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Abstract

Background: Two acute respiratory distress syndrome (ARDS) subphenotypes with distinct 

clinical and biological features and differential treatment responses have been identified using 

latent class analysis (LCA) in seven individual cohorts. To facilitate bedside identification of 

subphenotypes, clinical-classifier models using readily available clinical variables have been 

described in five randomized-controlled trials. Performance of these models in observational 

cohorts of ARDS is unknown.

Methods: We evaluated the performance of machine learning clinical-classifier models for 

assigning ARDS subphenotypes in two observational cohorts of ARDS: EARLI (n=335) and 

VALID (n=452), with LCA-derived subphenotype as the gold-standard. We also assessed model 

performance in EARLI using data automatically extracted from the electronic health record 

(EHR). In LUNG SAFE (n=2813), a multinational observational ARDS cohort, we applied the 

model to determine the prognostic value of the subphenotypes and tested their interaction with 

PEEP strategy, with mortality as the dependent variable.

Findings: The clinical-classifier models had an area under receiver operating characteristic 

curve (AUC) of 0·92 (95% CI: 0·90–0·95) in EARLI and 0·88 (0·84–0·91) in VALID. Model 

performance was comparable when using exclusively EHR-derived predictors. In LUNG SAFE, 

90-day mortality was higher in the Hyperinflammatory subphenotype (57% [414/725] vs. 
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33% [694/2088]; p<0·0001). There was a significant treatment interaction with PEEP strategy 

and ARDS subphenotype (p=0·041), with lower mortality in the high PEEP group in the 

Hyperinflammatory subphenotype, following similar patterns to those observed in prior analyses 

of the ALVEOLI trial.

Interpretation: Classifier models using clinical variables alone can accurately assign ARDS 

subphenotypes in observational cohorts. Application of these models can provide valuable 

prognostic information and may inform management strategies for personalised treatment, 

including application of PEEP, once prospectively validated.

Funding: National Institutes of Health (PS: GM142992, CSC: HL140026, LBW: HL103836, 

HL135849), European Society of Intensive Care Medicine.

Introduction

The acute respiratory distress syndrome (ARDS) remains a highly prevalent cause of 

acute respiratory failure, resulting in high morbidity and mortality.1 Yet, potentially as 

a consequence of underlying heterogeneity, few therapeutic options have proven to be 

beneficial in randomized controlled trials (RCTs).2–4 Two discrete biological subphenotypes 

have been identified using latent class analysis (LCA) in five RCTs and two observational 

cohorts, totaling over 4,000 patients.5–8 The two subphenotypes have distinct clinical and 

biological features, divergent outcomes, and in three RCTs, differential treatment responses 

were observed.

Although accurate parsimonious models for subphenotype identification have been 

developed, these models are reliant on measurement of protein biomarkers (e.g., interleukin 

(IL)-6, IL-8, soluble tumor necrosis factor receptor (sTNFR)-1, Protein C).9 The limited 

availability of real-time assays for these biomarkers represents a barrier to the clinical 

implementation and rapid identification of the subphenotypes.5,10 Recently, machine 

learning classification algorithms utilizing routinely available clinical variables have shown 

promise in identifying LCA-derived subphenotypes in RCT cohorts of ARDS.10 Their 

performance in unselected populations of ARDS patients, where patient heterogeneity may 

be even greater and where comparatively higher mortality is observed, is unknown.11 A 

critical step towards clinical application of these models is their validation in observational 

and representative populations of ARDS patients, particularly since it is these unselected, 

“real-world” patients in whom the models would be used to screen for enrollment in future 

RCTs.

The primary objective of this study was to validate machine learning classifier models 

that use readily available clinical data in observational cohorts of ARDS. Secondary 

objectives were (1) to evaluate model performance in an observational cohort of patients 

with predictor-variables automatically extracted from the electronic health record (EHR) and 

(2) to evaluate the clinical utility for prognostication and seeking differential responses to 

positive end-expiratory pressure (PEEP) strategy of ARDS subphenotypes derived using the 

clinical-classifier models in a large multinational observational cohort of ARDS.
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Methods

Study populations

Details of the RCT cohorts used for model development are described in prior 

studies.10,12–15 Two observational cohorts of ARDS, Early Assessment of Renal and Lung 

Injury (EARLI, n=335) and Validating Acute Lung Injury markers for Diagnosis (VALID, 

n=452), served as independent validation cohorts for the models. EARLI is an ongoing 

prospectively enrolled cohort of patients admitted to UCSF Medical Center and Zuckerberg 

San Francisco General Hospital Intensive Care Units (ICUs). Study participants were 

identified in the Emergency Department upon request for admission to the ICU. For this 

analysis, patients were selected from EARLI if they were deemed to have ARDS as defined 

by the American-European Consensus Conference (AECC) criteria on either Day 1 or 2 

of the study and included patients recruited between 2008–2018.16 Details of the study 

protocol have been previously published.17 VALID is an ongoing prospectively enrolled 

cohort of patients admitted to Vanderbilt University Medical Center ICU; details of the study 

protocol have been previously published.18 Study participants were enrolled in the study on 

the morning of the second day of admission to a medical, surgical, trauma, or cardiovascular 

ICU. Patients were selected from VALID for inclusion in this analysis if they were deemed 

to have ARDS as defined by AECC criteria on the first or second day of ICU admission and 

included patients were recruited between 2008–2016. Patients with trauma-related ARDS 

were excluded given biological and clinical differences (e.g., lower burden of inflammation 

and lower age-adjusted mortality) from patients with non-trauma ARDS and our previous 

work suggesting the subphenotyping schema is most valid in patients with non-trauma 

ARDS.8,19 The AECC definition was used because enrollment in both cohorts started prior 

to development of the Berlin definition and because patients continued to be enrolled using 

both definitions.20 The described strategy allowed capture of more patients for analysis. 

