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Abstract

Statistical Learning for Sparse Sensing and Agile Operation

by

Yuxun Zhou

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

Recent advancements in the study of cyber-physical systems (CPS) have addressed the
combination of computation, networking, physical processes, and human involvement as an
overall system to improve adaptability, autonomy, efficiency, functionality, reliability, safety,
and usability. Among other lines of CPS research, machine learning (ML) has emerged as an
indispensable component for state estimation, prediction, diagnosis, structure identification,
operation specification, event detection, etc. This work particularly discusses three learn-
ing tasks that are commonly encountered in CPS sensing and operation applications. The
primary motivations underlying this dissertation are (1) to incorporate the unique character-
istics of the data generated from system measurement, and (2) to facilitate the integration
of ML into other components of CPS, such as sensing and control subsystems.

More specifically, we first consider learning interaction structures for sparse sensing. With
the generic directed information maximization as the learning objective, we discuss two
subset selection problems and provide performance guarantees for greedy algorithms by
extending the notion of submodularity. Practically, the proposed learning framework can
be applied broadly to streaming feature selection, causality mining, sensor placement, as
well as the construction of causal graphs. The second learning task discussed in this work
is focused on the detection of outliers or novelties from multiple correlated time series data
generated from CPS measurement. The key issue being addressed is the utilization of the
correlation information in the smoothing process of multiple sequences. Two methods, one
based on a multi-task extension of non-parametric time series modeling and the other based
on merging hidden Markov model with matrix factorization, are established and analyzed.
Lastly, we discuss the task of learning system requirement for agile operation and optimal
control. The classical ML paradigm is modified with “shape constraints” to facilitate its
usage for optimal control or to capture class imbalance for event detection. While developing
new learning formulations, we also propose a novel global optimization procedure, namely
parametric dual maximization, that is able to solve a class of modified machine learning
problems having non-convex objectives.
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Chapter 1

Introduction and Motivation

1.1 Sensor Rich Cyber-Physical Systems

1.1.1 Background

Modern engineering systems feature a combination of computation, networking, and physical
processes, and are tightly integrated with the demand and behavior of their users. More-
over, the incorporation of intelligent applications, ubiquitously connected usage patterns,
and increased performance demands have changed the dynamics and interactions of cyber
and physical components in a significant manner. These trends require fundamentally new
modeling, design, and diagnosis approaches where both cyber and physical components are
jointly considered at all levels of abstraction. Recent advancements in the research-field of
cyber-physical systems (CPSs), have been addressing these issues to improve modern en-
gineering systems in terms of adaptability, autonomy, efficiency, functionality, reliability,
safety, and usability [1, 2, 3, 4, 5, 6]. The subjects of the CPS research include but are
not limited to complex automotive and aviation systems, intelligent traffic scheduling and
control, reliable medical devices, environmental monitoring and control systems, distributed
robotics, electric power grid, communication systems, etc. [7, 8, 9, 10].

Among other defining characteristics of CPS, the impact of computational components
on the other aspects of the system is most remarkable. Due to the accelerated advancement
of sensing and measurement technology, the cyber components now have access to rich
information related with the dynamics, states, and behavior of the physical components and
their users. The computation enabled by those miscellaneous information sources, therefore,
broadly involves many areas of artificial intelligence (AI) including machine learning (ML),
information representation, scheduling, optimal control etc. This works specifically discusses
several arising problems of machine learning as the indispensable cyber component of sensor
rich CPS. To illustrate the necessity and effects of integrating learning algorithms into the
overall system, we briefly introduce the smart building technology as an example.
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1.1.2 An Example of CPS: the Smart Building Technology

Traditionally buildings are treated only as physical entities that provide services such as shel-
tering, security, living/working space, privacy, storage, comfort, culture and personal values,
a form of investment, etc. The research lines addressing buildings are mainly from archi-
tectural, structural, and energy efficiency points of view. Recently with the unprecedented
development of information technology and sensor network, buildings are becoming a com-
plex combination of both physical and cyber subsystems. The newly integrated intelligent
control and communication module, monitoring subsystem (e.g., sensor networks) and deci-
sion support system enable smart building technology that greatly expands the functionality
and improves energy efficiency and well-beings of building occupants. The co-existence with
the physical components, such as architectural structures, civil engineering infrastructure,
heating ventilation and air conditioning (HVAC) systems, makes modern smart building a
unique case of CPS. As of today, the energy consumption of buildings, both residential and
commercial, accounts for over 40% of primary energy usage in the U.S [11]. With a novel
CPS-based perspective for design, deployment and operation taken, it can be expected that
much of this would be reduced. In addition, the security, privacy, comfort and productiv-
ity of building occupants can be greatly enhanced as new utilities are made available by
leveraging sensing, prediction, and personalized control [12, 13, 7, 8, 14].

Architectural structure

Built Environment

•Thermal circuit model

HVAC system control

•MPC control/Sequential QP

Smart Devices control

•MDP or miscellaneous

Lighting Control

•Occupancy-based MILP

Security Control

Predictive Models

•State estimation and prediciton

Event detection and diagnosis

•Pattern Recognition, classification

Unsupervised learning

•Dimension reduction, structure learning

Sensor networks

•Environment/occupants

Data base and preprocessing

•Streaming data

Occupant distribution/activity

•Monitoring, modeling, prediction

Indoor localization

Incentive design/social games CPS

Physical 
Components 

and 
Environment

Control 
System

Learning 
System

Sensing 
System

Occupants

Figure 1.1: Smart Building as CPS: physical and cyber components

The major subsystems of a smart building are illustrated in Figure 1.1. Besides tradi-
tional components like structure environment and occupants, one physical subsystem (sensor
networks), and two cyber components (control and ML algorithms), are also integrated in
the overall CPS. All the five components are inherently coupled together and should be con-
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sidered in a unified framework to realize new applications, improve performance, and reduce
operational costs.
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Figure 1.2: Sensor network deployment at CREST center, Cory Hall, Berkeley

The sensing system in smart buildings is devoted to monitoring built environment, oc-
cupancy, HVAC states, electricity, functionality of miscellaneous devices, etc. It consists
not only of sensors and measurement instruments, but also of data base and communication
networks for information storage and transmission. For a concrete example, Figure 1.2 shows
the sensing system deployment in the Center for Research in Energy Systems Transformation
(CREST) at Cory hall, UC Berkeley. The environmental variables of the working space, in-
cluding temperature, humidity, light, air quality, CO2 concentration, are monitored through
the Building-in-Briefcase (BiB) sensing platform [7]. The energy usages of miscellaneous
devices, such as desktops, laptops, printers, coffee machine, microwave, etc., are recorded
using the AC meters (ACme) developed by UC Berkeley as part of the Green Soda Project
[15]. In addition to device-level energy monitoring, the overall electricity profile is measured
with the high resolution PowerScout 18 Dent Meter, which provides per second three phase
voltage and current readings [16]. The radio-frequency identification (RFID) [17, 18], blue-
tooth [19] and WiFi based indoor localization system [20, 21, 22, 23] gather electromagnetic
signals related to the presence and activities of the space occupants. Last but not least, the
operation status of the Lutron light system and HVAC system is reported from integrated
sensors to the building management database by using the Building Automation and Control
Networks (BACnet) protocol [24].
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As shown in Figure 1.2, all sensing data is eventually transmitted to the building man-
agement system (BMS) for processing and utilization. This is where machine learning and
control algorithms come into play. The ML module takes the raw measurement as input, and
performs a wide variety of tasks ranging from denoising, prediction, dimension reduction, to
complex ones like state estimation, event classification, causal identification, etc [25, 26, 27].
To list a few in the CREST example, the device-level electricity data is processed with gen-
eralized principle component analysis (gPCA) [28], a multivariate autoregressive integrated
moving average (mARIMA) model [29], as well as a directed information filter [30] for di-
mension reduction, prediction, and causal analysis, respectively. Given the environmental
information, convex functions are learned to model users’ comfort requirement [31], and a
particle filter based approach is applied to estimate occupants’ presence and activity [32,
33, 9]. The combination of sensing systems and ML provides rich information about the
overall system state, behavior, faults and events that would otherwise be unobservable using
traditional measurements and modeling techniques.

The control module in smart buildings mainly deals with HVAC and lighting systems.
Recently a large body of research has been motivating a transition from the classic rule
based control strategies to more comprehensive optimal control schemes. Regarding smart
building technologies in particular, the adaptations of Model Predictive Control (MPC)
[34] have achieved significant improvement in terms of both energy efficiency and demand
response. Essentially, MPC treats building thermal space model as the control subject,
uses the observed environmental/occupancy information from the ML system to guide the
physical model, and finally optimizes over a receding horizon to reduce total and peak energy
usage [31]. Relying largely on light sensors and occupancy information from the ML module,
the optimal control of lighting system in smart buildings can be formulated as a mixed
integer linear programming (MILP), which is solved with the branch and bound algorithm
to provide control signals for each light [35]. In short, the control component takes the
output of sensing system and ML algorithm as its input, and directly modulate the physical
component to achieve the desired system behavior.

1.2 Machine Learning for Sensor Rich CPS

Previous research on system engineering was mainly focused on developing physical models of
the underlying processes. The study of sensor rich CPS, however, calls for a combination of a
model-based approach and a model-less data-driven approach for state estimation, structure
identification, and control. The motivations are two-fold: On one hand, the physical model
based methods largely rely on the correctness of the presumptive dynamics of the system.
Their limitations are obvious as (1) Modern CPS integrates many heterogeneous, strongly
coupled, and high dimensional components together, which are hard, if not impossible, to be
described with simplified physical laws. (2) More and more CPS applications have to deal
with significant randomness caused by human involvement, the chaotic nature of the system,
or the unobservability of the process, which significantly deteriorate the reliability of physical
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models. On the other hand, provided with rich sensing measurement of a CPS, it seems
more appropriate to replace part of the modeling task with a data-driven approach, or even
conduct pure machine learning based analysis for statistical inference and decision making.
As both sensing technology and ML have been advanced greatly, the data-driven approach
is expected to receive increasing attention in both application and research domains.

1.2.1 Learning Tasks

Following the above discussion, the machine tasks involved in CPS applications can be
summarized into the following categories:

• State Estimation: The most common learning objective in CPS aims to infer system
states that are not accessible or even unobservable with the deployed sensing measure-
ment. Those “hidden states” could be parameters of a complex physical process that
are hard to measure directly, or human involved factors that are inaccessible due to
privacy or security concerns. In the dynamic modeling literature, tasks are usually
referred to as smoothing, filtering, and prediction, depending on the temporal location
of the parameter under estimation. From a broader machine learning perspective, how-
ever, the task of state estimation is essentially a statistical inference problem, which
can be dealt with by a wide variety of parametric or non-parametric methods.

• Interaction Identification: Data available in CPS is mainly from the measurement of
different parts of the system that are inherently interactive and coupled together. The
task of interaction identification is to reveal the underlying relatedness of physical
processes regarding their dependence and causality. Provided with the interaction
structure, one is not only able to understand the CPS in a more compact, reduced
dimensional space, but also incorporate that information to improve various estimation
tasks through feature selection, transfer learning, collaborative filtering, etc.

• Learning System Specifications: An unique learning task in CPS is the modeling of
system requirements or specifications needed for proper functionality and operation.
In the smart building example, the occupants’ thermal comfort, lighting, and acoustic
requirement have to be learned from survey and sensing data for the operation of several
subsystems. The energy consumption curves of the HVAC system have to be fitted
using empirical measurement under different environmental conditions, so as to enable
an energy efficient control for all scenarios. Generally speaking, modern CPS contains
components that are either inherently uncertain or hard to describe with physical laws.
Such components are better characterized by statistical and ML models which can be
learned from rich measurement data.
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1.2.2 Key Challenges

Although some of the learning tasks mentioned in the previous section may appear conven-
tional and well-solved at first glance, we point out the following arising issues in the context
of CPS, that call for the development of novel machine learning paradigms.

• Since a CPS is usually operated in multiple modes under different conditions, the
resultant measurement data is often non-stationary and discontinuous. More impor-
tantly, the relatedness of multiple measurements is universally present and should be
incorporated to establish temporal-spatial, multi-variate, or multi-task learning.

• Given multiple measurement data, the identification of interaction structure is nat-
urally a combinatorial problem that is worst-case NP-hard. Besides, the interaction
usually exhibits itself in the form of sequential influence or causality, which is hard to
capture using traditional statistics. Hence a resort to approximation algorithms and a
generalized dependence metric is required for interaction identification.

• As far as learning system specifications are concerned, the ML model has to take into
account: (1) The characteristics of the measurement data, which is often corrupted,
imbalanced, and lacks proper labels; (2) The modified learning objective, which is often
cost-sensitive, needs robustness to data corruptions, and more importantly has to sat-
isfy the requirements imposed by CPS monitoring, diagnosis, and control applications.

1.3 Thesis Outline

This work discusses the aforementioned learning tasks and proposes customized machine
learning tools that address the above challenges. Although CPS are the general background
for the application of the discussed methods, we present and derive those tools in a broader
and more rigorous ML framework. The usage of the proposed methods is illustrated in the
experiment part of each chapter with their source code provided for practical purposes. The
rest of the thesis is organized as follows:

Chapter 2, entitled “Learning Causal Interactions for Sparse Sensing”, is focused on vari-
able selection and structure identification with an information theoretical metric that is able
to capture more general dependence. Technically, the learning tasks are first related to sub-
set selection problems, and then greedy approximations are studied as the preferred solution
by extending the notion of submodularity. Practically, the results and methods proposed in
this chapter can be readily used for feature selection with streaming measurement, causality
mining for multiple system variables, sparse sensor placement, as well as the construction of
dependency graph for the interaction of various CPS processes.

The following chapter discusses the detection of outliers or novelties from multiple cor-
related time series data. The key issue addressed here is the incorporation of the correlation
information in the smoothing process of multiple time series. Two methods, one based on a
multi-task extension of non-parametric time series model and the other by merging hidden
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Markov model with matrix factorization, are established in this chapter. The applications
to fault detection from CPS sensing data show that the proposed multi-task methods are
able to reveal interesting outliers/novelties that might be ignored using traditional single
task learning methods.

Chapter 4 is devoted to learning system requirement for agile operation and optimal
control. We start by addressing the problem of building a piece-wise convex classifier to
model system operation constraints, and then extend the classifier to a more general veto-
consensus multiple kernel learning framework for fault detection, domain description, and
semi-supervised event diagnosis. The technical contribution of this chapter is more toward
optimization: we develop a novel global optimization procedure, namely parametric dual
maximization (PDM), that is able to solve a class of modified machine learning problems
having non-convex objectives. In the experiment part, we not only test the performance of
PDM and show its advantage over state-of-the-art optimization methods, but also provide
two case studies that demonstrate the usage of the proposed ML schemes for CPS optimal
control and event detection applications.

Finally, Chapter 5 concludes this study and includes a brief discussion about future tasks
found within the topics of this thesis.



8

Chapter 2

Learning Causal Interactions for
Sparse Sensing

2.1 Introduction and Motivation

Recent advances in sensor network and information technologies have granted researchers
access to large amounts of time series data. In the context of cyber physical systems (CPS)
in particular, high-resolution measurements of the physical, cyber and human involved pro-
cesses are accumulated to provide enhanced observability of the system, enabling applica-
tion like machine learning, control, diagnosis, gamification, etc. Taking the smart building
application for example, the environmental sensing technology measures the temperature,
humidity, air quality (CO2), sound pressure level, etc of the spaces of interest. The smart
power meters are utilized to record the energy consumption of the heating, ventilation and
air conditioning (HVAC) systems, the electricity usage of lighting, plug loads, as well as
other ancillary apparatus in smart buildings. Moreover, the occupancy sensing platform,
enabled by RFID [36, 37], Bluetooth [19], embedded sensors in mobile phones [38, 39, 40],
environmental sensors [8] and WiFi [41, 42, 43, 44, 21], provides detailed information about
individual presence, location, even behavior and activities [45, 22, 46]. Given rich informa-
tion in the form of high dimensional time series data, the key issue is to obtain a concise
or ideally sparse information representation for downstream applications such as prediction,
event detection, system diagnosis, and control. Towards this goal, this chapter is focused on
resolving the following problems that are related to sparse sensing and information repre-
sentation:

• Sensor placement, i.e., deciding which information stream is worth measuring, such
that the overall observability of the system is maximized.

• Covariate selection, i.e., picking up useful covariates, to benefit the prediction or esti-
mation of a target process.
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• Graphical representation of interactions, i.e., identifying a structure that captures the
direct influence, possibly causal impact, among processes of interest.

We propose to use Directed Information as a measure of generic dependence and causality,
and show that the aforementioned problems can be reduced to two fundamental subset selec-
tion problems. Both of them try to maximize cardinality constrained directed information.
To attack the NP-hard subset seletion problems we resort to approximate algorithms. More
specifically we study the performance of greedy heuristics through submodularity analysis.
To handle the possible lack of submodularity, we introduce the submodularity index (SmI) as
a key quantity to characterize the degree of submodularity for general set functions. Using
the new index, stronger performance guarantee of greedy heuristics is found for submodular
functions, significantly improving previous bound. More importantly, performance guaran-
tee is obtained for possibly non-monotonic and non-submodular functions, extending greedy
algorithms to the maximization of a much broader class of functions.

With regards to the subset selection objectives considered in this chapter, we provide
detailed analysis of their SmI and make a connection between causal subset selection and
causal graphs learning. Finally, an efficient structure learning algorithm is proposed to
construct a sparse representation of the interaction from multiple time series data. The
theoretical analysis and the structure learning algorithm are tested on both synthesis and
real world data sets, and the results justify the effectiveness of the proposed solution.

The rest of the chapter is organized as follows. In next section, we briefly review the
notion of directed information and submodular functions. Section 2.3 is devoted to the
formulation of two causal subset selection problems and their submodularity analysis. In
Section 2.4, we introduce SmI and provide an analysis of the random greedy algorithm.
Following the obtained results, the method for causal graph structure learning is given in
Section 2.5. Finally, the experimental results are presented in Section 2.6.

2.2 Preliminary: Subset Selection, Directed

Information and Submodular Function

2.2.1 Subset Selection and Directed Information

A wide variety of research disciplines, including computer science, economics, biology, and
various social sciences, involve causality analysis of a network of interacting random pro-
cesses. In particular, many of those tasks are closely related to subset selection. For example,
in social network research, it is critical for advertisers to target opinion leaders to maximize
the influence of their messages. In stock market analysis, investors are interested in selecting
causal covariates from a pool of data streams, in order to better predict the stock of interest.
Likewise in sensor network applications, with a limited budget it is not only beneficial but
also mandatory to optimally place sensors at information “sources” that provide the best
observability of the system.



CHAPTER 2. LEARNING CAUSAL INTERACTIONS FOR SPARSE SENSING 10

To solve the aforementioned problems we firstly need a causality measure for multiple
random processes. In literature, there exists two types of causality definitions, one is related
to time series prediction (called Granger-type causality [47]) and another with counter-
factuals analysis [48]. Under the framework of Grange, one establishes a causal relation if
the one time series contains unique information for the prediction of the other. Traditionally,
with linear regression or other time series prediction models, Granger Causality can be
reduced to a certain model selection problem, which is usually dealt with by hypotheis
testing [49, 50]. The counter-factuals analysis tries to substantiate “a comparison between
what actually happened and what would have happened in the absence of the intervention”,
which is a more intuitive procedure from a philosophical perspective. Practical algorithms
in this catergory include Structural Equation Modeling (SEM) [51] and its non-Gaussian
extension [52], etc.

In this work, we focus on Granger-type prediction causality substantiated with Directed
Information (DI), a tool from information theory. Recently, a large body of work has suc-
cessfully employed DI in many research fields, including influence mining in gene networks
[53], causal relationship inference in neural spike train recordings [54], and message trans-
mission analysis in social media [55]. Compared to model-based or testing-based methods
such as [49, 56], DI is not limited by model assumptions and can naturally capture non-
linear and non-stationary dependences among random processes. In addition, it has clear
information theoretical interpretation and admits well-established estimation techniques. In
this regards, we formulate causal sensor placement and covariate selection as cardinality
constrained directed information maximizations problems.

Now we formalize the definition of Directed Information. Consider two random process
Xn and Y n, we use the convention X i = {X0, X1, ...Xi}, with t = 0, 1, ..., n as time index.
Directed Information from Xn to Y n is defined in terms of mutual information:

I(Xn → Y n) =
n∑
t=1

I(X t;Yt|Y t−1) (2.1)

which can be viewed as the aggregated dependence between the history of process X and
current value of process Y , given past observations of Y . The above definition captures a
natural intuition about causal relationship, i.e., the unique information X t has on Yt, when
the past of Y t−1 is known. With the chain rule of entropy, directed information is usually
written in the following form

I(Xn → Y n) =
n∑
t=1

{
H(Yt|Y t−1)−H(Yt|Y t−1, X t)

}
= H(Y n)−

n∑
t=1

H(Yt|Y t−1, X t)

(2.2)

The first line of (2.2) shows another intuition: Since entropy is a measure of uncertainty in
bits, the directed information is actually the aggregated difference between uncertainty of Y
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given its past history and the uncertainty but given additional information from the process
X. The last term in (2.2) is usually referred to as causally conditioned entropy.

H(Y n||Xn) ,
n∑
t=1

H(Yt|Y t−1, X t) (2.3)

The directed information from Xn to Y n when causally conditioned on the series Zn is
defined as

I(Xn → Y n||Zn) = H(Y n||Zn)−H(Y n||Xn, Zn)

=
n∑
t=1

I(X t;Yt|Y t−1, Zt)
(2.4)

Observe that causally conditioned directed information is expressed as the difference between
two causally conditioned entropy, which can be interpreted as “causal uncertainty reduction”.
With this one is able to relate directed information to Granger Causality. Denote X̄ as the
complement of X in a a universal set V . Then,

Theorem 1. [57] With log loss, I(Xn → Y n||X̄ t) is precisely the value of the side informa-
tion (expected cumulative reduction in loss) that X has, when sequentially predicting Y with
the knowledge of X̄. The predictors are distributions with minimal expected loss.

In particular, with linear models directed information is equivalent to Granger causality
for jointly Gaussian processes. For stationary processes, the notion of information rate can
be naturally extended to DI. Assuming sufficient condition for the existence of limits and
enough regularity for the conditional probability measures, the causally conditioned entropy
rate and directed information rate are defined by:

H(X||Y ) = lim
n→∞

1

n
H(Y n||Xn) (2.5)

I(X → Y ) = lim
n→∞

1

n
I(Xn → Y n) (2.6)

2.2.2 Submodular Function

In literature, the study of submodular functions for subset selection and other related ma-
chine learning problems has shown promising results in both theory and practice. Following
the pioneer work [58, 59] that has proven the near optimal 1 − 1/e guarantee of greedy
heuristics, [60, 61] investigates the submodularity of mutual information under Gaussian
processes, and then uses a greedy algorithm for sensor placement. In the context of speech
and nature language processing (NLP), [62, 63] adopted submodular objectives that encour-
age small vocabulary subset and large coverage, and then proceeded to maximization with
a modified greedy heuristic. In [64], the authors combine insights from spectral analysis of
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covariance and the submodularity of R2 score. Remarkably, their result explains the near
optimal performance of Forward Regression and Orthogonal Matching Pursuit methods.

There are three equivalent definitions of submodular functions, and each of them re-
veals a distinct interpretation of submodularity, a natural diminishing returns property that
universally exists in economics, game theory and network systems.

Definition 1. Submodular Set Function
A submodular funciton is a set function f : 2Ω → R, which satisfies one of the three equivalent
definitions:

1. For every S, T ⊆ Ω with S ⊆ T , and every x ∈ Ω \ T , we have that

f (S ∪ {x})− f(S) ≥ f (T ∪ {x})− f(T ) (2.7)

2. For every S, T ⊆ Ω, we have that

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) (2.8)

3. For every S ⊆ Ω, and x1, x2 ∈ Ω \ S, we have that

f (S ∪ {x1}) + f (S ∪ {x2}) ≥ f (S ∪ {x1, x2}) + f(S) (2.9)

A set function f is called supermodular if −f is submodular. The first definition is direct
related with the diminishing return property: The two sides of (2.7) can be thought of as
marginal returns of the set function f at S versus the return at T , by adding an additional
element x. The second definition is better understood as the classic max k-cover problem
[65]. The third definition indicates that the contribution of two elements is maximized when
they are added separately into the base set. Note that this property can be easily extended
to the case with general k elements, which will be used later to define submodularity index.

View f (S ∪ {x})−f(S) as a “first order derivative” of f at base set S, the first definition
in fact requires non-increasing derivative. Consequently, submodularity appears to be similar
to “concavity” for set functions. Throughout this paper, we will denote

fX(S) , f (S ∪X)− f(S)

for further analysis. The “concavity” intuition coincides with the well known fact that,
despite of being NP-hard, maximizing submodular functions with a simple greedy heuristic
has near optimal performance guarantees [66]. On the other hand, it is worth pointing out
that submodularity is also closely related to “convexity” due to the convex Lovász extension,
with which polynomial time algorithms, such as [67] O(n5α + n6), can be designed for
unconstrained minimization.
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2.3 Formulation and Submodularity Analysis

2.3.1 Problem Formulation

In this section, we first formulate the causal subset selection problem into cardinality con-
strained directed information maximization. Depending on different scenarios, two objective
functions are considered and their issues of submodularity and monotonicity are addressed
in details. All proofs involved in this and the other sections, are given in appendix.

To motivate the first formulation, imagine we are interested in placing sensors to monitor
pollution particles in a vast region. Ideally, we would like to place k sensors, which is a given
budget, at pollution sources to better predict the particle dynamics for other areas of interest.
As such, the placement locations can be obtained by maximizing the directed information
from selected location set S to its complement S (in the universal set V that contains all
candidate sites). Then this type of “causal sensor placement” problems can be written as

argmax
S⊆V,|S|≤k

I(Sn → Sn) (OPT1)

Regarding the causal covariate selection problem, the goal is to choose a subset S from a
universal set V , such that S has maximal prediction causality to a (or several) target process
Y . To leverage sparsity, the cardinality constraints |S| ≤ k is also imposed on the number of
selected covariates. Again with directed information, this type of subset selection problems
reads

argmax
S⊆V,|S|≤k

I(Sn → Y n) (OPT2)

As a side note, it may seem tempting to use directed information rate as the objective,
however we use the accumulative formula here, because it does not require additional regu-
larity and can be used for non-stationary processes. The above two optimizations are hard
even in the most simplified cases: Consider a collection of causally independent Gaussian
processes, then the above problems are equivalent to the D-optimal design problem, which
has been shown to be NP-hard [68]. Unless “P = NP”, it is unlikely to find any polynomial
algorithm for the maximization, and a resort to tractable approximations is necessary.

2.3.2 Submodularity Analysis

Fortunately, we can show that the objective function of (OPT1), which measures the directed
information of selected subsets to unselected ones in V , is submodular.

Theorem 2. The objective I(Sn → S̄n) as a function of S ⊆ V is submodular.

The problem is that (OPT1) is not monotonic for all S, which can be seen because I(∅ →
V ) and I(V → ∅) are both equal to 0. However, the deterministic greedy algorithm only
has a guaranteed performance when the objective function is monotonic up to 2k elements.
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In fact, there exist cases such that suboptimal selections in the first few steps would cause
a complete failure of the deterministic greedy. Either extra assumptions have to be made,
e.g., the objective is monotonically increasing for any S : |S| ≤ 2k, or we have to reconsider
the algorithm to cope with non-monotonicity. The problem of maximizing non-monotonic
submodular function has been addressed in literature [69] [70] [71]. In this work we adopt a
recent idea in [71], which presents a randomization technique to overcome the non-monotonic
effect. Compared to other alternatives, it is simple and achieves the best known guarantee.

As for the submodularity of the second objective (OPT2), we make a slight detour and
take a look at the property of its “first derivative”. For any x, Y, S ⊆ V , with f(S) ,
I(Sn → Y n) the derivative fx(S) at S for “direction” x has a more compact form in terms
of a causally conditioned directed information,

Proposition 3.

fX(S) = I(Sn ∪ xn → Y n)− I(Sn → Y n) = I(xn → Y n||Sn) (2.10)

Thus the derivative is actually the directed information from the processes x to Y causally
conditioned on S. By the first definition of submodularity, if the derivative is decreasing
in S, i.e. if fx(S) ≥ fx(T ) for any S ⊆ T ⊆ V and x ⊆ V \ T , then the objective
I(Sn → Y n) is a submodular function. Intuition may suggest this is true since knowing
more (conditioning on a larger set) seems to reduce the dependence (and also the causality)
of two phenomenon under consideration. However, in general this conjecture is not correct,
and a counter example could be constructed by having “explaining away” variables in graphic
models. Hence the difficulty encountered for solved (OPT2) is that, in general the objective
I(Sn → Y n) is not submodular.

Note that with some extra conditional independence assumptions we can justify its sub-
modularity, as is stated in the following,

Proposition 4. If for any two processes s1, s2 ∈ S, we have the instantaneous conditional
independence that (s1t ⊥⊥ s2t | Yt), then I(Sn → Y n) is a monotonic submodular function of
set S.

In practice the assumption made in the above proposition is hard to check. Yet one
may wonder that if the conditional dependence is weak or sparse, possibly existing greedy
algorithm still works to some extent, because the submodularity is not seriously deteriorated.
This observation suggests that one can define a measure for the degree of submodularity,
instead of treating it as a yes-or-no property of set functions. We use this idea to deal
with the lack of submodularity. A novel metric, namely Submodularity Index (SmI), is
proposed in this work. Notably we will show that, the performance of greedy algorithms is
continuously determined by this index. Hence theoretically one can apply greedy heuristics
to the maximization of a much broader class of set functions.
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2.4 SmI and Performance Bounds

2.4.1 The Submodularity Index and Its Properties

For the ease of notation, we use f to denote a general set function and treat directed
information objectives as special realizations. It’s worth mentioning that in literature, some
effort has already been made to characterize approximate submodularity, such as the ε
relaxation of definition (2.7) proposed in [72] for a dictionary selection objective, and the
submodular ratio proposed in [64]. Compared to existing works, the SmI suggested in this
work (1) is more generally defined for all set functions, (2) does not presume monotonicity,
and (3) is more suitable for tasks involving information, influence, and coverage metrics in
terms of computational convenience.

To begin with, let’s define the local submodular index of a function f at location A for
candidate set S

ϕf (S,A) ,
∑
x∈S

fx(A)− fS(A) (2.11)

This definition can be considered as an extension of the third definition (2.9) for submodular
functions. In essence, it captures the difference between the sum of individual effect and
aggregated effect on the first derivative of the function.. Moreover, it has the following
property:

Proposition 5. For a given submodular function f , the local submodular index ϕf (S,A) is
super-modular of S.

Now we define SmI by minimizing over variables

Definition 2. For a set function f : 2V → R the submodularity index (SmI) for location set
L and cardinality k, denoted by λf (L, k), is defined as

λf (L, k) , min
A⊆L

S∩A=∅, |S|≤k

ϕf (S,A)
(2.12)

Thus SmI is the smallest possible value of local submodularity indexes subject to |S| ≤ k.
Note that we implicitly assume |S| ≥ 2 in the above definition, as in the cases |S| = {0, 1},
SmI reduces trivially to 0. Besides, the definition of submodularity can be alternatively
posed with SmI:

Lemma 6. A set function f is submodular if and only if

λf (L, k) ≥ 0 ∀ L ⊆ V and k

For functions that are already submodular, SmI measures how strong the submodularity
is. We call a function super-submodular if its SmI is strictly larger than zeros. On the other
hand for functions that are not submodular, SmI provides an indicator on how close the
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function is to submodular. We call a function quasi-submodular if it has a negative but close
to zero SmI.

