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Abstract

Background

A person’s rate of aging has important implications for his/her risk of death and disease;

thus, quantifying aging using observable characteristics has important applications for clini-

cal, basic, and observational research. Based on routine clinical chemistry biomarkers, we

previously developed a novel aging measure, Phenotypic Age, representing the expected

age within the population that corresponds to a person’s estimated mortality risk. The aim of

this study was to assess its applicability for differentiating risk for a variety of health out-

comes within diverse subpopulations that include healthy and unhealthy groups, distinct

age groups, and persons with various race/ethnic, socioeconomic, and health behavior

characteristics.

Methods and findings

Phenotypic Age was calculated based on a linear combination of chronological age and 9

multi-system clinical chemistry biomarkers in accordance with our previously established

method. We also estimated Phenotypic Age Acceleration (PhenoAgeAccel), which repre-

sents Phenotypic Age after accounting for chronological age (i.e., whether a person appears

older [positive value] or younger [negative value] than expected, physiologically). All analy-

ses were conducted using NHANES IV (1999–2010, an independent sample from that origi-

nally used to develop the measure). Our analytic sample consisted of 11,432 adults aged

20–84 years and 185 oldest-old adults top-coded at age 85 years. We observed a total of

1,012 deaths, ascertained over 12.6 years of follow-up (based on National Death Index data
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through December 31, 2011). Proportional hazard models and receiver operating character-

istic curves were used to evaluate all-cause and cause-specific mortality predictions. Over-

all, participants with more diseases had older Phenotypic Age. For instance, among young

adults, those with 1 disease were 0.2 years older phenotypically than disease-free persons,

and those with 2 or 3 diseases were about 0.6 years older phenotypically. After adjusting for

chronological age and sex, Phenotypic Age was significantly associated with all-cause mor-

tality and cause-specific mortality (with the exception of cerebrovascular disease mortality).

Results for all-cause mortality were robust to stratifications by age, race/ethnicity, education,

disease count, and health behaviors. Further, Phenotypic Age was associated with mortality

among seemingly healthy participants—defined as those who reported being disease-free

and who had normal BMI—as well as among oldest-old adults, even after adjustment for dis-

ease prevalence. The main limitation of this study was the lack of longitudinal data on Phe-

notypic Age and disease incidence.

Conclusions

In a nationally representative US adult population, Phenotypic Age was associated with

mortality even after adjusting for chronological age. Overall, this association was robust

across different stratifications, particularly by age, disease count, health behaviors, and

cause of death. We also observed a strong association between Phenotypic Age and the

disease count an individual had. These findings suggest that this new aging measure may

serve as a useful tool to facilitate identification of at-risk individuals and evaluation of the effi-

cacy of interventions, and may also facilitate investigation into potential biological mecha-

nisms of aging. Nevertheless, further evaluation in other cohorts is needed.

Author summary

Why was this study done?

• Aging is one of the leading risk factors for most chronic diseases; therefore, measuring

aging has important applications for clinical, basic, and observational research.

• Persons of the same chronological age may vary in their rate of aging, suggesting that

chronological age is an imperfect proxy of biological aging.

• Based on traditional clinical chemistry biomarkers, we recently developed a novel aging

measure, Phenotypic Age, which can differentiate mortality risk among persons at the

same chronological age.

• However, little is known about the applicability of this new aging measure for differenti-

ating morbidity and mortality risk across diverse subpopulations such as healthy and

unhealthy groups, distinct age groups, and persons with various race/ethnic, socioeco-

nomic, and health behavior characteristics.

A new aging measure captures morbidity and mortality risk
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What did the researchers do and find?

• We calculated Phenotypic Age for 11,432 adults aged 20–84 years and 185 oldest-old

adults top-coded at age 85 years from NHANES IV and assessed its association with

morbidity and mortality.

• We found that, overall, Phenotypic Age was highly predictive of mortality even after

adjusting for chronological age. This mortality prediction was valid across different sub-

populations, stratified by age, race/ethnicity, education, disease count, health behaviors,

and cause of death. We also observed a strong association between Phenotypic Age and

the disease count a person had, after adjusting for chronological age.

What do these findings mean?

• Phenotypic Age can facilitate identification of at-risk individuals for a number of diverse

conditions and causes of death. Further, it captures risk stratification in both the healthi-

est and the unhealthiest populations.

• In clinical research, it may serve as a useful tool for evaluating intervention efficacy,

avoiding the need for decades of follow-up.

• Phenotypic Age may also be applicable to basic and observational research, shedding

light on factors that alter the pace of aging, and facilitating investigation into potential

biological mechanisms and environmental stressors.

Introduction

Rapid population aging represents a major public health burden, as aging is one of the leading

risk factors for most major chronic diseases [1,2]. As a result, preventive strategies and inter-

ventions that promote healthy aging are critical. While everyone ages, the rate at which aging

occurs is heterogeneous, and between-person variations in the pace of aging manifest as differ-

ences in susceptibility to death and disease. Thus, differentiating aging in individuals of the

same chronological age, particularly in early life, will facilitate secondary and tertiary preven-

tion through earlier identification of high-risk individuals or groups. However, a key issue

remains in how to measure aging. Further, to be applicable to the clinical setting, such assess-

ment should be easy to conduct using existing instruments, must do a better job at capturing

risk stratification than current tools, and should be able to differentiate risk prior to manifesta-

tion of disease or disability.

