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Fisheries are complex systems affected by environmental variability, species interactions, 

and human behavior. As such, this dissertation aims to study them as social-ecological systems. 

First, by questioning current modeling approaches, and then, by proposing the use of new 

methods that account for their inherent complexities. Chapter 1 asks whether aiming for 

Maximum Sustainable Yield, a standard objective for sustainable exploitation, could also 
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generate economic stability for fishing communities in the Gulf of California, Mexico. We found 

that sustainable practices could increase total revenues by more than 70%, however, this would 

not be enough for 80% of fishers in the region to live above local poverty levels. As such, I 

frame the possibility to move away from traditional, equation-based, fisheries management 

towards dynamic and adaptive frameworks. Chapter 2 explores the use of Empirical Dynamics 

Modeling (EDM), a nonlinear and nonparametric method, to study marine ecosystems. By using 

a long-term planktonic time series from the North Sea, we found that longer time series help to 

detect nonlinear and state-dependent processes, also improving time series’ predictability. 

Chapter 3 uses a global database of stock assessments to find that traditional stock-recruitment 

models are somewhat successful at predicting data derived from assessment methods that 

introduce assumed stock-recruitment relationships. However, they are poor at predicting data 

that does not make such assumptions. We demonstrate that EDM is a better framework to predict 

future recruitment overall. Chapter 4 uses EDM to find that environmental processes and fishing 

pressure have both a detectable and comparable effect on the Pacific sardine’s population 

dynamics in the Gulf of California, traditionally thought to be affected only by long-term 

climatic variability. We develop an EDM-based model using fishing and environmental effects 

to predict catch two years ahead. This dissertation questions the use of equation-based models 

for fisheries management. Instead, it proposes the use of EDM as a way not only to improve real-

world predictability, but also to consider both ecological and social processes with a unified 

quantitative approach. 
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Managing at Maximum Sustainable Yield does not ensure economic well-
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1  | INTRODUC TION

The common- pool, open- access nature of many natural resource ex-
tractions leads to overcapacity and increased competition between 
stakeholders. The subsequent overexploitation of such natural re-
sources is often referred to as “the tragedy of the commons,” and it 
frequently operates in many marine fisheries (Ostrom, Burger, Field, 
Norgaard, & Policansky, 1999). This mechanism of marine ecosystem 
deterioration, also known as Malthusian overfishing, places human 
population growth at the centre of the problem, stating that we may 
have “too many fishers chasing too few fish [and revenues]” (Pauly, 
1990). However, recent studies suggest that this vision is incom-
plete, noting that other drivers may be equally or more important 
in determining overfishing patterns. These include technological ad-
vances, demand and distribution trends, marginalization and equity 
issues, and problems in governance (Finkbeiner et al., 2017; Steneck, 

2009; Toth & Szigeti, 2016). Notwithstanding extensive evidence of 
overexploitation in numerous fisheries globally and declines in total 
global landings (Costello et al., 2012; Pauly & Zeller, 2016; Worm 
et al., 2009), many political leaders and fisheries authorities have 
continued to promote investments in fishing fleet capacity, with the 
expectation of increasing the contributions of fishing to national 
economies (Bell, Watson, & Ye, 2016; Notimex, 2017; Pais, 2017). 
Technological advancements have also driven the expansion of fish-
eries farther offshore and into deeper waters (Swartz, Sala, Tracey, 
Watson, & Pauly, 2010; Watson & Morato, 2013). Despite such ef-
forts to increase fisheries catches and revenues through the con-
tinuous increase of global fishing effort, global landings still show a 
steady decline over the last 20 years (Pauly & Zeller, 2016). This situ-
ation not only compromises fisheries themselves, but also the eco-
nomic well- being of people highly dependent on them (Ding, Chen, 
Chen, & Tian, 2017) as revenues per capita for fishers continues to 
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Abstract
Maximum Sustainable Yield (MSY) is a common target for fisheries aiming to achieve 
long-	term	ecological	 sustainability.	Although	achieving	MSY	may	ensure	 the	 long-	
term sustainability of fish populations, we ask whether it will provide economic secu-
rity for fishers. Here we use 16 years of daily landing records to estimate potential 
catches and revenues per capita if fisheries were exploited at MSY in 11 subregions 
across Mexico. We then compare fishers’ estimated revenues per capita against na-
tional poverty limits at the household level. Our results show that even if MSY is 
reached in artisanal fisheries, the overcapacity of fleets and the dissipation of rents 
threatens the economic well- being of fishers and their families, pushing revenues per 
capita below poverty levels. Our work demonstrates the importance of resolving the 
trade- offs between achieving economic, social and environmental objectives when 
managing for the long- term sustainable use of natural resources.

K E Y W O R D S

coastal communities, economic diversification, fisheries management, Malthusian overfishing, 
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decrease, pushing them below poverty levels in many regions of the 
world (Béné, 2003).

Almost	20	million	people	around	the	world	depend	on	fisheries	
as their primary source of income, and another 36 million partially 
depend	on	them	(Béné	et	al.,	2016;	FAO,	2016).	Approximately	80%	
of those wholly dependent on fisheries earn incomes below official, 
country- specific poverty levels, particularly in artisanal fisheries 
(Béné	et	al.,	2016;	FAO,	2016).	These	fisheries	employ	96%	of	fish-
ers	and	make	up	to	32%	of	global	catches	(Jacquet	&	Pauly,	2008),	
highlighting their importance as a means of livelihood for coastal 
communities (Béné, 2003). In some places, strong local leadership 
and a long fishery tradition have played a central role in promoting 
the	success	of	artisanal	fisheries	management	programs	(Gutiérrez,	
Hilborn,	&	Defeo,	2011;	Sutton	&	Rudd,	2014),	such	as	in	the	com-
munity	of	Punta	Abreojos	in	Baja	California	Sur,	Mexico	(Cota-	Nieto	
et	al.,	2018),	or	the	Hawaiian	Archipelago	(Schemmel	&	Friedlander,	
2017). In many other locations, however, current management and 
governance of artisanal fisheries tend to be weak, leading to the 
overexploitation of marine resources and the degradations of coastal 
ecosystems	(Costello	et	al.,	2012;	Freire	&	García-	Allut,	2000;	Sala,	
Aburto-	oropeza,	Reza,	Paredes,	&	López-	Lemus,	2004).

In order to promote the sustainable use of marine resources, 
one of the common target reference points is to achieve Maximum 
Sustainable Yield (MSY) (Quinn, 2003). Even though MSY is ex-
clusively a biological reference point and maximizing economic 
(or social) objectives requires potentially quite different manage-
ment strategies and targets (e.g. Maximum Economic Yield—MEY, 
Ecosystem Based Management—EBM, etc.), it remains the primary 
management	objective	promoted	by	many	countries	and	by	the	FAO	
(2016). Within that context, the primary objective of this study was 
to evaluate whether attaining environmental sustainability through 
MSY can also bring sustainable economic benefits for fishers. To do 
so, we ask three questions: (a) How does the economic value of fish-
ery resources influence the distribution of fishers? (b) What would 
the economic revenues be for fishers in a region that is managed at 
MSY	and	how	would	it	compare	to	current	revenues?	And	(c)	can	fish-
eries exploited at MSY ensure the economic well- being of fishers?

To answer these research questions, we make the following as-
sumptions: (a) MSY can be estimated and fully implemented for all 
marine resources targeted by artisanal fishers, (b) stocks recover fully 
so that MSY is achieved, (c) the current number of fishers and units of 
effort remain constant, and (d) value from yield is equally distributed 
among all fishers. We use 16 years of daily fishery landings records 
(>3.5	million	individual	records)	from	28	Local	Fisheries	Offices	(LFOs)	
in	 the	Gulf	of	California	 (GoC),	Mexico,	a	globally	 recognized	biodi-
versity hotspot with complex fisheries and socio- political structures 
(Leslie	et	al.,	2015;	Lluch-	Cota	et	al.,	2007).	Landings	from	the	GoC	
account	 for	 more	 than	 50%	 of	Mexico’s	 national	 fisheries	 produc-
tion	in	total	volume	and	support	more	than	56,000	People	[directly	
employed]	 in	 the	Fishing	Sector	 (PFS)	 (Azuz-	Adeath	&	Cortés-	Ruiz,	
2016).	Artisanal	fisheries	in	the	GoC	represent	only	35%	of	the	total	
landings	by	volume,	but	as	much	as	68%	of	the	total	 revenues.	We	
employ a catch- only fisheries stock assessment method (Froese, 

Demirel, Coro, Kleisner, & Winker, 2017) to estimate the stock status 
for	121	resources	that	represent	95%	of	the	total	revenues	from	ar-
tisanal fisheries in the region. We then calculate the expected catch 
and revenues per capita for fishers that would be generated at MSY 
and	compare	them	to	national	poverty	levels.	Given	the	wide	variety	
of	coastal	communities	in	the	Gulf	of	California	and	their	high	depen-
dence in artisanal fisheries, our case study serves to raise awareness 
of a problem that will continue to worsen as the global number of 
fishers increases and total landings decrease or plateau at best (Pauly 
& Zeller, 2016).

