics

The precessional motion of magnetization (M⃗) of the free layer of a MTJ, in the presence of

an external magnetic field (H⃗eff), can be very accurately modeled by the LLGE, Equation

7.2 [100]. With the introduction of Slonczewski’s spin-torque transfer term [9], the normalized

LLGE with STT is given by:

∂m⃗

∂t
= −γMSm⃗×

(
h⃗eff +

Je
JC

b (θ) (m⃗× p⃗)− α
∂m⃗

∂t

)
, (7.6)

where MS = |M⃗ |, γ is the absolute value of the gyromagnetic ratio (γeµ0), m⃗ is the unit

vector in the direction of M⃗ , p⃗ is the unit vector in the direction of the magnetization of the

105

Free Layer

Fixed Layer

Insulator

LW

d

Je
M

P

p
m

θ

Figure 7.9: Sketch of basic MTJ structure.

fixed layer, h⃗eff = H⃗eff/MS, Je is the current density (see Figure 7.9), θ is the angle between

m⃗ and p⃗, and α > 0 is the material-dependent Gilbert damping constant. The efficiency

factor of spin-polarization (b (θ), see Figure 7.10) is defined as:

b (θ) =

[
−4 + (1 + P)3

{3 + cos (θ)}
4P 3/2

]−1

, (7.7)

where P is the percentage of electrons polarized in the p⃗ direction. The switching current

density (JC) has been modified to include thermally-activated switching [100]. For a constant

pulse of duration τ , JC is given by:

JC = JC0

[
1− ln (τ/τ0)

∆

]
, (7.8)

where ∆ is the thermal stability of the MTJ and τ0 = (γMS)
−1 is the natural time constant.

Furthermore, the characteristic current density (JC0) is defined as:

JC0 = γMS
eMSd

geµB

, (7.9)

106

-π - π 0 π π
0

1

2

3

4

b
(θ

)

θ [rad]

1

2

1

2

Figure 7.10: Magnitude of the efficiency factor of spin-polarization vs. θ for P = 0.65.

where e is the absolute value of electron charge, d is the thickness of the free layer, ge is the

Landé factor for electrons, and µB is the Bohr magneton [138].

7.4.2 Effective Magnetic Field

The effective magnetic field (H⃗eff) is given by:

H⃗eff = H⃗ext + H⃗dem + H⃗an − H⃗V CMA + H⃗th, (7.10)

where H⃗ext is the external applied magnetic field, H⃗dem is the demagnetization field, H⃗an is the

magnetocrystalline anisotropy field, H⃗V CMA is the Voltage Controlled Magnetic Anisotropy

(VCMA) field, and H⃗th is effective contribution of thermal noise.

7.4.2.1 External and Demagnetization Fields

The demagnetization field (shape anisotropy) varies with the geometry of the free layer and

is modeled as H⃗dem = NM⃗ . If the free layer is assumed to be a very flat ellipsoid, the factors

107

of the demagnetization tensor N , calculated by Osborn [139], are:

NX =
d

L

(
1− e2

)1/2 K − E

e2
, (7.11)

NY =
d

L

K − (1− e2)E

e2 (1− e2)1/2
, (7.12)

NZ = 1− d

L

E

(1− e2)1/2
, (7.13)

whereK and E are the complete elliptic integrals of the first and second kind whose argument

is:

e =
(
1−W 2/L2

)1/2
. (7.14)

7.4.2.2 Voltage Controlled Magnetic Anisotropy

The intrinsic PMA of the MTJ (H⃗an) and the VCMA effect (H⃗V CMA) are the third and

fourth components of H⃗eff in the LLG equation.

H⃗an =
2Ki

dµ0Ms

mz ẑ (7.15)

H⃗V CMA =
2ξV

µ0Mstoxd
mz ẑ (7.16)

Ki is the PMA constant, ξ is the VCMA constant, V is the voltage across the MTJ,

and tox is the thickness of the oxide layer. Notice that both terms are in the z-direction

and the strength of each is proportional to mz, and the VCMA term subtracts from the

PMA term in H⃗eff . This means that applying a positive (negative) voltage across the MTJ

reduces (increases) its PMA, and thus reduces (increases) its coercivity. This is consistent

with experimental results from [133]. A VCMA constant as high as 37 fJ/(V ṁ) has been

experimentally observed [130].

Figure 7.11 shows schematically how voltage pulses of the same polarity, but different

108

V=VC1

R

H

RP

RAP

V=0

HBias HBias

(a) Switching P to AP.

HBias HBias

|VC2|>|VC1|

V=VC2

R

H

RP

RAP

V=0

(b) Switching AP to P.

Figure 7.11: Writing of the VCMA-based MTJs in the P to AP direction is accomplished

by a voltage VC1, which reduces the coercivity of the free layer and results in a single

available state at the bias field HBias provided by the fixed layer. Further increasing the

magnitude of the voltage to VC2 allows STT to switch the device in the opposite (e.g., AP

to P) direction [133,140].

amplitudes, can be used to switch a MeRAM device in opposite directions [133]. The free

layer of the MTJ devices is subject to a bias field HBias, due to the combination of the stray

field from the pinned layer, as well as an externally applied magnetic field (which is fixed

throughout the experiment, and can be removed in an optimized device by proper design of

the fixed layer to apply the required HBias). This field favors one of the states in the free

layer (e.g., AP state in Figure 7.11), but is small enough not to compromise the bistability

of the bit. This is shown schematically in the resistance R versus magnetic field H curves

at equilibrium (V = 0) in Figure 7.11, where the magnetic field H is along the easy axis of

the free layer. Once a voltage VC1 of the proper polarity is applied, the modification of the

interfacial perpendicular anisotropy via the VCMA effect [132] reduces the coercivity of the

free layer, resulting in a single available state at HBias and, thus, P→AP switching in Figure

7.11(a). When the voltage is increased to VC2, the coercivity will further decrease, but

current-induced effects also become increasingly important. If the polarity is designed such

that STT favors the opposite free layer direction compared to the bias field HBias, a voltage

109

pulse VC2 will thus induce AP→P switching in Figure 7.11(b). This allows for a unipolar

set/reset write scheme, where voltage pulses of the same polarity, but different amplitudes,

can be used to switch the device between the P and AP states [133,140]. It should be noted

that applying negative voltages across the MTJ strengthens the PMA and the stability of

the devices present state and can be used to eliminate any potential read disturbance in

MeRAM [141,142].

7.4.2.3 Thermal Noise

The last and final component of H⃗eff in the LLG equation is the thermal noise term H⃗th.

Thermal noise creates random fluctuations in the free layer magnetization and, therefore, in

the MTJ resistance.

H⃗eff = σ⃗

√
2kBTα

µ0MsγV δt
, (7.17)

where kB is Boltzmann’s constant, T is the absolute temperature in Kelvin, V is the volume

of the free layer, and δt is the simulation time step. σ⃗ is a unit vector whose x, y, and z

components are independent Gaussian random variables with µ = 0 and σ = 1. These com-

ponents are produced using Verilog-A built-in random number generator functions. One of

the major consequences of thermal noise is that the switching behavior becomes probabilistic

[24-25]. This aspect of the model is essential for measuring switching probabilities and for

simulating any switching behavior in the thermally activated regime.

7.4.2.4 Temperature Dependencies

In the dynamic equations, only the magnetization saturation (MS) and the spin-polarization

(P) vary with temperature. For temperatures below the Curie temperature (TC), we can use

the Weiss theory of ferromagnetism [143] to model:

MS (T) = MS0(1− T/TC)
β, (7.18)

110

0 TC
0

0.2

0.4

0.6

0.8

1

M
S/
M

S0

1

3 TC
2

3 TC

Figure 7.12: Normalized plot of magnetization saturation for generic ferromagnetic mate-

rials.

where MS0 is the magnetization saturation at absolute zero and β is the material-dependent

critical exponent (see Figure 7.12) [144]. Similarly, the temperature dependence of spin-

polarization has been extensively studied and shown to be:

P (T) = P0

(
1− αspT

3/2
)

(7.19)

where P0 is the spin-polarazation at absolute zero and αsp is a material and geometric

dependent constant [110].

7.4.3 Tunnel Magnetoresistance

Temperature variations in MTJ conductance (G (θ)) are modeled in Shang et al. [110] by

modifying the Jullière model. Jullière’s model, Equation 7.4, is reproduced here with P1 =

111

P2 = P :

G (θ) = GT

{
1 + P 2 cos (θ)

}
+GSI . (7.20)

As a reminder, the variation of GT due to temperature is negligible, whereas GSI ∝ T 4/3.

Using θ = 0◦ for parallel magnetization and θ = 180◦ for anti-parallel, the tunnel magne-

toresistance with zero applied bias voltage (TMR0) can be expressed as:

TMR0 (T) =
2P 2

0

(
1− αspT

3/2
)2

1− P 2
0 (1− αspT 3/2)

2
+ GSI(T)

GT (T)

. (7.21)

The Jullière model fails to predict the effects of a bias voltage on TMR [108]. However,

this can be rectified with the addition of a simple fitting function:

TMR (T, V) =
TMR0 (T)

1 +
(

V
V0

)2 , (7.22)

where V0 is the voltage at which TMR is halved.

7.4.4 Heun’s Method

P. Horley et al. performed an investigation of numerical simulation techniques for solving

the LLG equation [26]. They concluded that a second order approach is required to obtain a

correct solution and that Heun’s method is a reasonable compromise between accuracy and

computation time. Given an ordinary differential equation of the form ẏ = f(t, y(t)) with

y(t0 = y0), the Fundamental Theorem of Calculus tells us the following:

y(ti+1) = y(t) +

∫ t1+1

ti

ẏ(u)du. (7.23)

112

The simplest way of numerically approximating the solution is Eulers method:

yi+1 = yi + hf(ti, yi). (7.24)

where h is the computation time step. This amounts to approximating the integral as a

Riemann sum, in other words it estimates the area under the function ẏ(t) with a series of

rectangles. Heuns method is more accurate because it approximates the integral using the

Trapezoidal Rule:

ỹi+1 = yi + hf(ti, yi) (7.25)

and

yi+1 = yi +
h

2
[f(ti, yi) + f(ti+1, ỹi+1)]. (7.26)

The real benefit here is that the accuracy of Heun’s method increases quadratically with

a decrease in the time step whereas the accuracy of Euler’s method only increases linearly

[27]. For all these reasons, the compact MTJ model uses Heun’s method to solve the LLG

equation.

7.4.5 Statistical Characterization of MTJ Devices

7.4.5.1 MTJ Device Variability

While statistical variation of CMOS is generally well understood, similar characteristics for

MTJs have not been well documented. This section uses a combination of fundamental

equations and measured device characteristics to model the statistical behavior of MTJs.

Figure 7.13(a) contains a plot of measured RP vs. RAP for 105 MTJ nanopillars of vary-

ing size and target RAs. Variations in resistance and TMR are due to a combination of

lithographic variations in the physical dimensions of the nanopillar and minute variations

in the thicknesses of the up to 20 different layers in state-of-the-art MTJ processes [145].

The cumulative effects of these variations on RA and TMR can be easily measured [146], as

113

X
Y
Z

2

1.5

1

0.5 1 1.5

RP [kΩ]

R
A

P
 [
k
Ω

]
2.5

(a) Switching P to AP.

X Y Z

120

110

100

90

80

T
M

R
 [
%

]

RA [Ω μm
2
]

4 4.5 5 5.5 6

(b) Switching AP to P.

Figure 7.13: Measured (a) RAP vs. RP and (b) TMR vs. RA for MTJ nanopillars

measuring 150× 45nm2 (X), 130× 50nm2 (Y), and 170× 45nm2 (Z)

X Y Z

TMR [%] 105.7 107.3 105.3
σTMR [%] 4.7 2.7 4.6
RA [Ω · µm2] 4.88 5.51 5.22
σRA [Ω · µm2] 0.342 0.297 0.311

Table 7.1: Measured device statistics.

shown in Figure 7.13(b) and Table 7.1.

7.4.5.2 Scaling of MTJ Current and Resistance

The resistance and switching current can be modeled using a precessional-based switching

model, modified to include thermally-activated switching [100]. The switching current of an

MTJ in the precessional region, for a constant pulse of duration τ , is given by:

IC = IC0

[
1− ln (τ/τ0)

∆

]
, (7.27)

114

where τ0 is the natural time constant and IC0 is the critical switching current. This critical

switching current [138] is given by:

IC0 =
α4πe

η~
M2

SV, (7.28)

where α is the Gilbert damping constant, η is the factor of spin polarization, ~ is the

reduced Planck’s constant, e is the elemental charge of an electron, MS is the magnetization

saturation of the free layer, and V is the volume of the free layer.

For an MTJ with free layer dimensions l > w >> d the thermal stability of an MTJ is

approximately [139,147]:

∆ =
E

kBT
=

HKMS

2kBT
V ≈ d

(
1

w
− 1

l

)
M2

S

kBT
V, (7.29)

where kB is Boltzmann’s constant, T is the absolute temperature in Kelvin, HK is the

out-of-plane uniaxial anisotropy, and E is the energy of anisotropy [148,149].

Dimensional scaling is performed to maintain a constant ∆ in order to ensure the long-

term non-volatility of the STT-MRAM. Therefore, dimensions l and w of the MTJ are scaled

by a factor λ to manipulate IC0 and RP/AP , then to keep ∆ constant, d must scale by λ−1/2.

This results in IC0 ∝ lwd→ λ3/2 and RP/AP ∝ l−1w−1 → λ−2.

7.5 Model Verification

Implemented in Verilog-A, the compact model is comprised of two electrical terminals, an ex-

ternally applied field vector, the initial state of magnetization, the demagnetization factors,

and 13 device-specific parameters: 4 geometric parameters, 8 material-dependent param-

eters, and 1 empirically-derived parameter. The model was fitted to a 135nm by 65nm

CoFeB/MgO/CoFeB MTJ (see Figure 7.14). For validation of the model, we compare to de-

tailed micromagnetic simulations, previously published data, and experimental results from

115

W 65 [nm]

L 135 [nm]

d 1.8 [nm]

Geometric Parameters

tox 0.9 [nm]

MS0 1100 [emu/cc]

TC 1420 [K]

β 0.4

Magnetization Saturation

V0 0.5 [V]

TMR VBIAS Fitting

GT 1.07 [mS]

GSI 0 [mS]

Conductance

P0 0.725

αsp 2×10-5 [K-3/2]

Spin Polarization

α 0.05

LLGE Damping

NX 0.0113

NY 0.0198

Demagnetization

Tensor (Calculated)

NZ 0.9689

Figure 7.14: Fitted MTJ parameters.