Further, the LCA-derived subphenotypes have been validated in these cohorts using the 

AECC definition with similar subphenotypes identified as when using the Berlin definition.8 

Both cohorts include comprehensive demographic, clinical, and biomarker data from the 

day (or day prior to) of ARDS diagnosis that were manually collected by trained research 

coordinators, as well as clinical outcome data including ventilator-free days (VFD) and 

hospital mortality.

The Large Observational Study to Understand the Global Impact of Severe Acute 

Respiratory Failure (LUNG SAFE, n=2813) was a large, multinational, multicenter, 

prospectively enrolled cohort of patients admitted to 459 ICUs across 50 countries from 

February to March 2014; details of the study protocol have been previously published.1 

Study participants were enrolled on the first day that acute hypoxemic respiratory failure 

criteria were satisfied. Patients were selected from LUNG SAFE for inclusion in this 

analysis if they were deemed to have ARDS as defined by Berlin criteria on the first 

or second day of study enrollment.20 The LUNG SAFE study was conducted after the 

description of the Berlin definition hence its use in this cohort. This cohort includes 

demographic, clinical, and respiratory data from the day patients were enrolled into the 

study and at pre-specified intervals until ICU discharge or death (see Supplement). All study 

cohorts were approved by the Institutional Review Board at each participating hospital.
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Model Development and Validation

All models were trained to predict the Hyperinflammatory phenotype. Of the machine 

learning clinical-classifier models described in the original study,10 we used the two best 

performing models to validate in this study, with a parsimonious (“vitals and labs”) model 

comprising only of vital signs and laboratory values serving as the primary model. As 

the secondary model, we used a “full feature” model comprising all the predictors in the 

primary model, with the addition of ventilatory variables and demographics. The “vitals and 

labs” model served as the primary model because it was less complex (fewer predictors), 

constituted exclusively of physiological predictors, was one of the most accurate in the 

original study, and was the most generalizable model.

In both EARLI and VALID, due to missing predictors, the original “vitals and labs” and 

“full feature” models could not be validated directly. In EARLI, the “vitals and labs” model 

had no predictors missing and the “full feature” model had one predictor missing (minute 

ventilation). In VALID, there was one predictor missing for the “vitals and labs” model 

(glucose) and three predictors missing (tidal volume, glucose, and body mass index) for the 

“full feature” model. To simplify the analysis, we developed new “vitals and labs” and “full 

feature” models comprising of common predictors available for each model in both EARLI 

and VALID from the original predictors. A final list of variables used in each model is 

described in Table S1.

A schematic of the analysis plan is presented in Figure 1. For model development, we 

used a gradient-boosted machine algorithm, XGBoost: Extreme Gradient Boosting (version 

1.3.2.1). In brief, gradient-boosted machines utilize an ensemble of multiple decision trees, 

where trees added sequentially to the model to attempt to correct the classification error 

of previous trees in the ensemble. We utilized 10-fold cross validation and hyperparameter 

tuning using a grid search to tune and optimize the models using the training set (see 

Supplement), recapitulating our prior approach.10 All models were developed using a 

training set comprised of a combination of three RCT cohorts, ARMA, ALVEOLI, and 

FACTT (n=2022), and model performance was tested externally in SAILS (n=745). The 

models output a continuous probability specifying the likelihood of classification to the 

Hyperinflammatory subphenotype for each patient. To evaluate the validity of these two 

new models in relation to the models developed in the original study,10 we compared 

the probabilities generated by corresponding new and original models using Pearson’s 

correlation coefficient.

Next, performance of these models was evaluated independently in EARLI (n=335) and 

VALID (n=452). Validation cohorts were kept isolated from the training and testing 

procedures. LCA-derived subphenotypes served as the reference standard for model 

training, testing, and validation. The procedure for handling missing data is detailed in 

the Supplement and the missingness for predictors in each validation cohort are presented 

in Table S2. Overall model performance in EARLI and VALID was evaluated by (a) 

calculating the area under the receiver operating characteristic curve (AUC) with confidence 

intervals (estimated using 2000 stratified bootstrap replicates); and (b) generating calibration 

plots. For each model, class was assigned using a probability cutoff of 0·5 to report on 

accuracy, sensitivity, and specificity of subphenotype assignments. As with our prior work, 
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we additionally performed sensitivity analysis using cutoffs of 0·3, 0·4, 0·6, and 0·7. Once 

patients were assigned subphenotypes, we evaluated differences in protein biomarkers and 

clinical outcomes (e.g., mortality and ventilator-free days).