2  | METHODS

2.1 | Fisheries landings records

We obtained the national fisheries landings records from 2001 to 
2016	for	the	27	Local	Fisheries	Offices	(LFO)	in	the	Gulf	of	California	
(Figure 1). These data are available for interactive consultation 
at https://doi.org/10.13022/m3mw2p (Ramírez- Valdez, Johnson, 
Giron-	Nava,	&	Aburto-	Oropeza,	2014).	These	records	include	more	
than	 3.5	million	 individual	 reports	 of	 the	 total	 weight	 and	 aver-
age price of the resources caught by fishers (Erisman et al., 2011). 
Accounting	for	Illegal	Unregulated	and	Unreported	(IUU)	fisheries	is	
a common problem in official national fisheries records. In Mexico, 
this	mis-		and/or	lack	of	reporting	can	add	up	to	50%	of	the	total	land-
ing values (Cisneros- Montemayor, Cisneros- Mata, Harper, & Pauly, 
2013). Using published correction factors per species (Cisneros- 
Montemayor et al., 2013), we calculated time series of corrected 
total	landings.	Given	the	vast	diversity	of	socio-	ecological	structures	
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in	 the	Gulf	 of	California,	 and	 the	differences	between	geographic	
areas, the LFOs were grouped into 11 subregions of at least 120 km 
of coastline each, which has been identified as the minimum distance 
that separates potentially distinct stocks for habitat- specific organ-
isms in sandy beaches, rocky shores, estuaries and rocky reefs in 
the	Gulf	of	California	 (Anadón,	del	Mar	Mancha-	Cisneros,	Best,	&	
Gerber,	2013).	The	 subregions	 selected	using	 the	distance	 criteria	
were reassessed based on peer- review literature and expert knowl-
edge to ensure that they reflected the different socio- ecological 
characteristics of the regions identified (Erisman et al., 2011; Leslie 
et	al.,	2015)	(Figure	1a).	See	Supporting	information	Table	S1	for	de-
tails on the offices that are included for each subregion.

We calculated the total ex- vessel revenues (money received by 
fishermen upon landing catch) by multiplying the total catch in tonnes 
by the average ex- vessel price per tonne. Species were clustered in 
fishing resources, which were a group of species registered under a 
unique name in the official records (e.g. shrimp contains blue shrimp 
(Litopenaeus stylirostris, Penaeidae), estuarine shrimp (Litapenaeus spp., 
Penaeidae) and others). In order to reduce unnecessary noise from re-
sources that contribute very little to the total revenues per subregion, 
we	selected	the	resources	that	accounted	for	>95%	of	each	subregion	
total fisheries revenues (Supporting information Table S2). Each re-
source in each subregion is referred to as a Fisheries Spatial Unit (FSU).

We	also	 obtained	 time	 series	 from	 the	 FAO	 for	 the	 resources	
presented	 in	Supporting	 information	Table	S2	 from	1950	 to	2015.	

These data were used to estimate the prior for the initial standing 
stock biomass in 2001 as described below in Estimating fisheries ref-
erence points from catch-only data.

2.2 | Demographic and fishing vessels data

We obtained data on the total coastal population and the number of 
people related to fisheries economic activities for all the municipalities 
in Mexico, referred to as People [directly employed] in the Fisheries 
Sector (PFS) (Figure 1b). Data were obtained from the Mexican 
National	 Institute	 of	 Statistics	 and	 Geography	 (INEGI—Instituto	
Nacional	de	Estadística	y	Geografía)	per	municipality	and	were	used	
to	create	Thiessen	(Voronoi)	Polygons	using	the	software	ArcGIS	10.2	
to select which municipalities corresponded to each of the defined 
fisheries subregions. Spatially explicit estimates of the number of ar-
tisanal boats were obtained from Johnson et al. (2017) as a metric of 
fishing effort (Figure 1c). We also estimated the importance of fisher-
ies for each subregion as the ratio PFS:Total population (Figure 1d).

2.3 | Estimating fisheries reference points from 
catch- only data

Given	 that	 catch	 data	 are	 the	 only	 available	 source	 of	 informa-
tion about these artisanal fisheries, and that there are no fishery 
independent stock assessments throughout the whole region, we 

F IGURE  1  (a) Map of Local Fisheries Offices (LFOs) grouped per subregion. See Supporting information Table S1 for details on the 
offices that are included for each subregion. (b) People directly employed in the Fisheries Sector (PFS) per subregion obtained from the 
Mexican	National	Census	(INEGI),	(c)	number	of	artisanal	boats	per	subregion	from	Johnson	et	al.	(2017),	and	(d)	ratio	between	PFS	and	total	
population. Subregions are sorted in the bar charts from lowest to highest number of people directly employed in the Fisheries Sector (PFS) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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used the catch- only algorithm for total annual landings time se-
ries developed by Froese et al. (2017) to estimate fisheries ref-
erence points for each FSU (e.g. standing biomass, exploitation 
rate, intrinsic rate of population growth, carrying capacity and 
Maximum	Sustainable	Yield).	All	 the	code	was	 implemented	 in	R	
version 3.2.3 (all of the code is provided in Supporting information 
S1). This method estimates reference points from catch data and a 
qualitative estimate of resilience per FSU as reported in Fishbase 
(Froese & Pauly, 2011). For each FSU, the catch- only algorithm as-
signs prior distributions of the possible values of the intrinsic rate 
of population growth (r) and the standing biomass as a proportion 
of biomass at carrying capacity (B/Bk). The B/Bk priors are then 
used to estimate carrying capacity (k) priors. Using a Monte Carlo 
approach, we tested each combination of r and k values from the 
prior distributions (referred as r- k pairs) to find “viable” pairs, de-
fined as those which could simulate standing biomass time series 
restricted by the two following conditions: (s) never predicting a 
negative biomass value after subtracting the reported catch, and 
(b) always constraining pairs by the prior condition ranges defined
for the standing biomass at the beginning, mid- point and end of
the time series. Each viable r- k pair was stored and used to esti-
mate the reported r and k values for each FSU.

In order to avoid misleading results derived from decadal 
trends that might not be captured in our time series (2001–2016), 
we	used	FAO	historical	records	for	the	Mexican	Pacific	from	1950	
to	2015	to	estimate	initial	standing	biomass	prior	distributions.	For	
resources that started being fished on or after 2001 according to 
the	FAO’s	records,	the	B/Bk values at the beginning, middle and end 
of the time series were selected by following the standard method 
proposed by Froese et al. (2017). For resources that started being 
fished before 2001, we determined the prior of the initial B/Bk by 
comparing the maximum landings before and after 2001. In cases 
where the historical maximum landing was significantly greater (t 
test, p	<	0.05)	than	the	average	landings	between	2000	and	2002,	
we set the initial status of the population as depleted (B/Bk = [0.2–
0.5]).	We	assigned	all	the	prior	distribution	values	by	following	the	
rules further explained in the Supporting information S1.

In the case of fish resources, the prior distributions of r were 
selected following Froese et al. (2017) based on qualitative esti-
mates of resilience reported in FishBase (Froese & Pauly, 2011) as 
follows:	very	low	(0.015–0.1),	low	(0.05–0.5),	medium	(0.2–0.8)	and	
high	(0.6–1.5).	For	invertebrates,	we	searched	the	peer-	review	liter-
ature extensively to obtain estimates of the resilience or the r value 
ranges. Prior distributions of k values were selected based on the 
catch time series of each FSU. The minimum value of the k distribu-
tion was set as the maximum catch ever reported in the time series, 
and the maximum value was selected based on the coefficient B/Bk.

The	reported	r	value	for	each	stock	was	estimated	as	the	75th	
percentile of the distribution of r	values,	with	95%	confidence	inter-
vals. The reported k value was obtained from the linear regression 
between log(k) and log(r), for all r- k pairs where r was larger than 
the	50th	percentile.	The	regression	is	shown	in	Equation	1.	The	95%	
confidence intervals of k were estimated from the residuals of the 

linear regression for the lower and upper confidence intervals of r. 
See Methods in Froese et al. (2017) for more details. 

The	MSY	was	 estimated	 as	 in	 Equation	2	 for	 each	 FSU.	Along	
with the MSY, we estimated time series of stock’s biomass, fishing 
mortality	 (Equation	3),	 biomass	 at	 MSY	 (Equation	4)	 and	 fishing	
mortality	at	MSY	 (Equation	5).	We	also	calculated	 the	coefficients	
B/BMSY and F/FMSY. In order to explore recent patterns in standing 
stock biomass and fishing mortality relative to MSY, we calculated 
the trends of B/BMSY and F/FMSY as the average rate of change in the 
last	5	years	of	the	time	series	(2012–2016)	(Supporting	information	
Figure S1B and C). 

Given	 that	 Froese	 et	al.	 (2017)	 originally	 developed	 their	
method	to	be	used	along	with	long	time	series	(50	+		years),	we	ex-
plored the effect of time series length on population parameter es-
timations.	To	do	so,	we	used	24	simulated	stocks	and	compared	the	
performance	of	the	models	when	using	the	last	15,	30	and	50	years	
of data for each of them. We found no significant differences for 
the estimated parameters when using different time series lengths. 
The results are presented in Supporting information S2.

2.4 | Estimating rents at MSY

The rent was estimated as the total revenues from fishing minus 
the total costs from fishing. In the case of MSY, total rent increases 
come from both an increase in total revenues given the increase 
of total catch, as well as a reduction in operation costs through 
reduced effort. Through a review of the peer- review literature, 
we estimated that the current marginal rent of artisanal fisheries 
in	 the	GoC	 is	12%	 (Aburto-	Oropeza	et	al.,	2016;	Cisneros-	Mata,	
2016).	We	also	estimated	that	60%	of	the	total	revenues	are	used	
to	pay	fishers’	salaries	(as	explained	below).	The	additional	28%	of	
the total revenues are used towards miscellaneous variable costs 
such as gear, bait, food, fuel, maintenance and repairs (Cisneros- 
Mata, 2016). We assumed that these variable costs are reduced 
proportionally with effort. We also assumed that even at MSY, 
fishers	would	 still	 receive	 60%	of	 the	 total	 revenues	 in	 salaries,	
with the extra revenue (after accounting for lower overall costs) 
representing rent accruing to the owner of the vessel (who may 
not be a fisher). Once we estimated the effort that would be nec-
essary to achieve MSY, we calculated revenues, costs and rents 

(1)MSY =
rk

4
→ log (k) = log

(

4MSY
)

+
(

−1
)

log (r)

(2)MSY=0.25rk

(3)F=catch/Biomass

(4)BMSY=k∕2

(5)FMSY= r∕2
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for	each	FSU	at	MSY.	All	values	are	reported	in	2016	US	Dollars	(1	
USD→18.7	MXN).