0 100 200 300 400
100

200

300

400

500

TM
R

 [
%

]

Temperature [K]

Model

This Work

[53]

[54]

Figure 7.15: TMR vs. temperature: Verliog-A model (line), reported in [150] (triangles),

reported in [151] (squares), and fabricated devices (circles).

fabricated MTJ nanopillars.

116

Figure 7.16: TMR vs. an applied bias voltage at 300K: Verliog-A model (black line) and

fabricated devices (red circles).

7.5.1 Comparison to Measured Devices

The ability of Eqs. 7.20 and 7.21 to accurately model the temperature dependance of RP and

TMR is well established in literature. Shang et al. [110] managed to obtain excellent fitting

for Al2O3 based MTJs before deviating at high temperatures due to the crystallization of the

amorphous insulating layer. Similarly, Kou et al. [150] and Wísniowski et al. [152] reported

extremely good fitting for MgO- and IrMn-based devices respectively. Figure 7.15 contains a

loosely fitted curve of (7.21) for limited empirical data, as well as reported TMR values from

literature. An excellent fitting of (7.1) to experimental data was obtained (Figure 7.16), with

an accuracy of ±3%. The steady-state accuracy of (7.6) at modeling switching thresholds

for an applied external field is quite good and can be seen in Figure 7.17.

7.5.2 Comparison to Micromagnetic Simulations

It is extremely difficult to accurately measure the switching characteristics of fabricated

MTJs in the nanosecond regime. However, micromagnetic simulations are fully capable of

117

Figure 7.17: R-H hysteresis at 300K: Verliog-A model (black line) and fabricated devices

(red circles).

Experimental

MTJ data

Device parameters
Verilog-A

μmagnetic

simulator

V I T

TMR RP R(t) R'(t)

Simulation env.

Compact model

W L α MS0 TC β GT

d tox P αsp V0 GSI

Figure 7.18: Process flow for evaluating Verilog-A model.

accurately predicting their behavior [137]. As such, micromagnetic simulations were used to

evaluate the switching behavior of the Verilog-A model in the nanosecond regime at different

temperatures (see Figure 7.18). Figure 7.19 shows the time evolution of the resistance

model (R(t)) and the micromagnetic derived resistance (R′(t)) at 300K and 380K (expected

118

0
.5

1
.0

1
.5

2
.0

Resistance [kΩ]

T
im

e
 [

n
s
]

0
1
0

2
0

3
0

0
.5

1
.0

1
.5

2
.0

Resistance [kΩ]

R
 (
t)

R
(t

)

R
 (
t)

R
(t

)

(a
)

T
 =

 3
0
0

K

(b
)

T
 =

 3
8
0

K

F
ig
u
re

7
.1
9
:
R
es
is
ta
n
ce

v
s.

ti
m
e
fo
r
an

ap
p
li
ed
±
2V

10
0M

H
z
sq
u
ar
e-
w
av
e
at

(a
)
30
0K

an
d
(b
)
38
0K

.
V
er
li
og
-A

m
o
d
el

(R
(t
))

is
th
e
b
la
ck
,
d
as
h
ed

li
n
e
an

d
m
ic
ro
m
ag
n
et
ic

si
m
u
la
ti
on

s
(R

′ (
t)
)
in

th
e
re
d
,
so
li
d
li
n
e.

119

operating temperature when integrated with CMOS).

Being based on a macrospin model, R(t) does not account for non-uniformities in the

free layer magnetization during switching. Despite this, the pre-switching oscillations and

underdamped behavior of R′(t) are still observed to a point in R(t). This effect is captured

by the shape anisotropy modeled by the demagnetization tensor (Eqs. 7.11, 7.12, and 7.13).

Also, R(t) manages to track the switching delay of R′(t) across a wide range of temperatures

and pulse shapes.

120

CHAPTER 8

STT-MRAM and MeRAM

8.1 MTJ/CMOS Integration . 122

8.2 STT-MRAM Memory Architectures . 122

8.2.1 Cell Architectures . 124

8.2.2 Subarraying . 126

8.3 STT-MRAM Memory Design . 129

8.3.1 90nm Bulk CMOS . 130

8.3.2 65nm Bulk CMOS . 132

8.3.3 45nm SOI CMOS . 134

8.3.4 Design Comparison . 134

8.4 MeRAM Memory Architectures . 135

8.4.1 1T-1MTJ Array . 135

8.4.2 1D-MTJ Crossbar Array . 138

8.5 MeRAM Memory Design . 139

8.5.1 1T-1MTJ Array . 139

8.5.2 1D-MTJ Crossbar Array . 141

121

The focus of this chapter is to introduce the discuss the details of the design and fab-

rication of several STT-MRAM and MeRAM chips. MTJ-CMOS device integration is also

discussed along with a variety of different memory architectures.

8.1 MTJ/CMOS Integration

As mentioned before, MTJs are well suited for integration into a commercial CMOS process

flow. In this flow, the deposition of the insulating oxide barrier is critical to the performance

of the MTJ. If the layer is too thin (< 0.7nm) the MTJ does not exhibit any TMR, due

to the formation of pin holes and soft points shorting the barrier. If the layer is too thick

(> 2.5nm), then the resistance of the device is too large [153]. The deposition surface also

needs to be very smooth, whereas typical Al interconnects (with a ⟨111⟩ texture) are far too

rough. However, the Cu interconnects available in the thin metal layers of modern state-of-

the-art fabrication process are ideal for MTJ deposition [154]. MTJs are typically integrated

after the thin Cu layer, usually M4 in most processes. Figure 8.1 shows the side view of a

typical 1T-1MTJ with full integration at M4. MTJ pillar dimensions down to 30nm can be

accomplished with e-beam lithography, focused ion beam etching, or double patterning [155].

8.2 STT-MRAM Memory Architectures

Several different types of memory architectures exist for STT-MRAMs. At the cell level,

many architectures are tailored to certain MTJ characteristics, more specifically to the ratio

of the critical writing currents IC(P → AP) and IC(AP → P). Other cell architectures

attempt to exploit the different thresholds between reading and writing current to increase

effective memory density. At the array level, several different subarraying techniques are

employed to maximize performance and minimize area.

122

Poly

n+ n+

M1

M2SL

WL M3

M4

MTJ

M5 BL

To Sense Amp

Figure 8.1: MTJ/CMOS integration at M4.

(a) Conventional (b) Reversed

Figure 8.2: 1T-1MTJ memory cell architectures.

123

8.2.1 Cell Architectures

8.2.1.1 1T-1MTJ

There are two widely used 1T-1MTJ STT-MRAM cell architectures, the “conventional” cell

(Figure 8.2(a)) and the “reverse” cell (Figure 8.2(b)) [156]. The “conventional” architecture

gets its name from that fact that most MTJ are deposited with the fixed layer on the bottom.

A smooth deposition surface is required to form a high quality pinning layer capable of

generating the fixed layer [157]. The surface roughness introduced by various film deposition

steps generally makes depositing the pinning layer on the top of the MTJ stack impractical.

This means that it is easier to connect the fixed layer of the MTJ to the access transistor

and the free layer to the bitline.

The “reverse” structure is built exactly as it sounds, with the fixed and free layers con-

nected in the reverse fashion of the “conventional” cell. The “reverse” architecture attempts

to match the inherent driving current asymmetry of the access transistor to the asymmetric

switching currents of the MTJ [93]. It is widely assumed that the trade-off between these two

architectures depends solely upon the ratio of the critical writing currents IC(P → AP) and

IC(AP → P). If this ratio is greater than 1, a “reverse-connected” architecture should be

used. Otherwise, a “conventional” architecture should be used. However, this is not exactly

true as this assumption fails to take into account both the VGS and VDS operating points of

the access transistors during the write operation. For state-of-the-art technology nodes with

supply voltages below 1V , the cutoff point between these architectures is a writing current

ratio closer to 1.5.

8.2.1.2 Shared

Access device “sharing” is one potential technique for increasing cell density. As shown

in Figure 8.3, one access transistor is connected to multiple MTJ devices, with additional

bitlines to support independent access. This also allows the access transistor to be sized up to

provide higher write current while maintaining the same overall memory density. However,

124

MTJ1

SL BL<1>

MTJ2

MTJM

WL

BL<2> BL<M>

Figure 8.3: Shared memory cell architecture with M MTJs per transistor.

MTJ1

SL
MTJN

WL BL

Figure 8.4: Stacked memory cell architecture with N MTJs per transistor.

there are several shortcomings associated with this technique which will be discussed in

future sections.

8.2.1.3 Stacked

MTJ device “stacking” is another potential technique to increase cell density. “Stacking”

works by connecting several different types of MTJ in series with one access transistor,

shown in Figure 8.4, in a similar fashion to multi-bit Flash cells. To ensure functionality, the

125

64-kbit subarray

WL dec.

MeRAM

Cells

8
×

1
6

-b
it

w
o

rd
s

128 WL

WL dec.
R

/W
+

S
A

R
/W

+
S

A
IO

16-kbit

Bank

IO
 +

 T
im

in
g

 +
 C

o
n

tr
o

l

256-kbit building block

Figure 8.5: The 256-kbit building block with four 64-kbit subarrays. Each subarray is

partitioned into four 16-kbit banks. Each bank has 128 word-lines, with eight 16-bit words

per word-line.

resistance and critical writing current of each MTJ need to be sufficiently different. Reading

and writing to a cell would require multiple cycles, one for each bit.

8.2.2 Subarraying

8.2.2.1 1T-1MTJ

As stated before, subarraying is necessary for larger memories. Single, large memory arrays

are slow and require additional buffering to drive very long wires. Breaking it up into several

smaller subarrays allows the memory to operate faster and share peripheral circuitry. For

1T-1MTJ cell architectures, the number of cells per bitline is limited by the capacitance of

the access transistor and the MTJ itself. Generally, a single bitline can support no more

126

than 256 cells.

8.2.2.2 Shared Architectures

As mentioned earlier, there are several shortcomings to a “shared” MTJ architecture. During

the write operation, there are multiple parasitic current paths that siphon current from the

device being written to, forcing the access device to be sized up [158]. These parasitic currents

also have the potential to flip cells not being accessed. When reading, these parasitic paths

lower the effective TMR that can be observed.

For M MTJs per access device and N wordlines per subarray, the effective TMR

(TMReff) can be expressed as:

TMReff =
2 (N +M − 1)−NM

NM + (N − 1) (M − 1) · TMR
· TMR. (8.1)

The worst case TMR degradation can be easily derived by finding the largest possible RP

and the smallest possible RAP . If R∥ is the parasitic parallel resistance shown in Figure 8.6,

then RP,MAX can be calculated as RP ∥ R∥, where:

R∥ =
N +M − 1

(N − 1) (M − 1)
· (1 + TMR) ·RP (8.2)

for the case of all parasitic resistances in the antiparallel state. Similarly, RAP,MIN can be

calculated as RP · (1 + TMR) ∥ R∥, where:

R∥ =
N +M − 1

(N − 1) (M − 1)
·RP (8.3)

for the case of all parasitic resistances in the parallel state. For M > 2, TMReff is negative,

limiting sharing to only two MTJs per access device.

In order to quantify the impact of sharing on the writing operation, the maximum al-

lowable disturbance current a parasitic device can handle before a significant probability of

127

S
L

B
L

<
1
>

W
L

<
1
>

B
L

<
2
>

B
L

<
M

>

W
L

<
2
>

W
L

<
N

>

M
T

J
1

,1
M

T
J

1
,2

M
T

J
1

,M
M

T
J

2
,1

M
T

J
2

,2
M

T
J

2
,M

M
T

J
N

,1
M

T
J

N
,2

M
T

J
N

,M

P
a
ra

s
it

ic
 P

a
ra

ll
e
l

R
e
s

is
ta

n
c
e

F
ig
u
re

8
.6
:
S
h
ar
ed

ar
ch
it
ec
tu
re

w
it
h
M

M
T
J
s
p
er

tr
an

si
st
or

an
d
N

w
or
d
li
n
es

p
er

su
b
ar
ra
y.

128

RP 1

RP

RP 0

RP

(a) Writing RP with series RP and RP .

RP 1

RP

RP 0

RAP

(b) Writing RP with series RP and RAP .

RAP 1

RAP

RP 0

RP

(c) Writing RAP with series RP and RP .

RAP 1

RAP

RAP 0

RP

(d) Writing RAP with series RAP and
RP .

Figure 8.7: Worst-case writing configurations for sharing.

switching occurs must first be calculated. For M = 2, since the ability to read is already

limited, the four worst corner cases are shown in Figure 8.7. For the corner case of Figure

8.7(a), we require:

RP · IWRITE (P → AP)−RP · IREAD (P → AP) ≤ 2RP · IREAD (P → AP) . (8.4)

Solving:
IREAD (P → AP)

IWRITE (P → AP)
≥ 1

3
. (8.5)

Similarly, for the other three cases, IREAD/IWRITE ≥ 1/3. This means that sharing can only

be successfully implemented if the MTJ can tolerate a reading current greater than one third

of the writing current without a significant probability of flipping.

8.3 STT-MRAM Memory Design

In this section, the design flow of three test chips implemented in 90nm, 65nm, and 45nm

processes is described. Several architectures were selected for testing. Each design was

subjected to the analysis outlined in [159], [160], and [161] in order to optimize read/write

129

Table 8.1: Time to read RP (90nm)

RP [Ω] TMR [%] Simulated [ns] Measured [ns] Cell Size[F 2]

500 100 3.77 7.20 30
500 100 3.17 5.20 55
670 50 7.30 8.50 30
670 50 5.18 10.2 55
670 200 3.04 4.20 30
670 200 2.69 4.80 55

performance, memory density, and energy considerations. Each chip was designed to operate

with MTJs fabricated by UCLA’s Western Institute of Nanoelectronics (WIN). MTJ device

specifications are detailed in [162], [163] and [164].

8.3.1 90nm Bulk CMOS

Figure 8.8 shows a block diagram of the layout of our 90nm bulk CMOS test chip. The

design work was performed for a conventional cell architecture and was intended to test

the integration process flow. With a total of 6kbit, the memory had two 1kbit memory

arrays, using RVT transistors with a cell size of 55F 2, and two 2kbit memory arrays, using

LVT transistors with a cell size of 30F 2. For purposes of comparison, an SRAM cell in this

technology is approximately 75F 2. Included in the design are two resistor arrays with values

ranging from a few hundred ohms to several kilohms (RSEL<16:0> and RSEL<33:17> in

Figure 8.8), representing a range of TMR from 0% to 1000%. Simulated and measured

results for the read performance of RP (logical 0) are shown in Table 8.1. Similar results for

the read performance of RAP (logical 1) are shown in Table 8.2. The drive current of the

50F 2 cell was also measured to be approximately 300µA. Estimates show that this level of

drive currentshould easily allow for thermally activated switching with write times on the

order of 10 to 20 nanoseconds.