Direct computation of SmI by solving (2.12) is hard. For the purpose of obtaining a
performance guarantee, however, a lower bound of SmI is sufficient and is much easier to
compute. Consider the objective of (OPT1), which is already a submodular function. By
using proposition 5, we conclude that its local submodular index is a super-modular function
for fixed location set. Hence computing (2.12) becomes a cardinality constrained super-
modular minimization problem for each location set. Besides, the following decomposition
is useful to avoid extra work of directed information estimation:

Proposition 7. The local submodular index of the function I({•}n → {V \ •}n) can be
decomposed as

ϕI({•}n→{V \•}n)(S
n, An) = ϕH({V \•}n)(S

n, An) +
n∑
t=1

ϕH({•}|V t−1)(St, At)

where H(•) is the entropy function.

The lower bound of SmI for the objective of (OPT2) is more involved. First observe the
following transformation:

Proposition 8. ∑
x∈S

I(xn → Y n||An)− I(Sn → Y n||An)

=
n∑
t=1

G1

(
St, {At, Y t−1}

)
−

n∑
t=1

G1

(
St, {At, Y t}

) (2.13)

where the function Gk(W,Z) ,
∑

w∈W H(w|Z) − kH(W |Z) defined in terms of entropy is
super-modular of W .

By further investigating the properties of the function G, we get a lower bound for the
SmI of the objective of (OPT2).

Lemma 9. For any location sets L ⊆ V , cardinality k, and target process set Y , we have

λI({•}n→Y n)(L, k)

≥ min
W⊆V

|W |≤|L|+k

n∑
t=1

{
G|L|+k

(
W t, Y t−1

)
− G|L|+k

(
W t, Y t

)}
(2.14)

≥ − max
W⊆V

|W |≤|L|+k

I(W n → Y n) ≥ −I(V n → Y n) (2.15)

Since (2.14) is in fact minimizing (maximizing) the difference of two supermodular (sub-
modular) functions, one can use existing approximate or exact algorithms [73] [74] to compute
the lower bound. (2.15) is often a weak lower bound, although it is much easier to compute.
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2.4.2 Random Greedy and Performance Bound with SmI

With the introduction of SmI, in this subsection we analyze the performance of the random
greedy algorithm for maximizing non-monotonic, quasi or super-submodular function in a
unified framework. We emphasize this general treatment as it broadens the theoretical
guarantee for a much richer class of functions.

The greedy heuristic studied in this work is a randomized variant of the classic greedy
algorithm for maximizing cardinality constrained monotonic submodular functions. The idea
was recently proposed in [71] [69] to cope with possibly non-monotonic submodular functions.
Also in [71], an expected performance bound of 1/e was provided. The overall procedure
is summarized in algorithm (1) for reference. Note that the random greedy algorithm only
requires O(k|V |) calls of function evaluations, making it suitable for large scale problems.

Algorithm 1: Random Greedy for Subset Selection

Input: V , oracle f , cardinality k
1 S0 ← φ;
2 for i = 1, ..., k do
3 Mi = argmaxMi⊆V \Si−1,|Mi|=k

∑
u∈Mi

fu(Si);

4 Draw ui uniformly from Mi;
5 Si ← Si−1 ∪ {ui};

In order to analyze the performance of the algorithm, we start with two lemmas that
reveals more properties of SmI. The following lemma shows that the monotonicity of the
first derivative of a general set function f could be controlled by its SmI.

Lemma 10. Given a set function f : V → R, and the corresponding SmI λf (L, k) defined
in (2.12), and also let set B = A ∪ {y1, ..., yM} and x ∈ B. For an ordering {j1, ..., jM},
define Bm = A ∪ {yj1 , ..., yjm}, B0 = A, BM = B, we have

fx(A)− fx(B) ≥ max
{j1,...,jM}

M−1∑
m=0

λf (Bm, 2) ≥Mλf (B, 2) (2.16)

Essentially, the above result implies that, for functions lacking strict submodularity, as
long as the second order SmI can be lower bounded by some small negative number, the
increasing derivative property (hence the submodularity as defined in 2.7) is not seriously
degraded. The second lemma provides an SmI dependent bound on the expected value of a
function with random arguments.

Lemma 11. Let the set function f : V → R be quasi submodular with λf (L, k) ≤ 0. Also
let S(p) a random subset of S, with each element appears in S(p) with probability at most p,
then

E [f(S(p))] ≥ (1− p1)f(∅) + γS,p

with γS,p ,
∑|S|

i=1(i− 1)pλf (Si, 2)
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In the proof of the main theorem, this technical lemma will be used to bound the expected
value of the function, as its argument satisfies the probabilistic condition due to the random
greedy selection.

Now we present the main theory.

Theorem 12. For a general (non-monotonic, non-submodular) functions f , let the optimal
solution of the cardinality constrained maximization be denoted as S∗, and the solution of
the random greedy algorithm be Sg then

E [f(Sg)] ≥

(
1

e
+

ξfSg ,k
E[f (Sg)]

)
f(S∗)

where ξfSg ,k = λf (Sg, k) + k(k−1)
2

min{λf (Sg, 2), 0}

The role of SmI in determining the performance of the random greedy algorithm is
revealed: the bound consist of 1/e ≈ 0.3679 plus a term as a function of SmI. If SmI = 0,
the 1/e bound in previous literature is recovered. For super-submodular functions, as SmI is
strictly larger than zero, the theorem provides a stronger guarantee by incorporating SmI. For
quasi-submodular functions having negative SmI, although a degraded guarantee is produced,
the bound is only slightly deteriorated when SmI is close to zero. In short, the above theorem
not only encompasses existing results as special cases, but also suggests that we should
view submodularity and monotonicity as a “continuous” property of set functions. Besides,
greedy heuristics should not be restricted to the maximization of submodular functions, but
can also be applied for “quasi-submodular” functions because a near optimal solution is
still achievable theoretically. As such, we can formally define quasi-submodular functions as

those having an SmI such that
ξfS,k

E[f(S)]
> −1

e
.

In the sequel we distinguish two different cases and provide refined bounds when the
function is monotonic (not necessarily submodular) or submodular (not necessarily mono-
tonic).

Corollary 1. For monotonic functions in general, the random greedy algorithm achieves

E [f(Sg)] ≥
(

1− 1

e
+
λ′f (S

g, k)

E [f(Sg)]

)
f(S∗)

and deterministic greedy algorithm also achieves

f(Sg) ≥
(

1− 1

e
+
λ′f (S

g, k)

f(Sg)

)
f(S∗)

where λ′f (S
g, k) =

{
λf (S

g, k) if λf (S
g, k) < 0

(1− 1/e)2λf (S
g, k) if λf (S

g, k) ≥ 0
.
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Table 2.1: Expected performance guarantee for cardinality constrained submodular maxi-
mization with greedy heuristics

Monotonic Submodular Classic bound This work

- - NA 1
e

+
ξf
Sg,k

E[f(Sg)]

- X 1
e

[71] 1
e

+
λf (Sg ,k)

E[f(Sg)]

X - NA 1− 1
e

+
λf (Sg ,k)

E[f(Sg)]

X X 1− 1
e
[66] 1− 1

e
+

γλf (Sg ,k)

E[f(Sg)]

We see that in the monotonic case, we get a stronger bound for submodular functions
compared to the classic 1 − 1/e ≈ 0.6321 guarantee. Similarly, for quasi submodular func-
tions, the guarantee is degraded but not too much if the negative value of SmD is close to
0. Note that the objective function of (OPT2) fits into this category. For submodular but
non-monotonic functions, e.g., the objective function of (OPT1), we have

Corollary 2. For submodular function that are not necessarily monotonic, the random greedy
algorithm has performance

E [f(Sg)] ≥
(

1

e
+
λf (S

g, k)

E [f(Sg)]

)
f(S∗)

From this corollary the role of SmI is made more clear. In table 4.4, we summarize the
theoretical guarantees found in this work with SmI, and compare them to classic results.

Another useful observation is that, the performance bound is only related to the ratio
λ/f(Sg). In fact, in the proof we actually showed stronger results in terms of λ/f(S∗) for
all cases. Also, a measure of submodularity that is comparable across different set functions
would be preferable. These considerations lead us to define the Normalized Submodularity
index (NSmI) as

Λf (L, k) ,
λf (L, k)

f(L∗)
(2.17)

2.5 Causal Graph Structure Learning Algorithms

In this section, we connect the subset selection problems studied in previous section to causal
structure learning from a network of time series data. More specifically, it is shown that,
assume bounded indegree for each process (time series), the structure learning problem can
be reduced to solving (OPT2) for every process in the network. As such, the near optimal
random greedy heuristic is applied to establish an efficient algorithm for structure learning.
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Furthermore, we discuss directed information estimation from streaming data, and propose
a decomposition technique to accelerate the computation.

2.5.1 Causal Structure Learning and its Relation to Causal
Subset Selection

A rich body of research exists in literature on the structure learning of graphical models for
i.i.d samples, however the problem becomes much more involved when we deal with non-
i.i.d dynamic networks of processes. Previously, the structure learning of dynamic networks
is usually addressed with multivariate regressive models. For example, in [75], the author
proposed an algorithm to identify the topology of network of linear systems. In [76], an
alternative is proposed based on Group Lasso. In this work, we adopt the result of a recent
work [57], which defined a notion of directed information graph, and proved its equivalence
to minimum generative models. First of all, the definition directed information graph is
stated as follows,

Definition 3. [57] A Causal Graph with Directed Information as causality metric, is a
directed graph on V with each nodes representing a process, and there is a directed edge from
node i ∈ V to j ∈ V , if and only if

I(Xi → Xj||V \ {Xi, Xj}) > 0 (2.18)

Compared to a causal graph based on linear models, a directed information graph is
advantageous in that (1) non-linear causality can be captured and Gaussian assumption is
not required; (2) the graphical model is equivalent to generative models such as dynamic
Bayesian network [57]; (3) confounders can be naturally eliminated due to the causally
conditioning in (2.18).

From the above definition, a näıve way of structure learning from data is to check I(Xi →
Xj||V \ {Xi, Xj}) > 0 for every pair of processes in the network. This O(|V |2) algorithm
seems viable in terms of computational costs, however, to estimate the causally conditioned
directed information, i.e., I(Xi → Xj||V \{Xi, Xj}), the joint distribution of all the processes
in the network has to be estimated in the first place. This requirement produces serious
problems because high dimensional joint distributions are usually hard, if not impossible, to
estimate without extra assumptions [77].

The remedy is to realize the following property

Lemma 13. In a directed information causal graph G = (V, E), let π(i) ∈ V be the set of
all parents of node i ∈ V , then for any other set W ∈ V , we have

I (Xπi → Xi) ≥ I (XW → Xi) (2.19)

This lemma essentially indicates that the complete parents set always has maximal causal
influence on its child node (process). Thus, the structure learning problem can be reduced
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to solving
argmax
S⊆V,|S|≤k

I(Sn → Xn
i ) (2.20)

for each node i ∈ V , assuming maximal indegree is k for all nodes. According to Corollary 1,
a near optimal approximate solution can be obtained with either random or deterministic
greedy search. A deterministic version is summarized in Algorithm 2. Compared to pairwise
edge detection, this algorithm only requires estimating a joint distribution of dimension at
most k+1, which is significantly smaller than |V |, the dimension of the full joint distribution.

Algorithm 2: Structure Learning

1 G← zeros(N,N);
2 for i ∈ V do
3 (a, πi)← maxj∈V I(Xn

j → Xn
i );

4 d← a, m← 1;
5 while d ≥ ε & m ≤ k do
6 (a′, j∗)← maxj∈V I(Xn

πi∪j → Xn
i );

7 d← a′ − a, a← a′, πi ← πi ∪ j∗;
8 G(j∗, i) = 1, m← m+ 1;

2.5.2 Problem Decomposition and DI Estimation

Let us take another look at (OPT1), which involves solving the problem

argmax
S⊆V,|S|≤k

I(Sn → Sn).

Although we showed that the objective is submodular and a near optimal solution can be
obtained with Algorithm 1, it turns out we still need to estimate directed information from
a subset S ∈ V to its compliments. Again, direct estimation requires the joint distribution
of all processes in V , which is problematic when |V | is large. Here the remedy is to realize
that directed information graph G actually provides a sparse representation of the joint
distribution. With some algebra, we can find the following decomposition

Lemma 14. OPT 1 Decomposition

I(Sn → Sn) = I
(
CS(Sn−1)→ CS(Sn)

)
+
∑
t

I
(
CS(St); CS(S t) | CS(St−1), CS(S t−1)

)
where CA(B) , {Xi | Xi ∈ B, ∃Xj ∈ A,G(i, j) = 1} denotes the set of adjacent nodes

from A to B. Hence by utilizing the learned structure, the directed information estimation
in (OPT1) is reduced to the estimation of local jointly probabilities, which often times have
a much smaller dimensionality.

For directed information estimation, in this work we use an estimator recently proposed
in [78], in as much as its fast convergence and mild assumptions on the process. Interested
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readers may refer to [54][57] and the reference therein for other possibilities. The procedure
consists of (1) The estimation of a universal probability assignment, say Q, for the processes
under consideration. This is done through the well-known context tree weighting (CTW)
algorithm. (2) The estimation of the directed information from process X to Y with

Î(Xn → Y n) , Ĥ(Y n)− Ĥ(Y n||Xn) (2.21)

where the causal entropy is estimated with

Ĥ(Y n||Xn) , − 1

n
logQ(Y n||Xn)

Q(Y n||Xn) =
n∏
t=1

Q(Yt|X t, Y t−1)

Ĥ(Y n) , Ĥ(Y n||∅)

(2.22)

Under some technical conditions, it can be shown [78] that the above method converges to
the true DI with O(n−1/2 log n) sample complexity, when L1 norm is used as the distance
metric.

2.6 Experiments and Applications

In this section, we conduct experiments to verify the theoretical results on causal subset
selection, as well as the proposed causal graph structure learning method. Source code, as
well as all data set used in the experiment, can be found at https://github.com/Yuxun/

causalsubset.

2.6.1 Data and Setup

The synthesis data is generated with the Bayes network toolbox (BNT) [79] using dynamic
Bayesian network models. Two sets of data, D1 and D2, are simulated, each containing 15
and 35 processes, respectively. For simplicity, all processes are {0, 1} valued. The processes
are created with both simultaneous and historical dependence among each other. In other
words, the current value of a particular process Xit may depend on current Xjt, j ∈ V ,
and also on historical X t−1

j , j ∈ V . The order (direct memory length) of the historical
dependence is set to be 3. The MCMC sampling engine is called to draw 104 points for both
D1 and D2.

The smart device data set contains per 5mins electricity consumption of 43 plugin devices
in Building B90 of LBNL during the period 04/01/2015 to 04/30/2015. Note that data
imputation is performed before hand to amend a few missing values, so that all processes
can be aligned in time. For the second case study, we collected hourly air pollution (PM2.5)
measurement for 36 locations (where a weather station is available) in North California, for
the year 2014. Again data preprocessing is conducted to fill missing values. Moreover, we

https://github.com/Yuxun/causalsubset
https://github.com/Yuxun/causalsubset
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Table 2.2: Data sets used in experiment

Data set ID # process |V | sample size n

Synthesis I D1 15 10000

Synthesis II D2 35 10000

Smart device SD 43 8613

Air pollution PM 36 8752

detrend each time series with a recursive HP-filter [29] to remove long term daily/monthly
seasonalities that are not relevant for hourly analyses. The dimensions of the used data sets
are summarized in Table 2.2.

For the purpose of directed information estimation, continuous times series, such as
those in SD and PM, are normalized and discretized into three levels. The estimation of
the universal probability assignment are done through CWT, for which we set the maximal
context tree depth to 5. This is sufficient for the synthesis data sets as its memory length is 3,
and it is also enough for two real data sets as we are mainly interested in hourly interactions.

2.6.2 Causal Subset Selection Results

Both of the two causal subset selection problems, (OPT1) and (OPT2) are solved with the
random greedy algorithm 1 to select set S that has maximal causality. The cardinality
constraint is imposed from k = 2 to k = 8. For comparison purpose, we also conduct an
exhaustive search to obtain the true optimal solution and the corresponding objective values.
To empirically justify some of the theoretical results, in particular the performance bounds
obtained in this work, we compute SmI using the method discussed in Section 2.4.1. Besides,
the following two properties to further prune impossible values of SmI:

Assume set B is chosen for computing ϕf (B, S
gk), let l = |B|, γ =

(
1− 1

|Sgk |

)l
, then

Proposition 15. If ϕf (B, Sg) = ξ, then

f(Sgk) ≥ f(S∗)
γ

l + 1− l f(Sgk−1 )+ξ
f(Sgk )

Proposition 16. If the increase f(Sgk∪B)−f(Sgk )
f(Sgk )

≤ ε, then

f(Sgk) ≥ f(S∗)
γ

1 + ε
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Table 2.3: Normalized submodularity index (NSmI) for the objectives of (OPT1) and (OPT2)
at locations of greedy selections

k = 2 3 4 5 6 7 8

SmI (OPT1) 0.382 0.284 0.175 0.082 0.141 0.078 0.074

SmI (OPT2) -0.305 0.071 -0.068 -0.029 0.030 0.058 0.092

Firstly, (OPT1) on data set D1 is solved. Figure 2.1 shows the results, including an
optimal solution by exhaustive search (red-star), random greedy solution (blue-circle), the
performance bound in previous work (cyan-triangle), and the bound with SmI (magenta-
diamond) in this work. The corresponding normalized SmI values are shown in the first row
of Table 2.3. It is seen that the random greedy choice is close to the true optimal choice. In
terms of computational time, the greedy method finishes in less than five minutes, however
the exhaustive search takes about 10 hours on this small network with |V | = 15. Comparing
two bounds in Figure 2.1, we see that the theoretical guarantee is greatly improved and a
much tighter bound is produced. This is a consequence of the strictly positive SmI values,
which makes the guarantee better than 1/e. The observation justifies that bounds with SmI
(Corollary 2) are much better indicators of the performance of the greedy heuristic. On
the other hand, there seems to be room for further enhancement of the performance bound,
possibly through a more refined computational method for SmI.

Secondly, (OPT2) on data set SD is solved with the monitor of user 1 as the target process
Y . The results of random greedy, exhaustive search, and performance bound (Corollary 1)
are shown in Figure 2.2, and normalized SmIs are listed in the second row of Table 2.3.
Note that the 1 − 1/e line (green-triangle) in the figure is only for reference purpose and
is NOT a bound of any kind. We observe that although the objective is not submodular,
the random greedy algorithm is still near optimal. As we compare the reference line and
the bound calculated with SmI (magenta-diamond), we see that the performance guarantee
can be either larger or smaller than 1 − 1/e, depending on the positiveness or negativeness
of SmI. By definition SmI measures the submodulairty of a function at some location set.
Hence the SmI computed at current greedy selection captures the “local” submodularity of
the objective of (OPT2). The main insight gained from this experiment is that, for a function
lacking general submodularity, such as the objective function of (OPT2) discussed here, it
can be quasi-submodular (SmI ≤ 0, SmI ≈ 0) or even super-submodular (SmI > 0) at
different locations. Accordingly the performance guarantee can be either larger or smaller
than 1− 1/e, depending on the value of SmI at the current step.
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Figure 2.1: Solution and Bounds for (OPT1) on D1

Figure 2.2: Solution and Bounds for (OPT2) on SD

2.6.3 Causal Graph Structure Learning Results

Finally, we test the causal structure learning method proposed in Section 2.5. For Algo-
rithm 2, we set the hyperparameter ε = 10−3 to judge if an increase is achieved, and the
maximal in-degree is set to 5. We first use the two synthesis data set D1 and D2 for testing
purposes, because their ground truth structures are known and is ready to be compared
with. Figure 2.3 and Figure 2.4 demonstrates the results on D1 and D2, respectively. In
both two figures, the left subfigure is the ground truth structure, i.e., the dynamic Bayesian
networks that are used in the data generation. Note that each node in the figure represent
a random process, and an edge from node i to j indicates a causal influence (including both
simultaneous and historical). The subfigure on the right shows the causal graph constructed
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Figure 2.3: Ground truth structure (left) versus Reconstructed causal graph with Algorithm 2
(right), for data set D1

by performing Algorithm 2 on the data sets. Comparing two subfigures in Figure 2.3, we
observe that the proposed structure learning method performs almost perfectly. In fact, only
the edge 6 → 4 is miss detected. On a larger case D2 with |V | = 35 processes, the method
still works relatively well, correctly reconstructing 41/52 causal edges. Given that only the
maximal indegree (for all nodes) of the causal graph is assumed, these results justify the
greedy approximation for the subset selection problem (2.20), as well as the effectiveness of
the overall structure learning procedure.

As a more interesting case study, we applied the proposed structure learning method
to the PM data set, which contains hourly record of fine particulate matter (PM2.5) for
36 measured locations in north California. The geographic distribution of these locations
is shown in the left subfigure of Figure 2.6. And the constructed causal graph is shown
in the right subfigure. In this context, the subset selection problem (OPT1) corresponds
to selecting “pollution sources”. We solve (OPT1) using Algorithm 1, together with the
directed information decomposition technique (Lemma 14). Interestingly, we find out that
the detected pollution sources are mainly commercial, industrial or transportation centers,
such as node 25 (San Francisco) and 7 (Richmond in east bay). Moreover, most of the
constructed causal edges are consistent with climatic and geographical implications, such as
the edge 29→ 24 in the Monteray Bay valley. These results show that the proposed causal
structure learning method constitutes a promising tool for data driven sensor placement and
source detection.



CHAPTER 2. LEARNING CAUSAL INTERACTIONS FOR SPARSE SENSING 27

 1

 2  3  4

 5  6  7  8

 9

10 11

12 13

14 15

16

17 18

19

20 21

22

23

24

25

26

27

28

29

30 31

32

33 34

35

Original

 1

 2

 3

 4

 5

 6  7

 8

 9

10

11

12

13

14 15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

Reconstructed

Figure 2.4: Ground truth structure (left) versus Reconstructed causal graph with Algorithm 2
(right), for data set D2

Figure 2.5: 36 measured locations in north California
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Causal Graph for California Air Polution (PM2.5)
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Figure 2.6: Case study: North California air pollution

2.7 Appendix: Proofs

Theorem. The objective I(An → Ān) as a function of A ⊆ V is submodular.

Proof. Let’s first show a property of mutual information. At time t, we have

I
(
At ∪ {y}t;A ∪ {y}t|A ∪ {y}t−1

)
− I

(
At;At|At−1

)
= H(V t−1, At, yt) +H

(
A ∪ {y}t

)
−H(V t)−H

(
A ∪ {y}t−1

)
−H(V t−1, At)−H(At) +H(V t) +H(At−1)

= H(yt|V t−1, At)−H
(
yt|A ∪ {y}t

)
+H

(
yt−1|A ∪ {y}t−1

)
where we use I(X, Y |Z) = H(X,Z) + H(Y, Z) − H(X, Y, Z) − H(Z). Summing over the
last formula over t and canceling telescoping terms, we obtain the following formula by the
definition of directed information,

I
(
An ∪ {yn} → A ∪ {y}n

)
− I

(
An → An

)
=
∑
t

H(yt|V t−1, At)−H
(
yn|A ∪ {y}n

)
+H (y0)

where we assumed independent initial distribution.1 Now for any set B ⊇ A, by “information

1In fact, initial condition does not matter for large t, which is usually true for meaningful DI estimation
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never hurt”

H(yt|V t−1, At) ≥ H(yt|V t−1, Bt)

H
(
yn|A ∪ {y}n

)
≤ H

(
yn|B ∪ {y}n

)
Hence Definition 1 of submodularity is verified. The objective function is submodular.

Proposition. fX(S) = I(Sn ∪ xn → Y n)− I(Sn → Y n) = I(xn → Y n||Sn)

Proof. Note the following alternative expression for DI:

I(Xn → Y n) =
n∑
t=1

{
H(Yt|Y t−1)−H(Yt|Y t−1, X t)

}
= H(Y n)−

n∑
t=1

H(Yt|Y t−1, X t)

(2.23)

and the result can be obtained since H(Y n||Xn) ,
∑n

t=1H(Yt|Y t−1, X t), and the directed
information from Xn to Y n when causally conditioned on the series Zn can be written as

I(Xn → Y n||Zn) = H(Y n||Zn)−H(Y n||Xn, Zn) =
n∑
t=1

I(X t;Yt|Y t−1, Zt) (2.24)

Proposition. If for any two processes s1, s2 ∈ S, we have the conditional independence that
(s1t ⊥⊥ s2t | Yt), then I(Sn → Y n) is a monotonic submodular function of set S.

Proof. In this case, we see that the probabilistic model reduces to “causal naive Bayesian”,
and the submodulaity follows by check Definition 1 with conditional independence and
Proposition 1.

Lemma. A set function f is submodular if and only if λf (L, k) ≥ 0, ∀ L ⊆ V and k.

Proof. Simply take k = 2, then λV,2 ≥ 0 implies definition 3 of submodularity, hence f is
submodular. For the other direction, assuming f is submodular, then for any A, S ⊆ V and
xi ∈ S by telescoping

f(A ∪ S)− f(A) =

|S|∑
i=1

f(A ∪ S(i) ∪ xi)− f(A ∪ S(i))

≤
|S|∑
i=1

[f(A ∪ xi)− f(A)]

where S(i) , S \ {x1, ..., xi} and with the definition of SmI we get λV,k ≥ 0
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Lemma. For any location sets L ⊆ V , cardinality k, and target process set Y , we have

λI({•}n→Y n)(L, k) ≥ min
W⊆V

|W |≤|L|+k

n∑
t=1

{
G|L|+k

(
W t, Y t−1

)
− G|L|+k

(
W t, Y t

)}
(2.25)

≥ − max
W⊆V

|W |≤|L|+k

I(W n → Y n) ≥ −I(V n → Y n) (2.26)

where the function Gk(W,Z) ,
∑

w∈W H(w|Z) − kH(W |Z) defined in terms of entropy is
super-modular of W .

Proof. First note that for any random variable set U , we have

I(Un → Y n||An)

= H(Y n||An)−H(Y n||Un, An)

=
n∑
t=1

I(U t;Yt|At, Y t−1)

=
n∑
t=1

{
H(U t|At, Y t−1)−H(U t|At, Y t)

}
Hence by plugging in with xt, St and rearrange, we get

λY n,An(Sn) =
n∑
t=1

{∑
x∈S

H(xt|At, Y t−1)−H(St|At, Y t−1)

−

[∑
x∈S

H(xt|At, Y t)−H(St|At, Y t)

]}

=
n∑
t=1

{
GAt,Y t−1(St)− GAt,Y t(St)

}
Let’s verify several properties of G
• G is Supermodular
Remember “information never hurts” inequality, we get

Gk(W ∪ {y}, Z)− Gk(W,Z) = H(y|Z)− kH(y|W,Z)

≤ H(y|Z)− kH(y|L,Z)

for W ⊆ L. Hence by definition Gk(W,Z) is supermodular.

Gk(W,Z1)− Gk(W,Z2)

=
∑
w∈W

[H(w|Z1)−H(w|Z2)]− k [H(W |Z1)−H(W |Z2)]
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is decreasing in k as H(W |Z1) ≥ H(W |Z2) for Z1 ⊆ Z2

• G is Posimodular Recall that a set function is posimodular iif

f(S) + f(T ) ≥ f(S \ T ) + f(T \ S)

Let’s check

G1(S,Z) + G1(T, Z)− G1(S \ T, Z)− G1(T \ S,Z)

=
∑
x∈S

H(x|Z) +
∑
x∈T

H(x|Z)−H(S|Z)−H(T |Z)

−
∑
x∈S\T

H(x|Z)−
∑
x∈T\S

H(x|Z)−H(S \ T |Z)−H(T \ S|Z)

= 2
∑
x∈S∩T

H(x|Z)−H(S ∩ T |S \ T, Z)−H(S ∩ T |T \ S,Z)

≥ 2
∑
x∈S∩T

H(x|Z)− 2H(S ∩ T |Z) ≥ 0

The last inequality is due to submodularity of H(•|Z) Now let’s proof the lemma. Since
H(x|A, Y ) = H(x|Y )−H(A|Y ) +H(A|x, Y ), and for any x ∈ A, H(x|A, Y ) = 0, we have

G1

(
St, {At, Y t−1}

)
=
∑
x∈S

H(xt|At, Y t−1)−H(St|At, Y t−1)

=
∑
x∈S∪A

H(xt|At, Y t−1)−H(St|At, Y t−1)

=
∑
x∈S∪A

{
H(xt|Y t−1)−H(At|Y t−1) +H(At|xt, Y t−1)

}
−H(St ∪ At|Y t−1) +H(At|Y t−1)

=
∑
x∈S∪A

H(xt|Y t−1)−H(St ∪ At|Y t−1)︸ ︷︷ ︸
G1(St∪At,{Y t−1})

−
∑
x∈S∪A

H(At|Y t−1) +
∑
x∈S∪A

H(At|xt, Y t−1) +H(At|Y t−1)

Similar equality could be derived for G1 (St, {At, Y t}), then their difference

G1

(
St, {At, Y t−1}

)
− G1

(
St, {At, Y t}

)
= G1

(
St ∪ At, {Y t−1}

)
− G1

(
St ∪ At, {Y t}

)
+H(At|Y t−1)−H(At|Y t)

+
∑
x∈S∪A

[
H(At|xt, Y t−1)−H(At|xt, Y t)

]
−
∑
x∈S∪A

[
H(At|Y t−1)−H(At|Y t)

] (2.27)
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Now note thatH(At|Y t−1)−H(At|Y t) = I(At;Yt|Y t−1) andH(At|xt, Y t−1)−H(At|xtY t) =
I(At;Yt|xt, Y t−1) are both positive and increasing in A. We get

−
∑
x∈S∪A

[
H(At|Y t−1)−H(At|Y t)

]
≥ −

∑
x∈S∪A

[
H(At ∪ xt|Y t−1)−H(At ∪ xt|Y t)

]
= −

∑
x∈S∪A

[
H(At|xt, Y t−1)−H(At|xt, Y t)

]
−
∑
x∈S∪A

[
H(xt|Y t−1)−H(xt|Y t)

]
Plug into (2.27) and cancel terms, we get

G1

(
St, {At, Y t−1}

)
− G1

(
St, {At, Y t}

)
≥ −

[
H(At ∪ St|Y t−1)−H(At ∪ St|Y t)

]
= −I(At ∪ St;Yt|Y t−1)

On the other hand, if we relax the third term in (2.27) and use the increasing property of
I(At;Yt|Y t−1)

G1

(
St, {At, Y t−1}

)
− G1

(
St, {At, Y t}

)
≥ G1

(
St ∪ At, {Y t−1}

)
− G1

(
St ∪ At, {Y t}

)
− (|S ∪ A| − 1)

[
H(At ∪ St|Y t−1)−H(At ∪ St|Y t)

]
= G|S∪A|

(
St ∪ At, {Y t−1}

)
− G|S∪A|

(
St ∪ At, {Y t}

)
≥ G|L|+k

(
St ∪ At, {Y t−1}

)
− G|L|+k

(
St ∪ At, {Y t}

)
as |L| + k ≥ |S ∪ A| and the second properties of function G. Now the inequalities follows
from the definition of directed information and the fact that for any S,A ⊆ V that satisfies
A ⊆ L, S ∩ A = ∅, |S| ≤ k, they are also feasible solutions for W = S ∪ A : |S ∪ A| ≤
|L|+ k.