2.5 | Revenues per capita analysis

We estimated the monthly Revenues Per Capita (RPC) (per fisher) 
for each subregion under two scenarios, the current monthly aver-
age	 landings	 in	 the	 last	5	years	 (2012–2016)	and	 the	 landings	 that	
would occur if all the fisheries were exploited at MSY. To do so, we 
estimated the total revenues (RT) per subregion based on Equation 6, 
in which n represents the number of species per subregion that 
	account	for	95%	of	the	total	revenues	within	a	subregion.	

By taking the estimates from Johnson et al. (2017) of the number 
of	boats	in	the	GoC,	we	calculated	the	total	revenues	per	boat	per	
subregion (Equation 7). 

On	average,	fishing	boats	in	the	Gulf	of	California	operate	with	
2.7	 fishers	 per	 trip	 (Cisneros-	Mata,	 2016),	 and	 fishers	 divide	 60%	
of	 the	 total	 revenues	 among	 them	 as	 salaries;	 therefore,	 60%	 of	
the total revenues were divided among the fishers to calculate the 
Revenues Per Capita (RPC). 

In order to compare the RPC to the minimum amount of money 
that a fisher needs to support a family under the minimum- livelihood 
requirements, we defined an Economic Well- being Limit (EWL). The 
EWL was calculated based on the price of a basket of goods, health, 
personal care, house maintenance, education, clothing, commu-
nications,	 public	 transportation	 and	 recreation.	 According	 to	 the	
Mexican National Council for the Evaluation of Social Development 
Policy	 (CONEVAL),	a	 family	 in	Mexico	needs	US$95	and	$150	per	
month per family member to live above the rural EWL and the urban 
EWL	respectively	(CONEVAL,	2016).	On	average,	a	family	in	Mexico	
has	3.7	members,	as	reported	by	INEGI	(INEGI,	2016).	Thus,	the	av-
erage	monthly	 household	 rural	 EWL	 is	 approximately	 $351,	while	
the	urban	EWL	is	$555.	We	compared	the	RPC	for	the	current	catch	
(2012–2016) and the catch at MSY to the EWLs (Figure 3).

3  | RESULTS

3.1 | Resource selection and importance

There were between five and fifteen FSUs per subregion represent-
ing	95%	of	the	total	revenues	in	the	Gulf	of	California	(Supporting	
information Table S2). We found that the most valuable resource 
represents a higher percentage of the total revenues (Figure 2) 
in subregions with higher PFS (R2 = 0.70, F1,9 = 20.8, P < 0.01).

The most valuable FSU is henceforth referred to as the top FSU. 
We also found a positive correlation between the price per kg 
of the top FSU per subregion and the number of PFS (R2 = 0.67, 
F1,7 =	14.52,	P < 0.01), suggesting that places with more valuable 
resources attract more people into the fishery. For example, in 
Mazatlan (MZ), the subregion with the most PFS, shrimp was the 
top	FSU	with	an	average	price	of	$4,886	per	tonne	and	represented	
73%	of	the	total	revenues.	In	contrast,	in	Bahia	de	los	Angeles	(BA),	
a subregion with five times fewer PFS than MZ, octopus (Octopus 
sp., Octopodidae) was the top FSU with a lower average price of 
$1,985	per	tonne	and	contributed	only	36%	of	the	total	revenues.	
The subregions of Puerto Peñasco (PP) and Santa Clara (SC) were 
outliers in the relationship between PFS and price per kg of the 
top	 FSU	 (Cook’s	 distance	 ≥0.15),	with	 higher	 values	 per	 kg	 than	
expected. This was possibly due to their geographic isolation from 
other subregions and proximity to the United States shrimp mar-
kets. We did not find a relationship between the economic value of 
the resources and the relative importance of fisheries across sub-
regions, measured as the ratio of PFS:total population (Figure 1d).

3.2 | The degree of exploitation of SSF in the 
GoC and potential revenues

Of	 the	121	FSUs	 analysed,	 69%	were	overfished	 (B/BMSY < 1) and 
still being fished at unsustainable levels (F/FMSY	>	1),	 13%	 were	
overfished but recovering by being fished at sustainable levels 
(F/FMSY	<	1),	 11%	 were	 not	 overfished	 (B/BMSY > 1) but fished at 
unsustainable	 levels,	 and	7%	were	not	overfished	and	were	being	
fished	 sustainably	 (Supporting	 information	 Figure	 S1A).	 Overall,	
82%	of	FSUs	were	overfished	and	80%	were	subject	to	unsustain-
able fishing pressure. The overall trend between 2012 and 2016 

(6)RT=

n
∑

i=1

(

catchi× ex vessel pricei
)

(7)Rboat=RT∕boats

(8)RPC=0.6Rboat∕
(

2.7
)

F IGURE  2 Percentage of revenues generated by each of the 
resources	that	comprise	95%	of	the	total	revenues	per	subregion	
(FSU). Black bars represent the FSU per subregion that generates 
the highest percentage of total revenues. The subsequent grey bars 
represent the remaining FSU for that subregion. Subregions are 
sorted from lowest to highest number of people directly employed 
in the Fisheries Sector (PFS)
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shows	 that	 the	 biomass	 of	 61%	of	 the	 FSUs	 declined	 (Supporting	
information	Figure	 S1B)	 and	65%	 increased	 their	 fishing	mortality	
(Supporting information Figure S1C).

The mean annual revenues reported for the 121 analysed FSUs 
over	the	last	5	years	(2012–2016)	was	$108	m	±	5	m,	and	$141	m	±	7	m	
(31%	higher)	after	accounting	for	unreported	catch.	 In	contrast,	we	
estimate	that	total	profits	from	these	FSUs	would	be	$240	m	±	14	m	
(70%	increase)	if	they	were	all	fished	at	their	respective	MSY.

3.3 | Income analysis

As	of	2016,	the	average	monthly	net	revenue	(i.e.	revenue	minus	fish-
ing	costs)	per	capita	 (RPC)	per	subregion	was	$190,	46%	below	the	
$351	necessary	for	the	rural	Economic	Well-	being	Limit	 (EWL),	and	
65%	below	the	$555	for	the	urban	EWL	(Figure	3).	Subregions	can	be	
categorized into three groups: (a) those which under current condi-
tions are below the rural EWL and remain below even if fished at MSY 
(n	=	7,	79.6%	PFS);	(b)	those	which	under	current	conditions	are	below	
the rural EWL and go above if fished at MSY (n	=	2,	10.5%	PFS);	and	
(c) those which under current conditions are above the rural EWL and 
remain above at MSY (n	=	2,	9.9%	PFS).	Under	current	conditions,	nine	
of	 the	11	 subregions,	which	 account	 for	 90%	of	 the	PFS,	 reported	
monthly	RPC	lower	than	the	rural	EWL.	All	the	subregions	reported	
RPC lower than the urban EWL. Under the MSY scenario, only four
subregions	(20%	of	PFS)	would	be	able	to	make	RPC	above	the	rural	
EWL, and no subregion would report RPC higher than the urban EWL.

4  | DISCUSSION

In this study, we demonstrate that subregions with a few, high- value 
resources made a disproportionate part of their total revenues from 
them and were exploited by more fishers than subregions with many 
low value species (Figure 2). Even though this result is to be ex-
pected based on economic theory (higher rents are to be distributed 

among more people at equilibrium), to our knowledge this is the first 
empirical and spatially explicit demonstration of this argument for 
artisanal fisheries. Focusing on high value and abundant species 
may	be	more	economically	viable	(Anderson	et	al.,	2017);	however,	
it increases the economic vulnerability of fishing communities to 
external shocks, such as market and climate variability. For exam-
ple,	the	subregions	in	the	Upper	Gulf	of	California	that	rely	heavily	
on shrimp fisheries were drastically affected when shrimp fisheries 
were	banned	in	May	2015	in	the	region	and	had	to	receive	economic	
compensations in order to compensate for the economic shock of a 
forced	 fishery	 closure	 (Aburto-	Oropeza	et	al.,	 2016).	Recent	 stud-
ies demonstrate that diversification in the number of target species 
fished can reduce such risks, which is already an important strategy 
in	 tropical	 and	 subtropical	 multispecies	 fisheries	 (Anderson	 et	al.,	
2017;	Pellowe	&	Leslie,	2017;	Sievanen,	2014).

We also explored whether achieving MSY in artisanal fisheries 
can ensure the economic well- being of fishers. Our results show that 
stocks	 in	the	GoC	managed	at	MSY	could	 increase	the	total	annual	
revenues	by	approximately	70%,	which	is	above	global	estimates	that	
calculated	an	increase	of	51%	after	accounting	for	unreported	catch	
(Costello et al., 2016). However, when we compare this increase in 
revenues against national poverty levels, managing at MSY will not 
ensure	the	economic	well-	being	for	80%	of	fishers.	It	is	noteworthy	
that the subregions capable of reaching the EWL through manage-
ment at MSY all have significantly lower numbers of fishers than those 
that would not reach the EWL even at MSY. This highlights the role 
that overcapacity likely plays in driving RPC below the EWL (Figure 3), 
as even regions with highly valuable resources are unable to support 
fishers above the EWL when the numbers of fishers are high as well.

Our estimates of fishers’ income correspond well with previ-
ous work and official estimates by Mexican authorities. In 2007, 
the Mexican Secretariat for Employment and Social Provision esti-
mated	that	fishers	received	a	monthly	average	income	of	$196	(2016	
USD),	 number	 that	 was	 closely	 corroborated	 ($186	 (2016	 USD))	
by	researchers	who	performed	interviews	in	the	Gulf	of	California	

F IGURE  3 Comparison between 
average current Revenues Per Capita 
(RPC) between 2001 and 2016, potential 
RPC expected at MSY, and the Economic 
Well- being Limits (EWL) for rural and 
urban areas per subregion. Error bars 
in the current RPC were calculated 
as one standard error of the average 
RPC. Error bars in the RPC at MSY 
were	calculated	from	the	r	and	k	95th 
confidence intervals of all the species 
per subregion. Subregions are ordered 
from lowest to highest number of people 
directly employed in the Fisheries Sector 
(PFS) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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between 2006 and 2008 (Mancini et al., 2011). Even though we 
expect some seasonality in the availability of some resources and 
therefore in the revenues (i.e. regions where shrimp is the top FSU 
get revenues above average from September to November and 
below average from January through May), calculating such fine res-
olution temporal patterns is beyond the scope of this manuscript. 
Such pursuit, however, would be helpful when considering tempo-
ral management strategies in future works. Still, we think that the 
monthly average revenue over the year is a valid reference point, 
as	poverty	 lines	 themselves	are	calculated	 in	 this	way	 (CONEVAL,	
2016) and other economic sectors might experience similar variabil-
ity (e.g. agriculture, construction, etc.).