130

STD

Array

(1K)

LVT

Array

(2K)

STD

Array

(1K)

LVT

Array

(2K)

Row

Decoder

Row

Decoder

COL MUX

COL MUX

Sense Amp

& I/O Buffer

COL MUX

COL MUX

Sense Amp

& I/O BufferR
o
w

P
re

-D
e
c
o

d
e

r

C
O

L

D
e
c
o

d
e

r

B
L

_
L

<
7

>

B
L

_
L

<
6

>

B
L

_
L

<
0

>

B
L

_
R

<
7

>

B
L

_
R

<
6

>

B
L

_
R

<
0

>

B
L

_
M

<
1
>

B
L

_
M

<
0
>

B
L

_
L

<
1
5

>

B
L

_
L

<
1
4

>

B
L

_
L

<
0
0

>

B
L

_
R

<
1
5

>

B
L

_
R

<
1
4

>

B
L

_
R

<
0
0

>

B
L

_
M

<
1
>

B
L

_
M

<
0
>

B
L

_
L
<

7
>

B
L

_
L
<

6
>

B
L

_
L
<

0
>

B
L

_
R

<
7
>

B
L

_
R

<
6
>

B
L

_
R

<
0
>

B
L

_
M

<
1

>

B
L

_
M

<
0

>

B
L

_
L
<

1
5

>

B
L

_
L
<

1
4

>

B
L

_
L
<

0
0

>

B
L

_
R

<
1
5

>

B
L

_
R

<
1
4

>

B
L

_
R

<
0
0

>

B
L

_
M

<
1

>

B
L

_
M

<
0

>

CSEL_T<3:0>

CSEL_B<3:0>

EN_T_EV

EN_T_OD

EN_B_EV

EN_B_OD

M
B

L
_
L

M
B

L
_
R

RBL_L RBL_R

M
B

L
_
L

M
B

L
_
R

RBL_L RBL_R

M
B

L
_

L

M
B

L
_

R

RBL_L RBL_R M
B

L
_

L

M
B

L
_

R

RBL_L RBL_R

WL_T<63>

WL_T<62>

WL_T<61>

WL_T<02>

WL_T<01>

WL_T<00>

WL_B<63>

WL_B<62>

WL_B<61>

WL_B<02>

WL_B<01>

WL_B<00>

D<1:0>

Q<1:0>

D<3:2>

Q<3:2>

A<2:0>A<8:3> A<9>

COL

RES

COL

RES

PROG

RES

COL

RES

COL

RES

PROG

RES

R
_

L
<

7
>

R
_

L
<

0
>

R
_

R
<

7
>

R
_

R
<

0
>

R
_

M

R
_

L
<

7
>

R
_

L
<

0
>

R
_

R
<

7
>

R
_

R
<

0
>

R
_

M

COL

RES

COL

RES

PROG

RES

COL

RES

COL

RES

PROG

RES

R
_

L
<

7
>

R
_

L
<

0
>

R
_

R
<

7
>

R
_

R
<

0
>

R
_

M

R
_

L
<

7
>

R
_

L
<

0
>

R
_

R
<

7
>

R
_

R
<

0
>

R
_

M

MUX (17-to-1) MUX (17-to-1)RSEL<16:0> RSEL<33:17>

P
R
B
1

P
R
B
0

RPROG<3:0>

Figure 8.8: Block diagram of the 90nm STT-MRAM test chip.

131

Table 8.2: Time to read RAP (90nm)

RP [Ω] TMR [%] Simulated [ns] Measured [ns] Cell Size[F 2]

500 100 2.00 2.10 30 & 55
670 50 2.60 2.70 30 & 55
670 200 2.37 2.70 30 & 50

8.3.2 65nm Bulk CMOS

In the 65nm process, the memory array was increased to 16kbit and included three cell sizes:

28F 2, 35F 2, and 50F 2. Again, the design work assumed a conventional cell architecture. A

“short-pulse” reading scheme was also introduced with a bidirectional write driver (Figure

8.9) to improve read/write performance.

Short-pulse reading works by delivering a large, but very short, current pulse to the

MTJ and latching in its value. A dual-wordline voltage boosting scheme (dual-boosting)

was implemented that allowed the drive current to be increased by 70% in our smallest cell

sizes and 130% in our largest cells. The resistor arrays from the 90nm design were kept for

CMOS characterization. Figure 8.10 shows a layout of the 65nm design.

RE RE

CTRL1

BL0

SL0

BL1

SL1

CTRL0

CTRL1

BIAS BIAS

DATA

BIAS BIAS

BL0BL1 SL0SL1

DATAB

WR

READ SENSE AMP. WRITE DRIVER

WE

HVT LVT

RE
WR

VDD VDD

Vprecharge

CTRL2 CTRL2

Vprecharge

Figure 8.9: Read/Write driver for short-pulse reading.

132

1

12

3

3

4

5 6
7

8

92

450µm
3
2
0
µ
m

9

Figure 8.10: Cadence layout of the 65nm STT-MRAM test chip: (1) 8kbitmemory array,

(2) resistor array, (3) muxes, (4) read/write circuitry, (5) read delay measurement circuitry,

(6) configuration scan chain, (7) pulse generator, (8) data scan chain, and (9) decoder.

Figure 8.11: Chip micrograph of the 65nm STT-MRAM test chip.

133

12

12

3

3

4

8

8

7

6

5

1

1

3

3

4

710µm
3
1
0
µ
m

Figure 8.12: Cadence layout of the 45nm STT-MRAM test chip: (1) 8kbit memory array,

(2) resistor array, (3) muxes, (4) read/write circuitry, (5) configuration scan chain, (6) pulse

generator and read delay measurement circuitry, (7) data scan chain, and (8) decoder.

8.3.3 45nm SOI CMOS

The 45nm design moved the bulk CMOS to an SOI process. The memory size was increased

to 32kbit and the same memory architecture was kept from our 65nm design (dual-boosting

with short-pulse reading). It was possible to decrease the cell sizes to 17F 2, 25F 2, and

40F 2, while still maintaining the same drive current as the 65nm design. Overall, large

improvements to the memory layout and organization were made. Figure 8.12 shows a

layout of the 45nm design.

8.3.4 Design Comparison

A comparison of the 90nm, 65nm and 45nm chips presented in this work is done with state-

of-the-art STT-MRAMS from [156], [165], [166], and [167].

134

Figure 8.13: Chip micrograph of the 45nm STT-MRAM test chip.

8.4 MeRAM Memory Architectures

Two main types of memory architectures exist for MeRAMs. The first is similar to a 1T-

1MTJ STT-MRAM architecture, but allows for a high speed read-disturbance-free operation.

The second is 1D-MTJ Crossbar Array that allows for a sub-4F2 cell size.

8.4.1 1T-1MTJ Array

The schematic of an array of MeRAM cells is shown in Figure 8.15, with multiple word-lines

(WL0, WL1, WL2, and WL3) bit-lines (BLA and BLB), and a shared source-line (SL). Data

is stored in 1T-1MTJ fashion in each cell. By sharing source-lines between adjacent MeRAM

cells, a smaller cell size per bit can be achieved in a CMOS technology.

Due to the shared source-lines, multiple MeRAM cells can be written simultaneously

during the write operation. To do this, SL is pulled low and the WL corresponding to the

desired row of MeRAM cells is pulled high. MTJ1 and MTJ2 are then written by applying

the appropriate switching voltages to BLA and BLB, respectively (see Figure 8.15).

Unfortunately, multiple MeRAM bits cannot also be read simultaneously during the read

operation. To read MTJ0A, WL0 is pulled high, BLA is grounded, and BLB is left floating. A

sense-amp is then used to measure the resistance of the SL. Similarly, to read MTJ0B, WL0

is pulled high, BLB is grounded, and BLA is left floating. Since the voltage applied between

135

Y
e
a
r

C
e
ll

 S
iz

e
 [

F
2
]

P
ro

c
e
ss

 [
n

m
]

R
e
a
d

 T
im

e

W
r
it

e
 T

im
e

M
em

o
r
y
 S

iz
e

A
r
c
h

it
ec

tu
r
e

D
e
si

g
n

e
r

P
o
w

e
r

S
u

p
p

ly
 [

V
]

2
0

1
1

1
7

,
2
5

,
4
0

4
5

1
-3

n
s

3
-5

n
s

3
2

k
b

it

C
o

n
v
e
n
ti

o
n
al

(D
u

al
-B

o
o
st

ed
)

T
h

is
 W

o
rk

1
.1

/1
.4

2
0

0
9
 [

1
5

6
]

1
1

4
5

<
1
0

0
n
s

1
0

n
s-

1
m

s

3
2

M
b
it

R
e
v
er

se
d

Q
u

al
c
o
m

m

1
.1

/1
.8

2
0

1
1

2
8

,
3
5

,
5
0

6
5

3
-5

n
s

3
-5

n
s

1
6

k
b

it

C
o

n
v
e
n
ti

o
n
al

(D
u

al
-B

o
o
st

ed
)

T
h

is
 W

o
rk

1
.2

/1
.6

2
0

1
0

3
0

,
6
0

9
0

3
-1

0
n
s

1
0

-2
0

n
s

6
k
b

it

C
o

n
v
e
n
ti

o
n
al

T
h

is
 W

o
rk

1
.2

2
0

0
9
 [

1
6

5
]

7
0

9
0

6
0

n
s

9
1

n
s

3
2

M
b
it

2
T

-1
M

T
J

(B
o

o
st

ed
)

N
E

C

1
/1

.5

2
0

0
9
 [

1
6

6
]

1
4

0

1
3

0

8
n
s

9
-1

0
n
s

1
6

k
b

it

C
o

n
v
e
n
ti

o
n
al

F
u

ji
ts

u
 &

 U
T

1
.2

/3
.3

2
0

0
9
 [

1
6

7
]

3
6

6
5

1
1

n
s

3
0

n
s

6
4

M
b
it

2
T

-1
M

T
J

T
o

sh
ib

a

1
.2

F
ig
u
re

8
.1
4
:
D
es
ig
n
co
m
p
ar
is
on

of
S
T
T
-M

R
A
M
s.

136

WL0

+
VMTJ,0A

fre
e

fix
e
d fr

e
e

fi
x
e
d

+
VMTJ,0B

WL1

+
VMTJ,1A

fre
e

fix
e
d fr

e
e

fi
x
e
d

+
VMTJ,1B

WL2

+
VMTJ,2A

fre
e

fix
e
d fr

e
e

fi
x
e
d

+
VMTJ,2B

WL3

+
VMTJ,3A

fre
e

fix
e
d fr

e
e

fi
x
e
d

+
VMTJ,3B

SLBLA BLB

Figure 8.15: Schematic of an array of MeRAM cells using voltage-controlled MTJs. During

a read, only negative voltages are applied between the fixed and free layers of the MTJs,

creating read-disturbance-free operation. Positive voltages are applied during the write.

the fixed and free layers of both MTJs is negative during the entire read operation for both

cases, the probability of accidental writing is 0.

In simulation, the MeRAM building block can run up to 1.2 GHz with a 1-cycle latency

random access read and a 6-cycle random access write. A short-pulse-reading (SPR) sense-

amplifier with body-voltage-based sensing is used to achieve sub-1ns reading performance

[168] (see Figure 8.16). Burst writing can significantly reduce write overhead by exploiting

137

1.0

CLK

ADDR

BLA

BLB

SA

LATCH

0.5

0.0

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

MTJ0A MTJ0B

FLOATING

FLOATING

DATA0A DATA0B

0.83 1.67 2.5 3.33 4.17 5.0 5.83 6.67 7.5 [ns]

[V]

Figure 8.16: Timing diagram for a back-to-back, single-cycle latency read for bits MTJ0A

and MTJ0B from Figure 8.15.

the ability to simultaneously write several MeRAM cells through the use of the shared source-

lines. Writing in 2-, 4-, and 8-word bursts takes only 7, 9, and 13 cycles, respectively, and

increases throughput between 70-370% (see Figure 8.17).

8.4.2 1D-MTJ Crossbar Array

Figures 8.18(a)-(b) show the schematic and layout view for one vertical slice of a high-density

crossbar memory array using voltage-controlled MTJs. The unipolar set/reset write scheme

of the devices allows for a diode to be integrated in series without any loss in functionality.

The series diode also has the added benefit of eliminating the sneak currents present in tra-

ditional crossbar arrays [169]. Also, by eliminating the access transistor present in previous

1T-1MTJ designs, MeRAM can improve memory density with the 3D stacking of memory

layers. A series stacked diode, fabricated on top of the MTJ, means that a 4F2 cell can be

138

1.0

CLK

DATA

ADDR

BLA

BLB

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1 0

MTJ0A,0B

 0 = 0.6V

 1 = 0.9V

0.0 0.83 1.67 2.5 3.33 4.17 5.0 5.83 6.67 7.5 [ns]

[V]

Figure 8.17: Timing diagram for a 2-word burst writing scheme. Writing takes 7 cycles to

complete and increases throughput by 70%.

realized per MeRAM layer.

8.5 MeRAM Memory Design

In this section, the design flow of two MeRAM test chips are described. MTJ device speci-

fications are detailed in [133] and [170].

8.5.1 1T-1MTJ Array

A 4kbit test chip for the 1T-1MTJ architecture outlined in [141] was fabricated in a 130nm

CMOS technology. Figure 8.19 shows a layout view of a 4kbit 1T-1MTJ MeRAM array. The

array measures 916.89µm by 1276.29µm and tests MTJ with a diameter of 100nm, 400nm,

1,000nm, and 2,000nm.

139

M TJ M TJ M TJ

M TJM TJ M TJ

M TJ M TJ M TJ

2F

2FBL2

BL2

BL2

SL0 SL1 SL2

(a) Schematic (b) Layout

fixed

free

fixed

free

fixed

free

fixed

free

fixed

free

fixed

free

fixed

free

fixed

free

fixed

free

SL2SL1SL0

BL0

BL1

BL2

fixed

free

fixed

free

VSENSE

GND VDD

MTJ1 MTJ2

(d)

fixed

free

fixed

free

VSENSE

VDD GND

MTJ1 MTJ2

(f)

fixed

free

fixed

free

VWRITE

GND VDD

MTJ1 MTJ2

(c)

fixed

free

fixed

free

VWRITE

VDD GND

MTJ1 MTJ2

(e)

Forward Biased Reverse Biased

READINGWRITING

M
TJ

2
M

TJ
1

Figure 8.18: The (a) schematic and (b) layout views of the crossbar array structure, with

integrated diodes, for 3D MeRAM. The array configuration for reading (d, f) and writing

(c, e) data out of the testing setup.