One method for determining whether a person appears younger or older than expected on

a biological or physiological level is to compare observable characteristics, reflecting function-

ing or state, to the characteristics observed in the general population for a given chronological

age. A number of aging measures have been proposed using molecular variables, the most

prominent being epigenetic clocks (expressed as DNA methylation age, in units of years) [3]

and leukocyte telomere length [4]. We and others have previously shown that while these mea-

sures are phenomenal age predictors—especially DNA methylation age—their associations

with aging outcomes above and beyond what is explained by chronological age is weak to

A new aging measure captures morbidity and mortality risk
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moderate [5–11]. Conversely, aging measures based on clinically observable data, or pheno-

types, tend to be more robust predictors of aging outcomes [12–15]. The differences in predic-

tion between these 2 types of measures could reflect that molecular measures may only capture

1 or a small number of changes involved in the multifactorial aging process, while on the other

hand, clinical measures may represent the manifestations of multiple hallmarks of aging occur-

ring at the cellular and intracellular levels [12,13,15–18]. While composite scores based on tra-

ditional clinical chemistry measures are not mechanistic, their better performance and relative

affordability and practicality compared to current molecular measures may make them more

suitable for evaluating the effects of aging interventions on an organismal scale, and/or identi-

fying groups at higher risk of death and disease.

Among the existing clinical measures, the majority were generated based on associations

between composite variables and chronological age—with no integration of information on

how the variables influence morbidity and mortality. Given that individuals vary in their rate

of aging, chronological time is an imperfect proxy for building an aging measure [19].

Recently, we developed a new metric, Phenotypic Age (in units of years), that incorporates

composite clinical chemistry biomarkers based on parametrization from a Gompertz mortality

model [12]. Rather than predicting chronological age—as previous measures have done—this

measure is optimized to differentiate mortality risk among persons of the same chronological

age, using data from a variety of multi-system clinical chemistry biomarkers. In general, a per-

son’s Phenotypic Age signifies the age within the general population that corresponds with

that person’s mortality risk. For example, 2 individuals may be 50 years old chronologically,

but one may have a Phenotypic Age of 55 years, indicating that he/she has the average mortal-

ity risk of someone who is 55 years old chronologically, whereas the other may have a Pheno-

typic Age of 45 years, indicating that he/she has the average mortality risk of someone who is

45 years old chronologically.

The goal of this study was to evaluate the applicability of this measure by (1) assessing

whether it is a robust predictor of all-cause mortality compared to traditional risk factors, (2)

establishing how it relates to various causes of death and/or comorbid conditions, and (3)

determining generalizability through assessing whether this new measure is predictive of long-

term mortality risk in a variety of subpopulations, e.g., various age groups, racial/ethnic

groups, persons with various socioeconomic status (SES), persons with various smoking/

drinking habits, disease-free individuals, and groups with various disease counts.

Methods

Study population

We previously developed Phenotypic Age using data from NHANES III (the third National

Health and Nutrition Examination Survey) (1988–1994) [12]. The independent validation

sample used here was from NHANES IV (1999–2010, n = 14,008). We excluded participants

with missing data on biomarkers or who did not complete at least 8 hours of fasting prior to

blood sampling (n = 1,368), with missing data on follow-up time (n = 15), or who did not have

survey weights (n = 1,008). The final analytic sample included n = 11,432 adults aged 20–84

years (S1 Table) and 185 oldest-old adults top-coded at age 85 years. On average, the persons

excluded tended to be older (2.5 years on average) and were 40% more likely to self-identify as

non-Hispanic black. Details of recruitment, procedures, population characteristics, and study

design for NHANES are provided through the Centers for Disease Control and Prevention

[20] (https://www.cdc.gov/nchs/nhanes/index.htm). Briefly, NHANES is an ongoing program

by the National Center for Health Statistics involving a series of independent, nationally repre-

sentative cross-sectional surveys designed to assess the health and nutritional status of adults
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and children in the US. It began in the early 1960s focusing on different population groups

and health topics and became a continuous program that has had a changing focus on a variety

of health and nutrition measurements to meet emerging needs since 1999. Using both at-

home interviews and examinations performed at a mobile examination center, NHANES col-

lects a wide range of information (e.g., via demographic, socioeconomic, dietary, and health-

related questions, and medical and physiological measurements) from a nationally representa-

tive sample each year in counties across the country [20]. NHANES is approved by the

National Center for Health Statistics Research Ethics Review Board, and all participants pro-

vide informed consent. Data used in this study are de-identified and publicly available (https://

www.cdc.gov/nchs/nhanes/index.htm). This study received approval from the Yale Human

Investigation Committee on 15 November 2017 following an expedited review.