The lack of economic capacity of fisheries to support fishers 
above poverty levels in some cases has resulted in the need to di-
versify fishing techniques, fishing areas and even occupations 
(Sievanen,	2014).	Some	alternative	occupations	commonly	used	to	
supplement	fisheries	income	in	the	Gulf	of	California	include	tourist	
providers, carpenters, painters and maintenance workers; however, 
in recent years, such occupations have been increasingly difficult to 
find	as	secondary	jobs	(Sievanen,	2014).	Another	way	to	supplement	
household income is through economic contributions of other family 
members. Our estimates of RPC therefore may underestimate total 
household income. In order to account for this factor, we considered 
that	in	2016,	62%	±	1.1%	of	the	average	household	income	in	north-	
western Mexico was contributed by the heads of family and the rest 
by	 other	 family	members	 (INEGI,	 2016).	However,	 even	when	 ac-
counting for potential additional income within fisher- households 
from other family members, the average household income at MSY 
for	 the	whole	 region	goes	 from	$190	USD	 to	 just	$306	USD,	and	
only	five	(23.6%	PFS)	subregions	would	achieve	a	household	income	
above	the	rural	EWL	and	four	(20.0%	PFS)	above	the	urban	EWL.

It is commonly accepted that the use of catch- only methods for 
estimating stock biomass (B/BMSY) and fishing mortality (F/FMSY) 
should be considered cautiously, as they do not account for size 
structure, stock–recruitment relationships or changes in effort. 
Nevertheless, these methods have been widely tested and show 
consistent results with statistics from well- assessed fisheries, even 
when using broad taxonomic groups of marine resources as in data 
from	the	Food	and	Agricultural	Organization	 (FAO)	 (Costello	et	al.,	
2012; Free, Jensen, Wiedenmann, & Deroba, 2017; Froese et al., 
2017). Catch- only methods are most commonly used with at least 
30 years of time series data (Froese et al., 2017). Our analysis, how-
ever, used 16, which means that some decadal trends in stock bio-
mass could have been missed. We addressed this issue in two ways. 
First, we tested whether the estimation of population parameters 
varied significantly with time series length and we did not find any 
significant differences (Supporting information S2). Second, we 
incorporated	 historical	 landing	 records	 reported	 to	 the	 FAO	 since	
1950	(Methods)	to	estimate	priors	for	the	initial	stock	biomass	(B/Bk). 
We	decided	to	use	data	from	FAO	as	it	has	been	demonstrated	to	be	
consistent	with	the	official	catch	data	used	in	this	study	(Arreguín-	
Sánchez	 &	 Arcos-	Huitrón,	 2011).	 In	 addition,	 fishery-	independent	
assessments by local fisheries experts and the Mexican National 

Fisheries	Institute	(INAPESCA)	estimate	that	between	83%	and	90%	
of	 fisheries	 in	 the	GoC	are	either	 fully	or	overexploited	 (Arreguín-	
Sánchez	&	Arcos-	Huitrón,	 2011;	DOF,	 2012),	 also	 consistent	with	
the	82%	calculated	in	this	study.	Global	analyses	have	reported	that	
small and unassessed fisheries are the ones most likely to be in the 
worst condition, with an average B/BMSY of 0. 60 (Costello et al., 
2012). This result corresponds well with the average B/BMSY value 
for the FSUs analysed in this study of 0.63.

Unfortunately, the reductions in fishing capacity required to al-
leviate the negative impacts of overfishing often result in a loss of 
fishing access for fishers who may be entirely dependent on marine 
resources for their livelihood. In developing countries where fish-
ers have fewer economic alternatives, implementing such solutions 
might be difficult, as governments would need to provide sufficient 
opportunities for people to opt out of fisheries permanently, if they 
would accept such alternatives at all (Béné et al., 2016; Weeratunge 
et	al.,	 2014).	 Furthermore,	 while	 it	 is	 intuitive	 that	 recovered	 and	
sustainable fisheries increase catches and revenues, it is still debated 
who	should	enjoy	from	such	benefits	(Clark,	Munro,	&	Sumaila,	2005;	
Jensen, 2002). In particular, as fishing effort and mortality decrease 
in an overfished system and lead to more abundant fish stocks, fish-
ers need to spend less time and effort to catch the same amount fish. 
This results in a reduction of operating costs and thus in higher net 
profits. Part of these profits from better management and exclusive 
access could be collected in the form of taxes or licensing fees to 
benefit the general public, given that fish are a public resource (Clark 
et	al.,	2005;	Jensen,	2002).	On	the	other	hand,	exclusive	benefits	to	
individual fishers or fishing cooperatives, which are a key incentive 
of compliance with access- based management, would need to be al-
located in a transparent and inclusive process to facilitate implemen-
tation and avoid future conflicts (Birkenbach, Kaczan, & Smith, 2017; 
Costello,	Gaines,	&	Lynham,	2008).

Given	 that	 specific	 pressures	 on	 the	 oceans,	 including	 over-
fishing and overcapacity, are regulated within wider socio- 
ecological systems (Finkbeiner et al., 2017), it is vital that the 
interdependencies between social and ecological processes be 
explicitly addressed by policymakers even when discussing ben-
efits of reduced capacity and economic diversification. There is 
emerging recognition for the potential of the oceans as a platform 
for multiple innovative industries and wealth creation, as recently 
promoted within the Blue Economy framework, that are especially 
relevant in coastal areas that currently often rely almost exclu-
sively on fisheries for income and livelihoods (Keen, Schwarz, & 
Wini- Simeon, 2016; World Bank and United Nations Department 
of	 Economic	 and	 Social	Affairs,	 2017).	At	 community	 scales,	 for	
example, ecotourism can contribute to or sometimes entirely 
transform fishing communities (e.g. Cabo Pulmo National Park in 
Mexico, or the transformation of manta ray fisheries to ecotour-
ism	 in	Western	Australia	 and	other	parts	of	 the	world)	 (Aburto-	
Oropeza et al., 2011; Venables, Mcgregor, Brain, & Van Keulen, 
2016). Similarly, offshore wind and tidal energy projects can be 
used to address challenges of last- mile electrification and water 
desalination in remote coastal areas (Snyder & Kaiser, 2009; Vega, 
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2002), and payments for ecosystem services (e.g. mangrove res-
toration) may add additional incentives for ecosystem protection 
(Aburto-	Oropeza	 et	al.,	 2008;	 World	 Bank	 and	 United	 Nations	
Department	of	Economic	and	Social	Affairs,	2017).	Here	we	have	
demonstrated that fisheries alone will not be able to provide suf-
ficient economic benefits to maintain fishers above local poverty 
levels, even if sustainably exploited and if fishing effort is kept 
constant.	 Although	 it	 might	 seem	 natural	 that	 the	 data	 in	 our	
study—uncertainty notwithstanding—could be used to estimate 
the number of fishers that need to be redirected into other eco-
nomic sectors, the aim of our study was not to provide such a nar-
row solution to the problems faced by fisheries. We rather suggest 
that addressing fleet overcapacity is a key component of the pro-
cess to achieve sustainable and economically viable fisheries, but 
also recognize that as part of a complex socio- ecological system, it 
should not be considered in isolation.
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Table S1. List of Local Fisheries Offices per subregion 
 

ID Subregion Subregion name Office Longitude Latitude 
1 LP La Paz Cabo San Lucas -109.916 22.8897 
 La Paz -110.311 24.1422 
2 LO Loreto Loreto -111.343 26.0128 
3 SR Santa Rosalia Santa Rosalia -112.267 27.3389 
4 BA Bahia de los Angeles Bahia de los Angeles -113.564 28.9497 
5 UG Upper Gulf of 

California 
Golfo de Santa Clara -114.5 31.6867 

 San Felipe -114.835 31.0275 
6 PP Puerto Peñasco Puerto Libertad -112.683 29.9042 
 Puerto Peñasco -113.537 31.3167 
7 GY Guaymas Bahia Kino -111.941 28.8228 
 Guaymas -110.899 27.9183 
 Hermosillo -111.526 28.6397 
8 HU Huatabampo Estacion Don -109.024 26.4236 
 Huatabampo -109.642 26.8275 
 Los Mochis -108.997 25.7936 
 Topolobampo -109.056 25.6297 
9 GS Guasave Guasave -108.47 25.5733 
 La Reforma -108.056 25.0811 
 Navolato -107.703 24.7656 
10 MZ Mazatlan Escuinapa -105.778 22.8333 
 Mazatlan -106.41 23.2414 
 Rosa Morada -105.204 22.1222 
 Tecuala -105.457 22.3972 
 Tuxpan -105.299 21.9436 
11 BB Bahia de Banderas Cruz de Huanacaxtle -105.382 20.7492 
 Peñita de Jaltemba -105.249 21.0386 
 Puerto Vallarta -105.227 20.6136 
 San Blas -105.178 21.7503 
 Santiago Ixcuintla -105.207 21.8114 
 Tepic -104.894 21.5164 
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Table S2. List of Important Resources (species that correspond to 95% of the total ex-vessel revenues per sub-
region). 
 