Moreover, in order to avoid additional complexity in estimating entropy terms, he fol-
lowing lemma gives interesting lower and upper bounds in terms of total variation distance:

Lemma. Let S = {x1, ..., xk} a set of discrete random variables taking value in finite set
X : |X | = d. Also let Z another random variable and denote the expected conditional total
variance difference between PS|Z and Px1|Z ⊗ Px2|Z · · · ⊗ Pxk|Z as

δ(S,Z) = EZ
[
DTV

(
PS|Z ||Px1|Z ⊗ Px2|Z · · · ⊗ Pxk|Z

)]
then

2δ2(S,Z) ≤
∑
x∈S

H(x|Z)−H(S|Z)

≤ δ(S,Z)log(dk − 1) +H(δ(S,Z))

(2.28)
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Proof. The lower bound is a direct result from Pinsker’s Inequality.∑
i

H(Xi|Z)−H(S|Z)

=

∫
Ω

DKL

(
PS|Z ||PX1|Z ⊗ PX2|Z · · · ⊗ PXk|Z

)
dµ(z)

≥
∫

Ω

2D2
TV

(
PS|Z ||PX1|Z ⊗ PX2|Z · · · ⊗ PXk|Z

)
dµ(z)

= 2EZ [δ2]

(2.29)

The upper bound is more involved. First note that for any two random variable U ∼ PU
and U ∼ PV , further assume that they take value in the same finite discrete set U and
H(U) ≥ H(V ), then

H(U)−H(V ) ≤ H(U, V )−H(V )

= H(U |V )

≤ P (e)log(|U| − 1) +H(e)

(2.30)

the last inequality is due to Fano’s inequality, and the error random variable e has distribution
P (e) = P (U 6= V ). In the sequel, we proceed with the coupling technique. In effect, we can
couple U and V together such that the coupled joint distribution P̂ (u, v) satisfies:∑

u

P̂ (u, v) = PV (v) ∀v (2.31)∑
v

P̂ (u, v) = PU(u) ∀u (2.32)

sup
A⊆U

{
P̂ (U ∈ A,U 6= V )− P̂ (V ∈ A,U 6= V )

}
= sup

A⊆U
P̂ (U ∈ A,U 6= V ) (2.33)

In fact, we can construct a jointly probability table for U and V , such that in the table
p(i, j) = 0 for any j > i, and other p(i, j) are subject to our choice, which yields |U|(|U|+1)/2
variables. The marginal probability

∑
i p(i, j) = PV (j),

∑
j p(i, j) = PU(i) impose 2|U|

equality constraints on these variables. It is easy to see that only 2|U| − 1 constraints are
independent (as both rowsum and colsum = 1), hence the linear system has an unique
solution when |U| = 2, and infinite number of solutions when |U| ≥ 3. In addition, for any
A ⊆ U , we have

P̂ (U ∈ A,U 6= V )− P̂ (V ∈ A,U 6= V )

= P̂ (U ∈ A,U 6= V )− P̂ (V ∈ A,U 6= V ) + P̂ (U ∈ A,U = V )− P̂ (V ∈ A,U = V )

= P̂ (U ∈ A)− P̂ (V ∈ A)

(2.34)
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Hence with the above coupling construction,

δ = DTV (PU ||PV ) =
1

2

∑
i

|PU(i)− PV (i)|

= sup
A⊆U
{P (U ∈ A)− P (V ∈ A)}

= sup
A⊆U

{
P̂ (U ∈ A)− P̂ (V ∈ A)

}
= sup

A⊆U
P̂ (U ∈ A,U 6= V )

= P̂ (U 6= V )

(2.35)

Plug into (2.30), we get H(U) − H(V ) ≤ δlog(|U| − 1) + H(δ). Now let PU = PX1|z ⊗
PX2|z · · · ⊗ PXk|z, and PV = PS|z we get the desired upper bound.

The upper bound is sharp as can be verified by the constructive coupling proof, on the
other hand, the lower bound could be further improved through similar technique. With this
lemma, the SmI of objective OPT2 could be further bounded with total variation distance.

Lemma. Given a set function f : V → R, and the corresponding SmI λf (L, k) defined in
(2.12), and also let set B = A∪ {y1, ..., yM} and x ∈ B. For an ordering {j1, ..., jM}, define
Bm = A ∪ {yj1 , ..., yjm}, B0 = A, BM = B, we have

fx(A)− fx(B) ≥ max
{j1,...,jM}

M−1∑
m=0

λf (Bm, 2) ≥Mλf (B, 2) (2.36)

Proof. Let k = 1, S = {x1, x2} and by our definition of SmI∑
x∈S

f(A ∪ x)− f(A)− [f(A ∪ S)− f(A)] ≥ λA,2

Rearranging gives

f(A ∪ x1)− f(A)− [f(A ∪ x1 ∪ x2)− f(A ∪ x2)] ≥ λA,2

or with the notation of derivative

fx1(A)− fx1(A ∪ x2) ≥ λA,2 (2.37)

This is somewhat a “trimming” property. Now consider A ⊆ B ⊆ V . Let’s write explicitly
Bj = A ∪ {y1, ..., yj}, B0 = A, Bm = B with m = |B| − |A|, then

fx(Bj) ≤ fx(Bj−1)− λBj−1,2
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for j = 1, ...,m. Adding the m equations we get

f(A)− f(B) ≥
|B|−|A|∑
j=1

λBj ,2 (2.38)

Also note that the order of y1, ..., ym does not matter. Hence the proposition.

Lemma. Let the set function f : V → R be quasi submodular with λf (L, k) ≤ 0. Also let
S(p) a random subset of S, with each element appears in S(p) with probability at most p,
then

E [f(S(p))] ≥ (1− p1)f(∅) + γS,p

with γS,p ,
∑|S|

i=1(i− 1)pλf (Si, 2)

Proof. W.l.o.g. assume elements in S are ordered by its probability to be in S(p), i.e.
S = {u1, u2, ..., u|S|} and pi = P(ui ∈ S(p)) ≥ P (uj ∈ S(p)) = pj for any 1 ≤ i ≤ j ≤ |S|.
Define Si = {u1, u2, ..., ui}, S0 = ∅. Then

E [f(S(p))]

= E

f(∅) +

|S|∑
i=1

I{ui∈S(p)}fui(Si−1 ∩ S(p))


≥ E

f(∅) +

|S|∑
i=1

I{ui∈S(p)}
[
fui(Si−1) + (i− 1)λSi−1,2

]
= f(∅) +

|S|∑
i=1

[
pifui(Si−1) + (i− 1)piλSi−1,2

]
= (1− p1)f(∅) +

|S|∑
i=1

(pi−1 − pi)f(Si) + p|S|f(S) +

|S|∑
i=1

(i− 1)piλSi,2

≥ (1− p1)f(∅) +

|S|∑
i=1

(i− 1)piλSi,2

= (1− p1)f(∅) + γS,p

where the first inequality is due to last proposition, and second inequality is a direct result
of the assumption that pi’s are in decreasing order. Now if f is strongly submodular, then by
the definition of λS,k, we see that γS,p ≥ 0, otherwise if f is only approximately submodular
with λS,k ≤ 0, we have

γS,p ≥
|S|∑
i=1

(i− 1)p1λS,2 ≥
|S|(|S| − 1)

2
λS,2 , βS
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Theorem. For a general (non-monotonic, non-submodular) functions f , let the optimal
solution of the cardinality constrained maximization be denoted as S∗, and the solution of
random greedy algorithm be Sg then

E [f(Sg)] ≥

(
1

e
+

ξfSg ,k
E[f (Sg)]

)
f(S∗)

where ξfSg ,k = λf (Sg, k) + k(k−1)
2

min{λf (Sg, 2), 0}

Proof. Let Ci be the event of random choices up to iteration i according to the algorithm.
Then by tower property

E
[
fxi+1

(Si)
]

= E
[
E
[
fxi+1

(Si)|Ci
]]

Denote S∗ the true optimal. The inside expectation is just

E
[
fxi+1

(Si)|Ci
]

=
1

k

∑
x∈Mi+1

fx(Si) ≥
1

k

∑
x∈S∗\Si

fx(Si)

≥ 1

k

[
λSi,|S∗\Si| + f(S∗ ∪ Si)− f(Si)

] (2.39)

in which the first inequality is because Mi+1 is the maximal, and second inequality is due to
the definition of SmI. Now the expectation reads

E
[
fxi+1

(Si)
]
≥ 1

k

{
λSi,|S∗\Si| + E [f(S∗ ∪ Si)]− E [f(Si)]

}
If f is monotonic, we can further lower bound f(S∗ ∪Si) by f(S∗) and proceed to induction
for performance bound, however in the non-monotonic case, this lower bound does not stands
any more. In this step the random choice of the algorithm becomes crucial: with lemma
lemma:proba, we can show that on average, f(S∗ ∪ Si) still has a variant lower bound.

The trick is to notice that with the random greedy algorithm, in each iteration, any
element y ∈ V \Si will be selected into Si+1 with probability at most 1/k, hence at iteration
i, y stays outside of Si with probability at least (1− 1/k)i, or in other words,

P{y ∈ Si} ≤ 1− (1− 1/k)i = p

Define function g(S) = f(S ∪ S∗), then it is easy to see that g is approximately submodular
with λU,n(g) = λU∪S∗,n(f). Now let’s apply the lemma to get

E [f(S∗ ∪ Si)] = E [g(Si \ S∗)] ≥
(

1− 1

k

)i
g(∅) + βSi\S∗∪S∗

≥
(

1− 1

k

)i
f(S∗) + βSg
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The last inequality is because Si \ S∗ ∪ S∗ = Si ⊆ Sg, and βS is decreasing in S (as a linear
combination of λS,2). Continuing with this lower bound on E [f(S∗ ∪ Si)] , we get

E
[
fxi+1

(Si)
]
≥ 1

k

{
λSg ,k + βSg +

(
1− 1

k

)i
f(S∗)− E [f(Si)]

}
Define λSg ,k + βSg = −ξSg a constant with given k, then rearranging yields

E [f(Si+1)]− E [f(Si)] ≥
1

k

{(
1− 1

k

)i
f(S∗)− E [f(Si)]− ξSg

}
(2.40)

E [f(Si+1)] ≥
(

1− 1

k

)
E [f(Si)] +

1

k

(
1− 1

k

)i
f(S∗)−

ξSg
k

(2.41)

The last inequality implies that the expected increments made by random greedy algorithm
has guarantees, but is deteriorated by the lack of strong submodularity, whose negative effect
is incorporated by ξSg . Next, we will make use of this inequality with a induction framework
and show the overall performance guarantee of the algorithm. Specifically, assume

E [f(Si)] ≥
i

k

(
1− 1

k

)i−1

f(S∗)−
ξSg
k

i−1∑
j=0

(
1− 1

k

)j
(2.42)

when i = 1, we have

kE [f(S1)] ≥
∑
x∈S∗

E [f(x)] ≥ E [f(S∗)] + λ∅,k

≥ E [f(S∗)] + λSg ,k ≥ E [f(S∗)]− ξSg
where the first inequality follows because the first step choice S1 is always maximum, the
second and third inequalities are from the SMD definition and its decreasing property, and
the last inequality is due to our worst case assumption that f is not submodular and βSg ≤ 0.
Now assume (2.42) is true for any i′ = 1, 2, ...i, then at i+ 1 step, plugging into (2.41) gives

E [f(Si+1)]

≥ i

k

(
1− 1

k

)i
f(S∗) +

1

k

(
1− 1

k

)i
f(S∗)−

ξSg
k

i∑
j=0

(
1− 1

k

)j

=
i+ 1

k

(
1− 1

k

)i
f(S∗)−

ξSg
k

i∑
j=0

(
1− 1

k

)j
which completes the induction. Let i = k − 1, we get

E [f(Sg)] ≥
(

1− 1

k

)k−1

f(S∗)− ξSg

(
1−

(
1− 1

k

)k)

≥ 1

e
f(S∗)− ξSg ≥

(
1

e
−

ξSg
E [f(Sg)]

)
f(S∗)
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Proof. Corollary 1
This is an easier case, we can start from last line of (2.39) and get

E
[
fxi+1

(Si)
]
≥ 1

k

{
λSi,|S∗\Si| + E [f(S∗ ∪ Si)]− E [f(Si)]

}
≥ 1

k

{
λSi,|S∗\Si| + E [f(S∗)]− E [f(Si)]

}
since f is monotonic, f(S∗ ∪ Si) ≥ f(S∗). Rearranging yields

E [f(Si+1)] ≥
(

1− 1

k

)
E [f(Si)] +

1

k
f(S∗) +

λSi,|S∗\Si|
k

≥
(

1− 1

k

)
E [f(Si)] +

1

k
f(S∗) +

λSg ,k

k

(2.43)

Let’s again use induction technique for clarity. Assume

E [f(Si)] ≥

[
1−

(
1− 1

k

)i]
f(S∗) +

λSg ,k

k

i−1∑
j=0

(
1− 1

k

)j
Then one can easily check that this assumption stands for i = 1 with the definition and
monotonicity of λU,m, and from i to i+ 1 one can just use the induction assumption. Hence
we have

E [f(Sg)] ≥

[
1−

(
1− 1

k

)k]
f(S∗) + λSg ,k

[
1−

(
1− 1

k

)k]
Now if the function is submodular, we have λSg ,k ≥ 0, then

E [f(Sg)] ≥
(

1− 1

e

)
f(S∗) +

(
1− 1

e

)
λSg ,k

≥

[
1− 1

e
+

(
1− 1

e

)2 λSg ,k

E [f(Sg)]

]
f(S∗)

where we have used E [f(Sg)] ≥
(
1− 1

e

)
f(S∗) in the second inequality. On the other hand,

if λSg ,k ≤ 0, we get

E [f(Sg)] ≥
(

1− 1

e

)
f(S∗) + λSg ,k

≥
(

1− 1

e
+

λSg ,k

E [f(Sg)]

)
f(S∗)
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Proof. Corollary 2
Simply note that in this case Lemma lemma:proba becomes E [f(S(p))] ≥ (1− p1)f(∅), and
we just follow the lines of proof of Theorem 3 with ξSg replaced by λSg ,k.

Lemma. OPT 1 Decomposition

I(Sn → Sn) = I
(
CS(Sn−1)→ CS(Sn)

)
+
∑
t

I
(
CS(St); CS(S t) | CS(St−1), CS(S t−1)

)
Proof. Proof of DI decomposition

I(Sn → Sn)

= I
(
CS(Sn) ∪NS(Sn)→ CS(Sn) ∪NS(Sn)

)
= I

(
CS(Sn)→ CS(Sn) ∪NS(Sn)

)
+ I

(
NS(Sn)→ CS(Sn) ∪NS(Sn) || CS(Sn)

)
= I

(
CS(Sn)→ CS(Sn) ∪NS(Sn)

)
= I

(
CS(Sn)→ NS(Sn) || CS(Sn)

)
+ I

(
CS(Sn)→ CS(Sn) || NS(Sn−1)

)
= I

(
CS(Sn)→ CS(Sn) || NS(Sn−1)

)
=
∑
t

I
(
CS(St); CS(S t) | CS(S t−1),NS(S t−1)

)
=
∑
t

I
(
CS(St−1); CS(S t) | CS(S t−1),NS(S t−1)

)
+
∑
t

I
(
CS(St); CS(S t) | CS(St−1), CS(S t−1),NS(S t−1)

)
=
∑
t

I
(
CS(St−1); CS(S t) | CS(S t−1)

)
+
∑
t

I
(
CS(St); CS(S t) | CS(St−1), CS(S t−1)

)
= I

(
CS(Sn−1)→ CS(Sn)

)
+
∑
t

I
(
CS(St); CS(S t) | CS(St−1), CS(S t−1)

)
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Chapter 3

Learning Outliers and Novelty from
Multiple Time Series

Data sets collected from modern cyber physical systems are mostly real-time measurements
of system behaviors or characteristics. For example, recent advances in sensor networks and
information technologies in smart buildings have given researchers access to large amounts
of time series data, including but not limited to environmental measurements (temperature,
humidity, air quality), energy consumption related records (HVAC operation, lighting, plug
loads), and occupant data (individual behavior, presence, location), etc. In this chapter, two
closely related tasks, namely outlier and novelty detection, are considered. More specifically,
we discuss both parametric and non-parametric methods that integrate the interactions
among multiple correlated time series. Note that the interaction structure is assumed to be
known.

3.1 Introduction: Outlier and Novelty Detection in

Multiple Time Series

General outlier detection is a broad topic that is usually studied separately in the context
of particular domain application. From a statistical learning perspective, however, outlier
detection techniques can be categorized according to their input data types, including but are
not limited to independent and identically distributed observations [80], high-dimensional
data [81], time series [82], structural data such as graphs and network [83, 84], etc. A detailed
exposition of general outlier detection techniques is beyond the scope of this chapter. The
readers are referred to [85, 86, 87] and the references therein for an extensive overview.

This section is focused on the outlier detection in multiple correlated times series, which
takes the sensor network measurements in modern cyber-physical systems as input, and aims
at detecting abnormal system states, unusual behaviors, abrupt changes, etc., for preventive
operation and system diagnosis. For example, to automate the fault detection and diagnosis
(FDD) procedure in smart buildings, sensor networks are deployed to monitor the state
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Figure 3.1: Example 1: Building FDD system, including deployed sensor network, data base,
and outlier detection algorithm.

of critical components of the building, such as environmental variables, HVAC operation,
lighting, plug load, etc., and an outlier detection algorithm is implemented to process the
observed data for FDD. Such a decision support system, realized in one of our joint works [88],
is depicted in Fig 3.1. Another example involves the fault detection in power distribution
networks. The recent advancements in the high fidelity sensing technology, in particular
micro-phasor measurement units (µPMUs), enable operators to detect system dynamics that
would otherwise be unobservable in distribution networks. The data acquired from µPMUs
is essentially multiple correlated voltage and current readings that are used as the input to
an outlier detection algorithm. The overall cyber-physical system configuration, based on
one of our previous work [89, 90], is illustrated in Fig 3.2. Besides traditional application
such as anomaly discovery, methods of outlier detection can also be used to reveal interesting
behavior related patterns in CPS. With the ubiquity of WiFi infrastructure and WiFi enabled
mobile devices, WiFi has become the primary sensing techniques for occupancy sensing in
indoor environment [91, 92, 93, 94, 95]. An occupancy adaptive lighting control system is
proposed in [96, 35]. Moreover, a novel device-free occupancy sensing platform is developed
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Figure 3.2: Example 2: Fault detection in power distribution networks, with µPMU and
detection algorithm deployed.

to provide fine-grained occupancy information, such as occupancy detection [97] and crowd
counting [98]. In the aforementioned works, the core occupancy sensing algorithm can be
realized by performing outlier detection with WiFi signals. Fig 3.3 shows the configuration of
WiFi routers, the collected radio frequency signals, and the outlier detection based decision
support system.
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Figure 3.3: Example 3: Non-intrusive occupancy detection with WiFi signal.

Depending on different views of the data generating process, methods for outlier detection
in time series can be categorized into the following categories:

• Physical model based methods. The underlying assumption is that the observed time
series data is generated from a known dynamic system. As such, the problem is re-
duced to comparing the system behavior, estimated through measurement and dynamic
equations, to the expected behavior when the system is in a certain state (normal or
abnormal)[99]. To list a few, model based applications range from cyber attacks iden-
tification in power system [100, 101], fault diagnosis for switching converters [102], and
fault-detection of engine systems [103]. Recently, model based approaches have also
been used in combination with time series analysis to establish semi model based algo-
rithms [104, 105]. This type of approaches rely heavily on correctness of the dynamical
model of the system, as well as system analytic tools such as real time state estimators,
parameter estimation, parity equations etc. Their limitations are obvious since: (1)
dynamics of a system may be hard to specify in many cases and they have non-linear
structures, and (2) more and more applications are dealing with complex system with
randomness, the high dimensionality and inherent uncertainty significantly deteriorate
the reliability and accuracy of dynamic models.

• Signal processing based filtering methods. Those approaches implicitly assumes that
the “normal” component of the time series has sparse representation in the frequency
or wavelet domain. Hence the outlier detection problem is reduced to spectral analy-
sis using low pass or band pass filters [106], or denoising/signal reconstruction using
spectral or wavelet techniques [107]. It is worth pointing out that the signal processing
based methods have close ties with the regularized basis function expansion method



CHAPTER 3. LEARNING OUTLIERS AND NOVELTY FROM MULTIPLE TIME
SERIES 44

in statistical learning. For example, the adaptive wavelet denoising method known as
SURE shrinkage [108] is essentially the L1 regularized wavelet basis expansion.

• Statistical learning based method. The key is to model the characteristics of the nor-
mal state, e.g., the support of its distribution, its sparse representation, or its smooth
component, with parametric or non-parametric learning tools. As a large amount of
data is made available by the advancements in sensor network and information tech-
nology, this approach is receiving increasing attention in both application and research
domains. Ignoring the temporal dependence, many classic machine learning tools, such
as the Kernel Principle Component Analysis (kPCA), Partial Least Squares (PLS), one
class SVM, etc., have been widely applied to various fields. When the temporal depen-
dece is informative, miscellaneous time series modeling and analysis tools, ranging from
simple linear regression to complicated AMRIA models and from parametric dynamic
Bayeisan networks to non-parametric regression methods, can be adopted. Readers
are referred to [109, 85] and the references therein for a comprehensive survey.

However, few works have addressed the outlier detection problem for multiple corre-
lated time series. In this section, we propose two learning frameworks, one based on non-
parametric smoothing and the other based on the collaborative filtering of HMMs, to learn
trends and identify outliers/novelty from a rich family of multiple time series. For each
of the learning formulation, we propose efficient optimization algorithms and test them on
real-world data set generated from CPS.

Before proceeding to any technical details, we standardize our notation by using a matrix
XM×T to represent all time series measurements for T time steps and M streams. Note that
for sensor network applications we usually have M = K × L where K is the number of
channels of each sensor and L the number of sensors installed in the network. To represent
the dependence among streams, a “contextual” matrix CM×M is designated to store the
pair-wise correlations. Also for the ease of discussion, we adopt the notion of Network of
Time Series (NoT):

Definition 4. A Network of Time Series (NoT) is defined as the triplet G = {X,C, d}, where
X ∈ RM×T is a collection of M time series of T time steps, C ∈ RM×M is the contextual
matrix and d a dictionary that maps each dimension or stream of X to an entry in C.

Regarding outlier detection, we adopt the convention that the abnormality or novelty of
a observation Xit is defined as the deviation between estimated (expected) value X̂it and
real measurement Xit. Hence the problem of novelty detection reads,

Problem 1. Given G = {X,C, d}, estimate X̂it, ∀i, t. Then compute l
(
Xit, X̂it

)
as the

index of novelty, where l(·, ·) is a metric function R× R 7→ R.

Hence the core of the novelty detection problem is an estimation problem, for which both
temporal dependence and inter-series correlation should be taken into account.
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3.2 A Simple Nonparametric Approach

The first method we propose borrows ideas from two separate yet closely related research
domains, i.e., time series de-trending in economics and non-parametric regression in sta-
tistical learning. The learning formulation for multiple time series data is quite intuitive,
and it is possible to extend this approach to other data types with the introduction of
the Bregman Divergence. To solve the learning problem a simple yet efficient coordi-
nate descent algorithm is proposed. Source code and experimental data can be found at
https://github.com/Yuxun/nonParamDetection.

3.2.1 Problem Formulation

We start by considering the following decomposition for a single time series xt:

xt = ut + wt ∀t (3.1)

where the new time series ut represents the trend component in the terminology of economics,
and the second term wt contains the so called cyclical component and noises of the original
time series [110]1. As such, outlier or novelty can be intuitively defined as elements that
deviate significantly from the general trend. In order to find the trend component, one can
simply optimize over a “fitness” and “smoothness” trade-off:

min
u0,··· ,uT

T∑
t=1

l(xt, ut) + λΩ(u0, · · · , uT ) (3.2)

where l(·, ·) and Ω(·) are loss functions imposed on “fitness” and “smoothness”, respectively.
The above formulation is also closely related with the non-parametric regression method
in statistical learning [111], in which a regression function is found by minimizing the L2

loss with second derivative regularization. Similarly, when dealing with time series data
containing discrete-time, continuous-value records, one can substantiate objective (3.2) as
follows:

min
u0,··· ,uT

T∑
t=1

(xt − ut)2 + λ
T∑
t=1

(∇2
tut)

2 (3.3)

where ∇2
t is the second order difference operator defined by:

∇2
tut =


0 t = 1

ut+1 + ut−1 − 2ut 2 ≤ t ≤ T − 1

0 t = T

(3.4)

Like the second order derivative regularization used in non-parametric regression, the above
aggregated second order differences also measures the smoothness of the entire sequence.

1Hence one can decompose this term into wt = ct + εt for further analysis

https://github.com/Yuxun/nonParamDetection
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By solving the convex quadratic optimization problem (3.3), one is able to find the trend
component ut. Any data point that significantly deviate from the trend is an outlier or
novelty point. The weighting parameter λ is called the smoothness parameter, which should
be tuned according to the application purpose using model selection techniques. This will be
detailed in the experiment section of this chapter. It is worth pointing out that the solution
to (3.3) is called the Hodrick-Prescott filter in economic time series analysis [112].

Now we extend the above non-parametric framework to handle multiple time series that
are correlated with each other. Notation-wise, given multiple time series data X ∈ RM×T ,
we denote the tth element of the mth time series by xmt, i.e., xmt is the (m, t)th entry of the
data matrix X. Also, the boldface xm is used to represent the row vector [xm1, · · · , xmT ].
Similarly, um = [um1, · · · , umT ]. Now consider minimizing the following objective:

min
u1,··· ,uM

M∑
m=1

T∑
t=1

(xmt − umt)2 + λ1

M∑
m=1

T−2∑
t=2

(
∇2
tumt

)2
+ λ2

M∑
i=1

M∑
j=1,j 6=i

T−1∑
t=2

[
∇2
t (uit − Cijujt)

]2
(3.5)

where λ1 and λ2 are two regularization hyper-parameters, and C is the standardized co-
variance matrix with entries

Cij = cov(xi,xj) (var(xj))
−1 (3.6)

The intuition for the first two terms in (3.5) is straightforward: we simply aggregate the
fitness and smoothness objectives of M times sequences. The motivation for the third term
is the following: Since the linear least square estimator (LLSE) [113] of ui given uj reads

E[ui]− cov(ui,uj) (var(uj))
−1 (uj − E[uj]).

In the case where the two trends are ideally correlated, ui − cov(ui,uj) (var(uj))
−1 uj

should be a constant sequence. Consider estimating the covariance of U by that of the
noisy X, and relax the harsh “constant” requirement to smoothness, then with the same
usage of second order difference, the third term imposes the smoothness of the sequence
ui−Cijuj, which is aggregated over all pairwise combinations. The objective (3.5) constitutes
a non-parametric learning formulation for multiple, interacted time series. The optimization
problem is still convex quadratic, and in a tensor form can be written as:

min
U∈RM×T

‖X−U‖2
F+λ1tr

(
UQTQUT

)
+λ2tr

(
[U ⊗ e−W (e⊗ U)]QTQ[U ⊗ e−W (e⊗ U)]T

)
(3.7)

in which ‖ · ‖F is the Frobenius norm or the L2,2 norm of a matrix, tr(·) computes the trace
of a squared matrix, and ⊗ is the tensor product [114]. The vector e has dimension M and
contains all ones, i.e.,

e = [1, 1, · · · , 1︸ ︷︷ ︸
M1s

]T (3.8)
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The matrix Q performs second order difference operation and can be specified as

Q =



1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

...
...

...
... · · · ...

...
...

0 0 0 0 · · · −2 1 0

0 0 0 0 · · · 1 −2 1


(T−2)×T

(3.9)

The matrix W has dimension M2×M2, and encodes the computation of pairwise residuals.
More specifically, W is defined block-wise by

W =


H1 0 · · · 0

0 H2 · · · 0
...

... · · · ...

0 0 · · · HM


M2×M2

, Hm = diag ([Cm1, Cm2, · · · , CmM ]) (3.10)

Noting the similarity of the regularization with various versions of multi-task learning, the
proposed method learning formulation can be viewed as multi-task extension of time series
trend identification.

3.2.2 Extension to the Exponential Family

The previous section is focused on time series having continuous values. Many CPS mea-
surements, however, may be non-negative or categorical depending on the data generating
process. For example, the count of the number of occupants in a building should be modeled
after a Poisson distribution instead of being treated as a continuous real value. Given that
consideration, this section is devoted to extend the smoothing method developed in last
section to time series with exponential family marginal distributions. The learning formula-
tion still has a form similar to (3.5), which optimizes the trade-off between fitness and both
temporal smoothness of each time series and inter-series smoothness.

It is helpful to recall some definitions to begin with:

Definition 5. The Bregman Divergence of any x,y ∈ Rn, with respect to some arbitrary
differentiable strictly convex function F : Rn → R is defined by

BF (x,y) = F (x)− F (y)− (x− y) · F ′(y) (3.11)

One can think of the Bregman Divergence as simply the nonlinear tail of the Taylor
expansion of F (x) around y. Note that the Bregman Divergence is not symmetric, however,
it holds that BF (x,y) = 0 iff x = y.
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Definition 6. A family of distributions is said to belong to Exponential Family in canon-
ical form if the probability density function, or probability mass function for discrete distri-
butions, can be written as

fX(x|θ) = h(x) exp {θ · T (x)− A(θ)} (3.12)

where the parameter vector θ is called the natural parameter of the distribution, and T () the
sufficient statistic.

The normalization factor

A(θ) = log

∫
h(x) exp {θ · T (x)} dx (3.13)

is strictly convex and plays an important role in characterizing members of the exponential
family. In particular one can show that the cumulant generating function is

K(λ) = A(λ+ θ)− A(θ)

with which one can obtain that,

Eθ[T (x)] = ∇θA(θ) , a(θ) (3.14)

When Bregman Divergence is used in measuring the fitness of observed data to a parametrized
exponential family distribution, the following property shows that Bregman divergence is di-
rectly related with log-likelihood:

Proposition 17. Define a dual function associated with the exponential family

F (a(θ)) , θ · a(θ)− A(θ) (3.15)

then F (µ) is strictly convex in µ = a(θ). In addition,

BF (T (x)||a(θ)) ∝ −logP (T (x)|θ) ∝ A(θ)− T (x) · θ (3.16)

Proof. Treating θ as a function of µ, and taking derivative of F (a(θ)) with respect to µ, we
get

∇µF (µ) = f(µ) = θ +
∂θ

∂µ
µ− ∂θ

∂µ
µ = θ (3.17)

which is in effect the inverse of a(θ), i.e.,∇µF (µ) = θ = a−1(µ). From the strict convexity
of A(θ), it is guaranteed that this inverse always exists. Moreover, since a(θ) has a positive
definite Jacobian, its inverse a−1(µ) also has a positive definite jacobian. Hence F (µ) is
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strictly convex. In real analysis, F (µ) is also called the dual convex function of A(θ) [115].
Using this function in the Bregman divergence for x and a(θ), we get

BF (T (x)||a(θ)) = F (T (x))− F ((θ))− (T (x)− a(θ)) · ∇F (a(θ))

= F (T (x))− a(θ) + A(θ)− (T (x)− a(θ)) · θ
= F (T (x)) + A(θ)− T (x) · θ

On the other hand, since the log likelihood of the exponential family is just

logP (T (x)|θ) = log h(x) + T (x) · θ − A(θ)

Hence we can directly relate negative log likelihood and Bregman divergence by

BF (T (x)||a(θ)) = − logP (T (x)|θ) + log h(x) + F (T (x))

Thus from a parameter estimation point of view, the minimization of Bregman divergence
and the maximization of log likelihood are equivalent. Now consider an arbitrary time series
{x1m, x2m, ..., xTm} in the data set, whose marginal distribution (for each xmt) belongs to
some exponential family, a natural extension of the “fitness” loss is the Bregman divergence.
Together with the above discussion, the first term in the proposed multiple time series
smoothing formulation (3.5) could be generalized as

l(Θ) =
M∑
m=1

T∑
t=1

BF (T (xmt)||a(θmt)) ∝
M∑
m=1

T∑
t=1

− logP (T (xmt)|θmt)

∝
M∑
m=1

T∑
t=1

{A(θmt)− T (xmt)θmt}

(3.18)

where we use the matrix Θ ∈ RM×T to denote all natural parameters associated with the ele-
ments of the multiple times series. For commonly used exponential family distributions, their
normalization factor A(θ), the corresponding a(θ), and the transformation to natural param-
eters can be found on the last table of https://en.wikipedia.org/wiki/Exponential_

family. For example, with Gaussian assumption for continuous time series, A(θ) = θ2

2
and

a(θ) = θ, we have

BF (T (xmt)||a(θmt)) ∝ −xmtθmt +
θ2
mt

2
∝ (xmt − θmt)2

which recovers the fitness term of the formulation in last section. If the time series contain
binary records xmt ∈ {+1,−1}, we have A(θ) = log(1 + eθ), a(θ) = 1

1+e−θ
, and with some

calculations we get
BF (T (xmt)||a(θmt)) ∝ log

(
1 + e−xmtθmt

)

https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Exponential_family
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Since natural parameters uniquely characterize the exponential family distribution, in
particular the moments through cumulant function, it appears reasonable to adopt a similar
regularization as in (3.5) for natural parameters of each entry, to impose temporal smoothness
on each time sequence, as well as their inter-correlations. As such, the overall learning
objective of general multiple time series smoothing reads

min
θ1,··· ,θM

J (Θ) =
M∑
m=1

T∑
t=1

{A(θmt)− T (xmt)θmt}

+ λ1

M∑
m=1

T−2∑
t=2

(
∇2
t θmt

)2
+ λ2

M∑
i=1

M∑
j=1,j 6=i

T−1∑
t=2

[
∇2
t (θit − Cijθjt)

]2 (3.19)

which is still convex since the second order derivative of each component of the first term is
a′(θmt) = Var(T (xmt)) > 0.