Mortality

Mortality follow-up was based on linked data from records taken from the National Death Index

through December 31, 2011, provided through the Centers for Disease Control and Prevention

[20]. Data on mortality status and length of follow-up (in person-months) were available for

nearly all participants (n = 15 with missing data on follow-up time). Out of 9 underlying causes

of death and an “other” category that were provided in the linked data, 7 were used to assess

cause-specific mortality in our study—heart disease, cancer, chronic lower respiratory disease,

cerebrovascular disease, diabetes, influenza or pneumonia, and nephritis/nephrosis. Alzheimer

disease was not considered in the cause-specific analysis due to the small number of deaths

assigned to this cause. Accidents were not assessed due to the fact that many may not be age-

related, and it is impossible to differentiate age- versus non-age-related accidental death.

Phenotypic Age

We calculated Phenotypic Age in accordance with the method described previously [12].

Briefly, Phenotypic Age is calculated using chronological age and 9 biomarkers (albumin, creati-

nine, glucose, [log] C-reactive protein [CRP], lymphocyte percent, mean cell volume, red blood

cell distribution width, alkaline phosphatase, and white blood cell count) that were selected

using a Cox proportional hazard elastic net model for mortality based on 10-fold cross-valida-

tion. The algorithm for calculating Phenotypic Age is based on parametrization of 2 Gompertz

proportional hazard models—one fit using all 10 selected variables, and the other fit using only

chronological age. The resulting final equation for calculating Phenotypic Age is as follows:

Phenotypic Age ¼ 141:50þ
ln½� 0:00553� lnð1 � xbÞ�

0:09165

where

xb ¼ � 19:907 � 0:0336� albuminþ 0:0095� creatinineþ 0:0195� glucoseþ 0:0954

� lnðCRPÞ � 0:0120� lymphocyte percentþ 0:0268�mean cell volumeþ 0:3356

� red blood cell distribution widthþ 0:00188� alkaline phosphataseþ 0:0554

� white blood cell countþ 0:0804� chronological age

Finally, we calculated a measure, Phenotypic Age Acceleration (PhenoAgeAccel), defined

as the residual resulting from a linear model when regressing Phenotypic Age on chronological

age. Therefore, PhenoAgeAccel represents Phenotypic Age after accounting for chronological

age (i.e., whether a person appears older [positive value] or younger [negative value] than

expected, physiologically, based on his/her age).

A new aging measure captures morbidity and mortality risk
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Health and demographic characteristics

Age categories, race/ethnicity, education, body mass index (BMI), disease count, smoking sta-

tus, and drinking habits were considered for stratified analyses. Four age categories (20–39,

40–64, 65–84, and 85+ years) and 3 racial/ethnic groups (non-Hispanic white, non-Hispanic

black, and Hispanic) were considered. Note that for presenting Kaplan–Meier curves, we used

a different set of 4 age categories (20–49, 50–64, 65–74, and 75–84 years) to demonstrate the

robustness of the results. A 4-category education variable was used to approximate SES. Cate-

gories included less than high school (HS), HS/general educational development (GED), some

college (having attended college but not receiving at least a bachelor’s degree), or college (hav-

ing a bachelor’s degree or higher). BMI was calculated as weight in kilograms divided by height

in meters squared. Underweight was defined as BMI < 18.5 kg/m2, normal was defined as

18.5� BMI< 25.0 kg/m2, overweight was defined as 25.0� BMI < 30.0 kg/m2, and obese was

defined as BMI� 30 kg/m2. Chronic diseases included 10 coexisting self-reported conditions:

congestive heart failure, stroke, cancer, chronic bronchitis, emphysema, cataracts, arthritis,

type 2 diabetes, hypertension, and myocardial infarction. Based on the disease counts, we cre-

ated a variable with 5 categories—no disease, 1 disease, 2 diseases, 3 diseases, and 4 or more

diseases (with the last two categories combined in subgroup analyses). Three smoking status

categories were created, which included never smokers (<100 cigarettes during one’s lifetime),

former smokers (100 or more cigarettes during one’s lifetime, but not actively smoking during

recent time frame), and current smokers (ongoing smoking habit). Two drinking variables

were created—a binary binge drinking indicator (in which binge drinking was defined as hav-

ing 5+ alcoholic beverages at a time at least once per month) and a 6-category alcohol intake

variable (never, none in past year,<1 drink per month, 1–3 drinks per month, 1–3 drinks per

week, 4+ drinks per week). All the information was collected through a questionnaire or physi-

cal examination at the time of survey.

In this study, when comparing the predictive performance of Phenotypic Age with that of

traditional risk factors, we not only considered the individual biomarkers that were already

included in Phenotypic Age, but also considered disease count, BMI, total cholesterol, and sys-

tolic blood pressure, given that they are commonly considered risk factors for death and dis-

ease in both observational studies and clinical practice [21–25]. Data on total cholesterol were

obtained from blood analyses, and data on systolic blood pressure were obtained from exami-

nation at the time of survey.

Statistical analyses

The analytic plan for this study is briefly described in Fig 1. Using data from NHANES IV,

age-stratified ordinary least squares regression models were first used to estimate the associa-

tion between disease count and Phenotypic Age within 3 age categories (20–39 years, 40–64

years, and 65–84 years). Based on these regression equations, we then estimated the incremen-

tal increase in PhenoAgeAccel for participants in each of the disease count categories in com-

parison to participants with no disease.

