
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Ranking And Scoring The Critical Cell Types In Neurodevelopmental Disorders Using Genetic 
Modules

Permalink
https://escholarship.org/uc/item/1tx4k2w7

Author
Thomas, Ashleigh Catherine

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tx4k2w7
https://escholarship.org
http://www.cdlib.org/


Ranking And Scoring The Critical Cell Types In Neurodevelopmental Disorders Using

Genetic Modules

By

Ashleigh Thomas

Thesis

Submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Integrative Genetics and Genomics

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Professor Fereydoun Hormozdiari, Chair

Professor C. Titus Brown

Professor David Segal

2021

i



Abstract:

Neurodevelopmental Disorders (NDDs), including Autism Spectrum Disorder

(ASD) and Intellectual Disability (ID) are disorders that are affected by the developing

human brain. The brain has hundreds to thousands of unique cell types within it, and by

studying the cell types that are critical in NDDs, this will lead to a greater understanding

of the mechanisms of NDDs in the developing brain. Single-cell RNA-seq (scRNA-seq)

can shed light on the importance of the many cell types involved in NDDs and the

normal brain development process, as it can provide more fine-grained details on

individual cells in comparison to bulk RNA sequencing.

This thesis project proposes a mathematical objective function that identifies

critical cell types for a set of genes and a scRNA-seq dataset. Our objective function

was able to identify critical cell types previously identified in literature. A set of ASD risk

genes were used as module genes, as well as scRNA-seq data taken from the

developing human neocortex for input. Excitatory deep layer neurons (glutamatergic

neurons) and microglial cells were found to be of interest with these module genes. A

second and third set of module genes were tested, with one being composed of genes

indicated in ASD and ID, and the other being composed of genes indicated in both

disorders but that are also in synaptic function, long-term potentiation, and calcium

signaling that are found to be more highly expressed at postnatal time points. For these

sets of module genes, excitatory deep layer neurons (glutamatergic neurons), and

cycling progenitors in the G2/M and S phases were found to be critical. Additionally, we

show that cells within the same defined cell type (here done using tSNE) have a higher

average maximum similarity with each other than with cells outside of their cell type. In
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contrast, for a random selection of cells, there is a higher average maximum similarity of

cells between groupings, rather than in the same grouping. This indicates that the cell

types utilized in this project are in fact clustered properly together. In conclusion,

utilizing scRNA-seq in conjunction with module genes enables us to identify critical cell

types applicable to NDDs.
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Chapter 1: Introduction:

While the understanding of neurodevelopmental disorders (NDDs)—particularly

Autism Spectrum Disorder (ASD) and Intellectual Disability (ID)—with respect to cell

types as well as genetics has increased in recent years, further research is needed. Of

particular interest is the areas of the brain that are highly involved in such disorders. In

addition, the impact of developmental timing is crucial in understanding NDDs, as

different gestational weeks will be more important for some NDDs in comparison to

others. By furthering the research into the critical cell types involved in NDDs, this will

advance the understanding of the developmental processes that are impacted in such

disorders. In addition, this could shed light upon the biomolecular pathways that are

involved in NDDs, which could lead to potential pharmacological treatments in the

future. This thesis aims to build upon the knowledge found in literature about critical cell

types in NDDs, particularly in ASD and ID.

Neurodevelopmental Disorders:

As per the DSM-5, NDDs are a set of conditions that begin in the developmental

period (often defined as birth through 2 years of age) which produce deficits impairing

functioning (DSM-5® Handbook of Differential Diagnosis, 2013; Morris-Rosendahl &

Crocq, 2020).  NDDs typically include disorders such as intellectual disability (ID),

Autism Spectrum Disorder (ASD), attention-deficit/hyperactivity disorder (ADHD),

communication disorders, neurodevelopmental motor disorders like tic disorders, and

particular learning disorders (Morris-Rosendahl & Crocq, 2020). Neurodevelopmental

disorders have been relatively recently re-classified, and in the DSM-5, they replaced a

category of disorders that were diagnosed in infancy, childhood, and adolescence with
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the label of Neurodevelopmental Disorders, or NDDs. I am interested in the study of

neurodevelopmental disorders in particular because by understanding them better, we

will be able to understand the developing human brain better. By better understanding

the cell types relevant to NDDs, we can improve our understanding of the molecular

mechanisms and pathways of the developing brain, particularly in regards to brain

development, neurogenesis, and diversity of cell types in the brain (Polioudakis et al.,

2019; Zhong et al., 2018). In the future, this may lead to pharmacological tools to treat

NDDs in patients.

Typically, these disorders will begin in a child’s early developmental stages, and

will involve deficits impacting functioning (Morris-Rosendahl & Crocq, 2020). The

DSM-5 allows doctors to document their etiological factors for patients with a specifier

such as fragile X syndrome, which indicates that NDDs are likely to change in the near

future with genetic research (DSM-5® Handbook of Differential Diagnosis, 2013).

Overall, NDDs tend to be associated with a lower fecundity, so these high-risk genetic

variants are likely rare from negative selection, and are a product of selection pressure

and from de novo mutations, which is supported  by the importance of de novo variants

in NDDs such as ASD, where de novo events of causal variants at genetic loci are

critical (Morris-Rosendahl & Crocq, 2020).

NDDs tend to be highly comorbid, meaning that often patients may have two or

more conditions. Between 22 and 83% of children with ASD also meet the criteria of the

DSM-IV for ADHD, and between 30 and 65% of children with ADHD have ‘clinically

significant symptoms of ASD’ (Morris-Rosendahl & Crocq, 2020). In ASD, intellectual

and/or language impairment is often involved. NDDs are more often diagnosed in males
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rather than in females, with the DSM-5 citing that the male to female ratio in ASD is 4 to

1, 2 to 1 in children with ADHD, 1.6 to 1 for mild intellectual disability, and 1.2 to 1 for

severe intellectual disability (Morris-Rosendahl & Crocq, 2020).