Model validation in EHR-derived cohort

Patients in the EARLI cohort were identified in the UCSF’s electronic health record, Epic 

(Epic Systems Corp.). Patients enrolled before implementation of the UCSF EHR in 2012 

were excluded, as were patients admitted at San Francisco General Hospital, due to the 

Epic EHR being implemented at this institution after the study period (post 2018). All 

vital signs and laboratory values from each participant’s admission encounter were queried 

using SQL and downloaded from Epic Clarity, a data warehouse and relational database 

that stores the majority of clinical data within Epic. Additionally, we queried usage of 

intravenous vasoactive agents and incorporated this into the cohort as a binary variable. The 

most extreme values (e.g., highest heart rate or lowest serum bicarbonate level) observed ± 

12 hours of ARDS diagnosis were extracted. We used this “EHR-derived EARLI cohort” 

to identify ARDS subphenotypes using the “vitals and labs” model. Model performance 

was evaluated using the same procedures described above with LCA-derived subphenotype 

serving as the reference standard. For comparison, we evaluated model performance for the 

same patients identified in the EHR cohort but using vital signs and labs collected manually 

during the original EARLI prospective study enrollment that were used or the original LCA.

Model evaluation in LUNG SAFE

In LUNG SAFE, due to limited data collection, only a small selection of predictor variables 

was available for modelling (Table S1). A custom clinical-classifier model, comprising only 

these variables, was developed using the same procedure described above (training: ARMA, 

ALVEOLI, and FACTT, testing: SAILS). As LCA-derived subphenotypes were not known 

in LUNG SAFE and the model contained a sparse set of predictor variables, a priori, we 

first sought the best probability cutoff to assign class in VALID (an observational cohort) 

to optimize classification accuracy. Optimal cutoff in VALID was determined based on the 

tradeoff between sensitivity and specificity (i.e., Youden index).21 EARLI was not used 

to determine cutoff due to some of the LUNG SAFE variables not being available. For 

sensitivity analysis, we additionally evaluated model results in LUNG SAFE across a range 

of probability cutoffs.

Once LUNG SAFE patients were classified into subphenotypes, we compared clinical 

outcomes, resolution of ARDS, prevalence of underlying chronic diseases, and ventilatory/

respiratory variables stratified by model-assigned subphenotype. Building on prior work 

showing differential subphenotype responses to PEEP, we evaluated the interaction between 

subphenotype allocation and PEEP in LUNG SAFE.5 In order to create two groups with 

substantially different levels of PEEP usage, patients were classified into tertiles according 

to their mean PEEP over days 1–3. The top tertile was labelled as “high PEEP” and 

bottom tertile as “low PEEP,” with the middle tertile excluded from analysis. A logistic 

regression model was created with the interaction term of PEEP-group and subphenotype 

as an independent variable and 90-day mortality as the dependent variable. As sensitivity 

analyses, we tested for differences in mortality, VFDs, and PEEP treatment interaction for 
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a range of probability cutoffs. We also tested for subphenotype treatment interaction with 

PEEP-groups derived when using quintiles instead of tertiles. Further sensitivity analyses 

included testing treatment interaction of PEEP-groups with subgroups of ARDS severity as 

stratified by (a) PaO2/FiO2 and (b) Sequential Organ Failure Assessment (SOFA) score (see 

Supplement for details).

Statistical Analysis

Differences in outcomes between subphenotypes were tested using Pearson’s chi-squared 

test. Between-group differences were tested using Student’s t-test and Wilcoxon rank-sum 

test, depending on variable distribution. For differences in outcomes between ARDS 

subphenotypes, we also computed odds ratios for mortality and rank biserial correlations for 

VFDs. The Wald test was used to test for significance of the interaction term in the logistic 

regression models. All analyses were done using R (version 4.03) and RStudio interface 

(version 1.4.1106). The codes used for analysis can be found on our group’s GitHub page, 

available at https://github.com/Calfee-Sinha-PrecisionCriticalCareLab.

Role of funders

The funder of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.

Results

Baseline patient characteristics for the training set, both validation cohorts (EARLI and 

VALID), and LUNG SAFE are shown in Table S3.

The top ten most important features for the “vital and labs” and “full feature” models in 

the training dataset are shown in Figures S1A and S1B respectively and in line with prior 

models.10 In SAILS, the probabilities of subphenotype assignment generated by the new 

models developed for use in this study were highly correlated to probabilities generated by 

our previously described models: “vital and labs” model (r = 0·97, p <0·0001, Figure S2A) 

and “full feature” model (r = 0·95, p <0·0001; Figure S2B).10

Model evaluation in observational cohorts

The “vitals and labs model” had an AUC of 0·92 (95% CI: 0·90 – 0·95) in EARLI and 0·88 

(95% CI: 0·84 – 0·91) in VALID (Figure 2). Model sensitivity, specificity, and accuracy 

when using a probability cut-off of 0·5 are reported in Table 1, and over a range of 

probability cut-offs in Table S4. The calibration plot for the model in both cohorts is 

presented in Figure S3A and S3B.

In both cohorts, the Hyperinflammatory subphenotype identified by “vitals and labs” models 

had significantly higher levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and soluble TNF 

receptor-1 (sTNFR1), and lower levels of Protein C (Figure 3). The Hyperinflammatory 

phenotype was associated with higher in-hospital mortality and fewer ventilator-free days 

(Table 2). Clinical outcomes for the subphenotypes in both cohorts over a range of probability 

cutoffs were similar to those using a cutoff ≥ 0·5 (Table S5).
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In both EARLI and VALID, the “full feature” model had similar model performance 

metrics (Figure S4, Tables 1 and S4) and differences in biomarkers (Figure S5) and clinical 

outcomes (Table S6) between the subphenotypes as the “vitals and labs” model.