Next, a parametric proportional hazard model (Gompertz distribution) was used to assess

the association between Phenotypic Age and all-cause mortality, with adjustment for chrono-

logical age and sex. To further evaluate robustness, age-stratified models and a model that

excluded short-term mortality (within 5 years after baseline) were also run to ensure the mor-

tality prediction was not driven by older ages and/or an end-of-life phenotype. Participants

were then grouped into quintiles for PhenoAgeAccel, so that the highest quintile represented

individuals who were most at risk of death for their age—i.e., those whose Phenotypic Age was

the highest relative to their chronological age. We then plotted Kaplan–Meier curves for

A new aging measure captures morbidity and mortality risk
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persons in the highest 20% versus the lowest 20%. We also compared predicted median life

expectancy at age 65 years by sex and the 5 quintiles for PhenoAgeAccel. Next, receiver operat-

ing characteristic (ROC) curves were used to compare the 10-year mortality risk prediction of

Phenotypic Age to predictions based on individuals’ clinical chemistry biomarkers and routine

risk assessment tools (e.g., based on systolic blood pressure, the biomarkers, and BMI).

Fig 1. The analytic plan for this study. NHANES III and IV refer to the third and fourth National Health and Nutrition Examination Survey. �We adjusted for

chronological age and sex in all models except those in the oldest-old adults. As mentioned in the Methods, we ran 2 parametric proportional hazard models (Gompertz

distribution) in this age group, one unadjusted and another with adjustment for disease count, rather than chronological age (unknown).BMI, body mass index.

https://doi.org/10.1371/journal.pmed.1002718.g001
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Cause-specific mortality risk as a function of Phenotypic Age was assessed via Fine and Gray’s

competing risk models [26]. To determine whether Phenotypic Age could differentiate risk in

population subgroups (e.g., healthy participants), we conducted the all-cause mortality analysis

again by race/ethnicity, education, disease count, BMI, smoking status, and drinking habits.

Participants aged 85+ years (oldest-old adults) were excluded from all prior analyses given

that age was top-coded (i.e., everyone aged 85+ years was coded as being age 85 years) for iden-

tity protection; therefore, to test mortality associations in this group, we used 2 parametric pro-

portional hazard models (Gompertz distribution), one adjusted for sex and another with

adjustment for sex and disease count, rather than chronological age (unknown).

All analyses were performed using R version 3.4.1 (2017-06-30) and STATA version 14.0

software (StataCorp, College Station, TX).

Results

The basic characteristics of the study participants are shown in S1 Table. The mean age of the

11,432 adults was 45.5 years, and about half of the sample were women (50.8%). Young (20–39

years) and middle aged (40–64 years) adults accounted for 40% and 45%, respectively. Three-

quarters of participants self-identified as non-Hispanic white, about 11% were non-Hispanic

black, and 13% were Hispanic. One-quarter of participants had a college degree, about 30%

had some college education, one-quarter had a HS education, and about 19% had not gradu-

ated from HS or received a GED. Half of the sample were never smokers, while the other half

were approximately equal parts former and current smokers. Approximately 15% had binge

drinking tendencies over the past year. Finally, proportions of normal BMI, overweight, and

obese were each about one-third.

Prevalence of disease

Fig 2 presents the disease counts overall and by age category. Approximately two-thirds (64%)

of the study participants were disease-free at their interview, while 22% reported having been

diagnosed with 1 chronic disease, 9% reported 2 diseases, 3% reported 3 diseases, and only 2%

reported at least 4 coexisting chronic diseases. As expected, the majority (87%) of young adults

(aged 20–39 years) were free of disease, compared to 59% of middle aged (40–64 years) and

only a quarter (28%) of older adults. Additionally, 7% of older adults had 4 or more chronic

diseases, while only 1% of middle aged adults and essentially no young adults reported 4 or

more disease diagnoses.

PhenoAgeAccel according to disease count and age category

Fig 3 shows the correlation between Phenotypic Age and chronological age, as well as the dis-

tribution of PhenoAgeAccel—the residual of Phenotypic Age regressed on chronological age.

Phenotypic Age and chronological age are highly correlated; part of this is due to the fact that

age is in the Phenotypic Age measure. Consistent with many of the previous aging measures,

we also observed that the Phenotypic Age of young adults tended to be overestimated, while

the Phenotypic Age of older adults tended to be underestimated. Given that the Δ for Pheno-

typic Age and chronological age would be biased by age, we estimated the residual for Pheno-

typic Age, referred to as PhenoAgeAccel. A score of 0 suggests a Phenotypic Age that is

consistent with what is expected based on an individual’s chronological age, whereas a positive

value suggests that the person has clinical chemistry biomarkers that characterize an older per-

son, and a negative value suggests the person has the clinical chemistry profile of a person

younger than expected. While the measure is fairly normally distributed, most of the outliers

tend to be in the positive (older) direction.