3.2.3 A Fast Random Block Coordinate Descent (RBCD)
Algorithm

So far the problem of multiple time series smoothing has been reduced to solving a con-
vex optimization problem (3.19) with smoothness penalty λ1 and λ2 as hyper-parameters.
Generic methods, such as those based on first or second order gradient [116, 117], may be
applied but may not be a good choice - the dimension of the decision variables Θ equals
to the number of elements of all time series, hence the calculation or even the storage of
full first/second order gradient is quite inefficient. Moreover, batch gradient methods suffers
from the choice of step size and numerical instability when dealing with high-dimensional
problems.

In this section, we propose a simple yet efficient algorithm that can be implemented in
just a few lines of code. The key idea is the archetype of an universal solution methodology
to algorithmic optimization: solving a complex or large scale problem by reducing it to a
sequence of simpler optimization problems. More specifically for (3.19), it appears that fixing
all the other decision variables except θt, (which are the decision variables corresponding to
all observations of the multiple time series at time t), the sub-problem has low dimension
and the solution can be updated easily with much less time and memory. We provide
a convergence analysis of the proposed RBCD algorithm, and demonstrate its relation to
stochastic gradient descent (SGD). In addition, RBCD is readily amendable for parallel
computation, and empirically outperforms the state-of-the-art alternating direction method
of multipliers (ADMM) that was recently proposed for total variation regularized problems
[118, 119].

The RBCD start with an initial guess of the decision variables Θ0. In each step, it
consists of (1) picking up an index ik from {1, · · · , T}, (2) evaluating the gradient of a block
of variables, i.e., [∇J (Θ)]ik in the current implementation, followed by (3) updating the
ithk column of Θ. Note that we have adopted the “subset indexing” convention: here and
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throughout, [∇J (Θ)]i is used to denote the ith column of∇J (Θ). The indicator vector vi has
dimension T × 1 and all its elements, except the ith entry, equal to zero. The multiplication
with vTi serves to match the dimension of block gradient to the dimension of all decision
variables. Also it is worth pointing out that in each step ik could be chosen randomly, as in
the current implementation, for the purpose of parallel computing. Alternatively ik can be
selected in a deterministic fashion, e.g., using a cyclic schedule. The convergence analysis in
later part of this section holds for both cases.

Algorithm 3: Random Block Coordinate Descent (RBCD) Algorithm

Input: Multiple time series X = [x1, ...,xT ] ∈ RM×T

1 Initialize Θ0 = [θ0
1, ...,θ

0
T ] ∈ RM×T , and let k ← 0

2 while k < itermax do
3 Sample ik ∈ {1, · · · , T} from a uniform distribution
4 Θk+1 ← Θk + αk[∇J (Θ)]ikv

T
ik

5 if ||Θk+1 −Θk−T+2|| < threshold then
6 return

7 k ← k + 1

Now we calculate the gradients that are required by the algorithm. To begin with,
the three terms of the objective function (3.19) are denoted by l(Θ), Ω1(Θ) and Ω1(Θ),
respectively, i.e., the objective function is rewritten as

J (Θ) = l(Θ) + λ1Ω1(Θ) + λ2Ω1(Θ) (3.20)

for clarity. When all elements of Θ except the ith column θi are fixed, we can easily compute

∂l(Θ)

∂θi
= − (a(θi)− T (xi)) (3.21)

where the function operation should be interpreted component-wise, i.e.,

a(θi) , [a(θ1i), · · · , a(θMi)]
T

The gradient computation of the second term is also straightforward,

∂Ω1(Θ)

∂θi
= φ(B)θi (3.22)

where φ(B) = B2 − 4B + 6 − 4B−1 + B−2 and B is the time delay operator. The gradient
of the third term is more involved, with some algebra we get

∂Ω2(Θ)

∂θi
= φ(B)

[
(M − 3)I + 2C + diag

(
M∑
j=1

C2
1j, · · · ,

M∑
j=1

C2
Mj

)]
θi (3.23)
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Finally the block gradient required in the algorithm can be obtained by combining the above
three terms, i.e.,

[∇J (Θ)]i =
∂l(Θ)

∂θi
+ λ1

∂Ω1(Θ)

∂θi
+ λ2

∂Ω2(Θ)

∂θi
(3.24)

Now we provide the convergence analysis of the algorithm.

Theorem 18. The gradient function ∇J (Θ) is block-wise Lipschitz continuous. Let Li be
the Lipschitz constant of block i, then

Li ≥ (2 + 12λ2 + 2λ2(M − 3)) + 2‖C‖2 + min{
M∑
j=1

C2
1j, · · · ,

M∑
j=1

C2
Mj} , L̄min ∀i

Li ≤ (2 + 12λ2 + 2λ2(M − 3)) + 2‖C‖F + max{
M∑
j=1

C2
1j, · · · ,

M∑
j=1

C2
Mj} , L̄max ∀i

(3.25)

The RBCD algorithm with constant step size αk = L̄ generates a sequence {Θk}k≥0 that
achieves

E[J (Θk)]− J ∗ ≤
(

1− L̄min
TL̄max

)k
(J (Θ0)− J ∗) (3.26)

Interestingly, the proposed RBCD method is closely related to the Stochastic Gradient
Descent (SGD) method which has received much attention for large scale machine learning
application. SGD tries to minimize a smooth function f by taking a negative step along
an estimate g of the gradient ∇f(x). Under regular conventions, it is assumed that g is
unbiased, i.e., E[g] = ∇f(x), where the expectation is taken over the random variables
that are used to obtain g at current value of x. The proposed RBCD method, somewhat
surprisingly, can be viewed as a special case of the above SGD. In fact, if we take

g = T [∇J (Θ)]ikv
T
ik
,

then with the random sampling of the coordinate index, we have

E[g] =
1

T

T∑
i=1

T [∇J (Θ)]iv
T
i = ∇J (Θ) (3.27)

3.3 A Contextual Bayesian Approach

In this section, we proceed to establish a probabilistic graphical model that models multiple
correlated time series data. The key idea involves using matrix factorization based col-
laborative filtering to capture the relatedness among multiple time series, while taking the
advantage of Hidden Markov model (HMM) for the modeling of temporal dependence. The
construction of the model is not only closely related to dynamic system identification, but
also has a graphical model representation shown in Figure 3.4. As before, we have denoted
by xt for the tth column of the observation matrix X.
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Figure 3.4: Graphical representation of Contextual Hidden Markov Model (CHMM)

3.3.1 Collaborative Filtering with HMM

To begin with, the observed multiple time series can be thought of as the measurement a
dynamic system recorded by M sensors from time 1 to T , i.e., the mth row of the data matrix
X ∈ RM×T contains all readings from sensor m. Similar to the widely used low rank matrix
decomposition for collaborative filtering [120], one can try to find two matrices R ∈ RM×p

and Z ∈ Rp×M , such that
XM×T ' RM×pZp×T (3.28)

where R can be viewed as a “sensor latent” matrix, and Z as a “system latent” matrix.
More specifically, each column of the above equation reads

xt ' Rzt (3.29)

from which one can treat zt as the system hidden states, and R as the “observation matrix”
in the terminology of linear system theory. Similarly, the correlations among multiple time
series, encapsulated in the matrix C, can be decomposed with the help of a “relatedness
latent” matrix C ∈ Rp×M , i.e.,

CM×M ' RM×pVp×M (3.30)

Column-wise the above formula imposes

cj ' RM×pvj (3.31)

So far all the decomposition described above only takes care of inter-series relatedness.
To incorporate temporal dependence, we propose using HMMs to model X and Z, shown at
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the bottom of Figure 3.4. The essence of HMM is to assume that there is a hidden Markovian
process2 zt that drives the observation xt, in a manner that xt depends instantaneously on
zt. With the Markovian property, we only need to model p(zt|zt−1) and p(xt|zt) for each
steps. With further homogeneous assumption, the probabilistic models of all steps reduces
to a single transitional distribution p(zt|zt−1) ∀t and an emission distribution p(xt|zt) ∀t.
By the theory of d-separation in probabilistic graphical models, p(xt+1|xt, · · · ,x1) cannot be
further reduced using any conditional independence rule implied by HMM, hence the tem-
poral dependence is “preserved”. Moreover, the introduction of latent variables zt empowers
additional modeling flexibility for possibly non-stationary observations, which commonly
shows up in real-world applications. From a dynamic system analysis viewpoint, the above
HMM construction simply introduces an additional relation:

zt+1 ' Hzt (3.32)

Overall, the aforementioned intuition suggests modeling the distributions of p(zt|zt−1)
for temporal dependence, p(xt|zt, R) for “observation transformation”, and

∏M
j=1 p(cj|vj, R)

for inter-series relatedness. With that the complete likelihood of the proposed probabilistic
model for multiple time series reads,

l(X, Y,R,C, V ) =

p(z0)
T∏
t=1

p(zt|zt−1)︸ ︷︷ ︸
temporal dependence

T∏
t=1

p(xt|zt, R)︸ ︷︷ ︸
observation

M∏
j=1

p(cj|vj, R)p(vj)︸ ︷︷ ︸
context

(3.33)

where we have added extra terms like p(z1) and p(vj) to incorporate the prior information of
the corresponding random variables. The above likelihood formulation resembles an HMM
model imposed with “emission constraints” from the contextual layer. Hence we call it
Contextual HMM (CHMM). Again when Gaussian conventions from linear dynamics system
analysis are adopted, one could substantiate each piece by an additive Gaussian model:

zt = Hzt−1 + αt

xt = Rzt + βt
(3.34)

where αt ∼ N (0,Λ) and βt ∼ N (0,Ξ) are i.i.d. multivariate Gaussian random variable with
the same dimension of xt and yt, respectively. Similarly for the contextual layer one has

cj = Rvj + γj (3.35)

with i.i.d. random variables γj ∼ N (0,Γ). The prior distributions for z0 and vj can be
assumed to be Gaussian for conjugation, which yields z0 ∼M(z̄,Υ0) and vj ∼M(0,Φ0).

2A process that satisfies the Markov Property, i.e., given current instance, the past and the future are
independent.
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3.3.2 EM Learning Algorithm

The CHMM proposed in the last section belongs to the more general probabilistic graphical
model or Bayesian network framework. Due to the coupling of observations imposed by
the contextual layer, the corresponding model learning (or parameter estimation) problem
becomes much more challenging than classical HMM. Recall that in the current setting the
available observations are measurements X and the correlation matrix C. The goal of model
learning is to estimate model parameters, e.g., Θ = {H,Λ,Ξ,Γ, z̄,Υ0,Φ0}, based on current
observations. With the learned model at hand, one is ready to infer the distribution of latent
variables, the expected observation value at certain temporal spatial locations.

While a wide variety of general graphical model learning methods, such as expectation-
maximization (EM), variational methods, or sampling based approaches, exist in literature
to cope with latent variables [121], In this section we establish a simple EM algorithm, based
on the observation that conditioning on the “sensor latent” matrix R, the CHMM model
decompses into a simple HMM and a matrix factorization. Before proceeding to detailed
update formulas, it’s useful to recall that each iteration of the usual EM algorithm consists
of

- Expectation step: Under current estimate of the parameters Θk and observed data
D, calculate the expected log likelihood function.

Q(Θ|Θk) = EL|D,Θk [log l(L,D; Θ)] (3.36)

where L is the set of all latent variables. Usually the E-step can be reduced to com-
puting the expectation of sufficient statistics.

- Maximization step: Maximize the above function to find

Θk+1 = argmaxΘQ(Θ|Θk) (3.37)

The key point is that in most cases the Q function is much easier to optimize, and in
some cases can be solved explicitly as a function of sufficient statistics.

Regarding EM for CHMM, it’s useful to realize that conditioning on the matrix R,
the HMM layer and the contextual layer are independent. This inspires us to treat R as
a model parameter, and then compute the expectations involved in the HMM layer and
contextual layer separately in the E-step. Specifically, we reset model parameters as Θ =
{R,H,Λ,Ξ,Γ, z̄,Υ0,Φ0}, and latent variables L = {Z, V }. The EM algorithm for learning
CHMM is summarized as follows.

In the E-step the model parameters Θ are assumed to be known (fixed with previous
values). In the contextual layer, the expectation of latent variables can be easily obtained
using the formula for the conditional distribution of multivariate Gaussian3. After some
algebra we have

vj|cj ∼ N (B−1RTcj,ΓB
−1) (3.38)

3For detailed property of Jointly Guassian, please refer to Chapter 4.3-4.3 of [121].
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where B = RTR + Φ−1Γ. Now we could easily compute

E[vj|cj] = B−1RTcj

E[vjv
T
j |cj] = B−1RTcjc

T
j RB

−1 + ΓB−1
(3.39)

To update the expectations of the sufficient statistics of the latent variable Z, one just has
to realize that given Θ, the bottom (HMM) layer of CHMM is reduced to a simple Gaussian
linear system. Hence the E step of this block can be performed through standard Kalman
Filer [122, 123, 124] for linear system smoothing:
-Forward propagation

µt = Hµt−1 +Kt(xt −RHut−1)

Ψt = (I −KtR)Pt−1

Pt−1 = HΨt−1H
T + Λ

Kt = Pt−1R
T (RPt−1R

T + Ξ)−1

(3.40)

-Backward propagation

µ̂t = µt +Qt(µ̂t−1 −Hµt)
Ψ̂t = Ψt +Qt(Ψ̂t+1 − Pt)QT

t

Qt = ΨtH
T (Pt)

−1

(3.41)

Then we have the expectations for those sufficient statistics reads:

E[zt] = µ̂t

E[ztz
T
t−1] = Ψ̂tQt−1 + µ̂tµ̂

T
t−1

EztzTt ] = Ψ̂t + µ̂Tt

(3.42)

The goal of the M-step is to find the optimizer

Θk+1 = argmaxΘQ(Θ|Θk) (3.43)

Fortunately, under the assumption of CHMM the optimization is concave and smooth. Thus
it can be solved analytically by first order conditions. Setting derivatives to zero for each
parameters, we obtain parameter updating formula as follows.
-initial/prior parameters

z̄ = E[z1]

Υ0 = E[z1z
T
1 ]− E[z1]E[zT1 ]

Φ0 =
1

M

M∑
j=1

E[vjv
T
j ]

(3.44)
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-transition paramters

H =

(
T∑
t=2

E[ztz
T
t−1]

)(
T∑
t=2

E[zt−1z
T
t−1]

)−1

Λ =
1

T − 1

T∑
t=2

(E[ztz
T
t ]−HE[zt−1z

T
t ]− E[ztz

T
t−1]HT +HE[zt−1z

T
t−1]HT )

(3.45)

-observation paramters

Ξ =
1

T

T∑
t=1

(
RE[ztz

T
t ]RT + xtx

T
t − 2I ◦RE[zt]xt

)
(3.46)

-contextual paramters

Ri,: = D1D
−1
2

Γ =
1

M

M∑
j=1

(
RE[vjv

T
j ]RTcjc

T
j − 2I ◦RE[vj]cj

) (3.47)

where each row of the matrix R is updated by reweighting contributions of the contextual
layer and HMM layer.

D1 = ρΓ−1

n∑
j=1

CijE[vTj ] + (1− ρ)Ξ−1

T∑
t−1

xitE[zTt ]

D2 = ρΓ−1

n∑
j=1

E[vjv
T
j ] + (1− ρ)Ξ−1

T∑
t−1

E[ztz
T
t ]

(3.48)

Following standard complexity analysis of Kalman filter [125], each iteration of the EM
procedure has time complexity O(M3T ) and space complexity O(M2T ). As a special case
of the more general EM framework, the convergence analysis of the above procedure follows
classical works [126, 127, 128]. The readers are also referred to recent works like [129, 130,
131] for a discussion on issues of convergence rate and online learning possibilities.

3.4 Experiment

This section is devoted to the verification of the proposed algorithms proposed, as well
as discussing possible procedures for the choice of model hyperparameters. Overall, we
will demonstrate, through a real-world applications, that the proposed multiple time series
analysis tools enables the discovery of network level outliers/novelties that may otherwise
be ignored by traditional single time series analysis methods.
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3.4.1 Data Collection from a PMU network

The data-set used in this section was collected from a power distribution system equipped
with smart meters called phasor measurement units (PMUs) [132]. Each channel of a par-
ticular PMU generates a time series by measuring one type of system state at a certain
node. Figure 3.5 illustrates one of our case studies, in which five PMUs are installed at
different locations in a distribution subsystem (top left), providing measurements of volt-
age/current magnitude and phase angle at a high sampling rate (bottom left). Due to the
innate smoothness of state transition, the time series exhibits a strong correlation among ad-
jacent measurements along the temporal dimension, as can be observed in the top right sub-
figure. Additionally, since all PMUs are connected with one another through the underlying
power distribution network, the measurements also demonstrate non-negligible inter-series
correlations, in particular for times series generated from the same branch of the network.

Figure 3.5: power distribution system equipped (PMUs) (top left); Voltage, current mea-
surement of one PMU (bottom left); Temporal correlation with 5 steps delay (top right);
Spatial correlation between current channels of PMU1 and PMU2 (bottom right).

All measurements from the PMU netowrk are GPS time stamped to provide time-
synchronized observability. The smart meters used in this project provide three-phase voltage
and current magnitude and phase angle with a 0.05% Total Vector Error and 20 seconds time
resolution. Measurement data is collected during the period June 02 to July 11, 2015. Each
sample is a 60 dimensional vector containing 12 channels per µPMU measuring three phase
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voltage/current magnitude/angle. Thus for the mutiple time series model, the observed
measurement X is 60× T , and the empirical correlation matrix C has dimension 60× 60.

3.4.2 Choice of Hyper-Parameters

The proposed non-parametric method has two hyperparameters λ1 and λ2, which are weights
for temporal and inter-series smoothness, respectively. The proposed CHMM has one hy-
perparamter, p, which is the dimension of the hidden state Z. These hyperparameters
determines the complexity of the learned model, and are critical for the performance of the
two method. In the sequel we discuss the choice of hyperparameters within a cross validation
(CV) framework.

First of all, a clean chunk of the multiple time series data4 is randomly divided into
training and testing sets. Let B ∈ RM×T be the indicator matrix having the same dimension
as the data matrix X, i.e., Bij = 1 if Xij belongs to the training set, and Bij = 0 if Xij is
assigned to the testing set. Each entry of B follows a Bernoulli distribution Ber(0.7), i.e., we
use approximately 70% of the data for training and leave 30% for testing. Fortunately, both
of the proposed methods are readily amendable to handle missing values (the data points
held out for testing). For the non-parametric method, one can simply ignore the loss terms
of the testing data points in the first part of (3.5), or more compactly, use X ◦B to replace
the first part of (3.7). Similarly, when the testing data points are held out, the E-step of the
CHMM becomes a intermittent Kalman Filter [133], and the only modification needed for
the M-step is to replace formula (3.48) with

D1 = ρΓ−1

n∑
j=1

CijE[vTj ] + (1− ρ)Ξ−1

T∑
t−1

BijxitE[zTt ]

D2 = ρΓ−1

n∑
j=1

E[vjv
T
j ] + (1− ρ)Ξ−1

T∑
t−1

B ◦ E[ztz
T
t ]

(3.49)

To evaluate the CV performance, we use the root mean square error (RMSE) on the testing
data set, i.e.,

RMSE =

√√√√∥∥∥(1−B) ◦ (X − X̂)
∥∥∥2

F∑
i

∑
t(1−Bij)

(3.50)

Figure 3.6 shows the impact of the two hyperparameters, λ1 and λ2, on the testing RMSE of
the nonparameteric method. The 2D surface reaches a minimum when λ1 = 39 and λ2 = 10,
demonstrating a trade-off between training fitness and smoothness (complexity). Based on
that, we set the two weights accordingly for the nonparametric method.

4The data used for CV contains very few outliers and is different from the chunk of data used in the
next section for validation (evaluation of the two methods).
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Figure 3.6: The testing RMSE of the non-parametric method as a function of hyperparam-
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Figure 3.7: The testing RMSE of the CHMM method as a function of hyperparameters

Figure 3.7 shows the the testing RMSE of the CHMM method as a function of the
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hidden state dimension p. It is seen that the RMSE decreases drastically in the first few
steps, reaches a minimum at around p = 25, and increases slightly as p gets larger. This
is understandable as p also characterizes the complexity (low rank approximation) of the
CHMM model. Hence in the evaluation phase, we set p = 25.

3.4.3 Outlier and Novelty Detection Results

Next we test the proposed methods as a tool for outlier or novelty detection. A 120 minute
measurement sequence is taken out, which exhibits abnormalities due to sensor or com-
munication failure, and novel events like voltage disturbance due to load changes. Since
outliers/novelty are defined as data points that deviate from the expected values under nor-

mal operation. we compute an index of novelty by comparing the inferred values X̂it with
the observed values of Xit with the absolute distance.
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Figure 3.8: Outlier/Novelty Detection with the proposed multiple non-parametric method.

Figure 3.8 shows the detection results of the proposed non-parametric method. Note that
although data from all 60 pmus/channels are used, only three correlated voltage streams are
shown here for clearer presentation. The blue curve in each subplot is the raw data with
outliers, and the green curve is the estimated values with the non-parametric method. It is
seen that the estimated values are smoothed version of the original data and the measurement
noise has been canceled out. For each time series, outliers/novelties are marked with vertical
lines when the absolute difference between raw value and estimated value is larger than 0.73,
which is 2σ calculated from all estimation biases. It appears that our method successfully
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captured almost all outliers caused by sensor/communication problems or load changes.
Those outliers are marked in magenta in each of the panel.

More interestingly, due to the incorporation of inter-series dependence, the estimated
values for each time series do not always follow its own trend, but are also influenced by
other correlated time series. This feature enables the detection of “network level” outliers
and novelties, i.e., those data points that significantly violate the correlation structure of
the system under measurement. This type of outliers are marked in cyan in each panel of
Figure 3.8. Intuitively, they correspond to power grid events such as three phase imbalance,
real and reactive power switching, etc.
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Figure 3.9: Outlier/Novelty Detection with the proposed CHMM method.

Figure 3.9 shows the detection results with the proposed CHMM method. At a first
glance, the estimated values (green curves) are quite similar to those based on the non-
parametric method. In general, CHMM also successfully detects both single stream and
network level outliers. The only difference, compared to the non-parametric method, is
that CHMM seems to emphasize inter-series relatedness more, while the temporal trend of
each series is weighted less. This is understandable as the non-parametric method directly
enforces smoothness while CHMM only tries to model this dependence through an HMM.
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Figure 3.10: Outlier/Novelty Detection using single non-parametric modeling method.
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Figure 3.11: Outlier/Novelty Detection using multivariate ARIMA method.

To further justify the proposed two methods and the benefits of incorporating inter-series
dependence, we compare them with two alternatives: One is the smoothing spline method
[134] for each time series, and the other is the multivariate auto-regressive integrated mov-
ing average (mARIMA) model [135]. Note that the model selection (smoothing parameter
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selection) of the spline method follows a similar cross validation introduced in the last sec-
tion. The model selection of mARIMA, on the other hand, follows the procedure discussed
in Chapter 4.3 of [135]. The outlier detection results for the spline method and mARIMA
model are shown in Figure 3.10 and Figure 3.11, respectively. Apparently, the single task
spline method fails to detect outliers that violate the correlation structure, although in gen-
eral it provide well-fitted trend for each sequence. The detection results of mARIMA are
interesting: due to the non-stationary nature (even after taking difference) of the measure-
ment data, ARIMA model does not provide a good estimation in general. It is observed that
some of the single stream outliers were missed, although the method is able to detect several
network level outliers.

3.4.4 Empirical Evaluation of Computational Cost

Here we empirically test the computational cost of the RBCD and EM learning algorithms
established for the non-parametric method and CHMM, respectively. The convergence of
the RBCD algorithm is shown in Figure 3.12, where the y-axis is the value of the objective
function (3.5), and x-axis is the number of iterations. The RBCD algorithm converges in
18T iterations, and in each iteration an explicit update is performed for a randomly selection
column of the non-parametric model. The result justifies the theoretical convergence analysis.
More interestingly, we see that although RBCD can be viewed as a special form of SGD,
it is different from traditional SGD in that in each iteration a decrease of the objective
function is guaranteed. The convergence result of the EM algorithm for CHMM is presented
in Figure 3.13. Note that the objective is the negative likelihood, and we see that EM
converges in about 67 iterations.
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Figure 3.12: Convergence of the RBCD algorithm for the non-parametric method.



CHAPTER 3. LEARNING OUTLIERS AND NOVELTY FROM MULTIPLE TIME
SERIES 65

0 10 20 30 40 50 60 70 80

Iteration number

-12000

-10000

-8000

-6000

-4000

-2000

0

O
b
je

c
ti
v
e
 v

a
lu

e

Figure 3.13: Convergence of the EM algorithm for CHMM.
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We also compare the computational cost of RBCD for the non-parametric method and
EM for the CHMM, with mARIMA and signal-series non-parametric. To justify the benefit
of RBCD, we also include the popular Alternating Direction Method of Multipliers (ADMM)
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algorithm [118], for the parallel optimization of (3.5). All numerical experiments are per-
formed on a workstation having dual Xeon5687 CPUs and 72GB memory. The results shown
in the sequel are average values of 20 repetitions. Figure 3.14 illustrates the required com-
putational time as a function of increasing size of training sequences. Among all methods
that incorporate inter-series relatedness, RBCD-NP is the most efficient: For large training
size it significantly reduces the running time by at least 42.1% compared to the runner-up
ADMM-NP. Although single-NP takes the least time usage, its detection performance is poor
and it misses all network level outliers, as is seen in last section. It appears that the compu-
tational costs of EM-CHMM and mARIMA scale slightly super-linearly and are both much
more expensive than that of the non-parametric method. One advantage of EM-CHMM,
however, is that its model selection is easier: CHMM only requires the specification of the
hidden state dimension p, which can be chosen with a simple discrete line search in the CV
framework.

3.4.5 Missing Value Recovery

Besides outlier and novelty detection, the proposed two methods in this chapter can also be
used to recover missing values in the multiple time series data, as is detailed in Section 3.4.2.
In this subsection, we evaluate the performance of missing value imputation on a 1 day
(1440 mins) data set collected from the PMU network. 30% of the data points are held out
randomly as missing values, and the RMSE metric defined in (3.50) is used for comparison
purposes.
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Figure 3.15: Missing Value Recovery with the Proposed Methods.

Figure 3.15 shows the imputation results obtained with the proposed two methods. The
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top left panel shows the original data and the top right panel is the data with missing values.
Note that in each of the subplot only 6 correlated time series are shown for illustration clarity,
but the experiment is conducted for all 60 series. The recovery results of the non-parametric
method and CHMM are presented in the bottom left and bottom right panels, respectively.
It is observed that both methods are able to leverage temporal and inter-series dependence
to achieve reasonable recovery.

mNP CHMM sNP mARIMA MF

0

0.01

0.02

0.03

0.04

Figure 3.16: Comparison of RMSE of different missing value imputation methods

Finally, the imputation performance of the proposed methods is compared to three al-
ternatives, including single stream non-parametric spline method (sNP) [134], multivariate
ARIAM (mARIMA) [135], and collaborative filtering based on matrix factorization (MF)
[120]. The testing RMSEs of all methods are shown in Figure 3.16. The mean RMSE and
its confidence intervals ±2σ are calculated from 20 repetitions of the randomized experi-
ment. We observe that the CHMM outperforms all the other methods, and the runner-up,
the proposed multiple time series non-parametric method (mNP), is also quite competitive.
Overall, both CHMM and mNP outperforms traditional methods by at least 21% in terms
of RMSE.
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Chapter 4

Learning Operational Domain for
Agile Control

This chapter addresses the problem of “machine learning for system operation”. In par-
ticular, we focus on tasks including the learning of convex function for optimal control,
consensus region for operational domain description, and semi-supervised classifier for event
identification. For each of the three problems under consideration, we first discuss its learn-
ing formulation and provide generalization analysis. Then we establish a novel optimization
scheme, namely parametric dual maximization (PDM), to solve the non-convex learning
problem. PDM reveals an interesting “piece-wise convex” structure of a class of machine
learning problems, including not only the above three problems but also various versions of
semi-supervised learning, learning with hidden structures, robust learning, etc. By leveraging
that structure and deriving a local explicit form of the solution, PDM essentially transforms
these problems into convex maximization, and uses the idea of level set to approach global
optimality. Finally, we conduct numerical experiments to demonstrate: (1) The performance
of the proposed PDM procedure, compared to the state-of-the-art methods like stochastic
gradient descent (SGD), concave-convex procedure (CCCP), block alternating optimization
(BAO), branch and bound (B & B), etc. (2) The effectiveness of the three learning scheme
and their usage in real-world system operation applications.

4.1 Learning Convex Functions for Optimal Control

4.1.1 Motivation and Formulation

Optimal control (OP) and its variations have achieved a great success and are becoming a
common practice for applications ranging from classical problems such as trajectory track-
ing, vehicle control, to recent ones like manufacturing process control, economic mechanism
design, energy system scheduling, etc [136] [137]. OP finds control policies for a system such
that a desired criterion or an objective is optimized, given that system dynamics and opera-
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tion requirements are satisfied throughout the control horizon. A typical optimal control in
discrete time can be formulated as follows:

min J = Φ(x0, T0, xf , Tf ) +

Tf∑
t=T0

φ(xt, ut, t) (4.1)

s.t. xt+1 = f(xt, ut, t) (4.2)

ϕ(x0, T0, xf , Tf ) = 0 (4.3)

ρ(xt, ut, t) ≤ 0 (4.4)

where the functions Φ(·) and φ(·) in the objective specify the end point and process cost,
receptively. The first equality constraint incorporates the system dynamics and the second
constraint imposes a fixed initial or final state. The last constraint requires that the system
operates within a feasible set, which is denoted as At and is called the acceptable set or the
operation region of the system. Essentially, with system models established beforehand OP
reduces to solving the above optimization problem.

Figure 4.1: Different ways of describing operation requirement

In the traditional control scheme, the above formulation is substantiated through user
specified objectives and physical laws that describe the relations among system variables.
However, as recently OP is being applied to more complicated, stochastic, and human in-
volved cyber physical systems, some of the relations might be hard to establish only with
those “direct” methods. By exploiting the development of information technology and arti-
ficial intelligence, this difficulty can be alleviated by the so called data-driven approach in
which measurements of the system are collected and machine learning tools are used to infer
one or more system characteristics. Perhaps the most widely used data-driven method for
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control is the estimation of system dynamics, known as system identification (SI) techniques
[138] [139]. Nonetheless, there are very few research addressing the problem of learning op-
eration constraints. In current literature only the ranges for each variable (box constraints)
are considered [140] [141]. The over-simplified model is understandable from a technical
standpoint: since the OP already requires solving a challenging large scale optimization
problem, the incorporation of any complex operation region will induce non-linearly coupled
constraints within the state variables, making the corresponding optimization very hard,
if not intractable to solve [142]. The above concern also rules out many existing learning
tools that construct non-linear classifiers, such as neural network, kernel SVM, or logistic
regression, for the purpose of learning operation regions in the OP framework.