140

Figure 8.19: Layout view of a 4kbit 1T-1MTJ MeRAM array.

8.5.2 1D-MTJ Crossbar Array

A small crossbar memory array was constructed from 190 nm by 60 nm MTJ nanopillars

(corresponding to a 65nm CMOS technology), with an RP of 5.8kΩ, HBias ≈ +15 Oe and

thermal stability ∆ = E/kBT > 40 (where E is the energy barrier between the two MTJ free

layer states, kB is the Boltzmann constant, and T is the operating temperature) for both P

and AP states (projected to >10 years using magnetic-field-dependent switching measure-

ments) at room temperature. The MTJs were connected to discrete germanium diodes (VTH

= 0.2V) used as access devices. The MTJ material stack was sputter deposited using a

Singulus TIMARIS PVD system. Devices were fabricated using electron-beam lithography

and ion milling techniques from the following stack: Ta (5) / Co20Fe60B20 (1.1 – Free Layer)

/ MgO (1.2) / Co60Fe20B20 (2.7) / Ru (0.85) / Co70Fe30 (2.3) / PtMn (20) (thickness in nm).

141

Figure 8.20: Chip micrograph of the fabricated MeRAM cells.

The thickness of the free layer was designed to be near the compensation between in-plane

shape anisotropy and out-of-plane interface anisotropy in order to maximize the VCMA-

induced manipulation over the state of the free layer. However, this compensation also leads

to canting of the free layer due to the influence of higher-order anisotropy terms [130, 133],

reducing the effective TMR between the equilibrium states of our MTJs to 5%. It is expected

that further enhancement of the VCMA effect via materials optimization will mitigate the

presence of canted states for our unipolar switching scheme and allow for fully in-plane or

perpendicular magnetization with TMR >100%.

The probability of writing as a function of applied voltage for the MTJs used in the

crossbar is shown in Fig. 7.8, demonstrating their unipolar set/reset characteristics. Data

was obtained using 100 repetitions for each voltage with 100ms pulse widths. An overlap

between the switching peaks is observed, which is expected to be reduced for larger VCMA

effect values and would result in improved write noise-margin for the bit cell. Similarly,

142

fixed

free

fixed

free

MTJ1 MTJ2

VBL

VSL2VSL1

On Chip

A

B

C

D
A C

B D

Sourcemeter

Figure 8.21: Testing setup for the MeRAM crossbar array.

reducing the reverse-bias diode leakage current improves the read noise-margin. The config-

uration of the testing setup for reading and writing the devices in the test array is shown in

Figures 8.18(c)-(f). A schematic of the testing setup in shown in Figure 8.21. During both

reading and writing, unaccessed bit-lines (BLs) are grounded while unaccessed source-lines

(SLs) are pulled to VDD (1.5V), reverse biasing the series diode for unaccessed bits. During

the write operation, the target SL is pulled to ground, while the target BL is pulsed with the

appropriate set/reset voltage, 0.5V and 1.1V respectively. During the read operation, the

target SL is pulled to ground and the target BL is connected to a sense amplifier. To prevent

disturbing the state of the desired bit cell, a sensing voltage of 0.2V is used. In order to

maximize the read margin of the accessed memory cell, minimizing the forward drop across

143

SL1
0.00

1.50
0.75

[V]

SL2
0.00

1.50
0.75

[V]

R
11.5

13.5
12.5

[kΩ]

BL
0.00

1.50
0.75

[V]

0 15 [seconds]30 6045 75 90 105

P to AP AP to P
P to AP AP to P

Read
MTJ1

Write MTJ1

Read
MTJ1

Read
MTJ1

Read
MTJ1

Read
MTJ1

Read
MTJ2

Write MTJ2

Read
MTJ2

Read
MTJ2

Read
MTJ2

Read
MTJ2

MTJ1

MTJ2

MTJ1
MTJ1 MTJ1 MTJ1

MTJ2 MTJ2
MTJ2 MTJ2

Write MTJ1 Write MTJ2

Figure 8.22: Measured transient waveforms for reading and writing the crossbar array,

demonstrating that MTJ1 can be written with unipolar set/reset voltages (0.5V and 1.1V

respectively) and read without disturbing MTJ2 and vice versa. A sensing voltage of 0.2V

in the source-line is used for the read process, while unaccessed source-lines (SLs) are pulled

to VDD (1.5V).

the access diode is crucial. This is accomplished through the use of low-threshold Schottky

(germanium) diodes. The ultimate size of the crossbar array is determined by the reverse

bias leakage of the diodes and the resistance of the MTJs. Larger arrays can be built if the

resistance of the MTJs is increased or if the leakage current of the diodes is reduced.

Figure 8.22 shows experimental transient waveforms demonstrating the functionality of

the crossbar memory array. MTJ1 and MTJ2 are first initialized into the P state using an

external magnetic field. Then, MTJ1 is switched from P to AP, then back to P, without

disturbing the value of MTJ2. Similarly, MTJ2 is also switched from P to AP, then back

to P, without disturbing the value of MTJ1. Switching is preformed using voltage pulses of

0.5V and 1.1V for a period of 1 second. After writing, both MTJ1 and MTJ2 are read 20

times using 0.2V without disturbing the state of the MTJs in the array.

144

CHAPTER 9

Conclusion

9.1 Research Contributions . 146

9.2 Future Work . 147

145

9.1 Research Contributions

Specific accomplishments of this research are:

• Analyzed the algorithm complexity and execution of level 1, 2, and 3 sparse-BLAS

routines to theoretically derive the computational efficiency limits of CPU and GPU

architectures. The resulting computational efficiency of CPUs and GPUs for sparse

algorithms sits around 3% and 0.3%, and was experimentally confirmed.

• Developed an alternative method for performing sparse-BLAS that reduces the required

memory bandwidth by 50%.

• Designed a scalable VLSI architecture that efficiently performs sparse-BLAS using the

CSC data format, resulting in a 100% of utilization of the computing resources.

• Proposed a data stream reordering system to eliminate data hazards with minimal

overhead. The resulting data “Shuffler” eliminated over 99% of data hazards in 14 test

matrices for an average boost of 20% in computational efficiency.

• Evaluated the scalability and performance of sparse-BLAS kernel on a Virtex-5 SX95T

FPGA. Compared to prior CPU, GPU, and FPGA implementations our design can

boost the computational efficiency of sparse linear algebra by 54x, 322x, and 7x re-

spectively. This results in an average improvement in energy efficiency of 96.1x, 48.9x,

and 15.6x compared to traditional CPU, GPU, and FPGA architectures.

• Demonstrated a real-time throughput of up to 19.2 GFLOP/s for SpMxV on a Virtex-

5 SX95T FPGA with a measured power of 5.1W. The resulting energy efficiency is

more than a 50x and 38x improvement in energy efficiency over the CPU and GPU

implementations, respectively.

• Prototyped a flexible sparse-BLAS kernel in a 40nm 1P10M CMOS process that can

operate up to 515MHz with a core voltage between 0.55V and 1V. Running at 515MHz,

the four PEs can achieve a maximum performance of 4.12 GFLOP/s.

146

• The minimum energy point, for a core voltage of 0.6V, running at 160MHz, and a

measure power of 6.73mW, resulted in an energy efficiency of 190.31 GFLOP/s/W.

This represents more than a 3,073x, 2,262x, and 66.6x improvement in energy efficiency

over current state-of-the-art CPU, GPU, and FPGA implementations, respectively.

• The development of a physics-based MTJ macro-model capable of accurately modeling

and predicting device behavior across temperature for both STT-MRAM and MeRAM.

The model was implemented in Verilog-A and available in Appendix A.

• The design of three STT-MRAM test chips:

(1) 90nm bulk CMOS: 6kbit memory array, 2.5x density improvement over SRAM,

2-10ns read, 200µA write current.

(2) 65nm bulk CMOS: 16kbit memory array, 4.3x density improvement over SRAM,

new high-speed read/write architecture, 400µA write current.

(3) 45nm SOI CMOS: 32kbit memory array, 7.1x density improvement over

SRAM, average 3.8x density improvement over state-of-the-art STT-MRAMs,

500µA write current.

• The design of two MeRAM test chips:

(1) 1T-1MTJ Array: 130nm bulk CMOS 4kbit memory array, US patent US8988923

B2 [141].

(2) 1D-1MTJ Crossbar: discrete demonstration, potential for sub-1F2 cell size.

9.2 Future Work

Areas of future work include:

• Further optimization and refinement of the FPGA-based sparse-BLAS kernel, includ-

ing, but not limited to:

147

(1) Integration with the Xilinx MicroBlaze soft-core processor. Including low level

drivers in a Xilinx subset of C code to support sparse linear algebra subroutines.

This enables backwards compatibility to existing code archives and abstracts away

the programing interface to the processor as standard C code.

(2) Implementation of the data stream reorder, a.k.a. the “Shuffler.”

(3) A refined and more expansive instruction set to better support sparse-BLAS rou-

tines.

(4) Explicit support for sparse linear algebra solvers.

• Custom FPU design for the ASIC implementation to improve the throughput and every

efficiency of the PE.

• Implementation of power gating in the PEs of the ASIC sparse-BLAS kernel for im-

proved energy efficiency during idle periods.

• Refinement of the data stream reorder, a.k.a. the “Shuffler,” to reduce the pipeline

depth and overall overhead.

• Implementation of data compression and decompression on the CSC matrix data to

further reduce the required memory bandwidth for sparse-BLAS.

• Further refinement of the MTJ model for improved accuracy and simulation times.

• Finalize the fabrication flow for MTJ/CMOS integration:

(1) Performance and yield characterizations.

(2) Integration of the Verilog-A model with a CAD process flow.

(3) Development of a dual-ported STT-MRAM or MeRAM.

148

APPENDIX A

MTJ Verilog-A Model Code

1 //--//

2 // UCLA Electrical Engineering Department - MTJ Compact Model

3 //

4 // Author: Richard Dorrance

5 // Updated on July 1, 2015

6 //--//

7 ‘include "constants.vams"

8 ‘include "disciplines.vams"

9

10 module MTJ(p,n);

11

12 inout p,n;

13 electrical p,n;

14

15 //--//

16 // Input Parameters from the User

17 //--//

18 // MTJ length [m]

19 parameter real length = 70e-9;

20 // MTJ width [m]

21 parameter real width = 70e-9;

22 // MgO thickness [m]

23 parameter real dMgO = 1.1e-9;

24 // Free layer thickness [m]

25 parameter real tfl = 1.8e-9;

26 // Direct elastic tunnelling conductance [S/mˆ2]

27 parameter real Gt = 8e+10;

28 // Conductance due to imperfections in Mgo [S/mˆ2/Kˆ(4/3)]

29 parameter real Gsi = 6e+6;

30 // Damping constant [unitless]

31 parameter real alpha = 0.01;

32 // Spin-polarization at 0K [unitless]

149

33 parameter real P0 = 0.725;

34 // Spin-polarization temperature constant [Kˆ(-3/2)]

35 parameter real a_sp = 2e-5;

36 // Saturation magnetization [A/m]

37 parameter real Ms = 1e+6;

38 // Temperature [K]

39 parameter real T = 300;

40 // Time step for simulation [s]

41 parameter real t_step = 1e-13;

42 // Initial state [0 = parallel, 1 = anti-parallel]

43 parameter integer initial_state = 1 from [0:1];

44

45

46 //--//

47 // Constants

48 //--//

49 // Reduced Planck constant, [J*s]

50 ‘define hbar (‘P_H/‘M_TWO_PI)

51 // Gyromagnetic ratio [m/(A x s)]

52 ‘define gamma (221276/(1+pow(alpha,2)))

53 // External magnetic field x vector [A/m]

54 ‘define Ex 0

55 // External magnetic field y vector [A/m]

56 ‘define Ey 0

57 // External magnetic field z vector [A/m]

58 ‘define Ez 0

59 // Demagnetization factor in x direction

60 ‘define Nx 0.0045

61 // Demagnetization factor in y direction

62 ‘define Ny 0.0152

63 // Demagnetization factor in z direction

64 ‘define Nz 0.9803

65 // Anisotropy field constant [J/mˆ2]

66 ‘define Ki 0

67 // VCMA field constant [J/(V*m)]

68 ‘define Xi 0

69 // Field-like torque Beta1 parameter [unitless]

70 ‘define B1 0

71 // Field-like torque Beta2 parameter [1/A]

72 ‘define B2 0

73 // spin-polarization

74 ‘define P (P0*(1-a_sp*sqrt(pow(T, 3))))

75 // MTJ area [mˆ2]

150

76 ‘define area (‘M_PI_4*length*width)

77 // MTJ volume [mˆ3]

78 ‘define Vol (‘area*tfl)

79 // Characteristic current density [A/mˆ2]

80 ‘define Jc0 ((Ms*tfl*‘P_Q*‘P_U0)/‘hbar)

81 // 4/3

82 ‘define fourthirds 1.33333333333333333333333333333

83

84

85 //--//

86 // Internal Variables

87 //--//

88 // MTJ resistance [Ohms]

89 real R;

90 // Current density [A/mˆ2]

91 real J;

92 // Intermediate normalized magnetic field components

93 real mx_int, my_int, mz_int;

94 // Intermediate time derivative of magnetic field [1/s]

95 real dmx_int, dmy_int, dmz_int;

96 // Intermediate denormalized intermediate magnetic field variables

97 real Mx_int, My_int, Mz_int;

98 // Intermediate Heff components [A/m]

99 real Heffx_int, Heffy_int, Heffz_int;

100 // Intermediate cross product components (m x p)

101 real mxpX_int, mxpY_int, mxpZ_int;

102 // Intermediate cross product components (m x Heff)

103 real mxHeffx_int, mxHeffy_int, mxHeffz_int;

104 // Normalized magnetic field components

105 real mx, my, mz;

106 // Previous magnetic field components

107 real mx_old, my_old, mz_old;

108 // Time derivative of magnetic field [1/s]

109 real dmx, dmy, dmz;

110 // Previous time derivative of magnetic field [1/s]