Genetic heterogeneity is when one or more related phenotypes can be produced

through multiple different genetic mechanisms. The genetic heterogeneity between

NDDs is often very high, which in turn means that in the clinic, it can be very difficult to

genetically diagnose patients with NDDs, as it may not be immediately obvious which

genetic mutation is causing their NDD (Morris-Rosendahl & Crocq, 2020). Also, some

NDDs can have their phenotype be caused by a variety of genetic events and also can

also be impacted by environmental factors contributing to the phenotype. For most

NDDs, there is not a simple genetic cause, so sometimes forward genetics are used to

study this. Using forward genetics, a researcher may go from the phenotype to the

genotype to the gene. In contrast, they may also utilize reverse genetics, where once

they have found genetic markers they can form a phenotype definition based upon the

genetic marker, so that different phenotypes can be grouped together with linkage data

or deviant allele frequencies in association data analysis (Morris-Rosendahl & Crocq,

2020). ASD is etiologically, phenotypically, and genetically heterogeneous, and the

heritability is high as studies have found that it ranges from 50 to 90%, and in siblings

who are not twins, the recurrence rate is near 20% (Morris-Rosendahl & Crocq, 2020).

Often times, a genotype-first approach is used in the genetics of NDDs including

ASD, such as a researcher first finding copy number variants (CNVs) and gene variants

that have a high likelihood of causing disruptions leading to ASD in order to further their

genetic research. There is a question of whether NDDs should perhaps be placed upon
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a spectrum, due to the high phenotypic overlap amongst the discussed NDDs. A variety

of NDDs have multiple symptoms in common (meaning there is a phenotypic overlap

between the disorders, often called phenotypic heterogeneity), which at times can make

it difficult to distinguish which specific disorder a patient may have.

It has been proposed that ID, ASD, ADHD, schizophrenia, and bipolar disorder

could lay upon a continuum of neurodevelopmental disorders, and that they may not be

wholly discrete (Morris-Rosendahl & Crocq, 2020). ID, ASD, and ADHD share multiple

genetic risk alleles, and they also share allele mutations for psychiatric disorders

including schizophrenia. In intellectual disability, for instance, CNVs for ID are

significantly enriched in cases of schizophrenia, posing the question of if some ID CNVs

confer a risk to schizophrenia at a lower level of penetrance. It is also likely that the

neurodevelopmental continuum of NDDs plus schizophrenia represent the diverse

outcomes of various events in disrupted brain development (Morris-Rosendahl & Crocq,

2020).

Autism:

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder (NDD) with a

relatively early age of onset, as symptoms are normally exhibited within three years of

birth. Symptoms include a lower level of social interaction and communication, and

levels of impact by ASD vary between individuals (Park et al., 2016). An increased

prevalence of ASD diagnoses has been observed over time worldwide. In the last

twenty years, studies from Australia, North America, Middle Eastern countries, and

some European countries have reported more cases of ASD being reported, however

the numbers are highly variable. In the US in 2016, it was reported that the prevalence
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is thought to be 18.5 cases in 1000 people over 11 states. Boys are diagnosed at a rate

4.3 times that of girls (Chiarotti & Venerosi, 2020).

There are many rare genetic mutations that are thought to contribute to ASD, as

well as environmental effects, and the interaction between genetics and environment,

although genetics play a much larger role than environment, with a heritability of over

0.7 (Park et al., 2016). The genetics of ASD are relatively complex, for several reasons,

as  ASD is particularly genetically heterogeneous (An & Claudianos, 2016). Phenotypic

heterogeneity is when different phenotypes can occur from the same gene being

mutated, which can be found in the SHANK gene in which mutations are associated

with ASD, ID, and epilepsy (Guilmatre et al., 2014). NDDs are also highly comorbid,

meaning that an individual affected by one neurodevelopmental condition is at an

increased risk to be affected by co-occurring conditions. These three factors can make it

difficult to determine genetic mechanisms at play in NDDs.

As previously discussed, a genotype-first research method is particularly helpful

in ASD. More than 100 genes and genomic areas have been associated with ASD, and

roughly 800 genes are thought to be involved (Morris-Rosendahl & Crocq, 2020).

Additive polygenic factors seem to be in play in ASD, particularly for patients who have

less severe clinical symptoms. Genome-wide association studies (GWAS) have shown

that common DNA variants are key to ASD phenotypes. Additionally, de novo CNVs in

one study were ten times more prevalent in cases of ASD than controls, and de novo

ASD-causing CNVs may account for around 30% of simplex ASD cases (Sebat et al.,

2007).

7



Researchers have found recurrent CNVs and disruptive variants in ASD, which

has resulted in ASD-specific genetic subtypes being formed, which could lead to

potential future pharmacological treatments for these particular pathways involved. For

instance, the CDH8 gene is a heterogenous disruptive variant that is involved in

chromatin remodeling. It also targets other ASD risk genes, and a genetic subtype

resulting in macrocephaly and gastrointestinal complaints has been linked more tightly

with ASD than ID (Morris-Rosendahl & Crocq, 2020). Additionally, there is a 16p11.2

deletion neurologic phenotype that those with this deletion may not have ASD, yet there

may be a phenotypic overlap with ASD.  The SCN2A gene can cause multiple NDDs

including benign familial neonatal-infantile seizures, ASD, ID, and infantile epileptic

encephalopathy. SCN2A encodes for a part of the neuronal voltage-gated sodium

channel named NaV1.2 which is used in action potentials. This indicates that sodium

channels may be important for future pharmacological therapies for NDDs involving the

SCN2A gene (Morris-Rosendahl & Crocq, 2020).

A study by Velmeshev et al. in 2019 performed single nucleus RNA-seq

(snRNA-seq) on post-mortem prefrontal cortex and anterior cingulate cortex samples of

15 cases of ASD and 16 controls without ASD of similar ages. They found 513

differentially expressed genes between the ASD cases and controls (Velmeshev et al.,

2019). In addition, gene expression changes seemed to be largely in the upper-layer

cortical neurons in L2, L3, and L4 excitatory neurons as well as microglia (Velmeshev et

al., 2019; Wood, 2019). They also found downregulation in genes involved in synaptic

signaling and brain development, furthering the case that synapses and development

are highly important in ASD. In the microglial cells, the differentially expressed genes
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were enriched in genes encoding microglial activation and developmental pathways

(Velmeshev et al., 2019; Wood, 2019). In addition, they performed snRNA-seq on

prefrontal cortex samples of 8 cases of epilepsy, as epilepsy has a high rate of

comorbidity with ASD. They used the differentially expressed genes found in the

epilepsy cases to remove gene expression changes from seizures and antiseizure

medication from the gene expression changes of the ASD cases, as only 10% of the

genes dysregulated in ASD were utilized in the analysis of the epilepsy cases. This may

indicate that differentially expressed genes in ASD are more closely related to ASD

rather than to the comorbid epilepsy disorders (Velmeshev et al., 2019; Wood, 2019).