Model validation in EHR-derived cohort

117 patients from the EARLI cohort were identified in the UCSF EHR. Baseline patient 

characteristics along with feature missingness are shown in Table S7. The “vitals and labs” 

model using EHR-derived data had an AUC of 0·88 (95% CI: 0·81 – 0·94) compared to an 

AUC of 0·92 (95% CI: 0·88 – 0·97; Figure S6) using hand-curated variables for the same 

patients. Clinical outcomes in subphenotypes assigned using EHR-derived data were similar 

to those derived using hand-curated data (Table S8).

Clinical-classifier model in LUNG SAFE

When first evaluated in SAILS and VALID, the LUNG SAFE classifier model resulted in an 

AUC of 0·93 (0·91 – 0·95) and 0·87 (0·83 – 0·90) respectively. In VALID, the model had the 

highest Youden index at a probability cutoff of 0·4 (Table S9). This probability cutoff was 

used to classify subphenotypes in LUNG SAFE.

Using a cutoff of 0·4, 26% (725/2813) of patients in LUNG SAFE were classified in 

the Hyperinflammatory subphenotype. Mortality at day 90 in the Hyperinflammatory 

subphenotype was 57% (414/725) compared to 33% (694/2088) in the Hypoinflammatory 

group (p <0·0001). VFDs were significantly fewer in the Hyperinflammatory subphenotype 

(p <0·0001; Table 2). Survival between groups diverged at day 1 that was sustained over 90 

days, with a significantly lower survival in the Hyperinflammatory group (Figure 4). The 

observed differences in mortality and VFDs were consistent across a range of probability 

cutoffs (Table S10).

More patients in the Hypoinflammatory subphenotype had resolution of ARDS on day 

2 (35%; 510/1447) compared to the Hyperinflammatory subphenotype (28%; 129/469; 

p = 0·0024), suggesting temporal stability of ARDS diagnosis in the latter. Prevalence 

of underlying chronic liver disease was significantly higher in the Hyperinflammatory 

subphenotype, whereas prevalence of chronic obstructive pulmonary disease (COPD) 

was lower (Table S11). Difference in respiratory variables, even among those that were 

statistically significant, were not clinically significant between the two subphenotypes 

(Figure 5).

When stratified into tertiles based on mean day 1 to 3 PEEP, median PEEP in the 

top tertile (“high PEEP”; n=992) was 11 cm H2O (10 – 12) and bottom tertile (“low 

PEEP”; n=943) was 5 cm H2O (5 – 6). Differences between the characteristics of 

the low- and high-PEEP groups can be found in Table S12. There was a significant 

interaction between PEEP subgroups and ARDS subphenotypes with 90-day mortality as 

the outcome; Hyperinflammatory subphenotype: “high PEEP” 54% [169/313] vs. “Low 

PEEP” 62% [127/205]; Hypoinflammatory subphenotype: “high PEEP” 34% [231/675] 

vs. “Low PEEP” 32% [233/734] (p = 0·041; Table 3). The differences in outcomes and 

treatment interaction were significant across a range of probability cutoffs (Table S13). The 

interaction term remained significant after adjusting the model for age and PaO2/FiO2 (p 
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= 0·047). A sensitivity analysis using quintiles to define PEEP groups (with the middle 

quintile eliminated) also revealed significant treatment interactions (Table S14). Significant 

interactions with PEEP groups were not observed when the population was stratified by 

other measures of disease severity such as PaO2/FiO2 (p = 0·96) or SOFA score (p = 0·30; 

Table S15 and S16).

Discussion

In this study, we report that machine learning classifier models, using only readily available 

clinical variables as predictors, can accurately assign ARDS subphenotypes in observational 

cohorts. Our models consistently captured the rich biological information that define 

the LCA-derived subphenotyping schema, with marked differences in protein biomarkers 

between the two identified phenotypes. The models identified patients at high risk for 

adverse outcomes, including in the large multinational observational cohort (LUNG SAFE), 

where protein biomarker data were not available. Further, in LUNG SAFE, we observed 

differential responses to PEEP strategy by subphenotype, with higher PEEP associated with 

improved outcomes in the Hyperinflammatory subphenotype, similar to patterns previously 

identified in secondary analyses of the ALVEOLI trial.5 Finally, the “vitals and labs” model 

performed robustly even when utilizing clinical data extracted automatically from the EHR 

(as opposed to values obtained manually during study enrollment). Taken together, the 

models presented in these studies represent a substantial step towards translating ARDS 

subphenotypes into the clinical workflow. Pending prospective evaluation, these models may 

be valuable tools for prognostication and treatment stratification in future trials.

The utility of subphenotypes in ARDS is contingent on feasible bedside identification. 