111 real dmx_old, dmy_old, dmz_old;

112 // Denormalized intermediate magnetic field variables

113 real Mx, My, Mz;

114 // Heff components [A/m]

115 real Heffx, Heffy, Heffz;

116 // Previous Heff components [A/m]

117 real Heffx_old, Heffy_old, Heffz_old;

118 // Cross product components (m x p)

151

119 real mxpX, mxpY, mxpZ;

120 // Cross product components (m x Heff)

121 real mxHeffx, mxHeffy, mxHeffz;

122 // Gaussian random variables with mean = 0, stdev = 1

123 real randomX, randomY, randomZ;

124 // Normalized thermal noise vector components

125 real sigmaX, sigmaY, sigmaZ;

126 // Seed variables for RNG

127 integer seedX, seedY, seedZ;

128

129

130 //--//

131 // Define resistance’s relationship to the magnetic field

132 //--//

133 analog function real getRes;

134 input mx;

135 real mx;

136 begin

137 getRes = 1/(Gt*(1+mx*pow(‘P, 2))+Gsi*pow(T, ‘fourthirds))/‘area;

138 end

139 endfunction

140

141

142 //--//

143 // Define the components of Heff

144 //--//

145 analog function real getHeffx;

146 input mx, sigmaX, vmtj;

147 real mx, sigmaX, vmtj;

148 real Hext, Hdem, Han, Hvcma, Hth;

149 begin

150 Hext = ‘Ex;

151 Hdem = -Ms*‘Nx*mx;

152 Han = 0;

153 Hvcma = 0;

154 Hth = sigmaX*sqrt((2*‘P_K*T*alpha)/(‘P_U0*‘gamma*Ms*‘Vol*t_step));

155 getHeffx = Hext + Hdem + Han + Hvcma + Hth;

156 end

157 endfunction

158

159 analog function real getHeffy;

160 input my, sigmaY, vmtj;

161 real my, sigmaY, vmtj;

152

162 real Hext, Hdem, Han, Hvcma, Hth;

163 begin

164 Hext = ‘Ey;

165 Hdem = -Ms*‘Ny*my;

166 Han = 0;

167 Hvcma = 0;

168 Hth = sigmaY*sqrt((2*‘P_K*T*alpha)/(‘P_U0*‘gamma*Ms*‘Vol*t_step));

169 getHeffy = Hext + Hdem + Han + Hvcma + Hth;

170 end

171 endfunction

172

173 analog function real getHeffz;

174 input mz, sigmaZ, vmtj;

175 real mz, sigmaZ, vmtj;

176 real Hext, Hdem, Han, Hvcma, Hth;

177 begin

178 Hext = ‘Ez;

179 Hdem = -Ms*‘Nz*mz;

180 Han = (2*‘Ki*mz)/(tfl*‘P_U0*Ms);

181 Hvcma = -(2*mz*‘Xi*vmtj)/(‘P_U0*Ms*dMgO*tfl);

182 Hth = sigmaZ*sqrt((2*‘P_K*T*alpha)/(‘P_U0*‘gamma*Ms*‘Vol*t_step));

183 getHeffz = Hext + Hdem + Han + Hvcma + Hth;

184 end

185 endfunction

186

187

188 //--//

189 // Define cross(A, B)

190 //--//

191 analog function real crossX;

192 input a1, a2, a3, b1, b2, b3;

193 real a1, a2, a3, b1, b2, b3;

194 begin

195 crossX = a2*b3-a3*b2;

196 end

197 endfunction

198

199 analog function real crossY;

200 input a1, a2, a3, b1, b2, b3;

201 real a1, a2, a3, b1, b2, b3;

202 begin

203 crossY = a3*b1-a1*b3;

204 end

153

205 endfunction

206

207 analog function real crossZ;

208 input a1, a2, a3, b1, b2, b3;

209 real a1, a2, a3, b1, b2, b3;

210 begin

211 crossZ = a1*b2-a2*b1;

212 end

213 endfunction

214

215

216 //--//

217 // Define mag(x, y, z)

218 //--//

219 analog function real mag;

220 input x, y, z;

221 real x, y, z;

222 begin

223 mag = sqrt(pow(x,2)+pow(y,2)+pow(z,2));

224 end

225 endfunction

226

227

228 //--//

229 // LLG equations with STT

230 //--//

231

232 analog function real LLGx;

233 //--//

234 // Inputs

235 //--//

236 // Magnetic field

237 input mx, my, mz;

238 // Components of Heffective

239 input Heffx, Heffy, Heffz;

240 // Intermediate cross product components (m x Heff)

241 input mxHeffx, mxHeffy, mxHeffz;

242 // Intermediate cross product components (m x p)

243 input mxpX, mxpY, mxpZ;

244 // Current density

245 input J;

246

247 real mx, my, mz;

154

248 real Heffx, Heffy, Heffz;

249 real mxHeffx, mxHeffy, mxHeffz;

250 real mxpX, mxpY, mxpZ;

251 real J;

252

253 //--//

254 // Internal Variables

255 //--//

256 // Landau-Lifshitz term

257 real Landau_Lifshitz;

258 // Gilbert damping term

259 real damping;

260 // STT variables

261 real STT;

262 // Field-like torque term

263 real FLT;

264

265 begin

266

267 //--//

268 // Calculate the damping component of the LLG equation.

269 //--//

270 damping = alpha*crossX(mx, my, mz, mxHeffx, mxHeffy, mxHeffz);

271

272 //--//

273 // Calculate the original Landau-Lifshitz component of

274 // the LLG equation.

275 //--//

276 Landau_Lifshitz = crossX(mx, my, mz, Heffx, Heffy, Heffz);

277

278 //--//

279 // Calculate the STT component of the LLG equation.

280 //--//

281 STT = (J/‘Jc0)*‘P*crossX(mx, my, mz, mxpX, mxpY, mxpZ);

282

283 //--//

284 // Calculate the FLT component of the LLG equation.

285 //--//

286 FLT = (J/‘Jc0)*‘P*(‘B1+‘B2*‘area*J)*crossX(mx,my,mz,-1,0,0);

287

288 //--//

289 // Calculate the X-component of the solution to the LLG

290 // equation.

155

291 //--//

292 LLGx = -‘gamma*(Landau_Lifshitz + damping - STT - FLT);

293

294 end

295 endfunction

296

297 analog function real LLGy;

298 //--//

299 // Inputs

300 //--//

301 // Magnetic field

302 input mx, my, mz;

303 // Components of Heffective

304 input Heffx, Heffy, Heffz;

305 // Intermediate cross product components (m x Heff)

306 input mxHeffx, mxHeffy, mxHeffz;

307 // Intermediate cross product components (m x p)

308 input mxpX, mxpY, mxpZ;

309 // Current density

310 input J;

311

312 real mx, my, mz;

313 real Heffx, Heffy, Heffz;

314 real mxHeffx, mxHeffy, mxHeffz;

315 real mxpX, mxpY, mxpZ;

316 real J;

317

318 //--//

319 // Internal Variables

320 //--//

321 // Landau-Lifshitz term

322 real Landau_Lifshitz;

323 // Gilbert damping term

324 real damping;

325 // STT variables

326 real STT;

327 // Field-like torque term

328 real FLT;

329

330 begin

331

332 //--//

333 // Calculate the damping component of the LLG equation.

156

334 //--//

335 damping = alpha*crossY(mx, my, mz, mxHeffx, mxHeffy, mxHeffz);

336

337 //--//

338 // Calculate the original Landau-Lifshitz component of

339 // the LLG equation.

340 //--//

341 Landau_Lifshitz = crossY(mx, my, mz, Heffx, Heffy, Heffz);

342

343 //--//

344 // Calculate the STT component of the LLG equation.

345 //--//

346 STT = (J/‘Jc0)*‘P*crossY(mx, my, mz, mxpX, mxpY, mxpZ);

347

348 //--//

349 // Calculate the FLT component of the LLG equation.

350 //--//

351 FLT = (J/‘Jc0)*‘P*(‘B1+‘B2*‘area*J)*crossY(mx,my,mz,-1,0,0);

352

353 //--//

354 // Calculate the Y-component of the solution to the LLG

355 // equation.

356 //--//

357 LLGy = -‘gamma*(Landau_Lifshitz + damping - STT - FLT);

358

359 end

360 endfunction

361

362 analog function real LLGz;

363 //--//

364 // Inputs

365 //--//

366 // Magnetic field

367 input mx, my, mz;

368 // Components of Heffective

369 input Heffx, Heffy, Heffz;

370 // Intermediate cross product components (m x Heff)

371 input mxHeffx, mxHeffy, mxHeffz;

372 // Intermediate cross product components (m x p)

373 input mxpX, mxpY, mxpZ;

374 // Current density

375 input J;

376

157

377 real mx, my, mz;

378 real Heffx, Heffy, Heffz;

379 real mxHeffx, mxHeffy, mxHeffz;

380 real mxpX, mxpY, mxpZ;

381 real J;

382

383 //--//

384 // Internal Variables

385 //--//

386 // Landau-Lifshitz term

387 real Landau_Lifshitz;

388 // Gilbert damping term

389 real damping;

390 // STT variables

391 real STT;

392 // Field-like torque term

393 real FLT;

394

395 begin

396

397 //--//

398 // Calculate the damping component of the LLG equation.

399 //--//

400 damping = alpha*crossZ(mx, my, mz, mxHeffx, mxHeffy, mxHeffz);

401

402 //--//

403 // Calculate the original Landau-Lifshitz component of

404 // the LLG equation.

405 //--//

406 Landau_Lifshitz = crossZ(mx, my, mz, Heffx, Heffy, Heffz);

407

408 //--//

409 // Calculate the STT component of the LLG equation.

410 //--//

411 STT = (J/‘Jc0)*‘P*crossZ(mx, my, mz, mxpX, mxpY, mxpZ);

412

413 //--//

414 // Calculate the FLT component of the LLG equation.

415 //--//

416 FLT = (J/‘Jc0)*‘P*(‘B1+‘B2*‘area*J)*crossZ(mx,my,mz,-1,0,0);

417

418 //--//

419 // Calculate the Z-component of the solution to the LLG

158

420 // equation.

421 //--//

422 LLGz = -‘gamma*(Landau_Lifshitz + damping - STT - FLT);

423

424 end

425 endfunction

426

427

428 //--//

429 // Analog Block: Defines the Behavior of the MTJ

430 //--//

431 analog begin

432

433 //--//

434 // Initialize the MTJ and Bound Transient Analysis Step Time

435 //--//

436 $bound_step(t_step);

437

438 @(initial_step) begin

439 $strobe("------------------------------");

440 $strobe("MTJ and Simulation Specs");

441 $strobe("------------------------------");

442 $strobe("TMR = ", (getRes(-1)-getRes(1))/getRes(1));

443 $strobe("Rp = ", getRes(1));

444 $strobe("Rap = ", getRes(-1));

445 $strobe("Jc0 = ", ‘Jc0);

446 $strobe("------------------------------");

447

448 seedX = $random;

449 seedY = $random;

450 seedZ = $random;

451

452 if(initial_state) begin

453 mx = 1;

454 my = 0;

455 mz = 0;

456 end else begin

457 mx = -1;

458 my = 0;

459 mz = 0;

460 end

461

462 R = getRes(mx);

159

463 Heffx = 0;

464 Heffy = 0;

465 Heffz = 0;

466

467 end

468

469 //--//

470 // Define the MTJ to act like a resistor

471 //--//

472 V(p,n) <+ R*I(p,n);

473

474 //--//

475 // Backup/Define the necessary variables to preform a time step

476 //--//

477 J = I(p,n)/‘area;

478

479 mx_old = mx;

480 my_old = my;

481 mz_old = mz;

482

483 dmx_old = dmx;

484 dmy_old = dmy;

485 dmz_old = dmz;

486

487 Heffx_old = Heffx;

488 Heffy_old = Heffy;

489 Heffz_old = Heffz;

490

491 //--//

492 // Use the LLG equation w/ Heun’s Method to update the Magnetic Field

493 //--//

494 mxpX_int = crossX(mx_old, my_old, mz_old, -1, 0, 0);

495 mxpY_int = crossY(mx_old, my_old, mz_old, -1, 0, 0);

496 mxpZ_int = crossZ(mx_old, my_old, mz_old, -1, 0, 0);

497

498 mxHeffx_int = crossX(mx_old, my_old, mz_old, \

499 Heffx_old, Heffy_old, Heffz_old);

500 mxHeffy_int = crossY(mx_old, my_old, mz_old, \

501 Heffx_old, Heffy_old, Heffz_old);

502 mxHeffz_int = crossZ(mx_old, my_old, mz_old, \

503 Heffx_old, Heffy_old, Heffz_old);

504

505 dmx_int = LLGx(mx_old, my_old, mz_old, Heffx_old, Heffy_old, \

160

506 Heffz_old, mxHeffx_int, mxHeffy_int, \

507 mxHeffz_int, mxpX_int, mxpY_int, mxpZ_int, J);

508 dmy_int = LLGy(mx_old, my_old, mz_old, Heffx_old, Heffy_old, \

509 Heffz_old, mxHeffx_int, mxHeffy_int, \

510 mxHeffz_int, mxpX_int, mxpY_int, mxpZ_int, J);

511 dmz_int = LLGz(mx_old, my_old, mz_old, Heffx_old, Heffy_old, \

512 Heffz_old, mxHeffx_int, mxHeffy_int, \

513 mxHeffz_int, mxpX_int, mxpY_int, mxpZ_int, J);

514

515 Mx_int = mx_old + (dmx_old*t_step);

516 My_int = my_old + (dmy_old*t_step);

517 Mz_int = mz_old + (dmz_old*t_step);

518

519 mx_int = Mx_int/mag(Mx_int, My_int, Mz_int);

520 my_int = My_int/mag(Mx_int, My_int, Mz_int);

521 mz_int = Mz_int/mag(Mx_int, My_int, Mz_int);

522

523 randomX = $rdist_normal(seedX, 0, 1);

524 randomY = $rdist_normal(seedY, 0, 1);

525 randomZ = $rdist_normal(seedZ, 0, 1);

526

527 sigmaX = randomX/mag(randomX, randomY, randomZ);

528 sigmaY = randomY/mag(randomX, randomY, randomZ);

529 sigmaZ = randomZ/mag(randomX, randomY, randomZ);

530

531 Heffx_int = getHeffx(mx_int, sigmaX, V(p,n));

532 Heffy_int = getHeffy(my_int, sigmaY, V(p,n));

533 Heffz_int = getHeffz(mz_int, sigmaZ, V(p,n));

534

535 //--//

536 // Now use intermediate value in final value computation

537 //--//

538 mxpX = crossX(mx_int, my_int, mz_int, -1, 0, 0);