The researchers indicate that changes on the molecular level of the upper layer cortical

circuit seem to be related to how behavior is impacted in ASD. Additionally, it does not

seem that the degree of dysregulation in genes associated with a higher clinical severity

of ASD can be used to predict the severity of ASD symptoms. Their research indicates

that a change in the gene regulatory program in development may cause problems in

the molecular pathology of mature neurons (Velmeshev et al., 2019).

Gene modules:

Modules of genes are artificially created groupings of genes (i.e. gene modules

are curated most often via knowledge from literature) that are thought to work in similar

biological manners, and are therefore involved in similar biological pathways. Such

genes do not have to be located physically together on chromosomes. One such

definition of a gene module is a grouping of co-expressed genes where the same group

of transcription factors bind to the genes, or co-regulation (Bar-Joseph et al., 2003).

Oftentimes, researchers utilize module classification algorithms that group genes based

9



upon their co-expression patterns (Saelens et al., 2018). Many clustering methods have

limitations, and to improve upon them, some researchers have used co-expression data

from only a portion of their samples, by utilizing regulatory network models, and allowing

for overlapping of gene modules.  Decomposition methods have been found to work

best, and parameter estimation and alternative similarity metrics can be utilized in order

to detect the most relevant grouping of module genes (Saelens et al., 2018).

Another way of thinking about modules of genes is that genes responsible for

certain diseases and disorders can map to smaller biological subnetworks. One method

of forming such modules is known as MAGI which is short for merged affected genes

into integrated networks (Hormozdiari et al., 2015). MAGI is a generalizable program

which can make gene modules from protein-protein interactions and RNA-seq

expression profiles, while previous research tended to only use one of these two

techniques. These researchers formed two modules for NDDs, specifically ASD and ID.

The modules were formed using MAGI on exome sequencing of 1116 cases of ASD and

ID. They found two modules which differed in both genotypes and phenotypes. Module

one is composed of 80 genes affiliated with Wnt, NCOR, SWI/SNF, and Notch

complexes, and they have the largest gene expression in the 8-16 post-conception

weeks period of brain development. The second module is made of 24 genes that are

involved in synaptic function, long-term potentiation, and calcium signaling. These

genes are not highly expressed in the prenatal timepoint, rather they have higher levels

of expression in postnatal time. Within these two modules, they found that cases with

ASD and/or ID that had de novo mutations in these two modules were far more clinically

and intellectually impacted than other cases with de novo mutations outside of these
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two modules, and that these cases with de novo mutations in the two modules also had

many more deleterious missense mutations. There appears to be a grouping of

neurodevelopmental networks spanning human neurological disorders and diseases

that impacts the same sets of genes producing a variety of phenotypes, as they found

an overlap and expansion of the same two modules to be involved in epilepsy and

schizophrenia as well as ASD and ID (Hormozdiari et al., 2015). It was found that for

ASD and schizophrenia, genes with loss of function (LoF) mutations in cases are more

highly connected to each other in protein-protein interaction networks, and they also

have a higher co-expression pattern with each other. This led to MAGI utilizing

protein-protein interaction and co-expression networks together to find ‘highly

connected modules’ of genes that are enriched in cases of NDDs but not in controls

(Hormozdiari et al., 2015).

Weighted gene co-expression network analysis, or WGCNA, has been used to

find large non-overlapping modules of genes with an average size of 600 genes

involved in and highly co-expressed during brain development (Parikshak et al., 2013).

They then chose a subset of these genes in their modules that have a higher chance of

a de novo mutation that could cause autism. The model was originally formed without

protein interaction data, but this was added in after the WGCNA was performed to find

the modules. However, originally many of the most important ASD genes such as

CHD8, DYRK1A, and GRIN2B were not picked up by this method (Parikshak et al.,

2013). Some other studies used particular subsets of ASD genes to form a set, and

then they looked for genes with similar co-expression patterns (Gulsuner et al., 2013;

Willsey et al., 2013). In one study, researchers were able to find particular sub-tissues of
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the brain and time points key in regular neurodevelopmental processes and which are

implicated in ASD (Willsey et al., 2013). They used 9 ASD risk genes from literature,

and for each of those genes found 20 more genes with the highest levels of

co-expression in the relevant brain tissues and gestational week time points. By doing

this, they found 4 networks of 437 genes, suggesting they may be involved in ASD

(Willsey et al., 2013).

Overall, disease modules can be defined as groupings of genes where the genes

are enriched in de novo mutations in cases, and yet are not enriched in de novo

mutations in controls (those without the disease). Additionally, these genes must be

highly connected in protein-protein interactions, and they must have high co-expression

in the relevant tissue. For ASD and other NDDs, it is important to have high

co-expression during brain development. The MAGI team found that genes in cases of

ASD with de novo mutations have a higher probability of being connected to each other

by protein-protein interactions, and to have higher co-expression levels (Hormozdiari et

al., 2015). This result was obtained in part by using samples from cases and unaffected

control siblings for validation (Hormozdiari et al. 2015). In general, it can be said that

modules of genes are defined as groupings of genes that are enriched in similar

biological pathways and functions, and are therefore thought to be related.

Single-cell RNA-seq:

Single-cell RNA sequencing (scRNA-seq) was hailed as the ‘Method of the Year’

in 2013 (Lähnemann et al., 2020). The technique enables cell type clusters to be

identified and differentiated from the gene expression of the transcriptome of the whole

single cell. This also allows scientists to view cells transitioning from one state into

12



another and the gene expression changes that come with such a transition. This allows

for a better understanding of how tissues and organisms develop and of how structures

in cell populations can be differentiated when they were previously thought to be

homogenous (Lähnemann et al., 2020).

Single-cell RNA sequencing has enabled scientists to obtain the proteomic,

epigenetic, genetic, spatial, and lineage data of single cells (Stuart & Satija, 2019). This

allows them to find relationships between cells, understand the cellular state, and collect

data from single cells from different areas of an individual to better understand their

genomic profile. Single-cell RNA sequencing is performed by sequencing cDNA from

RNA molecules (mostly polyadenylated mRNAs) of a single cell. This is then done for

thousands of cells in a given experiment to provide a wide array of single cell data.

