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Abstract

Inferring Structural Models of Travel Behavior:
An Inverse Reinforcement Learning Approach

by

Sidney Feygin

Doctor of Philosophy in Engineering – Civil & Environmental Engineering

University of California, Berkeley

Professor Alexey Pozdnukhov, Chair

Large volumes of digital human trajectories at high spatiotemporal resolution have become
increasingly available to researchers and public entities. Derived from anonymized cellular
records and social network postings, fine-grained mobility traces present exciting opportu-
nities for longitudinal studies of daily travel and activity planning decisions. Through the
application of automated and efficient data-mining techniques, researchers in machine learn-
ing, transportation engineering, and related disciplines have been able to use these movement
microdata to model and forecast daily traffic conditions at metropolitan scales with unprece-
dented accuracy (González and Hidalgo, 2008; Lin Z. et al., 2017; Widhalm et al., 2015; Yin
M. et al., 2017).

However, state-of-the-art machine-learning and discrete-choice frameworks do not con-
sider the dynamics of daily mobility decisions at the individual level. Existing methods
also do not take into account strategic, interdependent interactions between representative
agents, complicating the cost-benefit analysis of innovative decentralized policy instruments
such as induced peer-to-peer influence. Interpretable structural models that can provide
consistent and disaggregate estimates of replanning behavior are needed in order to evaluate
the impacts of these novel regulatory measures.

Therefore, in order to take better advantage of future and emerging technologies as tools
to forge cooperative and sustainable relationships between citizens, governments, and the
built environment, this thesis develops a framework for data-driven city management that
bridges established travel demand planning practices with innovations in big data, reinforce-
ment learning, and strategic decision-making. The work described herein is comprised of
three major components. First, we develop a two-stage game theoretic model of peer pressure
to investigate feedback between social, geographic, and temporal dimensions of agent choices
in a hyper-realistic microsimulation of urban travel behavior. Second, in order to learn rep-
resentations of dynamic agent utility functions, we extend inverse reinforcement learning
(IRL) algorithms to novel activity and travel planning environments and estimate associ-
ated structural parameters. Finally, we investigate the strength of modern high-dimensional
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imitation learning techniques to train flexible and accurate models of schedule composition
and activity duration. Results from applications of the empirical methods developed herein
suggest that our contributions could effectively complement the microsimulation and discrete
choice modeling techniques used in disaggregate urban infrastructure planning frameworks
such as activity-based transportation demand models.



i

To Nahum and Anna Tsenter



ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization And Summary of Contributions . . . . . . . . . . . . . 11

2 Background and Related Work 13
2.1 Static Decision-Making Frameworks: Theory And Applications To Travel De-

mand Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Sequential Decision-Making Frameworks. . . . . . . . . . . . . . . . . . . . . 22
2.3 Social Dynamics In Transportation Choice Settings . . . . . . . . . . . . . . 27

3 Peer Pressure Enables the Actuation of Mobility Lifestyles 31
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Estimating Activity-Travel Plan Utility Functions via Inverse Reinforce-
ment Learning 59
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Accelerating IRL Via Reward Sharing And Policy Transfer . . . . . . . . . . 65
4.3 Activity-Travel Inverse Planning Problem Formulation . . . . . . . . . . . . 66
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



iii

5 Generative Models of Activity Sequences and Duration via Adversarial
Imitation Learning 77
5.1 Background And Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusion 100
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Reflection And Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 104



iv

List of Figures

1.1 Smart cities as cyberphysical social systems (Cassandras, 2016). . . . . . . . . 2
1.2 Examples of smartphone-based transportation behavior change personalized data

visualization dashboards (Jariyasunant et al., 2015; Shankari et al., 2014). . . . 6

2.1 Visualization of agent-based microsimulation of travel demand. . . . . . . . . . 20

3.1 Three Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Pressure decision-making flowcharts: agents eligibility to participate in peer pres-

sure distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Comparison of calibrated model output and MTC Travel Model I modal splits

between driving alone and socially-cooperative (i.e., transit and walking) modes.
Socially-cooperative modes also include walking to transit. MTC figures from
MTC vital signs website (Metropolitan Transportation Commision, 2018). . . . 45

3.4 Comparison of boarding and alighting counts for calibrated model output and
measurements from a single day at two example stations on Bay Area Rapid
Transit System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Agent home locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Transit Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Simplified Process Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Exploration of marginal utility of peer pressure . . . . . . . . . . . . . . . . . . 51
3.9 Ensemble average score sensitivity of agents to value of c. Scores are in utils. . . 51
3.10 Evolution of Mode Share with Peer Pressure . . . . . . . . . . . . . . . . . . . . 52
3.11 Mean monetary delay costs (gains) due to difference between business as usual

(iteration 0) and peer pressure (iteration 80) experienced by agents with homes
in TAZs as symbolized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Road links with improvements (shown in blue) and delays (shown in purple) based
on differences between experienced and free speed travel time between iterations
t = 0 (business as usual) and t = 80 (peer pressure). . . . . . . . . . . . . . . . . 55

3.13 Pressured progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.14 Pressuring progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Reinforcement Learning Schematic . . . . . . . . . . . . . . . . . . . . . . . . . 60



v

4.2 Inverse Reinforcement Learning Schematic . . . . . . . . . . . . . . . . . . . . . 62
4.3 Example dynamics describing activity-travel plan MDP for two types of activity

and two travel modes. Arrows between activities represent possible choices of
next activity or travel given the current state. Note that certain states are not
reachable (i.e., car at t = 0, work at t = 1). . . . . . . . . . . . . . . . . . . . . 67

4.4 Process component interaction for validation study (see Section 4.4). Numbers
indicate the order of execution on the respective process flow paths. . . . . . . . 69

4.5 Sample utility vs. time plots for two representative agent daily activity-travel
schedules. The first agent (top) uses public transit and arrives to work late,
incurring a penalty. The second agent (bottom) drives to and from work with a
slightly longer evening than morning commute. . . . . . . . . . . . . . . . . . . 71

4.6 Learning curve for 50 experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Combined utility for 50 experts . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.8 Rep utility for 3 experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.9 Rep utility for 3 experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.10 Learning curve for 50 experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Timed activity environment graphic specification . . . . . . . . . . . . . . . . . 84
5.2 Sample expert daily activity-travel patterns (9 trajectories) . . . . . . . . . . . 87
5.3 Simulated vs. observed activity patterns for a single agent trained using GAIL 88
5.4 Action distribution for AIRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 State distribution for AIRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Behavioral cloning learning curve smoothed over a window of 10 training epochs. 91
5.7 Simulated vs. observed activity patterns for a single agent trained using GAIL

(with behavioral cloning pretraining). . . . . . . . . . . . . . . . . . . . . . . . 91
5.8 Action distribution for AIRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 State distribution for AIRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.10 Dynamic-programming based MaxEnt IRL learning curve for estimation of du-

rative action structural equation model. . . . . . . . . . . . . . . . . . . . . . . 94
5.11 Simulated vs. observed activity patterns for a single agent trained using MaxEnt

IRL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.12 Sample expert daily activity-travel patterns for four different agents (62 trajec-

tories). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.13 Simulated vs. observed activity patterns for multiple (four) agents trained using

InfoGAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.14 Action distribution for InfoGAIL . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.15 State distribution for InfoGAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.16 Comparison of action distributions (simulated vs. observed) for different experts

as identified by latent code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.17 Comparison of state distributions (simulated vs. observed) for different experts

as identified by latent code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



vi

List of Tables

3.1 Notation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Behavioral parameters of the utility functions specification. . . . . . . . . . . . . 46
3.3 Externality internalization due to peer pressure . . . . . . . . . . . . . . . . . . 53

4.1 Performance of IRL-based activity scheduling framework in recovering MATSim
marginal utility parameters (ground truth). Note that while late departure was
part of the original utility specification, the proportion of plans that included
agents who arrived late was negligible. Since this feature was therefore relatively
uninformative, we do not report it here. . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Selection of estimated parameter values for structural equation of durative action
estimated using MaxEnt IRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



vii

Acknowledgments

It was only through the encouragement of many intelligent, caring, and patient people as
well as the generous support of forward-thinking educational institutions that I’ve completed
this dissertation. It is with great joy that I take this opportunity to express my appreciation
for the advisers, mentors, colleagues, friends, and family members who, in countless ways,
enriched my life during my graduate program at Berkeley.

First, I am grateful to Berkeley and the Civil Engineering graduate program for providing
me with the opportunity to pursue my intellectual passions. Thanks to Steve Glaser for
helping me get started on my journey and to Shelley Okimoto for making sure that I didn’t
get lost along the way.

Alexey Pozdnukhov, my primary research advisor, has stoked my curiosity in urban data
science, machine learning, and artificial intelligence. Throughout my studies, he has encour-
aged me to follow my intuition, while not letting me go too far afield. I greatly appreciate
the many opportunities he’s taken to share his considerable knowledge and experience with
me. My sincere thanks go to my other committee members, Joan Walker and John Canny
for taking time to understand and provide insightful advice on extending the relevance of
my research.

My initial research experience at Berkeley was with Raja Sengupta and Shankar Kariv
who both very much shaped my thinking about how to measure human behavior and consider
how technology, for better or worse, changes behavior. I am grateful to them for planting
seeds of inquiry that would inspire many of the topics covered in this dissertation. During
this time, I also had the privilege of working with many talented, knowledgeable, and fun
fellow students on xMobile and our spin-off emotion and decision-making project: Aluma
Dembo, Orianna DeMasi, Alex Mead, Andre Carrel, Nachi Mehta, Andrew Campbell, and
Dounan Tang.

Many thanks go to my co-authors in Alexey’s group: Madeline Sheehan, Andrew Camp-
bell, Ziheng Lin, Mogeng Yin, Sudatta Mohanty, Max Gardner, Colin Sheppard, and Dan-
qing Zhang. Thanks also to my collaborators and mentors at Lawrence Berkeley National
Laboratory: Anand Gopal, Rashid Wariach, Colin Sheppard, and I feel very fortunate to
have worked with such an inspiring and gifted group. I feel no less lucky to have had such
excellent office mates in 116 McLaughlin. Thanks to Sreeta Gorripaty, Feras El Zarawi,
Allan Ogwang, and Timothy Brathwaite for sharing in the occasional pains of learning as
well as the more frequent joys of success.

None of my achievements could have been possible without the endlessly patient and
unconditionally loving support of my family. The values of intellectual curiosity and stub-
bornness that my parents have imbued in me have helped me to persevere through the most
challenging times of this experience while expanding my inquiry well outside of traditional
thinking in my discipline. To my sister and brother: your friendship and encouragement over
the past few years have been priceless. This dissertation is dedicated to my grandparents
who first dreamed that I would one day be a scholar.



1

1

Introduction

Don’t let us forget that the causes of human actions are usually immeasurably more
complex and varied than our subsequent explanations of them.

– Fyodor Dostoevsky, The Idiot

1.1 Motivation

Addressing wicked problems in smart cities through information
architecture
The smart city paradigm envisions the seamless automation and regulation of instrumented
infrastructure using data gathered from cyber-physical systems (CPS)1 (Batty et al., 2012;
Cassandras, 2016; Kitchin, 2014). Coordinated information flows from heterogeneous data
streams will be used to power novel analytic techniques, models, and simulations, enabling
policy analysis and participatory urban planning platforms to optimize public services ac-
cording to their efficiency, equity, and contribution towards improved quality of life for all
citizens (Batty et al., 2012) (see Figure 1.1). While more robust privacy safeguards have
liberated previously siloed corporate data and efficient data-mining techniques have been
developed to collect and collate digital exhaust2, much work remains to be done in defining
the intelligence functions that will operationalize smarter cities.

Towards this end, researchers in city science and engineering disciplines have focused on
developing scalable methods to organize passively-collected geo-tagged records from social

1According to the NSF, cyber-physical systems consist of “physical and software components [that] are
deeply intertwined, each operating on different spatial and temporal scales, exhibiting multiple and distinct
behavioral modalities, and interacting with each other in a myriad of ways that change with context”(National
Science Foundation, 2018).

2Coined by Glaeser et. al., digital exhaust is defined as “the trail of data left online through everyone’s
day-to-day use of the Internet”(Glaeser, Edward L and Kominers, Scott Duke and Luca, Michael and Naik,
2018). Examples include Craigslist postings, Zillow ads, and search engine queries.



2

Figure 1.1: Smart cities as cyberphysical social systems (Cassandras, 2016).

and physical networks into actionable knowledge about spatial behavior (Song et al., 2016).
These vast streams of movement data offer unprecedented insight into the fundamental
patterns that underlie individual mobility as urban populations make their way through
complex morphologies (González and Hidalgo, 2008). Many of the resulting innovations
in urban analytics rely on state-of-the-art machine learning (ML) systems employing deep
neural networks (DNNs). An important benefit of DNNs is that they enable automated
representation learning through feature discovery, which reduces the need for domain experts
to specify explanatory variables (also known as factors of variation) in statistical models of
data-generating processes (Goodfellow et al., 2016). Meanwhile, advances in distributed
data warehousing, efficient routing, and parallel processing (collectively termed big data
technologies, (Laney, 2001)) are facilitating the rapid integration of the rich information
streams produced by these analyses into protocols that automate the management of critical
infrastructure (Lheureux et al., 2017).

In the transportation sector, digital movement traces and activity sequences derived from
anonymized call detail records (CDRs) are serving as inputs into traffic flow models based
on generative models of commuter behavior (Çolak et al., 2016; Pozdnoukhov A. et al., 2015;
Widhalm et al., 2015). For example, synthetic daily activity patterns generated using DNNs
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trained on cellular data have enabled agent-based microsimulation software to replicate traffic
volume counts across large metropolitan areas with high fidelity (Lin Z. et al., 2017; Yin
M. et al., 2017). As network carriers begin to continuously exchange cellular data with
transportation managers, short-term forecasts of traffic flows can be used to update demand
models with consistent predictions seconds to hours ahead of time (Vlahogianni et al., 2014;
Ye et al., 2012; Yin et al., 2018). Advanced traveler information services (ATIS) such as
variable message signs can then use predictions based on perturbed flow scenarios to provide
travelers with warnings of expected as well as non-recurring changes in traffic conditions such
as adverse weather or significant public events (Klein and Ben-Elia, 2016). Drivers often react
to unanticipated traffic conditions by updating their current routes, increasingly relying on
in-vehicle navigation systems or GPS-enabled smartphones to automate rerouting decisions
(Varga, 2014). The digital traces gathered from the connected devices that facilitate adaptive
routing are, in turn, powering crowd-sourced social navigation systems such as Waze and
Google Maps, leading to increasingly accurate representations of prevailing traffic conditions
as well as predictions of traffic flows (Ben-Elia and Avineri, 2015; Zheng and Van Zuylen,
2013).

Somewhat counterintuitively, better informed travelers do not necessarily imply better off
travelers. Theory suggests that only in the unrealistic case of perfect information do drivers
make more efficient use of limited-capacity road networks (Arnott et al., 1991). Experimen-
tal studies bear this theoretical development out; demonstrating that providing inaccurate,
sub-optimal, or counterfactual routing alternatives could result in individuals making deci-
sions that result in lower utility (Abdel-Aty et al., 1997; Ben-Elia and Avineri, 2015; Ben-Elia
et al., 2013; Lu et al., 2011). On the other hand, models of strategic interaction on road
networks suggest that uncoordinated reductions in information asymmetry propagated by
central controllers drive traffic flows away from system optimum (SO) and towards a more
selfish user equilibrium (UE), leading to an increase in the price of anarchy (Klein et al., 2018;
Papadimitriou, 2003; Roughgarden and Tardos, 2000; Varga, 2014, 2015). That is, if every-
one relies on traffic data from Google Maps more time could be spent by all in congestion.
Providing travel information in the interest of improving social welfare demonstrates charac-
teristics of a “wicked problem” Rittel and Webber (1973). The complex behavioral response
to information and resistance to ‘quick-fix’ technological solutions implied by the dilemma
of too much data requires a principled approach to policy analysis: one that balances both
individual desires and social good.

The prevailing behavior theoretic paradigm in neoclassical welfare economics posits that
consumers are rational actors making decisions under perfect information. Historically, most
econometric models used in justifying social policy assume that decisions are representative
of individual’s behaving in a manner consistent with their preferences (Hicks, 1939; Mas-
Colell et al., 1995). The decision to drive alone imposes certain external costs3 on society
such as congestion, emissions, noise, pollution, and accidents. The externalities arising

3An externality is defined as an experienced cost or benefit due to the failure of a rational economic
actor to take into account the consequences of their behavior on others (Rothengatter, 1994; Verhoef, 1994).
Externalities can be characterized as positive or negative depending on whether they benefit or harm parties
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from following a putatively rational preference to drive alone can be mitigated through, for
example, Pigouvian taxes4.

While Pigouvian taxes can be justified by the desire of societies to reduce external costs
due to self-regarding preferences, a complementary, individual-centric approach towards the
regulation of socially suboptimal behavior presumes that people make choices that may
not be in their self-interest. Strongly paternalistic theories of social authority propose that
individual preferences may result in choices that impose self-harm or harm others (Dhami,
2016). Under strong paternalism, this presumed misalignment of self-interest and social
values results in policies that limit individual autonomy in order to reassert perfectly rational
behavior. Thus, the compulsion to wear seatbelts, helmets for motorcyclists, drug laws,
limitation on working hours, and other non-consensual policies are often justified on the
basis that a government has a better idea of what is in the long-term best interests of its
constituents (Camerer et al., 2003).

Growing bodies of evidence from studies in experimental and behavioral economics, psy-
chology, sociology, and other disciplines have demonstrated that consistent errors in decision-
making contradict the predictions of the neoclassical model, inspiring choice theories based
on bounded rationality5 and social preferences6 (Kahneman and Tversky, 1979; Ng and Tseng,
2017; Rubinstein, 1998; Simon, 1972). Concern that bounded rationality would lend further
justification to coercive, strongly paternalistic policies has led to theorists to pursue alterna-
tive modalities of social authority such as asymmetric paternalism7 and libertatian paternal-
ism8. Surging interest and political acceptance of policies based on libertarian paternalism
in the form of nudges, have created novel opportunities for transportation planners to strate-
gically structure mobility choice architectures that actuate and stabilize socially-cooperative
attitudes (Avineri, 2012; Leonard et al., 2008; Thaler and Sunstein, 2008).
external to the action in question. Making individuals aware of the effects of their decisions on others in
order to reduce externalities is known as internalization.

4Pigouvian mechanisms are market-based approaches that attempt to internalize externalities by taxing
goods resulting in net disbenefits or subsidising goods that result in net benefits (Pigou, 1920). First-best
Pigouvian internalization mechanisms for transport involve charging individuals with the negative external
costs for which they are directly responsible. See Mas-Colell et al. (1995) for more information

5Bounded rationality implies a relaxation of expected discounted utility maximization in choice situa-
tions.

6In interdependent choice situations, individual preferences may be conditional on the outcomes of others’
decisions. These are known as social preferences.

7The propensity to make decisions that deviate from from rationality may be imperfectly distributed
through society. Thus, corrective policies would unfairly punish those who are already behaving rationally.
Asymmetric paternalism aims to reduce costs to rational actors while counteracting the mistakes of irrational
ones (Camerer et al., 2003)

8Thaler and Sunstein 2003 argue that, while there are no feasible alternatives to paternalistic forms of
corrective social authority, paternalism can be limited to non-coercive policies. Paternalistic policies that
are maximally libertarian understand that humans are (to varying extents) limited in the cognitive abilities
necessary to make optimally rational choices. In order to contend with this empirical reality, libertarian
paternalistic policies influence rather than compel rational decision-making by assisting decision-makers in
making choices that they themselves would have made had they been better informed of the consequences
of the alternatives (Thaler and Sunstein, 2003).
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However, empirically-justified behavioral models of welfare are required if regulators are
to create information architectures such that predictive travel applications can reduce con-
gestion. Unfortunately, the majority of ML-based studies of travel demand offer limited
explanatory insight into the underlying dynamics and incentives influencing decision-making
(Chen et al., 2016b). This critical limitation stems from the observation that ML and econo-
metrics methods have been specialized to solve different types of problems (Athey, 2017;
Glaeser, Edward L and Kominers, Scott Duke and Luca, Michael and Naik, 2018; Mul-
lainathan and Spiess, 2017). Whereas ML algorithms excel at pattern recognition, microe-
conometrics aims to specify structural models9 compatible with a theoretical understanding
of human behavior (Holmes and Sieg, 2014; Mullainathan and Spiess, 2017). Thus, in order
for big data to take part in achieving an inclusive and progressive vision of smart cities, there
remains a need to develop interpretable machine learning-based models of decision-making.

Scaling up individual models of adaptive transportation
decision-making
As highlighted above, travelers are becoming increasingly reliant on smartphones for an
on-demand, personalized and geo-localized stream of information and suggestions on where
to go, who to meet, and what to do. Connected devices help simplify or even solve com-
plex spatiotemporal decision-making problems, presenting a more limited, yet salient set of
choices to users. Smartphone applications developed as persuasive technologies10 have the
potential to enact nudges by, for example, inspiring awareness of the potential benefits of
alternative transportation modes, or alerting commuters to cognitive biases that may influ-
ence noncooperative travel decisions (Gaker et al., 2010; Jariyasunant et al., 2015; Shankari
et al., 2014). These applications typically work by collecting movement data from participant
smartphones, performing analytics (often on remote servers), and offering online visualiza-
tions of the participant’s short and long-term mobility behavior as well as the environmental
consequences thereof. Figure 1.2 shows two recent examples of web-based dashboards that
provide quantitative feedback to individual commuters about their mobility habits in relation
to those of their peers.

In order to validate the effect of behavioral policies designed to promote the emergence of
cooperative mobility decisions in socioeconomically diverse cities, it has become increasingly
necessary to model the preferences of individual travelers. In the past, four-step transport
demand models were trained using cross-sectional datasets11. The potential for spurious
ecological correlations due to the Yule-Simpson effect (Udny, 1903) as well as limited ap-

9i.e., functional forms that rely on consistent estimates of interpretable parameters to inform policy
counterfactuals.

10In the sense of Fogg (2002).
11Briefly, in the four-step method, trips are generated and distributed between each traffic analysis zone

in an urban area to form an origin-destination (OD) matrix. Modal splits are then computed, followed by as-
signment of aggregate flows to the physical network. See (Ortúzar and Willumsen, 2011) for a comprehensive
review of classical four-step as well as more modern transport demand models.
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(a) Tripography web interface

(b) eMission web interface

Figure 1.2: Examples of smartphone-based transportation behavior change personalized data
visualization dashboards (Jariyasunant et al., 2015; Shankari et al., 2014).

plicability in economic policy appraisal analysis has led the transportation engineering and
urban planning communities to adopt increasingly disaggregated transport demand mod-
elling techniques.

For example, state-of-the-art activity-based travel demand models (ABTDMs) (Cas-
tiglione et al., 2014; Ortúzar and Willumsen, 2011) use discrete choice analysis (DCA) in
order to predict activity sequence, frequency, timing, location, mode choice, as well as joint-
trips that involve coordination with other agents’ schedules. Discrete choice models oper-
ate at the individual level, permitting analysts to estimate utility functions from observed
decision-making as well as under counterfactual policy scenarios (Ben-Akiva and Lerman,
1985).