539 mxpY = crossY(mx_int, my_int, mz_int, -1, 0, 0);

540 mxpZ = crossZ(mx_int, my_int, mz_int, -1, 0, 0);

541

542 mxHeffx = crossX(mx_int, my_int, mz_int, \

543 Heffx_int, Heffy_int, Heffz_int);

544 mxHeffy = crossY(mx_int, my_int, mz_int, \

545 Heffx_int, Heffy_int, Heffz_int);

546 mxHeffz = crossZ(mx_int, my_int, mz_int, \

547 Heffx_int, Heffy_int, Heffz_int);

548

161

549 dmx = LLGx(mx_int, my_int, mz_int, Heffx_int, Heffy_int, \

550 Heffz_int, mxHeffx, mxHeffy, mxHeffz, \

551 mxpX, mxpY, mxpZ, J);

552 dmy = LLGy(mx_int, my_int, mz_int, Heffx_int, Heffy_int, \

553 Heffz_int, mxHeffx, mxHeffy, mxHeffz, \

554 mxpX, mxpY, mxpZ, J);

555 dmz = LLGz(mx_int, my_int, mz_int, Heffx_int, Heffy_int, \

556 Heffz_int, mxHeffx, mxHeffy, mxHeffz, \

557 mxpX, mxpY, mxpZ, J);

558

559 Mx = mx_old + (t_step/2)*(dmx + dmx_int);

560 My = my_old + (t_step/2)*(dmy + dmy_int);

561 Mz = mz_old + (t_step/2)*(dmz + dmz_int);

562

563 mx = Mx/mag(Mx, My, Mz);

564 my = My/mag(Mx, My, Mz);

565 mz = Mz/mag(Mx, My, Mz);

566

567 Heffx = getHeffx(mx, sigmaX, V(p,n));

568 Heffy = getHeffy(my, sigmaY, V(p,n));

569 Heffz = getHeffz(mz, sigmaZ, V(p,n));

570

571 //--//

572 // Update the resistance of the MTJ

573 //--//

574 R = getRes(mx);

575

576 end

577 endmodule

Algorithm A.1: MTJ Verilog-A Model Code.

162

References

[1] S. Williams et al., “Optimization of sparse matrix-vector multiplication on emerging
multicore platforms,” in ACM/IEEE Conf. Supercomputing (SC’07), November 2007,
pp. 1–12. 2, 11, 33, 72

[2] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on
throughput-oriented processors,” in ACM/IEEE Conf. Supercomputing (SC’09),
November 2009, pp. 1–11. 2, 11, 33, 72

[3] F. Ren, R. Dorrance, W. Xu, and D. Marković, “A Single-Precision Compressive Sens-
ing Signal Reconstruction Engine on FPGAs,” in 2013 23rd International Conference
on Field Programmable Logic and Applications (FPL’13), September 2013, pp. 1–4. 2

[4] S. A. Wolf et al., “The Promise of Nanomagnetics and Spintronics for Future Logic
and Universal Memory,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2155 –2168,
December 2010. 3, 4, 90, 91, 92, 94, 101

[5] B. F. Cockburn, “The Emergence of High-Density Semiconductor-Compatible Spin-
tronic Memory,” in International Conference on MEMS, NANO and Smart Systems,
2003. Proceedings., July 2003, pp. 321–326. 3, 105

[6] S. Tehrani et al., “Magnetoresistive random access memory using magnetic tunnel
junctions,” Proceedings of the IEEE, vol. 91, no. 5, pp. 703–714, May 2003. 3, 101

[7] M. E. Flatte, “Spintronics,” IEEE Transactions on Electron Devices, vol. 54, no. 5,
pp. 907–920, May 2007. 4, 91, 92, 94

[8] J. Z. Sun, “Spin Angular Momentum Transfer in Current-Perpendicular Nanomagnetic
Junctions,” IBM Journal of Research and Development, vol. 50, no. 1, pp. 81–100,
January 2006. 5, 94, 96

[9] J. C. Slonczewski, “Current-Driven Excitation of Magnetic Multilayers,” Journal of
Magnetism and Magnetic Materials, vol. 159, no. 1-2, pp. L1–L7, 1996. 5, 95, 97, 103,
105

[10] E. Chen et al., “Advances and Future Prospects of Spin-Transfer Torque Random
Access Memory,” Magnetics, IEEE Transactions on, vol. 46, no. 6, pp. 1873–1878,
June 2010. 5, 103

[11] M. Hosomi et al., “A novel nonvolatile memory with spin torque transfer magnetization
switching: spin-ram,” in Electron Devices Meeting, 2005. IEDM Technical Digest.
IEEE International, December 2005, pp. 459–462. 5, 103

[12] R. Dorrance, F. Ren, and D. Marković, “A Scalable Sparse Matrix-vector Multiplica-
tion Kernel for Energy-efficient Sparse-BLAS on FPGAs,” in ACM/SIGDA Int. Symp.
Field-programmable Gate Arrays (FPGA’14), Feburary 2014, pp. 161–170. 5, 45, 50

163

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear algebra
subprograms for fortran usage,” ACM Trans. Math. Software, vol. 5, no. 3, pp. 308–
323, September 1979. 8

[14] S. Sun, M. Monga, P. Jones, and J. Zambreno, “An i/o bandwidth-sensitive sparse
matrix-vector multiplication engine on fpgas,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 59, no. 1, pp. 113–123, January 2012. 8, 11, 45, 50, 51, 58

[15] S. Kestur, J. D. Davis, and E. S. Chung, “Towards a universal fpga matrix-vector
multiplication architecture,” in Proceedings of the 2012 IEEE 20th International Sym-
posium on Field-Programmable Custom Computing Machines, April 2012, pp. 9–16. 8,
11, 45, 50, 58

[16] G. Goumas et al., “Understanding the Performance of Sparse Matrix-Vector Multi-
plication,” in Parallel Distrib. Network-Based Processing (PDP 2008), February 2008,
pp. 283–292. 8, 11, 32, 45, 50, 58

[17] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search En-
gine,” in Comput. Networks ISDN, 1998, pp. 107–117. 11

[18] J.-J. Fernandez, “Computational methods for electron tomography,” Micron, vol. 43,
no. 10, pp. 1010–1030, 2012. 11

[19] A. Bustamam, K. Burrage, and N. A. Hamilton, “Fast Parallel Markov Cluster-
ing in Bioinformatics Using Massively Parallel Computing on GPU with CUDA
and ELLPACK-R Sparse Format,” IEEE/ACM Trans. Comput. Biol. Bioinformat-
ics, vol. 9, no. 3, pp. 679–692, May 2012. 11, 20, 22

[20] S. M. van Dongen, “Graph Clustering by Flow Simulation,” Ph.D. dissertation, Uni-
versity of Utrecht, The Netherlands, 2000. 11

[21] S. Van Dongen, “Graph Clustering Via a Discrete Uncoupling Process,” SIAM J.
Matrix Anal. Appl., vol. 30, no. 1, pp. 121–141, February 2008. 11, 20, 22

[22] T. Harlow, J. P. Gogarten, and M. Ragan, “A hybrid clustering approach to recognition
of protein families in 114 microbial genomes,” BMC Bioinformatics, vol. 5, no. 1, p. 45,
2004. 11, 20

[23] S. Wong and M. A. Ragan, “MACHOS: Markov clusters of homologous subsequences,”
Bioinformatics, vol. 24, no. 13, pp. i77–i85, 2008. 11, 20

[24] S. Brohee and J. van Helden, “Evaluation of clustering algorithms for protein-protein
interaction networks,” BMC Bioinformatics, vol. 7, no. 1, p. 488, 2006. 11, 20

[25] J. Sun, G. Peterson, and O. Storaasli, “Mapping sparse matrix-vector multiplication
on fpgas,” in Reconfigurable Systems Summer Institute (RSSI 2007), July 2007, pp.
1–10. 11, 45, 50, 58

[26] “Intel Math Kernel library.” http://software.intel.com/en-us/intel-mkl. 11, 12, 76

164

http://software.intel.com/en-us/intel-mkl

[27] “Nvidia cuBLAS.” http://developer.nvidia.com/cublas. 11, 12

[28] “Nvidia cuSPARSE.” http://developer.nvidia.com/cusparse. 11, 12, 76

[29] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface (3rd ed.). Morgan Kaufmann Publishers Inc., 2013. 13

[30] A. Fog, “4. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs.” http://www.agner.org/
optimize/. 15

[31] P. Gepner, D. L. Fraser, and V. Gamayunov, “Evaluation of the 3rd generation Intel
Core Processor focusing on HPC applications,” in Int. Conf. Parallel Distrib. Process.
Techn. Applicat. (PDPTA 2012), July 2009, pp. 818–823. 16

[32] “Introducing the GeForce GTX TITAN.” http://www.geforce.com/whats-new/
articles/introducing-the-geforce-gtx-titan. 18

[33] B. Schwikowski, P. Uetz, and S. Fields, “A network of protein?protein interactions in
yeast,” Nat. Biotech., vol. 18, pp. 1257–1261, December 2000. 24

[34] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web,” 1999. 23, 25

[35] G. Iván and V. Grolmusz, “When the Web meets the cell: using personalized PageRank
for analyzing protein interaction networks,” Bioinformatics, vol. 27, no. 3, pp. 405–407,
2011. 23

[36] K. Voevodski, S.-H. Teng, and Y. Xia, “Finding local communities in protein net-
works,” BMC Bioinformatics, vol. 10, no. 1, p. 297, 2009. 23

[37] E. J. Candès, “Accelerating Phylogeny-Aware Short DNA Read Alignment with FP-
GAs,” in Proc. Int. Congr. Mathematicians (FCCM’11), vol. 3, 2006, pp. 1433–1452.
25, 26

[38] W. Dai, M. A. Sheikh, O. Milenkovic, and R. G. Baraniuk, “Compressive Sensing DNA
Microarrays,” EURASIP J Bioinform Syst Biol, vol. 2009, no. 1, p. 162824, 2009. 26

[39] X. Yan and F. Sun, “Testing gene set enrichment for subset of genes: Sub-GSE,” BMC
Bioinformatics, vol. 9, no. 1, p. 362, 2008. 26

[40] A. Schliep, D. Torney, and S. Rahmann, “Group Testing with DNA Chips: Generating
Designs and Decoding Experiments,” in Proc. IEEE Bioinformatics Conf. (CSB 2003),
August 2003, pp. 84–91. 26

[41] H. Tan et al., “A Computational model for compressed sensing RNAi cellular screen-
ing,” BMC Bioinformatics, vol. 13, no. 1, p. 337, 2012. 26

165

http://developer.nvidia.com/cublas
http://developer.nvidia.com/cusparse
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://www.geforce.com/whats-new/articles/introducing-the-geforce-gtx-titan
http://www.geforce.com/whats-new/articles/introducing-the-geforce-gtx-titan

[42] J. J. Goeman, S. A. van de Geer, F. de Kort, and H. C. van Houwelingen, “A global
test for groups of genes: testing association with a clinical outcome,” Bioinformatics,
vol. 20, no. 1, pp. 93–99, 2004. 26

[43] A. Emad and O. Milenkovic, “CaSPIAN: A Causal Compressive Sensing Algorithm for
Discovering Directed Interactions in Gene Networks,” PLoS One, vol. 9, no. 3, 2014.
26

[44] A. Gilbert and P. Indyk, “Sparse Recovery Using Sparse Matrices,” Proc. IEEE, vol. 98,
no. 6, pp. 937–947, June 2010. 26

[45] J.-J. Fernández et al., “High-performance electron tomography of complex biological
specimens,” J. Struct. Biol., vol. 138, no. 12, pp. 6–20, 2002. 26

[46] C. Sorzano et al., “Marker-free image registration of electron tomography tilt-series,”
BMC Bioinformatics, vol. 10, no. 1, p. 124, 2009. 26

[47] X. Wan, F. Zhang, Q. Chu, and Z. Liu, “High-performance blob-based iterative three-
dimensional reconstruction in electron tomography using multi-GPUs,” BMC Bioin-
formatics, vol. 13, no. Suppl 10, p. S4, 2012. 26

[48] P. Gilbert, “Iterative methods for the three-dimensional reconstruction of an object
from projections,” J Theor Biol., vol. 36, no. 1, pp. 105–117, 1972. 26, 27

[49] B. Subramaniam, W. Saunders, T. Scogland, and W. chun Feng, “Trends in energy-
efficient computing: A perspective from the Green500,” in Int. Green Comp. Conf.
(IGCC’13), June 2013, pp. 1–8. 30

[50] “TOP500.” http://www.top500.org. 30

[51] S. Gilani, N. S. Kim, and M. Schulte, “Energy-efficient floating-point arithmetic for
digital signal processors,” in Signals, Systems and Computers (ASILOMAR), 2011
Conference Record of the Forty Fifth Asilomar Conference on, November 2011, pp.
1823–1827. 31

[52] K. Lenzi and O. Saotome, “Optimized math functions for a fixed-point dsp architec-
ture,” in Computer Architecture and High Performance Computing, 2007. SBAC-PAD
2007. 19th International Symposium on, October 2007, pp. 125–132. 31

[53] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,” Computers,
IEEE Transactions on, vol. 60, no. 7, pp. 913–922, July 2011. 31

[54] I. Manousakis and D. Nikolopoulos, “BTL: A Framework for Measuring and Modeling
Energy in Memory Hierarchies,” in IEEE Int. Symp. Computer Architecture and High
Performance Computing (SBAC-PAD), October 2012, pp. 139–146. 31, 32

[55] B. Flipsen et al., “Environmental sizing of smartphone batteries,” in Electronics Goes
Green 2012+ (EGG), 2012, September 2012, pp. 1–9. 31

166

http://www.top500.org

[56] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70, August
2008. 41, 65

[57] G. Kuzmanov and M. Taouil, “Reconfigurable sparse/dense matrix-vector multiplier,”
in Field-Programmable Technology, 2009. FPT 2009. International Conference on, De-
cember 2009, pp. 483–488. 45, 50

[58] Y. Zhang et al., “Fpga vs. gpu for sparse matrix vector multiply,” in Field-
Programmable Technology, 2009. FPT 2009. International Conference on, December
2009, pp. 255–262. 45, 50, 51, 58

[59] C. Lin, H. Kwok-Hay So, and P. Leong, “A model for matrix multiplication perfor-
mance on fpgas,” in Field Programmable Logic and Applications (FPL), 2011 Interna-
tional Conference on, September 2011, pp. 305–310. 45, 50