Originally, sequencing focused on one type at a time, be it DNA, RNA expression, or

chromatin data. This does not allow for insights into the relationship between single

cells. Single-cell RNA sequencing allows for the use of barcoding and is very sensitive

and multiplexed, which has led to many discoveries about the nature of single cells and

the biomolecular relationships between them. This includes genomics, epigenomics,

proteomics, and transcriptomics of single-cell data (Stuart & Satija, 2019). scRNA-seq

can be coupled with other sequencing technologies like DNA sequencing or epigenomic

data.

Single-cell RNA sequencing has recently drastically changed how RNA can be

sequenced. Single-cell analysis dataset sizes are increasing in comparison to bulk

sequencing sample sizes, which leads to having more information to analyze, which

introduces certain statistical challenges that bulk RNA sequencing has not had to utilize
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before. Additionally, the scalability of current RNA sequencing analysis has lagged

behind data generation (Lähnemann et al., 2020). Single-cell RNA sequencing can find

signals that bulk RNA sequencing is unable to, as scRNA-seq provides very specific

high resolution data. Additionally, the whole cell tissue is not homogeneous in function,

as different groups of cells (called cell types) within the tissue can be performing

different functions at the same time, which can also vary by time point. Therefore, by

being able to sequence specific barcoded single cells, it is possible to collect gene

expression data throughout a whole tissue at one point in time while representing the

various cell types throughout the tissue. In contrast, traditional bulk RNA sequencing

gives the average gene expression, and the researcher is unable to tell what each

individual cell is doing at the time.

scRNA-seq is good for a system like the developing human brain because the

brain is filled with highly specialized tissue types, and it is estimated that there are

hundreds or thousands of unique cell types in the human brain (Polioudakis et al.,

2019). With such a large amount of cell types throughout the many tissue types, that

means that in any given tissue type, there will be a large number of distinct cell types

being expressed. Therefore, being able to see the gene expression profile of a single

cell in a tissue at a given time is very important in differentiating critical cell types. Since

the timing of brain development is critical in ASD, it is critical to be able to sequence the

RNA of single cells from particular brain tissue types at particular time points in

development, which scRNA-seq allows researchers to do (Polioudakis et al., 2019). The

following figure represents a framework for utilizing bulk RNA-seq on developing brain

tissues, which is expanded to single-cell RNA-seq on developing brain tissues in this
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project. Figure 1 depicts a workflow of gene module creation from RNA-seq data,

protein-protein interactions, and co-expression networks, which are then used as inputs

to our program that maximizes an objective function to seek out critical cell types

implicated in NDDs.

Importance of sub-tissues and cell types impacted by neurodevelopmental disorders

and Autism:

It is important to identify critical cell types involved in neurodevelopmental

disorders such as Autism Spectrum Disorder for several reasons. First, it will help

scientists to better understand the human brain and the development it undergoes, both

normal and abnormal. Second, by discovering biomolecular pathways that are impacted

by NDDs such as ASD, this provides future opportunities for pharmacological treatment

for disorders involving these pathways. This research will also help to deconvolute

regulatory networks, and it may shed light upon the molecular drivers of differentiation,

generation, and development of cell types where these mechanisms are not currently

known. Some studies on ASD focus on cortical cell function, and by making molecular

taxonomies, this could lead to a better understanding of neurogenesis from cortical cells
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from the developing human brain, which will in turn extend knowledge of

neurodevelopmental disorders (Polioudakis et al., 2019).

The aim of my thesis is to contribute to the understanding in literature of the

critical cell types involved in NDDs such as ASD. Several studies—using different

technologies than what I have used in my research—have been performed, and

subsequently have reported their findings on critical cell types in ASD. One such study

sampled 40,000 cells from the developing human neocortex as fetal samples without

known pathogenic CNVs for any neuropsychiatric disorder at 17-18 gestational weeks.

The cell samples are taken from the cortical anlage, where there are large germinal

zones and cortical laminae undergoing development, which includes new and migrating

neurons (Polioudakis et al., 2019). Scientists have connected neurodevelopmental

processes at this same time point and place in the brain as being connected with

neuropsychiatric diseases (de la Torre-Ubieta et al., 2016; Gandal et al., 2016). In

Polioudakis et al. 2019, the cell types were clustered using t-distributed stochastic

neighbor embedding (tSNE), which grouped the cells into the areas of the brain from

which they originated. Further sub-clusters of cells were found by re-clustering cells

within the original clusters to form sub-clusters of cell types. They looked at genes

enriched for high confidence ASD risk genes (or genes which have high risk

protein-disrupting mutations). They found that the majority of such ASD risk genes were

enriched in developing glutamatergic neurons (deep and upper layers) (Amiri et al.,

2018.; Parikshak et al., 2013; Polioudakis et al., 2019). Interestingly, there is a high

degree of variation amongst individual genes as to where they were most highly

expressed. Some genes were highly expressed in inhibitory neurons, excitatory
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neurons, or neural progenitors. ASD-risk genes MYT1L and AKAP9 are expressed

pan-neuronally, whereas GRIN2B was found to be specifically expressed in the

glutamatergic neurons. ILF2 was found to be highly expressed in cycling progenitors.

Additionally, some ASD risk genes were found to be extra-neuronal in expression.

SLC6A1 was enriched in pericyte cells, while TRIO, TCF7L2, KAT2B, and SETD5 were

highly expressed in oligodendrocyte progenitor cells. The data indicates that the

blood-brain barrier and peri-neural environments may be ASD risk factors as well

(Polioudakis et al., 2019). As ASD is highly comorbid with epilepsy and ID, Polioudakis

et al. searched for risk genes for epilepsy and ID as well. They found that ID risk genes

were involved in glutamatergic neurons and radial glia, which was not the case in either

ASD or epilepsy. This may coincide with a more clinically severe phenotype for ID than

in ASD or epilepsy (Polioudakis et al., 2019).
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Chapter 2: Biological Definition and Mathematical Formulation

Motivation:

Our primary objective in this dissertation is to introduce a novel approach for

discovery and ranking of cell types that are “critical” in neurodevelopmental disorders.

We propose to use the recent progress in discovery of genetic modules/pathways

disrupted in NDDs and available single-cell RNA-seq (sc-RNAseq) data from the

developing human brain to find the critical cell types in these disorders. Intuitively we

are given the modules and/or pathways disrupted in NDDs and the scRNA-seq data

from the developing brain, and we define critical cell types for NDDs as a set of cells

that (i) have a relatively high amount of expression of the provided genes in the

modules and/or pathways and (ii) are part of a same cell-type (or closely related).