Subregion Subregion 
name Resource % of total 

revenues 
Weight 

(tonnes) 
Price per 

tonne (USD) 
1 La Paz Red snapper 28.09  32916 1903 

Lobster 19.90 188458 10894 
Sharks 11.42 25730 1487 
Snapper 5.99 24172 1397 
Groupers 5.83 29274 1692 
Sea bass 4.43 33811 1954 
Jacks 4.43 13599 786 
Ocean whitefish 3.56 13316 770 
Clams 3.50 6286 363 
Small sharks 2.34 14127 817 
Flatfish 1.88 25466 1472 
Octopus 1.48 34976 2022 
Squid 1.24 2920 169 
Rays 1.21 12176 704 

2 Loreto Red snapper 44.13 45857 2651 
Snapper 14.16 29697 1717 
Groupers 10.49 36016 2082 
Jacks 7.89 12937 748 
Sharks 5.11 10070 582 
Ocean whitefish 4.58 11378 658 
Catfish 4.42 42573 2461 
Small sharks 2.08 11983 693 
Rays 1.52 9161 530 
Sea bass 1.24 49365 2853 

3 Santa Rosalia Squid 40.20 4303 249 
Groupers 13.27 20154 1165 
Jacks 7.85 13539 783 
Flatfish 7.12 29973 1733 
Lobster 5.09 329168 19027 
Octopus 4.91 34466 1992 
Sharks 2.96 13426 776 
Snapper 2.24 27932 1615 
Blue crab 2.20 24220 1400 
Gulf weakfish 2.09 17128 990 
Red snapper 1.73 35143 2031 
Rays 1.56 11475 663 
Small sharks 1.38 13932 805 
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Mullets 1.29 9463 547 
Clams 1.15 10072 582 

4 Bahia de los 
Angeles 

Octopus 35.70 34335 1985 
Squid 14.52 6663 385 
Jacks 11.15 14512 839 
Flatfish 7.46 23218 1342 
Sharks 7.18 18482 1068 
Groupers 6.55 15002 867 
Catfish 4.26 38325 2215 
Small sharks 3.24 15945 922 
Rays 3.00 14180 820 
Clams 2.21 58327 3371 

5 Upper Gulf 
of California 

Shrimp 43.38 181339 10482 
Gulf croaker 18.63 12509 723 
Mackerels 14.32 14672 848 
Gulf weakfish 11.14 37972 2195 
Clams 8.50 18904 1093 

6 Puerto 
Peñasco 

Shrimp 40.86 113248 6546 
Clams 13.55 33761 1951 
Flatfish 9.75 16837 973 
Blue crab 9.16 13903 804 
Gulf croaker 7.97 7819 452 
Rays 4.71 10941 632 
Sharks 3.85 11692 676 
Catfish 2.73 32540 1881 
Snails 2.48 8849 511 

7 Guaymas Shrimp 47.19 92128 5325 
Blue crab 12.11 15737 910 
Squid 7.76 4739 274 
Mackerels 4.97 12691 734 
Snails 4.07 18892 1092 
Flatfish 3.73 24968 1443 
Octopus 3.50 44905 2596 
Clams 2.41 25943 1500 
Jacks 1.92 18939 1095 
Snapper 1.80 36781 2126 
Gulf weakfish 1.72 16953 980 
Groupers 1.50 30539 1765 
Catfish 1.35 38766 2241 
Lobster 1.14 105631 6106 

8 Huatabampo Shrimp 68.12 84044 4858 
Blue crab 13.15 13375 773 
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Red snapper 3.36 35581 2057 
Flatfish 3.08 20720 1198 
Sharks 1.49 17098 988 
Mackerels 1.31 13289 768 
Squid 1.20 6477 374 
Gulf croaker 1.14 7972 461 
Snails 1.04 17674 1022 
Mullets 0.96 6314 365 
Catfish 0.86 26205 1515 

9 Navolato Shrimp 47.58 84046 4858 
Blue crab 23.09 16241 939 
Gulf weakfish 2.97 40693 2352 
Small sharks 2.95 23378 1351 
Snapper 2.76 51282 2964 
Sharks 2.56 21313 1232 
Rays 2.51 24829 1435 
Mullets 2.26 10381 600 
Mojarra 2.14 13993 809 
Catfish 2.06 32660 1888 
Red snapper 2.01 51710 2989 
Mackerels 1.89 16234 938 

10 Mazatlan Shrimp 72.73 84532 4886 
Sharks 4.70 9055 523 
Snooks 3.61 40361 2333 
Mojarra 3.39 11322 654 
Snapper 3.19 41312 2388 
Squid 2.03 5514 319 
Gulf weakfish 2.01 22858 1321 
Catfish 1.53 10980 635 

11 Bahia de 
Banderas 

Mojarra 39.94 15082 872 
Red snapper 11.99 47114 2723 
Snapper 8.60 42344 2448 
Oyster 6.08 15278 883 
Shrimp 5.21 46489 2687 
Mackerels 4.78 20411 1180 
Snooks 4.64 43327 2504 
Gulf weakfish 4.22 25979 1502 
Sharks 3.09 11777 681 
Catfish 2.90 9415 544 
Small sharks 2.11 21144 1222 
Gulf croaker 1.12 13131 759 
Octopus 1.00 52042 3008 
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Supplementary material 1.  
 

Conditions to define biomass priors (B/Bk). All methods are based on Froese et al. 2017 and adapted to 

incorporate historical records from FAO. 

 
1) Infer Bstart/Bk priors from FAO historical landing reports 

 
i. No records before 1995. B/Bk = 0.6 - 0.9 

ii. Historical max (1950 – 1999) < mean of 2000-2002. Bstart/Bk = [0.5, 0.8] 

iii. Historical max (1950 – 1999) = mean of 2000-2002. Bstart/Bk = [0.4, 0.6] 

iv. Historical max (1950 – 1999) > mean of 2000-2002. Bstart/Bk = [0.2, 0.5] 

 
2) Infer Bint/Bk priors from resource’s time series  

 
i. Calculate contrast between catch at intermediate and starting years.  

 

!"#$ =
('()'ℎ"#$ − '()'ℎ,$-.$)

'()'ℎ,$-.$
 

 

ii. If !"#$ < 0. Bint/Bk = Bstart/Bk – 0.1 

iii. If !"#$ = 0. Bint/Bk = Bstart/Bk  

iv. If !"#$ > 0. Bint/Bk = Bstart/Bk + 0.1 

 

3) Infer Bfinal/Bk priors from resource’s time series 

 

i. Calculate contrast between maximum catch and final catch 

 

!0"#-1 =
'()'ℎ0"#-1
'()'ℎ2-3

 

 

ii. If !0"#-1  = 1. Bfinal/Bk = Bstart/Bk + 0.1 

iii. If !0"#-1  < 0.5. Bfinal/Bk = [0.01, 0.4] 

iv. If !0"#-1  < 0.35. Bfinal/Bk = [0.01, 0.3] 

v. If !0"#-1  < 0.15. Bfinal/Bk = [0.01, 0.2] 

vi. If !0"#-1  < 0.05. Bfinal/Bk = [0.01, 0.1] 

vii. If !0"#-1  > 0.5 & !0"#-1  < 1. Bfinal/Bk = Bstart/Bk 

 

* All differences are calculated with a margin of 20 % 
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Figure S1. Current state of fisheries and trends between 2012-2016 for 121 SFUs in the Gulf of California. A) 
Kobe plot (B/Bmsy vs. F/Fmsy) of SFU that represent 95% of the total revenues per subregion. Numbers in 

parentheses represent the number of SFUs in each graphic quadrant. B) Distribution of the linear trend in 

B/Bmsy between 2012-2016 for each SFU. B.slope was calculated as the average rate of change of B/Bmsy. C) 
Distribution of the trend in F/Fmsy between 2012 and 2016 for each SFU. F.slope was calculated as the 

average rate of change of F/Fmsy.  

 

 

 

 

 

 

B.slope

Fr
eq
ue
nc
y

−0.3 −0.1 0.1 0.3

0
20

40
60

80
10
0

61 % 39 %

F.slope

Fr
eq
ue
nc
y

−3 −2 −1 0 1 2 3

0
20

40
60

80
10
0

35 % 65 %

A

B C

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

B/Bmsy

F/
Fm

sy

Sustainable ( 9 )

Overfishing ( 13 )

Overfished −Recovering ( 16 )

Overfished −Overfishing ( 83 )



 
 

21 

 

 

 

 

 

Supplementary material 2. 
 

We performed an analysis to evaluate whether the estimation of population parameters r (intrinsic rate of 

population growth) and k (carrying capacity) through the use of the catch-only method proposed by Froese et 
al. (2017) varies with time series length. To do so, we simulated catches of 24 stocks for a period of 50 years 

each. We tested a wide range of combinations between fisheries catches trends (low/medium/high catches in 

the beginning/middle/end of the time period), and the resilience, r and k for each stock (See Table S4 for 

specifications of each stock). We then generated 3 time series for each stock (15, 30 and 50 years length, 72 

time series in total). To simulate an analogous situation to our dataset, in which we just have access to the last 

16 years, the time series for 15 and 30 years were subsampled from the end of their respective time series. 

 

For each of the 72 time series, we estimated the population parameters as explained in Froese et al. (2017) 

and following the rules to assign biomass priors (B/Bk) as explained in Supplementary material 1. We then 

estimated the ratios restimated/rtrue and kestimated/ktrue and ran a one-way ANOVA between time series grouped by 

time series length to test whether the ratios of estimated parameters by true parameters were significantly 

different. The results are presented in Figure S2. We found no significant differences between population 

parameter estimates for different time series lengths. All estimates include the true estimate in their 

confidence intervals. 

 

 
Figure S2. Comparison of the ratios between estimated population parameters (r and K) and true simulated 

population parameters (true r and true K) for different time series lengths.  
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Chapter 1, in full, is a reprint of the material as it appears in Fish and Fisheries 2018. 

Giron-Nava, A., Johnson, A.F., Cisneros-Montemayor, A.M., Aburto-Oropeza, O. The 

dissertation author was the primary investigator and author of this material. 
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INTRODUCTION

Although there is a strong consensus for the bene-
fits of long-term ecological monitoring and the cre-
ation of long-term datasets, there are significant fis-
cal and political challenges facing the continuation of
these efforts. Given typical funding horizons and the
inherent costs associated with long-term research
programs (Callahan 1984, Magurran et al. 2010), it is
no surprise that the majority of ecological research
occurs within short time frames (Magnuson 1990).