A new aging measure captures morbidity and mortality risk
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Fig 4 shows predicted increases in PhenoAgeAccel for each disease count category, com-

pared to persons with no diagnosis of disease. Overall, participants with disease had older Phe-

notypic Age compared to those without disease. For instance, among young adults, those with

1 disease were on average 0.2 years older phenotypically than disease-free persons, and both

those with 2 diseases and those with 3 diseases were about 0.6 years older phenotypically. In

middle aged adults, compared to those who were disease-free, those with 1 disease had a Phe-

notypic Age that was on average 0.2 years older, those with 2 diseases had a Phenotypic Age

that was 0.3 years older, those with 3 diseases had a Phenotypic Age that was 0.6 years older,

and those with 4 or more diseases had a Phenotypic Age that was 0.7 years older. Finally, for

older adults, Phenotypic Age increased consistently as a function of disease count, with those

reporting 1 disease having a Phenotypic Age that was on average 0.1 years older than disease-

free participants, those with 2 diseases having a Phenotypic Age 0.2 years older, those with 3

diseases having a Phenotypic Age 0.4 years older, and those with 4 or more diseases having a

Phenotypic Age 0.6 years older.

Associations of Phenotypic Age with all-cause mortality

Table 1 shows the association between Phenotypic Age and all-cause mortality, based on propor-

tional hazard models with Gompertz distribution. In the full sample, each 1-year increase in Phe-

notypic Age (after adjusting for chronological age) increased the risk of mortality by 9% (hazard

ratio [HR] = 1.09, 95% CI = 1.08–1.10). When restricting the sample to participants who

Fig 2. Frequency of disease counts overall and by age category. The y-axis depicts the various age groups. The x-axis represents the relative

proportions of persons in each disease count category (designated by colors).

https://doi.org/10.1371/journal.pmed.1002718.g002
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survived at least 5 years after baseline, we found consistent results, such that each 1-year increase

in Phenotypic Age was associated with an 8% increase in mortality risk. When examining mor-

tality within age-stratified groups, we found that Phenotypic Age was predictive in all age groups,

such that each 1-year increase in Phenotypic Age was associated with a 13% increased mortality

Fig 3. Relationship between Phenotypic Age, chronological age, and PhenoAgeAccel. (A) As expected, Phenotypic Age was highly correlated with chronological age,

partially due to the fact that it includes chronological age. The red line depicts the expected Phenotypic Age for each chronological age, with points above the line

depicting people who were phenotypically older than expected, and points below the line depicting those who were phenotypically younger than expected. (B)

PhenoAgeAccel was fairly normally distributed, with a mean of 0 (blue line), a standard deviation of 1, and a median of −0.13.

https://doi.org/10.1371/journal.pmed.1002718.g003

Fig 4. Predicted increase in PhenoAgeAccel for each disease count by age category. The y-axis depicts the increase in PhenoAgeAccel compared to

persons who were disease-free. The x-axis shows groups categorized based on chronological age and the number of diseases each participant had. For all age

categories, we observed that PhenoAgeAccel was positive among persons who were diagnosed with 1 or more chronic diseases.

https://doi.org/10.1371/journal.pmed.1002718.g004
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risk in young adults, a 10% increase in middle aged adults, and a 8% increase in older adults.

Finally, we found that, on average, females were phenotypically younger than males (β = −1.34,

P< 0.001); therefore, we compared sex-stratified models of all-cause mortality associations and

found identical results for both sexes (HR = 1.09, 95% CI = 1.07–1.11).

As shown in Fig 5, we found that those with the highest Phenotypic Ages relative to their

chronological ages had much steeper declines in survival over the approximately 12.5 years of

follow-up. Interestingly, the high-risk groups (highest 20% of PhenoAgeAccel) appeared to

have mortality rates that were similar, or in some cases higher, than those of persons in the

low-risk groups (lowest 20% of PhenoAgeAccel) who were 10 years older chronologically. For

instance, among persons aged 50–64 years at baseline, about 25% of the high-risk group had

died after 10 years of follow-up. Conversely, among persons aged 65–74 years, only about 20%

of those in the low-risk group had died after 10 years of follow-up. For persons aged 65–74

years in the high-risk group, about half had died after 10 years, compared to only about 67% of

the low-risk group who were aged 75–84 years at baseline.

Fig 6 presents predicted median life expectancy at age 65 years by sex and the 5 quintiles of

PhenoAgeAccel. Results showed that 65-year-old females in the lowest quintile (low-risk, or

healthiest) had a predicted median life expectancy of about 87 years, while females in the high-

est quintile (high-risk, or unhealthiest) had a predicted life expectancy of just over 78 years.

Similarly, 65-year-old males in the lowest quintile had a predicted median life expectancy of

about 85 years, while males in the highest quintile had a predicted life expectancy of just under

76 years.

ROC curves (Fig 7) revealed that Phenotypic Age, with an area under the curve (AUC) of

0.88, significantly outperformed the individual clinical chemistry measures and other risk fac-

tors. The next highest performing measures were chronological age, with an AUC of 0.86; dis-

ease count, with an AUC of 0.71; and serum creatinine, with an AUC of 0.71. Four measures

had AUCs between 0.60–0.69 (red blood cell distribution width, fasting glucose, systolic blood

pressure, and albumin), 5 had AUCs between 0.50–0.59 (mean cell volume, lymphocyte per-

centage, CRP, alkaline phosphatase, and white blood cell count), and 2 had AUCs less than

0.50 (total cholesterol and BMI).