Several sets of module genes will be used. One is a set from Polioudakis et al. of

25 ASD risk genes. The second is a set of module genes identified by MAGI entitled

Module 1 Extended, which is a module of 80 genes affiliated with Wnt, NCOR,

SWI/SNF, and Notch complexes implicated in ASD and ID. Module 2 Extended is made

of 24 genes that are involved in synaptic function, long-term potentiation, and calcium

signaling and that are also implicated in ASD and ID (Hormozdiari et al., 2015).

Previous research into the cell types impacted in NDDs and in particular ASD include

deep layer excitatory neurons or glutamatergic neurons, oligodendrocyte progenitor

cells, and cycling progenitor cells (Amiri et al., 2018; Parikshak et al., 2013; Polioudakis

et al., 2019). Our aim in this project is to identify critical cell types implicated in NDDs

utilizing single-cell RNA-sequencing data in a novel way. An objective function will be

calculated for cells, and the groupings of cells maximizing this function will be defined
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as critical cell types. Figure 2 describes the inputs and outputs of the objective function

that comprises the program implemented in this project.

The objective function will try to find the optimal set of cells that maximizes the

objective function output. The program implementing the objective function receives the

list of module genes of interest, the single-cell RNA-seq data with unique molecular

identifier (UMI) counts), cell by cell distance data, and in the future gene co-expression

data. One floating point value per cell type cluster will be returned. A higher returned

value will indicate that this cell type is correlated with the disorder underlying the

inputted data. Therefore, in order to find critical cell types for a particular disorder, the

largest objective function values indicate that those cell types are implicated in the

disorder. The larger the objective function score, the higher the likelihood that this cell

type is implicated in NDD.

19



We will introduce C to denote the set of single cells, refers to the normalized

expression calculated per gene per cell, and refers to the pairwise cell by cell

distance matrix calculated using Seurat packages (Butler et al., 2018). Software

versions are as follows: Seurat 2.3.4, dplyr 1.0.2, patchwork 1.0.1, and Matrix 1.2-18.

refers to the set of genes in a module, for example a set of NDD risk genes. The

objective is to find the subset of cells that maximizes the probability that the

selected cells are “critical” given the module genes and gene expression . More

formally we want to solve the optimization problem . This can be

thought of as an attempt to maximize for the probability that the subset of cells

are critical given module genes and gene expression , or

. Bayes’ Theorem for three events can be expressed as

. Therefore, this can then be thought of as

by assuming that is constant and

independent of the subset of cells . Here, can be simplified to

where refers to the pairwise distance between any two cells. is the

probability that genes within the module are expressed when viewing only the subset

of cells . Then reincorporating the right hand side, the chain rule of Bayes’

Theorem is used to produce the following formula:

.
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Gene co-expression data could be potentially added in to improve objective

function results. The interactions between cell types can lead to a broader

understanding of the roles of cell types in systems (McKenzie et al., 2018). Gene

co-expression has been utilized in the creation of gene modules particularly in NDDs by

identifying genes that are highly co-expressed in brain development (Hormozdiari et al.,

2015; Parikshak et al., 2013). This objective function can likely be improved upon by

utilizing gene co-expression data in the future. It would likely be included as another

multiplicative factor to the existing objective function.
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Chapter 3: Methods

Objective function implementation:

A statistic called specificity index has been utilized to find genes that are

enriched in certain cell types across many cellular profiles (Dougherty et al., 2010). This

study aimed to measure the specificity index of central nervous system microarray data

to find genes enriched in each cellular population. Their formulation takes into account

variations in transcript numbers enriched in different cell types, and the descended

sorting of rankings relies upon the overall size of the comparisons, which in turn relies

upon how many genes are expressed and the filtering applied to cell types. This means

that the raw specificity index values cannot be directly compared amongst cell types,

and instead a p value through permutation testing must be calculated, forming a

‘simulated probability distribution’ (Dougherty et al., 2010). This probability distribution

then can be assigned to specificity index values, and genes enriched in a particular cell

type can be identified. The specificity index threshold (pSI) that finds the probability that

each group of cells has a significant expression in the module. Their formulation is as

follows: . refers to the gene expression value for a

gene named n, where the rank is defined as a descended ordering. M refers to the

number of cells. This thesis project builds upon the specificity index threshold.

Motivated by Dougherty et al., we will approximate following the

CSEA approach. The previous function utilizing Bayes’ Theorem is then correlated with

the following function implementation that utilizes ranking:
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. The left hand side of this function,

however, is not strictly a probability, it is simply correlated with the previous probabilities.

This is the function that this project seeks to maximize in order to identify critical cell

types in NDDs.

The rank can be defined (with rank of 1 being the smallest) as the rank of a gene

compared to all other genes in the human genome. For a given gene at a given cell

type, the rank is the position of the ordered UMI counts, which is then compared to the

sum of the UMI counts for all other genes in the genome. can then be

calculated by summing the ranks found above for all cell types k for a particular gene,

which is then divided by the total number of cell types m minus 1. A higher ranking

means that a gene is more highly expressed in this particular cell type. Ranking is

particularly useful as it allows the formulation to not become overwhelmed by

disproportionately large numbers, and normalizing by also dampens the effect

of large numbers. The goal of ranking is to pick out differences in comparisons amongst

cell types in which a given gene is not expressed or less expressed when compared to

other cell types.

Datasets and pre-processing of data:

I have utilized the Polioudakis et al. 2019 dataset. This dataset includes 40,000

cells taken from the developing human neocortex between 17 and 18 gestational

weeks. The cells fall under the cell type grouping of microglia, pericyte, endothelial,

OPC (oligodendrocyte progenitor cells), interneuron caudal ganglionic eminence (CGE),

interneuron medial ganglionic eminence (MGE), excitatory deep layer 2 neurons,
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excitatory deep layer 1 neurons, maturing excitatory upper enriched neurons, maturing

excitatory neurons, migrating excitatory neurons, intermediate progenitor cells, cycling

progenitors in the G2/M phase, cycling progenitors in the S phase, outer radial glia

(oRG), and ventricular radial glial (vRG) cells. Drop-seq was utilized to analyze the cell

samples, which produced cellular profiles. This produced gene expression profiles for

the 40,000 cells via UMI counts. This is the dataset used in this project, and the link to

the data can be found in their paper.