Although point-of-care and real-time assays are being developed rapidly, they remain 

experimental.22 In the interim, or as an alternative, clinical-classifier models can be a 

useful adjunct. Clinical-classifier models to date have been validated only in retrospective 

secondary analyses of relatively uniform RCTs,10 which enroll typically only 5–10% of 

potentially eligible patients,11 thus limiting their routine application. By contrast, validation 

of these models in observational cohorts of all-comer patients with ARDS indicates that 

such classification algorithms can be reliably applied to more generalizable populations and 

could potentially be used to screen patients for eligibility for enriched RCTs. Embedding 

such models into the EHR would allow for bedside screening for and enrollment into 

prospective clinical trials to evaluate for prognostic or therapeutic differences among 

patients with ARDS. Moreover, such models could more easily capture temporal trends 

given the rich, abundant data stream in the ICU. By demonstrating the high-performance 

metrics of the models with EHR-derived data, our study serves as a proof of concept that 

EHR-embedded machine learning models are feasible for classifying ARDS subphenotypes. 

If validated prospectively, such EHR-embedded models could provide on-demand decision 

support for clinicians and/or clinical trials, while limiting disruption to clinical workflow by 

automatically incorporating clinical data into the models.

The implementation of these models in the clinical setting are, however, contingent on two 

factors. First, it must be prospectively demonstrated that the models can classify phenotypes 

robustly and consistently in real-time clinical scenarios in diverse settings. Prior to their 
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clinical implementation, the models will need rigorous evaluation for their interaction with 

missing data frequently encountered in the real world setting of critical care. Second, it is 

imperative that a clear clinical utility of the subphenotypes is demonstrated prior to their 

EHR implementation. Based on its performance in our study, we would advocate the use 

of the “vital and labs” model for prospective evaluation in future studies. Interestingly, the 

clinical utility and divergent characteristics of the subphenotypes identified using the sparse 

model in LUNG SAFE would suggest that a model comprising of even fewer features than 

the “vitals and lab model” may classify with sufficient accuracy. The development and 

validation of such parsimonious models requires careful evaluation using the most important 

variables identified in the “vitals and labs” model, rather than sets of variables constrained 

by availability, such as in the LUNG SAFE model.

Though model performance was comparable between both observational cohorts, model 

performance in EARLI was marginally better compared to VALID, potentially due a variety 

of factors including the timing of enrollment into the studies. Patients were enrolled on the 

day of hospital admission in EARLI, whereas in VALID enrollment was on day two of 

ICU admission. Earlier study enrollment may have captured the most extreme physiological 

characteristics for each patient and higher classification into the Hyperinflammatory 

subphenotype, but without serial protein biomarker quantification and LCA classification, 

the temporal kinetics of the subphenotypes remain a key knowledge gap in the field. The 

longitudinal model performance metrics of the clinical-classifier model requires further 

studies.

Our findings in LUNG SAFE are consistent with prior studies suggesting that ARDS 

subphenotypes capture unique information compared to other metrics of ARDS severity, 

such as PaO2/FiO2 or SOFA score.5,6,10 In our analysis, a treatment interaction was 

observed between PEEP groups and the subphenotypes with differential responses. Notably, 

this treatment interaction was consistent with our previous secondary analysis of the 

ALVEOLI trial that tested the efficacy of high PEEP versus low PEEP in ARDS.5,13 

In that analysis, as in this study, high PEEP was associated with improved survival 

in the Hyperinflammatory subphenotype and worse survival in the Hypoinflammatory 

subphenotype, albeit the effect size in the latter was clinically insignificant in both studies. 

The consistent findings across both these studies suggest that there may be value in 

evaluating PEEP strategies more formally in subphenotype-specific trials with treatment 

directed by subphenotype. Specifically, in future trials testing high-PEEP strategies, 

inclusion of the Hypoinflammatory phenotype may lead to a dilution of the effective sample 

size, rendering the detection of a significant effect less likely.

This study has several strengths. First, the models performed comparably across two 

observational cohorts with variable inclusion criteria, suggesting model generalizability. 

Second, the models were able to identify high-risk patients when utilizing inputs 

automatically extracted from the EHR, showing that biological “signal” can be accurately 

captured despite the “noise” associated with EHR-derived data. Third, the primary model 

performed well despite utilizing a parsimonious set of features (only vital signs and 

laboratory values). This approach could allow future EHR-embedded models to use the 

“most objective” inputs while excluding features that are dependent on epidemiological 

Maddali et al. Page 10

Lancet Respir Med. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



factors (e.g., race/ethnicity), or those which are harder to capture in the EHR (e.g., ARDS 

risk factors and ventilatory variables). The “vitals and labs” model also has the advantage 

of being potentially applicable in low- and middle-income countries where availability 

of emerging point-of-care protein biomarker quantification may not be feasible.22 Fourth, 

unlike our prior studies, this is the first time we have tested the performance of the 

clinical classifier models and shown the clinical value of ARDS subphenotypes in a cohort 

consisting of patients derived from low and middle income countries, suggesting their 

generalizability across healthcare systems.

This study also has several limitations. Due to a lack of availability of predictor variables, 

we were not able to validate the exact models developed in our prior study.10 The 

strong correlation of the probabilities generated by the models we presented in this study 

compared to models in our prior study would, however, suggest that these models are 

highly overlapping. It is noteworthy that the “full feature” model was trained with the 

race variable stratified as white and non-white, thereby limiting its generalisability and 

validity in populations with greater racial or ethnic diversity. However, the “vitals and labs” 

model without this data also performed well. The EHR-derived cohort was limited by a 

relatively small sample size and high missingness for some variables. In addition to limiting 

model validity, the observed missingness, specifically in the EHR cohort, highlights some 

of the challenges in applying such models prospectively and embedded in the EHR. In 

LUNG SAFE, fewer features were available, and the tolerance of these models for variable 

missingness or predictor variable parsimony requires further evaluation. There were several 

differences in the clinical baseline characteristics of EARLI, VALID, and LUNG SAFE. 