However, ABTDMs often include the simplifying assumption that people plan their days
from a fixed set of activity-travel patterns12. One limitation of this approach is that it does
not account for schedule adaptation due to evolving choice sets and preferences. Conse-
quently, models of individual travelers do not take into account external conditions that
impose scheduling restrictions or introduce exploration of new travel modes. These as-
sumptions were merited when computational complexity and, particularly, high resolution,
longitudinal data, was more of a constraint for individual-level mobility analyses than it is

12A daily activity-travel pattern consists of several tours, which may further be comprised of one or more
trips or, sometimes, sojourns. Discrete trip components (i.e., travel mode changes) are referred to as legs or
stages.
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today13.
Evaluating the impact of innovative policy proposals such as income-dependent road

pricing or smartphone-based social norming would be difficult given the static models of
decision-making available in modern travel demand models. Improved methodological ap-
proaches are therefore necessary in order to rationalize adaptive human mobility patterns
at scale. Thus, in accordance with the desire (expressed in the previous section) of esti-
mating interpretable machine-learning-based models of dynamic mobility, this Ph.D project
aims to improve the verisimilitude of activity-based travel demand models by inferring the
(re)scheduling preferences of individual commuters. While recent work on this topic proposes
an econometric approach using dynamic discrete choice methods (Jonsson and Karlström,
2005; Väastberg et al., 2016), we investigate the potential for state-of-the-art research in rein-
forcement learning (Sutton et al., 1999) and inverse reinforcement learning (Ng and Russell,
2000) to learn flexible models of daily activity-travel planning behavior.

The influence of social dynamics on travel mode choice
In contrast to the passive processes governing diffusion of social influence (e.g., via the
smartphone-based approaches described above) and adherence to norms, individuals can,
at some cost in utility to themselves, actively influence each others’ choices through peer
pressure (Calvó-Armengol and Jackson, 2010; Mani et al., 2013; Pentland and Reid, 2013).
In particular, when one person’s choices result in visible negative external costs to his com-
munity, his peers may persuade him to make decisions that internalize the consequences of
his actions (Lazaer and Kandel, 1992). The decision to apply pressure may be viewed as a
strategic one, since pressure is often costly, but may result in net social benefits accruing
to society. Given the diffuse global costs arising from negative urban transportation system
externalities (e.g., congestion, air pollution) as well as strong structural factors (i.e., urban
sprawl, advertising, social status) promoting automobile dependency, individuals may not
receive immediate or sufficiently strong feedback signals from sanctioning actions, resulting
in under-actuated enforcement of socially-cooperative norms (Van Vugt et al., 1996). Such
second-order free-rider effects are often observed when sanctioning is costly, since individuals
may prefer that others enforce cooperative norms (Van Vugt et al., 1996).

The need for improved strategies to internalize transport externalities stems from existing
difficulties implementing centralized reward and punishment mechanisms such as congestion
charging or GHG emissions pricing. While effective in theory, and demonstrable in simula-
tion, public support for congestion or emissions pricing remains lukewarm (Eriksson et al.,
2006; Hårsman and Quigley, 2010). Equity may also be a concern, as users with lower in-

13Note that while initial studies using CDRs had shown that human mobility is predictable with approx-
imately 93% accuracy (Eagle and Pentland, 2009; Song et al., 2010), more recent work has questioned these
findings (Smith et al., 2016), indicating that this upper bound should be revised downwards. Furthermore,
as with models built using the survey data in the above discussion, these predictions do not account for
changes in prevailing travel conditions.
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comes may feel the effects of a toll disproportionately to more affluent users14 (Viegas, 2001;
Walter and Suter, 2003). In addition, it is difficult for a central controller to allocate revenues
from GHG emissions or traffic internalization, as the social costs of these externalities may
extend well beyond the major metropolitan areas considered for policy changes (Verhoef,
1994).

According to Ostrom (1990), centralized sanctioning schemes often result in perceived
inequality, decaying collective trust and fraying the social fabric that counteracts resource
over-appropriations (Chen, 2013; Ostrom, 1990). Field and lab evidence from experimental
economics and other disciplines have demonstrated that subsidizing decentralized sanctioning
mechanisms may lead to more widespread adoption of self-sustaining cooperative behavior
(Chaudhuri, 2011). Developing targeted choice architectures or asymmetrically paternalistic
reward or punishment mechanisms that take into account the sociodemographics of spatially-
embedded urban social networks could make better use of financial capital resources available
to municipal governments by leveraging and, in effect, preserving the social capital inherent
in regulated communities.

Towards principled models of individual utility in urban
microsimulations
Cities have often been characterized as complex adaptive systems (Batty, 2007); generating
emergent global phenomena due to interactions among many local entities. More specifically,
cities are “people systems” (Jacobs, 1961), consisting of social networks of individuals, aggre-
gated into communities that co-evolve with the physical morphologies of urban infrastructure
(Heppenstall et al., 2016). Proponents of smart cities have advocated for data-driven agent-
based modelling methods to simulate the interaction of policy proposals with the complex
social factors and diverse spatial temporal scales governing urban behavioral processes (Batty
et al., 2012). The visualization and analysis of simulated scenarios could justify regulatory
interventions to stakeholders.

Simulations at micro, meso, and macro-scales have become an important component of
transport demand models (Castiglione et al., 2014). Agent-based microsimulation software
such as MATSim (Horni et al., 2016a) permit analysis of urban mobility at a highly dis-
aggregate level. The flexibility offered to demand modelers and planners by such software
has made it possible to study the interaction of social dynamics with transportation be-
havior (Dubernet and Axhausen, 2013; Hackney and Axhausen, 2006; Illenberger, 2012) as
well as changes in mobility decisions due to hypothetical policy instruments (Agarwal and
Kickhöfer, 2015a; Kaddoura et al., 2014). Simulations of cyber-social influence on travel

14While one could argue that efficient allocations would subsume poor users as well, if a driver simply
cannot afford to pay a congestion charge, she may end up having to miss out on an important activity. The
personal and social costs of this loss are difficult to quantify using current methods. Although understanding
how policy interventions affect individual time valuation is part of the problem that work in this dissertation
attempts to address, we also argue that there are more effective and equitable methods to control traffic
than congestion taxes.
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decision-making (such as the peer pressure mechanism indicaated above) may help transit
agencies understand the implications of peer-to-peer influence as a decentralized means of
encouraging socially cooperative mobility decisions.

Unfortunately, current functional representations of agent preferences in travel demand
microsimulations have little empirical basis. Thus, a “guess and check” approach is often
used to model the correspondence of synthetic agents to real-life travelers (Horni et al.,
2016a). Choice dimensions such as transport mode, departure time, and route are randomly
perturbed in agent plans, which are then simulated on a virtual representation of the physical
road network. Upon completion of a single day’s schedule, the agents are scored based on
the cumulative sum of utility experienced via participation in activities less the cumulative
sum of utility experienced during travel episodes15. This rather heuristic replanning process
bears little in common with psychologically-grounded theories of experiential learning (Erev
and Barron, 2005), particularly in the presence of exogenous information processes (Lu et al.,
2011). Novel models representing the dynamic heterogeneity of daily travel planning in urban
environments are necessary in order to better simulate innovative policy measures intended
to actuate pro-social travel decision-making.

Problem Statement and Approach
Motivated by the opportunity to combine computational methods emerging from the world
of applied machine learning and artificial intelligence with existing techniques to understand
human decision-making, this thesis explores the potential for data-driven decision-support
systems to model and predict how social interactions and temporal interdependencies induce
adaptive changes in the daily activity-travel scheduling behavior of individual agents. In
particular, we evaluate the potential for game-theoretic and reinforcement learning-based
frameworks to augment existing urban travel demand modelling and simulation practices.

The first component of this thesis explores the potential for microsimulation frameworks
to function as transportation policy laboratories. We model the tendency of transit users
to pressure solo drivers to switch away from automobile use as a many player game taking
place over social, road, and public transit supernetworks. Scaling game theoretic models to
travel demand scenarios presents the opportunity to investigate the impact of novel policy
levers that encourage pro-social and pro-environmental behavior in among urban commuters
(Klein and Ben-Elia, 2016; Klein et al., 2018).

We illustrate our peer pressure model on an agent-based microsimulation of commuters
using car and public transit in the San Francisco Bay Area in California. While experiments
focus on the effect of public transportation as an alternative mode, the game-theoretic setting
and experimental simulation framework developed as part of this work covers a wide class
of situations characterized by a high price of anarchy. Based on the outcome of agent
decisions in our synthetic social dilemma of daily mode choices, we observe how neglected

15Travel episodes are often quantified according to their disutility as a result of the foregone opportunity
cost of activity participation as well as the intrinsic unpleasantness of the travel itself, see Chapter 2,
Section 2.1 for more information on this topic.
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hidden effects on decision making can significantly affect transportation system equilibrium
conditions.

At the same time, our scenario demonstrates the conceptual limitations of extending
random utility modelling methods to account for the complexity of human travel behaviors.
The scoring functions used to evaluate daily schedules in microsimulation software such as
MATSim (Horni et al., 2016a) are heuristically parameterized and calibrated. Without a
sound theoretical basis, it is not possible to estimate utility functions for virtual agents from
data. Thus, in the second component, we address several of the limitations identified in
the first component as well as augment the travel demand forecasting tools used therein
with a scalable technique to rationalize the preferences motivating sequential choices of
activities and travel from cellular data. Towards this end, we adopt the approach of inverse
reinforcement learning (IRL).

IRL is a highly active area of current research within the artificial intelligence community,
which is specifically concerned with developing methods to estimate the parameters of utility
functions from observed sequences of choices made by an expert agent acting in a high-
dimensional, stochastic environments. These utility functions may then be used to simulate
decision-making policies in the original scenario as well as observe how perturbations in the
choice context (e.g., via regulatory interventions) lead to plan adaptations. Recent successes
in reinforcement learning using deep neural networks (Mnih et al., 2013; Silver et al., 2016)
and subsequent applications to IRL methods (Finn et al., 2016c; Wulfmeier et al., 2015,
2016) have helped to automate feature design from high-dimensional data.

We initiate our investigation into adaptive decision-making algorithms through the use of
the maximum entropy inverse reinforcement learning framework (MaxEnt IRL), as it bears
strong similarity to models of dynamic discrete choice currently used in econometric practice
(Ermon et al., 2015; Ziebart and Maas, 2008; Ziebart et al., 2009).

The experimental evaluations of the frameworks described in this thesis involve inference
of the determinants of travel behavior from passively-collected CDRs. In addition to the
previously described advantages of cellular data over traditional survey methods, the use of
CDRs provides two important advantages with respect to generalizability:

1. As the trajectories derived from cell phone records have broad spatial scope within
cities, we are able to adapt policy instruments to communities with diverse demo-
graphics and values.

2. Our methods are intended to be applicable across cities as well due to the expanding
market penetration of smartphones worldwide.
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1.2 Thesis Organization And Summary of
Contributions

Chapter 2 continues this dissertation with a review of prior art as well as preliminaries
on relevant technical topics in travel demand modelling, computational social science, and
econometric analysis. The following chapters build on this background material while en-
capsulating the distinct contributions of this research.

Chapter 3 explores the factors governing the emergence of pro-environmental behavior
in transportation systems by adapting the peer pressure game of Mani et al. (2013) to a
social dilemma of travel mode choice. We implement our game-theoretical model in the
microsimulation software, MATSim, using the daily activity plans of a social network of tens
of thousands of synthetic agents. Equilibrium between supply and demand is first calibrated
according to road network sensors. This establishes a baseline that we can use to observe
how peer pressure changes the incentive structure for decision-making. Our representation
of individual agent micro-dynamics using this principled, agent-based approach permits us
to study heterogeneous interactions between social, geographic, and temporal dimensions in
a way that may be more realistic than purely statistical methods. A discussion of the spa-
tiotemporal and social dynamics of the system both with and without pressure is provided.
In order to understand the effects of system components that do not appear to have likely
real-world analogs, we perform comprehensive sensitivity analysis. We conclude from our
results that policies subsidizing peer pressure have the potential to significantly reduce green-
house gas emissions and congestion. This further suggests that mobility trajectories inferred
from CDRs may lend greater ecological validity to decentralized, pro-environmental policy
interventions. On the other hand, our analysis indicates that variability in the marginal cost
of pressure results in complex spatial and behavioral dynamics, highlighting the importance
of explicitly modeling and estimating individual utility functions that incorporate social and
travel mode choice preferences.

Towards this end we model within-day activity and travel decision-making as an inverse
planning problem, using reinforcement learning as a model of behavior. In Chapter 4, we de-
scribe our representation of activity-travel planning as a Markov decision process, estimation
approach using the MaxEnt IRL dynamic programming algorithm, and empirical evaluation
using agent mobility traces. The work presented in this chapter treats a general absence in
the transport demand modelling literature of individualized, forward-looking models of travel
pattern selection under an estimation framework consistent with maximization of individual
utility. Our results demonstrate that our specifications of utility functions are in agreement
with theoretical motivations behind agent preferences. That is, we are able to interpret the
trade-offs in utility between being at home vs. being at work vs. participation in some other
activity. However, we find that the decision-rules induced by the utility representations
that we estimate do not generally induce behavioral dynamics that are similar to those of
actual commuters. We identify the issue stems from a somewhat unrealistic decision-making
environment, in which the agent has to make a choice of staying at her current activity or
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departing at high-frequency intervals between decision-making epochs.
In order to address this limitation and extend our work to more realistic models of travel

scheduling behavior, in Chapter 5, we expand the decision-space to allow agents to choose
activity duration in addition to timing. Doing so introduces computational complexity into
the MaxEnt IRL algorithm, making it intractable for use in large populations. We address
this deficiency by exploring the use of the probabilistic imitation learning (IL) frameworks
based on generative adversarial networks (GANs, (Goodfellow et al., 2014)). Specifically, we
use the generative adversarial imitation learning, (GAIL, (Ho and Ermon, 2016)) and infor-
mation maximizing GAIL (InfoGAIL, (Li et al., 2017)) algorithms to model and simulate
the behavior of commuters from cellular traces. We find that our proposed method is able
to reproduce activity timing, identity, and duration from a relatively small number of agent
demonstrations. We perform a quantitative comparison between IL and IRL methods ap-
plied to the simulation of agent behavior under realistic, albeit computationally demanding
travel planning environments. Compared with MaxEnt IRL, we find that the GAIL-based
algorithm recovers agent behavior more faithfully and efficiently. Generally, we find that
results demonstrate that the use of model-free IRL algorithms could permit more flexible
specification of decision-making contexts for individual travelers.

Chapter 6 summarizes the work presented herein and proposes directions for future re-
search. We conclude with final thoughts on the strengths and limitations of big data and
machine learning enabled techniques applied in smart city regulatory environments, advo-
cating a measured and interdisciplinary approach towards fusing automated reasoning with
urban policy analysis.
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2

Background and Related Work

To deal with these problems - of world population and hunger, of peace, of energy
and mineral resources, of environmental pollution, of poverty - we must broaden
and deepen our knowledge of nature’s laws, and we must broaden and deepen our
understanding of the laws of human behavior.

– Herbert Simon

Models of decision-making in this thesis consider day-to-day preferences over possible
activity-travel patterns. Central to the understanding of how individual preferences over
different schedules can be quantified, the discrete choice analysis framework represents an
important starting point for several theoretical developments and empirical methods de-
scribed in this thesis. Methods from discrete choice analysis figure into a large part of the
typical workflow of travel demand modelling and analysis. Thus, Section 2.1 situates our
work in the context of the activity-based travel demand models that comprise the current
state of practice in Transportation Engineering and Science. We also include a brief review of
relevant concepts in the appraisal of economic policy to mitigate transportation externalities.

Part of the purpose of this thesis is to connect emerging computational trends in the
Machine Learning and Computer Science disciplines with well-validated empirical models
of rational decision-making originating in the Transportation Engineering and Economics
literatures. The mathematical formalism of Markov decision processes (MDPs) underlies
two theoretical and algorithmic frameworks commonly used to model sequential decision-
making problems; one from Econometrics: dynamic discrete choice models (DDCM), and
one from artificial intelligence: inverse reinforcement learning (IRL). In addition to a brief
review of the technical aspects of DDCM and IRL, Section 2.2 reviews prior applications of
both of these frameworks models to the of the transport demand modeller’s workflow are
presented.

As indicated in the introduction, the influence of social preferences on travel comprises
an important component of this work. In Section 2.3 we summarize some of the ways in
which a person’s societal relationships may influence transportation decisions. The purpose
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of this section is not a comprehensive review of all social influences on travel behavior, but,
rather, a focus on topics relevant to this thesis.

2.1 Static Decision-Making Frameworks: Theory And
Applications To Travel Demand Modelling.

To study travel behavior at the individual level, planners typically turn to the methods of
discrete choice analysis (DCA): a statistical, econometric, and psychological framework of
decision-making. As we will see in subsequent sections, many of the assumptions under-
lying DCA in static choice contexts will be equally applicable in dynamic decision-making
environments.

Overview. The central actor in a discrete choice problem is a representative individual
(or group) who seeks to make rational choices from a finite set of mutually exclusive alter-
natives. (McFadden et al., 1973). We say that an individual is representative in the sense
that their choices are prototypical of a much larger group of people with similar socioeco-
nomic characteristics. However, in order for a decision-model to itself be representative of
the behavior of diverse populations, the data sample should ideally consist of individuals
from various socioeconomic strata. In this way, DCA permits aggregate predictions of travel
behavior to be made from data describing the outcomes of individual choice scenarios (Bow-
man, 1998; Ortúzar and Willumsen, 2011). Compared to methods that focus on directly
deriving population-level mobility statistics, disaggregate methods such as DCA can inform
the design of counterfactual policy scenarios.

Discrete choice models assume that a rational individual consumer n selects a unique
option from a mutually exclusive and exhaustive finite choice set, I of feasible options (such
as travel mode, destination, vehicle, etc.) In in accordance with her preferences and subject
to budgetary, time, and any other applicable constraints (we will further address the idea
of rational preferences below). A researcher observes the decisions of all individuals n ∈ N
and collects data on the characteristics and attributes of all alternatives, i ∈ I. Discrete or
continuous measures of input data represent the vector of potential explanatory variables,
Xin, that may enter into model specifications.

Rational choice In what way do discrete choice models assume decision-makers are ra-
tional? Neoclassical economic theory is grounded in the assumption that consumers behave
as if optimizing utility by maximizing the outcome of choice situations. Empirical research
in microeconomics quantifies preferences according to utility functions, U : I → R, i.e.,
expressing the outcomes of choice situations as real numbers. For example, consumer n is
assumed to select the i that has maximum utility Uin. Formally, for every j ∈ In, j ̸= i,
alternative i is selected if and only if Uin ≥ Ujn. For example, a person, i may say that
they prefer driving a car to work as opposed to commuting via bus or subway because they
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find that the car provides a greater sense of reliability and comfort. Consequently, for n’s
choice of commute mode, i, we write Un(i = bus) ≤ Un(j = car). Models based on rational
choice have proven to be robust across a wide variety of travel decision-making contexts
(Castiglione et al., 2014).

Probabilistic choice models While intended to be comprehensive, choice data can only
reveal so much about what factors drive individual decisions. Experimental analyses of
travel decision-making models have demonstrated a degree of randomness inconsistent with
the theoretical conditions defining utility maximization. That is, when making repeated de-
cisions in identical choice situations, decision-makers are observed to make different choices.
The inability of deterministic decision-rules to capture the empirically observed preferences
of consumers in discrete choice situations precipitated the application of probabilistic choice
theories to discrete choice analysis.

Rationality further requires that individuals posses full knowledge of the available al-
ternatives and that alternatives are considered equally such that they may be ranked in
preference consistent order (as just described). As discussed in the introduction, travelers
must often make decisions under imperfect information. The expected utility theory (EUT)
of von Neumann and Morgenstern 1953 (further developed by Luce and Raffia in 1957), ex-
tended rationality to preferences under uncertainty; that is, when only the probabilities, or,
prospects, of choice outcomes are know to the decision-maker. Accordingly, models of ratio-
nal choice based on EUT posit expected utility functions, which are computed as the product
of constant utility and outcome probabilities (Von Neumann and Morgenstern, 1953).

The process by which economic agents arrive at the requisite "universally exhaustive
and mutually exclusive set of alternatives"; however is not specified according to EUT. In
activity-travel planning, the number of possible ways that an individual can plan a day is
immense (Bowman, 1998). Experimental and behavioral economic research provides com-
pelling evidence that individuals make decisions under bounded rationality (Fredrickson and
Kahneman, 1993; Kahneman and Tversky, 1979; Simon, 1972), suggesting the salience of
choice rules inconsistent with EUT.

Models of probabilistic choice differ in how they account for the source of the stochasticity
in choice data. In the constant utility approach, the randomness is assumed to be due
to suboptimal behavior of the decision-maker. That is, a consumer makes choices that
maximize her utility with high probability, but has a non-zero probability of choosing lower
utility options. According to the alternative random utility approach, randomness in decision
outcomes is hypothesized to be attributable to components of the choice situation unobserved
by the researcher (Marschak, 1959; Thurstone, 1927).

The random utility model is applied more commonly to the travel demand modeling
scenarios we will be examining in this work, although it is possible to derive equivalent
choice models using either framework. From the random utility perspective, the modeler
hypothesizes that the net utility Uin of Ii to individual n is decomposed as the sum of a
systematic component, denoted as Vin = V (Xin; β), and a random disturbance, ϵin, measuring
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specification errors made by a researcher analyzing i’s behavior:

Uin = V (Xin; θ) + ϵin.

The vector of random parameters, θ, is unknown and must be estimated from data. Com-
bining the above structural equation with a measurement equation of choice indicators,

yin =

{
1 if Uin = maxj Ujn

0 otherwise
,

enforces the maximum likelihood criterion, while lending the desired probabilistic interpre-
tation to decision-making.

The multinomial logit (MNL) distribution is obtained by treating ϵij as independently and
identically distributed type I extreme value. The form of the systematic utility function in
the MNL model is generally linear in the unknown parameters (i.e., Vin = θ⊤Xin), resulting
in choice probability:

P (yin = 1 | Xin; θ) =
eθ

⊤Xin∑
j∈In e

θ⊤Xjn
(2.1)

An important property of MNL (as well as related choice models) is the independence
from irrelevant alternatives (IIA) condition Luce (1959). The IIA axiom stipulates that
for any two alternatives i and j, the odds that n will select i over j is constant relative
to the addition of alternatives to Cn. Specifying a model with the IIA property simplifies
the data collection task of the modeller in the sense that choice probabilities for multiple
alternatives may be estimated from binary choice experiments. However, a common criticism
of IIA is that, when many of the attributes of alternatives are identical to each other, IIA
biases the choice probabilities, resulting in inaccurate predictions of choice outcomes. This
problem is best illustrated by the classic “Red Bus/Blue Bus” (McFadden et al., 1973)
example in which an individual, when faced with the choice of commuting by red bus or
car, is observed to select both options with equal probability. Supposing that a new blue
bus alternative is added, under IIA, the probability of selecting any alternative remains
constant, (i.e., P (Cblue bus,n) = P (Cred bus,n) = P (Ccar,n) = 1/3)). However, it is more
likely that the researcher would observe equiprobable selection between car and bus modes
irrespective of the identity of the alternatives, (i.e., P (Cblue bus,n) = P (Cred bus,n) = 1/4, and
P (Ccar,n) = 1/2).

For MNL models, we see that IIA holds:

P (Cin | Cn)
P (Cjn | Cn)

= eθ (2.2)

The nested logit (NL) model better capturing hierarchical substitution patterns among
choices, wherein ϵ is correlated among mutually exclusive groups of alternatives (termed
nests). Further relaxing the IIA assumption, models such as probit trade nearly unlimited
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flexibility in the structure of the variance-covariance matrix of error terms in exchange for in-
creased computational complexity. Unobserved heterogeneity among discrete or continuous
segments of the population may be captured using mixture models (Kamakura and Russell,
1989).

Model Specification. In DCA, the attributes of alternatives and socioeconomic charac-
teristics of decision-makers enter as explanatory variables in the utility function for each
alternative. These variables are weighted by coefficients (also known as parameters) that
define how important a variable is to the net utility of an option1. Part of the modeller’s job
is to specify salient variables that are shared among alternatives and use data to estimate
the corresponding parameters. Specifications for alternatives typically include relevant pol-
icy terms, socioeconomic variables, as well as an alternative-specific constant term capturing
the value of attributes not otherwise listed in the utility function.