Ecosystem dynamics, however, may not be deci -
pher able from observations on short timescales. In-
deed, there is a growing view that nonlinear and non-
stationary dynamics are common and may require

longer time series for study (Sugihara & May 1990,
Hsieh et al. 2005, Sugihara et al. 2012, Glaser et al.
2014). While most ecological models can be fit to
short time series, they may subsequently fail when
used to make predictions into the future or to explain
changes that occur over the long term (Pilkey &
Pilkey-Jarvis 2007, Evans et al. 2012). The challenge
of models to predict well has led some to suggest that
scientific efforts, and particularly those in fisheries
science, should be shifted away from forecasting as
an attainable goal (Schindler & Hilborn 2015). This
view contradicts our natural expectation that ecosys-
tems behave in nonrandom ways and that with more
data (i.e. longer time series), models should generally
improve. Although we commonly acknowledge out-

© The authors 2017. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited. 

Publisher: Inter-Research · www.int-res.com

*Corresponding author: gsugihara@ucsd.edu

OPENPEN
 ACCESSCCESS

NOTE

Quantitative argument for long-term ecological
monitoring

Alfredo Giron-Nava1, Chase C. James1, Andrew F. Johnson1, David Dannecker2, 
Bethany Kolody1, Adrienne Lee2, Maitreyi Nagarkar1, Gerald M. Pao3, Hao Ye1,

David G. Johns4, George Sugihara1,*

1Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
2Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

3Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
4Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK

ABSTRACT: Although it seems obvious that with more data, the predictive capacity of ecological
models should improve, a way to demonstrate this fundamental result has not been so obvious. In
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of-sample prediction to be the ultimate test for under-
standing, many current parametric ecosystem models
fail to pass this test (Magurran et al. 2010). A possible
reason is that these models are not well suited for de-
scribing nonlinear and nonstationary dynamics. Inso-
far as nonlinearity is to be expected in ecosystems, it
is almost guaranteed that improperly formulated
models will fail to achieve successful predictions, no
matter how much additional data are provided.

If one were to use a minimal nonparametric nonlin-
ear framework to model ecosystems, to what extent
would short-term datasets limit predictive capabili-
ties? In other words, what is the value of long-term
ecosystem monitoring for gaining a predictive under-
standing of ecosystem processes? We investigate this
question using a unique dataset and nonparametric
analytical approach. The data are from the continu-
ous plankton recorder (CPR) program at the Sir Alis-
ter Hardy Foundation for Ocean Science (SAHFOS).
The analytical approach is minimal in that it allows
the data to inform ecological dynamics with no as -
sumptions about underlying equations — so-called
empirical dynamic models (EDMs) (Sugihara et al.
2012, DeAngelis & Yurek 2015). Our objectives are
straightforward and 2-fold: (1) to explore the rela-
tionship between time series length and the ability to
detect nonlinearity, and (2) to examine the ability to
predict future population abundances a month ahead
as data availability/length increases.

MATERIALS AND METHODS

Dataset and data completeness

We use time series from the SAHFOS program, the
longest and most spatially extensive planktonic eco-
system dataset currently available for the At lan tic
Ocean. Our data, recorded by the CPR (Hays et al.
2005), comprise monthly average abundances of
phytoplankton and zooplankton taxa in the southern
North Sea (55° to 58° N, 3° to 11° W) from 1958 to
2013, with sampling methods described in depth
in Richardson et al. (2006). Data are available from
the SAHFOS repository at http:// doi. sahfos. ac. uk/
doi-library/ data-for-zooplankton-and-phytoplankton-
from-the-1)-southern-north-sea-and-2)-the-irish-sea.
aspx). Because of the practical limitations of identify-
ing taxa and making counts, the time series within
the SAHFOS repository count organisms at a variety
of taxonomic levels (but typically either species or
genus). We used the data as they are provided; thus,
the time series refer to taxa rather than species.

We use 2 distinct measures to quantify the amount
of data in each time series: time series length and
data availability. Time series length refers to the
number of data points in a time series, whereas data
availability is defined as the number of nonzero val-
ues within a time series. We use the term data avail-
ability because we recognize that zeros could repre-
sent an absence of an organism or a lack of detection,
and we are unable to distinguish between the two.
Our analyses that examine the effect of time series
length use subsampled segments from the time series
with the fewest nonzero values or greatest data avail-
ability ‘Effect of time-series length’.

Effect of data availability

We investigate the degree of nonlinearity and pre-
dictability using 2 methods of time series analysis:
simplex projection (Sugihara & May 1990) and S-
maps (Sugihara 1994). Simplex projection is used to
assess the one-step-ahead predictive skill for each
time series and is measured by the Pearson correla-
tion coefficient (ρ) between predictions and observa-
tions. Following Glaser et al. (2014), to minimize
overfitting, we use leave-one-out cross validation,
where the point being forecast is excluded from the
data used to construct the forecast. Different values
for the embedding dimension (E) were tested (rang-
ing from E = 1 to E = 10), and the optimal embedding
dimension was selected as that which produced the
highest ρ. We note that the optimal E is a property of
the data (how noisy and how long the time series are)
as well as the underlying system (how complex it is in
terms of numbers of variables) and indicates the
number of lags that best resolves one-step-ahead
forecasts. While E can be informative about the com-
plexity of the system or the number of drivers (Liu et
al. 2012, Glaser et al. 2014), we caution against over-
interpretation.

S-maps are used to test for nonlinear state depend-
ence (Sugihara 1994). This involves demonstrating
curvature in the attractor and is quantified by the
improvement in ρ (∆ρ) obtained with a nonlinear ver-
sus a linear model. Statistical significance for ∆ρ was
determined using a randomization test. For each time
series, we generated 100 surrogate time series and
calculated a ∆ρ for each surrogate using the previ-
ously determined E. This creates a null distribution
that can be compared to the original (nonshuffled)
∆ρ. Nonlinearity is indicated when the ∆ρ statistic for
the original time series is greater than the 0.95 quan-
tile of the null distribution.
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Effect of time-series length

To examine the effect of time series length as a
property independent of taxonomic identity, we fo -
cused on the 23 time series with the greatest data
availability (≥461 nonzero data points) and which
were identified as significantly nonlinear. For each
time series, we investigated the effect of varying
the data length on predictability using randomly
se lected contiguous segments of length: 25, 50,
100, 200, 400. The subsampling was repeated 25
times at each length for each species (so that 575
[23 × 25] subsamples were used to compute fore-
cast performance at each length). Predictions were
made using a form of leave-one-out cross validation
where the predicted point is excluded to minimize
overfitting. We then tested for nonlinear state
dependence using S-maps as described in the pre-
vious subsection.

Significance of nonlinearity as a function of data
completeness

To test whether data availability or time series
length are significant predictors of nonlinearity, we
treated data availability and time series length by
binning them into discrete categories (Fig. 1) and
recorded the detection of nonlinearity as a binary
response. Then, we fit a logistic regression using the
R glm function (binomial family).

RESULTS AND DISCUSSION

The S-map analysis shows that nonlinear dynamics
are more readily identified as data availability in -
creases (Fig. 1a; p < 0.01; logistic regression, df = 207).
For the 90 taxa with the lowest data availability (≤37
nonzero data points out of 672), only 11% (10 taxa)
showed significant nonlinear dynamics. In contrast, of
the 90 taxa with 38 to 460 nonzero values, 57% (51
taxa) showed significant nonlinear dynamics. Finally,
among the 28 taxa with the highest data availability
(≥461 nonzero values), 82% (23 taxa) showed signifi-
cant nonlinear dynamics. In other words, the time se-
ries that are most complete also show stronger evi-
dence for nonlinear dynamics. To test whether this
effect could be driven by the specific taxa that happen
to appear most often in the data, we also analyzed
subsampled time series (artificially shortened from
the 23 nonlinear taxa with the most data availability),
finding a similar pattern (Fig. 1b; p < 0.01; logistic re-
gression, df = 23). It has been recognized that aggre-
gating taxon levels can obscure nonlinear dynamics
detection (Liu et al. 2014); however, we have shown
that nonlinearity de tection increases with time series
length regardless of the taxonomic resolution. The
subsampling procedure here obviates any taxon-spe-
cific effect re lated to aggregation that could reduce
nonlinearity in more aggregated (linearly summed)
groupings (Sugihara et. al. 1999).

A similar advantage with increased data holds for
prediction; in general, greater data availability also

corresponds to higher forecast skill
(Fig. 2a). Using the same subsamples
as in the previous paragraph, Fig. 2b
shows that predictability also
increases with time series length.
Thus, we expect that as more data
are collected, populations will be
more readily identified as nonlinear
and that the longer time series will
enable better predictions. However,
we note that even at the longest
time series lengths (≥600 nonzero
values in Fig. 2a or 400 time points
in Fig. 2b), the level of forecast skill
can vary substantially. These differ-
ences in predictability could partially
reflect differences in the natural
response times (e.g. generation
times), leading to differences in the
density of points on the attractor
(Table 1), with shorter generation
times producing denser attractors;

Data availability
(no. of nonzero values)
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Time series length
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Fig. 1. Effect of data availability and time series length on nonlinearity detec-
tion. (a) Proportion of taxa identified as significantly nonlinear as a function of
data availability (number of nonzero values). Numbers above each bar repre-
sent the number of taxa in that bin. (b) Proportion of taxa identified as signifi-
cantly nonlinear as a function of time series length. Each bar corresponds to
575 subsamples of a specified length created by generating 25 subsamples 

from each of the 23 time series with the greatest data availability



 
 

27 

Mar Ecol Prog Ser 572: 269–274, 2017

however, they could also reflect exogenous effects,
such as environmental drivers, that are not captured
in the abundance time series and may therefore
need to be included explicitly in forecast models
(see Dixon et al. 1999, Deyle et al. 2013, and Har-
ford et al. 2017 for examples).