The solution proposed here follows the “learning for application” ideology, in which a
learning machine is justified not only by its classification performance, but also its com-
patibility with the downstream applications. We suggest building Convex Piecewise Linear
Machine (CPLM) for the modeling of system operation region. The advantage is obvious for
the OP part: as CPLM is basically a set of linear inequalities, it can be directly plugged into
any optimization without increasing the inherent complexity of the problem. A comparison
of box constraints, non-linear classifiers and the CPLM is illustrated in Figure 4.1.

From a statistical learning viewpoint, the proposed CPLM tries to find an optimal config-
uration of multiple hyperplanes for classification. It is worth noting that in literature several
attempts were made to learn piecewise linear classifiers: With additional assumption that
some samples in the negative class have explicit subclass labels, [143] proposed an alternat-
ing method to learn polyhedrons. In [144] and [145] the author proposed another logistic
formulation and a corresponding perception algorithm. Recently, the authors of [146] pro-
posed a large margin formulation and a SGD algorithm to learn convex polytope machine.
In the following, we formulate the learning problem by directly constructing the classifier
from multiple hyperplanes and then proceed with regularized empirical risk minimization.

Let x ∈ Rp be the p dimensional state variables of the system under consideration.
Our goal is to build convex piecewise linear constraints to describe the operation region
A. Let S = {xi, yi}li=1 be the available training data set of size l, and y ∈ {+1,−1} the

corresponding label indicating x ∈ A or not. As is shown in Figure 4.1 (c), a convex set Â,
defined by the intersection of M linear inequalities, is used to approximate the true A, i.e.

Â =
{
wT

1 x > 0
}
∩ · · · ∩

{
wT
Mx > 0

}
(4.5)

=

{
min

1,··· ,M
{wT

1 x, · · · ,wT
Mx} > 0

}
(4.6)

where wj is the parameter (normal vector pointing to the interior of the acceptable region)
of the jth hyperplane. To include interception one can simply add a dimension of constant 1
to x. The equality (4.6) follows directly from a set logic argument. Thus CPLM is just the
sign of the function

g(x) = min
1,··· ,M

{wT
1 x, · · · ,wT

Mx} (4.7)
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The M hyperplanes can be considered as M “experts”. With the above decision rule a sample
x′ is classified as positive (ŷ = +1) if and only if all of the experts agree (wT

j x > 0 ∀j),
while a negative assignment is made as long as one expert “negate” (wT

j x > 0 ∃j). Hence
CPLM can be viewed as a “veto” combination of linear decision rules that emphasize the
the sensitivity to the negative class and the specificity to the positive class.

As CPLM is a composed version of M linear hyperplanes, a natural concern is its gener-
alization property, i.e. how well in theory the classifier will perform on unseen data, which is
also of great importance for model selection. In the Probably Approximately Correct (PAC)
learning framework, this problem reduces to analyzing the trade-off between training fitness
and model complexity. Here we adopt the well known VC-dimension, denoted by d, as the
measure of complexity. Intuitively the ways of shattering x with g is directly related with
the dimensionality p and the number of hyperplanes M used in constructing the classifier,
hence the VC-dimension of CPLM should be a function of both. While for two dimensional
case (p = 2) the VC-dimension is known to be 2M + 1 [147], for higher dimensional cases
direct calculation becomes very difficult. As a detour, by using a geometric argument we get
the following lower and upper bound for all p

Lemma 19. pM ≤ d ≤ 2(p+ 1)M log2 [(p+ 1)M ]

For clarity all proofs are moved to appendix. The lower bound implies that the class
of convex piecewise linear functions g has considerable description abilities (complexity) in
high dimensions with large M , and the upper bound shows that the dependence on M is no
larger than O (M logM). With this, we have

Theorem 20. Denote d′ , 2(p + 1)M log2 [(p+ 1)M ], R(g) the generalization risk (0-1

loss) and R̂(g) the empirical risk. Assume large enough sample size l > d′, we have that with
probability at least 1− δ

R(g) ≤ R̂(g) +

√
2 log(el/d′)

l/d′
+

√
log(1/δ)

2l

The first term R̂(g) in the above upper bound is the training cost (fitness), and the
second term is a function of model complexity. With large enough l, the last term goes to
0 and the second term is a increasing function of d′. The bound is an instance of Occam’s
razor principle that when similar training costs are induced by a group of classifiers, simpler
ones are preferred since they are more likely to generalize better. In the view of lemma 4.5.1
and theorem 4.2.1, a large number of hyperplanes is depreciated especially when CPLM is
used for high dimensional data set. Moreover, the monotonicity with M suggests a simple
incremental cross validation method for the choice of the number of hyperplanes.
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4.1.2 Cost Sensitive Large Margin Learning Formulation

The next step is to learn CPLM from data. A generic learning task can be formulated as
minimizing

L = r(f) +
l∑

i=1

li(yi, f(xi)) (4.8)

where f is the classifier and li(·, ·) are non-negative loss functions for each training sample.
r(·) is a regularization term to avoid ill-posed problem as well as to prevent overfitting. Here
L2 regularization is adopted,

r(g) =
1

2

M∑
m=1

‖wm‖2
2 (4.9)

The loss function should be chosen with more caution. Recall that the ultimate goal is
to learn the acceptable set of a system. For most control problems in practice, the cost of
assigning an unacceptable state as “good” (False Positive : {ŷ = 1 | y = −1} ) is much higher
than that of assigning an acceptable state as “bad” (False Negative : {ŷ = −1 | y = 1}).
Hence in the learning framework, the False Negative Rate (FNR) and False Positive Rate
(FPR) should be penalized differently. Assume that the rescaled cost of FNR and FPR are
c1 and c2 respectively with c2 ≥ c1 ≥ 1, 1 the 0− 1 loss can be written as

L0−1
cs (y, g) =


0 y = sign{g}
c1 y = 1 and g < 0

c2 y = −1 and g > 0

(4.10)

Seeing this, a näıve way to construct cost sensitive hinge loss, a convex approximation of
(4.10), is to consider

Lhim(y, g) = c11{y=1} [1− g]+ + c21{y=−1} [1 + g]+ (4.11)

where [·]+ = max{0, ·}. Although the above loss is widely used in literature to formulate
“cost sensitive” SVM, it is not Bayes consistent and the induced learning formulation only
has limited capacity to enforce cost sensitivity especially when the difference between c1 and
c2 is large. In this work we follow the lines of the work [148] and consider the following
modified version of hinge loss

Lhcs(y, g) = 1{y=1} [1− (2c1 − 1)g]+ + c21{y=−1} [1 + g]+

Proposition 21. [148] Lhcs(y, g) is cost sensitive Bayes consistent, i.e. the associated cost
sensitive risk is minimized by Bayes decision rule.

1The cost rescaling will make risk analysis easier, and it is possible since for learning only the ratio of
the costs matters
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g∗(x) > 0 if P(y = 1|x) > c1

c1+c2

g∗(x) = 0 if P(y = 1|x) = c1
c1+c2

g∗(x) < 0 if P(y = 1|x) < c1
c1+c2

(4.12)

Now by combining the regularization term and the loss function, we get the following
cost sensitive large margin learning objective:

min
w

M∑
m=1

1

2
||wm||2 + β

∑
i∈I+

[
1− (2c1 − 1) min

m
{wT

mxi}
]

+

+ β
∑
i∈I−

[
c2 + c2 min

m
{wT

mxi}
]

+

(CPLM)

where β is the loss penalty hyperparameter. Similar to the soft margin C-SVM, it should be
chosen with model selection techniques such as cross validation or solution path algorithms.

4.2 Learning a Structurally Imbalanced Classifier:

Veto-classification

In this section, we propose Veto-Consensus Multiple Kernel Learning (VCMKL), a natural
extension of CPLM but with hyperplanes in a transformed Hilbert space. VCMKL combines
multiple kernels in a way that one class of samples is described by the logical intersection
(consensus) of base kernelized decision rules, whereas the other classes by the union (veto)
of their complements. The proposed configuration is a natural fit for domain description
with multi-view learning, and can also be used for system fault detection, event diagnosis,
etc. We first provide a generalization risk bound in terms of the Rademacher complexity
of the classifier, and then formulate a large margin multi-ν learning objective with tunable
training error bound.

As its name implies, VCMKL can be viewed as a version of multiple kernel learning
(MKL). In recent years, MKL has shown promising results in a variety of applications and has
attracted much attention in machine learning community. Given a set of base kernels, MKL
finds an optimal combination of them with which an appropriate hypothesis is determined on
the training data. A large body of literature has been addressing the arising issues of MKL,
mainly from three perspectives and their intersections, i.e. theoretical learning bound, related
optimization algorithm, and alternative MKL settings. To list a few, the generalization
bounds for learning linear combination of multiple kernels have been extensively studied in
[149, 150, 151] by analyzing various complexity metrics. Following the pioneer work [152]
that formulates linear MKL as a semi-definite program (SDP), a series of work is devoted to
improve the efficiency with various optimization techniques, such as reduced gradient [153],
Newtown’s method [154], and mirror descent [155]. Also data related issues such as sample
adaptability and missing channels [156, 157] have been addressed. Despite the substantial
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Figure 4.2: 2D VCMK with non-linear/all linear base kernels

theoretical advancement and algorithmic progress made in linear MKL, few of the results
could be directly applied to MKL that incorporates nonlinear combinations. Indeed non-
linear MKL is usually studied on a case-by-case basis, such as polynomial combination [158],
hierarchical kernel [159], hyperkernels [160], etc.

Now we explain the construction of VCMKL. To motivate the configuration, Figure 4.2
illustrates a practical problem where part of the classes contains hidden structures. In this
example, the positive class is labeled. In contrast, the negative class contains several sub-
groups but only a“single” label is provided. To compensate for this implicit information, we
propose to describe the positive class by the intersection of the acceptance region of multiple
base kernel decision rules, and the negative class by the union of their complements. Hence
a sample is classified as negative as long as one or more rules “votes” negative (Veto), and
a positive assignment is made for a sample if and only if all of the rules agree (Consensus).
With this intuition, VCMKL is a natural solution for applications involving hidden struc-
tures or multi-view features. Moreover because the construction inherently emphasizes the
sensitivity to negative class and the specificity to positive class, it is also a promising tool
for domain description problems.

In the sequel, we discuss the proposed VCMKL from both theoretical and algorithmic per-
spectives. Firstly, we formalize the the construction of the classifier and provide Rademacher
complexity analysis. Then a large margin multi-ν learning formulation is proposed with
training error controlled by hyperparameters.

4.2.1 The Classifier and Generalization Bound

Let S = {xi, yi}li=1 be a training data set, where x ∈ Rd and d is the dimension of features.
Without loss of generality let y ∈ {+1,−1} indicate class labels, with negative class contains
hidden subgroups. Consider a feature mapping φ : Rd → H, in the new Hilbert space a
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hyperplane can be written as f(x) = 〈w, φ(x)〉H + b. A decision rule for data x′ is given by
the sign of f(x′). Formalizing the idea of using intersections of M base kernel mappings for
positive class and the union of their complement for negative class, the composed classifier
g(·) is similar to CPML

{g(x) > 0} = {f1(x) > 0} ∩ · · · ∩ {fM(x) > 0}

=

{
min

1,··· ,M
{f1(x), · · · , fM(x)} > 0

}
On the other hand, the acceptance region for negative class is{

min
1,··· ,M

{f1(x), · · · , fM(x)} ≤ 0

}
.

For short notation, let us denote 〈w, φ(x)〉H = w · φ(x) as the inner product and || · || as
the corresponding norm in H. Then the combined classifier is simply

g(x) = min{w1 · φ(x) + b1, · · · ,wM · φ(x) + bM}

Note the similarity of the VCMKL construction with the CPLM proposed in last section.
With all linear base kernels, the VCMKL essentially reduces to the convex piece-wise linear
classifier.

Before proceeding to any method to learn this classifier, we conduct complexity analysis
in MKL framework for generalization bound and model selection purpose. Let the function
class of g be denoted as G, and that of fj be denoted as Fj. As a classic measure of richness,

the Empirical Rademacher Complexity for a function class F is defined as R̂(F(xl1)) ,

Eσ

[
supf∈F

∣∣∣2l ∑l
i=1 σif(xi)

∣∣∣] where σ1, · · · , σl are i.i.d. Rademacher variables such that

P(σi = +1) = P(σi = −1) = 1/2. The definition measures the complexity/richness of
function class F in terms of its ability to “match” Rademancher variables. With Talagrand’s
Lemma and an induction argument, we show that

Theorem 22. The function class G of VCMKL has

R̂(G
(
xl1)
)
≤ 2

M∑
j=1

R̂
(
Fj(xl1)

)
Further assume Fj forms a bounded function class with kernel κj(·, ·) and kernel matrix Kj

such that Fj =
{
x 7→

∑l
i=1 αiκj(xi,x) | αTKjα ≤ Bj

}
then

R̂
(
G(xl1)

)
≤ 4

l

M∑
j=1

Bj

√
tr(Kj).
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In general it is hard to tighten the additive nature of the complexity. With the above
results at hand, the generalization guarantee of the MKVCL can be obtained immediately
from the classic results in the PAC learning framework. Let L(g) = ES [1sgn(g(x))6=y] be the

generalization error of the MKVC classifier g, and let L̂ρ(g) , 1
l

∑l
i=1 Ψρ (yig(xi)) be the

empirical ρ −margin loss with Ψρ(t) = [min{1, 1− t/ρ}]+. Then we have with probability
at least 1− δ

L(g) ≤ L̂ρ(g) +
8

ρ

M∑
j=1

Bj

√
tr(Kj)

l
+ 3

√
log(2/δ)

2l

4.2.2 Multi-ν learning Learning Objective

To learn the multi-kernels classifier from data, we adopt a learning objective that maxi-
mizes the total margin defined in [146] while minimizing the hinge loss of misclassifications.
Inspired by the advantages of νSVM [161], the following multi-ν learning formulation is
proposed:

min
wm,bm,ρm

1

2

M∑
m=1

||wm||2 −
M∑
m=1

νmρm

+
γ

l

∑
i∈I+

max
m
{[ρm − yi(wm · xi + bm)]+}

+
1− γ
l

∑
i∈I−

min
m
{[ρm − yi(wm · xi + bm)]+}

(VCMKL)

where I+ and I− are the index sets of positive and negative samples, respectively. The
hyperparameters ν1, · · · , νM ∈ [0, 1] weigh the margins, and two types of losses are treated
differently by introducing γ ∈ [0, 1]. The multi-ν formulation still reflects the Veto-Consensus
intuition: the loss for positive class is the maximum over all decision boundaries, while for
negative class only the one with minimum loss is counted. The first three terms in the above
minimization problem are convex, while the last term is non-convex as the minimum of M
truncated hyperplanes. To obtain an equivalent dual form of the learning objective, we start
by considering a weighted version of the M losses over a simplex:

Lavg(w,xi,λi) =
M∑
m=1

λim[ρm − yi(wm · xi + bm)]+ (4.13)

with λi ∈
{
λi :

∑M
m=1 λim = 1, λim ≥ 0

}
, SM , a row vector in the |I−| × M matrix

λ containing the loss weighting parameters of negative samples. Denote Lmin(w,xi) =
minm {[ρm − yi(wm · xi + bm)]+} as the original loss for xi, it is straightforward that

Lmin(w,xi) = min
λi∈SM

Lavg(w,xi,λi) (4.14)

With this trick we reformulate the learning objective as
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Proposition 23. (VCMKL) is equivalent to

min
λi∈SM

min
wm,bm,
ρm≥0

1

2

M∑
m=1

||wm||2 −
M∑
m=1

νmρm

+
γ

l

∑
i∈I+

max
m
{[ρm − yi(wm · xi + bm)]+}

+
1− γ
l

∑
i∈I−

M∑
m=1

λim[ρm − yi(wm · xi + bm)]+

(Primal)

The newly introduced variables λ can be viewed as hidden subgroup indicators, hence
VCMKL can indeed be thought of as a multi-kernel extension of learning with latent vari-
ables. Considering the form of the Primal, it is tempting to apply CCCP and alternating
heuristics. Yet in this work a rigorous optimization algorithm will be developed to approach
global optimum. But before that let’s look into the relation between training error and the
hyperparameters νm, γ in the learning formulation. Replacing the inner optimization of the
Primal with its dual, we obtain that the Primal is equivalent to

min
λi∈SM

Jd(λ) where

Jd(λ) =



min
α

1
2

∑M
m=1

∑l
i,j=1 αimyiκm(xi,xj)yjαjm

subject to

αim ≥ 0 ∀i, ∀m
αim ≤ 1−γ

l
λim ∀i ∈ I−, ∀m∑M

m=1 αim ≤
γ
l
∀i ∈ I+∑l

i=1 αim ≥ νm ∀m∑l
i=1 αimyi = 0 ∀m

(Dual)

To see the effect of hyperparameters, it is useful to define partition of samples similar to
the classical SVM:

Definition 7. Partition of Samples : Based on the value of αim at optimal, the ith sample
is called

• positive support vector if i ∈ I+ and
∑

m αim > 0.

• positive bounded support vector if i ∈ I+ and
∑

m αim = γ
l
.

• negative support vector of class m if i ∈ I− and αim > 0.

• negative bounded support vector of class m if i ∈ I− and αim = 1−γ
l

.

All the other samples are called non-support vectors. The following proposition relates
the choice of hyperparameters to the training error tolerance.
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Proposition 24. Define ν+ =
l
∑
m νm

2γ|I+| and ν−m = lνm
2(1−γ)|I−| , and denote N sv+, N sv−

m , N bsv+, N bsv−
m

as the number of all postive/negative support vectors, positive/negative bounded support vec-
tors, respectively, then

N bsv+

|I+|
≤ ν+ ≤ N sv+

|I+|
N bsv−
m

|I−|
≤ ν−m ≤

N sv−
m

|I−|

(4.15a)

(4.15b)

Form the right hand side, ν+ and ν−m give a lower bound on the fraction of positive
support vectors and negative support vectors of class m, respectively. The left hand side
upper bound is more interesting: by definition, N bsv+/|I+| and N bsv−

m /|I−| are respectively
the training false negative error and false positive error of class m. Hence the bound implies
that one can impose smaller training error of different types by decreasing the corresponding
ν. The role of γ is also significant: it can incorporate an uneven consideration of training
errors committed in two classes, which can be harnessed to handle imbalanced availability
of positive/negative samples. In short, the advantage of the multi-ν formulation is that the
training result can be controlled simply by tuning bounds as a function of hyperparameters.

4.2.3 Extension to Hidden Structrued Semi-supervised Machine
(HS3M)

Traditionally, there have been two fundamentally different paradigms of machine learning
(ML). The first one is supervised learning, with the goal of learning a mapping from some
input x to output y. Usually the observations (xi, yi), i = 1, · · · , n are called samples, xi
are referred to as features of sample i, and yi ∈ Y are called labels or targets. To find the
“optimal” mapping f , the learning task can be formulated into for example “regularized
empirical risk minimization”. The second task of ML is unsupervised learning. Under this
setting, only the unlabeled observations X = {x1, · · · ,xn} are given. Typically, the goal of
unsupervised learning is to identify interesting structures in the data X, such as clusters,
quantiles, support, low-dimensional embedding, or more generally the patterns related to
the distribution of the data.

The presence of both labeled and unlabeled data motivates the so-called semi-supervised
learning [162, 163, 164]. The hope is that, by combining both types of available data sets,
semi-supervised learning could find better models/classifiers, and reduce the cost of expert
engagement. In the context of machine learning for cyber physical systems, data with de-
tailed labels is precious but scant. On the other hand partly labeled data with incomplete
information may be obtained with less cost or by using decision support systems. Moreover
unlabeled data is usually available in large quantities simply by collecting measurements of
the system. To formalize the information availability in different scenarios, consider data in
the following three formats:
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1 Completely labeled data samples, denoted as {xi, yi, zi}, where i is the sample index,
xi is the system measurement, yi ∈ {+1,−1} is a “cursory label”, and if yi = +1, a
”detailed label” zi ∈ {1, · · · , K} is provided.

2 Partly labeled data samples, denoted as {xi, yi, ·}, where yi is still the cursory label,
but when yi = −1, no other information is provided. We refer this case as partial
labeling or label with hidden subgroups.

3 Unlabeled data samples, denoted as {xi, ·, ·}, where only features xi is accessible.

The above data type division is better understood in the application of event classification
(or called system diagnosis): the cursory label is an indicator for “nominal/stable state”
(y = +1) or an interesting “event” (y = −1). If y = +1, an expert can be inquired to
provide an event type zi ∈ {1, · · · , K} (Type 1 data), or in the case of missing expert input,
only the cursorily labeled data is recorded (Type 2 data). Finally, unlabeled data can be
accumulated simply from sensor measurement of the system.

An illustration of these different situations is given in Figure 4.3. Intuitively, the partly
labeled data should be helpful: at least it provides discriminating information for a binary
classification. The role of unlabeled data might be ambiguous since it does not carry any
expert knowledge. However, it does contain distributional information of measurement,
which could be exploited with a proper formulation. As an effort to combine all three
information sources, we propose a unified learning objective that makes the best use of
partial knowledge to improve classification performance.



CHAPTER 4. LEARNING OPERATIONAL DOMAIN FOR AGILE CONTROL 80

Event 1

Nominal

Event 2

Event 3

(a) Completely labeled data

Nominal

Events

(b) Partially labeled data

(c) Unlabeled data set (d) HS3VM on all data sets

Figure 4.3: Different data format and the intuition of HS3M

Comparing Figure 4.3(a) and 4.3(b), we see that partly labeled data could be viewed as
data with “missing detailed labels” in the positive class (events types). To compensate for
this implicit information, the VCMKL constructed in previous section is a nature fit: one
can describe the negative class (stable state) by the intersection of the acceptance region of
multiple base kernel decision rules, while the positive class (events class) by the union of their
complements, as is shown in Figure 4.3(d). Consider a feature mapping φ : Rd → H, in the
new Hilbert space we write a hyperplane classifier as f(w,x) = 〈w, φ(x)〉H + b , w · φ(x)
for short hand notation. Then with VCMKL the proposed classifier is

g(w,x) = min
k
{w · φk(x)} (4.16)

and the corresponding hinge loss for a partly labeled data sample {xi, yi, ·} is just[
1− yi min

k
{w · φk(xi)}

]
+

(4.17)

Having composed the classifier, we adopt a tentative labeling strategy to include infor-
mation provided by unlabeled data. More specifically we consider

ŷi = sign
(

min
k
{w · φk(xi)}

)
(4.18)
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then the corresponding hinge loss has the form[
1− ŷi min

k
{w · φk(xi)}

]
+

=
[
1−

∣∣∣min
k
{w · φk(xi)}

∣∣∣]
+

Putting things together, we propose the following regularized hinge loss minimization for
event detection that incorporates all explicit and partial expert knowledge:

min
w

1

2
||w||2H + c1

∑
i∈L+

[
1−min

k
{w · φk(xi)}

]
+

+ c21

∑
i∈L−1

[1 +w · φzi(xi)]+

+ c22

∑
i∈L−2

[
1 + min

k
{w · φk(xi)}

]
+

+ c3

∑
i∈U

[
1−

∣∣∣min
k
{w · φk(xi)}

∣∣∣]
+

(HS3M)

where we have denoted L+ as the index set of all data samples that has yi = +1, including
both completely and partly labeled samples, L−1 as the index set of completely labeled
samples with yi = −1 and event type zi (hence the hinge loss only involves the corresponding
individual classifier fzi). The index set L−2 contains partly labeled samples in the event
class, and U is the index of all unlabeled data samples. The loss penalty hyper-parameters
c1-c3 weigh each loss term differently, and should be chosen by taking into account the
imbalanced cost for false positive and false negative error, sample size in each category,
as well as for model selection considerations. Since the above formulation deals with both
hidden structures and unlabeled samples in the available data, we call it Hidden Structured
Semi-Supervised Machine (HS3M).

To enable the usage of kernel trick in the dual form, we transform HS3M by introducing
additional “hidden” variables, and similarly to the reformulation of VCMKL, we can write
the learning objective in the following joint optimization form:
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Proposition 25. HS3M is equivalent to

min
η,ζ

min
w

1

2
||w||2H + c1

∑
i∈L+

[
1−min

k
{w · φk(xi)}

]
+

+ c21

∑
i∈L−

[1 +w · φzi(xi)]+

+ c22

∑
i∈L−H

K∑
k=1

ηik [1 +w · φk(xi)]+

+ c3

∑
i∈U

K∑
k=1

ζik [1 +w · φk(xi)]+

+ c3

∑
i∈U

ζi(K+1) max
j
{0, 1−w · φj(xi)}

subject to ηi ∈ SK , ∀i ∈ L−H ; ζi ∈ SK+1, ∀i ∈ U

In addition, the two minimizations are interchangeable.

The introduced variables η and ζ can be thought of as hidden state indicators for par-
tially labeled data and unlabeled data, respectively. The corresponding dual for the inner
optimization is

min
α,β,γ

1

2

∥∥∥∥∥∥
∑
k,i∈I

αikyiφk(xi) +
∑
i∈L−

βiφzi(xi) +
∑
k,i∈U+

γikφk(xi)

∥∥∥∥∥∥
2

H

−
∑
k,i∈I

αik −
∑
i∈L−

βi −
∑
k,i∈U+

γik

subject to

αik ≥ 0;
∑

k αik ≤ c1 ∀i ∈ L+

0 ≤ βi ≤ c21 ∀i ∈ L−

0 ≤ αik ≤ c22ηik ∀i ∈ L−H
0 ≤ αik ≤ c3ζik ∀i ∈ U−

γik ≥ 0;
∑

k γik ≤ c3ζi(K+1) ∀i ∈ U+∑
k,i∈I yiαik +

∑
k,i∈L− yiβi +

∑
k,i∈U+ yiγik = 0

(Inner Dual)
where the Lagrangian multipliers α,β,γ for the inner optimization of the primal are now
decision variables. Note that the unlabeled data set U is used as two dummy copies with
tentative labels yi = +1 for i ∈ U+ and yi = −1 for i ∈ U−, respectively. Also for short
hand notation, define I , L+ ∪ L−H ∪ U−, and a unified decision variable

θ =
[
αT ,βT ,γT

]T
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where we write
α ,

[
α11, · · · , α|I|1, α12 · · · , α|I|K

]T
β ,

[
β1, · · · , β|L−|

]T
γ ,

[
γ11, · · · , γ|I|1, γ12 · · · , γ|I|K

]T (4.19)

It is immediate that the norm in the Hilbert space reduces to inner products. Hence the
objective of the dual can be equivalently written as

min
θ

1

2

∑
i,j

θi〈φ(xi, yi, i), φ(xj, yj, j)〉θj −
∑
i

θi (4.20)

in which the so called kernel trick could be used for direct computation of the inner product
without the need to compute the explicit feature mapping φ(·), i.e.

〈φ(x, y, i), φ(x′, y′, j)〉 = κ(iy)(jy′)(x,x
′) (4.21)

For a more compact form of the dual, let us further define a matrix Q with elements
Q(iy)(jy′) = κ(iy)(jy′)(x,x

′), a column vector of all hidden variables

λ , {η1; · · · ;η|L−H |
, ζ1, · · · , ζ|U|},

and a augmented label vector (with dummy copies of unlabeled set) as

ỹ = [1, · · · , 1︸ ︷︷ ︸
L+

,−1, · · · ,−1︸ ︷︷ ︸
L−H

,−1, · · · ,−1︸ ︷︷ ︸
U−

,−1, · · · ,−1︸ ︷︷ ︸
L−

, 1, · · · , 1︸ ︷︷ ︸
U+

]T

together with a matrix encapsulated inequality constraints, the (negative) inner optimization
becomes

min
θ
J (θ) =

1

2
θTQθ − eTθ

subject to

{
Cθθ ≤ Cλλ+C0

ỹTθ = 0.

(OPT D)

whereCθ,Cλ,C0 are constant matrices withK|L−H |+(K+1)|U| rows. Similar to other kernel
methods in machine learning, HS3M is restricted to Mercer kernels, thence Q is positive
definite, and (Dual) is in a convex quadratic program. The learning objective HS3M now
becomes

max
λ∈Λ

min
θ∈Θ(λ)

J (θ) (4.22)

4.3 Derivation and Applications of the PDM

Algorithm

In this section we propose a novel optimization algorithm to solve the machine learning
problems formulated in last section. More broadly, we consider a class of non-convex learning
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problems that can be formulated into jointly optimizing regularized hinge loss and a set
of auxiliary variables. Besides the three models proposed in last section, such problems
encompass but are not limited to various versions of semi-supervised learning, learning with
hidden structures, robust learning, etc. Existing methods either suffer from local minima or
have to invoke a non-scalable combinatorial search. In this section, we propose a learning
procedure (partly based on our work [165]), namely Parametric Dual Maximization (PDM),
that can approach global optimality efficiently with user specified approximation levels .
The building blocks of PDM are two new results: (1) The equivalent convex maximization
reformulation derived by parametric analysis. (2) The improvement of local solutions based
on a necessary and sufficient condition for global optimality. Since PDM is not limited
to learning problems considered in this chapter, but applies to a much broader group of
non-Convex machine learning, we discuss PDM in a general ML framework and adopt self-
contained notations in this section.

4.3.1 Related Works

To enhance the performance on more challenging tasks, variations of the classic large margin
learning formulation are proposed to incorporate additional modeling flexibility. To name
a few, semi-supervised SVM (S3VM) is introduced in [166, 167] to combine labeled and
unlabeled samples together for overall risk minimization. To learn a classifier for datasets
having unobserved information, SVM with latent variables is proposed in [168] for object
detection and in [169, 170] for structural learning. Inasmuch as the traditional large margin
classifier with hinge loss can be sensitive to outliers, the authors of [171] suggest a ramp loss
with which a robust version of SVM is proposed.

Nonetheless, unlike the classical SVM learning objective that possesses amiable convex-
ity, these variations introduce non-convex learning objectives, hindering their generalization
performance and scalable deployment due to optimization difficulties. In literature, much
effort has been made to obtain at least a locally optimal solution: Viewing the problem as a
biconvex optimization leads to a series of alternating optimization (AO) algorithms. For ex-
ample, in [168], latent SVM was trained by alternately solving standard SVM and updating
latent variables. Another widely applied technique is the concave-convex Procedure (CCCP)
[172]. Among many others, [169, 173] used CCCP for latent structural SVM training. Di-
rect application of the gradient-based method is especially attractive for large scale problems
owing to its low computational cost [174]. Such examples include the stochastic gradient
descent (SGD) for large margin polytope machine [146, 175] and S3VM [176]. Combinato-
rial optimization methods, e.g., the local search method [167] and branch and bound (B &
B) [177], were also implemented for small-scale problems. It’s worth mentioning that other
heuristic approaches and relaxations such as continuation method [178] and semidefinite
program (SDP) relaxation [179, 171] have also been examined for several applications.

Yet except B & B, all of the aforementioned methods, i.e., AO, CCCP, and SGD, only
converge to local minimums and could be very sensitive to initial conditions. Although SDP
approximation yields a convex problem, the quality of the relaxation is still an open question
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in both theory and practice [180]. On the other hand, it has long been realized that global
optimal solution can return excellent generalization performance in situations where local
optimal solutions fail completely [177]. The major issue with B & B is its scalability: the
size of the search tree can grow exponentially with the number of integer variables [181],
making it only suitable for small scale problems. Interested readers are referred to [182] for
a thorough discussion.

In this work, we propose a learning procedure, namely Parametric Dual Maximization
(PDM), based on a different view of the problem. We first demonstrate that the learning
objectives can be rewritten into jointly optimizing regularized hinge loss and a set of auxiliary
variables. Then we show that they are equivalent to non-smooth convex maximization
through a series of parametric analysis techniques. Finally, we establish PDM by exploiting
a necessary and sufficient global optimality condition. Our contributions are highlighted as
follows. (1) The equivalence to non-smooth convex maximization unveils a novel view of
an important class of learning problems such as S3VM. Now we know that they are NP-
hard, but possesses gentle geometric properties that allow new solution techniques. (2) We
develop a set of new parametric analysis techniques, which can be reused for many other
tasks, e.g., solution path calculation. (3) By checking a necessary and sufficient optimality
condition, the proposed PDM can approach the global optimum efficiently with user specified
approximation levels.