As shown in Table 2, we reexamined the ROC curves using various combinations of vari-

ables, with and without Phenotypic Age included. We found that in all cases, Phenotypic Age

Table 1. Association of Phenotypic Age with all-cause mortality and disease-specific mortality.

Mortality category Number of deaths Hazard ratio (95% CI) z-Score P value

All-cause Full sample 871 1.09 (1.08–1.10) 15.03 <0.001

Those with 5+ years of survival 389 1.08 (1.06–1.10) 7.84 <0.001

Young adults (20–39 years) 32 1.13 (1.09–1.18) 6.47 <0.001

Middle aged adults (40–64 years) 247 1.10 (1.08–1.12) 10.29 <0.001

Older adults (65–84 years) 592 1.08 (1.06–1.09) 10.40 <0.001

Disease-specific Heart disease 141 1.10 (1.07–1.13) 7.38 <0.001

Cancer 227 1.07 (1.05–1.09) 6.70 <0.001

Chronic lower respiratory disease 52 1.07 (1.04–1.11) 4.16 <0.001

Cerebrovascular disease 56 1.03 (0.98–1.09) 1.26 0.208

Diabetes 26 1.19 (1.13–1.26) 6.64 <0.001

Influenza or pneumonia 24 1.12 (1.08–1.16) 6.43 <0.001

Nephritis/nephrosis 15 1.20 (1.16–1.25) 9.67 <0.001

Results are based on parametric survival models (Gompertz distribution). All models were adjusted for chronological age and sex.

https://doi.org/10.1371/journal.pmed.1002718.t001
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contributed additional predictive power to all models. More interestingly, Phenotypic Age

alone was more predictive of 10-year mortality than a model that included chronological age,

demographics (race/ethnicity and sex), SES (education), and disease count. It was only when

chronological age, demographics, SES, disease count, and health behaviors (smoking, alcohol

intake, binge drinking, and BMI) were all included in a single model that the AUC started to

approach the AUC for Phenotypic Age alone. Nevertheless, Phenotypic Age still added sub-

stantial predictive power when included with those variables, suggesting that it captures some-

thing above and beyond what can be explained for mortality risk by demographics, SES,

disease, and health behaviors.

Associations of Phenotypic Age with disease-specific mortality

As shown in Table 1, as expected, there were large frequency differences between the disease-spe-

cific causes of death, with the numbers of deaths ranging from 15 (nephritis/nephrosis) to 227

(cancer). Nevertheless, although Phenotypic Age was trained to predict all-cause mortality (which

Fig 5. Kaplan–Meier curves for persons in the highest 20% versus the lowest 20% of PhenoAgeAccel. The y-axis indicates the survival rate, and the x-axis indicates

follow-up time (in years).

https://doi.org/10.1371/journal.pmed.1002718.g005
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was heavily skewed towards cardiovascular and cancer deaths), we found that Phenotypic Age

was predictive of disease-specific mortality including heart disease, cancer, chronic lower respira-

tory disease, diabetes, influenza/pneumonia, and nephritis/nephrosis, with exception of cerebro-

vascular disease mortality (HR = 1.03, 95% CI = 0.98–1.09). HRs were the highest for diabetes

and nephritis/nephrosis, suggesting that a 1-year increase in Phenotypic Age relative to chrono-

logical age increases the risks of death from these causes by about 20%. For the other causes

(aside from cerebrovascular disease), a 1-year increase in Phenotypic Age increased risk by

between 7% (cancer and chronic lower respiratory disease) and 12% (influenza/pneumonia).

Associations of Phenotypic Age with all-cause mortality in population

subgroups

Given the need to identify aging measures that are generalizable across various populations,

we examined all-cause mortality associations using stratified models. In general, we found

consistent associations regardless of the subgroup (Table 3). Consistent with the HR for the

overall population (Table 1) of 1.09, HRs from stratified models ranged from 1.04 (persons

with 3+ diseases) to 1.15 (underweight persons). When all variables, such as age, race/ethnicity,

sex, education, smoking, and drinking, were adjusted for, Phenotypic Age remained signifi-

cantly associated with mortality (HR = 1.06, P< 0.001).

Fig 6. Predicted median life expectancy at age 65 years by sex and the 5 quintiles for PhenoAgeAccel. Q1–Q5 indicate the 5 quintiles of PhenoAgeAccel.

Results are based on parametric survival models (Gompertz distribution) that include quintiles of PhenoAgeAccel, chronological age, and sex. Estimates

represent the predicted age by which 50% of the population is expected to have died for each sex by quintile group, assuming a baseline age of 65 years.

https://doi.org/10.1371/journal.pmed.1002718.g006
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Additionally, given the importance of identifying at-risk persons as early as possible, we

evaluated whether Phenotypic Age was associated with all-cause mortality among persons who

appeared clinically healthy (defined as having no disease and normal BMI). As shown in

Table 3, among those healthy participants (n = 1,906), we observed that a 1-year increase in

Phenotypic Age was still associated with an 8% increase in all-cause mortality risk.

Fig 7. Receiver operating characteristic curves for 10-year mortality. AUC, area under the curve; BMI, body mass

index; BP, blood pressure; SE, standard error.

https://doi.org/10.1371/journal.pmed.1002718.g007

Table 2. AUC for 10-year mortality for combinations of variables.