[60] T. Vanevenhoven, “High-Level Implementation of Bit-and Cycle-Accurate Floating-
Point DSP Algorithms with Xilinx FPGAs,” 2011. 45

[61] S. Choi, R. Scrofano, V. K. Prasanna, and J.-W. Jang, “Energy-efficient Signal Pro-
cessing Using FPGAs,” in ACM/SIGDA Int. Symp. Field-programmable Gate Arrays
(FPGA’03), 2003, pp. 225–234. 45

[62] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A Performance and Energy Comparison
of FPGAs, GPUs, and Multicores for Sliding-window Applications,” in ACM/SIGDA
Int. Symp. Field-programmable Gate Arrays (FPGA’03), 2003, pp. 47–56. 45

[63] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and Challenges,” Found.
Trends Electron. Des. Autom., vol. 2, pp. 135–253, February 2008. 45, 46

[64] B. Calhoun et al., “Flexible Circuits and Architectures for Ultralow Power,” Proceed-
ings of the IEEE, vol. 98, no. 2, pp. 267–282, February 2010. 45

[65] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 2,
pp. 203–215, February 2007. 45

[66] W.-G. Wang et al., “Rapid thermal annealing study of magnetoresistance and per-
pendicular anisotropy in magnetic tunnel junctions based on mgo and cofeb,” Applied
Physics Letters, vol. 99, no. 10, pp. –, 2011. 46, 103

[67] V. Konda, “Fully Connected Generalized Butterfly Fat Tree Networks,” U.S. Patent
0 172 349, July 8, 2010. 46

[68] F. Li, Y. Lin, and L. He, “Vdd Programmability to Reduce FPGA Interconnect Power,”
in Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference
on, November 2004, pp. 760–765. 46

[69] Y. Lin, F. Li, and L. He, “Routing Track Duplication with Fine-Grained Power-Gating
for FPGA Interconnect Power Reduction,” in Asia and South Pacific Design Automa-
tion Conference, 2005., vol. 1, January 2005, pp. 645–650. 46

167

[70] Y. Hu, Y. Lin, L. He, and T. Tuan, “Physical Synthesis for FPGA Interconnect Power
Reduction by dual-Vdd Budgeting and Retiming,” ACM Trans. Des. Autom. Electron.
Syst., vol. 13, pp. 30:1–30:29, April 2008. 46

[71] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on fpgas,” in
ACM/SIGDA Int. Symp. Field-programmable Gate Arrays (FPGA’05), Feburary 2005,
pp. 63–74. 50, 51, 52, 58

[72] D. Gregg et al., “Fpga based sparse matrix vector multiplication using commodity
dram memory,” in Field Programmable Logic and Applications, 2007. FPL 2007. In-
ternational Conference on, August 2007, pp. 786–791. 50, 52, 58

[73] “ROACH.” https://casper.berkeley.edu/wiki/ROACH. 52, 53, 54, 57, 60, 68, 76

[74] “Collaboration for Astronomy Signal Processing and Engineering Research
(CASPER).” https://casper.berkeley.edu. 52

[75] “Virtex-5 Family Overview.”,” http://www.xilinx.com/support/documentation/data
sheets/ds100.pdf. 52

[76] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,” ACM
Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, December 2011. 72, 74

[77] H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai, “Lethality and centrality in
protein networks,” Nature, vol. 411, pp. 41–42, May 2001. 74

[78] D. Bu et al., “Topological structure analysis of the proteinprotein interaction network
in budding yeast,” Nucl. Acids Res., vol. 31, no. 9, pp. 2443–2450, 2003. 74

[79] V. Belcastro et al., “Transcriptional gene network inference from a massive dataset
elucidates transcriptome organization and gene function,” Nucl. Acids Res, vol. 39,
no. 20, pp. 8677–8688, 2011. 74

[80] “NVIDIA GeForce GTX 680: The fastest, most efficient GPU ever built.” http://www.
geforce.com/Active/en US/en US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.
79

[81] “Intel Core? i7-4770 Processor.” http://ark.intel.com/products/75122/
Intel-Core-i7-4770-Processor-8M-Cache-up-to-3 90-GHz. 79

[82] I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and Applications,”
Rev. Mod. Phys., vol. 76, no. 2, pp. 323–410, April 2004. 90, 93, 94, 95

[83] Y. C. Tao and J. G. Hu, “Superconducting Spintronics: Spin-Polarized Transport in
Superconducting Junctions with Ferromagnetic Semiconducting Contact,” Journal of
Applied Physics, vol. 107, no. 4, 2010. 90, 92

[84] M. Jullière, “Tunneling Between Ferromagnetic Films,” Physics Letters A, vol. 54,
no. 3, pp. 225–226, 1975. 90, 97

168

https://casper.berkeley.edu/wiki/ROACH
https://casper.berkeley.edu
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz

[85] S. J. Pearton et al., “Spintronics Device Concepts,” Circuits, Devices and Systems,
IEE Proceedings, vol. 152, no. 4, pp. 312–322, August 2005. 91, 93

[86] J. Mathon and A. Umerski, “Theory of Runneling Magnetoresistance of an Epitaxial
Fe/MgO/Fe(001) Junction,” Phys. Rev. B, vol. 63, no. 22, p. 220403, May 2001. 91

[87] S. Das Sarma, J. Fabian, X. Hu, and I. Zutic, “Issues, Concepts, and Challenges in
Spintronics,” in IEEE 58th DRC (Device Research Conference) Conference Digest,
June 2000, pp. 95–98. 91

[88] S. Kos et al., “Modeling Spin-Polarized Electron Transport in Semiconductors for
Spintronics Applications,” Computing in Science Engineering, vol. 9, no. 5, pp. 46–52,
September-October 2007. 93

[89] M. E. Flatté, Z. G. Yu, E. Johnston-Halperin, and D. D. Awschalom, “Theory of
Semiconductor Magnetic Bipolar Transistors,” Applied Physics Letters, vol. 82, no. 26,
pp. 4740–4742, 2003. 93

[90] S. Chakrabarti et al., “Spin-Polarized Light-Emitting Diodes with Mn-Doped InAs
Quantum Dot Nanomagnets as a Spin Aligner,” Nano Letters, vol. 5, no. 2, pp. 209–
212, 2005. 93

[91] P. Bruno, Y. Suzuki, and C. Chappert, “Magneto-optical Kerr Effect in a Paramagnetic
Overlayer on a Ferromagnetic Substrate: A Spin-Polarized Quantum Size Effect,”
Phys. Rev. B, vol. 53, no. 14, pp. 9214–9220, April 1996. 93

[92] Z. Diao et al., “Spin Transfer Switching in Dual MgO Magnetic Tunnel Junctions,”
Applied Physics Letters, vol. 90, no. 13, p. 132508, 2007. 95

[93] W. Zhu, H. Li, Y. Chen, and X. Wang, “Current Switching in MgO-Based Magnetic
Tunneling Junctions,” Magnetics, IEEE Transactions on, vol. 47, no. 1, pp. 156–160,
January 2011. 95, 124

[94] K. Lee and S. Kang, “Control of Switching Current Asymmetry by Magnetostatic Field
in MgO-Based Magnetic Tunnel Junctions,” Electron Device Letters, IEEE, vol. 30,
no. 12, pp. 1353–1355, December 2009. 95

[95] X. Yao, H. Meng, Y. Zhang, and J.-P. Wang, “Improved Current Switching Symmetry
of Magnetic Tunneling Junction and Giant Magnetoresistance Devices with Nano-
Current-Channel Structure,” Journal of Applied Physics, vol. 103, no. 7, p. 07A717,
2008. 95

[96] R. H. Koch, J. A. Katine, and J. Z. Sun, “Time-Resolved Reversal of Spin-Transfer
Switching in a Nanomagnet,” Phys. Rev. Lett., vol. 92, no. 8, p. 088302, February
2004. 96, 97

[97] H. W. Schumacher et al., “Precessional Switching of the Magnetization in Microscopic
Magnetic Tunnel Junctions (Invited),” Journal of Applied Physics, vol. 93, no. 10, pp.
7290–7294, 2003. 96

169

[98] T. L. Gilbert, “A Phenomenological Theory of Damping in Ferromagnetic Materials,”
IEEE Transactions on Magnetics, vol. 40, no. 6, pp. 3443–3449, November 2004. 97

[99] L. Landau and E. Lifshitz, “On the Theory of the Dispersion of Magnetic Permeability
in Ferromagnetic Bodies,” Physikalische zeitschrift der Sowjetunion, vol. 8, pp. 153–
169, 1935. 97

[100] T. Moriyama et al., “Tunnel Magnetoresistance and Spin Torque Switching in MgO-
based Magnetic Tunnel Junctions with a Co/Ni Multilayer Electrode,” Applied Physics
Letters, vol. 97, no. 7, p. 072513, 2010. 97, 105, 106, 114

[101] Z. M. Zeng et al., “Effect of resistance-area product on spin-transfer switching in mgo-
based magnetic tunnel junction memory cells,” Applied Physics Letters, vol. 98, no. 7,
p. 072512, 2011. 98

[102] Y. Higo et al., “Thermal Activation Effect on Spin Transfer Switching in Magnetic
Tunnel Junctions,” Applied Physics Letters, vol. 87, no. 8, p. 082502, 2005. 97

[103] M. Pakala et al., “Critical Current Distribution in Spin-Transfer-Switched Magnetic
Tunnel Junctions,” Journal of Applied Physics, vol. 98, no. 5, p. 056107, 2005. 97

[104] T. Aoki, Y. Ando, M. Oogane, and H. Naganuma, “Reproducible Trajectory on Sub-
nanosecond Spin-Torque Magnetization Switching Under a Zero-Bias Field for MgO-
Based Ferromagnetic Tunnel Junctions,” Applied Physics Letters, vol. 96, no. 14, p.
142502, 2010. 97

[105] E. R. Nowak, M. B. Weissman, and S. S. P. Parkin, “Electrical Noise in Hys-
teretic Ferromagnet–Insulator–Ferromagnet Tunnel Junctions,” Applied Physics Let-
ters, vol. 74, no. 4, pp. 600–602, 1999. 97, 100, 101

[106] S. X. Huang, T. Y. Chen, and C. L. Chien, “Spin Polarization of Amorphous CoFeB
Determined by Point-Contact Andreev Reflection,” Applied Physics Letters, vol. 92,
no. 24, p. 242509, 2008. 97

[107] J. S. Moodera and G. Mathon, “Spin Polarized Tunneling in Ferromagnetic Junctions,”
Journal of Magnetism and Magnetic Materials, vol. 200, no. 1-3, pp. 248 – 273, 1999.
97, 99

[108] Y. Lu et al., “Bias Voltage and Temperature Dependence of Magnetotunneling Effect,”
Journal of Applied Physics, vol. 83, no. 11, pp. 6515–6517, 1998. 97, 99, 112

[109] X. Liu et al., “Thermal Stability of Magnetic Tunneling Junctions with MgO Barriers
for High Temperature Spintronics,” Applied Physics Letters, vol. 89, no. 2, p. 023504,
2006. 97

[110] C. H. Shang, J. Nowak, R. Jansen, and J. S. Moodera, “Temperature Dependence
of Magnetoresistance and Surface Magnetization in Ferromagnetic Tunnel Junctions,”
Phys. Rev. B, vol. 58, no. 6, pp. R2917–R2920, August 1998. 99, 111, 117

170

[111] J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar
Electrodes Separated by a Thin Insulating Film,” Journal of Applied Physics, vol. 34,
no. 6, pp. 1793–1803, 1963. 99

[112] T. Zhu, X. Xiang, and J. Q. Xiao, “Bias Dependence of Tunneling Magnetoresistance
on Ferromagnetic Electrode Thickness,” Applied Physics Letters, vol. 82, no. 16, pp.
2676–2678, 2003. 99

[113] G. G. Cabrera and N. Garćıa, “Low Voltage I–V Characteristics in Magnetic Tunneling
Junctions,” Applied Physics Letters, vol. 80, no. 10, pp. 1782–1784, 2002. 99

[114] S. Chatterjee, S. Salahuddin, S. Kumar, and S. Mukhopadhyay, “Analysis of Thermal
Behaviors of Spin-Torque-Transfer RAM: A Simulation Study,” in Low-Power Elec-
tronics and Design (ISLPED), 2010 ACM/IEEE International Symposium on, August
2010, pp. 13–18. 99, 100

[115] Y. Zhang et al., “Micromagnetic Study of Hotspot and Thermal Effects on Spin-
Transfer Switching in Magnetic Tunnel Junctions,” Journal of Applied Physics, vol.
101, no. 10, p. 103905, 2007. 99

[116] S. Chaudhuri et al., “Design of TAS-MRAM Prototype for NV Embedded Memory
Applications,” in Memory Workshop (IMW), 2010 IEEE International, May 2010, pp.
1 –4. 100

[117] J. Z. Sun et al., “High-Bias Backhopping in Nanosecond Time-Domain Spin-Torque
Switches of MgO-based Magnetic Tunnel Junctions,” Journal of Applied Physics, vol.
105, no. 7, p. 07D109, 2009. 100

[118] T. Min et al., “Back-Hopping after Spin Torque Transfer Induced Magnetization
Switching in Magnetic Tunneling Junction Cells,” Journal of Applied Physics, vol.
105, no. 7, p. 07D126, 2009. 100

[119] S. Ingvarsson et al., “Low-Frequency Magnetic Noise in Micron-Scale Magnetic Tunnel
Junctions,” Phys. Rev. Lett., vol. 85, no. 15, pp. 3289–3292, Oct 2000. 100, 101

[120] K. B. Klaassen, J. C. L. van Peppen, and X. Xing, “Noise in Magnetic Tunnel Junction
Devices,” Journal of Applied Physics, vol. 93, no. 10, pp. 8573–8575, 2003. 100

[121] K. Shimazawa et al., “Frequency Response of Common Lead and Shield Type Magnetic
Tunneling Junction Head,” Magnetics, IEEE Transactions on, vol. 37, no. 4, pp. 1684–
1686, July 2001. 100

[122] A. F. M. Nor et al., “Low-Frequency Noise in MgO Magnetic Tunnel Junctions,”
Journal of Applied Physics, vol. 99, no. 8, p. 08T306, 2006. 100, 101

[123] K. Itoh, T. Watanabe, S. Kimura, and T. Sakata, “Reviews and Prospects of High-
Density RAM Technology,” in Semiconductor Conference, 2000. CAS 2000 Proceed-
ings. International, vol. 1, 2000, pp. 13–22. 101