4.3.2 A Class of Non-Convex Learning Problems

A labeled data sample is denoted as (xi, yi), with xi ∈ Rd and yi ∈ {−1,+1}. We focus on
the following joint minimization problem

min
p∈P

min
w,b

P(w, b;p) =
1

2
||w||2H +

N∑
i=1

cipiV (yi, hi) (OPT1)

where hi = κ(w,xi) + b with κ(·, ·) a Mercer kernel function. The function V is the Hinge
loss, i.e., V (yi, hi) = max(0, 1 − yihi). We call p , [p1, · · · , pN ]T ∈ P the auxiliary variable
of the problem, and assume its feasible set P to be convex. note that with p fixed, the
inner problem resembles traditional large margin learning. Depending on the context, the
auxiliary variable p can be regarded as hidden states or probability assignments for loss
terms. We focus on (OPT1) in this work, because the three learning problems considered in
this chapter, as well as many other large margin learning variations, including S3VM, latent
SVM, robust SVM, etc., can be rewritten in this form. The following is another example of
such reformulation:

Example 1. Consider the learning objective of Semi Supervised Support Vector Machine
(S3VM):

min
w,b,ŷu

1

2
||w||2H + C1

l∑
i=1

V (yi, hi) + C2

n∑
i=l+1

V (ŷi, hi)
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where l is the number of labeled samples and n− l unlabeled samples are included in the loss
with “tentative” label ŷu, which constitute additional variables to minimize over. Interest-
ingly, the learning objective has the following equivalent form:

min
w,b

min
p

1

2
||w||2H + C1

l∑
i=1

V (yi, hi)

+ C2

n∑
i=l+1

[piV (1, hi) + (1− pi)V (−1, hi)]

The equivalence is due to the fact that minimizing over pi will cause all its mass to concentrate
on the smaller of V (1, hi) and V (−1, hi). Formally for any variables ξ1, · · · , ξM we have
minm{ξ1, · · · , ξM} = minp∈SM

∑M
m=1 pmξm, where SM is the simplex in RM . Due to strict

feasibility and biconvexity in (w, b) and p, we can exchange the order of minimization and
obtain an equivalent form similar to (OPT1). The variable pi is the “probability” of ŷi = 1.

Observing that the inner problem of OPT1 is convex quadratic with fixed p, we replace
it with its dual problem and cast OPT1 into

max
p∈P

min
α∈A(p)

J (α) =
1

2

∑
i,j

αiyiκ(xi,xj)yjαj −
∑
i

αi

where A(p) =
{
α | 0 ≤ αi ≤ cipi ∀i, yTα = 0

} (OPT2)

In the above equivalent formulation, we can view the inner optimization as minimizing
a quadratic function subject to polyhedron constraints that are parametrized by the aux-
iliary variable p. Assuming the kernel matrix K, defined by Ki,j = κ(xi,xj), is strictly
positive2, then the optimum is unique by strict convexity, and the solution α∗ is a function
of p. Ideally, if one can write out the functional dependence explicitly, OPT2 is essentially
maxp∈P J (α∗(p)), which minimizes over the “parameters” p of the inner problem. In the
terminology of operational research and optimization, the task of analyzing the dependence
of an optimal solution on multiple parameters is called parametric programming. Inspired
by this new view of OPT2 (and thence OPT1), our solution strategy is: First, determine the
functional J (α∗(p)) by parametric analysis, and then minimize over p ∈ P by exploiting
the unique property of J (α∗(p)).

Note that the first step in effect involves a convex quadratic parametric programming
(CQPP), which has been addressed in optimization and control community for sensitivity
analysis and explicit controller design [183, 184]. Moreover, the study of solution path
algorithms in our field [185, 186] can also be regarded as special cases of CQPP. Nonetheless,
existing work on CQPP is technically insufficient, because (1) Due to the presence of the

2Then the induced matrix Q , K ◦ yyT is also strictly positive, hence the optimization is strictly
convex. For situations in which K is only positive semidefinite, a decomposition technique detailed in the
supplementary material, can be used to reduce the problem to the strictly positive case.
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constraint αTy = 0, the problem at hand corresponds to a “degenerate” case for which
existing solution is still lacking. (2) Some important properties of the parametric solution,
specifically its geometric structure, are not entirely revealed in prior works.

In the next section, we target the the inner minimization for parametric analysis. Our
results not only provide the analytical form of the solution in critical regions (defined later),
but also demonstrate that the overall learning problem (OPT2) is equivalent to a convex
maximization.

4.3.3 The Equivalent Convex Maximization Problem

To begin with, the inner minimization is rewritten in a more compact form:

min
α

J (α) =
1

2
αTQα− 1Tα

subject to Cαα ≤ Cpp+C0, yTα = 0.
(IO)

where Qij = yiκ(xi,xj)yj, and Cα, Cp and C0 are constant matrices encapsulating the
constraints.

4.3.3.1 A Sufficient Condition for the Existence of Parametric Solution

We first demonstrate that, interestingly, a mild sample partition condition is sufficient for
the existence and uniqueness of the parametric solution of (IO).

Definition 8. (Active Constraint) After a solution of (IO) has been obtained as α∗(p).
The ith row of the constraint is said to be active at p, if Cα

i α
∗(p) = Cp

i p+C0
i , and inactive

if Cα
i α
∗(p) < Cp

i p +C0
i . We denote the index set of active inequalities by A, and inactive

ones by AC. We use Cα
A to represent row selection of matrix Cα, i.e, Cα

A contains rows of
Cαwhose index is in A.

Definition 9. (Partition of Samples) Based on the value of αi at optimal, the ith sample
is called:

• Non-support vectors, denoted by i ∈ O, if α∗i = 0.

• Unbounded support vectors, denoted by i ∈ Su if we have strictly 0 < α∗i < cipi.

• Bounded support vectors, denoted by Sb, if α∗i = cipi.

Definition 10. (Non-degeneracy by Sample Partition) We say that a solution of (IO)
is non-degenerate if the unbounded support vector set Su contains at least one {i | yi = +1}
and at least one {i′ | y′i = −1}

Now we connect non-degeneracy, defined as a sample partition property of large margin
learning, to the existence and uniqueness of the parametric solution.
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Lemma 26. If the solution α∗ of (IO) is non-degenerate, then

• The matrix H , Q−1yyTQ−1

yTQ−1y
− Q−1 is negative semidefinite, and R , Cα

AHC
αT
A is

strictly negative definite, hence is invertible.

• The parametric solution α∗(p) exists and is unique.

Remark The invertibility of the matrix guarantees the uniqueness of the Lagrangian
multipliers of (IO) and hence the existence and uniqueness of the parametric solution. The
non-degeneracy condition is indeed a mild requirement: in fact in large margin learning
formalism, the unbounded support vectors are essentially the sample points that lie on the
decision boundaries, constructing the normal vector and the interception of the hyperplane.
In practice to have meaningful classification this condition is a necessity and is expected to
be satisfied.

4.3.3.2 Local Explicit Form of the Parametric Optimality

With the previous definitions and Lemma 4.5.2, the following theorem provides the explicit
form of α∗(p), as well as explicit “critical regions” in which the dependence stands.

Theorem 27. Assume that the solution of (IO) is non-degenerate and induces a set of
active and inactive constraints A and AC, respectively. With H, R defined previously and
T ,H(Cα

A)T , ẽ , Cα
AH1, we have

(1) The optimal solution is a continuous piecewise affine function of p. And in the critical
region defined by {

R−1(Cp
Ap+C0

A + ẽ) ≥ 0

Cp
ACp+C0

AC −C
α
ACTR

−1(Cp
Ap+C0

A + ẽ) ≥ 0
(4.23)

the optimal solution α∗ of (IO) admits a closed form

α∗(p) = TR−1(Cp
Ap+C0

A + ẽ) (4.24)

(2) The optimal objective J (α∗(p)) is a continuous piece-wise quadratic (PWQ) function
of p.

Remark The theorem indicates that each time the inner optimization (IO) is solved, full
information in a well-defined neighborhood (critical region) can be retrieved as a function of
the auxiliary variable. Hence one can efficiently calculate the closed form optimal solution
and its gradient in that region, without having to solve (IO) again. (2) shows that J (α∗(p))
is continuous but non-smooth.
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4.3.3.3 Global Structure of the Optimality

Recall that our goal is to solve maxp∈P J (α∗(p)). In this part, we show that the problem
is equivalent to convex maximization by revealing several important geometric properties of
J (α∗(p)) as a function of p.

Theorem 28. Still assuming non-degeneracy, then
(1) There is a finite number of critical regions CR1, · · · , CRNr which constitute a partition
of the feasible set of p, i.e., each feasible p belongs to one and only one critical region.
(2) J (α∗(p)) is a globally convex function of p, and is almost everywhere differen-
tiable.
(3) J (α∗(p)) is difference-definite, i.e., the differences between its expressions on neigh-
boring polyhedron critical regions have positive or negative semidefinite Hessian.
(4) Let the common boundary of any two neighboring critical regions CRi and CRj be aTp+b,
then there exist a scalar β and a constant c, such that

Ji(α∗(p)) = Jj(α∗(p)) +
[
aTp+ b

] [
βaTp+ c

]
.

Remark Although the number of critical regions is finite, in the worst case it could be
exponential to the dimension of p. Hence one cannot solve maxp∈P J (α∗(p)) by naively
enumerating all possible critical regions. The globally convex PWQ property of J (α∗(θ))
revealed by (2) is critical: now that the class of learning problem formulated in (OPT1) is
equivalent to maximizing a non-smooth convex function, which is well known to be NP-hard.
Fortunately, we will show in next section that there exists an optimality condition that can
be exploited to design efficient global optimization algorithms. Lastly, (3) and (4) imply that
the expressions of J (α∗(p)) on neighboring critical regions cannot be arbitrary, but is to
some extent bounded. Those properties can be further harnessed for solution approximation.

4.3.4 Global Optimality Condition and Parametric Dual
Maximization

To ease the notation, we hide the intermediate variable and denote

F(p) , J (α∗(p)) (4.25)

then (OPT2) becomes maxp∈PF(p). From the properties of F(p), or J (α∗(p)), given in
Theorem 4.5.2 and Theorem 4.5.2, we know that the problem is in effect a convex piece-wise
quadratic maximization. In this section, we propose a global optimization algorithm based
on an optimality condition and a level set approximation technique.

4.3.4.1 A Global Optimality Condition

Several global optimality conditions for maximizing convex function, particularly convex
quadratic functions, have been proposed before [187, 188]. In this work, we adapt a version
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of Strekalovsky’s condition for non-smooth case. First of all, the notion of level set is defined
as the set of variables that produce the same function values, i.e.,

Definition 11. The level set of the function F at p is defined by

EF(p) = {q ∈ Rn | F(q) = F(p)}

A sufficient and necessary condition for a point p∗ to be the global maximizer of F(p)
reads,

Theorem 29. p∗ is a global optimal solution of the problem maxp∈PF(p), if and only if for
all p ∈ P, q ∈ EF(p∗), g(q) ∈ ∂F(q), we have

(p− q)Tg(q) ≤ 0 (4.26)

where ∂F(q) is the set of subgradients of F at p.

By virtue of Theorem 4.5.3, we can verify the optimality of any point p by solving

∆(p) , max
q∈EF(p), p

′∈P
g(q)∈∂F(q)

(p′ − q)Tg(q) (4.27)

and checking if ∆(p) ≤ 0. We call the above maximization the auxiliary problem at p. The
major difficulty is that the level set EF(p) is hard to calculate explicitly. Next, we study
solution method for (4.27) by approximating the level set with a collection of representative
points.

4.3.4.2 Approximate Level Set

Definition 12. Given a user specified approximation degree m, the approximation level set
for EF(p) is defined by

Amp =
{
q1, q2, · · · , qm | qi ∈ EF(p) i = 1, 2, · · · ,m

}
Consider solving the auxiliary problem approximately by replacing EF(p) with Amp , then

for each qi, (4.27) becomes

max
p∈P, g(qi)∈∂F(qi)

(p− qi)Tg(qi) (4.28)

Since F(p) is almost everywhere differentiable, in most cases g(qi) is unique and equals to
the gradient ∇F(qi). Then the auxiliary problem is a simple linear program. In the cases
when qi is on the boundary of critical regions, ∂F(qi) becomes a convex set, and the auxiliary
problem becomes a bilinear program. General bilinear programs are hard, but fortunately
(4.78) has disjoint feasible sets, and one can show that
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Algorithm 4: Parametric Dual Maximization

1 Choose p(0) ∈ P; set k = 0; compute p∗ with subgradient descent.
2 while k ≤ iter max do
3 Starting from p(k), find a local maximizer r(k) ∈ P with a local solver.

4 Construct Am
r(k)

at r(k) by (4.31) (4.95)

5 Solve (IO) if a new critical region is encountered, otherwise use (4.47).
6 for qi ∈ Am

r(k)
do

7 for gj ∈ V (∂F(qi)) do
8 Solve linear programming uij = argmaxp∈P (p− qi)Tgj

9 Let j∗ = argmaxj{uij}; (ui, si) = (uij∗ , g
j∗)

10 Let i∗ = argmaxi{(ui − qi)Tsi}; u(k) = ui
∗

11 if (ui
∗ − qi∗)Tsi∗ > 0 then

12 Set p(k+1) = u(k); k = k + 1; # improvement found.
13 else
14 Terminate and output p(k); # optimality checked

15 Collecting explored critical region and explicit forms given in (4.47)(4.46).

Proposition 30. Problem (4.78) is equivalent to

max
p∈P

{
max

g(qi)∈V (∂F(qi))
(p− qi)Tg(qi)

}
(4.29)

which indicates that the optimal solution to (4.78) must be on the vertex of the feasible
polyhedron. As such, (4.78) can be expanded into a set of linear programs, each of which is
substantiated by an element in Amp and a vertex of ∂F(qi).

4.3.4.3 The PDM Algorithm

With the approximate auxiliary problem solved, we can immediately determine if an im-
provement can be made at the current p. More specifically, let {(ui, si), i = 1, · · · ,m} be
the solution of (4.78) on Amp , i.e.,

(ui − qi)Tsi = max
p∈P, g(qi)∈V (∂F(qi))

(p− qi)Tg(qi) (4.30)

and define ∆(Amp ) = maxi=1,··· ,m(ui − qi)Tsi. Then with the convexity of F we have

Proposition 31. For any p ∈ P, if there exist qi ∈ Amp , g(qi) ∈ V (∂F(qi)), and ui defined
in (4.80), such that (ui − qi)Tg(qi) > 0, then we must have F(ui) > F(p).

Now the remaining work is to construct the approximate level set given the current p
and the degree m. The following lemma shows that this is possible if a global minimizer is
available.
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Lemma 32. Let the global minimizer of F(p) be p∗, then for p 6= p∗ and h ∈ Rn, there
exist a unique positive scalar γ, such that p∗ + γh ∈ EF(p).

With this guarantee, we write the approximate level set as

Amp =
{
q1, q2, · · · , qm | qi = p∗ + γih

i ∈ EF(p)

}
(4.31)

To explore directions for improvement, a natural choice of h is a set of orthogonal bases.
Specifically, we could start with a random h1 and use the Gram-Schmidt algorithm to extend
it to m orthogonal basis. For each hi, the corresponding γi is found by solving:

Φ(γi) , F(p∗ + γih
i)−F(p) = 0 (4.32)

As stated in Lemma 4.5.3, the above function has a unique root, which can be computed
efficiently with line searching method. To obtain the global minimizer, we have to solve
p∗ = argminF(p), which is a convex minimization problem. Using Theorem 4.5.2, we show
(in supplementary material) that a sub-gradient descent method with T iterations converges
to the global minimum within O(1/

√
T ).

Organizing all building blocks developed so far, we summarize the PDM procedure in
Algorithm 1. Given the current solution p(k), the algorithm first tries to improve it with
existing methods such as AO, CCCP, SGD, etc. After finding a local solution r(k), the
approximate level set Am

r(k)
is obtained by solving (4.95) and constructing (4.31). With Am

r(k)

and the current sub-gradient, one or several linear program is solved to pick up the vector u(k)

that maximizes the condition (4.69) of Theorem 4.5.3. If this maximal value, i.e., ∆(Amp ), is

greater than 0, then by Proposition 31, u(k) must be a strictly improved solution compared
to r(k). As such, the algorithm continues with p(k+1) = u(k). Otherwise if ∆(Amp ) ≤ 0, the
algorithm terminates since no improvement could be found at the current point with the
user specified approximation degree. For convergence, we have

Theorem 33. Algorithm I generates a sequence {p(1), · · · ,p(k), · · · } having non-decreasing
function values. The sequence converges to an approximate maximizer of F(p) in a finite
number of steps.

In each iteration, we only have to solve m|V (∂F(qi))| linear programs, and in most cases
|V (∂F(qi))| = 1 due to the almost everywhere differentiability shown in Theorem 4.5.2.
When constructing the approximiate level set, we need to solve at most m convex quadratic
programs (IO)s, which seems computationally expensive. However, note that this problem
resembles the classic SVM dual, where a variety of existing methods can be reused for
acceleration [189]. Moreover, by virtue of the optimality structure revealed in Theorem 4.5.2
and 4.5.2, a list of explored critical regions and the corresponding explicit optimalities can
be stored. If the current p is on this list, all information could be retrieved in an explicit
form, and there is no need to solve the quadratic problem again. To further accelerate the
algorithm, one can “enlarge” critical regions. See supplementary material for a discussion.
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4.4 Experiment

In this section, we first report optimization and generalization performance of PDM for the
training of S3VM and VCMKL, and then elaborate two case studies, one involves using
CPLM for optimal control and the other using HS3M for event detection. The source code
and data sets can be found at https://github.com/Yuxun/PDM.

4.4.1 Optimization and Generalization Performance

The purposes of this experiment are three folds: (1) Test the proposed PDM as a novel
optimization algorithm for machine learning and compare it to other state-of-the-art opti-
mization techniques. In particular we focus on the training of the popular semi-supervised
learning paradigm S3VM and the proposed VCMKL. (2) Justify the effort of improving local
solutions (approaching global optimum), by comparing the generalization performance in
terms of testing accuracy. (3) Test CPLM and VCMKL as enhanced classification methods
for imbalanced data or data with hidden subgroups. To begin with, we introduce some
experimental setup.

4.4.1.1 Datasets and Experiment Setup

Details of the data sets used in this experiment are listed in Table 4.4. For S3VM, we report
results on four popular data sets for semi-supervised learning, i.e., 2moons (D1), coil (D2),
robot (D3) and 2spiral (D4, with simulator). In each experiment, 60% of the samples are
used for training, in which only a small portion are assumed to be labeled samples. 10%
of the data are used as a validation set for choosing hyperparameters. With the remaining
30%, we evaluate the generalization performance. For VCMKL we adopt the same training,
validation and testing partition on Vowel (D5), Music (D6), Bank (D7) and Wave (D8, with
simulator) data sets. To create a latent data structure, we assume that only grouped binary
labels are known.

The Gaussian kernel κ(x,y) = exp {‖x− y‖2/2σ2} is used for all experiments. Following
model selection suggestions [182][168], best hyperparamter combination C1, C2, σ

2 are chosen
with cross validation from C1 ∈ {100:0.5:3}, σ2 ∈ {(1/2)−3:1:3} and C2 ∈ {10−8:1:0} for S3VM
and C2 ∈ {10−4:1:4} for VCMKL. A simple gradient ascent is used as the local minimizer for
PDM. All experiments are conducted on a workstation with Dual Xeon x5687 CPUs and
72GB memory.

https://github.com/Yuxun/PDM
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Table 4.1: Data sets. D4-D3 for S3VM and D5-D8 for VCMKL

Data set ID # classes # samples # features labeled

2moons D1 2 200 2 2

Coil D2 3 216 1024 6

Robot D3 4 2456 25 40

2spiral D4 2 100000 2 4

Vowel D5 10 990 11 grouped

Music D6 10 2059 68 grouped

Bank D7 9 7166 649 grouped

Wave D8 30 100000 40 grouped
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Figure 4.4: PDM in each iteration for S3VM training. Randomized initiation; m = 20; D1
dataset

4.4.1.2 Demo: Iterative Results of PDM

To get more intuition on how PDM works, we use PDM to train S3VM on the D1 dataset,
and plot the iterative evolution of objective function, testing accuracy and the values of
p in Figure 4.4. The approximation level m is set to 0.1length(p) = 20, and the initial
p(0) is chosen randomly. We observe that PDM converges within 12 iterations (top left
subfigure). The testing accuracy increases from 48% to above 98% (top right subfigure),
showing improvements in both optimization and generalization performance. Moreover, the
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Table 4.2: Normalized objective value (OPT1. First row for each dataset. The lower the
better). Time usage (Second row for each dataset. s = seconds;h = hours)

Data GD CCCP AO LCS IA BB PDM1 PDM2

S3VM

D1
2.39 2.82 4.83 5.55 1.79 1.00 1.03 1.00

1.7s 6.2s 2.7s 6.7s 3.4s 210s 16s 35s

D2
3.74 3.92 3.46 4.98 2.35 1.00 1.19 1.03

5.3s 6.8s 4.3s 7.9s 5.6s 362s 43s 83s

D3
3.95 4.23 3.48 6.96 2.85 * 1.11 1.00

33s 56s 28s 43s 27s * 231s 489s

D4
6.98 4.91 4.90 6.16 4.22 * 1.31 1.00

0.19h 0.41h 0.33h 0.37h 0.46h * 1.4h 2.7h

VCMKL

D5
4.45 5.31 4.85 4.09 * * 1.13 1.00

26s 54s 33s 68s * * 209s 451s

D6
6.51 5.34 4.77 6.82 * * 1.28 1.00

63s 90s 72s 101s * * 468s 997s

D7
6.78 7.69 4.17 6.22 * * 1.26 1.00

326s 371s 263s 477s * * 1217s 2501s

D8
10.2 5.16 6.35 7.57 * * 1.54 1.00

0.23h 0.73h 0.66h 0.93h * * 2.5h 4.8h

auxiliary variable p approaches global optimum even with random initial values (bottom
subfigures). Note that in this process, a total number of 36 (IO)s are solved and about 2/3
of the critical regions have been reused more than once.

4.4.1.3 Optimization and Generalization Performance

We next compare PDM with different optimization methods in terms of their optimization
and generalization performance. The algorithms considered for S3VM training are: Gradient
Descent (GD) in [176], CCCP in [190], Alternating Optimization (AO) in [191], Local Com-
binatorial Search (LCS) in [167], Infinitesimal Annealing (IA) in [192], Branch and Bound
(BB) in [177]. The algorithms included for VCMKL are GD in [146], CCCP in [169], AO in
[143], adapted LCS in [167]. The proposed PDM is tested with two versions by setting the
approximation degree m = 0.1length(p) (PDM1) and m = 0.2length(p) (PDM2).

In Table 4.6, objective function values of OPT1 (normalized by the smallest one) are
shown in the upper row, and the corresponding computation times are given in the second
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Table 4.3: Generalization Performance (error rates). Averaged over 10 random data parti-
tions. Error rate greater than or close to 50% should be interpreted as “failed”.

Data GD CCCP AO LCS IA BB PDM1 PDM2

S3VM

D1 51.4 60.0 52.8 65.5 37.5 0.0 1.9 0.2

D2 57.9 66.1 47.9 61.1 57.2 0.0 5.3 1.1

D3 26.6 29.3 59.8 38.8 27.4 * 9.5 3.3

D4 52.1 39.8 40.0 45.4 31.4 * 3.5 2.0

VCMKL

D5 15.8 16.2 13.5 9.9 * * 2.5 1.7

D6 39.8 43.7 40.8 39.4 * * 12.1 7.6

D7 20.0 19.4 19.8 22.5 * * 8.9 5.1

D8 53.1 36.7 39.7 46.2 * * 19.9 13.1

row for each data. Note that although BB provides exact global optimum for small data
set D1 and D2, it runs out of memory (72GB!) for other datasets due to the exponential
growth of its search tree. On the other hand, PDM1&2 provides a near optimal solution to
BB with much less time and space usage. For larger data sets (D4-D8) on which BB can
not be executed, PDM outperforms all the other local optimization methods: We observe
that PDM achieves a significantly improved objective value, and the runner up is at least 2.8
times larger. Although the running time is longer than local methods, PDM is still scalable
(D4 & D8 have 105 samples), hence can be carried out for large scale problems.

In Table 4.3, we compare the generalization performance of different algorithms in terms
of testing error rate. It appears clearly that the global optimal solution provided by BB
and PDM has excellent generalization error rate, while other local optimization methods
perform much worse, and even fail completely (e.g., on D1, D2, D4, D8). This observation
is consistent with previous findings [177] [182], justifying the extra computational overhead
required to pursue the global optimum.

4.4.1.4 The Effect of Approximation Degree and Number of Kernels

Comparing PDM1 and PDM2 in Table 4.6&4.3, we note that in general, increasing the
approximation degree m will produce better optimization and generalization performance.
To investigate the effect of m, we use PDM to train S3VM on D3, and plot in Figure 4.5 the
optimum value, testing accuracy, time and space usage as a function of m (from 80 to 650).
It appears that further increasing m after some large enough value (e.g., 300 in Figure 4.5)
only provide marginal improvement in both training and testing. Also, seeing that the
computational time usage grows (slightly) super-linearly and that the space usage grows
almost linearly, we suggest using an m ∈ [0.1length(p), 0.2length(p)], a tradeoff between
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Figure 4.5: The effect of m for PDM. D3 Dataset; Average and CIs for 50 runs.

training/testing accuracy and computational overhead.
Two cases are used to demonstrate the effect of number of kernels M on the classification

performance of VCMKL. Note again that labels of the raw data are transformed into a
binary case, e.g. for the vowel data, y = +1 if the label is ’hOd’ or ‘hod’, and y = −1 for
the rest of 8 classes. Figure 4.6 shows the testing accuracy versus the number of kernels
with 3 commonly used kernel families (linear, polynomial with different orders and RBF
with various σ). Interestingly, in all cases it is seen that the testing accuracy is improved in
the first few steps as M increases, however, further combining more kernels does not help,
or even lead to a degraded performance due to overfitting (for linear and nonlinear kernels,
respectively). In particular, the saturated point for linear kernels is just the number of hidden
subgroups, i.e. M = 4 for D5 and M = 8 for D6 data, while for nonlinear kernels the optimal
M is smaller as in the transformed space the subgroups may merge. This observation not
only justifies the veto-consensus intuition to describe hidden subgroups, but also is consistent
with the theoretical analysis, which provides additive upper bound and does not encourage
the use of many kernels.
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4.4.2 Case Study: CPLM Based User Comfort Learning for
HVAC Model Predictive Control (MPC)

We show a concrete use case of the proposed “learning for application” scheme for optimal
control purpose. In particular, an integration of CPLM based thermal comfort learning and
HVAC MPC is demonstrated in this section: We first provide a brief introduction about
comfort-aware HVAC MPC, and then verify the CPLM learning method based on real-world
thermal comfort data set. Finally we conduct an MPC simulation to show that comfort-
aware and cost-effective HVAC operation can be achieved by the integration of the dedicated
machine learning method with optimization based control strategy.

4.4.2.1 Integration of CPLM Based Comfort Zone Learning and HVAC MPC

Buildings accounts for nearly 40% of global energy consumption, with variations among
countries about half of this energy is devoted to indoor climate regulations via Heating,
Ventilation and Air Conditioning (HVAC) systems [11]. Since the indoor environment has
tremendous impact on occupants’ health and productivity and should not be compromised,
it is of fundamental importance to optimally control HVAC systems to decrease energy
consumption while at the same time maintaining occupants’ comfort preference. In this
context, two lines of research, namely advanced control technologies for HVAC operation
and modeling techniques for comfort requirement, have been motivated. With regard to
HVAC control, a great deal of progress has been made from the control and automation
community to reform the classic rule based control strategies. Recently model based optimal
control schemes, especially the adaptations of Model Predictive Control (MPC) has achieved
significant improvement in terms of both energy efficiency and demand response.

The basic idea of MPC (receding horizon) based synthesis is to optimize over a finite
time horizon to take future effect into account, while only implementing the decisions of
the current time slot. A typical optimization problem for MPC at each step can be written
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as minimizing a cost function subjects to constraints such as system dynamics, initial/final
state requirement, state operation requirement, etc. i.e.

min J = Φ(x0, T0, xf , Tf ) +

Tf∑
t=T0

φ(xt, ut, t) (4.33)

s.t. xt+1 = f(xt, ut, t) (4.34)

ϕ(x0, T0, xf , Tf ) = 0 (4.35)

ρ(xt, ut, t) ≤ 0 (4.36)

In the case of HVAC MPC, the objective function 4.33 is usually the total energy con-
sumption of the HVAC system in the near future (24 hours for instance), the system equation
4.34 is the building thermal dynamics, and the operation constraint 4.36 is the human comfort
requirement as a function of environmental and individual variables. Detailed development
of system models for HVAC MPC is beyond the scope of this work, but can be found in
literature [193]. For experimental purpose an adaptation of the existing work [141] is used
for system dynamics. More specifically, the thermal dynamics of a room is described by the
following heat balance equations:

maiT
t+1
ai = N t

iQp + hwAi(T
t
out − T tai)

+Gt
fau,iT

t
fau +Gt

fcu,iT
t
fcu,i +Gt

nv,tT
t
out

+ T tai
[
mai − (Gt

fau,i +Gt
fcu,i +Gt

nv,t)
]

where mai = ρV is the air mass in room i, Qp = 3.48 ∗ 105J/h is the heat emission per
person. hw = 6.12∗103J/m2/h Similarly, the relative humidity also evolves according to the
following conservation law:

maiH
t+1
ai = N t

iHp

+Gt
fau,iH

t
fau +Gt

fcu,iH
t
fcu,i +Gt

nv,tH
t
out

+H t
ai

[
mai − (Gt

fau,i +Gt
fcu,i +Gt

nv,t)
]

To calculate the energy consumption, consider the Enthalpy difference between inlet air
and outlet air:

Et
fau,i =Gt

fau,i

[
CaT

t
out +H t

out(2500 + 1.84T tout)
]

−Gt
fau,i

[
CaT

t
fau +H t

fau(2500 + 1.84T tout)
]

where Ca = 1.297 ∗ 103J/m3/K. As for fan power consumption, the following relation is
usually used:

P t
fau = Pfau,rated

[
I∑
i=1

Gt
fau,i/G

t
fau,rated

]3
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When it comes to comfort modeling, perhaps the most widespread one is the Predicted
Mean Vote (PMV) [194]. The PMV model calculates an average thermal sensation index with
four environmental variables and two personal variables by iteratively solving a series of heat
balance equations . In the view that PMV is computationally expensive and not adaptive for
other comfort related factors, researchers have been investigating data driving approaches
from a machine learning perspective. Quite a few literature suggests the application of
Artificial Neural Network for comfort learning and estimation [195] [196], while other existing
supervised learning methods also have been explored, such as Support Vector Machine (SVM)
with radius basis kernel [197] [198] and locally weighted regression models [199].

Although each of the two research disciplines has made remarkable contributions to the
study of indoor environment regulation, there is a non-negligible gap between them. In
fact in all of the aforementioned HVAC optimal control literature only box constraints on
the environmental variables are considered, which independently specify the range of air
temperature, relative humidity, etc. On the other hand the comfort models proposed in
the previous research are only applied to simple feedback control schemes. The reason for
this gap is understandable from a technical perspective: Since the MPC for HVAC control
already requires solving a challenging large scale optimization problem, the incorporation of
classic learning based comfort models will induce non-linearly coupled constraints for the en-
vironmental variables, making the corresponding optimization very hard (if not intractable)
to solve numerically.

The CPLM proposed in this work bridges the gap between learning and control. The
learned individual comfort models are essentially a set of linear inequalities. The advantage
is immediate for the control side: The set of linear inequalities can be directly plugged
into any optimization without increasing the inherent complexity of the problem. In the
view of this, the solution we proposed here is a realization of “learning for application”, in
which a learning machine is justified not only by its classification performance, but also its
compatibility with downstream applications.