Most notably, ARDS risk factors, PaO2/FiO2, and bicarbonate levels were substantially 

different in LUNG SAFE, and taken together with the lack of a comparative gold-standard 

(LCA-derived subphenotype) to evaluate model performance, the findings of this portion of 

the study should be interpreted cautiously. Further, interpretation of the findings of treatment 

interaction with PEEP groups and subphenotypes should also be cautious given that these 

data are generated from observational data and level of PEEP was not randomly assigned; 

however, their concordance with our previous findings from randomized PEEP trials is 

noteworthy and suggests validity. Finally, to date, application of these models has been 

retrospective, and their validity in real-time clinical settings remains to be tested.

In summary, machine learning classifier models using readily available clinical data 

accurately assigned inflammatory subphenotypes in observational populations of ARDS. 

Additionally, the models performed robustly in an EHR-derived observational cohort, 

suggesting such models can be potentially embedded into an EHR. Finally, the model 

identified high-risk patients and a treatment interaction between PEEP and inflammatory 

subphenotype in a large observational cohort without a reference standard of LCA-derived 

classification, providing further support of the hypothesis that the effect of PEEP may differ 

in each subphenotype. Application of these models to identify subphenotypes can provide 

valuable prognostic information linked to distinct biological characteristics and may inform 

management strategies to test in future clinical trials.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:

We thank Fabiana Madotto, James Anstey, and Nader Najafi for their contributions in data collection, cleaning, and 
analysis. We thank all patients and researchers who participated in the National Heart Lung and Blood Institute 
(NHLBI) ARDS Network trials from which data from this study were derived. These include the ALVEOLI, 
FACTT, and SAILS trials. We acknowledge the contributions of healthcare providers and research staff that enabled 
the successful completion of these trials. In addition, we thank the contributions of the Biological Specimen and 
Data Repository Information Coordinating Center of the NHLBI (BIOLINCC) that made the data and biological 
specimens available to do these studies. This manuscript was prepared using ALVEOLI, ARDSNET, and FACTT 
Research Materials obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating 
Center and does not necessarily reflect the opinions or views of the ALVEOLI, ARDSNET, FACTT or the NHLBI.

Declaration of interests: Dr. Churpek reports grants from NIH/NIDA (R01 DA051464), grants from DOD/
PRMRP, W81XWH-21-1-0009, grants from NIH/NIA (R21 AG068720), grants from NIH/NIGMS (R01 
GM123193), grants from NIH/ NIDDK (R01 DK126933), grants from EarlySense (Tel Aviv, Isreal), grants from 
NIH/NHLBI (R01 HL157262) outside the submitted work. In addition, Dr. Churpek has a patent Patent pending 
(ARCD. P0535US.P2) pending to University of Chicago related to clinical deterioration risk prediction algorithms 
for hospitalized patients. Dr. Sarma reports grants from National Heart, Lung, and Blood Institute during the 
conduct of the study. Dr. Matthay reports grants from Roche-Genentec, personal fees from Johnson and Johnson, 
personal fees from Novartis Pharmaceuticals, personal fees from Gilead Pharmaceuticals, and personal fees from 
Pliant Therapeutics, outside the submitted work. Dr. Ware reports grants from National Institutes of Health (US), 
during the conduct of the study; grants and personal fees from Boehringer Ingelheim, grants from Genentech, grants 
from CSL Behring, personal fees from Merck, personal fees from Citius, personal fees from Quark, and personal 
fees from Foresee, outside the submitted work. Dr. Laffey reports grants from European Society of Intensive Care 
Medicine, during the conduct of the study; personal fees from Glaxosmithkline, and personal fees from Baxter, 
outside the submitted work. Dr. Bellani reports grants and personal fees from Draeger Medical, personal fees 
from Ge Healthcare, personal fees from Hamilton Medical, and personal fees from Flowmeter SPA, outside the 
submitted work. Dr. Calfee reports grants from NIH, during the conduct of the study; grants and personal fees from 
Roche/Genentech, grants and personal fees from Bayer, personal fees from Quark Pharmaceuticals, personal fees 
from Gen1e Life Sciences, personal fees from Vasomune, and grants from Quantum Leap Healthcare Collaborative, 
outside the submitted work. The other authors report no disclosures.