Estimation. Parameter estimation in discrete choice models typically involves maximizing
the likelihood function, assuming an independently and identically distributed (iid) data
sample. Details of maximum likelihood estimation (MLE) as well as alternative, sampling
based methods may be found in a standard reference such as (Ortúzar and Willumsen, 2011)
or (Train, 2003). Upon convergence, outputs from estimation results often include standard
errors for individual parameters and corresponding t-statistics. Model specifications as a
whole may be tested for goodness of fit using indicators such as rho-squared. Alternative
specifications that trade off parsimony with goodness-of-fit are typically compared with one
another.

Software Implementations. Several well-regarded libraries exist for structural estima-
tion and evaluation of discrete choice models. In Python, the pylogit library (https:
//github.com/timothyb0912/pylogit) provides a recent, efficient implementation that fo-
cuses on usability and comfortable transformation of data using the Pandas library (Brath-
waite and Walker, 2016). The venerable BioGeme (http://biogeme.epfl.ch/home.html)
in its Python and Bison implementations has been validated through a number of pub-
lished studies (Bierlaire, 2016). The mlogit package (https://cran.r-project.org/web/
packages/mlogit/index.html) for the R programming language has similar capabilities to
its Pythonic brethren in addition to excellent documentation (Croissant et al., 2012).

Scheduling decisions in activity based travel demand models.
While convenient in its simplicity, the traditional four-step approach to demand modeling
fails to incorporate the well-established basis for travel as derived demand arising from an
individual’s need to participate in a variety of activities that are not always co-located at a

1Note that discrete choice models are members of the class of generalized linear models, which permit
nonlinear terms or interactions to enter into the utility function.

https://github.com/timothyb0912/pylogit
https://github.com/timothyb0912/pylogit
http://biogeme.epfl.ch/home.html
https://cran.r-project.org/web/packages/mlogit/index.html
https://cran.r-project.org/web/packages/mlogit/index.html
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unique facility (Bowman, 1998; Chapin, 1974; Hägerstrand, 1970; Ortúzar and Willumsen,
2011). Moreover, many schedules include slack or flexibility to respond to uncertain external
conditions such as weather events, stochasticity in transportation system performance, and
unforeseen changes in the plans of friends, family, and co-workers (Bowman, 1998; Ortúzar
and Willumsen, 2011). In order to better serve the planning community as a tool for policy
analysis, modern activity-based travel demand models (ABTDMs) explicitly consider how the
interdependence of activities as well as their time and space constraints influence decision-
making at the individual level2. ABTDMs employ discrete choice models that generally obey
time and space constraints when estimated. However, as we shall see, even state-of-the-art
logit-based frameworks lack the flexibility to respond to novel policy interventions.

In ABTDMs, daily activity and travel preferences are conditional on more slowly chang-
ing lifestyle attributes such as activity priorities, jobs, habits, household roles and concomi-
tant commitments. Lifestyle factors, in turn, may affect mobility decisions such as vehicle
purchases, home or work relocation, as well as participation in employer- or government-
sponsored commuter programs, scheduling a regular carpool, and the frequency of telecom-
muting. Given the outcomes of lifestyle and mobility decision processes, on any given day,
more or less mandatory (typically known as primary) activities with fixed locations and
schedules (e.g., work and school) constrain the selection of more flexible secondary activities
(e.g., lunch and shopping), planned arrival and departure times, in addition to the mode of
travel between activities (e.g., car, subway, or bicycle) whenever alternatives beyond a single
option are accessible.

In contrast to older, trip-based models, ABTDMs integrate a sequence of trips that begin
and start at the same location into a single tour. Tours may be characterized by a central
activity or purpose. For example, a trip from home to work and back again constitutes a
single home based work tour. The spatial and temporal restrictions imposed by subdivision
of the day into tours can be used to enforce realistic vehicle use constraints (e.g., a personal
car won’t be available for a lunchtime appointment if a traveler commuted to work by tram)
as well as coordination between members of the same household. Furthermore, ABTDMs
enforce the temporal constraint that plans contain only those tours that can be completed
within the timeframe of a single day. As we will see below, temporal constraints have
important implications for the modelling of utility associated with daily activity-travel plans
as well as the value of time (VOT) derived from estimates of utility function parameters.

The day-activity schedule model system of Bowman (1998) reflects the interdependence
between spatial and temporal decisions inherent in an activity-based model. A daily activity
schedule specifies a set of tours that are bound together with an activity pattern. Individual
tour choices are themselves conditioned on the choice of activity pattern. Consequently, the
probability of schedule choice is equal to the product of the pattern probability and the
conditional probability of tour attributes given the choice of pattern for each tour in the
pattern. Patterns define the overall structure of the day according to a primary activity,

2A detailed reference for design considerations and implementation details of ABTDMs is available in
(Castiglione et al., 2014).
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whether this activity occurs at home or away, tour type for primary activity, number and
purpose of secondary tours and at-home episodes. Tour attributes include details of timing
(i.e., departure time to and from the primary activity of the tour), activity location, and
choice of travel mode.

The utility trade-offs inherent in the choice of a daily-activity schedule may be expressed
using a nested logit model wherein the probabilities of lower tier nests (e.g., time of day and
destination for car driver tours) are conditional on choices made at a higher level (e.g., choice
of day activity pattern). Preferences over patterns are dependent on both their inherent
relative utility as well as the expected maximum utility of associated tours. The logsum
term refers to the maximum expected utility of lower tier choices.

Valuation of time An individual is assumed to derive positive utility from time spent
engaging in scheduled activities. Unless she works at home, this person must also spend
some amount of time in transit between activities. Traveling to an activity; however, leaves
less time for activity participation and thus typically results in accrual of negative utility.
These simple assumptions guide development of most of the existing full day utility modeling
approaches used in ABTDM.

While time-of-day constraints such as departure time and duration have been integrated
into the day-pattern model, (Vovsha and Bradley, 2004), the expected value of time later
in the day does not influence decision-making occurring earlier in the day3. For example,
the choice of departure time for work in the morning may vary depending on expected time
spent in congestion. The actual arrival time at work will likely influence decisions made later
in the day such as when to leave work or whether to go shopping before returning home.
Understanding such trade-offs is necessary in order to forecast the effects of interventions
designed to spread out peak traffic flows. The frameworks introduced in Section 2.2 may be
applied to activity scheduling in order to estimate structural models of decision-making that
are dynamically consistent with time-of-day constraints.

Microsimulations of travel demand. State-of-the-art microsimulation software is able
to approximate the level of complexity needed to examine the policy forecasting implica-
tions of ABTDMs. By synthesizing the planned activities and transportation choices of
sociodemographically heterogeneous populations and then realizing these plans on a virtual
representation of physical road networks, microsimulations permit the resolution of feed-
back loops and spatiotemporal constraints operating between tour purposes, road network
congestion, household vehicle availability, and infrastructure levels of service. Comparisons
between business-as-usual and policy cases are typically computed using an iterative Monte
Carlo process that randomly selects a subset of plans to mutate and then execute together
with the other, unchanged plans. Outputs of microsimulations may be used to communicate
policy alternatives to stakeholders. Visualizations of congested roadways with millions of

3we say that the two measures are dynamically inconsistent
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Figure 2.1: Visualization of agent-based microsimulation of travel demand.

agents behaving independently are a particularly compelling method to communicate in-
frastructure interventions Figure 2.1. More information on the operating routines of the
simulation software MATSim (Horni et al., 2016a) will be presented in Chapter 3.

To date, the formulations of the full day utility function used to evaluate preferences
between alternative plans and drive the Monte Carlo engine in utility-based simulations like
MATSim are unable to account for within-day adaptive decision-making. The dynamic for-
mulations presented herein could be incorporated into microsimulation software, permitting
virtual agents to react realistically in response to, for example, variable road toll schemes or
weather events.

Data development and aggregation. In the past, ABTDMs have used household-level
travel surveys in order to estimate the parameters of discrete choice structural decision-
making models (Arentze et al., 2000). Collecting travel diary samples is often time-consuming
and expensive. In addition, sample sizes are often insufficient to estimate choice models of
appropriate complexity. These shortcomings make it impractical to revise ABTDMs more
often than once every five to ten years.

With improved spatial coverage, longer time horizons, and reduced turn-around time
compared with traditional survey-based methods, passively-collected cellular records and so-
cial media postings are inspiring new data-driven strategies for travel demand modellers and
urban planning practitioners to adaptively monitor, predict, and manage rapid changes in
urban physical and social ecosystems (Song et al., 2010). Recent research efforts in trans-
portation engineering have benefited from mobile technologies and data mining as accessible
tools to monitor demand fluctuations in real time (González and Hidalgo, 2008; Pozdnoukhov
and Kaiser, 2011; Widhalm et al., 2015; Zilske and Nagel, 2014).

For planning applications, incorporating CDR-derived mobility patterns into microsimu-
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lations as done in (Lin Z. et al., 2017; Yin M. et al., 2017) has a number of advantages over
mere extraction of activity locations and frequencies. These include: use of actual network
(as opposed to straight-line) distances, population scaling, privacy preservation, inference of
mode choice, and policy analysis. Ground truth validation and sampling bias continue to be
major limitations to the more extensive use of CDRs in mobility assessments (Chen et al.,
2016a).

Aggregate population assignment often involves the use of census data products mapped
to socioeconomic characteristics in order to synthesize realistic travellers. Calibration of
network flows (representing one of the outputs of microsimulations) is usually performed
using count data from sensors embedded in road infrastructure (Castiglione et al., 2014).

Cost benefit analysis in travel demand models.
Discrete choice models are often used by urban planners to aggregate preferences when
performing a cost-benefit analysis (CBA) of transportation policy and infrastructure invest-
ment alternatives. In fact, the logit assumptions of the MNL model described above make
computation of consumer surplus particularly straightforward (Train, 2003).

The typical objective of the social planner is improvement of social welfare according to
a criterion such as Kaldor-Hicks efficiency4. Faithful structural models of behavior permit
forecasts of changes due to policy measures at aggregate and disaggregate levels. They
involve the computation and analysis of elasticities5 of travel demand, a necessary quantity
for CBA. The value of travel time savings (VTTS) meanwhile captures the variation in value
of time (VOT) across alternatives.

The research presented in chapter 3 extends related research using MATSim to perform
CBA for policy incentives that internalize the environmental externalities of transportation
(Agarwal and Kickhöfer, 2015b; Axhausen, 2007; Kaddoura and Kroeger, 2015; Kickhöfer,
2016; Kickhöfer and Agarwal, 2015). In transportation settings, the scope of externalities
varies from local to global. For example, the noise pollution from a loud motorcycle engine
may irritate people in the immediate vicinity of the vehicle. In contrast, CO2 emissions from
fossil-fuel powered automobile exhaust contribute to global climate change, which has a more
diffuse social cost. External costs need not be directly monetary in nature. The increase
in travel delays caused by an additional driver on the road network affects commuters in
accordance with their value of time (Small, 2012).

As the scope and uncertainty associated with transportation externalities increases,
Pigouvian mechanisms become more politically contentious, since attributing external costs
to their sources becomes less precise. Pigouvian mechanisms also fail to take advantage

4In welfare economics, a policy achieving Pareto improvement implies that no one is worse off by a
policy and that at least one person’s welfare improves. Kaldor-Hicks efficiency, meanwhile, is a more realistic
criterion, qualifying a policy as more efficient than the status-quo as long as winners can potentially pay the
losers (Hicks, 1939; Kaldor, 1939)

5Price elasticity of demand is a measure of the change in demand for a good due to a change in price.
Elasticities are unitless values computed relative to the status-quo.
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of the social effects that often shape individual behavior and preferences (Ostrom, 1990).
Policy mechanisms involving directly charging an agent with the social costs that he was
responsible for have been evaluated by (Kaddoura et al., 2014; Kickhöfer and Nagel, 2013).
Negative perceptions of the distributive justness of a behavioral policy intervention may re-
duce its effectiveness (Kamas and Preston, 2012; Konow, 2010). The mechanism through
which this operates likely has to do with heterogenous values of time (VOT) for individual
agents. Values of time exhibit sociodemographic variation (e.g., according to income), so the
assumption of an homogeneous value of time when combining utilities across a population
segment may result in aggregation bias when computing value of travel time savings (VTTS)
(Castiglione et al., 2014; Small, 2012). However, cost-benefit analysis of policy alternatives
using a differentiated VOT may result in overweighting individuals with a high wage rate
(Kickhöfer, 2014), potentially activating tendencies towards inequality aversion, as explained
in Section 2.3, below (Kamas and Preston, 2012).

2.2 Sequential Decision-Making Frameworks.
Unexpected circumstances such as adverse weather, automobile accidents, vehicle break-
downs, or significant public events (to name a few) may cause deviations from planned
activities. More severe disturbances, such as the addition of a new rapid bus service or
a road closure due to a snowstorm may induce periods of more concentrated schedule re-
evaluation. The resulting schedule modification may be as prosaic as selecting a slightly
different route to work, or as extreme as switching to a new mode of travel altogether.

Additionally, to a varying degree, people tend to seek out opportunities that could lead
to an increase in life fulfillment. Boredom with local lunch spots may lead one to explore
unfamiliar neighborhoods. A friend’s invitation to a fitness class may inspire a new hobby
with cascading changes to one’s repertoire of schedules.

The DCA-based models described in Section 2.1 are limited to static contexts wherein
agents do not account for the impact of future opportunity costs when making near-term
decisions. That is, at the time of decision, agents do not incorporate known social, struc-
tural, and temporal constraints that may affect subsequent choices. This section describes
two interrelated frameworks of dynamic decision-making and their use in travel demand
modelling.

Markov decision processes.
Markov decision processes, as used in the dynamic choice models described in this thesis, are
defined at the level of an individual, forward-looking agent (representing a single decision-
maker or a group making joint decisions) observing a signal representing discrete states of
the world (also known as an environment or task environment in the reinforcement learning
literature). At successive time steps, the agent makes decisions (sometimes denoted actions
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in the reinforcement learning community) that change the state of the world as well as
produce a numeric reward signal.

In general, the current state is a function of the history of all past decisions. Under the
Markov assumption, it is sufficient for the state to encode all of the information necessary
for the agent to compute the next action and its consequences (i.e., the next state and the
utility of the next state)6. When the state or action space consists of multiple attributes, it
is often useful to use vector representations. While the dimensions of action spaces are often
rather small, state spaces may be large or continuous. In terms of computational complexity,
the so-called "curse of dimensionality" renders dynamic programming techniques infeasible
unless simplifying assumptions or approximations can be made (Bellman, 1954).

The goal of the agent is to, at each time step, choose actions according to a sequence
of decision rules, collectively known as a policy, that maximizes the cumulative sum of the
expected value of future rewards, referred to as returns, over a (typically finite, possibly
infinite) time horizon. This objective may be contrasted with that of an agent in a static
decision problem, i.e., to maximize the expected utility of a single choice. The dynamics
of the environment are governed by a set of transition probability functions, which give
the probability of transitioning to a new state, given the current state and action. These
dynamics may be assumed or estimated from data.

A salient decision-theoretic assumption of the normative application of MDPs is that im-
mediate gratification is preferable to the decision-making agent. In addition, the uncertainty
surrounding exogenous future events introduces an element of risk that, if uncompensated,
diminishes the value of delaying payoffs. Together, these assumptions imply that future
utility may be discounted by a factor, which is typically a constant between zero and one.

Dynamic discrete choice models
First formalized by John Rust in 1987, dynamic discrete choice models (DDCMs) address
the shortcomings of DCA to model adaptive decision-making behavior by extending random
utility theory to a dynamic environment (Rust, 1987a). In DDCMs, the state is partitioned
into two terms, one observed by both the researcher and decision-maker and another, random
term, representing components of the state known only to the agent. As with static models,
the goal is to estimate the structural parameters governing choice preferences. However,
one may also estimate transition probabilities. By assuming that the random factors are
additively separable, and conditionally independently and identically distributed over time

6Note that a full knowledge of the state by the agent is a necessary condition for rationality. If any
part of this state cannot be observed by the agent, then we term the MDP a partially observable Markov
decision process (POMDP) (Kaelbling et al., 1998). In such a situation, it is more convenient to speak
in terms of observations of the state, which result in the agent maintaining a belief state characterizing
the extent of an individual’s state of knowledge of the world. While a full treatment of the additional
complexity introduced by POMDPs is beyond the scope of this documentation, their consideration in DDCMs
and (inverse) reinforcement learning models is an active and evolving topic of research, particularly in the
reinforcement learning literature.
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Extreme Value type I, it becomes possible to estimate agent preferences from data via a
nested fixed-point maximum likelihood algorithm (Rust, 1987a).

Prior applications of DDCM to travel-activity scheduling problems

While there have been several empirical studies of DDCMs in the transportation domain
(see (Cirillo and Xu, 2011) for a review), herein we describe prior research on dynamic
decision-making in activity-travel (re)planning contexts.

In (Jonsson and Karlström, 2005), the authors use dynamic discrete choice within their
proposed SCAPES framework, which models an individual daily activity-planning process as
an MDP with transitions occurring at evenly spaced decision epochs over the course of the
day. State is represented using a vector that incorporates the current time, location (from a
finite set), car availability, escort (i.e., child drop-off) responsibility, food stock maintenance
level, and work hour maintenance level. Uncertainty in state transitions (delay) during the
morning and evening hours is used to represent congestion. The optimal policy is found
through backward induction on the value function, (only a single sweep is necessary, as state
transitions are from the current time step to a future step only). Example deterministic
choice model formulations are presented for finite and infinite planning horizon models,
where the infinite horizon problem represents a continuation between days of the optimal
policy defined on the product state space of the maintenance variables (food stock and work
flex time level). Here, the form of the reward function is treated as given and simulations of
realistic agents7 with different levels of stock variables are performed in order to determine
their effect on departure time choice. Simulations were minimally calibrated in order to
ensure that infeasible states were unreachable. (Väastberg et al., 2016) extends (Jonsson and
Karlström, 2005) by providing a sampling-based utility modeling and estimation framework.

Reinforcement learning and inverse reinforcement learning.
Reinforcement learning (RL)-based frameworks share many similarities with the DDCM for-
mulation presented above. However, as the name suggests, RL is more concerned with how
agents learn to make optimal sequential decisions in episodic and non-stationary environ-
ments. With an explicit notion of exploration, habit-formation, and goal orientation that
has both psychological and neurological antecedents, RL is a suitable general framework for
adaptive decision-making under uncertainty.

Reinforcement learning.

As in the DDCM framework, RL algorithms permit inference of sequential decision rules
as well as the reward functions motivating observed behavior. Compared to the DDCM
framework; however, RL offers a wider array of tools to deal with learning adaptive, optimal
policies in complex, uncertain environments.

7Characteristics were based on a prior congestion charging policy in Stockholm.
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In RL, the objective of an untrained agent navigating a new task environment is to learn
a sequence of actions (or distribution over sequences) leading to states that maximize the
agent’s experience of a reward signal over time. RL algorithms have been developed for
a variety of environment models, admitting both continuous and discrete representations
of states and actions. Goal-directed behavior may be modeled with the use of a terminal,
absorbing state.

The adaptive decision rule governing the agent’s behavior is known as a policy. Depending
on the nature of the learning task, policies may be deterministic or stochastic and may be
flexibly parameterized using a universal function approximator such as a neural network or
a Gaussian process.

In model-free methods, agents are not assumed to know the transition kernel. This is
in contrast to dynamic discrete choice models, which often assume that the agent has some
existing understanding of which actions lead to which outcomes. However, without initial
knowledge of the system dynamics, must traverse the environment as if blind: learning about
the environment and adjusting its policy based on the actions and resultant next states
and reward signals. In off-policy methods such as Q-learning, the agent may accumulate
experience in memory to train an optimal action-value (Q) function, which, for each state
in an environments state space, represents the action leading to states that accumulate
maximum expected rewards.

In addition to learning an optimal policy, the agent may learn a model of the environment
in what is known as model-based RL. Model-based RL permits simplified adaptation to
alternative goals. A further benefit of learning a model of the environment is that salient
changes in the system dynamics may be detected, which could also result in more rapid
convergence to a new optimal policy. In a daily activity-planning problem, for example,
an agent could memorize multiple contingency plans in order to better adapt alternative
policies conditional on new information. However, even with a model of the environment,
it is important to understand what rewards motivate agent behavior. The next subsection
deals precisely with this topic.

Inverse reinforcement learning.

Inverse reinforcement learning (IRL) is concerned with developing methods to estimate the
parameters of a reward function from a dataset of states and actions known as demonstrations
(alternatively referred to as trajectories or traces). While initially developed to train robots,
IRL research has more recently sought to harmonize the strong behavioral and neuroscientific
underpinnings of RL with structural estimation of dynamic human behavior. The following
brief overview of IRL is provided in order to inform a subsequent discussion on the merits
and limitations of the IRL methodology compared to DDCMs.

Individual demonstrations are assumed to be sequential state and action pairs, tracing
the behavior of a rational agent navigating a (potentially high-dimensional) state and action
space over a (typically finite) time horizon. The assumption of rationality does not; however,
preclude the agent from making mistakes on the way to its goal, producing a suboptimal
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trajectory as its output. More precisely, instead of using a deterministic decision rule at
each timestep, the agent may be presumed to follow a stochastic policy that prefers high net
reward trajectories over lower ones and randomly selects between trajectories with identical
rewards.

In a complimentary sense, IRL can be seen as a method to build a generative model
of MDPs in the form of a probabilistic graphical model (PGMs). In the context of goal-
oriented behavior, solutions to an MDP modeled as a PGM enable analogies to be made
between probabilistic inference and planning. Accordingly, it is possible to give behavioral
interpretations to a variety of standard PGM inference tasks. Using this perspective, we can
sample random trajectories that approximate the behavior of the agent(s) who contributed
their data to the dataset.

As is the case with policies, reward functions learned using IRL admit flexible linear
and nonlinear representation. If rewards are intended to be interpretable; however, it is
still incumbent on domain experts to specify the relevant features of the reward function for
estimation purposes.

Prior work in RL and IRL.

Existing works in the travel-demand literature have focused on applying so-called value-based
RL methods (e.g., Q learning, (Watkins, 1989)) to the activity scheduling problem (Davy,
2006; Ma and Gerber, 2016; Yang et al., 2014). Early insight into the MATSim structural
equation model was developed through Q-learning based approaches (Charypar and Nagel,
2005b; Vanhulsel et al., 2007). A more comprehensive dynamic public transit path and
activity choice model was developed in (Medhat et al., 2008) as the MILITRAS system. All
of these formulations use a predetermined reward (utility) function; a significant limitation
to the use of “forward” RL methods alone to learn decision rules for activity scheduling.

While our application of IRL to the inference of activity-travel plan scheduling is novel,
several studies have successfully adapted IRL as a tool to rationalize sequential decision-
making behavior observed in transport settings. Route choice and destination prediction
from observations of taxi trajectories was highlighted in the original presentation of maximum
entropy IRL by Ziebart and Maas (2008). In (Vogel et al., 2012), a hybrid vehicle control
policy is optimized for fuel efficiency while taking into account driver preferred routes. A
related work by Ondruska and Posner (2014) determined range maps for electric vehicles.
Demonstrating the ability of IRL methods to model boundedly rational agents, Ratliff and
Mazumdar (2017) have recovered preference for risk aversion using Uber Movement data.