Some amount of preprocessing was performed in order to align gene data. Any

cells with a cell type labeled ‘UNK’ (unknown) were removed from the dataset for

analysis purposes. The file raw_count_mat is the UMI count data, which is a sparse

matrix in an rdata file. This was converted to a matrix utilizing the Matrix packing in R.

Next, gene names were standardized across multiple datasets. I considered—and will in

the future—including two more datasets in the analysis (La Manno et al., 2016; Zhong

et al., 2018). This requires that the gene symbols be standardized across all three of the

datasets, otherwise a gene with multiple names may be labeled with one name in one

dataset, a second name in a second dataset, and possibly a third name in a third

dataset, and so forth. Non-protein-coding genes were removed from all input files. The

first step was to find genes that have the same name in all three datasets. The second

step was to find the subset of genes that do not exist in all three datasets. This list of

genes was fed into the multi symbol checker which can be found at

https://www.genenames.org/tools/multi-symbol-checker/. This tool returns two outputs: a

file that contains genes with name matches, and a file that contains genes without name

matches. For genes that have a match, this can be either labeled as an approved
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symbol, previous symbol, or an alias symbol. Any genes with an approved symbol were

kept as is in the datasets. When an inputted gene appears only once and its alias

symbol is a different gene, the gene is renamed to the alias symbol returned. If an

inputted gene appears more than once and has one previous and one alias symbol, the

previous symbol is used for renaming the input. If an inputted gene appears more than

once with two alias symbols, the gene was manually queried via genecards.org, and the

gene name with the highest score was accepted.

Expression fraction can be defined as for a particular gene at a particular cell

type at a particular time point, the number of cells having the gene expressed (i.e. UMI

>= 1) divided by the total number of cells grouped in that cell type. I excluded cell types

with ten or equal cells per cell types. This expression fraction was calculated as above

on the UMI counts of single cells from published datasets. Cell type clusters in the

Polioudakis dataset were used, and expression fractions were calculated for each gene

per cell type and gestation week time combination.

Once expression fractions were calculated and gene naming conflicts were

resolved, the raw UMI counts were loaded into Python in a genes by cells format. Then,

this data was used as input to Seurat in order to calculate a cell by cell distance matrix.

This was done in a similar manner as in Polioudakis et al., 2019. Figure 3 illustrates the

pipeline that this process follows. A Seurat object was created from the raw counts

matrix, the data was normalized using a LogNormalize method with a factor of 10,000.

The FindVariableGenes function was then called, along with ScaleDataR, and then PCA

was run on the input data with a pcs.compute argument of 40. Clusters were formed

with dimensions of 1:40 and save.SNN equal to true. tSNE was then run on the clusters,
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and then the clusters were written to a file. A co-expression matrix was then created

using Pearson’s correlation coefficient and the expression fraction calculations, which

also takes as input a file of transcript names and gene names, and a file of expression

values. This will potentially be used to further improve the objective function in the

future.

Assuming cell type clusters are given:

Let us assume for now that the cell types are given in the inputted dataset (i.e.

that we know the cell type clusters and the barcodes in each cluster). For instance, this

thesis project uses data from Polioudakis et al. 2019 containing 40,000 cells from the

developing human neocortex. They have created clusters of cell types—and additionally

sub-clusters of those same cell types—that include microglia, pericyte, endothelial, OPC

(oligodendrocyte progenitor cells), interneuron caudal ganglionic eminence (CGE),
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interneuron medial ganglionic eminence (MGE), excitatory deep layer 2 neurons,

excitatory deep layer 1 neurons, maturing excitatory upper enriched neurons, maturing

excitatory neurons, migrating excitatory neurons, intermediate progenitor cells, cycling

progenitors in the G2/M phase, cycling progenitors in the S phase, outer radial glia

(oRG), and ventricular radial glial (vRG) cells (Polioudakis et al., 2019).

In this dataset, the cell type clusters are known and labeled, therefore the right

hand side of the objective function which represents the probability of cells

being critical cells given the cell pairwise distance matrix, is equal to 1, given that it is

now known whether or not is composed of critical cells. Therefore, the crucial portion

of the objective function that I want to optimize becomes the left hand side of the

function laid out in the previous chapter.

Assuming cell type clusters are not given:

Now let us assume that the data is no longer labeled with which cells belong to

which cell types. This may be the case due to a dataset being unlabeled with regard to

cell types, or the cells within a cell type may be in different stages of the cell cycle and

we might therefore be interested in these differences, or there is some other unknown

factor that may differentiate cells from each other. This is perhaps a more real-world

example, where a scientist has taken samples of cells, obtained their single-cell

RNA-seq expression data, and now wants to analyze what the critical cell types

involved in this set of module genes and gene expression data. Now, it cannot be

assumed that the right hand side must be equal to one in this case. Therefore, the right

and left hand sides must both be calculated in this instance.

Simulated annealing:
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A simulated annealing approach will be used in the future to approximate the

most likely critical cell types for the inputted dataset. Here, annealing refers to

thermodynamics involved in metallurgy. A set of module genes of interest will be the

input (along with their co-expression data), and a random group of cells from the single

cell RNA-seq dataset will be chosen as the initial set. The objective function value for

this data will be calculated, and then while the temperature is greater than our minimum

temperature allowable, a cell will be swapped in randomly and the new objective

function score will be calculated. If this results in a higher objective function value, the

cell will be swapped into the group. There is also a chance, dependent on the current

temperature, to move to a worse neighbor (or a cell that will give a lower value). The

temperature decreases incrementally as each new cell is considered. Once the

temperature has sufficiently lowered, a set of cells will be returned that maximize the

probability of observing the selected set of cells given expression data and the inputted

module. The output of this will be the approximate set of critical cell types relevant to

NDDs.