Finally, we note that in addition to leave-one-out
cross validation, for the 23 taxa with the highest data
availability, nearly identical out-of-sample prediction
results are obtained with 2-fold cross validation.
Here each half of the data series is used to predict the
other half, and the predictions for the entire series
are combined to calculate performance (Fig. 3). This
demonstrates the robustness of the cross validation
results and shows that the dynamics are stationary or
essentially the same in both halves (Sugihara & May
1990).

Documenting that ecosystems are
capable of ex hibiting predictability
and that their dynamics are nonlinear
is of considerable interest to agencies
involved in data collection and to re -
source managers who must use those
data. The reasonable expectation is
that predictive models will improve
with more data. However, if a model is
a poor description of a system, no
amount of additional data will im prove
predictability (MacNally 2000, DeAn-
gelis & Yurek 2015). For example, fish-
ery stock prediction has been a difficult
challenge despite continual model re-
finements and new data inputs (Ward
et al. 2014, Schindler & Hilborn 2015,
Ye et al. 2015). The limitations of cur-
rent ecosystem models to predict out of

sample may arise in part from observational error in
the data. However, we believe that a more significant
problem is the mismatch between the traditional as-
sumptions of equilibrium and linearity (DeAngelis &
Waterhouse 1987) and the increasing observations
that many ecological systems are not in equilibrium
but are demonstrably nonlinear (Fromentin & Powers

Taxon ρ

Oithona sp. 0.71
Total copepods 0.70
Para-pseudocalanus sp. 0.67
Acartia sp. 0.58
Chaetognaths 0.54
Chlorophyll index 0.53
Calanus I−IV 0.48
Calanus finmarchicus 0.44
Fish larvae 0.34
Calanus helgolandicus 0.34
Temora longicornis 0.31
Total hyperiids 0.29

Table 1. Taxa whose time series have more than 600
nonzero values and the Pearson correlation coefficient (ρ) 

from nonlinear prediction (from Fig. 2a)
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Fig. 2. Effect of data availability and time series length on predictability (ρ) for
(a) each time series (circles) and (b) different lengths of subsampled time series.
Each boxplot corresponds to 575 subsamples as in Fig. 1b. Bold lines: median; 

boxes: interquartile range; whiskers: minimum and maximum values
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Fig. 3. Comparison of the predictive skill (ρ) for the 23 spe-
cies with the highest data availability under 2 different cross
validation schemes: (1) 2-fold cross validation, where each
half of the data series is used to predict the other half, and
the predictions for the entire series are combined to calcu-
late performance; and (2) leave-one-out cross validation.
The 2 schemes produce results that do not differ signifi-
cantly from each other (p < 0.05, paired t-test), showing that
the dynamics are stationary in both halves of the data. Box-
plots show the distribution of predictability values. Bold
lines: median; boxes: interquartile range; whiskers: mini-

mum and maximum values
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2005, Hsieh et al. 2005, Glaser et al. 2014). Although
short time series can be challenging to the identifica-
tion of nonlinear dynamics and construction of empir-
ical models, there have been several recent advances
on this front (Hsieh et al. 2008, Glaser et al. 2011,
Clark et al. 2015, Ye & Sugihara 2016).

Data-driven approaches where causal variables
and functional relationships are determined empiri-
cally may offer a viable alternative to inductive equa-
tion-based approaches. For example, Sugihara et al.
(2012) introduce an EDM method for using time
series to identify the causal drivers of ecosystem dy -
namics, and several others (Dixon et al. 1999, Deyle
et al. 2013, Harford et al. 2017) provide examples of
incorporating these environmental effects into EDMs
to forecast future ecosystem states — including ap -
parently random events such as red tides (McGowan
et al. 2017). These approaches do not rely a priori on
hypothesized equations but instead infer relation-
ships deductively as they appear in the data. With
continued monitoring and longer time series, the
ability of such techniques to describe nonlinear be -
havior will improve our understanding of ecological
mechanisms, where unraveling the interdependence
between environmental factors and endogenous
population dynamics is certain to be critical for man-
aging ecosystems in the context of climate change
(Pershing et al. 2015). Thus, as predictive data-driven
approaches continue to gain traction, investments in
long-term data collection will surely yield long-term
payoffs.

CONCLUSIONS

The CPR at SAHFOS is a premiere example of how
continuous long-term projects help to create new
perspectives in ecology. By providing robust, long-
term datasets, this program captures variability in
species abundance that occurs on temporal scales
ranging from interannual cycles to multidecadal
shifts (Barton et al. 2003). Furthermore, SAHFOS, in
collaboration with partners from around the globe, is
now involved in conducting plankton counts in
nearly every major ocean basin on earth. In addition
to providing a long-term description of population
dynamics, these spatially broad environmental moni -
toring programs can provide regional insights into
global problems. Beyond the common sense value of
collecting these data, our analyses provide a quanti-
tative justification for continued support of these
 programs. These data are critical for predictability
and understanding, which are particularly important

given increasing threats to global ecosystems, such
as human exploitation pressures and climate change
(Halpern et al. 2008).

Data archive. The data supporting the results of this study
are available at http:// 192. 171. 193. 159/ doi-library/ data-
for-zooplankton-and-phytoplankton-from-the-1)-southern-
north-sea-and-2)-the-irish-sea. aspx.

Acknowledgements. Thanks to Martin Edwards, Darren
Stevens, and SAHFOS for providing the authors with CPR
data. This analysis was supported by US Department of
Defense−Strategic Environmental Research and Develop-
ment Program 15 RC-2509; Lenfest Ocean Program 0002
8335; the Sugihara Family Trust; the Deutsche Bank−
Jameson Complexity Studies Fund; and the McQuown Fund
and McQuown Chair in Natural Sciences, University of
 California San Diego. A.G.N. was funded by CONACYT
(CVU 579904) and Fulbright Garcia-Robles (LASPAU ID
20140963) doctoral program fellowships. A.F.J. was sup-
ported by NSF grant DEB-1632648 (2016). B.K. and M.N.
were funded by NSF grant DGE-1144086. The authors
declare no conflicts of interest.

LITERATURE CITED

Barton AD, Greene CH, Monger BC, Pershing AJ (2003) The
continuous plankton recorder survey and the North
Atlantic Oscillation:  interannual- to multidecadal-scale
patterns of phytoplankton variability in the North
Atlantic Ocean. Prog Oceanogr 58: 337−358

Callahan JT (1984) Long-term ecological research. Bio-
science 34: 363−367

Clark AT, Ye H, Isbell F, Deyle ER, Cowles J, Tilman GD,
Sugihara G (2015) Spatial convergent cross mapping to
detect causal relationships from short time series. Eco -
logy 96: 1174−1181

DeAngelis DL, Waterhouse JC (1987) Equilibrium and non-
equilibrium concepts in ecological models. Ecol Monogr
57: 1−21

DeAngelis DL, Yurek S (2015) Equation-free modeling un -
ravels the behavior of complex ecological systems. Proc
Natl Acad Sci USA 112: 3856−3857

Deyle ER, Fogarty M, Hsieh CH, Kaufman L and others
(2013) Predicting climate effects on Pacific sardine. Proc
Natl Acad Sci USA 110: 6430−6435

Dixon PA, Milicich MJ, Sugihara G (1999) Episodic fluctua-
tions in larval supply. Science 283: 1528−1530

Evans MR, Norris KJ, Benton TG (2012) Predictive ecology: 
systems approaches. Philos Trans R Soc Lond B 367: 
163−169

Fromentin JM, Powers JE (2005) Atlantic bluefin tuna:  pop-
ulation dynamics, ecology, fisheries and management.
Fish Fish 6: 281−306

Glaser SM, Ye H, Maunder M, MacCall A, Fogarty M, Sugi-
hara G (2011) Detecting and forecasting complex nonlin-
ear dynamics in spatially structured catch-per-unit-effort
time series for North Pacific albacore (Thunnus ala lun -
ga). Can J Fish Aquat Sci 68: 400−412

Glaser SM, Fogarty MJ, Liu H, Altman I and others (2014)
Complex dynamics may limit prediction in marine fisher -
ies. Fish Fish 15: 616−633



 
 

29 

 

Mar Ecol Prog Ser 572: 269–274, 2017

Halpern BS, Walbridge S, Selkoe KA, Kappel CV and others
(2008) A global map of human impact on marine ecosys-
tems. Science 319: 948−952

Harford WJ, Karnauskas M, Walter JF, Liu H (2017) Non-
parametric modeling reveals environmental effects on
bluefin tuna recruitment in Atlantic, Pacific, and South-
ern Oceans. Fish Oceanogr (in press), doi: 10.1111/ fog.
12205

Hays GC, Richardson AJ, Robinson C (2005) Climate change
and marine plankton. Trends Ecol Evol 20: 337−344

Hsieh CH, Glaser SM, Lucas AJ, Sugihara G (2005) Distin-
guishing random environmental fluctuations from eco-
logical catastrophes for the north Pacific Ocean. Nature
435: 336−340

Hsieh CH, Anderson C, Sugihara G (2008) Extending non-
linear analysis to short ecological time series. Am Nat
171: 71−80

Liu H, Fogarty MJ, Glaser SM, Altman I and others (2012)
Nonlinear dynamic features and co-predictability of the
Georges Bank fish community. Mar Ecol Prog Ser 464:
195–207

Liu H, Fogarty MJ, Hare JA, Hsieh CH and others (2014)
Modeling dynamic interactions and coherence between
marine zooplankton and fishes linked to environmental
variability. J Mar Syst 131: 120−129

MacNally R (2000) Regression and model-building in
conservation biology, biogeography and ecology:  the
distinction between — and reconciliation of — ‘predic-
tive’ and ‘explanatory’ models. Biodivers Conserv 9: 
655−671

Magnuson JJ (1990) Uncovering the processes hidden
because they occur slowly or because effects lag years
behind causes. Ecol Res 40: 495−501

Magurran AE, Baillie SR, Buckland ST, Dick JM and others
(2010) Long-term datasets in biodiversity research and
monitoring:  assessing change in ecological communities
through time. Trends Ecol Evol 25: 574−582

McGowan JA, Deyle ER, Ye H, Carter ML and others (2017)