171

[124] M. Durlam et al., “Nonvolatile RAM Based on Magnetic Tunnel Junction Elements,”
in Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000
IEEE International, February 2000, pp. 130–131. 101

[125] I. Prejbeanu et al., “Thermally Assisted Switching in Exchange-biased Storage Layer
Magnetic Tunnel Junctions,” Magnetics, IEEE Transactions on, vol. 40, no. 4, pp.
2625–2627, July 2004. 102

[126] R. Sinclair and A. Pohm, “Scaling and Power of Thermally Written MRAM,” in Non-
Volatile Memory Technology Symposium, 2004, November 2004, pp. 110–117. 102

[127] J. Deak, J. Daughton, and A. Pohm, “Effect of Resistance-Area-Product and Thermal
Environment onWriting of Magneto-Thermal MRAM,”Magnetics, IEEE Transactions
on, vol. 42, no. 10, pp. 2721–2723, October 2006. 102

[128] P. K. Amiri and K. L. Wang, “Voltage-controlled magnetic anisotropy in spintronic
device,” SPIN, vol. 2, no. 3, p. 1240002, 2012. 103

[129] S. Ikeda et al., “A perpendicular-anisotropy cofeb-mgo magnetic tunnel junction,” Nat
Mater, vol. 9, no. 9, pp. 721–724, 2010. 103

[130] J. Zhu et al., “Voltage-Induced Ferromagnetic Resonance in Magnetic Tunnel Junc-
tions,” Phys. Rev. Lett., vol. 108, p. 197203, May 2012. 104, 108, 142

[131] T. Nozaki et al., “Voltage-induced perpendicular magnetic anisotropy change in mag-
netic tunnel junctions,” Applied Physics Letters, vol. 96, no. 2, pp. –, 2010. 104

[132] T. Maruyama et al., “Large voltage-induced magnetic anisotropy change in a few
atomic layers of iron,” Nat. Nano., vol. 4, pp. 158–161, March 2009. 104, 109

[133] J. G. Alzate et al., “Voltage-Induced Switching of Nanoscale Magnetic Tunnel Junc-
tions,” in Proceedings of the International Electron Devices Meeting (IEDM’12), De-
cember 2012, pp. 29.5.1–29.5.4. 104, 108, 109, 110, 139, 142

[134] Y. Shiota et al., “Induction of coherent magnetization switching in a few atomic layers
of feco using voltage pulses,” Nat. Mater., vol. 11, pp. 39–43, January 2012. 104

[135] W.-G. Wang, M. Li, S. Hageman, and C. L. Chien, “Electric-field-assisted switching
in magnetic tunnel junctions,” Nat. Mater., vol. 11, pp. 64–68, January 2012. 104

[136] Y. Huai, “Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects,”
AAPPS Bulletin, vol. 18, no. 6, pp. 33–40, December 2008. 105

[137] M. R. Scheinfein, “LLG Micromagnetics Simulator.” [Online]. Available: http:
//llgmicro.home.mindspring.com 105, 118

[138] J. Z. Sun, “Spin-Current Interaction with a Monodomain Magnetic Body: A Model
Study,” Phys. Rev. B, vol. 62, no. 1, pp. 570–578, July 2000. 107, 115

172

http://llgmicro.home.mindspring.com
http://llgmicro.home.mindspring.com

[139] J. A. Osborn, “Demagnetizing Factors of the General Ellipsoid,” Phys. Rev., vol. 67,
no. 11-12, pp. 351–357, June 1945. 108, 115

[140] W. G. Wang and C. L. Chien, “Voltage-induced switching in magnetic tunnel junctions
with perpendicular magnetic anisotropy,” J. Phys. D, vol. 46, no. 7, p. 074004, 2013.
109, 110

[141] P. K. Amiri, R. Dorrance, D. Marković, and K. L. Wang, “Nonvolatile Magneto-Electric
Random Access Memory Circuit with Burst Writing and Back-to-Back Reads,” U.S.
Patent 8 988 923, March 24, 2015. 110, 139, 147

[142] P. K. Amiri, R. Dorrance, D. Marković, and K. L. Wang, “Read-Disturbance-Free
Nonvolatile Content Addressable Memory (CAM),” U.S. Patent 9 047 950, June 2,
2015. 110

[143] P. Weiss, “L’hypothèse du Champ Moléculaire et la Propriété Ferromagnétique,” J.
Phys. Theor. Appl., vol. 6, no. 1, pp. 661–690, 1907. 110

[144] A. Raghunathan, Y. Melikhov, J. E. Snyder, and D. C. Jiles, “Modeling the Temper-
ature Dependence of Hysteresis Based on Jiles-Atherton Theory,” IEEE Transactions
on Magnetics, vol. 45, no. 10, pp. 3954–3957, October 2009. 111

[145] S. R. Min et al., “Etch Characteristics of Magnetic Tunnel Junction Stack with
Nanometer-Sized Patterns for Magnetic Random Access Memory,” Thin Solid Films,
Proceedings of the International Symposium on Dry Process, 2006. (DPS 2006)., vol.
516, no. 11, pp. 3507–3511, November 2008. 113

[146] R. Beach et al., “A Statistical Study of Magnetic Tunnel Junctions for High-Density
Spin Torque Transfer-MRAM (STT-MRAM),” in Electron Devices Meeting, 2008.
IEDM 2008. IEEE International, December 2008, pp. 1–4. 113

[147] H. Chang and J. Burns, “Demagnetizing and Stray Fields of Elliptical Films,” Journal
of Applied Physics, vol. 37, no. 8, pp. 3240–3245, July 1966. 115

[148] V. Korenivski and R. Leuschner, “Thermally Activated Switching in Nanoscale Mag-
netic Tunnel Junctions,” IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 2101–
2103, June 2010. 115

[149] J. Sun and D. Ralph, “Magnetoresistance and Spin-Transfer Torque in Magnetic Tun-
nel Junctions,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 7, pp.
1227–1237, 2008. 115

[150] X. Kou, J. Schmalhorst, A. Thomas, and G. Reiss, “Temperature Dependence of the
Resistance of Magnetic Tunnel Junctions with MgO Barrier,” Applied Physics Letters,
vol. 88, no. 21, p. 212115, 2006. 116, 117

[151] P. Padhan et al., “Frequency-Dependent Magnetoresistance and Magnetocapacitance
Properties of Magnetic Tunnel Junctions with MgO Tunnel Barrier,” Applied Physics
Letters, vol. 90, no. 14, p. 142105, 2007. 116

173

[152] P. Wísniowski et al., “Temperature Dependence of Tunnel Magnetoresistance and Mag-
netization of IrMn Based MTJ,” Physica Status Solidi, vol. 201, pp. 1648–1652, 2004.
117

[153] W. Zhao et al., “New Non-Volatile Logic Based on Spin-MTJ,” physica status solidi
(a), vol. 205, no. 6, pp. 1373–1377, 2008. 122

[154] X. F. Han and A. C. C. Yu, “Patterned Magnetic Tunnel Junctions with Al Conduction
Layers: Fabrication and Reduction of Pinhole Effect,” Journal of Applied Physics,
vol. 95, no. 2, pp. 764–766, 2004. 122

[155] S. Isogami, M. Tsunoda, and M. Takahashi, “30-nm Scale Fabrication of Magnetic
Tunnel Junctions using EB Assisted CVD Hard Masks,” Magnetics, IEEE Transac-
tions on, vol. 41, no. 10, pp. 3607–3609, October 2005. 122

[156] C. J. Lin et al., “45nm Low Power CMOS Logic Compatible Embedded STT MRAM
Utilizing a Reverse-Connection 1T/1MTJ Cell,” in Electron Devices Meeting (IEDM),
2009 IEEE International, December 2009, pp. 1–4. 124, 134

[157] T. Takenaga et al., “Control of Pinned Layer Magnetization Direction in Spin-Valve-
Type Magnetic Tunnel Junction with an IrMn Layer,” Journal of Applied Physics,
vol. 95, no. 11, pp. 6795–6797, 2004. 124

[158] H. Park et al., “Analysis of STT-RAM Cell Design with Multiple MJTs Per Access,” in
Proceedings of the ACM/IEEE International Symposium on Nanoscale Architectures
(NANOARCH’11), June 2011, pp. 53–58. 127

[159] R. Dorrance, “Modeling and Design of STT-MRAMs,” Master’s thesis, University of
California, Los Angeles, June 2011. 129

[160] R. Dorrance et al., “Scalability and Design-Space Analysis of a 1T-1MTJ Memory
Cell,” in Proceedings of the ACM/IEEE International Symposium on Nanoscale Ar-
chitectures (NANOARCH’11), June 2011, pp. 32–36. 129

[161] R. Dorrance et al., “Scalability and Design-Space Analysis of a 1T-1MTJ Memory Cell
for STT-RAMs,” IEEE Transactions on Electron Devices (TED), vol. 59, no. 4, pp.
878–887, April 2012. 129

[162] P. Amiri et al., “Low Write-Energy Magnetic Tunnel Junctions for High-Speed Spin-
Transfer-Torque MRAM,” Electron Device Letters, IEEE, vol. 32, no. 1, pp. 57–59,
January 2011. 130

[163] P. K. Amiri et al., “Switching Current Reduction Using Perpendicular Anisotropy in
CoFeB-MgO Magnetic Tunnel Junctions,” Applied Physics Letters, vol. 98, no. 11, p.
112507, 2011. 130

[164] G. E. Rowlands et al., “Deep Subnanosecond Spin Torque Switching in Magnetic Tun-
nel Junctions with Combined In-Plane and Perpendicular Polarizers,” Applied Physics
Letters, vol. 98, no. 10, p. 102509, 2011. 130

174

[165] R. Nebashi et al., “A 90nm 12ns 32Mb 2T1MTJ MRAM,” in ISSCC 2009, February
2009, pp. 462–463, 463a. 134

[166] D. Halupka et al., “Negative-Resistance Read and Write Schemes for STT-MRAM in
0.13 µm CMOS,” in ISSCC 2010, February 2010, pp. 256–257. 134

[167] K. Tsuchida et al., “A 64Mb MRAM with Clamped-Reference and Adequate-Reference
Schemes,” in ISSCC 2010, February 2010, pp. 258–259. 134

[168] F. Ren et al., “A Body-Voltage-Sensing-Based Short Pulse Reading Circuit for Spin-
Torque Transfer RAMs (STT-RAMs),” in Proceedings of 13th International Symposium
on Quality Electronic Design (ISQED’12), March 2012, pp. 275–282. 137

[169] A. Chen, Z. Krivokapic, and M.-R. Lin, “A Comprehensive Model for Crossbar Memory
Arrays,” in Proc Device Research Conference, June 2012, pp. 219–220. 138

[170] R. Dorrance et al., “Diode-MTJ Crossbar Memory Cell Using Voltage-Induced Unipo-
lar Switching for High-Density MRAM,” IEEE Electron Device Letters (EDL), vol. 34,
no. 6, pp. 753–755, June 2013. 139

175

	Introduction
	Sparse-BLAS
	Spintronic Memories
	Dissertation Outline

	Sparse Basic Linear Algebra Subprograms
	Sparse Matrix Representation
	Coordinate List (COO)
	Compressed Sparse Row (CSR)
	Compressed Sparse Column (CSC)

	Sparse Matrix-Vector and Matrix-Matrix Multiplication
	Current State-of-the-Art
	Case Study: Efficiency of SpMxV on CPUs
	Case Study: Efficiency of SpMxV on GPUs

	Sparse Matrix Algorithms in Bioinformatics
	Markov Clustering Algorithm
	PageRank Algorithm
	Compressive Sensing
	Electron Tomography

	A Scalable Architecture for Sparse Linear Algebra
	Energy Efficiency
	Architectural Trade-offs for Sparse-BLAS
	Identifying Key CPU/GPU Architectural Inefficiencies
	Minimizing Memory Accesses
	Strategies to Reduce Data Hazards
	Memory Size vs. Energy Efficiency

	Proposed Architecture
	Processing Element
	Sparse-BLAS Controller

	FPGA Implementation
	Field Programmable Gate Arrays
	Reconfigurable Computing Building Blocks
	Prior Art Using FPGAs for Sparse-BLAS
	Reconfigurable Open Architecture Computing Hardware (ROACH)

	SpMxV Architecture
	Processing Element
	Data Hazard and Memory Management

	Sparse-BLAS Architecture
	Processing Element
	Data Hazard and Memory Management

	ASIC Implementation
	Overall Architecture
	Processing Element
	Floating-Point Unit
	Dual-Port Memory
	The ``Shuffler''

	Sparse-BLAS Controller
	Memory Controller

	Testing and Configuration Considerations
	FPGA Interface
	Scan Chain
	Memory Cache

	Testing and Performance Results
	Data Sets
	Sparse Matrix Collection
	Bioinformatics Algorithms

	Hardware and Software Test Platforms
	Performance Results
	Sparse Matrix Collection
	Bioinformatics Algorithms

	Energy Efficiency
	FPGA SpMxV Kernel
	FPGA Sparse-BLAS Kernel
	ASIC Sparse-BLAS Kernel

	Magnetic Tunnel Junctions
	Introduction to Spintronics
	History
	Principle of Operation
	Other Devices and Applications

	The Magnetic Tunnel Junction
	Resistance Hysteresis
	Critical Switching Current
	Tunnel Magnetoresistance Temperature Dependency
	Bias Voltage Effects
	Other Important MTJ Characteristics

	Spintronic Memories
	Field-Induced Magnetic Switching
	TAS-MRAM
	STT-MRAM
	MeRAM

	Modeling MTJ Characteristics
	Magnetization Dynamics
	Effective Magnetic Field
	Tunnel Magnetoresistance
	Heun's Method
	Statistical Characterization of MTJ Devices

	Model Verification
	Comparison to Measured Devices
	Comparison to Micromagnetic Simulations

	STT-MRAM and MeRAM
	MTJ/CMOS Integration
	STT-MRAM Memory Architectures
	Cell Architectures
	Subarraying

	STT-MRAM Memory Design
	90nm Bulk CMOS
	65nm Bulk CMOS
	45nm SOI CMOS
	Design Comparison

	MeRAM Memory Architectures
	1T-1MTJ Array
	1D-MTJ Crossbar Array

	MeRAM Memory Design
	1T-1MTJ Array
	1D-MTJ Crossbar Array

	Conclusion
	Research Contributions
	Future Work

	MTJ Verilog-A Model Code
	References