The surprising success of deep reinforcement learning in replicating complex agent be-
havior from observations (Mnih et al., 2013; Silver et al., 2016) as well as studies showing
many neural correlates of RL algorithms (Niv, 2011) has spurred a great deal of research into
novel RL methods using artificial neural networks as general-purpose function approxima-
tors. Works published within the last year have investigated the emergence of cooperative
behavior using deep RL with multiple agents (Hausknecht et al., 2016; Leibo et al., 2017).
The study by Leibo et al. (2017) is notable in that it generalizes matrix games of social



27

dilemmas to more complex state and action spaces where cooperative or non-cooperative
behavior does not involve purely atomic decisions. IRL has also begun to benefit from deep
learning models, with extensions of MaxEnt IRL demonstrating efficient recovery of complex
reward models from high-dimensional data (Finn et al., 2016b; Wulfmeier et al., 2015, 2016).

The growing interest in IRL methods has inspired collaboration between Computer Sci-
ence and social science disciplines. In (Ermon et al., 2015), it is shown that under certain
conditions, the logit Dynamic Discrete Choice formulation (logit DDC) of Rust (1987b) and
Maximum Entropy IRL trajectory distributions are equivalent. The authors demonstrate
that utility functions from high-dimensional spatiotemporal data can be recovered in order
understand long-term migratory behavior. IRL has also been used in multiagent scenarios.
Game-theoretic formulations of IRL and MaxEnt IRL were proposed early on (Syed and
Schapire, 2008; Waugh et al., 2008). Inquiry into the use of inverse reinforcement learning
to infer social norms in multiagent social dilemmas has also been initiated (Ho and Ermon,
2016; Kleiman-Weiner and Tenenbaum, 2016). We take up the topic of social interactions
with transport behavior in the following section.

2.3 Social Dynamics In Transportation Choice
Settings

Our motivating application considers the setting of interdependent commute mode choice as
a social dilemma. The determinants of behavior in social dilemmas assume the existence of
altruistic agents (S. Frey and Benz, 2001). As previously discussed, modern ABTDMs using
DCA typically assume rational, expected discounted utility-maximizing travelers.

The transportation choice modelling literature has recognized the importance of relax-
ing the assumption that agents are purely self-interested (Avineri, 2012; McFadden, 2005).
Although several studies have extended discrete choice methods to model a variety of so-
cial influences on travel decisions, discrete choice models typically do not account for social
influence (Dugundji and Walker, 2005; Páez and Scott, 2006; Scott, 2004). Furthermore,
the difficulty and cost of collecting large survey samples with sufficient social connectivity
limits the statistical representativeness of DCA-based models in aggregate analyses used for
planning applications.

This section discusses the relevant typology of social preferences, game theoretic models
of decision-making in groups and communities, as well as related empirical applications and
simulation experiments.

Social preferences and social dilemmas.
One may dichotomize social preferences as reciprocal, defining an individual’s tendency to-
wards altruistic or myopic behavior, or distributive, capturing notions of equity or fairness
(Kamas and Preston, 2012). Examples of reciprocal social preferences may take the form
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of norm activation mechanisms. As conceptualized by Schwartz (1977), personal norms de-
fine feelings of moral obligation that operate within a social-psychological theory of altruism
(Bamberg and Schmidt, 2003). Norm activation mechanisms attempt to raise awareness of
the moral implications of socially uncooperative actions such as driving alone in order to
inspire incipient feelings of responsibility for ones actions. As an example of distributive
social preferences, individuals with a tendency towards inequity aversion sacrifice personal
utility to ensure that the distribution of payoffs in an interdependent choice situation is equal
(Fehr and Schmidt, 1999).

In social dilemmas, players (economic actors or agents) have a rational incentive to behave
selfishly; however, all players stand to gain if cooperation is achieved. Long-standing conflicts
between individual and collective well-being in shared resource settings have often been
framed in terms social dilemmas over common pool resources. By definition, common pool
resources are freely-available and ungoverned (Ostrom, 2010). The tragedy of the commons
may occur when a common pool resource is depleted to the extent that each‘ additional
unit of consumption reduces the value of the resource for the entire society (Hardin, 1968;
Ostrom, 1990; Ostrom and Walker, 1991).

Social dilemmas are often modeled using game-theoretic variations on Prisoner’s Dilemma
(PD), public goods games (PGG), (Dawes, 1980; Ledyard et al., 1997) and commons pool
resource (CPR) games (Ostrom, 1990). For example, in the N-player PGG, players are
allocated tokens and must secretly decide on how much to contribute towards a central pot,
which may be characterized as some "public good". Tokens in the pot are multiplied by
some factor 1 < r < N and re-distributed evenly among the players. A player’s winnings
are equal to the tokens received from re-allocation plus any remaining private tokens not
contributed. Players have a rational incentive to "free-ride", that is, contribute nothing,
while still receiving the public allocation. The Nash equilibrium of the PGG predicts zero
contributions from each player, yet, in experimental settings, the pure Nash equilibrium is
rarely seen (unless the multiplication factor is set extremely low) (Camerer and Fehr, 2004;
Leyton-Brown and Shoham, 2008).

Repeated play with many random pairings of individual agent strategies has led to
various interpretations of evolutionarily stable strategy (ESS) concepts (Smith and Price,
1973). Popularized in the iterated PD tournaments of Axelrod and Hamilton (1981), N-
player matrix games (e.g., PD, PGG, and CPR) have been frequently studied in the eco-
nomics, control, and distributed artificial intelligence communities to model interdepen-
dent appropriations of telecommunication, wildlife, and global climate resources (Diekert,
2012; Ostrom, 1999; Parkes and Ungar, ????; Saha and Sen, 2003; Turner and Turner,
1992). For example, common formulations of commute mode choice as a social dilemmas
are as an N-Person Prisoner’s Dilemma or as an N-person Chicken Dilemma Game (de-
pending on whether pro-environmental or accessibility-related values are hypothesized to
be predominate decision-making in the study population) (Van Vugt, 1996). Modern, in-
terdisciplinary extensions have explored the spatial, social, and learning dynamics of these
games to understand mechanisms and behavioral patterns guiding the evolution of coopera-
tion (Capraro, 2013; Nowak and May, 1992; Rand and Nowak, 2013). Viewing social influ-
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ence on travel choice through the lens of Behavioral Economics or game theory may serve as
a useful complement to the DCA methods used in transportation demand modeling practice
insofar as game theoretic techniques can be used to understand the factors motivating the
emergence of socially-cooperative travel decisions.

Empirical studies of social preferences on travel decision-making.
Social preferences have been shown in laboratory and field experiments to play an impor-
tant role in determining whether individuals are more likely to prefer socially-cooperative
outcomes in choice situations (S. Frey and Benz, 2001; Van Vugt, 1996). Understanding the
extent to which social preferences influence pro-environmental decisions is of particular im-
portance in the study of transportation behavior, as growing concern over the contribution
of greenhouse gas (GHG) emissions from fossil fuels to climate change and increasing ac-
cess to low-cost, alternative-energy transportation modes, has resulted in urban commuters
switching to public transit, electric vehicles, and ridesharing services at rising rates (Biel and
Thøgersen, 2007; SFCTA, 2010). For example, recent work studying automobile purchase
decisions shows to what extent adoption of a new technology (such as electric vehicles) is
driven by the spread of attitudes and behaviors (e.g., pro-environmental mode choice) as
they become social norms (Gaker et al., 2011; Nordlund and Garvill, 2003).

Individuals can shape their preference for alternatives via social comparison with their
peers, basing their own perception of an alternative on the advice or apparent well-being
others derive from outcomes in similar situations. From a psychological perspective, greater
satisfaction with the attributes of a transportation mode (e.g., reliability or travel time)
relative to members of a reference group was a significant determinant of personal utility
for commuters (Abou-Zeid and Ben-Akiva, 2011). Social comparisons in transport decision-
making can lead to diffusion of influence through social networks via so-called "mass-effects"
(Abou-Zeid et al., 2013). Imitation and innovation models in transport have often used the
famous "Bass-model" (Bass, 1969) as in (Schmöcker et al., 2014), but dynamic discrete choice
models have also been used (El Zarwi et al., 2017). As discussed in (Manski, 1993); however,
well-identified structural model specifications must account for homophily in order to avoid
endogeneity via the so-called reflection problem, a criterion that reduces the value of data
from observational studies in making causal claims.

Individuals may also learn their preferences based on repeated interaction with other
actors in their social network. Transportation researchers have increasingly explored the
impact of social preferences on human mobility behavior by developing novel big data col-
lection and analysis methods for location-based social networks (LBSN) (Axhausen, 2007;
Carrasco et al., 2008; Grabowicz et al., 2014; Verplanken et al., 2008). Reciprocal call fre-
quency data extracted from CDRs have been used to study human mobility dynamics in
social networks of large urban environments (Hidalgo and Rodriguez-Sickert, 2008; Walsh
et al., 2013). When combined with census data, LBSNs may also reveal community and
influential individuals that could be more or less susceptible to public policy mechanisms as
demonstrated, for example, in (Zhang D. et al., 2017).
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Simulating social dilemmas
Agent-based simulations of social dilemmas permit theoretical investigations into the mech-
anisms underlying such social preferences in complex adaptive systems. Sunitiyoso et al.
(2011) investigate various theories of social learning in a mode choice scenario, which bears
some similarities to our work. The authors use laboratory experiments to investigate several
alternative theories of learning from social preferences after a hypothetical employer-based
commuter reward program is implemented. The findings from the lab studies are then used
to inform large-scale simulation models under counterfactual scenarios. While the use of a
empirical data is important in validating theories of social preferences, as stated previously,
the representativeness of small sample SP studies is affected by hypothetical and ecological
biases.

Research efforts in agent-based microsimulation have explored the effect of social in-
fluence on transportation in the domain of joint decision-making (Hackney and Axhausen,
2006). Studies employing synthetic and survey-based social networks of travelers as well as
simulations of joint activity choice, vehicle sharing, and household-level coordination of plans
have been implemented (Dubernet and Axhausen, 2013; Hackney and Axhausen, 2006; Illen-
berger, 2012). While our work is similar in that we extend a microsimulation with a social
network of traveling agents, the scenario presented herein does not involve joint decision-
making by agents during the course of plan evaluation.
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3

Peer Pressure Enables the Actuation
of Mobility Lifestyles

Effective policies are those that support socially valued outcomes not only by har-
nessing selfish motives to socially valued ends, but also by evoking, cultivating, and
empowering public-spirited motives.

– Adam Smith, Theory of Moral Sentiments

In this chapter1, we present a model of strategic peer pressure behavior, which we have
adapted from the original formulation by Mani et al. (2013) to take place within the larger
context of an activity-based model of urban travel. Our focus herein is on the impact that
active interpersonal influence has on an agent’s travel mode choice in the presence of system-
wide externalities arising from the concurrent execution of all agent’s plans on the physical
network. Agents are made aware of externalities such as traffic and CO2 emissions via
penalties to the utility of their realized plans. In response, agents producing the fewest ex-
ternalities (e.g., public transit users) may choose to exert pressure on their peers (e.g., agents
who drive alone) in the hope that they will follow suit. It is expected that daily travel mode
choices will vary for individual agents as they induce and respond to peer pressure. However,
if localized changes coalesce into cascading network effects and, consequently, a sufficient re-
duction in externalities is achieved, we expect that, at system equilibrium, individual shifts
towards socially cooperative modes will be stabilized in the form of significant increases in
socially cooperative mobility lifestyles.

The software implementation of our theoretical model is built on top of the open-source
agent-based microsimulation, MATSim, which was chosen for its compatibility with behav-
ioral choice theories, modularity, and ability to handle large heterogeneous populations. The
MATSim co-evolutionary algorithm executes the scheduled activity-travel plans of (poten-
tially millions of) agents in a virtual representation of a physical road network, iteratively
improving and replanning plans of randomly selected subpopulations until stochastic user

1A version of this work was published as (Feygin, S. and Pozdnukhov, A., 2017).
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equilibrium (SUE) is achieved (Ortúzar and Willumsen, 2011). A comprehensive introduc-
tion to MATSim is available in (Horni et al., 2016b).

While well-established travel demand modelling software such as MATSim can accurately
model physical interactions between agents and transport infrastructure, researchers are
unable to specify flexible and data-driven structural models of individual decision-making
within these software. Thus, the work presented in this section illustrates the strengths of
existing behavioral microsimulation frameworks as well as their inherent limitations.

3.1 Methodology
As has already been well-established in the transportation modeling literature, the demand
for travel is derived from an agent’s need or desire to participate in activities (e.g., shopping
or working) (Bowman, 1998; Hägerstrand, 1970). Scheduling a daily activity-travel plan
requires individual agents to make several hierarchically-structured decisions that satisfy
spatiotemporal constraints, financial restrictions, professional obligations, and meet a variety
of other considerations.

Herein, however, we narrow the scope of this complex decision-making process to focus
on the impact that active interpersonal influence has on an agent’s travel mode choice in
the presence of system-wide externalities arising from the concurrent execution of all agent’s
plans on the physical network. In the present scenario, agents are made aware of externalities
such as traffic and CO2 emissions via penalties to the utility of their realized plans. In
response, agents producing the fewest externalities (e.g., public transit users) may choose to
exert pressure on their peers (e.g., agents who drive alone) in the hope that they will follow
suit. It is expected that daily travel mode choices will vary for individual agents as they
induce and respond to peer pressure. However, if localized changes coalesce into cascading
network effects and, consequently, a sufficient reduction in externalities is achieved, we expect
that, at equilibrium, individual shifts towards socially cooperative modes will be sustained
in the form of significant increases in socially cooperative mobility lifestyles.

The rest of this section is organized as follows. In subsection 3.2 we define the baseline
model as a single agent decision problem; albeit one solved simultaneously by many agents
connected via a social network. We then describe how, in the presence of multiple agents–
each attempting to make optimal decisions–we reformulate the baseline model as a two stage
game. In subsection 3.2, we incorporate the effect of peer pressure and describe its effect on
agent behavioral preferences. To aid in comprehension, subsection 3.2 presents a toy numeric
example. Finally, in subsection 3.2 we describe the details of a full-scale implementation of
our modeling framework in the multiagent travel microsimulation. A summary of notation
used in this section and throughout this article is provided as Table 3.1.
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N Set of agents
Nbr(i) Set of neighbors for agent i
X Set of accumulated plans
X Plan memory
H Plan history
xm Daily activity-travel plan m
am Vector of attributes for plan m
βm Coefficient weights
V m Systematic utility function
x Action profile (set of plans for all agents)
x−i Set of plans for all agents other than i
x∗ Equilibrium action profile
x◦ Action profile optimizing social welfare
ν Externality function

mode Mode choice indicator function
Um Utility function of plan m
∆Ui Utility gap for agent i
S Social welfare function
P Peer pressure matrix

Table 3.1: Notation summary

3.2 Baseline Model
Agent decision-making behavior may be modeled as a repeated game played sequentially on
consecutive days, t = (1, 2, . . .), by a set of agents N = {1, . . . , n}. Agents are interconnected
via a social network G = (N,E), where E ⊆ N × N . Each agent, i ∈ N , has at most K
peers in their neighborhood, Nbr(i) = {j : (i, j) ∈ E}, such that the graph representing the
social network is sparse. An ordered pair of vertices (i, j) ∈ E denotes a directed social tie
emanating from i and incident upon another agent j; conversely, the pair (j, i) ∈ E denotes
a directed edge from j to i. In our formalism, the meaning of edges starting and terminating
at the same vertex is undefined, so E =

{
(i, j) ∈ 2N | (i ̸= j)

}
. The social network structure

is assumed to be static: links between agents are fixed and link formation and destruction
processes are undefined. For simplicity, ties are assumed to be reciprocal in strength.

At the beginning of each day t each agent i ∈ N chooses a single activity-travel plan
xmit from a finite individual set of accumulated plans Xit. The selected plan xmit represents
a mental model of i’s schedule on day t, which execute in a physical model of the network
environment. More specifically, the physical model simulates the spatiotemporal dynamics of
daily interactions between agents’ vehicles on a capacity-constrained transportation network
that permits travel between activity facilities at times specified by the schedule. The full
history of an agent’s executed plans is denoted Hi.

A vector of plans, which we term an action profile xt represents the outcome of the plan
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selection process for all N agents. The action profile indicates which plans to simultaneously
execute in the physical layer. Once a plan has been executed, an agent may choose to
modify the plan based on beliefs of future system performance, which themselves are updated
conditional on information gathered from their past experiences. Due to the competition
of agents for finite road access, subway car space, and other transportation infrastructure
capacity constraints, the quality of an agent’s plan depends on the decisions x−it of the
N \ {i} other agents, which we denote −i. In order to better capture constraints on human
abilities to remember and adapt to the specifics of their daily travel experiences in a dynamic,
multi-agent urban environment, agents occasionally forget plans that they rarely execute2.
An agent i’s memory Xi, is a fixed size vector, containing tuples of previously experienced
plans, xmit ∈ Hi and a corresponding utility score Um

it . A removal rule is associated with each
Xi, which ensures that agents maintain bounds on the cardinality of Xi, i.e., |Xi| = M at
any time t.

The solution concept for the physical system is, in this case, an agent-based stochastic
user equilibrium (SUE) (Flötteröd and Kickhöfer, 2016). Let x∗ denote the steady-state
action profile that is consistently selected and executed at equilibrium. Once SUE is achieved,
for all t, each agent is assumed to select plans, xmi from a fixed memory, X∗

i , that maximize his
enjoyment of activities while minimizing other marginal private costs (MPC) associated with
scheduling choice dimensions such as travel mode, route, activity destination, departure time,
etc.. These attributes are represented as a vector, amit . Once xmit is selected and executed,
the total utility that i derives from the plan over the course of day t is partially governed by
a systematic utility function, V m

it = V (amit ) ∀m. The systematic utility of a single plan for
agent i is a linearly-weighted combination of attributes for the plan:

V m
it = βmit

⊤amit , (3.1)

where βmit is a vector that parametrizes the marginal utility of plan xmit ’s attributes. At SUE,
agents are generally fully conscious of the attributes governing their own choice of optimal
plan, although they may only be vaguely aware of the attributes governing other agents’
choice of plan.

Assuming that the random errors for agents associated with selection of plans at SUE are
independently, identically distributed type I extreme value, the plan selection probabilities in
the baseline model are assumed to be specified by a multinomial logit discrete choice model,

P (xmit | Xit) =
eµiU

m
it∑

Uk
it∈Xit

eµiU
k
it

, (3.2)

where µi is a heterogeneous scale factor measuring the agent’s preference for higher scoring
plans serving as a rationality parameter, where µ→∞ corresponds to a deterministic choice

2The agents may thus be said to possess imperfect recall due to their limited memory (Rubinstein,
1998). Relaxing the strict informational requirements of perfect recall also has beneficial computational
implications, since maintaining the experienced plan histories for all n players would be computationally
infeasible (Waugh et al., 2008).
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of the best performing plan. This assumption corresponds to the standard random utility
model (Ortúzar and Willumsen, 2011; Train, 2003).

When planning his day, an agent typically ignores the marginal external costs (MEC)
that execution of their preferred plan in the physical environment imposes on other agents.
In order to account for agent preferences in the presence of aggregate external costs, we
introduce an externality function, νit : x−it → R representing the disutility experienced by i
due to x−it. The total utility of plan selection for agent i on day t is then defined as:

Um
it (x

m
it ,x−it) := V m

it − νit (x−it) . (3.3)

In order to lighten notation, we drop further indexing on t and m. The sequential nature of
simulation and memory effects are highlighted wherever it is germane.

In the physical model, agents travel between activities by either driving a car or by us-
ing some more socially cooperative form of transportation (e.g., public transit or walking).
At equilibrium, every agent is assumed to have a preferred choice of transportation mode
corresponding to the plan xi ∈ X∗

i with maximum Ui. We denote modei(X
∗
i ) ∈ {car, sc} as

the preferred transportation mode for a single agent at SUE. A driving agent is an agent
for whom modei(X

∗
i ) = car, and, likewise, an agent that prefers to commute using socially

cooperative modes of transportation has modei(X
∗
i ) = sc. While agents may have forgotten

the details of previously selected plans when considering a change in the choice of trans-
portation mode used during daily travel, they do remember the utility associated with their
best past experience of the different modes used during plan execution3.

An agent is also assumed to be generally aware of the primary transportation mode that
his neighbors j ∈ Nbr(i) prefer to use. We define ∆Ui = ∆Ui(Xi) as the utility gap, which
expresses the difference between the utility score of i’s equilibrium plan and the utility of
the best scoring socially cooperative (i.e., transit or walking) plan in i’s memory, which we
denote

x◦
i,sc := arg max

(xi)∈{x|xi∈X∗
i ;mode(xi)=sc}

Ui(xi,x−i).

The social welfare is defined as the sum of utilities experienced by all agents following
plan execution:

S (x) :=
∑
i∈N

Ui (xi,x−i) . (3.4)

The action profile optimizing social welfare is denoted x◦. In the presence of externalities,
we know that the social welfare at the equilibrium action profile, x∗ is suboptimal, since
marginal social costs (defined as the sum of MECs and MPCs) no longer reflect an agent’s
willingness to pay (Verhoef, 1994). Therefore, at equilibrium S(x∗) < S(x◦).

3This specification is made in accordance with empirical research in behavioral economics on peak-end
bias (Carrel et al., 2013; Fredrickson and Kahneman, 1993)
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Modeling peer pressure
By allowing agents to engage in peer pressure, the social costs implicit in the production of
externalities can be internalized, bringing the social welfare of our model of the transporta-
tion system economy closer to the optimal value. We introduce peer pressure into our model
as follows.

Let the matrix P ∈ Rn×n
+ denote the peer pressure profile, consisting of elements Pij

indicating the pressure that i exerts on peer j. The transpose of this matrix, P⊤, consists
of elements Pji, representing agent j’s pressure on i. If j ̸∈ Nbr(i), then Pij = 0.

The utility function with peer pressure is

Ui (xi,x−i,P ) = Vi (xi)− νit (x−it)−
∑

j∈Nbr(i)

Pji − c
∑

j∈Nbr(i)

Pij, (3.5)

where the third term is the cost applied if i is pressured, while the fourth term is applied
to the utility function as a sum of the costs accrued for i pressuring other eligible peers in
his immediate social network. The marginal cost of peer pressure for each agent is c utils
per unit of pressure. This parameter is indicative of the ease or difficulty with which one
agent may pressure another agent. While in this study c is specified to be constant and
homogeneous across the population, an agent-specific marginal cost of peer pressure can be
considered in future work.

Agent-specific pressure selection strategies initially specify which agents may pressure
each other. These strategies may be composed. We specify two such strategies below,
followed by a detailed presentation of the peer pressure profile selection algorithms in Sec-
tion 3.2.

For the first strategy, we specify that an agent who uses public transit or some other
socially cooperative mode can pressure any peer in her neighborhood who drives. For any
agent i whose equilibrium mode choice, modei(X

∗
i ) = car, any peer j ∈ {k ∈ Nbr(i) |

modek(x
∗
k) = sc} is permitted to pressure i to consider using an alternative to driving.

Thus, in this strategy, peer pressure on i can only take effect if∑
j∈Nbr(i)

Pji ≥ ∆Ui = Ui(x
∗
i ,x−i)− Ui(x

◦
i,sc,x−i). (3.6)

Implicit in this criterion is a measure of accessibility to driving alternatives. Thus, people
who do not retain a memory of public transit use at SUE would automatically be excluded
from being pressured, as it would be too costly for any peer or group of peers to pressure
them.

As a further strategy, we specify that an agent i who drives and has a utility gap greater
than any agent j ∈ {k ∈ Nbr(i) | modek(x

∗
k) = car}’s utility gap, ∆Ui > ∆Uj, can pressure

j. This predicate measures the extent to which captive drivers would pressure other drivers
with access to alternative commute modes to shift off driving in order to potentially benefit
from reduced congestion.
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Figure 3.1: Example social network of three agents i, j and k. Agents i and k currently
commute via public transit and wish to pressure j, who currently drives to work, to also
take public transit.