References

1. Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With 
Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016; 315(8): 
788–800. [PubMed: 26903337] 

2. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med 2017; 
377(6): 562–72. [PubMed: 28792873] 

3. Wilson JG, Calfee CS. ARDS Subphenotypes: Understanding a Heterogeneous Syndrome. Crit Care 
2020; 24(1): 102. [PubMed: 32204722] 

4. Matthay MA, Arabi YM, Siegel ER, et al. Phenotypes and personalized medicine in the acute 
respiratory distress syndrome. Intensive Care Med 2020; 46(12): 2136–52. [PubMed: 33206201] 

5. Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: 
latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014; 2(8): 
611–20. [PubMed: 24853585] 

6. Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and 
differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet 
Respir Med 2018; 6(9): 691–8. [PubMed: 30078618] 

7. Famous KR, Delucchi K, Ware LB, et al. Acute Respiratory Distress Syndrome Subphenotypes 
Respond Differently to Randomized Fluid Management Strategy. Am J Respir Crit Care Med 2017; 
195(3): 331–8. [PubMed: 27513822] 

8. Sinha P, Delucchi KL, Chen Y, et al. Latent class analysis-derived subphenotypes are generalisable 
to observational cohorts of acute respiratory distress syndrome: a prospective study. Thorax 2021: 
thoraxjnl-2021–217158.

Maddali et al. Page 12

Lancet Respir Med. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Sinha P, Delucchi KL, McAuley DF, O’Kane CM, Matthay MA, Calfee CS. Development and 
validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: 
a secondary analysis of randomised controlled trials. Lancet Respir Med 2020; 8(3): 247–57. 
[PubMed: 31948926] 

10. Sinha P, Churpek MM, Calfee CS. Machine Learning Classifier Models Can Identify Acute 
Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. Am J Respir 
Crit Care Med 2020; 202(7): 996–1004. [PubMed: 32551817] 

11. Pais FM, Sinha P, Liu KD, Matthay MA. Influence of Clinical Factors and Exclusion Criteria on 
Mortality in ARDS Observational Studies and Randomized Controlled Trials. Respir Care 2018; 
63(8): 1060–9. [PubMed: 29991643] 

12. Acute Respiratory Distress Syndrome N, Brower RG, Matthay MA, et al. Ventilation with lower 
tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute 
respiratory distress syndrome. N Engl J Med 2000; 342(18): 1301–8. [PubMed: 10793162] 

13. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures 
in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351(4): 327–36. 
[PubMed: 15269312] 

14. National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, 
Wiedemann HP, et al. Comparison of two fluid-management strategies in acute lung injury. N 
Engl J Med 2006; 354(24): 2564–75. [PubMed: 16714767] 

15. National Heart L, Blood Institute ACTN, Truwit JD, et al. Rosuvastatin for sepsis-associated acute 
respiratory distress syndrome. N Engl J Med 2014; 370(23): 2191–200. [PubMed: 24835849] 

16. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on 
ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir 
Crit Care Med 1994; 149(3 Pt 1): 818–24. [PubMed: 7509706] 

17. Kangelaris KN, Prakash A, Liu KD, et al. Increased expression of neutrophil-related genes in 
patients with early sepsis-induced ARDS. Am J Physiol Lung Cell Mol Physiol 2015; 308(11): 
L1102–13. [PubMed: 25795726] 

18. Ware LB, Koyama T, Zhao Z, et al. Biomarkers of lung epithelial injury and inflammation 
distinguish severe sepsis patients with acute respiratory distress syndrome. Crit Care 2013; 17(5): 
R253. [PubMed: 24156650] 

19. Calfee CS, Eisner MD, Ware LB, et al. Trauma-associated lung injury differs clinically and 
biologically from acute lung injury due to other clinical disorders. Crit Care Med 2007; 35(10): 
2243–50. [PubMed: 17944012] 

20. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin 
Definition. JAMA 2012; 307(23): 2526–33. [PubMed: 22797452] 

21. Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3(1): 32–5. [PubMed: 15405679] 

22. Sinha P, Calfee CS, Cherian S, et al. Prevalence of phenotypes of acute respiratory distress 
syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet 
Respir Med 2020; 8(12): 1209–18. [PubMed: 32861275] 

Maddali et al. Page 13

Lancet Respir Med. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Research in context

Evidence before this study

Using latent class analysis (LCA), two biological acute respiratory distress syndrome 

(ARDS) subphenotypes – termed “Hypoinflammatory” and “Hyperinflammatory”– have 

been identified, with distinct clinical and biological features, outcomes, and differential 

responses to therapy. Clinical use of these subphenotypes, however, is limited by 

complexity and lack of point of care biomarker assays. To facilitate bedside identification 

of these subphenotypes, machine learning classifier models using only readily available 

clinical variables have been developed and validated using data from randomized 

controlled trials. Performance and clinical utility of these models in observational cohorts 

of ARDS is not known. No formal literature search was done for this study.

Added value of this study

The presented study demonstrates the validity of machine learning clinical-classifier 

models in accurately identifying ARDS subphenotypes in two observational cohorts. 

Differences in biomarkers and clinical outcomes in subphenotypes identified using these 

models were similar to those in LCA-derived subphenotypes. The models performed 

comparably when utilizing a dataset comprised of variables automatically extracted 

from the electronic health record (EHR), suggesting that EHR-embedded models may 

be feasible. When applied to a large multinational observational cohort of ARDS, 

the models identified patients at risk for adverse clinical outcomes. The models also 

identified a treatment interaction with PEEP and subphenotype, with lower mortality 

observed with higher PEEP in the Hyperinflammatory subphenotype, similar to patterns 

observed in secondary analyses of the ALVEOLI trial.