Variables included AUC for 10-year mortality

Without Phenotypic Age With Phenotypic Age

Age 0.855 0.879

Age, demographics, SES 0.867 0.886

Age, demographics, SES, disease count 0.870 0.887

Age, demographics, SES, disease count, and health behaviors 0.878 0.892

The AUC for Phenotypic Age alone was 0.879. Demographic variables included race/ethnicity and sex. SES refers to

education. Health behavior variables included smoking, alcohol intake, binge drinking, and BMI categories.

AUC, area under the curve; SES, socioeconomic status.

https://doi.org/10.1371/journal.pmed.1002718.t002
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Association of Phenotypic Age with all-cause mortality in oldest-old adults

Table 4 provides the mortality association in oldest-old adults. We found that regardless of

adjustment, Phenotypic Age was associated with mortality in this subpopulation, although to a

lesser degree than in the full population (unadjusted model: HR = 1.05, 95% CI = 1.01–1.08;

disease-adjusted model: HR = 1.05, 95% CI = 1.02–1.08).

Table 3. Associations between Phenotypic Age and all-cause mortality in population subgroups.

Subgroup Hazard ratio (95% CI) z-Score P value

Race/ethnicity

Non-Hispanic white 1.09 (1.08–1.11) 11.91 <0.001

Non-Hispanic black 1.07 (1.05–1.10) 6.97 <0.001

Hispanic 1.08 (1.06–1.11) 5.95 <0.001

Education

Less than HS 1.09 (1.07–1.10) 10.10 <0.001

HS/GED 1.09 (1.07–1.11) 7.56 <0.001

Some college 1.08 (1.06–1.10) 7.18 <0.001

College 1.08 (1.04–1.12) 3.93 <0.001

Smoking

Never 1.08 (1.06–1.10) 7.74 <0.001

Former 1.09 (1.07–1.09) 9.88 <0.001

Current 1.08 (1.06–1.11) 6.90 <0.001

Alcohol

Never 1.07 (1.04–1.10) 5.00 <0.001

None in past year 1.10 (1.08–1.12) 10.30 <0.001

<1 drink per month 1.06 (1.03–1.09) 4.16 <0.001

1–3 drinks per month 1.08 (1.04–1.12) 3.79 <0.001

1–3 drinks per week 1.09 (1.06–1.14) 4.83 <0.001

4+ drinks per week 1.13 (1.10–1.17) 7.64 <0.001

Binge drinking�

Yes 1.11 (1.06–1.15) 5.11 <0.001

No 1.09 (1.08–1.10) 14.43 <0.001

Disease count

0 1.08 (1.05–1.12) 4.54 <0.001

1 1.08 (1.06–1.11) 6.66 <0.001

2 1.09 (1.05–1.13) 4.77 <0.001

3+ 1.04 (1.01–1.08) 2.14 0.032

BMI category†

Underweight 1.15 (1.04–1.27) 2.79 0.005

Normal 1.07 (1.05–1.10) 5.61 <0.001

Overweight 1.10 (1.07–1.12) 9.00 <0.001

Obese 1.10 (1.08–1.12) 10.57 <0.001

Healthy‡ 1.08 (1.03–1.14) 2.94 0.003

Results are based on parametric survival models (Gompertz distribution). All models were adjusted for chronological

age and sex.

�Binge drinking was defined at having 5+ alcoholic beverages at a time at least once per month.
†Underweight was defined as BMI < 18.5 kg/m2, normal was defined as 18.5� BMI < 25.0 kg/m2, overweight was

defined as 25.0� BMI < 30.0 kg/m2, and obese was defined as BMI� 30 kg/m2.
‡Healthy participants were defined as those having no disease and normal BMI.

BMI, body mass index; GED, general educational development; HS, high school.

https://doi.org/10.1371/journal.pmed.1002718.t003
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Comparison to a previous clinical aging measure

Since another similar aging measure—Levine Biological Age (BioAge), which utilizes the Kle-

mera and Doubal algorithm—currently provides one of the most accurate mortality predictors

[13], we performed an additional analysis comparing the associations and predictions of Phe-

notypic Age to those of this measure. The results are provided in S1 Appendix, S2–S4 Tables,

and S1 and S2 Figs. Overall, our results suggested that Phenotypic Age and Levine Biological

Age were largely comparable, but Phenotypic Age performed better in the healthy subpopula-

tion (e.g., those having no disease and normal BMI).

Discussion

In a nationally representative US adult population, we showed that our new measure of aging

—Phenotypic Age—was highly predictive of mortality even after adjusting for chronological

age. Overall, we found that the mortality prediction of this measure is valid across different

stratifications, particularly by age, disease count, health behaviors, and cause of death. For

instance, Phenotypic Age is strongly associated with all-cause mortality in multiple age groups,

including young adults, middle aged adults, and older adults. Moreover, the effect sizes seem

to decrease with age, which may suggest that in younger groups, when the risk of death is low,

variations in physiological status—as captured by PhenoAgeAccel—may play a bigger role in

who lives longer. Conversely, in older adults, for whom the risk of death increases, mortality

may be more stochastic. Nevertheless, we were able to determine that this measure was not

just capturing an end-of-life or critically ill status, given that it remained predictive of mortality

after excluding participants who had not survived for at least 5 years after baseline.