Example
We now present a numeric example that walks the reader through the computations per-
formed during a round of the peer pressure game set in a fictitious travel environment. For
simplicity, we will assume that units of utility are represented as utils. Consider a ‘society’
of three roommates (Figure 3.1), represented by agent i, j, and k, who commute to the
same job (i.e., they all have the same home and work facility locations). We assume that
each person derives an identical total utility of 100 utils from their daily activity schedule.
Agents i and k typically commute via a municipal metro rail line. These two agents suffer
from the greenhouse gas contributions of a mutual friend, agent j, who prefers driving an
SUV to work over taking the train by ∆Uj(x0) = 20 utils. Agent j’s action results in a
14 utils disutility due to CO2 emissions, which is felt by i and k equally. As public transit
riders, i and k do not produce externality through their respective actions. The net social
welfare in this situation is S(x) = 100 + 86 + 86 = 272 utils.

Now, suppose that agents i and k both pressure agent j to leave his SUV in his garage and
join them on the train such that Pij + Pkj ≥ ∆Uj = 20 utils, as indicated in Equation (3.6).
In this scenario agent i does not know that agent k will pressure j and vice-versa such that
each applies 20 utils of pressure for a total of 40 utils of pressure applied to j. Assuming
that the marginal cost of pressure, c is 0.05 utils/unit pressure, the cost to pressure agent j
for agents i and k is c∆Uj = 1 utils each. Agent j then avoids the inconvenience of the 40
utils of peer pressure that he would otherwise lose by indicating that he will join agents i
and k on the train in the near future. The initial cost of pressure together with j’s disutility
for taking the train amounts to a social welfare loss of 22 utils, which is balanced by a social
welfare improvement of 28 utils due to reduced externalities, resulting in a net social welfare
gain of 6 utils.
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Implementation overview
In order to implement the peer pressure game in a setting that allows for its economic evalu-
ation in large, disaggregated urban transportation environments, we extend an existing open
source activity-based travel microsimulation platform, MATSim (Horni et al., 2016b). This
subsection briefly outlines the simulation runtime cycle, the operation of the congestion and
emission externality modules, as well as the implementation of the peer pressure extension
developed for this work. Scenario evaluation with peer pressure differs significantly from the
state-of-the-art use of MATSim-based tools and is described below in detail.

Simulation platform.

The core MATSim system is an open source development effort that facilitates demand
modeling, dynamic traffic assignment, mobility simulation, and analysis. Several extension
modules provide additional functionality applicable to modeling a variety of policy analysis
scenarios. The extant MATSim API, employed extensions, and software developed as part of
the current study are written in Java with associated analysis scripts developed in Python.
We have developed our tool as an open-source module extending the main MATSim library
(GPL Version 3)4

Every scenario simulation execution proceeds in an iterative manner according to the
following four steps:

1. Preparation. During a single iteration, a simulated population of agents execute
plans representing the typical daily home-based work tours. Plan elements consist of
activities alternating with travel legs that describe the routes taken between activities.
The activities have attributes of type (e.g., home, work, leisure, etc.), location, start
time, and duration, while the trip legs have attributes of mode, departure time, dis-
tance, as well as elements describing the traversal of routes through the network (e.g.,
links used, type of links, and total distance traveled). If a population’s initial plans
are not available with fully detailed routes, one of the several available shortest path
algorithms is used to calculate initial idealized daily trajectories.

2. Mobility Simulation. Following initial route assignment, the daily plans of the agent
population are executed in the physical layer, which is represented by the links and
nodes comprising the virtual road network topology. Public transit supply for modes
such as subway or train are modeled on links and nodes that route vehicles separately
from the road network (Rieser and Nagel, 2010), while buses share the links with
general traffic unless a dedicated transit lane is available.

3. Scoring. Agents have a configurable memory that permits them to choose between
previously executed plans. In order for agents to simulate decision-making that models

4Code to reproduce the simulation and analysis presented in this study is available at
http://github.com/sfwatergit/peer_pressure_sim.

https://github.com/sfwatergit/peer_pressure_sim
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human behavior, an econometric utility function assigns a numeric score to executed
plans (Charypar and Nagel, 2005a; Horni et al., 2016b). Specifically, for agent i a plan,
xmi , once executed, is assigned a score Um

i , according to the time spent performing
activities and the time spent traveling to and from activities:

Um
i =

A−1∑
q=0

Uperf,q +
A−1∑
q=0

Utrav,mode(q), (3.7)

where A is the number of activities and trip q follows activity q, as described in (Horni
et al., 2016b). In order to represent a typical 24-hour period, the first and last activity
are considered in the same iteration such that there are the same number of trips and
activities.
The utility earned due to time spent engaging in activities, Uact,q, is primarily a function
of the time spent performing the activity τact,q:

Uact,q (τact,q) = βactτtyp,q ln

(
τact,q

τ0,q

)
, (3.8)

where βact denotes the marginal utility of performing an activity for its typical duration,
τtyp. At equilibrium, βact is the same for all activities and is equivalent in magnitude
to the penalty applied to being late to an activity. The parameter τ0,q scales the
actual time spent performing the activity τact,q by the activity’s priority and minimum
duration, and may be ignored as long as dropping activities is not permitted.
Agents also receive a penalty for arriving late at an activity according to

Ulate,q =

{
βlate(tstart,q − tlatest ar,q) if tstart,q > tlatest ar,

0 otherwise

where tstart,q specifies the start time of activity q, tlatest ar specifies the latest possible
time that an agent can arrive at activity q.
Travel in the MATSim physical environment is associated with a utility penalty, which
varies according to trip cost, the mode-specific perception of trip travel time, and,
potentially, several other factors. To simplify model calibration, we include only the
mode-specific cost associated with travel time in the structural equations. The drive-
alone mode-related parameters are subscripted with car and the alternative public
transit mode is subscripted with pt. While walk-to-transit and walking modes are
included in the simulation, they are not detailed here to simplify the notation.
Travel-related utility scores are computed according to the following expressions

Ucar,q = βτ,carτq,car (3.9)
Upt,q = β0,pt + βτ,ptτq,pt, (3.10)
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which are linear in the alternative-specific time parameters, βτ,mode(q). In accordance
with random utility theory, the β0 terms are alternative-specific constants (ASCs)
that characterize other factors that systematically predispose individuals to choose
one alternative over another (Ben-Akiva and Lerman, 1985; Train, 2003).

4. Replanning. Following scoring, the most recently executed plan is stored with a
configurable number M of previously executed plans, Xi in system memory. At the
beginning of the subsequent iteration, agents choose a new plan based on a configurable
selection module and an optional route modification module. In this study, innovative
modification strategies include: changing the departure time, link sequence (route),
and choice of transit-related modes including legs performed by walking. While the
default configuration specifies that agents select their current best score for modifi-
cation, we opt to use a probabilistic sampling strategy to achieve a more realistic
distribution of agent plans for selection, as given by Equation 3.2. The plan with
the worst score is then dropped from the agent’s memory, and the modified plans are
simulated again.
Steps 2-4 are repeated until a stochastic user equilibrium is reached. Please note that
the iterative cycle of replanning should not be interpreted as representing a day-to-day
dynamic model of human learning behavior. It may only be assumed that consecutive
iterations bring the system closer to an equilibrium point. For further discussion on
this topic, see (Horni et al., 2016b).

Computing and applying externalities.

Once a baseline calibrated scenario has been derived, the travel behavior of the study pop-
ulation is permitted to evolve in the presence of externalities. That is, the simulation steps
described in Section 3.2 are repeated except that agents are made aware of the effects of
congestion and emissions due to the decision of other agents to drive. Herein, as described in
Section 3.2, we assume external costs are globally distributed, and are consequently applied
as in Equation (3.3).

The following paragraphs briefly review design choices used in this study to simulate
agent air emission and congestion externalities. The adopted methodology is derived from
(Agarwal and Kickhöfer, 2015b) that studies the shift from private to public transit due to
emissions and congestion pricing.

Emissions. Costs associated with air pollution due to emission of combustion gases during
driving activities are computed following the work of (Kickhöfer and Nagel, 2013). Emissions
calculations are performed on a link-by-link basis, tying attributes of a traveler’s vehicle and
road conditions to air pollution parameters. Since road type and quality affect pollutant
levels, initial routing computations are modified to anticipate this additional cost, such that
agents may choose to travel on roads that avoid creating excess emissions.
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Herein, as opposed to earlier work using this module, we consider CO2 production only.
This study investigates the effects of externalities that result in a more diffuse social cost,
and, therefore, are more difficult to internalize through regulation. Other automobile ex-
haust constituents do, indeed, result in transportation externalities, however we restrict the
computations to arguably the most representative one for simplicity. Accordingly, we focus
on the global warming potential (GWP) of CO2, and do not simulate the damages due to
other emissions.

Congestion. Road network congestion is computed as in (Kaddoura et al., 2014) by tak-
ing advantage of the queue model that underlies the traffic flow simulation. In free flow
conditions, agents take τfree to traverse a link. A maximum of cflow agents may leave a link
in a given time span. Any link traversal by an agent prevents following agents from access-
ing the next link until 1

cflow
has passed, resulting in delays, dflow. Spill-back delays (dstorage)

may also arise if the storage capacity cstorage of a link, measured in number of vehicles, is
exceeded.

Delays are measured in seconds and computed as the difference between the free speed
travel time (τfree) and the travel time experienced by an agent (τexp):

dtot = τfree − τact = dstorage + dflow (3.11)

During the replanning stage, agents take into account delays due to congestion accrued in
the previous iteration, potentially motivating less congested routes or mode shift.

Simulating peer pressure

The eligibility of agents to participate in the peer pressure distribution stage is described in
the methodology section 3.2. The algorithm is outlined in Algorithm 1 with the conditions
defining an agent’s eligibility to pressure and be pressured provided, for clarity, as flowcharts
in Figure 3.2. In order to simulate the effect of peer pressure, we modify the mode change
strategy to potentially reroute the just completed plan for public transit. Once members of
a driving agent’s social network sufficiently pressure him to consider an alternative mode,
their most recently executed plan is then flagged. Flags expire after a number of iterations
equal to the size of the agent’s memory. Thus, if, through the plans sampling process, an
agent does not choose the flagged plan by the expiration iteration, the plan will no longer
be eligible for rerouting until the agent is pressured again. The expiration condition models
the idea that the memory of social influence is ephemeral, and that not every attempt of
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pressure will be successful.
Algorithm 1: Peer Pressure Algorithm

for i ∈ G do
if isEligibleToBePressured(i) then
P_total[i]← 0
for j ∈ Nbr(i) do

if isEligibleToPressure(j) then
P_total[i]← P_total[i] +∆Ui

end if
end for
if P_total[i] ≥ ∆Ui then
Ui ← Ui −∆Ui
flag(x∗

i )
end if
for j ∈ Nbr(i) do

if isEligibleToPressure(j) then
Uj ← Uj − c∆Ui

end if
end for

end if
end for

3.3 Case Study
In order to verify the functionality of the peer pressure algorithm on a large scale travel
demand scenario, we have applied the framework described in Section 3.1 to a simulation of
San Francisco Bay Area daily commute traffic.

Simulation data sources
Network

The road network, consisting of 96,000 links, and representing freeways, state routes, all
major arterials, and countryside roads, was generated from Open Street Map data.

We use a fully integrated public transit routing module (Rieser and Nagel, 2010), per-
mitting a highly detailed simulation of Bay Area public transit throughout the course of
the day. Physical track and scheduling data for the public transit system are derived from
General Transit Feed Service (GTFS) data and include 9 major transit agencies operating
light rail, metro and bus routes. The initial modal split has been calibrated to passen-
ger counts obtained from the regional transportation planning authorities, the Metropolitan
Transportation Commission. See Figure 3.6 for a map of the transit lines used in this study.
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(a) Agent eligibility to be pressured (b) Agent eligibility to apply pressure

Figure 3.2: Pressure decision-making flowcharts: agents eligibility to participate in peer
pressure distribution.

Initial Plans.

The population of the study area in 2015 was approximately 7.5 million people. Of the
estimated 3.4 million commuters, 75% drive alone, while 11.5% take public transit and
3.5% walk to work. A base population of synthetic commuters, comprising 50% of the Bay
Area was adopted from the Bay Area Travel Model One of the Metropolitan Transportation
Commission (MTC), and adjusted with anonymized cell phone data logs. Information on the
MTC model may be found in the 2012 report on data development (MTC, 2012). Cell phone
data records (CDRs) are collected and managed by a major national carrier were recorded
at the spatial resolution of cell phone towers. Home and work locations generated from these
CDRs are upscaled to match the marginals of the population census, and then sampled to
produce a desired number of agents in the synthetic population. A complete methodology of
generating activity-based travel demand models from cellular data is described in (Yin M.
et al., 2017).

Due to the computational requirements of composing the emission, congestion, and the
detailed simulation of public transit, as well as the social network and peer pressure simu-
lation developed as part of this project, a 1% sample of the full synthetic population was
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used. The spatial distribution of the synthetic agents home locations split by the commute
mode of the initial plan set is illustrated in Figure 3.5. It is instructive to compare modal
split to the layout of the transit network in Figure 3.6.

Recognizing the limitations of using a small sample, in practice one has to face heavy
computational loads of simulating detailed behaviors of 50,000 interconnected agents. As
a result, network flow capacities for network links are scaled down to 1%. Following rec-
ommendations found in (Kickhöfer and Agarwal, 2015), storage capacities are scaled to 3%
in order to achieve realistic congestion patterns. Rescaling did not substantially affect the
attainment of key validation metrics. Particularly challenging for this implementation was
the attainment of modal splits, since road network flow capacity does not scale linearly with
transit network flows such as those used by Bay Area Rapid Transit (BART). It was neces-
sary to tune these by hand; however a comparison to available data sources indicates that
we were successful in this endeavor. To wit, see Figure 3.3 and Figure 3.4 for, respectively,
simulated vs. MTC travel model modal split and example BART simulated vs. actual hourly
ridership visualizations.

Social network generation

No individual level personally identifiable information was used in the study. A synthetic
social network for the population of 50,000 agents was generated. An algorithm used to
generate ties in the network respects core statistics of the network graph (node degree dis-
tribution, clustering coefficient), as well as the household composition, the marginals of the
socio-demographic attributes (age, gender, income) of nodes, and the macro-level spatial
patterns of the network community structure. It involves using probabilistic Bayesian net-
works (Sun and Erath, 2015) to match the conditional distributions of the socio-economic
parameters describing the households composition, and the exponential random graph mod-
els (ERGM) (Schweinberger and Handcock, 2015) to fit the identified network statistics and
community structure parameters. The complete methodology of simulating a required social
network was adopted from the algorithms of Zhang D. et al. (2017).

Behavioral parameters

Behavioral parameters used in the simulation and provided in Table 3.2 generally match the
accepted specifications described in (Horni et al., 2016b), Chapter 3, except for the values
specific to the region in question. Particularly, the alternative specific constants for public
transit were adapted to match the observed volumetric passenger counts. Additionally, the
marginal utility of money, βm was derived from survey data used for the San Francisco
Mobility, Access, and Pricing Study (SFCTA, 2010).

Emissions module parameters

The existing emission extension developed in (Kickhöfer and Agarwal, 2015) adheres to
European standards, practices, and driving conditions. In order to better align with the
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(a) Drive alone, simulated (left) and Transit+Walk, simulated (right)

(b) Drive alone, MTC (left) and Transit+Walk, MTC (right)

Figure 3.3: Comparison of calibrated model output and MTC Travel Model I modal splits
between driving alone and socially-cooperative (i.e., transit and walking) modes. Socially-
cooperative modes also include walking to transit. MTC figures from MTC vital signs website
(Metropolitan Transportation Commision, 2018).
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(a) Actual vs. simulated boarding (top) and
alighting (bottom) counts at MacArthur BART
Station, Oakland, California.

(b) Actual vs. simulated boarding (top) and
alighting (bottom) counts at 16th and Mission
BART Station, San Francisco, California.

Figure 3.4: Comparison of boarding and alighting counts for calibrated model output and
measurements from a single day at two example stations on Bay Area Rapid Transit System.

Parameter Description Value Unit
βperf Marginal utility of performing activity 1.205 util · hr−1

βlate Utility of late arrival -18 util · hr−1

βτ,car Marginal utility of time (car) -0.134 util · hr−1

βτ,pt Marginal utility of time (public transit) -0.16 util · hr−1

βτ,walk Marginal utility of time (walking) -0.29 util · hr−1

βwait,pt Marginal utility of waiting for public transit -0.044 util · hr−1

βls Marginal utility of line switch -0.045 util
β0,pt Alternative specific constant (public transit) 3 util
β0,walk Alternative specific constant (walking) -1 util
βm Marginal utility of money 0.083 util · $−1

Table 3.2: Behavioral parameters of the utility functions specification.
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Figure 3.5: Home locations, by commute mode, of the baseline agent population: percent
counts of driving agents (left) and socially cooperative modes (right).

local physical and regulatory transportation environment, the module’s source code was
altered to be compliant with USEPA and (when available) California Air Resource Board
(CARB) emission models. Emission factors used in simulation calculations are derived from
the CARB’s EMFAC2014-LDA passenger vehicle model aggregates for the San Francisco
Bay Area Air Quality Basin (California Air Resources Board, 2014). Emission monetary
costs are computed using the United States Environmental Protection Agency’s Social Cost
of CO2 statistics (IAWG, 2015). These are provided at variable discount rates (1, 3, and 5%).
We use the moderate $36/tonne CO2 derived using the 3% discount rate as a reasonably
conservative measure of the social cost of carbon, noting that a value of as high as $120/tonne
may be used in particularly risk averse scenarios. As in (Kickhöfer and Nagel, 2013), we
assume that public transit use has negligible emissions in comparison to automobile travel.

Simulation experiments
The workflow for the simulation experiments performed in this study are presented in Fig-
ure 3.7. Individual steps are discussed below.
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Figure 3.6: Transit lines used in simulation

Baseline scenario

A calibrated base case is first established for policy comparison purposes. To derive a
baseline scenario, agents are permitted to adaptively optimize their plans using the MATSim
co-evolutionary algorithm described in Section 3.2. Prior to each iteration 20% of agents
selected at random will have either their selected plan rerouted, trip departure/arrival times
modified, or the travel mode for their daily commute will be shifted from private to public
transportation. The simulation continues until the population ensemble average scores reach
a stable point, which we found was approximately 200 iterations. Simulated volumetric flows
on road network links are compared to data from the California DOT freeway Performance
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Figure 3.7: Peer pressure simulation stages

Management System (PeMS) as described in (Yin M. et al., 2017). Simulated transit stop
entry and exit data from simulated BART agents is also compared to ground truth hourly
counts aggregated during October 2013.

Externalities equilibration

After a stable, calibrated baseline has been reached, the set of plans in agent memory are
carried forward to the next part of the simulation. Agents are now allowed to modify and
reroute their plans in the presence of system-wide externalities, as described in Section 3.2.
We find that the simulation reaches a fixed point after an additional 100 iterations.

We calibrate the congestion and emission externalities using linear scaling factors of
10−5 and 10−4 respectively so that they contribute in the order of 10% of the typical agent
score. While quantifying the influence of globally-distributed negative externalities as well as
environmental awareness on individual decision making is largely an open research problem,
in the present we follow (Agarwal and Kickhöfer, 2015b) to set this order of magnitude.

The output plan data from the final iteration of the base model with externalities are
used in welfare comparisons.
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Peer pressure scenario

In the peer pressure experiments, utility is assigned according to Equation (3.5). For each
run of the policy case, the value of c (marginal cost of pressure) is set beforehand and
innovative strategies are maintained as before.

Peer pressure is specified to begin after 5 iterations to verify that the start point of the
run is equivalent to the base case end point. Innovative strategies are retained in order to
permit agents to modify and optimize their plans in response to peer pressure. We run the
simulation with pressure and innovative strategies until iteration 80, at which point plan
innovation is turned off. This was done to view how the system relaxes when plans are fixed.

The algorithm used to implement peer pressure in the microsimulation context is provided
in Figure 3.2. Recall from Equation (3.5) that the parameter, c, is the marginal cost of
pressure. For all agents in a simulation run, we assume a homogeneous value of c. In the
present study, all peers, j ∈ Nbr(i) will pressure i as long as they are eligible to do so. For
example, let πi be the number of peers eligible to pressure an agent i under the first pressure
strategy. Then, Ui will be penalized by ∆Ui utils and each j ∈ πi will be penalized c∆Ui
utils. Then, the change in social welfare for the system due to peer pressure under action
profile x is given by −

∑
i∈N(1 + c · πi)∆Ui utils.

Since empirical data on the social cost of peer pressure in this context is unavailable, we
performed a sensitivity analysis by running the simulation for a range of magnitudes of c,
ranging from 0.001 to 10, while holding all other parameters constant.

3.4 Results

Peer pressure: effect on mode shift and system dynamics
In this section, we examine the effect of peer pressure on mode shift and score evolution as
well as how system dynamics and target metrics vary with the marginal cost of peer pressure,
c.

In Figure 3.8, the number of agents that switch mode between iterations is plotted over
time at different values of c. Clearly, for all of the values of c explored, ceteris paribus, peer
pressure is effective in achieving attenuation in the net number of drivers. Once innovative
strategies are turned off, at t = 80, the number of shifted agents eventually drops to 0, as
expected, since, at this point, agents only select between existing plans in their plansets.
Although the simulation with peer pressure was not run to convergence, we observe in
Figure 3.8 that the maximum number of agents shifted per iteration does appear to be
reaching a fixed point.

When exploring the dynamics of the system as a function of c and 50 < t ≤ 80; however,
we observe that a phase transition in the stability of system evolution may occur between
c = 0.01 and c = 1. Specifically, in Figure 3.8, we note that for c = 0.001 and for c = 0.01 at
t > 50, the number of agents shifted begins to oscillate around an upward trending baseline.
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Figure 3.8: Net number of agents shifting to socially cooperative modes for different values
of the marginal utility of peer pressure.

These oscillations are on the order of 1× 103 agents and have a period of 10 iterations. This
second order phenomenon is almost entirely absent in the simulation for values of c ≥ 1.

For c = 0.01, Figure 3.10 demonstrates that the number of agents pressured and mode
share are roughly covariant. This observation suggests that oscillations in the system evo-
lution occur due to synchronization of pressure-induced mode shift forcing and ephemeral
memory effects in a segment of the pressured population. That is, while peer pressure-
induced mode shift generally improves utility for many agents (as demonstrated by the

(a) Average scores of agents when c < 1. (b) Average scores of agents when c ≥ 1.

Figure 3.9: Ensemble average score sensitivity of agents to value of c. Scores are in utils.
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overall increased uptake in travel mode), some pressured agents would have been better off
driving. Isolating the optimal population that would benefit from pressure will be treated
in future work.

The ensemble average score evolution plots (Figure 3.9) present the values of the executed,
worst, average, and best plans in an agent’s plan set, Xit averaged over all agents as a function
of the iteration, t. We have separated the plots of ensemble average scores into two subfigures
in order to better illustrate how the dynamics of the system evolution vary with c. For values
of c < 1, mode shift apparently covaries with score evolution, as suggested by the oscillations
in scores depicted in Figure 3.9a. For c ≥ 1; however, Figure 3.9b, indicates a catastrophic
collapse in the executed and worst agent scores, with particularly unstable scores observed
for c = 10.

The precipitous decrease in executed plan scores at high values of c clearly leads to
unsustainable dynamics wherein the disutility imposed by peer pressure exceeds the utility
of plan execution. The instability is most likely due to the inflexible requirement that agents
who have a driving neighbor to pressure are required to pressure that neighbor no matter
what the cost to themselves. Clearly this is an unrealistic scenario. We therefore present
the rest of our results and analysis for simulation outputs where c = 0.01, which we take as
a moderate value consistent with the more realistic utility scores observed for lower values
of c.

Figure 3.10: Evolution of percent changes in transportation mode share with number of
agents pressured following initiation of pressure at iteration t = 5 for c = 0.01.