The integration of the proposed comfort learning and HVAC optimal control in sensor
rich smart buildings is shown in Figure 4.7. With the development of sensor network and in-
formation technology, the observability of building environmental states is greatly enhanced
[200] [201] and user preference data could be easily collected with online survey tools [202]
[203]. The calibrated HVAC system model, building thermal dynamics, and the learned com-
fort zone constitute the input of the MPC algorithm, which optimizes over future horizons
and decide current settings for decision variables. The low level controller takes orders from
the MPC algorithm and realizes the variable configuration with simple control laws such
as PID. The framework in Figure 4.7 can be readily extended to many other control prob-
lems involving data-driven constraints, such as sensor network aided manufacturing process
control, unmanned vehicle control, behavior related optimal economic mechanism design.
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Figure 4.7: Integration of CPLM and HVAC optimal control in sensor rich smart buildings

4.4.2.2 Comfort Zone Learning with CPLM

Firstly, we test the classification performance of CPLM and compare it to other alternatives.
The publicly available RP-884 data set [204] is used to train CPLM based comfort model.
The data set is established as a part of ASHREA project for developing model of thermal
comfort preference, and is collected through a series of field studies that covers 160 locations
worldwide. Each row of the data set contains measurements of environmental variables (air
temperature, radiant temperature, relative humidity, air velocity), individual physiological
conditions (clothing, metabolic rate), as well as comfort sensation records. We use this data
to reflect the expected thermal sensation of “average” person for control purposes [195] [198].
To eliminate the heterogeneity among different climate zones, a subset of the data originating
from similar areas is selected, which yields 2839 labeled samples.

We compare the proposed CPLM with other popular machine learning methods, including
a cost sensitive version of 2ν-SVM with Gaussian RBF and linear kernel, one class SVM, Deep
Neural Network, AdaBoost and Lasso Logistic Regression. In order to justify the benefit
of using Bayes consistent hinge loss, we also add the CPLM with naive cost sensitive loss
into the comparison. Again 10 fold cross validation is performed for the selection of hyper-
parameters in each algorithm. Table 4.4 shows the overall testing costs and the rankings of
different methods with the ratio r = c2 : c1 ranging from 1 to 9. We see that when the cost
ratio is large (r ≥ 5), CPLM outperforms all the other methods. In particular, for r ≥ 7 the
performance improvement is more than 9.2% compared to the runner-up. Together with a
much better cost sensitive performance than the naive CPLM, the proposed large margin
formulation and the use of cost sensitive hinge loss are supported. When the cost ratio is
small, albeit an inferior performance than 2ν-RBF-SVM or deep neural network, CPLM
is still better than the other methods. It should be restated that although some non-linear
methods may perform better in terms of classification errors, they are depreciated for optimal
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Table 4.4: Testing Cost Comparison

Method
Testing Cost with r = false positive cost : false negative cost = c2 : c1

1 : 1 2 : 1 3 : 1 4 : 1 5 : 1 6 : 1 7 : 1

CPLC 0.146 (3) 0.212 (3) 0.256 (2) 0.282 (2) 0.318 (1) 0.374 (1) 0.412 (1)

naive-CPLC 0.146 (4) 0.216 (4) 0.266 (4) 0.318 (3) 0.372 (4) 0.426 (3) 0.474 (4)

2ν-RBF-SVM 0.126 (2) 0.180 (1) 0.234 (1) 0.288 (3) 0.342 (3) 0.396 (2) 0.450 (2)

Linear SVM 0.205 (7) 0.366 (5) 0.527 (7) 0.560 (6) 0.598 (8) 0.637 (8) 0.675 (8)

One Class SVM 0.444 (8) 0.510 (8) 0.524 (6) 0.528 (5) 0.532 (5) 0.536 (5) 0.540 (5)

Deep NN 0.120 (1) 0.185 (2) 0.258 (3) 0.278 (1) 0.331 (2) 0.444 (4) 0.470 (3)

Ada Boost 0.202 (5) 0.370 (6) 0.460 (5) 0.576 (8) 0.582 (7) 0.608 (7) 0.634 (7)

Lasso LR 0.202 (6) 0.374 (7) 0.544 (8) 0.564 (7) 0.574 (6) 0.580 (6) 0.582 (6)

control purposes. In fact, among these methods only linear SVM and CPLM can be directly
used for optimization-based applications without causing any extra difficulties, while CPLM
outperforms linear SVM by at least 25% for all cost ratios.

4.4.2.3 The Impact of Learned Comfort Zone on HVAC MPC

To test the integrated framework we consider a typical room in an office building. The room
is 20.1 meters long, 10.2 meters wide, and 4 meters high. It has four windows facing south and
its HVAC system is equipped with one Fan Coil Unit (FCU) and one Fresh Air Unit (FAU).
For the MPC we take 1 hour as time resolution and the next 24 hours as receding horizon.
Air temperature and relative humidity setting points are chosen as decision variables.

In order to compare the effect of CPLM based comfort models with the box constraints
used in traditional HVAC MPC work, other environmental and individual variables are
presumed with average values. Hence the comfort requirement of each occupant reduces to a
region in the 2D temperature-relative humidity space. We assume the room is occupied from
7am to 9pm with a maximum of 26 occupants and the number of occupants in each hour
is generated according to users’ working schedules. The cost ratio of false negative (classify
“not comfort” as “comfort”) and false positive (classify “comfort” as ”not comfort”) is taken
to be 7 : 1 [205]. Since HVAC systems can operate in different modes, two cases with cold/dry
and hot/humid outdoor weather conditions are studied.

In each case we compare:

• MPC1 : HVAC MPC operation with box constraints as comfort requirement.

• MPC2 : HVAC MPC operation with online learning of CPLM as comfort requirement.
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Condition I: Heating Modes with Cold and Dry Weather

In this setting, 48 hours (0am 21/Oct to 0am 23/Oct 2016) weather prediction data
(historical record) for Beijing is used as “future” values of outdoor temperature and humidity.
The HVAC MPC is operated for the first 24 hours and we assume that the variable setting
generated by MPC could be realized at a much faster rate than the time resolution (1 hour).

In the occupied period (7am to 9pm) the occupants’ comfort models are included as
additional constraints for HVAC MPC. Figure 4.8 shows the learned CPLM of one user at
the end of the control horizon and the box comfort zone. We observe that the box zone is
too conservative for higher temperature and ignores possible comfort points (temperature
and humidity combinations lying in the region C), while in region A, the ASHREA comfort
requirement is violated as human usually feels colder when the humidity is low. On the
other hand CPLM builds piece-wise linear boundaries and allows a much better description
of thermal comfort.

As is discussed before, the learned CPLM is just a series of linear constraints and could
be directly used to replace box constraints on temperature and humidity (22 ≤ T ≤ 26,
0.3 ≤ H ≤ 0.7) by

wT
i

TH
1

 ≥ 0 ∀i ∈ {1, · · · ,M}

without causing any extra difficulties for the optimization in the MPC. The HVAC operation
results for two kinds of comfort specifications are compared in Figure 4.9 and Figure 4.10.
We observe that during the period 11am to 5pm, MPC2 resulted in a higher (about 1 degree)
room temperature while maintaining almost the same room humidity. As a consequence it
consumes more energy for heating. Although MPC1 is slightly (about 4%) more efficient in
terms of energy usage, the operated room temperature and humidity lie in the bottom left
corner (region A in Figure 4.8) of the box comfort zone, which is too cold and dry and is
inadmissible for users.
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Figure 4.8: Beijing Case: Box comfort zone vs. Learned comfort zone at the end of the day.
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Figure 4.9: Beijing Case: Operated room temperature (top) and relative humidity (bottom)
for MPC1 and MPC2..
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Figure 4.10: Beijing Case: Total HVAC energy usage for MPC1 and MPC2.
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Figure 4.11: Singapore Case: Box comfort zone vs. Learned comfort zone at the end of the
day.
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Figure 4.12: Singapore Case: Temperature and Relative Humidity set points for MPC1 and
MPC2. Top FAC(left), FCU(right) Temperature; Bottom FAC(left) FCU(right) humidity.
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Figure 4.13: Singapore Case: Room temperature (top) and relative humidity (bottom) for
MPC1 and MPC2.
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Figure 4.14: Singapore Case: Total HVAC Energy consumption for MPC1 and MPC2.

Condition II: Cooling Modes with Hot and Humid Weather

More interestingly, our second study deals with hot and humid weather condition in
Singapore, where the energy efficiency of HVAC system is a critical problem since it is
indispensable to regulate indoor air all year long to ensure an acceptable environment. Again
48 hours (0am 18/June to 0am 20/June 2016) weather prediction data for Singapore is used,
while the HVAC system is operated in the mode of cooling and dehumidification.

The CPLM based comfort zone learned at the end of the day is shown in Figure 4.11
together with the fixed box comfort model. Since the collected data corresponds to the
actually room temperature and humidity values, compared to the Bejing case in Figure
4.8, the right side of the comfort zone is more refined. Once again we see that the box
comfort model is too conservative and ignores potential comfort region C (hot but low
humidity), which in the current Singapore case serves as the active constraints for the HVAC
system MPC. Hence by exploiting the extra feasible region C, one can achieve better HVAC
scheduling. The results in Figure 4.12 - Figure 4.14 confirm this intuition.

Figure 4.12 shows the values of control variables, i.e. the temperature and relative humid-
ity set points for FAC and FCU, and Figure 4.13 shows the room temperature and humidity
created by this HVAC system scheduling. Interestingly compared to MPC1 (with box com-
fort zone), in the period from 10am to 3pm, the MPC2 (with CPLM based comfort zone)
operates at a much lower room humidity while allowing some raise in the room temperature.
Since in the afternoon in Singapore the outdoor temperature is fairly high but humidity is
relatively low, for the HVAC operation cooling is rather expensive but dehumidification is
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cheap during this period. As a consequence, with a more flexible comfort constraint pro-
duced by CPLM (region C in Figure 4.11 ), the MPC2 is able to save energy usage. The
hourly energy consumption curves are given in Figure 4.14 and it is seen that MPC2 uses
much less energy from 10am to 5pm. Summing up for 24 hours, in total MPC2 consumes
12.81% less energy than MPC1 does. The result indicates that simply by applying the
CPLM based comfort modeling method for HVAC MPC, one can achieve significant energy
saving by exploiting the margins of comfort requirement.

4.4.3 Case Study: PMU based Event Detection

4.4.3.1 Experiment Setup and Feature Engineering

As a continuation of the experiment conducted in Chapter 3, we test the proposed HS3M
learning framework and the PDM optimization algorithm for power distribution system event
classification and diagnosis, after outliers or novelties have been detected using the methods
proposed in Chapter 3. The distribution network setup and the high resolution µPMU
data collection procure are the same as introduced in Section 3.4.1. It is worth noting
that previous chapter is focused on detection with time series data, hence the models have
to include temporal dependence. In this experiment, however, we take the chunk of data
marked outliers/novelties as input, and treat each marked window of the data as independent
observations of a particular event, and thus temporal dependence is not a concern for this
application. In other words, we are interested in identifying events types based on useful
information (features) extracted from the outlier window. This is illustrated in Figure 4.15.

Four types of commonly encountered events in power distribution networks, namely Volt-
age Disturbance (VD) and Voltage Sag (VS), Motor Start (MS), High Impedance fault (HI),
are considered in this experiment. For the ease of notation let wit , {xit, · · · , xit+L} be the
tth outlier window of measurement i. Since all artificial intelligent methods are “garbage in,
garbage out”, we consider diverse techniques to construct feature candidates. Intuitively,
some events, such as voltage sag or voltage disturbance, could be revealed by investigat-
ing single streams (voltage magnitude or phase) fluctuations, while other events, such as
high impedance fault and voltage oscillation, might be more obvious by analyzing the inter-
behavior/dependence of multiple voltage and current streams. For the purpose of detecting
different types of events, we include both single stream and inter-stream feature extract with
a variety of metrics. To be specific, we consider

Single-stream Features

- Classic statistics: including mean, variance, and range of voltage/current magnitude in
each window. These features capture the average voltage/current values as well as their
fluctuations in the time slot. The median is also included as it is a more “robust” metric
of average value from a statistical viewpoint. To further characterize the variations of
magnitude in each window, the distributional features, including entropy and histogram
are calculated.
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Figure 4.15: Detected window of outliers for further event classification. Note that some
periods of stable state are shrunk and the events are zoomed out for visualization purpose.

- First order difference: We compute xit+1−xit for each stream and take the correspond-
ing mean and variance in each window. The intuition is that some transient events
may exhibit significant “jumps” in voltage and current magnitude, which can be well
captured by “spikes” in the first order difference. As for streams associated with phase
information, the average difference is an indicator of voltage/current frequency and is
also an important indicator of system stability.

- Transformation: Notice that many distribution side events, such as ON/OFF of re-
active loads, usually lead to oscillations in both magnitude and phase measurement,
we propose to use Fast Fourier Transform (FFT) to capture this frequency domain in-
formation. Also, Wavelet transformation is adopted to capture local fluctuations and
abrupt changes.

Inter-stream Features

- Deviation: the difference between any two of the three phases, for both voltage and
current. The resulted time sequences are processed as single streams in each window
with classic statistics. In this way, we incorporate information for the events that
exhibit phase imbalance.

- Correlation between any two of the three phases, for both voltage and current. The
correlation constitutes a metric of dependence for these time series, and is also helpful
in providing information related with inter-phase behavior.
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Table 4.5: Extracted Features Candidates

Single Stream

Statistics
mean(wit), var(wit), range(wit)

median(wit), entropy(wit), hist(wit)

Difference uit = Diff(xit); Statistics

Transformation fft(wit),wavelet(wit)

Inter Stream
Deviation xi − xj ∀i, ∀j ∈ N (i)

Correlation corr(xi, xj) ∀i, ∀j ∈ N (i)

A summary of feature extraction candidates are given in Table 4.5. Note that the inter-
stream features for different nodes (hence from different µPMUs) should be very interesting
for sub-systems width event detection, for which one can include not only correlation as
dependence metric, but also causal information [29] that pinpoints the propagation of the
event. The task of identifying sub-system scale events and their influence on neighboring
nodes is one of our future work. With the presented feature extraction procedure, a total
number of 312 features have been obtained. However, some of them may be redundant
as there are significant similarities among extracted features, for example, when the three
phases are balanced, their single stream mean, variation, etc., are almost the same. From a
machine learning point of view, adding redundant features does not help event detection, but
instead introduces extra noise and cause computational difficulties. In this work, we adopt a
method developed in [206], called Minimum-redundancy-maximum-relevance (mRMR). The
procedure uses mutual information as the metric of goodness of a feature set, and resolve the
trade-off between relevancy and redundancy. For each event, mRMR is conducted to choose
50 most informative features. Also note that all numerical experiments in the following are
conducted on a workstation having dual Xeon X5687 CPUs and 72GB memory.

4.4.3.2 The Performance of HS3M

The training set contains about 40000 µPMU records with detailed labels (completely labeled
data). The testing data set contains the similar events and has around 30000 data points,
but is collected at a different time. For the training of HS3M which enables the inclusion of
partial knowledge, another 36000 partially labeled data and 108000 unlabeled data are also
used (the effect of the size of these data sets will be discussed later).
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Figure 4.16: Confusion Matrix for different methods. Diagonal terms are correct identifica-
tions and off-diagonal ones are mis-classifications. mACC for multi-class detection accuracy.
Note that the class of stable state is not included for better visualization.

The performance of HS3M is compared to that of other popular multi-class event detection
methods, including a 3-layer neural network (NN), Decision Tree based Random Forest (RF),
and Gaussian Process Classification (GPC). The hyper-parameters of those models, e.g.,
the cost balance coefficient, are chosen with 10-folds cross validation (CV). The confusion
matrices (contingency table) for all methods are shown in Figure 4.16. Each row of the sub-
figure represents the samples in predicted class while each column represents the samples in
actual (true) class. The overall multi-class accuracy (mACC) is summarized in the title of
each sub-figure. We see from the confusion matrices that significant improvement is achieved:
HS3M provides 94.41% mACC, outperforming the best of the other methods by around 8%,
while the classic NN only yields 80% accuracy. Moreover, HS3M gives improvements in
differentiating all event types, especially VS, MS, and HI with an accuracy at least 90%.
The only issue is that it tends to confuse VD with VS, which is somewhat expected as the
criteria for distinguishing VD and VS events are thresholding on the voltage magnitude. In
short, the results justified the effectiveness of the proposed HS3M, as well as the idea of
incorporating partial information for event detection.

The computational cost in terms of training and testing (or prediction) time/memory
usage are also listed in Table 4.6. It appears that HS3M requires a longer time and a median
memory usage in the training phase. This is expected since HS3M is a more comprehensive
method incorporating partial information. On the other hand, the testing time/memory
usage of HS3M are one of the shortest/smallest. This is due to the solution sparsity of
the HS3M classifier. In practice, testing cost is of major concern because event prediction
should be done in real time on distributed systems, while training can be performed “of-
fline” on powerful computers. In this regards, the proposed HS3M is promising also when
computational cost is a concern.
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Table 4.6: Comparison of Computational Cost.

Method HS3M NN RF GPC

Time Train (min) 35.7 17.4 11.8 28.6

Time Test (sec) 53.7 46.6 81.2 221.9

Mem. Train (MB) 193 76 59 299

Mem. Test (MB) 0.79 1.91 0.52 292

4.4.3.3 Effect of Partial Information
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Figure 4.17: The incorporation of partially and unlabeled data

Last but not least, the benefit of including additional partially labeled data and unlabeled
data is investigated. To do this, HS3M is evaluated with 0, 7200, 21600 and 36000 partially
labeled data samples and 0 - 108000 unlabeled data points. The testing accuracy of each
test, averaged over 50 random sampled experiments, is plotted in Figure 4.17 (diamond
line), together with the 0.75 and 0.90 confidence intervals (shaded area). Note that when no
partially labeled data is included (blue line), HS3M reduces to a version of semi-supervised
learning machine. In the case where unlabeled data is not incorporated (the beginning of
each line), HS3M can be viewed as VCMKL. In general, it is observed that the performance
improves as more partially labeled data and unlabeled data are added, while the improve-
ments exhibit a “diminishing return” property, i.e., the marginal benefit of including more
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and more partially/unlabeled data is decreasing. Besides, it appears that HS3M, by lever-
aging both source of information, significantly outperforms previous semi-supervised and
consensus learning methods.

4.5 Appendix: Proofs

4.5.1 Generalization Analysis for the Proposed Classifiers

Lemma. pM ≤ d ≤ 2(p+ 1)M log2 [(p+ 1)M ]

Proof. • lower bound: Consider a p dimensional hypersphere and M hyperplanes that cut
the hypersphere at intersections denoted as I1, · · · , IM (d dimensional “circle”). For each
Ij, put p points on it, denoted as X1, · · · ,XM , with |Xj| = p.

We know that the p points on each “circle” Ij could be shattered by the associated
hyperplane. In addition, since all points lies on the hypersphere, for every shattering with
the hyperplane, we can require that the rest of the points ∪m 6=jXm are labeled +1. In this way
the jth hyperplane only affects the labeling of the points lies on Ij. Thus | ∪Mm=1 Xm| = pM
points can be arbitrarily labeled by CPLC with M hyperplanes, which gives d ≥ pM .
• upper bound: Let the function class of p dimensional M hyperplanes CPLC as G,

and that of p dimensional hyperplane as H. Consider the growth function of l points

ΠG(l) , max{|GX |, |X | = l}

for G and similarly ΠH(l) forH. We know that the VC dimension of p dimensional hyperplane
is just p+ 1, by Sauer’s Theorem we have for l ≥ p+ 1 and p ≥ 2

ΠH(l) ≤
p+1∑
i=0

(
l

i

)
≤
(

el

p+ 1

)p+1

≤ lp+1

Because the CPLC is comprised of M hyperplanes, each of which is able to generate at most
lp+1 labelings, we have

ΠG(l) ≤ l(p+1)M

In addition one can easily check that l(p+1)M ≤ 2l for

l = d2(p+ 1)M log2 ((p+ 1)M)e

Theorem. Denote d′ , 2(p + 1)M log2 [(p+ 1)M ], R(g) the generalization risk (0-1 loss)

and R̂(g) the empirical risk. Assume large enough sample size l > d′, we have that with
probability at least 1− δ

R(g) ≤ R̂(g) +

√
2 log(el/d′)

l/d′
+

√
log(1/δ)

2l
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Proof. It follows directly by combining the above lemma and the classic VC-dimension gen-
eralization bound (see Corollary 3.4 of [147]), and using the fact that the function log(el/d)

l/d
is

monotonically increasing in d when l ≥ d.

Theorem. The function class G of VCMKL has

R̂(G
(
xl1)
)
≤ 2

M∑
j=1

R̂
(
Fj(xl1)

)
Further assume Fj forms a bounded function class with kernel κj(·, ·) and kernel matrix Kj

such that Fj =
{
x 7→

∑l
i=1 αiκj(xi,x) | αTKjα ≤ Bj

}
then R̂

(
G(xl1)

)
≤ 4

l

∑M
j=1Bj

√
tr(Kj).

Proof. For the first part, we need the following lemma

Lemma. Talagrand’s Lemma
Let Φ : R 7→ R be η − Lipschitz, and Υ : R 7→ R be convex and nondecreasing. Then for
any function class F of real-valued functions, the following inequality holds:

R̂(Υ ◦ Φ ◦ F(xl1)) ≤ ηR̂(Υ ◦ F(xl1))

Now for the main theorem, consider the case M = 2. The following inequality is straight-
forward:

sup
g∈G

∣∣∣∣∣1l
l∑

i=1

σig(xi)

∣∣∣∣∣
≤

[
sup
g∈G

1

l

l∑
i=1

σig(xi)

]
+

+

[
sup
g∈G

1

l

l∑
i=1

−σig(xi)

]
+

Noticing that −σ1, · · · ,−σl has the same distribution as σ1, · · · , σl, we get

R̂
(
G(xl1)

)
= Eσ

[
sup
g∈G

∣∣∣∣∣1l
l∑

i=1

σig(xi)

∣∣∣∣∣
]

≤ 2Eσ

[
sup
g∈G

1

l

l∑
i=1

σig(xi)

]
+
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Writing g = min{f1, f2} = 1
2
(f1 + f2)− 1

2
|f1 − f2|, the last term yields[

sup
g∈G

1

l

l∑
i=1

σig(xi)

]
+

(a)

≤

[
sup
F1,F1

1

l

l∑
i=1

σi
1

2
(f1(xi) + f2(xi))

]
+

+

[
sup
F1,F1

1

l

l∑
i=1

−σi
1

2
|f1(xi)− f2(xi)|

]
+

(b)

≤ 1

2

[
sup
F1

1

l

l∑
i=1

σif1(xi)

]
+

+
1

2

[
sup
F2

1

l

l∑
i=1

σif2(xi)

]
+

+

[
sup
F1,F1

1

l

l∑
i=1

−σi
1

2
|f1(xi)− f2(xi)|

]
+

where (a) and (b) are due to the upper additive property of sup and [·] = max{0, ·} function.
Taking expectations for this upper bound and applying Talagrand’s Lemma with Υ = [·]
and Φ = | · | yields

Eσ

[
sup
F1,F1

1

l

l∑
i=1

−σi
1

2
|f1(xi)− f2(xi)|

]
+

≤ 1

2
Eσ

[
sup
F1

1

l

l∑
i=1

σif1(xi)

]
+

+
1

2
Eσ

[
sup
F2

1

l

l∑
i=1

σif2(xi)

]
+

Putting two inequalities together we have

Eσ

[
sup
g∈G

1

l

l∑
i=1

σig(xi)

]
+

≤ 1

2
Eσ

[
sup
F1

1

l

l∑
i=1

σif1(xi)

]
+

+
1

2
Eσ

[
sup
F2

1

l

l∑
i=1

σif2(xi)

]
+

+
1

2
Eσ

[
sup
F1

1

l

l∑
i=1

σif1(xi)

]
+

+
1

2
Eσ

[
sup
F2

1

l

l∑
i=1

σif2(xi)

]
+

≤ Eσ

[
sup
F1

∣∣∣∣∣1l
l∑

i=1

σif1(xi)

∣∣∣∣∣
]

+ Eσ

[
sup
F2

∣∣∣∣∣1l
l∑

i=1

σif2(xi)

∣∣∣∣∣
]

= R̂
(
F1(xl1)

)
+ R̂

(
F2(xl1)

)
hence finally,

R̂
(
G(xl1)

)
≤ 2

[
R̂
(
F1(xl1)

)
+ R̂

(
F2(xl1)

)]
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Also it is straightforward to generalize the above argument to M > 2 with simple induction.
Finally we get

R̂(G
(
xl1)
)
≤ 2

M∑
j=1

R̂
(
Fj(xl1)

)
The second part of the theorem can be obtained with a standard approach in bounding
empirical Rademacher complexity of Kernels.

4.5.2 Lemma and Theorems for PDM: Reformulation

For ease of notation, the inner minimization is repeated here:

min
α

J (α) =
1

2
αTQα− 1Tα

subject to Cαα ≤ Cpp+C0, yTα = 0.
(IO)

Lemma. If the solution α∗ of (IO) is non-degenerate, then

• The matrix H , Q−1yyTQ−1

yTQ−1y
− Q−1 is negative semidefinite, and R , Cα

AHC
αT
A is

strictly negative definite, hence is invertible.

• The parametric solution α∗(p) exists and is unique.

Proof. We first prove the following claim:

Claim. If the solution α∗ is Non-Degenerate, the over-determined system for the variable ξ

(Cα
A)T ξ = y (4.37)

does not have a solution.

Note that the rows of Cα only contains n dimensional standard basis {±eT1 , · · · ,±eTN}.
The active constraints are induced by non-support vectors (α∗i = 0) in the first block, and
bounded support vectors (α∗i = cipi) in the second block. These active constraints must be
orthogonal and span a subspace of Rn, because α∗i cannot be 0 and cipi at the same time.
For any k ∈ Ac, the basis ±ek are not in Cα

A, hence the kth column vectors of Cα
A must be

all zero. When the solution is non-degenerate, there exist at least two indexes in AC , with
one corresponding to yk = 1 and another corresponding to yk′ = −1, which results in conflict
equations 0 = −1 or 0 = +1. Thus (Cα

A)Tξ = y is an inconsistent system with no solution.
Then we claim that:

Claim. H has rank N − 1, and is a symmetric negative semi-definite matrix.

By the Rank-nullity theorem, we know that rank(H) + nul(H) = N . We now consider
the nullspace of H . First, note that if a vector υ ∈ RN is in the nullspace of H ,

Hυ = 0⇐⇒ (yyTQ−1)υ = (yTQ−1y)υ. (4.38)
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by the definition of H . Since rank(yyTQ−1) = 1, this means υ is the eigenvector corre-
sponding to the only non-zero eigenvalue of yyTQ−1. It is straightforward to check υ = y
and hence null(H) = span{y}, proving that rank(H) = N − 1.

Now we look at υTHυ ∀υ ∈ RN .

υTHυ = υT
(
Q−1yyTQ−1

yTQ−1y
−Q−1

)
υ

=
(υTQ−1y)2 − (υTQ−1υ)(yTQ−1y)

yTQ−1y
.

(4.39)

Since Q−1 is a positive definite matrix, it has a Cholesky decomposition Q−1 = LLT where
L is a lower triangular matrix. Defining υ̃ , LTυ, and ỹ , LTy the numerator becomes

(υTQ−1y)2 − (υTQ−1υ)(yTQ−1y)

=(υTLLTy)2 − (υTLLTz)(yTLLTy)

=|〈υ̃, ỹ〉|2 − ||υ̃||2||ỹ||2.
(4.40)

By the Cauchy-Schwarz inequality, |〈υ̃, ỹ〉|2 ≤ ||υ̃||2||ỹ||2. Thus the numerator of υTHυ is
≤ 0. Therefore, H is a negative semi-definite matrix.

Based on that, we have

Claim. R is a symmetric strictly negative definite matrix.

Since R = Cα
AH(Cα

A)T , we look at −ξTRξ ∀ξ ∈ RN :

−ξTCα
AHC

αT
A ξ = ξTCα

AUΛUTCαT
A ξ

= ξTCα
AUΛ

1
2UTUΛ

1
2UTCαT

A ξ

= ξTCα
APP

TCαT
A ξ

= ξ̃T ξ̃ ≥ 0

(4.41)

where we’ve used the spectral theorem to decompose −H and defined ξ̃ , P T (Cα
A)Tξ. If

∃ξ̃ | ξ̃T ξ̃ = 0, this implies P T (Cα
A)Tξ = 0. Notice that P has the same rank and eigenvector

space as H , thus, in order for ξTPξ to be 0, we need (Cα
A)Tξ = y, and by Claim 1.1 this

does not have a solution. Therefore, R is a negative definite matrix, and thus is invertible.
We can further show that

Claim. With non-degeneracy, the matrix E , H(Cα
A)TR−1Cα

AH − H is a symmetric
strictly negative definite matrix.

Note that
E = H(Cα

A)T
(
Cα
AH(Cα

A)T
)−1

Cα
AH −H (4.42)

Using Schur’s Complement Theorem

E ≺ 0⇐⇒

[
Cα
AH(Cα

A)T Cα
AH

H(Cα
A)T H

]
≺ 0 (4.43)
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which is equivalent to

[ηT ξT ]

[
Cα
AH(Cα

A)T Cα
AH

H(Cα
A)T H

][
η

ξ

]
< 0 (4.44)

⇐⇒ ηTCα
AH(Cα

A)Tη + ηTCα
AHξ + ξTH(Cα

A)Tη + ξTHξ < 0

This is equivalent to (
ξT + ηTCα

A
)
H
(
ξ + (Cα

A)Tη
)
< 0 (4.45)

Because null(H) = span{y}, similarly as before we only have to show ξ+(Cα
A)Tη = cy does

not have a solution. Again, with non-degeneracy, this can be checked by a similar argument
as in the first lemma.

With these invertibility results at hand, the existence and uniqueness of the parametric
solution can be obtained directly by solving the parametric program and noting that the
Lagrangien multipliers are unique. See the proof of the following theorem.

Theorem. Assume that the solution of (IO) is non-degenerate and induces a set of active
and inactive constraints A and AC, respectively. With H, R defined previously and T ,
H(Cα

A)T , ẽ , Cα
AH1, we have

(1) The optimal solution is a continuous piecewise affine function of p. And in the critical
region defined by {

R−1(Cp
Ap+C0

A + ẽ) ≥ 0

Cp
ACp+C0

AC −C
α
ACTR

−1(Cp
Ap+C0

A + ẽ) ≥ 0
(4.46)

the optimal solution α∗ of (IO) admits a closed form

α∗(p) = TR−1(Cp
Ap+C0

A + ẽ) (4.47)

(2) The optimal objective J (α∗(p)) is a continuous piece-wise quadratic (PWQ) function
of p.

Proof. The (IO) problem is equivalent to

max
ζ,µ

min
α

L(α, ζ,µ) =
1

2
αTQα− 1Tα

+ ζ(αTy) + (Cαα−Cαα−C0)Tµ

subject to µ ≥ 0.

(4.48)

where ζ,µ are the Lagrangian multipliers for the equality and inequality constraints, respec-
tively.
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The KKT conditions specify for optimal (α∗, ζ∗,µ∗),

∇αL = Qα∗ + ζ∗ỹ + (Cα)Tµ∗ − 1 = 0 (4.49a)

yTα∗ = 0 (4.49b)

µ∗i ≥ 0 for i = 1, . . . , n (4.49c)

µ∗i (C
αα∗ −Cpp−C0)i = 0 for i = 1, . . . , n (4.49d)

(Cαα∗ −Cpp−C0)i ≤ 0 for i = 1, . . . , n. (4.49e)

From (4.49a),
α∗ = −Q−1(ζ∗y + (Cα)Tµ∗ − 1). (4.50)

where the PD property of a Mercer kernel guarantees the invertibility of Q. Now plugging
in the above expression for α∗ into (4.49b),

yTα∗ = −yTQ−1(ζ∗y + (Cα)Tµ∗ − 1) = 0

⇒ζ∗ = −y
TQ−1(Cα)Tµ∗

yTQ−1ỹ
+
yTQ−1

yTQ−1y
1.