Availability: The github repository for the objective function program can be found at

https://github.com/ashleighthomas/criticalCellTypes as well as at Zenodo with the

following DOI: http://doi.org/10.5281/zenodo.4737835.
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Chapter 4: Results

In order to test the accuracy of our objective function, I performed several

experiments. It is important that our objective function is able to identify critical cell types

as previously defined by literature, given that this project’s novel contribution is using

single-cell RNA-seq data which has not yet been used in identifying critical cell types for

NDDs. Therefore, I first compared our objective function’s results to the results of

Polioudakis et al. from 2019 on a set of module genes that they identified as ASD risk

genes. Then, I found the correlation coefficient between our objective function’s results

and the Polioudakis et al. paper’s results. It is important to note that the results are

correlated with each other, yet they are not completely similar, as our approach differs

from previous approaches, so it is not expected that the correlation coefficient would be

particularly close to 1. Finally, I ran the objective function on 100 different sets of 9995

randomly chosen barcoded cells which were substituted for the previously used cell

types as defined by Polioudakis et al. The purpose of this experiment was to determine

if our results with true cell types (i.e. cell types that have been proven to cluster together

and are similar) is better than a random grouping of cells from a wide variety of cell

types. The size of the cell set (9995) was chosen because the largest cell type set in

Polioudakis et al. is of 9995 cells. For this experiment, it was important to compare the

average maximum similarity of cells within the same cell type compared to cells outside

of the same cell type. For randomly chosen barcodes that do not represent a true cell

type, I would not expect that the comparison within the same cell type to be better than

the comparison outside of the same cell type.
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In another experiment, I ran our objective function on the Module 1 Extended

module genes, with the 16 cell types as defined by Polioudakis et al. The purpose of

this is to see if the average maximum similarity comparison is larger within a cell type

than outside of a cell type. It is expected that within one cell type will be greater than

outside of a cell type, as the 16 given cell types were found to be clustered together,

and therefore have a higher similarity to each other than to cells outside of the cell type.

I then ran the objective function on Module 1 Extended and Module 2 Extended in order

to identify the top critical cell types for each of these modules. Table 1 describes the

input datasets this project uses.

Experiment comparing objective function performance to Polioudakis et al. 2019:

In order to compare how my objective function performs in comparison to results

published in literature, I recreated a figure from Polioudakis et al. 2019. This figure

(figure 7A) shows a heatmap of ASD risk genes as rows and cell types as columns.

Polioudakis et al. displays the z-scored UMI counts per gene per cell in a cell type. I

recreated their experiment by first calculating the z scores of the UMI counts of each

cell per gene, and then averaged these across a cell type so that a square in the

heatmap will be only one color, rather than one color per cell in the cell type. I then ran
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my objective function with the same set of ASD risk genes as the module genes, and

the same UMI count data. This data along with the cell by cell distance matrix was

plugged into a modified objective function, where only the ranking of genes was

performed. The values within a cell type were independently z-scored, and then

averaged to create an output of one value per cell type per gene. A heatmap was

created of this data, and compared with the similarly-created recreation of the

Polioudakis figure.

Figure 4 represents the heatmap that I created using the methods described in

Polioudakis et al. 2019 to create this heatmap, except I returned an average value per

cell type per gene rather than one value per cell per gene. Figure 5 represents the

previously described heatmap made of ranked UMI counts of module genes having

been z-scored independently per cell type and then averaged across a cell type to

return a value per gene per cell type. Visually, these heatmaps look similar, but not

identical to each other. Figure 5 shows a broader array of values, and there are more

scores that are in the middle of the range, displaying patterns that are not viewable in

Figure 4.
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Experiment finding correlation coefficient between Polioudakis and objective function

output:

The data from the previous experiment (prior to feeding it into a heatmap

representation) was then used to compare the Polioudakis scores with my objective

function scores. This was done utilizing Pearson’s correlation coefficient to provide a

statistic to compare the two techniques with.

Following the previous experiment, the z-scored and averaged per cell type per

gene output from my objective function was compared to the output of the Polioudakis

method that took UMI counts and z-scored them. I calculated Pearson’s correlation
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coefficient of these two matrices with each other, which returned 0.868833686064852,

showing a correlation between the two methods.

Experiment evaluating the objective function on random barcoded cells:

In order to analyze the results of the objective function on pre-existing cell types,

it is necessary to also compare this to the results of the objective function on randomly

chosen barcodes. 9995 barcoded cells from the entire Polioudakis et al. 2019 dataset

(9995 being the number of barcoded cells in the largest cell type group of ExN

representing newly created excitatory neurons) were randomly selected to represent a

critical cell type. This was then fed into the objective function using the M1 extended

MAGI genes as module genes. This was then run 100 times using a different set of

random barcoded cells each time. Of particular interest is the relationship between the

average maximum similarities of cells compared to only cells outside of the cell type

(inter comparison) and the average maximum similarities of cells compared only to cells

within that cell type cluster (intra comparison). This was then compared with the 16 cell

types as laid out by Polioudakis et al. being inputs to the objective function with the

same M1 extended gene set as module genes.

This experiment was run 100 times on 100 different sets of 9995 randomly

selected barcoded cells from the Polioudakis et al. 2019 dataset and the M1 extended

module genes. Each of the 100 times, the inter comparison was higher than the intra

comparison, meaning that the average maximum similarity of cells from one cell type

compared to cells outside of the cell type was always higher than the average maximum

similarity of cells compared to cells inside the same cell type. This is important, because

it is expected that cells within a cell type cluster are more similar to each other than to
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cells outside of the same cell type. Since these 9995 barcodes were not all from the

same cell type, they do not represent a true cell type, meaning that I do not expect that

cells that were randomly selected to have a higher average maximum similarity with

each other than compared to cells outside of the randomly selected group. Figure 6

shows the results of this experiment.

Experiment evaluating the objective function using pre-existing cell types:

I then evaluated the objective function utilizing the 16 cell types found in the

tSNE clustering process (Polioudakis et al., 2019). For each run, one value per cell type

will be produced by the objective function. This means that since I ran this with 16 cell

types, I can expect 16 floating point values in return. The highest-scoring cell types can

be classified as being critical for the module genes and UMI counts that were used. I
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ran this for the MAGI M1 Extended ASD with ID and M2 Extended ASD with ID module

gene sets, along with the Polioudakis UMI count data. For the M1 Extended module

gene set, I also ran this same experiment with intra and inter comparisons of average

maximum similarities in order to compare this with the 100 randomly selected groups of

9995 barcoded cells.

I conducted an experiment to further our conclusions that cells within the same

cell type cluster should have higher average average maximum similarity scores when

cells of the same cell type are compared to each other (intra comparison), rather than

when cells of one type are compared to cells of another cell type (inter comparison).