53

Congestion Delays CO2 Emissions
(hrs) ($) (tonnes) ($)

Before Pressure 53,275 770,360 3,085 111,072
After Pressure 15,946 230,584 2,205 79,373
Net Change -37,329 +539,776 -881 +31,699

Table 3.3: Externality internalization due to peer pressure
Note: Values taken at iterations 0 and 80. Value of travel time savings of car mode, V TTScar, taken as 14.52 $ ·hr−1.
Social cost of carbon assumed to be $36.00/tonne under a 3% discount rate.

Quantifying changes in externalities
Table 3.3 demonstrates that pressure leads to a reduction in travel delays of 37,329 hours.
When multiplied by the value of travel time savings (VTTS) of driving alone5, the reduction
in delays aggregated over all vehicles for the full 24-hour simulation day is equivalent to a net
social gain of $539,776. The $31,699 gain from CO2 abatement is a slightly less significant
improvement. As suggested by the results presented in Section 3.4, congestion improvements
are due to agents switching from driving alone to transit-oriented modes in response to the
active influence of peers in their social group.

A spatial analysis of the redistribution of monetized delays is indicative of the winners and
losers of peer pressure as well as where changes in travel time occur. Figure 3.11 illustrates
the differences in delay between the business as usual (t = 0) and peer pressure (t = 80)
case experienced by agents visualized as an average over all agents with home locations in a
traffic analysis zone (TAZ). Evidently, the greatest improvements in congestion due to peer
pressure are experienced by people living in less populated areas. It is instructive to compare
total delays experienced by agents on their individual trip routes to delays of all agents on
a link-by-link basis6 (Figure 3.12). The greatest improvements happen on freeways and
arterial routes, which is somewhat expected, since the greatest proportion of agents travel
over these links. In some rural areas, congestion does appear to increase. Long distance
commuters from the rural areas are taking more direct routes to the urban core due to the
congestion relief therein, but end up queueing on the approaches. The agents traveling along
these routes are unable to pressure their peers to stop driving in order to reduce congestion
due to unavailability of alternative modes. This observation suggests that these users may
benefit from increased access to public transit, or park and ride facilities.

We observe differences in the distributions of pressured (Figure 3.13) and pressuring
agents (Figure 3.14). Initially, pressured agents are, as expected, clustered around public
transit. However, over the course of the simulation, as feedback between pressured and

5VTTS is computed as in (Agarwal and Kickhöfer, 2015a) by taking the ratio of the marginal utility of
travel time (mUTTS) and the marginal utility of money, βm. The marginal utility of travel time is given by
mUTTS = βτ,mode(q) − βact.

6These delays are measured according to the difference between free-flow travel time and estimated travel
time averaged over the 24 hour simulation period
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Figure 3.11: Mean monetary delay costs (gains) due to difference between business as usual
(iteration 0) and peer pressure (iteration 80) experienced by agents with homes in TAZs as
symbolized.

pressuring agents grows, we see that presurees become more evenly dispersed throughout
the Bay Area. We also observe multiple clusters of pressuring agents distant from sources of
public transportation with concomitant absences of pressured agents in the same locations.
Qualitatively, it appears that locations where agents are closer to transit seem to correspond
to some of the most improved travel times (Figure 3.12). In Figure 3.13, we can see that, over
the course of the simulation, the distribution of pressured agents becomes relatively more
concentrated in these areas. More quantitative conclusions about the nature of the spatial
variability of pressure and its relationship to transit accessibility in alternative transportation
geographies is left as a topic for future research.

3.5 Conclusions
This chapter presents an agent-based simulation framework developed to model the effects
of peer pressure on inducing socially-cooperative travel mode choice. By applying the ag-
gregate effects of externalities on agents explicitly and providing a mechanism for agents to,
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Figure 3.12: Road links with improvements (shown in blue) and delays (shown in purple)
based on differences between experienced and free speed travel time between iterations t = 0
(business as usual) and t = 80 (peer pressure).

effectively, negotiate time valuation, an efficient redistribution of social welfare is achieved.
Due to complex dependence of the peer pressure decisions on social network structure as

well as physical infrastructure specifics such as the accessibility of socially cooperative mode
choice options, the system as modeled does not admit a closed form or even approximate
solution without significant simplifying assumptions. Consequently, it is not possible to de-
velop a closed-form optimal pressure strategy for agents to pursue. The modeling framework
that we wish to emphasize in this paper is more akin to that of the emerging game-based
modelling (GBM) concept, as described and empirically evaluated in several recent studies
(Klein and Ben-Elia, 2016; Klein et al., 2018). Like those authors, we see the use of GBMs
as a methodology that could help stakeholders and researchers better understand the con-
ditions under which emergence of cooperation in a complex transportation system might be
expected. The rules for our game-based model of peer pressure are not without antecedents
that ensure theoretical plausibility: an analytic model of incentivized peer influence (Mani
et al., 2013) and an empirically-validated agent-based simulation model of stochastic user
equilibrium in transportation networks (Horni et al., 2016b).

Given this modeling framework, many heuristic strategies and solution search algorithms
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Figure 3.13: Evolution of pressured agent spatial distribution through several iterations.

may be explored in order to develop system-optimal pressure behavior. For example, the
decision for an agent to apply pressure may be contingent on how many other neighbors the
agent can pressure (as well as their pressure costs), whether other neighbors will participate,
and, considering that pressure can be applied to the same person in repeated iterations, how
successful past attempts were.

Despite demonstrating that peer pressure leads to widespread improvements in conges-
tion and reductions in emissions, the spatial analysis of post-pressure changes shows that
some areas are worse off. This finding highlights the need to ensure that policy proposals be
sensitive to social justice issues, particularly if travel time and emission improvements are
unequally biased towards one demographic or another. Running the simulation with demo-
graphic data and heterogeneous preferences accordingly may improve the representativeness
of results as well as help communities understand the potential impacts of cyber-social in-
fluence.

When reduced externality costs are insufficient to encourage modality shifts away from
driving, policy instruments can be used to incentivize agents to pressure their peers. However,
the role of governments in achieving cooperative outcomes in social dilemmas need not be a
coercive (Ostrom, 1990; Ostrom et al., 1992). In light of the analysis on incentivizing peer
pressure described in (Mani et al., 2013), extensions to our framework can be used to design
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Figure 3.14: Evolution of pressuring agent spatial distribution through several iterations.

public transportation policy that subsidizes the social costs of peer pressure with the goal
of improving net social welfare. For example, a municipality can encourage positive peer
pressure by providing a bonus to drivers who encourage their friends to carpool to work with
them.

While designing rewards to subsidize peer pressure is a topic left for future research, the
work presented herein is not without its practical merits. Simulating the positive effects of
peer pressure on social welfare may motivate citizens to make decisions that equitably address
commons problems by demonstrating how social networks spread and stabilize behavior
change arising from local interactions. That is, by propagating simulated information from
the virtual world to the real world, people can learn under what circumstances the personal
cost that they incur in pressuring their peers would result in net personal and social benefits.
Alternatively, our framework can be used to inform individuals if peer pressure is not worth
the loss in social capital due to excessive free-riding; encouraging policy makers to fund
the gap. Providing unbiased and clear information will ensure that policy nudges promote
democracy rather than co-opt autonomy.

To translate simulated policy alternatives into information that can be used to guide pol-
icy decisions, it is vital that the generalized cost functions motivating agent decision-making
to match real-world behavior. The computational framework presented in the next section
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represents an opportunity to fuse activity-sequence recognition with the rationalization of
decision-making observations using identical data sets. By doing so, we the choice outcomes
of simulated agents will more closely reflect the preferences of the study population. In this
way, embedded machine learning-based rulemaking can be used to make highly differentiated
mobility recommendations and/or choice architectures to individual citizens.
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4

Estimating Activity-Travel Plan
Utility Functions via Inverse
Reinforcement Learning

By three methods we may learn wisdom: First, by reflection, which is noblest;
Second, by imitation, which is easiest; and third by experience, which is the bitterest.

– Confucius

While there is an enormous variety of available activity opportunities and travel options
within any major city, our daily schedules tend to be fairly routine. Modern activity-based
transport demand models thus often make a simplifying assumption that individuals plan
their days from a fixed set of activity-travel patterns. These patterns assume a myopic
decision-making process: the impact of future opportunities is ignored when making near-
term choices. By introducing utility functions with parameters that can be set at the level of
individuals, software agents traveling on virtual road networks could represent the inherently
heterogeneous dynamics of urban commuting.

In this chapter, we evaluate the use of IRL methods to learn stochastic distributions
over paths through the state space that match the expected features observed in expert
demonstrations. The resulting reward function can be interpreted as a structural model of
agent decision-making behavior Ziebart and Bagnell (2010). When structural parameters
are interpretable, it is often possible to reliably predict the real-world implications of ex post
or ex ante socioeconomic policy interventions.

In order to improve understanding and prediction of dynamic individual mobility deci-
sions, this chapter presents a novel inverse reinforcement learning-based approach to infer
structural models of activity and travel planning behavior. By formulating daily activity par-
ticipation dynamics as a MDP, we are able to leverage flexible and efficient IRL methodologies
in the recovery of interpretable parameters governing activity participation preferences.

In addition, to better address the challenge of implementing IRL methods at scale, we
investigate a reward-sharing and policy-transfer approach with the intent of accelerating the
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training of many independent agents sharing an identical task environment.
We evaluate the effectiveness of our proposed methodology by modeling daily activity

and travel planning decision-making occurring within the context of a real-world urban travel
environment. Individual agent reward functions are estimated using anonymized spatiotem-
poral microdata collected by a cellular network provider serving millions of customers in the
San Francisco Bay Area.

4.1 Background

Reinforcement learning

Figure 4.1: A schematic of the general reinforcement learning problem.

In our problem representation, we assume that we can observe individual agents n from a
homogeneous population, N , taking actions that stochastically influence a commuting envi-
ronment. Let T = {0, 1, . . . , N − 1} be the finite set of possible times at which an agent can
make a decision. At each time t ∈ T , an agent observes the state of the environment st ∈ S
and makes a decision at ∈ A based on his observation. As a consequence of the decision,
the environment provides the agent with an instantaneous reward U(st, at) according to a
utility function U : S ×A → R, and the agent observes a new state, st+1. We note that the
reward is a signal provided by the environment, but does not necessarily encode the agent’s
internal evaluation of the reward.
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In general, we assume that for this MDP, the dynamics of the environment are defined
by a transition function T : S × A × S → [0, 1] such that T (s, a, s′) = P (s′ | s, a) is the
probability of transitioning to state s′ when in state s and taking action a. In the current
context, we consider all actions to be deterministic such that P (s′ | s, a) ∈ {0, 1}.

We assume that agents make choices according to a decision rule known as a stochastic
Markov policy π : S × A→ [0, 1] that at each state s ∈ S satisfies

∑
a∈A π(a | s) = 1. In

a finite horizon problem, the goal of an agent starting from s0 = s is to find a policy that
maximizes the agent’s expected discounted utility over N time steps by optimizing the value
function

V π(s) = E

[
N−1∑
t=0

γtU(st, at) | s0 = s

]
. (4.1)

Imitation learning
Imitation learning (IL), which is a subset of learning from demonstrations (LfD) problems,
refers to the problem of training a policy to match expert behavior associated with ex-
pert trajectories1. In IL (and, generally, LfD) problems, we take as training data a set of
trajectories, D = {τ (q)}q=1:n, where each trajectory,

τ (q) =
((

s
(q)
0 , a

(q)
0

)
,
(
s
(q)
1 , a

(q)
1

)
, . . . ,

(
s
(q)
N−1, a

(q)
N−1

))
, (4.2)

represents a sequence of states and actions produced by an expert agent. The presumed
decision rule used by the expert to generate these policies is πE.

There are several variants of IL paradigms, which each reflect different approaches to the
idea of using auxiliary data to inform policy optimization routines for RL agents:

Behavioral Cloning (BC) In BC, the policy is learned directly from data as a supervised
learning problem. In contrast to other IL problems, there is no RL component. Behav-
ioral cloning tends to fail to learn policies that match expert behavior due to covariate
shift on test data, which is the problem of small errors metastasizing into catastrophic
failures. This outcome makes intuitive sense, as the learned policy is not robust to
underrepresented states in the input dataset, which, when encountered, lead to further
errors, often making recovery impossible (Bagnell and Ross, 2010). However, BC is
still a viable choice when large amounts of training data are available and the pol-
icy is parameterized using neural networks or other flexible nonlinear approximators.
See, for example, the groundbreaking Autonomous Land Vehicle in Neural Network
(ALVINN) of Pomerleau (1991)–a study that continues to inform modern research in
autonomous vehicle navigation.

1LfD problems simply incorporate behavioral observations into learning algorithms. Thus, LfD represents
a much broader class of problems, which may include forward RL problems that are augmented with expert
trajectories. These trajectories may be used to, say, warm-start an RL algorithm to accelerate convergence
to an optimal policy as was demonstrated in deep Q-learning from demonstrations(Hester et al., 2017).
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Figure 4.2: A schematic of the general inverse reinforcement learning problem.

Inverse Reinforcement Learning (IRL) IRL problems (sometimes referred to as inverse
optimal control (IOC) problems in the robotics community) are formulated like rein-
forcement learning problems except that they are absent reward function. The ob-
jective of the IRL problem is primarily to find the reward function that was used to
generate the input data.

Apprenticeship Learning (AL) Like IRL, AL is concerned with recovering an optimal
reward. However, AL uses the reward function to estimate the policy. In AL, recovery
of the reward is often a secondary aspect of training. Sometimes AL and imitation
learning are used interchangeably (as in the GAIL algorithm presented in the next
chapter). Policies learned using AL/IRL are usually thought to be more robust to
covariate shift than those learned using BC, an assumption we will verify in Chapter 5.
It is intuitive that learning policies that map from the entire state space to the entire
action space will be more robust than those learned via BC, which only learns optimal
responses to previously encountered states.

Inverse reinforcement learning: preliminaries

In contrast to the historical review provided in Chapter 2, we now provide a more technical
overview of IRL, introducing notation and terminology used in the present study. The reader
should refer to Figure 4.2, which illustrates a general IRL framework.
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IRL assumes a parametric approximation of the reward function Uθ : Rk → R with
parameter values θ ∈ Rk. We associate the set of states and action space with domain-
specific feature vectors ϕ =

{
ϕs,a : S ×A → R

}
, where k =

∣∣ϕs,a∣∣ is the number of features
in the new embedding. For convenience, we define a feature matrix, Φ, over our state-action
space, which has dimensions |S| |A| × |k|.

Learning agents in IRL solve an optimization problem to find parameters for Uθ that
induce behavior in the environment that matches expected empirical feature counts, µD (τ),
computed as an average over m trajectories,

µD
(
τ (q)

)
=

1

m

∑
τ (q)∈D

∑
(st,at)∈τ (q)

Φ
(
s
(q)
t , a

(q)
t

)
.

The presumptive goal of the expert agent is to maximize the net utility earned over time;
however it may be the case that the data collected represents sub-optimal behavior. While
(Abbeel and Ng, 2004) show that matching feature expectations is both necessary and suffi-
cient in order to derive policies that emulate expert behavior in the MDP, the IRL problem of
recovering reward functions under this constraint is underdetermined. That is, optimal poli-
cies where the utility function is all zeros may be recovered. Maximum entropy IRL (reviewed
next) was developed by (Ziebart and Maas, 2008) to address this (and other shortcomings)
of early solutions to IRL problems.

Maximum entropy inverse reinforcement learning

Maximum entropy IRL addresses the many of the shortcomings of early solutions to IRL
problems (Ziebart and Maas, 2008). In this IRL formulation trajectories in the demonstration
set, D, are assumed to be sampled from a probability distribution PME

θ (τ ) arising from a
potentially large family of such distributions. The principle of maximum entropy (Jaynes,
1955) implies that when suboptimal trajectories are observed the distribution maximizing the
entropy of suboptimal expert demonstrations should exhibit no preference over paths beyond
matching feature expectations. By applying this principle, an exponential distribution over
plan preferences

PME
θ (τ ) =

1

Z (θ)
exp (Uθ (τ ))

may be defined where Z is the partition function that normalizes this distribution. Thus,
paths with higher returns are exponentially preferred to those yielding lower net rewards.
Following (Ziebart and Maas, 2008), the maximum entropy objective function maximizes the
likelihood of demonstrations according to

θ∗ = argmax
θ

∑
τ (q)∈D

logPME
θ (τ (q)). (4.3)

The gradient of the likelihood function for a formulation specifying the reward function
as linear in the features, (i.e., Uθ(s, a) = θ⊤Φ(s, a)), is shown in (Ziebart and Bagnell, 2010)
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to be
∇θL (θ) = µD −

∑
s∈S

∑
s∈A

E [µ (s)]πθ (a | s)Φ(s, a) (4.4)

where µD denotes the empirical state visitation counts and E [µ (s)] denotes the expected
state visitation counts, which represent the estimated frequencies of an agent occupying a
state. The first term is computed from the data and the second term is computed over the
entire state and action space according to the current setting of the parameters of the reward
function.

The state visitation counts may be efficiently computed using dynamic programming.
An abbreviated, generic overview of the learning procedure is presented as Algorithm 2,
though the reader should refer to (Ziebart and Maas, 2008) or (Wulfmeier et al., 2015) for a
more detailed discussion. The parameters defining the reward function Uθ are first randomly
initialized. The main loop of the algorithm updates the reward function with the parameter
estimate. A corresponding stochastic policy πθ is then estimated using a form of value
iteration, which computes softmax estimates of the cost of reaching a goal from any state in
s ∈ S. This policy is then used to propagate all actions from the initial state distribution,
s0 ∼ σ, through time, yielding the expected probability of a state s at time t as Et [µ (s)].
The expected state visitation counts are then computed as E [µ (s)] =

∑
tEt [µ (s)]. The

updated policy and state visitation counts together with the gradients (as computed using
Equations 4.4 or 4.5) are used in gradient ascent algorithms to perform the weight updates.
For deterministic MDPs, the convexity of the objective function ensures a unique optimal
solution will be found.

Algorithm 2: MaxEnt IRL Dynamic Programming Overview
Data: Expert trajectories, τ
Input : µaD,S,A, T, f, γ
Output: optimal weights, θ∗
θ0 =RandomInit()
for i = 0, 1, . . . do

Uθi = UpdateReward(f,θi)
πθi = SoftValueIteration(Uθi ,S,A, T, γ)
E [µi] = PolicyPropagation(πθi ,S,A, T)
θi+1 = UpdateParameters(E [µi] , πθi) // see Equations 4.4 (linear)

// or 4.5 (neural network).
end

Reward functions with flexible function approximators may also be learned using slightly
modified MaxEnt IRL objectives (Levine et al., 2011; Wulfmeier et al., 2015). For example,
in (Wulfmeier et al., 2015), the gradient of the data likelihood in maximum entropy deep
(MaxEnt Deep) IRL with respect to the parameters is shown to be derived as

∇θLD (θ) = (µD − E [µ]) · ∇θU (g(Φ,θ)). (4.5)
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where the reward function is represented as the output of a neural network:

U ≈ g(Φ,θ1,θ2, . . . ,θn) (4.6)
= g1(g2(. . . (gn(Φ,θn), . . .),θ2),θ1) (4.7)

The MaxEnt Deep IRL objective is fully differentiable with respect to network weights,
permitting use of backpropagation to update parameter estimates.

The implementation developed for this research is flexible in that the user may either
specify one layer to apply the linear-in-parameters formulation, or more than one layer to
recover neural network-based reward functions. While not incorporated into reward learning
in the present study, the deep variant can be useful to model high-dimensional features
derived from visual data such as maps or LIDAR. Furthermore, for more descriptive economic
policy analysis, data-driven end-to-end simulation frameworks may be envisioned wherein
IRL is used to infer rewards for RL agents behaving in alternative policy scenarios.

4.2 Accelerating IRL Via Reward Sharing And Policy
Transfer

Inspired by the actor-mimic framework of Parisotto et al. (2015), we propose a methodology
for policy transfer learning that involves training a deep neural network on the recovered
policies of multiple agents. The output of this network can be viewed as a teacher. Additional
agents may derive their initial behavior from the policy network of the teacher as a form of
semi-supervised pre-training.

In reality, merely mimicking a teacher’s behavior does not seem to be as efficient as infer-
ring the motivation for that behavior. By observing the behavior of their more experienced
peers, individuals may infer their preferences and thereby shape their own motivations to
match those of their instructors. Thus, we also endow our teacher agents with a reward
function derived from the aggregate utility function parameters of the agents used to train
the teacher’s policy network. Our results demonstrate that this form of transfer learning
also leads to significant reductions in training time.

Model formulation
We assume access to a set of policies {π1 . . . πN} and reward function parameters, {θ1 . . .θN},
trained on the (potentially suboptimal) demonstrations of N expert agents, E0, . . . EN , us-
ing MaxEnt IRL (as described above) where Ei is the expert associated with policies πi and
reward parameters θi. The demonstrations are assumed to occur in identical task environ-
ments with identical goal states, although expert agents may have different preferences over
trajectory distributions.
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In a similar manner to (Parisotto et al., 2015), we define a teacher policy network, πT to
be used for transfer learning2. Given a state s ∈ S, the actor-mimic’s loss function is defined
as the cross-entropy between the policy of individual experts and the teacher policy network

Lipolicy(θT ) =
∑
a∈AEi

πEi
(a | s) log πTP (a | s,θTP ), (4.8)

where AEi
⊆ A. The representation of πTP used in this study is as a deep neural network

parameterized by θTP with 32 hidden units trained using the Adam algorithm (Kingma and
Ba, 2015). We train the algorithm with early stopping for regularization purposes.

As a first step towards transfer learning, we simply initialize the policy used in the inner
loop of MaxEnt IRL optimization for student agents with the policy trained using N experts.
The soft value iteration step of Algorithm 2 is simply skipped for several iterations and πT is
used instead. This can be thought of as a warm-start to the policy optimization component
of the MaxEnt IRL algorithm.

In addition to training generalized policies, we also considered initializing the reward func-
tion of student agents with the average parameters of the expert agents, θTR = 1

N

∑N
i=0 θi.

We hypothesize that this will form an informative prior on the reward parameters of subse-
quently trained agents, thereby reducing the training time of individual agents.

4.3 Activity-Travel Inverse Planning Problem
Formulation

We assume that agents choose an activity α from a finite set of activities J . Travel between
activities is performed according to a transport mode m selected from a finite set of available
modes of travel M.

State and action space representations. The state, st ∈ S, indexed by the decision
epoch, t, represents either participating in an activity, α ∈ J , or traveling m ∈M. The
day is subdivided into N intervals of time τ , and t ∈ T indicates the time at the point
of decision at the end of the interval. It is assumed that the duration of the interval is
sufficiently granular to capture behavior, but not so fine that the size of the state space
becomes exceedingly large. The augmented state space is S = {J ,M}×T . We assume that
agents’ first and last activity are the same (s0 = sN−1), i.e., agents start and end their days
at home. In order to model stationary policies, we ensure that the only available action from
the final home state is to itself. Doing so permits use of a small discount factor, γ ∈ (0, 1),

2Note that, although (Parisotto et al., 2015) use Q-learning and transform the optimal Q-functions,
we have already trained expert agents with softmax policies, thereby obviating the need to perform this
transformation. Since the gradient of the loss function will be taken with respect to the teacher network, it
is not necessary for the expert policies to be differentiable.
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Figure 4.3: Example dynamics describing activity-travel plan MDP for two types of activity
and two travel modes. Arrows between activities represent possible choices of next activity
or travel given the current state. Note that certain states are not reachable (i.e., car at t = 0,
work at t = 1).

which we find, empirically, rapidly accelerates convergence of dynamic programming (though
in reality, people are unlikely to consider within-day temporal discounting).