(4.51)

There are two cases for the inequality constraints.{
Cα
i α
∗ −Cp

i p−C0
i = 0 for i ∈ A

µ∗i = 0, Cα
i α
∗ −Cp

i p−C0
i < 0 for i ∈ AC

(4.52)

µA and µAC similarly represent the elements of µ for i ∈ A and i ∈ AC , respectively. Since
(Cα)Tµ∗ = (Cα

A)Tµ∗A, the formula for α∗, ζ∗ in equations (4.50) and (4.51) reduces to

α∗ = −Q−1
(
ζ∗y + (Cα

A)Tµ∗A − 1
)

(4.53)

ζ∗ = −y
TQ−1(Cα

A)Tµ∗A
yTQ−1y

+
yTQ−1

yTQ−1y
1. (4.54)

Substituting (4.54) into (4.53), we get

α∗ = Tµ∗A −H1. (4.55)

Another equality we get from the active constraints is

Cα
Aα
∗ = Cp

Ap+C0
A. (4.56)

Combining (4.55) and (4.56), we get an expression for µ∗A since

Cα
A (Tµ∗A −H1) = Cp

Ap+C0
A

⇒ Rµ∗A − ẽ = Cp
Ap+C0

A

⇒ µ∗A = R−1(Cp
Ap+C0

A + ẽ)

(4.57)
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with R defined as before, whose invertibility has already been proved. Finally, we get

α∗(p) = TR−1(Cp
Ap+C0

A + ẽ)−H1 (4.58)

as an explicit function of p.
We now derive the boundaries of the critical region in which (4.58) holds. For active

constraints, (4.49c) and (4.49e) require that

µ∗A ≥ 0 (4.59)

Cα
Acα

∗ ≤ Cp
Acp+C0

Ac . (4.60)

These two inequalities yield

R−1(Cp
Ap+C0

A + ẽ) ≥ 0

Cα
AcTR

−1(Cp
Ap+C0

A + ẽ) ≤ Cp
Acp+C0

Ac .
(4.61)

The proof of continuity relies on the strict convexity of the dual. Since the boundary of any
two regions belongs to both closures, and the optimum is unique for all hyperparameters in
the feasible set, the solution across the boundary is continuous. With part 2 at hand, part
3 is immediate.

Theorem. Still sssuming non-degeneracy, then

1. There are finite number of polyhedron critical regions CR1, · · · , CRNr which constitute
a partition of the feasible set of p, i.e. each feasible p belongs to one and only one
critical region.

2. The optimal objective J (α∗(p)) is a globally convex Piece-wise Quadratic (PWQ)
function of p, and is almost everywhere differentiable.

3. The optimal objective is difference-definite, i.e., the differences between its expressions
on neighboring polyhedron critical regions have positive or negative semidefinite Hes-
sian.

4. Let the common boundary of any two neibouring critical regions CRi and CRj be
aT\p+ b, then there exist a scalar β and a constant c, such that

Ji(p) = Jj(p) +
[
aT\p+ b

] [
βaTp+ c

]
Proof. part I
The proof of this theorem mainly rely on the strict convexity of the dual problem, which
impose that the optimum is unique for all parameters in feasible set. The continuity follows
because any boundary of two regions belongs to both closure of the two regions. Since the
optimum is unique, the solution across the boundary is continuous. By construction the
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number of regions should be upper bounded by the number of all possible combinations of
active constraints, which is finite and is worst case exponential in number of samples.

To see that critical regions constitute a partition, notice that since a feasible configuration
of p admits a solution, it must be contained in one region, by existence of the solution. The
region it belongs to must be unique. This can be seen by contradiction: Because in the
interior of any two different regions, the set of active constraints are different, the optimum
in two regions cannot be the same except for at the boundary. however, assume that a
feasible configuration belongs to two regions, this means the dual problem has at least two
optimum, which is contradictory to the uniqueness of the solution.

part II
Let p1 and p2 be two feasible parameters for the dual. Define

pβ = βp1 + (1− β)p2

αβ = βα∗(p1) + (1− β)α∗(p2)

0 ≤ β ≤ 1

(4.62)

Note that the simplex constraints and the necessary and sufficient conditions on p imply
that its feasible set is convex, hence pβ is also feasible. The feasibility of αβ is also obvious.
Now consider the chain of inequality:

J (α∗(βp1 + (1− β)p2)) = J (α∗(pβ)) (4.63)

≤ J (αβ) = J (βα∗(p1) + (1− β)α∗(p2)) (4.64)

≤ βJ (α∗(p1)) + (1− β)J (α∗(p2)) (4.65)

The first inequality is because α∗(pβ) is the optimal (minimum) solution, and the second
inequality is due to the convexity of the function J (·). Hence the optimal value of the
parameterized dual, as a function of parameter p, is convex in the entire feasible set. In
addition, there are only finite number of boundaries which has zero measure in the dim(p)
space, hence the parameterized dual solution is almost everywhere differentiable. It’s worth
mentioning that the proof only relies on feasibility and the convexity of objective function,
hence it can be generalized beyond the quadratic case.

part III
The proof relies on another geometric interpretation of the classic SVM. In fact the inner
dual J can be rewritten as finding the polytope distance between the reduced convex hulls
of the two classes of data-points, i.e., the dual is equivalent to

d(p) = min
u,v

‖u− v‖2

s.t.

{
u ∈ convp({ui | yi = +1})
v ∈ convp({vi | yi = −1})

(4.66)

where for a finite point set U ∈ Rd, the reduced convex hall is

convp =

{∑
u∈U

αuu | 0 ≤ αu ≤ cipi,
∑
u∈U

αu = 1

}
.
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We see that d(p) may change its expression if and only if the optimal u∗ or u∗ changes from
one face of the reduced convex hall to another face of different dimension. Let the neighboring
expression of J be J1 and J2, which correspond to two faces of the reduced convex hall, say
F1 and F2 respectively. Without loss of generality, assume that dim(F1) < dim(F1), then
F1 ⊂ F1, i.e., F1 is contained in the boundary of F2. Hence the distance expressions d1(p)
and d1(p) must have

d1(p)− d2(p) ≥ 0 ∀ p ∈ Rm (4.67)

which is ony possible if d1(p)− d2(p) has positive semidefinite Hessian.

4.5.3 Lemma and Theorems for PDM: Global Optimization

Recall that we focus on the following non-smooth convex maximization:

max
p∈P
F(p) (4.68)

Theorem. p∗ is a global optimal solution of the problem maxp∈PF(p), if and only if for all
p ∈ P, q ∈ EF(p∗), g(q) ∈ ∂F(q), we have

(p− q)Tg(q) ≤ 0 (4.69)

where ∂F(q) is the set of subgradients of F at p.

Proof. Necessity Assume p∗ is a solution (global maximizer) of problem (4.68). Let q be a
point in the level set EF(p∗), i.e., F(q) = F(p∗). Then by the convexity of F , we have

(p− q)Tg(q) ≤ F(p)−F(q) = F(p)−F(p∗) ≤ 0 ∀g(q) ∈ ∂F(q) (4.70)

where the first inequality is from the definition of sub-gradient.
Sufficiency
Proof by contradiction. Suppose p∗ is not a solution (global maximizer) and it holds that

(p− q)Tg(q) ≤ 0 ∀q ∈ EF(p∗), p ∈ P, g(q) ∈ ∂F(q) (4.71)

Then there exists some point u ∈ P such that F(u) > F(p∗). Now consider the epigraph

LF(p∗) = {p : F(p) ≤ F(p∗)}

which is a closed convex set due to the convexity of F . Denote the projection of p on LF(p∗)

by q, then we have
‖q − u‖ = min

p∈LF(p∗)
‖p− u‖ (4.72)

Since p∗ is not in LF(p∗), we have
‖q − u‖ > 0 (4.73)
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strictly holds. Moreover, the global minimizer p∗ cannot be this projection, i.e., p∗ 6= q,
otherwise minp∈L ‖p−u‖ = ‖p∗−u‖ for all epigraphs, which can only be true when F is a
constant function.

In addition, the projection problem can be reformulated as the following least square
form:

min d(p) =
1

2
‖p− u‖2

s.t. p ∈ LF(p∗)

(4.74)

By Slater’s condition for nondifferentiable functions, q is a solution to problem (4.74) if and
only if there exists a multiplier λ such that (λ, q) is the solution to the following comple-
mentary problem: 

λ ≥ 0

0 ∈ ∇d(p) + λ∂F(q)

λ(F(p∗)−F(q)) = 0

F(p∗)−F(q) ≥ 0

(4.75)

Obviously λ 6= 0 otherwise ∇d(q) = q −u = 0 which contradicts (4.73). With λ > 0 we get
that the Slater’s condition is equivalent to

λ > 0

0 ∈ ∇d(q) + λ∂F(q)

F(q) = F(p∗)

(4.76)

since p∗ 6= q we know 0 6∈ ∂F(q), then the above conditions indicate that there exist some
g(q) ∈ ∂F(q) such that

q − u+ λg(q) = 0 (4.77)

hence we get (u− q)Tg(q) = 1
λ
‖u− q‖2 > 0 which contradicts the assumption (4.71).

Recall that we have obtained an approximate auxiliary problem as follows:

max
p∈P, g(qi)∈∂J (qi)

(p− qi)Tg(qi) (4.78)

Proposition. Problem (4.78) is equivalent to

max
p∈P

{
max

g(qi)∈V (∂F(qi))
(p− qi)Tg(qi)

}
(4.79)

Proof. This is because for bilinear program having disjoint feasible sets, their solution must
be on the vetices. See [Boyd].

Proposition. For any p ∈ P, if there exist qi ∈ Amp , g(qi) ∈ V (∂F(qi)), and ui defined as

(ui − qi)Tsi = max
p∈P, g(qi)∈V (∂F(qi))

(p− qi)Tg(qi) (4.80)

such that (ui − qi)Tg(qi) > 0, then ui improves the objective strictly, i.e., F(ui) > F(p).
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Proof. Since ui is the solution to the auxiliary problem, we have

max
p∈P

(p− qi)Tg(qi) = (ui − qi)Tg(qi) (4.81)

and the lemma follows simply from the convexity:

F(ui)−F(p) = F(ui)−F(qi) ≥ (ui − qi)Tg(qi) > 0 (4.82)

Lemma. Let the global minimizer of F(p) be p∗, then for p 6= p∗ and h ∈ Rn, there exist
a unique positive scalar γ, such that p∗ + γh ∈ EF(p).

Proof. Existence: Proof by contradiction. Suppose that there is no number such that p∗ +
γh ∈ EJ (p), then viewing F(p∗ + γh) as “ convex function restricted to a line”, i.e., a 1D
convex function of the variable γ, we have

F(p∗ + γh) < F(p) ∀γ ≥ 0 (4.83)

Consider epi(F) = {(p, r) : F(p) ≤ r}, which is a convex set due to the convexity of F .
For γ ≥ 0 it holds that (p∗ + γh,F(p)) ∈ epi(F) due to (4.83).

Now we show that (h, 0) is a direction of epi(F). Again by contradiction suppose this is
not true and there exists a point y ∈ epi(F) and a positive number β such that y+β(h, 0) ∈
Rm+1 \ epi(F). Because Rm+1 \ epi(F) is an open set, we can find a scalar µ that satisfies
the following condition:

µ(p∗,F(p)) + (1− µ)(y + β(h, 0)) ∈ Rm+1 \ epi(F), 0 < µ < 1 (4.84)

However it must also be the case that µ(p∗,F(p)) + (1− µ)(y + β(h, 0)) lies on the line

segment joining some two points of epi(F). Consider points (p∗,F(p)) + (1−µ)β
µ

(h, 0) and y,
the following holds:

µ

(
(p∗,F(p)) +

(1− µ)β

µ
(h, 0)

)
+ (1− µ)y = µ(p∗,F(p)) + (1− µ)(y + β(h, 0)) (4.85)

which belongs to epi(F) again by the convexity of epi(F), but is contradictory to (4.84).
Hence (h, 0) must be a direction of epi(F). Consider moving point (p∗,F(p)) with this
direction, we get

(p∗,F(p)) + γ(h, 0) ∈ epi(F) ∀γ ≥ 0 (4.86)

which implies that p∗+γh is also the global minimum of F for any γ ≥ 0, contradicting the
strict convexity of F .

Uniqueness
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Assume two possible γ1 and γ2 exist, such that p∗+ γih ∈ EF(p). WLOG assume further
0 < γ1 ≤ γ2, with the convexity of F we have

F(p) = F(p∗ + γ1h) = F
(

(1− γ1

γ2

)p∗ +
γ1

γ2

(p∗ + γ2h)

)
(4.87)

≤
(

1− γ1

γ2

)
F(p∗) +

γ1

γ2

F(p∗ + γ2h) (4.88)

=

(
1− γ1

γ2

)
F(p∗) +

γ1

γ2

F(p) (4.89)

≤ F(p) (4.90)

which is only possible when all equality holds, i.e., when γ1 = γ2.

Theorem. Algorithm 4 generates a sequence {p(1), · · · ,p(k), · · · } having non-decreasing func-
tion values. The sequence converges to an approximate maximizer of F(p) in a finite number
of steps.

Proof. We first show that the condition on ∆Amp ,= (u(k) − qi∗)Tsi∗ guarantees the im-
provement of the objective function. In fact, since

i∗ = argmaxi=1,··· ,m{(ui − qi)Tsi} (4.91)

and u(k) = ui
∗
, we have

∆Amp = (u(k) − qi∗)Tsi∗ > 0 (4.92)

Because qi
∗ ∈ Am

r(k)
and si

∗ ∈ V (∂F(qi
∗
)), using Proposition 4.5.3 we get

F(u(k)) > F(r(k)) (4.93)

and according to the algorithm, we further have

F(p(k+1)) = F(u(k)) > F(r(k)) ≥ F(p(k)) (4.94)

The last inequality is because a local maximizer is used to find a local solution r(k) starting
from p(k). Since the number of local solutions (vertices of P) are finite, this sequence reaches
the global maximizer in a finite number of steps, or stops at an approximate solution where
improvement could not be found at current approximation degree. It is worth mentioning
that the above argument holds even if the approximate level set are obtained numerically by
finding the root of the following function:

Φ(γi) , F(p∗ + γih
i)−F(r(k)) = 0 (4.95)

we can simply choose γi, such that the approximate root satisfies

F(qi) = F(p∗ + γih
i) ≥ F(r(k)) (4.96)

Then we get

F(u(k))−F(r(k)) ≥ F(u(k))−F(qi
∗
) ≥ (u(k) − qi∗)Tsi∗ > 0 (4.97)

which is the same as (4.93).
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4.5.3.1 Finding the Global Minimum with Sub-gradient Descent

PDM requires the knowledge of the global minimizer of the non-smooth convex function
F . In this section, we show that a simple sub-gradient descent algorithm can be used to
efficiently find the global minimum.

Theorem. Sub-Gradient Descent for Finding Global Minimum
Let supp ||p(1) − p|| = B, and the Lipschitz constant of F(α∗(p)) be G, then sub-gradient

descent with iteration T and optimal step size τi = B/G
√
T ∀i converges to global minimum

within O
(

1/
√
T
)

. To be specific, let F∗ be the global minimum of the learning objective

(IO), then

F(α∗(p
(T )
best))−F∗ ≤

BG√
T
≤ 4C3|λmin(H)|
λmin(Q)|λmax(R)|

N
√
d√
T
, where (4.98)

F(α∗(p
(T )
best)) , min

{
F(α∗(p(1))), · · · ,F(α∗(p(T )))

}
Proof. The proof of convergence resembles that for classic sub-gradient method. In short,
we note that

||p(i+1) − p∗||22 = ||Proj(p(i) − τig(i))− p∗||22 (4.99)

≤ ||p(i) − p∗||22 + τ 2
i ||g(i)||22 − 2τi

[
F(α∗(p(i)))−F(α∗(p∗))

]
(4.100)

by applying the definition of sub-gradient to the convex function F(α∗(p)). Telescoping the
above inequality,

||p(T+1) − p∗||22 (4.101)

≤ ||p(1) − p∗||22 +
T∑
i=1

τ 2
i ||g(i)||22 − 2

T∑
i=1

τi
[
F(α∗(p(i)))−F(α∗(p∗))

]
(4.102)

Rearranging terms and using the fact ||p(1) − p∗||22 ≤ B2, ||g(i)||22 ≤ G2, ||p(T+1) − p∗||22 ≥ 0
we get

2
T∑
i=1

τi
[
F(α∗(p(i)))−F(α∗(p∗))

]
≤ B2 +G2

T∑
i=1

τ 2
i (4.103)

By the definition of F(α∗(p
(T )
best)) and F∗,

F(α∗(p
(T )2
best ))−F∗ ≤

B2 +G2
∑T

i=1 τ
2
i

2
∑T

i=1 τi
(4.104)
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Now we show the the constant step size τi = B
G
√
T

is optimal, in the sense that it minimizes
the above convergence upper bound. Consider the the following chain of inequalities.

B2 +G2
∑T

i=1 τ
2
i

2
∑T

i=1 τi
≥ B2 +G2

∑T
i=1 τ

2
i

2
√
T
∑n

i=1 τ
2
i

(4.105)

=
1

2
√
T

 B2√∑T
i=1 τ

2
i

+G2

√√√√ T∑
i=1

τ 2
i

 ≥ BG√
T

(4.106)

(4.107)

the first inequality is due to Cauchy-Schwarz, with equality when τis and 1s are co-linear. The
last inequality is equal when

∑T
i=1 τ

2
i = B2/G2. Combining the two equality requirement,

we get that the step size

τi =
B

G
√
T

∀i = 1, · · · , T

minimizes the upper bound. In order to further bound the sub-gradient performance in terms
of problem size, note that since 0 ≤ pi ≤ 1, we have B ≤

√
d, where d is the dimension of

p. On the other hand, we have

∂

∂p

1

2
αTQα = (Cp

A)T R−1Cα
AHQ

−1α (4.108)

Thus with operation norm inequality, we have

G ≤ ‖Cp
A‖ · ‖\R

−1‖ · ‖Cα
A‖ · ‖H‖ · ‖Q−1‖ · ‖α‖ (4.109)

≤ 2C2 · 1

|λmax(R)|
· 2 · |λmin(H)| · 1

λmin(Q)
· C
√
N (4.110)

=
4C3|λmin(H)|

λmin(Q)|λmax(R)|
√
N (4.111)

where C , max{ci} and we have used ||A|| =
√
λmax(ATA) and the following fact that:

(Cp
A)TCp

A = 2diag{c2
1, · · · , c2

m}; (Cα
A)TCα

A = 2\I; R and H are negative symmetric definite
and 0 ≤ αi ≤ ci.

4.5.3.2 More Reformulation Examples

In this section, we provide more examples on how large margin learning variations could be
reformulated into OPT1 in the main test. More importantly, we give detailed proofs for the
parametric analysis of the dual problem.

Example 2. Consider the learning objective of Semi Supervised Support Vector Machine
(S3VM):

min
w,b,ŷu

1

2
||w||2H + C1

l∑
i=1

V (yi, hi) + C2

n∑
i=l+1

V (ŷi, hi) (4.112)
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where l is the number of labeled samples and n− l unlabeled samples are included in the loss
with “tentative” label ŷu, which constitute additional variables to minimize over. Note the
following interesting equivalent form:

min
w,b

min
p

1

2
||w||2H + C1

l∑
i=1

V (yi, hi) + C2

n∑
i=l+1

piV (1, hi) + (1− pi)V (−1, hi) (4.113)

The equivalence is due to the fact that minimizing over pi will cause all its mass to concentrate
on the smaller of V (1, hi) and V (−1, hi). Formally for any variables ξ1, · · · , ξM we have

min
m
{ξ1, · · · , ξM} = min

p∈SM

M∑
m=1

pmξm,

where SM is the simplex in RM . Since (4.113) is strictly feasible and biconvex in (w, b) and
p, we can safely exchange the order of minimization and obtain (OPT1) as an equivalent
form to (4.112). The newly introduce variable pi can be interpreted as the “probability” of
ŷi = 1.

Example. Consider VCMKL

min
wm,bm

1

2

M∑
m=1

||wm||2

+ C1

∑
i∈I+

max
m
{[1− yi(wm · xi + bm)]+}

+ C2

∑
i∈I−

min
m
{[1− yi(wm · xi + bm)]+}

(4.114)

Introducing hidden state variables p with the same trick, we get minm{ξ1, · · · , ξM} = minp∈SM
∑M

m=1 pmξm,
for the last term and with the same argument to justify the exchange of minimization orders,
the original learning problem is equivalent to

min
pi∈SM

min
wm,bm

1

2

M∑
m=1

||wm||2

+ C1

∑
i∈I+

max
m
{[1− yi(wm · xi + bm)]+}

+ C2

∑
i∈I−

M∑
m=1

pim[1− yi(wm · xi + bm)]+

(4.115)

As the context implies, the newly introduced variables can be thought of as indicators for
hidden states. Obviously, (4.115) has the same form as OPT1.
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Example. As a final example, consider robust SVM proposed in xu2006robust with ramp
loss

min
w

1

2
||w||2 +

∑
i

min {1, [1− yiw · xi]+} (4.116)

The non-convex robust loss essentially truncates Hinge loss by 1. Same argument applies
and the training objective can be rewritten as

min
pi∈S2

min
w

1

2
||w||2 +

∑
i

{pi[1− yiw · xi]+ + 1− pi} (4.117)

We see that the loss terms will not exceed 1, which provide robustness against training out-
liers.

Recall that the dual of the inner minimization has the form

max
α

∑
i

αi −
1

2

∑
i,j

αiyiκ(xi,xj)yjαj

subject to 0 ≤ αi ≤ cipi for i = 1, . . . , n

αTy = 0

(4.118)

which can be encapsulated into a matrix form and with the common convex programming
convention we consider the following equivalent problem:

min
α

J (α;p) =
1

2
αTQα− 1Tα

subject to

{
Cαα ≤ Cpp+C0

αTy = 0,

(Dual)

For example for S3VM, one has

x , [x1; · · · ;xn, x1; · · · ;xn,︸ ︷︷ ︸
m

x1; · · · ;xn︸ ︷︷ ︸
m

]

y , [y1, · · · , yn, 1, · · · , 1,︸ ︷︷ ︸
m

−1, · · · ,−1︸ ︷︷ ︸
m

]T

Then Qi,j = yi\yjκ(xi,xj), and the matrices Cα,Cp,C0 in the constraints can be specified
as follows with blocks

Cα =

[
−I(n+2m)×(n+2m)

I(n+2m)×(n+2m)

]
Cp =


0(n+2m)×m

0n×m

c2Im×m

−c2Im×m

 C0 =


0(n+2m)×1

c11n×1

0m×1

c21m×1

 (4.119)
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4.5.3.3 A decomposition Technique for non-Strictly Positive Definite Problems

We use a decomposition and null space method to deal with the case when Q is only positive
symmetric semi-definite. Let the eigen-decomposition of Q be UΛUT , where columns of

U are orthonormal basis of Rn. The diagonal matrix Λ =

[
W 0

0 0

]
in which W is a k × k

diagonal matrix containing k non-zeros eigenvalues of Q. Let U = [U1,U2] with columns
of U1 containing the k eigenvectors associated with non-zeros eigenvalues. Consider the
transformation χ1 , UT

1 α and χ2 , UT
2 α, then problem is equivalent to

min
χ1,χ2

J (χ) =
1

2
χT1Wχ1 + rT1 χ1 + rT2 χ2

subject to

{
CαU1χ1 +CαU2χ2 ≤ Cpp+C0

yTU1χ1 + yTU2χ2 = 0

(4.120)

where r1 = −UT
1 r and r2 = −UT

2 r. Let us also define D1 =

[
CαU1

yTU1

]
, D2 =

[
CαU2

yTU2

]
,

Dp =

[
Cp

0

]
, D0 =

[
C0

0

]
and η = [µ, ζ]T , we get from the first KKT condition:

Wχ1 + r1 +D1η = 0 (4.121a)

r2 +D2η = 0 (4.121b)

The first equation yields χ1 = −W−1(DT
1 η + r1). With a similar active set argument as in

theorem 1, we obtain
χ1 = −W−1(DT

1AηA + r1) (4.122)

D1Aχ1 +D2Aχ2 = Dp
Ap+D0

A (4.123)

Now we adopt a null space method to solve ηA. Let the null space of DT
2A be spanned by

n −m column vectors contained in matrix ZA, and let YA be any n ×m matrix such that
[YA, ZA] is full rank. Then we must have that the (n−m)× (n−m) matrix DT

2AYA is full
rank and invertible, and DT

2AZA = 0. Moreover we can write

ηA = YAηY + ZAηZ (4.124)

as the sum of two components. With that equation (4.121b) becomes DT
2AYAηY + r2 = 0,

thus
ηY = −(DT

2AYA)−1r2 (4.125)

Replace χ1 in (4.123) by using (4.122)(4.124)(4.125), and multiple both side of (4.123) with
ZT
A (Recall ZT

AD2A = 0), we get

−
(
ZTAD1AW

−1DT
1AZA

)
ηZ = ZTAD

p
Ap+ ZTAD1AW

−1r1

− ZTAD1AW
−1DT

1AYA(DT
2AYA)−1r2 + ZTAD

0
1A

(4.126)
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Define G = ZT
AD1AW

−1DT
1AZA, whose invertibility under non-trivial classification can be

showed similarly following the proof of lemma 1. Denote the last 3 terms in (4.126) as ρZ ,

ηZ = −G−1(ZT
AD

p
Ap+ ρZ) (4.127)

To get χ2, multiply both sides of (4.123) with Y T
A and use results obtained so far,

χ2 = (Y T
AD2A)−1

(
Dp
Ap− Y

T
AD1Aχ1 −D0

A
)

(4.128)

The critical region is characterized by

µA ≥ 0

D1Acχ1 +D2Acχ2 ≤ Dp
Acp+D0

Ac
(4.129)

Noticeably, the optimal solution and the Lagrangian multipliers are no longer unique but
depend on the choice of subspace basis YA and ZA. A simple fix is to adopt the projection
method to obtain the “best” parametric solution and multipliers.

4.5.3.4 Critical Region Approximation

The most computational expensive step is the inner QP solver. By theorem 1, if p is in
the critical regions that have been explored before, all information could be retrieved in an
explicit form and there is no need to solve the inner problem again. However, when the
variable goes to a new critical region, a QP solver has to be invoked for optimal solution and
corresponding constraint partition.

Although it has been shown that even in the one dimensional case the number of critical
regions is worst case exponential to the sample size of the problem, one can develop approx-
imate parametric solutions that produces fewer (hence larger) critical regions. To further
accelerate the algorithm by reducing the number of calls of the quadratic solver, we adopt
the idea proposed in [186] that relaxes the original sample partition conditions to obtain
“larger” critical regions. The relaxed sample partition condition is defined as

yifi ≥ 1− ε1, αi ∈ [−ε2, 0] ⇒ i ∈ O
yifi ∈ [1− ε1, 1 + ε1], αi ∈ [−ε2, cipi + ε2] ⇒ i ∈ Su
yifi ≤ 1 + ε1, αi ∈ [cipi, cipi + ε2] ⇒ i ∈ Sb

(4.130)

Theorem. Inspired by [186]
The approximate solution defined in (4.130) is the optimal solution of the following perturbed
problem

max
α

(1 + η)Tα− 1

2
αTQα

subject to

{
Cαα ≤ Cθθ +C0 + C̃0

αTy = 0,

(4.131)

where −ε11 ≤ η ≤ ε11 and 0 ≤ C̃0 ≤ ε21
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In conclusion, the second chapter started with two formulations of directed information
based subset selection problem, and then submodularity analysis is provided for both objec-
tive functions. Seeing that the first objective is not monotonic, we adopted a randomized
version of greedy heuristic. Since the second objective lacks submodularity, we introduced
an novel notion, namely submodularity index, to characterize the “degree” of submodularity
for general set functions. More importantly, we show that with SmI, the theoretical per-
formance guarantee of the greedy heuristic can be naturally extended to a much broader
class of functions. We also point out the connection between causal subset selection and
the structure learning of causal graphs, based on which an efficient causal structure learning
algorithm is established. Experimental results on synthesis and real data sets reaffirmed
our theoretical findings, and also demonstrated the effectiveness of the proposed method for
building the structure of causal graphs.

Provided with the correlation structure, the next chapter is focused on the learning out-
lier and novelty from multiple time series. The key idea is to incorporate both temporal
dependence and inter-series relatedness for the construction of two “smoothing filters”. The
first non-parametric method can be viewed as a multitask version [207] of the classical non-
parametric regression method. It is shown in this chapter that the learning formulation can
be extended to handle data with exponential family distribution, and an efficient RBCD al-
gorithm can be use to solve the convex optimization problem. The second method, CHMM,
is inspired by collaborative filtering and linear system optimal filtering. Essentially, CHMM
can be viewed as either “temporal constrained matrix factorization”, or “Kalman filter incor-
porating inter-series correlation”. The learning of CHMM is resolved with an EM algorithm
by exploiting the structure of the graphical model.

The problem of learning system requirement for agile operation and optimal control is
considered in the last chapter. Motivated by the needs to model system operation constraints
with “optimization friendly” functions, we start by establishing a piece-wise convex classifier
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and the corresponding learning formulation. Then we extend the classifier to a more general
veto-consensus multiple kernel learning framework for fault detection, domain description,
and semi-supervised event diagnosis. The main contribution of this chapter is the global
optimization procedure parametric dual maximization. Both theoretical analysis and ex-
perimental results show that PDM outperforms other alternative optimization methods in
solving a class of modified machine learning problems having non-convex objectives. More-
over, we provide two case studies that demonstrate the usage of the proposed ML schemes
for CPS applications.

5.2 Future Work

The theoretical analysis and algorithms discussed for causal subset selection can be naturally
extended to an online setting by adopting the notion of adaptive submodularity [208, 209,
210]. This will give rise to algorithms for online variable selection, sensor placement, and
graph structure learning. Yet another direction for future work is to study further the concept
of approximate submodularity. Very recently, the authors of [211] have summarized different
approaches proposed so far and suggested several future directions. In additional to their
proposal, we believe that the study of approximate submodularity for higher order greedy
algorithms deserves more research effort: Since higher order greedy can be viewed as better
level of approximation, an submodularity index in this context can help us understand more
about “when/why greedy heuristics works”.

The proposed RBCD algorithm bears some interesting features. It resembles SGD in
that the expectation of each update is equal to the gradient, while unlike SGD the RBCD
ensures a decrease of the objective function in each iteration. Arguably, recent machine
learning literature focuses more on gradient descent based method but block coordinate
descent seems to be ignored. This work advocates the use of BCD for a broader class of ML
optimization problems. Other successful application of BCD to ML include for example the
coordinate descent algorithm for LASSO [212], and the SMO algorithm for SVM [213]. The
EM algorithm established for CHMM in this chapter follows the standard EM framework. To
reduce the computational time and space cost one can just store and incrementally update
the sufficient statistics, In particular in the E step dealing with the HMM, the incremental
algorithms designed in [214, 215] might be helpful. Although the proposed methods are
motivated by outlier detection, they are both general modeling tools that can be used for
other applications involving smoothing, estimation and prediction of multiple time series.

Future work concerning PDM consists of two aspects: First of all, the ML methods
and the PDM optimization procedure could be extended to many other CPS applications.
For example, although this chapter is focused on a classification setting, both the CPLM
and the veto-consensus learning can be extended for regression purposes by using a two-
sided loss function. The learning result can be used as the objective function of some
convex optimization for optimal control purposes. The HS3M provides a framework to
bridge semi-supervised learning and structured learning, which could be utilized generally
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for object detection applications. Secondly, there is still room to improve the proposed
PDM optimization algorithm. The level set construction procedure and the associated linear
programmings can be computed in a parallel manner for acceleration. Moreover, the critical
regions can be approximated [216] to reduce the number of invocations of the base quadratic
solver.
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