This is because cell type clusters should intuitively be composed of cells with a higher

similarity to each other than to cells outside of the cell type. I compared intra and inter

average maximum similarities for each of the 16 cell types in the Polioudakis et al.

dataset. In each of the cell types, the comparison within the same cell type (i.e.

comparing average maximum similarities within the vRG cell type as opposed to cells

inside vRG compared to cells outside vRG) is higher than comparing the average

maximum similarity of cells outside of the cell type. Figure 7 shows these results.
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Experiment evaluating critical cell types for M1 Extended and M2 Extended:

I then ran the objective function on the M1 Extended module as defined by MAGI

(Hormozdiari et al., 2015) which is composed of ASD and ID risk genes, and then again

on the M2 Extended module. The highest rated cell types in descending order for

Module 1 Extended are PgG2M (cycling progenitors in the G2/M phase) and PgS

(cycling progenitors in the S phase). The highest rated cell types in descending order for

Module 2 Extended are ExDp2 (excitatory deep layer 2 neurons) and ExDp1 (excitatory

deep layer 1 neurons).

In literature, cycling progenitors are cited as being enriched in gene expression in

genes implicated in ASD, particularly in ILF2 (Polioudakis et al., 2019). Other genes are

found to be highly expressed in oligodendrocyte progenitor cells, particularly genes
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TRIO, TCF7L2, KAT2B, and SETD5. Radial glial cells have shown higher expression in

genes implicated in ID rather than ASD (Polioudakis et al., 2019). Glutamatergic and

excitatory deep layer neurons have been shown to have higher levels of gene

expression for ASD risk genes (Amiri et al., 2018; Parikshak et al., 2013; Polioudakis et

al., 2019). Our results for Module 1 Extended and Module 2 Extended match the critical

cell types identified in literature.
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Chapter 5: Conclusion

Neurodevelopmental Disorders include Autism Spectrum Disorder, Intellectual

Disability, and a variety of other disorders that are impacted during the developmental

period in the human brain (DSM-5® Handbook of Differential Diagnosis, 2013). Further

research on these cell types is needed. Single-cell RNA-seq allows for a more detailed

set of RNA-seq data in comparison to bulk RNA-seq, as it allows for many more cells to

be sequenced per sample than previously. The human brain contains an extraordinary

number of specialized cell types, therefore it is critical to be able to gain as much

information as possible on the cell types in the brain that are tied to NDDs. By utilizing

sets of module genes related to NDDs in combination with scRNA-seq data from the

developing human neocortex, this project explores the concept of ranking and scoring

critical cell types involved in NDDs.

In this project, we developed an objective function to rank and score cell types

involved in gene modules and scRNA-seq data that are given as inputs. For example, a

set of 25 ASD risk genes were used as module genes along with a scRNA-seq dataset

of 40,000 cells taken from 17 to 18 gestational weeks from the cortex, which cluster into

16 cell types using tSNE (Polioudakis et al., 2019). This scRNA-seq dataset was used

in addition to transforming it into a cell by cell distance matrix, which measures the

distance between cells in the dataset. By using these as inputs, I was able to obtain

similar results to literature in regards to critical cell types for these ASD risk genes

(Polioudakis et al., 2019). Further, when the modified objective function values were

plotted as a heatmap, more detailed patterns were detected when using our objective
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function as opposed to a different function proposed in the literature (Polioudakis et al.,

2019).

Utilizing the same scRNA-seq dataset, I also ranked and scored the critical cell

types involved in other sets of module genes. I used two sets of module genes from

MAGI (Hormozdiari et al., 2015). These modules were both made up of genes

implicated in NDDs. For both modules, the top scoring cell types identified by our

objective function included excitatory deep layer neurons (glutamatergic neurons) and

cycling progenitors in the G2/M and S. These cell types have also been identified in the

past as being critical cell types implicated in NDDs (Amiri et al., 2018; Parikshak et al.,

2013; Polioudakis et al., 2019).

Future directions:

Addition of more cell type datasets:

The addition of multiple further scRNA-seq datasets would improve the range of

cell types that could be run in this project. For instance, by adding more UMI count

datasets and utilizing the same sets of module genes that have been implicated in

NDDs, this potentially could help identify further cell types that are critical in NDDs. This

project is already prepared to add in two more scRNA-seq datasets, as the gene names

have been normalized throughout all three datasets. The second dataset—in addition to

the Polioudakis et al., 2019 dataset—is from La Manno et al., 2016. These samples

were taken from the ventral midbrain from 6 to 11 gestational weeks, containing 1900

single cell samples, which were clustered into 25 cell types. A third dataset that is

available is Zhong et al. 2018. This dataset includes 2300 single cells from the

prefrontal cortex from 8 to 26 gestational weeks, which can be clustered into 35 cell
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types. Adding in these two single-cell RNA-seq datasets will likely offer a larger

sampling of cell types from the developing human brain, which has the potential to

enrich knowledge of critical cell types for NDDs.

Addition of different types of datasets:

Multiple additional types of data could be added as input to the objective function.

One such type of data is gene co-expression data. The following formulation has been

proposed to include gene co-expression data:

.  Here,

refers to the co-expression of gene with gene which is added as

another term in the multiplication function as previously discussed. Gene co-expression

has been shown to lead to a more detailed understanding of cell types in systems

(McKenzie et al., 2018), and has been used in the creation of sets of module genes

implicated in NDDs (Hormozdiari et al., 2015; Parikshak et al., 2013). Therefore, the

addition of gene co-expression data has been implicated as a method to increase

understanding of cell types, particularly in NDDs, and should therefore be considered in

the objective function implementation in the future.

Additionally protein-protein interaction (PPI) data could be added to the objective

function in the future. This data has been used in conjunction with gene co-expression

in the creation of NDD modules (Hormozdiari et al., 2015). PPI datasets are often

incomplete, and can have higher levels of bias than gene co-expression data, but the

relationships shown are still valuable (Hormozdiari et al., 2015), therefore this may be a

good data type to include in the future if it is available along with scRNA-seq data.
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Future experiment evaluating the objective function without pre-existing cell types:

In the future, the objective function will be run without the cell type clusters being

known. This means that—likely through simulated annealing—groups of cells will be

formed by running the objective function on a random subset of cells, where that

random subset is further refined to come up with an approximate maximum of critical

cell types. From there, the objective function will then return a value per each of the cell

types that were found via simulated annealing.
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