The set of state-dependent decisions, at ∈ A(st) corresponds to:

ST: staying at the current activity (st = α =⇒ st+1 = α),

LE: embarking on a trip to a different activity (st = α =⇒ st+1 = m),

AR: arriving at a destination (s = m =⇒ st+1 = α)

CT: continuing a trip in progress using the same mode (st = m =⇒ st+1 = m), and

SM: switching to a different travel mode (st = m =⇒ st+1 = m′,m ̸= m′).

See Figure 4.3 for a schematic of possible states and transitions.

Utility function specification. The specification used in this work draws from the
Charypar-Nagel generalized utility function specification used in MATSim agent-based mi-
crosimulation (Charypar and Nagel, 2005b). The original linear-in-parameters formulation
needs to be modified somewhat in order to accommodate the Markovian nature of our prob-
lem definition, but the definitions largely follow those described in Chapter 3 of (Horni et al.,
2016a).

We assume that representative values of the following attributes are available or can be
imputed for each activity, α ∈ J :
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• Earliest end time, tend,

• Latest start time, tstart, and

• Typical duration, ttyp.

The overall utility function specification is

Uplan =
∑
α∈J

(Uearly dep,α + Ulate arr,α + Uperf,α) +
∑
m∈M

Utravel,m, (4.9)

which is comprised of the following components:

• An early departure penalty,
Uearly dep,α = θ⊤early depϕearly dep,

for not spending enough time at an activity (i.e., leaving before the earliest end time);

• A late arrival penalty,
Ulate arr,α = θ⊤late arrϕlate arr,

for arriving late at an activity (i.e., past the latest possible start time); and

• A participation benefit,
Uperf,α = θ⊤perfϕperf,

for time spent performing an activity, α. The activity participation benefit is defined
for all t ∈ T , permitting resolution of marginal preferences at any decision epoch.

• For travel modes, we simply specify a travel time cost feature. That is,
Utravel,m = θ⊤travelϕtravel,

where

ϕtravel (st, at) =

{
τ if st ∈M
0 otherwise

.

An additional feature function is added to enforce the constraint that agents end their day
at home.

4.4 Experiments
In the following section, we describe evaluation of our framework in a real-world case-study,
demonstrating its applicability to estimate demand for transport in large metropolitan cen-
ters.

We implement our activity-travel domain using the OpenAI gym API, which has gained
rapid traction as a standard benchmark for evaluation of RL and IRL algorithms (OpenAI,
2016). A parallelized implementation of our framework using TensorFlow (Abadi et al.,
2016) is available at https://github.com/sfwatergit/da-irl.

https://github.com/sfwatergit/da-irl
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Figure 4.4: Process component interaction for validation study (see Section 4.4). Numbers
indicate the order of execution on the respective process flow paths.

Data description and preparation
Input data consists of a large sample of raw, anonymized call detail record (CDR) data
for cellular customers in the San Francisco Bay Area. This data is cleaned and aggregated
into stay location sequences (tuples of latitude, longitude, start time, and end time) for
individual users using an oscillation removal technique similar to that of (Yin M. et al.,
2017). We perform spatial clustering of stay point coordinates using DBSCAN (Ester et al.,
1996) to identify important locations and use heuristic rules to assign labels to home and work
locations. We assign the label of "other" to clusters that cannot be identified as belonging
to the primary home or work clusters. Stay sequences are then resampled according to a
user-specified discretization measure defining the frequency of decision-making epochs. All
training and data preparation took place on a secure cloud-based server with 36×2.20 GHz
Intel R⃝ Xeon CPUs with 36 GB of RAM.
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Initial algorithm validation
In order to validate our approach, we ran the procedure summarized in Figure 4.4 on the
travel activity plans derived from cellular data for a population of 463,000 individuals after
a MATSim run until convergence (see Chapter 3 for more information on the MATSim
operational cycle). We compared our results with the utility parameters configured for the
simulation that generated the output plans (i.e., inputs to the MaxEnt IRL procedure).
Example results are summarized in Table 4.1.

Parameter MATSim (util/hr) MAXEntIRL (util/hr) Pct. Diff
θlate arr -18 -34 -89
θperf 6 6.54 -9

θtravel,walk -0.29 -1.05 -262
θtravel,car -0.34 -0.69 -102
θtravel,pt -0.16 -1.5 -837.5

Table 4.1: Performance of IRL-based activity scheduling framework in recovering MATSim
marginal utility parameters (ground truth). Note that while late departure was part of the
original utility specification, the proportion of plans that included agents who arrived late
was negligible. Since this feature was therefore relatively uninformative, we do not report it
here.

In Figure 4.5, we plot the daily cumulative utility as a function of time graphs for two
representative agents in order to illustrate how our function specification maps onto daily
decision-making. The agent whose cumulative utility is plotted in the top graph take public
transit to work and arrives 15 minutes past the latest arrival time, incurring a disutility of ∼
34 utils (per our recovered parameters, Table 4.1). The bottom graph shows the cumulative
utility of an agent who drives to work, arriving and leaving on time. The agent’s evening
commute is clearly longer than his morning commute. Note that, for ease of interpretation,
we linearize the logarithmic “performing activity” component of the utility function.

Our validation of the MATSim utility function gives us some confidence in the applica-
bility of MaxEnt IRL to recovery of the parameters guiding daily-activity scheduling. Note
that at the time of this writing, these results have not been subjected to more rigorous cross-
validation or other statistical robustness checks. The primary purpose of this initial case
study was to validate the algorithm in order to proceed with design of more complex fea-
tures as well as begin work on the extensions and improvements to our approach (described
next).

Recovery of agent utility function parameters
In our second experiment, we evaluated the ability of our system dynamics and algorithm
implementation to recover interpretable utility functions. We augmented the MaxEnt IRL
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Figure 4.5: Sample utility vs. time plots for two representative agent daily activity-travel
schedules. The first agent (top) uses public transit and arrives to work late, incurring a
penalty. The second agent (bottom) drives to and from work with a slightly longer evening
than morning commute.
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objective with L2 regularization, which we found to not only achieve smoother, more inter-
pretable utility curves, but also somewhat faster convergence. Since the scale of the reward
function parameters is not identifiable (that is, we cannot make interpretations of the rel-
ative scale of the marginal utility between individuals), we normalize their values to 1.0.
Parameter optimization is carried out using the Adam algorithm of (Kingma and Ba, 2015).

In Figures 4.6 to 4.9, we provide a representative demonstration of the result of train-
ing our algorithm on 50 randomly chosen individuals. The learning curve (Figure 4.6) is
nearly identical for all agents. While we observe that the feature matching objective rapidly
approaches 10−2, in practice, we find that parameter values typically do not stabilize until
µD − E[µ] = 10−3, which is occurs around the 150th to 175th iteration of gradient descent.

Figures 4.8 and 4.9 are indicative of the shape of marginal utility over the course of the
day. As expected, we see in Figure 4.8, a generally strong preference for agents to be located
at home in the evening and early morning hours, whereas preference for work is steady
through the middle portion of the day and participation in other activities occurs primarily
in the evening.

More interestingly, Figure 4.8 demonstrates diminishing marginal utility of work activity
participation towards the end of the day. We further note that similarities and differences
between agents in marginal utility trade-offs suggests reactive policy interventions could be
designed to influence the behavior of individuals based on cross-elasticities between home
and work parameter values derived in this manner. A topic for further research will be to
investigate socioeconomic characteristics associated with the shape of these curves.

Figure 4.6: Learning curve for 50 expert agents. Top: over all training iterations. Bottom:
detail of final 80 iterations.
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Figure 4.7: Combined utility values for 50 expert agents (mean value with 95% confidence
regions).

Performance of policy and reward transfer IRL
We evaluate our transfer-learning approach using 50 randomly selected expert agents, which
we then trained using MaxEnt IRL. We then randomly sample the demonstrations of 10
student experts and run 100 iteration of the MaxEnt IRL algorithm by itself and augmented
with policy transfer, reward transfer, as well as combined policy and reward transfer-learning.
In the experimental conditions involving policy transfer, we skip the first 5 iterations of soft
value iteration and then resume soft-value iteration thereafter.

As illustrated in Figure 4.10, our results demonstrate significantly improved convergence
for all experts when MaxEnt IRL is augmented with aggregate reward pre-training. In
practice, we have observed that reward pre-training can reduce the number of iterations
required to reach convergence for individual agents by approximately one half.

Unfortunately, we don’t observe a significant reduction in convergence over vanilla Max-
Ent IRL when introducing policy transfer, and, in fact, the experiment presented herein
shows that more, not fewer iterations are required. Future work will investigate refining this
approach before abandoning it altogether.
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Figure 4.8: Representative utility parameters for 3 expert agents with typical utility profiles

4.5 Future Work
In order to demonstrate the applicability of MaxEnt IRL to inform economic policy ap-
praisal for heterogeneous users of municipal transport systems, it is necessary to rationalize
the behavior of diverse demographics. Towards this end, we propose to cluster trajectories
according to behavioral classes. Features used for clustering will be based on the travel
parameters, and may include inferred activity identities, number of hours worked, open-
ing/closing times of activities, and home-work locations by origin and destination (OD)
TAZ. Learning model parameters for different population segments would demonstrate the
ability of our framework to capture the revealed preferences of commuters from cellular data
at various levels of disaggregation.

An additional improvement would be to formally encode the hierarchical nature of the
activity-travel schedule into the reward learning algorithm. For example, travel behavioral
preferences are conditional on mode choice. Perhaps more importantly, the diminishing
marginal utility of activity performance cannot be effectively encoded in the discretized
temporal structure that defines the current environment dynamics. Representation of the
environment dynamics as a semi-Markov Decision (SMDP) is one way to proceed, although
no IRL frameworks developed thus far easily generalize to SMDPs. Perhaps a simpler ap-
proach is to learn temporally-extended actions, otherwise known as options (Sutton et al.,
1999). Recently, several works have developed unsupervised algorithms to infer higher-level
behavioral structure in trajectories using deep neural networks (Fox et al., 2017; Machado
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Figure 4.9: Representative utility parameters for 3 expert agents with atypical utility profiles

et al., 2017). Similarly, Krishnan et al. (2016) introduce Sequential-Windowed Inverse Re-
inforcement Learning (SWIRL) an algorithm to discover local intervals with heterogeneous
reward functions. Once the sequence of instantaneous transition points between reward re-
gions are identified (using an unsupervised variant of Gaussian mixture model clustering
learned over the temporal activity-travel sequences), the SWIRL algorithm trains MaxEnt
IRL separately on intervals between transition points.

4.6 Conclusions
In this chapter we presented a novel formulation of daily activity-travel scheduling as a
problem of inverse optimal control. Our basic approach was evaluated in the context of of
an end-to-end framework for rationalization of commuter preferences from digital human
trajectories derived from large quantities of passively collected cellular data. Our case study
demonstrated that MaxEnt IRL is a promising computational methodology for the inference
of utility functions motivating daily activity-travel plans. The individual utility function
parameters recovered by our methodology provide empirical validation of theoretical all-day
utility functions while illustrating interesting heterogeneity across agents.

We also demonstrated how reward and transfer-learning for agents demonstrating be-
havior in similar environments could be used to accelerate convergence of MaxEnt IRL
algorithms. In particular, we find that initialization of reward functions used in the inner
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Figure 4.10: Learning curves for vanilla MaxEntIRL (v), policy transfer (amp), reward
transfer (amr), and combined policy and reward transfer learning (ampr) for 10 students.
Top: over all training iterations. Bottom: detail of final 80 iterations.

loop of MaxEnt IRL optimization leads to significant reductions in training time. Future
work will seek to improve our policy transfer method as well as benchmark the performance
of our method against other approaches to meta-learning reward function parameters and
policies described in the literature.

A significant shortcoming of this work is that learned policies did not appear to match
demonstrated behavior upon algorithm convergence. We suspect that this was due to the
somewhat unrealistic assumption that decision-epochs are evenly spaced at regular intervals
throughout the day (every 15 minutes, in this case). Clearly, real people do not reconsider
their choice of activity with such high frequency and such exact regularity. This limitation
also makes it difficult to specify variables and estimate parameters related to distance be-
tween activities and the duration of activities. This observation motivates the refactored
environment presented in the next chapter, in which agents may choose activity duration
in addition to identity. We will also explore efficient algorithms that are more conducive
to larger action spaces than MaxEnt IRL, a necessary consequence of the new environment
definition.
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5

Generative Models of Activity
Sequences and Duration via
Adversarial Imitation Learning

Nature is commonplace. Imitation is more interesting.
– Gertrude Stein

The previous chapter presented a somewhat simplified model of daily activity-travel
planning choice dynamics in order to investigate the utility of MaxEnt IRL framework for
the estimation of structural models of individual preferences from partially-labeled stay-point
sequences derived from cellular data. While the parameters learned for the reward function
features matched intuitions, limitations imposed by the deterministic transition dynamics
prevented several desirable variables (e.g., disutility of late arrival, travel distance cost) from
entering into the specification.

In this chapter, we introduce a more realistic version of the model of choice dynamics
presented in previous chapters. Whereas the former environment assumed a constant 15
minute interval between decision epochs, the proposed update allows for an arbitrary amount
of time to pass from one decision to the next. That is, agents should be able to choose,
at the end of each activity, what their next activity should be, how long to spend there,
and what mode to take. The crux of this change is a transition kernel that more accurately
reflects real-world activity and travel planning contexts and therefore allows for more natural
specification of both spatial as well as temporal variables influencing travel behavior. The
resulting utility functions could more readily be implemented in microsimulation frameworks,
permitting their use in policy analysis under congested, multi-agent contexts. However, this
expressive power comes at the cost of a significantly expanded action space, rendering the
model-based soft value iteration and policy propagation algorithms of the causal maximum
entropy and related dynamic discrete choice framework less viable due to computational
costs that scale exponentially with the number of available actions (Ziebart et al., 2008).

The primary goal of this work is to train a reward function using expert demonstrations
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of daily-activity travel patterns such that the policy induced by the learned reward function
is able to mimic expert activity-travel patterns (i.e., those sampled from expert’s empirical
trajectory distribution). Towards this end, we explore the ability of the generative adver-
sarial imitation learning (GAIL) algorithm described in (Ho and Ermon, 2016) to train a
distribution over activity-travel patterns. We find that our implementation is able to simu-
late individual behavior sequences that match the distributions of observations in identify,
time, and duration. To the best of our knowledge, this is the first work to synthesize daily
activity-travel plans using adversarial models.

This chapter is organized as follows: Section 5.1 presents the theoretical background nec-
essary to understand GAIL, including a brief introduction to the powerful, model-free policy
optimization methods that make the GAIL algorithm possible. Next, in Section 5.2, we for-
mally describe our planning environment. Results are presented and discussed in Section 5.3.
Lastly, selected topics for future studies and conclusions are presented in Section 5.4.

5.1 Background And Preliminaries

Model-free IL and IRL
In order to reproduce the behavior of complex, adaptive agents we turn to recently-developed
IL and IRL methodologies that expand the representational power of earlier techniques (Finn
et al., 2016a,c; Fu et al., 2018; Ho and Ermon, 2016). In these frameworks, generative
models of stochastic policies are trained to reproduce expert behavior when dynamics (i.e.,
the transition model, P (s′ | s, a) are complex or unknown. Termed model-free IRL methods
(in analogy to model-free RL methods), the absence of a transition kernel typically requires
either some form of policy optimization (described in more detail below) or policy search (see
(Levine and Abbeel, 2014) for details on policy search methods, which will not be treated
further here) in order to evaluate improvements in reward functions during training. The
training algorithms proposed in these works are similar in that they each draw inspiration
from generative adversarial networks (GANs, Goodfellow et al. (2014)): a framework that
trains generative models to confuse a discriminative classifier (GANs and their connection
to IRL are described in further detail, below).

Efficient policy gradient algorithms
Before describing the algorithms used in this chapter, we will provide a brief review of the
modern gradient-based policy optimization methods, which play a critical role in making
model-free IRL possible for use in high-dimensional problems (e.g., the current environment
setting). It is important to appreciate that policy gradient algorithms have only become
scalable to high-dimensional environments due to very recent (last three years) advances in:

1. natural policy gradient-based optimization methods (see (Kakade, 2001) and (Achiam
et al., 2017) for more details on these), and
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2. the science and implementation of deep neural network methods.

Like all RL algorithms, the objective of policy gradient methods is to maximize the ex-
pected discounted reward over trajectory realizations (often termed rollouts, τ ). Gradient-
based methods optimize a differentiable, parameterized policy, πθ, by taking stochastic gradi-
ent steps in the space of policy parameters. In practice, the class of policy gradient methods
(i.e., those based on the original REINFORCE algorithm, (Williams, 1992)) was considered
to be sample inefficient and liable to suffer from frequent catastrophic performance col-
lapse during stochastic optimization algorithms due to underspecified step-size constraints
(Achiam et al., 2017; Schulman et al., 2015). Modern policy optimization routines address
these two problems by taking steps in policy space1, rather than parameter space, θ ∈ Θ.
In these algorithms monotonic improvements in step size are guaranteed. The objective
enforces a trust region constraint defined using the Kullback-Liebler divergence between
policies recovered at successive optimization steps, i.e.,

DKL(πk+1 || πk)[s] =
∑
a∈A

πk+1(a | s) log
πk+1(a | s)
πk(a | s)

.

The resulting objective and constraint can be estimated from rollouts under the current
policy by computing the so-called natural gradient, which requires computation of the Fisher
information matrix (inverse Hessian) of the policy (Kakade, 2001). For neural networks
with large numbers of parameters, the complexity of computing the Hessian for each step is
prohibitive for practical use. Recently, Schulman, et. al., (2015) found that using a trust-
region optimization method2 resulted in significant performance gains. Within only a few
years, the resulting algorithm, Trust Region Policy Optimization (TRPO), has become a
critical component of many recent innovations in reinforcement learning research.

Connections between IL and GANs
Generative adversarial networks: preliminaries

The success of deep neural networks has inspired a separate strand of research in genera-
tive model estimation frameworks, inquiry into the properties and efficient training of varia-
tional autoencoders (VAE, (Kingma and Welling, 2013)) and generative adversarial networks
(GANs) being the most prominent. The adversarial network modeling techniques used in

1The policy space of all possible policies defined over the state and action space is

Π =

{
π : π ∈ R|S|×|A|,

∑
a

πs,a = 1, πs,a≥0

}
.

2Trust region methods are a relatively new class of algorithms used in nonlinear optimization problems.
The most common trust region approach uses a conjugate gradient approximation to the Hessian and enforces
a pre-defined step-size using backtracking line search. They are often robust and can be applied to ill-
conditioned problems.
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this thesis involve learning a generator, G’s, distribution, px over input data, x by training
a differentiable multilayer perceptron (MLP) G(z;θg), to produced synthetic data, z, from
a distribution over noise variables pz(z), which are then classified as real or fake using a
second MLP known as a discriminator D(x;θd). The discriminator is trained to maximize
the probability of assigning the correct label to samples from both the training data as well
as from G, while G is trained to minimize log(1 − D(G(z))). Training continues until D
is unable to distinguish true data from fake data generated by G, that is, pg = pdata. The
relationship between G and D may be represented as a two-player minimax game,

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD (x)] + Ez∼pz(z) [log (1−D (G (z)))] ,

where the goal is to achieve Nash equilibrium between the discriminator and generator.
It is important to note that the initial theoretical results have not necessarily corre-

sponded to high-quality learning, in practice. Achieving Nash equilibrium during GAN
training is difficult, and early implementations of GANs suffered from vanishing discrim-
inator gradients and mode collapse, among other problems3 (Arjovsky and Bottou, 2017;
Salimans et al., 2016). However, much better results have been achieved with modest objec-
tive reformulations and training improvements (Arjovsky and Bottou, 2017; Salimans et al.,
2016). For example, Arjovsky et al. (2017) introduces the Wasserstein GAN (WGAN), which
uses an Earth-Mover’s (Wasserstein I) distance objective as a replacement for the Jensen-
Shannon Divergence used in Goodfellow et al. (2014)’s original formulation. In addition, the
WGAN paper introduced weight-clipping to control for vanishing gradients. The WGAN
objective can also be augmented with a gradient penalty, as reported in (Gulrajani et al.,
2017). Currently, a combination of the Wasserstein objective, weight-clipping, and gradi-
ent penalty leads to state-of-the-art image generation with deep neural networks (Gulrajani
et al., 2017). Thus, we employ these improvements in our own implementation.

Generative adversarial imitation learning

We now describe the GAIL algorithm, which uses a GAN-inspired approach to perform IRL.
The One can think of the algorithm as rewarding a parametric policy, πθ for producing
trajectories τ that are similar to trajectories τE, sampled from an expert policy, πE, such
that a discriminator function, Dω (represented by a neural network), fails to distinguish
between the two.

The GAIL objective is the sigmoid cross-entropy:

max
θ

min
w

Eτ∼πθ [log (Dω (s, a))] + EτE∼πE [log (1−Dω (s, a))] + λHH (πθ)

where H (πθ) is the entropy of the learned expert policy, πE and λH is a weighting hyperpa-
rameter for this entropy regularization term.

3Mode collapse refers to the discriminator predicting a certain low dimensional component of the data
distribution without generalizing to the surrounding manifold. Mode collapse is occasionally referred to,
cheekily, as "the Helvetica scenario" (Goodfellow et al., 2014).
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Training proceeds by sampling expert trajectories from πE and simulating trajectories
by performing rollouts of the generative policy πθ on the environment. The reward function
used to evaluate rollouts is:

U(st, at,ω) = − log(1−Dω(st, at)).

Algorithm 3: Generative Adversarial Imitation Learning (GAIL)
Input : τE ∼ πE, randomly initialized parameters θ0,ω0

for i = 0, 1, 2, . . . do
1. Sample trajectories τ i ∼ πθi

2. Update ωi to ωi+1 following gradient

Eτ i∼πθ [∇ω log (Dω (s, a))] + EτE∼πE [log (1−Dω (s, a))]

3. Take a policy step from θi to θi+1 using the TRPO update rule with cost
function log

(
Dωi+1

(s, a)
)

with the following objective:

Eτ i
[∇θ log πθ (a | s)Q (s, a)− λ∇θH (πθ)] ,

where Q (s̄, ā) = Eτ i

[
log

(
Dωi+1

(s, a)
)
| s0 = s̄, a0 = ā

]
end

Towards interpretable imitation learning with InfoGAIL

An efficient approach to interpretable reinforcement learning is to formulate a multimodal
training problem (Hausman et al., 2017; Li et al., 2017). In the InfoGAIL algorithm, a la-
tent variable distribution over expert data is defined in order to train policies with outputs
conditional on the latent value (Li et al., 2017). Doing so “. . . allows us to disentangle tra-
jectories that may arise from a mixture of experts, such as different individuals performing
the same task” (Li et al., 2017). This statement describes a scenario for our planing environ-
ment wherein we receive a set of trajectories from multiple agents and desire to model their
behavior as a group and individually. The ability to successfully distinguish and synthesize
trajectories from separate agents would greatly speed up learning. For this purpose, there is
no need to employ an unsupervised approach as in (Li et al., 2017), since expert trajectories
are easily labeled according to the agent that generated them.

InfoGAIL assumes that a single, multimodal expert policy may be characterized as a
mixture distribution arising from the behavior of many experts πE = {π0

E, π
1
E, . . .}. Assume

that a discrete latent code, c, can be used to distinguish the policies πnE from one another
according to p(π | c). Then realizations of expert trajectories τE ∼ πE can be described by
the following generative process:
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s0 ∼ ρ0

c ∼ p (c)

π ∼ p (π | c)
at ∼ π (at | st)

st+1 ∼ P (st+1 | at, st)

where p(c) is a known prior over latent code c.
The objective of InfoGAIL is to recover the multimodal expert policy π(a | s, c). A varia-

tional lower bound, LI(π,Q) is introduced in order to enforce high mutual information,I(c; τ ),
between c and state-action pairs in generated trajectories:

LI (π,Q) = Ec∼p(c),a∼π(·|s,c) [logQ (c | τ )] +H (c)

≤ I (c; τ )

where Q(c | τ ) approximates the true posterior P (c | τ ). The objective of InfoGAIL is
then:

min
π,Q

max
D

Eπ [logD (s, a)] + EπE [log (1−D (s, a))]− λ1LI (π,Q)− λ2H (π)

with λ1 > 0, λ2 > 0 are hyperparameters controlling the information maximization reg-
ularization term and causal entropy terms, respectively.