The finding that Phenotypic Age was predictive of mortality among both healthy and

unhealthy populations even after adjusting for chronological age is novel. Many of the mea-

sures of aging, such as those based on deficit accumulation [14,27], include measures of mor-

bidity in their construction, and thus it is impossible to disentangle aging and disease, or

determine the usefulness of such measures in healthy populations. Belsky et al. evaluated aging

measures, including Levine Biological Age, in a cohort study of young adults who were mostly

disease-free [15,16]. However, the outcomes available were mostly restricted to functional

assessments, which may mean something different in younger adults than they do in older

populations. Conversely, in this study, we were able to show that Phenotypic Age was predic-

tive of all-cause mortality among disease-free, healthy adults across the age spectrum. This sug-

gests that Phenotypic Age is not simply a measure of disease or morbidity and instead may be

a marker that tracks the effect of aging before diseases become clinically evident. This suggests

that in a clinical setting, PhenoAgeAccel could be used to stratify risk among persons who oth-

erwise “appear” healthy.

As expected of an aging biomarker, PhenoAgeAccel also tracks multimorbidity. We

observed a strong association between the number of diseases a person reported being diag-

nosed with and his/her Phenotypic Age relative to his/her chronological age. Despite relatively

Table 4. Association between Phenotypic Age and all-cause mortality in oldest-old adults (aged 85+ years).

Model Hazard ratio (95% CI) z-Score P value

Without disease count adjustment 1.05 (1.01–1.08) 2.73 0.006

With disease count adjustment 1.05 (1.02–1.08) 3.21 0.001

Results are based on parametric survival models (Gompertz distribution). Models were not adjusted for

chronological age (but adjusted for sex), given that this age group was top-coded at age 85 years in NHANES IV.

https://doi.org/10.1371/journal.pmed.1002718.t004

A new aging measure captures morbidity and mortality risk

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002718 December 31, 2018 16 / 20

https://doi.org/10.1371/journal.pmed.1002718.t004
https://doi.org/10.1371/journal.pmed.1002718


small sample sizes, in general, PhenoAgeAccel appeared to increase as a function of disease

count, suggesting that among persons of the same age, the more coexisting diseases a person

has, the phenotypically older he/she appears—based on clinical biomarkers. Nevertheless, Phe-

noAgeAccel predicted risk of death significantly better than disease count, suggesting that it is

capturing information beyond a person’s number of coexisting conditions. This is further sup-

ported by the significant association of PhenoAgeAccel with mortality in oldest-old adults—a

population with high disease prevalence—and, more importantly, this association remained

even after adjusting for disease count.

The efficacy of Phenotypic Age for assessing mortality risk in the general population, as well

as multiple subpopulations that are heterogeneous in age and health status, provides strong evi-

dence of its suitability for applications in both the clinical setting and research in the biology of

aging. For instance, the generalizability of Phenotypic Age in assessing the risk of various aging

outcomes may facilitate identification of at-risk individuals for a number of distinct conditions.

Phenotypic Age may also be a useful marker for evaluation of interventions—particularly those

concerned with prevention via delaying disease pathogenesis [18,28–30]. Aging changes are

hypothesized to begin as early as conception [31]—preceding disease—thus interventions to

slow aging will be most effective for reducing disease incidence if started early in the life course

prior to significant accumulation of aging-related damage. Our findings suggest that Phenotypic

Age is in line with the Geroscience paradigm, which stipulates that “aging is the greatest risk fac-

tor for a majority of chronic diseases driving both morbidity and mortality” [32,33]. Therefore,

measures such as Phenotypic Age that capture pre-clinical aging as well as future morbidity/

mortality risk could facilitate evaluation of intervention efficacy, while avoiding the need for

decades of follow-up [28]. While research to develop interventions that target the aging process

is ongoing, our paper provides a potential end point for which they can be evaluated. Further,

this metric may also shed light on factors that alter the pace of aging, facilitating investigation

into potential biological mechanisms and environmental stressors.

Despite the promising applications of Phenotypic Age, one limitation of this study is the

lack of longitudinal data for either Phenotypic Age or disease incidence. As such, we were

unable to confirm whether higher PhenoAgeAccel is predictive of disease accumulation (e.g.,

among persons with 1 disease, whether PhenoAgeAccel predicts who will develop a second

comorbid condition). We were also unable to distinguish the mortality risks associated with

(1) the rate of change in Phenotypic Age (true acceleration) versus (2) the baseline level of Phe-

notypic Age relative to chronological age.

In conclusion, our study shows that after adjusting for chronological age, Phenotypic Age, a

novel clinically based measure of aging, is predictive of remaining life expectancy in a nation-

ally representative population. Importantly, its prediction is robust to population characteris-

tics—it is a reliable mortality predictor regardless of the age or health status of the population

being assessed. Further, this measure captures both all-cause and disease-specific mortality,

and is also strongly associated with the number of comorbid conditions. These findings sug-

gest that this new aging measure may serve as a useful tool to facilitate identification of at-risk

individuals and evaluation of intervention efficacy. Nevertheless, further evaluation in other

cohorts is needed.
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