Implications of all the available evidence

LCA-derived phenotyping has recently shown promise in identifying homogenous 

subgroups within larger, heterogenous populations of ARDS. Clinical-classifier models 

using readily available clinical data can accurately identify these subphenotypes at the 

bedside and could facilitate prospective, subphenotype-specific trials in ARDS. Response 

to PEEP may differ on the basis of subphenotype.
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Figure 1. Schematic of analysis plan.
The models were originally trained in ARMA, ALVEOLI and FACTT (n = 2022) and tested 

in SAILS (n=745), which were all randomised controlled trials. The models were validated 

in two observational cohorts: EARLI (n=335) and VALID (n=452). A custom (“LUNG 

SAFE”) model using a limited set of predictor variables was developed to evaluate the 

clinical utility of ARDS subphenotypes in LUNG SAFE (n=2813) a large multinational 

observational cohort of ARDS. The optimal probability cutoff for the “LUNG SAFE” model 

determined by first evaluating the model in VALID (n=452).
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Figure 2. Receiver operating characteristic (ROC) curve for primary (“vital and labs”) model in 
EARLI (n=335) and VALID (n=452).
AUC = Area under the ROC curve. EARLI AUC = 0.92; VALID AUC = 0.88.

Maddali et al. Page 16

Lancet Respir Med. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Differences in protein biomarkers in ARDS subphenotypes.
ARDS subphenotypes were identified by the “vitals and labs” model using a probability 

cut-off of 0.5. Differences in biomarker data are presented in EARLI (n=335) and VALID 

(n=452). Y-axis was limited to aid better data visualization. Consequently, in EARLI, 9, 10, 

13, and 4 observations were censored, and in VALID, 13, 16, 17, and 3 observations were 

censored for Interleukin-6, Interleukin-8, Soluble tumor necrosis factor (TNF) receptor-1, 

and Protein C, respectively.
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Figure 4. Survival curves of the two ARDS subphenotypes in LUNG SAFE (n=2813).
ARDS subphenotypes were identified by a custom clinical-classifier (“LUNG SAFE”) 

model using a probability cutoff of 0·4 to assign class. Abbreviations: Acute Respiratory 

Distress Syndrome (ARDS). P-value was calculated using the log-rank test.
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Figure 5. Comparison of respiratory variables between the two ARDS subphenotypes in LUNG 
SAFE (n=2813).
ARDS subphenotypes were identified by a custom clinical-classifier (“LUNG SAFE”) 

model using a probability cutoff of 0·4 to assign class. Driving pressure is defined 

as the difference between plateau pressure and PEEP. Abbreviations: Positive End 

Expiratory Pressure (PEEP); Hyperinflammatory subphenotype (Hyper); Hypoinflammatory 

subphenotype (Hypo). P-value was calculated using either the t-test or Wilcoxon rank test 

depending on the distribution of the data.
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Table 2
Clinical outcomes in the ARDS subphenotypes.

Mortality (count; percentage) and Ventilator Free Days (VFD; median and interquartile range) in the three 

observational cohorts of ARDS (EARLI, VALID, and LUNG SAFE). In EARLI (n=335) and VALID (n=452), 

outcomes are presented for the “vitals and labs” model, with a probability cutoff of 0·5 for subphenotype 

assignments. In LUNG SAFE (n=2813), outcomes are presented for a custom classifier model using a limited 

set of features and a probability cutoff of 0·4 for subphenotype assignments. Effect size was estimated using 

odds ratio for mortality and rank biserial correlation for VFD, with 95% confidence intervals.

Cohort Model Outcome Hypoinflammatory Hyperinflammatory Effect size P value

EARLI n=335 Vitals and labs
Mortality* 29% (57/196) 58% (80/139) 3·3 (2·1 – 5·2) <0·0001

VFD 24 (0 – 28) 0 (0 – 24) 0·30 (0·18 – 0·41) <0·0001

VALID n=452 Vitals and labs
Mortality* 27% (85/318) 49% (66/134) 2·7 (1·7 – 4·0) <0·0001

VFD 21 (5 – 25) 6 (0 – 22) 0·31 (0·20 – 0·41) <0·0001

LUNG SAFE n=2813
Custom feature set

Mortality
† 33% (694/2088) 57% (414/725) 2·7 (2·2 – 3·2) <0·0001

VFD 15 (0 – 23) 0 (0 – 19) 0·23 (0·18 – 0·28) <0·0001

P-value represent the Chi-squared test for mortality and Wilcoxon-rank test for VFD.

*
In Hospital Mortality;

†
90-day Mortality.
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Table 3
Mortality at day 90 in PEEP-groups stratified by ARDS Subphenotypes in LUNG SAFE 
(n=2813).

ARDS Subphenotypes were assigned by a custom clinical classifier (“LUNG SAFE”) model using a 

probability cutoff of 0·4. PEEP subgroups were defined as “high PEEP” (n=992; median PEEP 11 cm H2O [10 

– 12]) and “low PEEP” (n=943; median 5 cm H2O [5 – 6]) subgroups based on the mean PEEP over the first 

three days.

Subphenotype Mortality in Low PEEP group Mortality in High PEEP group P value

Hyperinflammatory 62% (127/205) 54% (169/313)
0·041

Hypoinflammatory 32% (233/734) 34% (231/675)

P-value is for the interaction term of PEEP subgroups and ARDS subphenotypes with mortality as the dependent variable and was derived using the 
Wald test. Abbreviations: Positive End Expiratory Pressure (PEEP).
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