Rather than optimizing the posterior approximation over trajectories, InfoGAIL instead
uses a simplified approximation over states and actions, Q(c | s, a). The optimization algo-
rithm then learns the weights, θ,ω, and ψ for parameterized representations of π,D, and
Q, respectively, by maximizing LI(πθ, Qψ) and updating πθ and Qψ using Adam, TRPO,
and Adam, respectively (Kingma and Ba, 2015; Schulman et al., 2015). We reproduce the
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training procedure from (Li et al., 2017) as Algorithm 4.
Algorithm 4: InfoGAIL

Input : Initial parameters of policy, discriminator, and posterior approximation
θ0,ω0,π0, and expert demonstrations, τE ∼ πE

Output: Learned policy πθ

for i = 0, 1, 2, . . . do
Sample a batch of latent codes: ci ∼ p(c).
Sample trajectories τ i ∼ πθi(ci), with the latent code fixed during each rollout.
Sample state-action pairs χi ∼ τ i and XE ∼ τE with same batch size.
Update ωi to ωi+1 by ascending with gradients

∆ωi
= Êχi

[∇ωi
logDωi

(s, a)] + ÊχE
[∇ωi

log (1−Dωi
(s, a))] .

Update ψi to ψi+1 by descending with gradients

∆ψi
= −λ1Êχi

[
∇ψi

logQψi
logQψi

(c | s, a)
]
.

Take a policy step from θi to θi+1 using the TRPO update rule with the
following objective:

Êχi

[
logDωi+1

(s, a)
]
− λ1LI

(
πθ, Qψi+1

)
− λ2H (πθi) .

end

5.2 Methodology
For this initial implementation, we would like to reproduce timing, duration as well as the
activity identity components of the activity-travel pattern. Additionally, we wish to under-
stand how the reward function changes in response to new patterns of behavior demonstrated
by the agent due to, say, changes in the external environment.

Environment specification
A graphical representation of the new environment is presented in Figure 5.1. The following
paragraphs describe its state and action space in more detail.

State space Our representation assumes that for every possible duration (e.g., 96 for 15
minute intervals, each agent had a choice of (maximally) one trip or activity type (e.g., six
for work, home, other, trip to home, trip to work, trip to other, and one terminal activity, if
applicable (the final transition to home is only accessible from a home state).
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Action space In the new environment, we use a large discrete action space: (|A| =
2NActivities × 96 = 576). This poses the most challenging component of the optimization
problem, as most RL algorithms optimized to work with smaller, continuous action spaces4.

Implementation details
All algorithms were implemented using rllab (Duan et al., 2016) and TensorFlow-based
(Abadi et al., 2016) reference code from (Fu et al., 2018)5. Significant modifications from
these source codes were implemented in order to enforce temporal state-action pair alignment
for variable-length trajectories as well as implement regularization techniques to improve
generalization in the presence of small individual-level datasets.

Rather than encoding a relatively large state space of ((2NActivities + 1) × NTime steps ×
{0, 1} ≈ 2 × 103) states as a one-hot vector, we were able to instead take advantage of the
MultiDiscrete state space implementation in rllab, which concatenates three component
vectors corresponding to each dimension of the state space into a single one-hot vector.
This reduced the size of the state space to ≈ 102 possible distinct components, which dra-
matically reduced training times. By leveraging the rllab base, we are able to integrate
policy optimization algorithms implementations that have been verified and benchmarked
by other researchers as well as parallelized to run on modern multicore architectures in cloud
computing environments.

As in the environment described in Chapter 4, we implemented this environment accord-
ing to the OpenAI API.

Network architecture and hyperparameter search. We used deep feedforward and
recurrent neural network to parameterize the policy distribution6. The output activation of
the network is a softmax function. Specifically, given the state st, actions are selected from
the policy by sampling at ∼ πθ(at | st). We used a three layer architecture of 64, 128, and
512 units for the policy network with tanh activations, a 2× 128 unit discriminator network
with relu activations and a batch size times 1 unit output as well as a linear baseline7. One

4A recent paper has, in fact, addressed the problem of learning in large discrete action spaces using a so-
called Wolpertinger architecture with fast approximate nearest neighbor algorithm, but initial evaluations in
our setting did not yield particularly compelling results (Dulac-Arnold et al., 2015). This may have been due
to an implementation issue that had not been resolved at the time of this writing, so we leave investigating
this promising approach to future work.

5See https://github.com/justinjfu/inverse_rl
6We evaluated recurrent neural network (RNN)-based policies (both LSTMs and GRUs); however, found

that mode collapse actually increased in these circumstances, unlike as in (Kuefler et al., 2017; Zou et al.,
2018), which found positive benefits from RNNs for sequential tasks. One possible improvement may be to
implement dropout as a more robust regularizer (Srivastava et al., 2014).

7A baseline B(s) is a function of states subtracted from the policy gradient. It is used to reduce variance
without increasing bias in policy gradient algorithms. Often, as is done in this work, the state value function,
V π(s) is selected as B(s).

https://github.com/justinjfu/inverse_rl
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important aspect of training potentially variable trajectory lengths was to mask out logits
(network outputs) prior to computing the loss function.

It is useful to note that a fair amount of parameter tuning was required in order to achieve
reasonable results on this task. A hyperparameter search over the space of discount rates,
TRPO step sizes, and entropy weights was performed. We found that using a fairly large
number of sampled trajectories (3,000 in our case) and using a small ratio of discriminator
to generator training iterations (200:1) per epoch achieved the best results. We used the
Adam algorithm with β1 = 0.5, β2 = 0.9, and a learning rate of 1×10−5. An entropy penalty
hyperparameter of λ = 1×10−4 and L2 regularization constant of 0.05 were also used, which
we found prevented mode collapse early in training.

5.3 Results
Single agent training The GAIL algorithm was trained on a small dataset of demonstra-
tions of daily activity-travel patterns (see Figure 5.2 for an illustration of the target data).
At the endpoint of optimization, the policy was able to reproduce the expert’s pattern and
corresponding duration distributions with a high level of accuracy. Figure 5.3 illustrates this
finding by comparing the empirical distribution over the observed patterns (i.e., those shown
in Figure 5.2) to 100 random samples from the optimal policy. Figure 5.4 and Figure 5.5
demonstrate that our algorithm is able to faithfully reproduce activity duration and timing
for this agent for each of the 10 possible activity positions illustrated in Figure 5.3 (e.g.,
the distribution of simulated durations at the 5th possible position in an activity pattern
are close to what was actually observed). The most difficulty seemed to occur at the 7th
timestep (generally between 14:00 and 16:00 as illustrated in Figure 5.2). Perhaps this is due
to the fact that position 7 has the greatest variability in both activity timing and identity,
as reflected in Figures 5.3 and 5.5 (i.e., the model must select between ’H’, W’, and ’o’ at
different times of day for each possible pattern and activity duration).

It took between 100-200 iterations to train an optimal policy, with further training ac-
tually decreasing accuracy. Currently, it takes about 10 minutes to train approximately 120
full GAIL iterations on a 32-CPU machine. Running on GPUs would likely speed up compu-
tation somewhat, although the largest bottleneck is the large amount of sample trajectories
necessary to achieve appreciable results.

We assume that training difficulty arises from the observation that discrete temporal
durations necessarily involve an all-or-nothing selection of the correct action. Thus, in a
vanilla encoding, there is no notion of semantic distance between neighboring states and
actions. In the future; however, we plan to explore continuous temporal embeddings in
order to facilitate more efficient learning.

Behavioral cloning pre-training. In order to accelerate training, we included behavioral
cloning as a warm start mechanism. We used maximum likelihood as the BC objective due to
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Figure 5.2: Sample expert daily activity-travel patterns (9 trajectories)

the categorical policy distribution8. We trained individual trajectories as minibatches using
stochastic gradient descent with the Adam optimizer set at a learning rate of 0.01. This
seemed to achieved the best results as a pre-training strategy for GAIL training using the
same parameters as above (a separate hyperparameter search was conducted at this point;
however, the same settings with BC pretraining were optimal as without BC pretraining).
Somewhat improved results were achieved through early stopping. We can see from the
learning curve of behavioral cloning that convergence to an optimum is achieved fairly quickly
Figure 5.6. Based on this curve, we selected a value of 200 as the number of iterations to
use for BC pretraining.

Unfortunately, we found that BC pretraining actually encouraged mode collapse in GAIL.
As can be seen in Figure 5.9, the simulated state times appear to be more concentrated than
with vanilla GAIL, particularly at later timesteps. In addition,duration distributions did
not match as well when using pretraining Figure 5.8. We suspect that the small dataset
encourages specialization to one type of pattern, making it difficult to retrain parameters
that occur later in the day.

Comparison with MaxEnt IRL In a third experiment, we built the MDP over states
and actions using efficient, sparse matrix representations. Optimization was performed us-
ing the dynamic programming-based algorithm with similar settings to those documented in
Chapter 4. Convergence was achieved at around 100 iterations. Optimization took approxi-
mately 40 minutes. See Figure 5.10 for a learning curve.

8Had the action distribution been continuous, we might have used the more typical mean squared error
as the objective.
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Figure 5.3: Simulated vs. observed activity patterns for a single agent trained using GAIL

Rollouts of the learned policy resulted in, essentially, a uniform distribution over 10-
position (maximum possible activity chain) trajectories (see Figure 5.11). The diversity of
“correct trajectories” (i.e., those not resulting in termination of the environment prior to
reaching the goal state) demonstrates that the chosen feature functions did not adequately
constrain the policy. A selection of parameters for the estimated structural equation are
provided in Table 5.1. We did not find these values to be readily interpretable. For the
current problem, MaxEnt IRL does not provide any benefit in terms of performance or
therefore see no additional benefit over GAIL of MaxEnt IRL due to poorer performance.

Multimodal training using trajectory mixtures from many agents In order to
evaluate the effectiveness of InfoGAIL in the daily activity pattern setting, we sampled
the trajectories of four agents. Training data is illustrated using a state-time diagram as
Figure 5.12. We see some diversity of agent behavior, with π3 spending a relatively long
time in the other state on some occasions and π1 demonstrating short early evening trips
between work and home to a distinct other location.

We implemented InfoGAIL with a three hidden layer MLP with a hidden layer archi-
tecture of (64|216|512) and leaky-Rectified Linear Unit (ReLU) activations9 for the policy
network. Both the discriminator, D and the latent class function, Q were represented as
MLPs with two 256 unit hidden layers and leaky ReLU activations. Adam optimization
hyperparameters for both latent and discriminator training were identical to those indicated
for vanilla GAIL; however, while discriminator training proceeded with an initial learning
rate of 0.0001, latent code training was initialized with a learning rate of 0.01. TRPO step
size was set at 0.005, or, about half of what it had been for vanilla GAIL. Doing so required

9Nonlinear functions that map between units in successive layers.
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Figure 5.4: Action distribution comparison for GAIL training in the activity planning envi-
ronment.

that we run training out to 500 iterations, which was about 65% longer than for GAIL. All
other parameters were the same as in GAIL. After extensive testing, this combination of
hyperparameters seemed to give the best results.

A visualization of the analysis of 200 simulated trajectories is provided as Figures 5.13
to 5.15, showing a comparison of predicted and simulated patterns, state occupancy dis-
tribution and action occupancy distributions. InfoGAIL readily recovered the diversity of
agent behaviors, in particular, demonstrating a great deal of flexibility in recovering complex
duration distributions Figure 5.14.

While vanilla GAIL was also able to recover similar distributions over patterns, actions,
and states, InfoGAIL was able to disentangle the components of the mixture over experts.
Example state and action components for two different experts (real vs. simulated) are
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Figure 5.5: State distribution comparison for GAIL training in the activity planning envi-
ronment.

depicted in Figures 5.16 and 5.17, respectively. The simulated data is the same as that
depicted in Figures 5.13 to 5.15. Clearly, it is more straightforward to recover the correct
actions as opposed to the states for the different experts. However, the different modes are
identified with reasonable accuracy, suggesting that the use of the InfoGAIL could be used
to train multiple agents simultaneously. Since the accuracy of multimodal training of agent
mixtures is lower than single agent training, with significant failure modes for certain states,
in particular, it may be a better option to use InfoGAIL as part of a pre-training routine for
many agents with fine-tuning using vanilla GAIL.



91

Figure 5.6: Behavioral cloning learning curve smoothed over a window of 10 training epochs.

Figure 5.7: Simulated vs. observed activity patterns for a single agent trained using GAIL
(with behavioral cloning pretraining).

5.4 Conclusions
In this chapter, we demonstrated the effectiveness of GAIL to imitate potentially long se-
quences of individual activity patterns in action and state dimensions. While weights learned
for the deep neural network models of the reward function of vanilla GAIL were not inter-
pretable, planned work will embed the states and actions in a continuous latent space. Ideally,
doing so could permit structural relationships to emerge upon visualizing parameters using
dimensionality reduction techniques such as t-SNE (Van Der Maaten and Hinton, 2008).

Our implementation of InfoGAIL in a supervised learning setting permitted disentangle-
ment of a mixture of expert trajectories. While this initial application is promising it would
benefit from further experimentation. This initial application of InfoGAIL motivates future
work involving unsupervised inference of latent codes. Unsupervised clustering of trajecto-
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Figure 5.8: Action distribution comparison for GAIL training in the activity planning envi-
ronment (with behavioral cloning pretraining).

ries could help to segment large populations into similar behavioral classes, permitting more
nuanced analysis of duration vis à vis, say, agent sociodemographic attributes. This would
represent an important first step towards the use of GAIL and InfoGAIL in policy analysis.

Performance characteristics appear to be a significant limitation of the implementation
presented herein. Our attempt to pretrain a model using behavioral cloning was only par-
tially successful: reducing training time, while simultaneously reducing precision. It seems
as though faster training may be more likely to induce mode collapse. One possible solution
would be to anneal certain regularizing hyperparameters such as the entropy weighting, L2
norm coefficent, as well as the learning rate. In addition, as mentioned earlier, investigating
weight dropout may prove helpful. Finally, as was suggested above, simply using InfoGAIL
as a warm-start approach or ensemble average reward/policy weights in a similar manner to
that described in Chapter 4 may prove to be effective.
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Figure 5.9: State distribution comparison for GAIL training in the activity planning envi-
ronment (with behavioral cloning pretraining).
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Figure 5.10: Dynamic-programming based MaxEnt IRL learning curve for estimation of
durative action structural equation model.

Figure 5.11: Simulated vs. observed activity patterns for a single agent trained using MaxEnt
IRL.
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Feature Name Value
- travel time disutility 0.25
S H: Duration feature -0.73

2 W: Late Arrival feature 0.56
2 W: Early Arrival feature 0.15

2 W: Duration feature 0.24
2 H: Duration feature 0.021
2 o: Duration feature -0.14

3 W: Late Arrival feature -0.035
3 W: Duration feature 0.30
3 H: Duration feature 0.11
3 o: Duration feature -0.0051
4 W: Duration feature -0.025

4 W: Late Arrival feature 0.15
4 W: Early Arrival feature -0.19

4 H: Duration feature -0.064
4 o: Duration feature -0.16

Table 5.1: Selection of estimated parameter values for structural equation of durative action
estimated using MaxEnt IRL

Figure 5.12: Sample expert daily activity-travel patterns for four different agents (62 trajec-
tories).
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Figure 5.13: Simulated vs. observed activity patterns for multiple (four) agents trained using
InfoGAIL
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Figure 5.14: Action distribution comparison for InfoGAIL training in the activity planning
environment.
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Figure 5.15: State distribution comparison for InfoGAIL training in the activity planning
environment.
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(a) InfoGAIL action distribution comparison
for expert 2.

(b) InfoGAIL action distribution comparison
for expert 3.

Figure 5.16: Comparison of action distributions (simulated vs. observed) for different experts
as identified by latent code.

(a) InfoGAIL state distribution comparison
for expert 2.

(b) InfoGAIL state distribution comparison
for expert 3.

Figure 5.17: Comparison of state distributions (simulated vs. observed) for different experts
as identified by latent code.
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6

Conclusion

And joy suddenly stirred in his soul, and he even stopped for a moment to catch his
breath. The past, he thought, is connected with the present in an unbroken chain
of events flowing one out of the other. And it seemed to him that he had just seen
both end of that chain: he touched one end, and the other moved.

– Anton Chekhov, The Student

6.1 Summary of Contributions
The design of policy instruments intended to achieve socially-optimal utilization of limited-
capacity publicly-funded transportation infrastructure and services requires an understand-
ing of the dynamics governing adoption of more sustainable alternatives to driving alone as
a primary commute mode.

The effect of peer pressure on socially-cooperative travel
decision-making
In Chapter 3, we proposed a novel computational paradigm for the investigation of decen-
tralized sanctioning mechanisms to resolve social dilemmas in the sphere of public utility
management and governance. The approach advocated herein makes use of algorithmic
tools developed in artificial intelligence and applies them in real-world contexts using very
large cellular datasets. Our results show that peer pressure helps in achieving desirable
equilibrium properties while reducing congestion and emissions due to sustained mode shift.

Estimating structural models of activity scheduling via IRL
Developing a flexible, time-consistent, and data-driven model of daily human mobility deci-
sions represents a critical next step towards achieving emerging, incentive compatible travel
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demand management strategies such as dynamic road pricing. Given demonstrated travel
between sequential activities and activity attributes, methodology was developed to infer the
weights governing utility functions encoding preferences over alternative activity schedules.
Our MaxEnt IRL-based framework was presented in Chapter 4. We described the results
of structural estimation of models of dynamic replanning behavior and demonstrated the
interpretability of the parameters that resulted from this effort.

Finally, in order to improve the realism of the planning environment implementation
demonstrated in Chapter 4, we add activity duration as a choice dimension. We hypothesized
that an alternative framework to MaxEnt IRL would help to mitigate performance losses
during training due to the dimensional curse imposed by the resultant expansion of the
action space. Turning to model-free methods, we used the GAIL algorithm to imitate agent
behavior from demonstrations, and confirmed that it performed better than MaxEnt IRL.
On the other hand, the deep neural network representation of the surrogate reward function
in GAIL made interpretation of estimated weights impossible. We leave the incorporation of
more interpretable methods based on the imitation-learning algorithms explored in Chapter 5
for future work.

To summarize, the major contributions of this thesis were:

1. A game-based model of interdependent commuter decision-making to demonstrate the
emergence of socially-cooperative travel mode choice behavior in the context of a hyper-
realistic agent-based microsimulation;

2. A computationally-efficient and scalable framework to learn sequential daily travel
decisions from digital human mobility traces; and

3. An adversarial imitation-learning approach to estimate a model of daily travel planning
behavior that is able to replicate both the duration and identity of demonstrated
activity sequences with high fidelity.

6.2 Future Research
Human decision-making in settings where cooperation or competition are possible outcomes
do not easily reduce to single step or two step games. While our work supports findings
that evolutionary learning techniques may lead to the emergence of cooperation, developing
methodology to simulate more realistic decision-making to support policy analysis is the
ultimate goal of this work. Towards this end, we propose exploring methods that learn
strategic cooperative behavior in societies via IRL as an end-to-end process.

Our approach combines the Bayesian theory-of-mind model proposed by Kleiman-Weiner
and Tenenbaum (2016) and norm learning via IRL Ho and Ermon (2016). The fusion of these
two computational frameworks in iterative game-based travel demand model settings would
endow agents with the ability to learn social norms through repeated interactions as well as
develop high-level strategies on when and with whom to cooperate.
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In applying this methodology, we would need to reformulate our game-based model of
peer pressure as a stochastic game. Also known as Markov games, stochastic games extend
MDPs to strategic, interdependent choice situations. The concept corresponds to a hybrid
of dynamic, repeated games and MDPs. We would formulate the multi-agent peer pressure
game as a constant-sum stochastic game, wherein agents i ∈ N take joint actions, j ∈ ×iA(i),
where ×iA(i) is the action profile for all agents (Littman, 1994; Shapley, 1953).

Following (Kleiman-Weiner and Tenenbaum, 2016), agents’ high-level strategies would
take the form of distinct “modes”, while low-level parameters guiding structural models
of decision-making would be learned through IRL. Agent strategic modes correspond to
interpretable behavioral patterns similar to those used in Axelrod and Hamilton (1981) and
subsequent IPD tournaments (e.g., “Tit-for-Tat”, “Promise”, “Grudger”, “Win-Stay-Lose-
Shift”, etc.) (Nowak and Sigmund, 1993; Stewart and Plotkin, 2012).

Social preferences encoding group norms that underlie agents’ type assignments would
be learned using the approach provided in (Ho and Ermon, 2016). In the feature-based
reward function used in (Ho and Ermon, 2016), a norm-based reward is shared among a set
of interacting agents. An ith agent’s (of a set of N agents) total parametric reward U

(i)
θ (s)

is then a combination of the agent’s individual utility function and a group norm:

U
(i)
θ (s) = U

(i)
θ,individual(s) + Uθ,norm(s).

Using group IRL, a norm-learning agent estimates the norm reward function, Ûθ,norm, based
on a history of group interaction, H = ((s0, j0, s1), . . . , (sT−1, jT−1, sT )):

Ûθ,norm = argmax
Uθ,norm

P (Uθ,norm | H).

Features for learning norms represent shared abstract descriptions about the state and/or
actions of other agents. An example in the peer pressure game could include spatial distances
between home, work, and other activity locations between agents in a group. The size of
groups will play a key role in the scalability of our approach. We will explore how different
levels of hierarchy and reference groups (e.g., community, TAZ, proximity) affect parameter
estimation convergence rates.

6.3 Reflection And Perspective
Clearly, maintaining data-driven intelligence as a sufficient lens through which to gaze upon
objective reality risks ceding political accountability to algorithmic command and control
(Kitchin, 2014; Söderström et al., 2014). There are constraints on the social contexts that
even privacy-aware knowledge-discovery systems are able to infer. The notion that passively-
sensed data or heterogeneously-implemented participatory ICT efforts will be sufficient to
answer questions of individual and community values seems an inherently flawed objective.
Even in the limit of perfect information gleaned from all available digital exhaust, the danger
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exists of underrepresented classes that either cannot or choose not to contribute their data
towards optimizing intelligent infrastructure. Yet, social welfare is not only maximized over
those citizens whose coordinates are captured by smartphones or social networks. Novel
governance structures will be necessary in order to maintain adequate firewalls and safety
mechanisms to encourage algorithmic fairness and accountability.

This thesis explores the potential for simulations of social dilemmas to play a role in
shaping policy to inform cooperative use of limited-capacity transportation infrastructure.
Over-reliance on implications from simulation-based policy analysis is certainly not without
its risks, and, in order to address emerging issues such as value alignment and safety, we
strongly believe that simulated hypothetical choice situations must also be validated through
experimental studies of human decision-making. As we continue to learn more about the
possibilities and limits of fairness, accountability, and transparency in algorithmic admin-
istration of public services, it will be vital for cities that rely on ML/AI systems to keep
“humans in the loop”: promoting resource-efficient economic progress while aligning govern-
ment and citizen values. We anticipate that further interdisciplinary inquiry into the design
of computational frameworks to plan and manage smart city infrastructure will help societies
engage in scalable, equitable, and ultimately democratic conversations about the challenging
technical and moral questions raised by regulatory automation.
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