Predicting coastal algal blooms in southern California.
Ecology 98: 1419–1433

Pershing AJ, Alexander MA, Hernandez CM, Kerr LA and
others (2015) Slow adaptation in the face of rapid warm-
ing leads to collapse of the Gulf of Maine cod fishery. Sci-
ence 350: 809−812

Pilkey OH, Pilkey-Jarvis L (2007) Useless arithmetic:  why
environmental scientists can’t predict the future. Colum-
bia University Press, New York, NY

Richardson AJ, Walne AW, John AWG, Jonas TD and others
(2006) Using continuous plankton recorder data. Prog
Oceanogr 68: 27−74

Schindler DE, Hilborn R (2015) Prediction, precaution, and
policy under global change. Science 347: 953−954

Sugihara G (1994) Nonlinear forecasting for the classifica-
tion of natural time series. Philos Trans R Soc Lond A 348: 
477−495

Sugihara G, May R (1990) Nonlinear forecasting as a way of
distinguishing chaos from measurement error in time
series. Nature 344: 734−741

Sugihara G, Casdagli M, Habjan E, Hess D, Dixon P, Hol-
land G (1999) Residual delay maps unveil global patterns
of atmospheric nonlinearity and produce improved local
forecasts. Proc Natl Acad Sci USA 96: 14210−14215

Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M,
Munch S (2012) Detecting causality in complex ecosys-
tems. Science 338: 496−500

Ward RJ, Holmes EE, Thorson JT, Collen B (2014) Complex-
ity is costly:  a meta-analysis of parametric and non-para-
metric methods for short-term population forecasting.
Oikos 123: 652−661

Ye H, Sugihara G (2016) Information leverage in intercon-
nected ecosystems:  overcoming the curse of dimension-
ality. Science 353: 922−925

Ye H, Beamish RJ, Glaser SM, Grant SCH and others (2015)
Equation-free mechanistic ecosystem forecasting using
empirical dynamic modeling. Proc Natl Acad Sci USA
112: E1569−E1576

Editorial responsibility: Myron Peck, 
Hamburg, Germany

Submitted: December 5, 2016; Accepted: April 9, 2017
Proofs received from author(s): May 12, 2017



 
 

30 

 

 

 

 

 

 

 

Chapter 2, in full, is a reprint of the material as it appears in Marine Ecology Progress 

Series. Giron-Nava, A., James, C.C., Johnson, A.F., Dannecker, D., Kolody, B., Lee, A., 

Nagarkar, M., Pao, G.M., Ye, H., Johns, D.G., Sugihara, G. The dissertation author was the 

primary investigator and author of this material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

31 

 

 

 

 

 

 

CHAPTER 3: 

Data circularity masks fisheries recruitment predictability 

ALFREDO GIRON-NAVA, GEORGE SUGIHARA, ANFREW F. JOHNSON, ETHAN DEYLE, STEVE 
MUNCH, CHASE C. JAMES, ERIK SABERSKI, OCTAVIO ABURTO-OROPEZA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

32 

Abstract 

It is now common practice in fisheries to use data derived from total yields and model 

outputs to estimate stock biomass and recruitment. This low-cost alternative, however, generates 

data that is not useful when trying to understand the mechanisms that drive recruitment, nor to 

take accurate management decisions for species that are highly recruitment-driven. Using a 

global database of stock assessments, we find that traditional Stock-Recruitment Models (SRM), 

such as the Ricker and Beverton-Holt models, are somewhat successful at predicting data derived 

from assessment methods that introduce an assumed stock-recruitment relationship, such as in 

Biomass Dynamic Models. However, they are generally poor at predicting data that does not 

make such explicit assumptions or were purely observational. We also use Empirical Dynamics 

Modelling (EDM), an equation-free technique, and compare its performance to predict 

recruitment against the SRM. We find that EDM predicts all types of data better than the SRM 

models. This work aims to contextualize the need for continued observational datasets, especially 

when managing for short-lived species for which enhancing recruitment predictability can lead to 

better management strategies. 

 

Introduction 

Faced with budget reductions for fisheries science and management worldwide, fisheries 

programs have experienced pressure to systematically replace observational data programs with 

less expensive indirect data estimations, so called synthesized data 1,2. Synthesized data can be 

generated when sparse observations of standing stock biomass are filled in with model-based 

estimates to construct continuous time series 3; or when there are only observations about 

fisheries landings and relative indices of abundance from which estimates of stock biomass and 
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recruitment can be derived 4. These model-based estimates are heavily influenced by 

assumptions and preconceptions about how fish populations grow and respond to external stimuli 

5.  Nonetheless, such time series of stock biomass are commonly used as the input of other 

models and meta-analyses 6–8.  

A problem arises when synthesized data that were processed with explicit assumptions 

about the Stock-Recruitment (SR) relationship are then used to make predictions of future 

recruitment or stock biomass 3,9. For instance, traditional Stock-Recruitment Models (SRM) can 

often be made to fit well to model-generated data, however, fitting is not prediction, and 

therefore it is not surprising that the accuracy of such predictions is often very low when tested 

in future years 10,11. This issue has led some to conclude that it is impossible to predict 

recruitment 11,12, often neglecting that the use of circular data and heavily parametrized models 

might mask such relationship.  

Recent studies have taken on the problem of improving recruitment predictability and 

determining whether it is causally coupled to stock biomass 12–14. By using a nonlinear and non-

parametric framework, they have demonstrated that such relationship exists, and that recruitment 

is generally predictable, especially for short-lived species, such as small-pelagics 13,15. Still, the 

issue of data circularity has been explored to a lesser extent3,8, and there is still a gap in the 

understanding of how using circular approaches might limit recruitment predictability. 

In this study, we use 130 fish stocks from the Ransom Myers database , a global database 

of stock sizes and recruitment estimates to ask the following questions: (1) How well do three 

SRM (density independent, Ricker, and Beverton-Holt) predict the number of recruits across 

three different data collection and processing approaches (Biomass Dynamic Models – BDM, 
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Sequential Population Analysis – SPA, and Direct Observations – DO)? And (2) can S-maps, an 

equation-free approach from the Empirical Dynamics Modelling (EDM) framework 16, provide 

better predictions than SRM? 

The three data collection and processing approaches that we explore vary in the degree to 

which they incorporate assumptions about the population dynamics of fish stocks when 

estimating stock biomass and recruitment. While DO sampling programs collect data every year 

on both stock biomass and recruitment, BDM and SPA use a time series of catch (assuming 

perfect observations) and relative indices of abundance to estimate stock and recruitment through 

mathematical approximations. While doing so, select assumptions about the population dynamics 

are introduced 4. For example, BDM require information/assumptions about growth, natural 

mortality, and the use of an explicit parametrized SR relationship, such as Beverton-Holt or 

Ricker 4. On the other hand, SPA do not impose a functional form to the SR relationship, but  by 

tracking the numbers of individuals harvested from a given year class, and an assumed known 

natural mortality, back calculates the total number of fish-per-age, including the number of 

recruits 4. Based on this information, we ordered our data sets from least to most circular: DO, 

SPA, BDM. We were not able to recover data on the specific functional form that was introduced 

for each stock in the BDMs. Given this, we did not test each stock against its specific SR 

relationship, but rather we assumed that any kind of introduced function in the BDM would 

improve the predicting capacity of the SRM that were tested. 
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Materials and Methods   

Ransom Myers Stock Recruitment database 

We compared the predictions of the numbers of recruits through time from stock 

assessments using Stock-Recruitment Models (SRM) 5 and an Empirical Dynamics Modelling 

(EDM) technique known as S-maps 16–18. To do this, we used the Ransom Myers database 19, a 

global repository of stock sizes and recruitment estimates for over 600 marine and freshwater 

fish populations (>100 species). All populations from this database with at least 25 years of both 

stock size and recruitment data were included in our analysis, representing 130 populations from 

36 species, spanning 8 Orders. We classified each time series according to the method through 

which they were generated: Biomass Dynamic Models – BDM (N = 53), Sequential Population 

Analysis – SPA (N = 71), and Direct Observations – DO (N = 6). Table 3.1 presents a summary 

of the method used in each stock assessment and the length of each time series. 

 

Predictability - Standard Recruitment Models (SRM) 

We evaluated the performance of three SRMs to predict the SR relationship in the 133 

populations that were analyzed: density independence (Linear), Ricker, and Beverton-Holt 5. 

These models assume that the number of recruits is a function of the current stock size. All 

models can be written in the general form 𝑅" = 𝛼𝑆"𝑔(𝑆"), where 𝑅 is recruitment, 𝑆 is stock 

size, 𝛼 is the maximum rate of reproduction, and 𝑔(𝑆") is a function that accounts for density-

dependent processes 19. In the case of the density independent model, the function 𝑔(𝑆") = 1 and 

the model is a straight line that intercepts the origin (0,0) with slope 𝛼. The Ricker and Beverton-

Holt models introduce the term 𝛽, which is proportional to the product of fecundity and density-

dependent mortality (see e.g. 4). The three models are presented below. 
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(1)	𝑅" = 𝛼𝑆"     –     Density independent 

(2)		𝑅" = 𝛼𝑆"𝑒./01     –     Ricker 

(3)		𝑅" = 𝛼𝑆" 3
4

45/01
6     –     Beverton-Holt 

The Ricker and Beverton-Holt models were fitted on a log scale, re-written so that 𝑦" =

ln	[𝑅"/𝑆"] 4. All models were fit using the function ‘fminsearch’ in Matlab R2015b. 

To calculate the predictability achieved by each model, we performed a bootstrap leave-

one-out cross validation. Given that the minimum length of any time series in our dataset was 25 

years, the bootstrap was run 25 times for each time series with each SFM. To do this we 

excluded single, randomly selected points from each time series and then used 24 more randomly 

selected points to predict the initially excluded point. All predictions were made in the original 

recruitment scale. We then calculated the predictability (ρ) as the Pearson correlation coefficient 

between the 25 observations and their respective predicted values.  

 

Predictability – Empirical Dynamics Modelling (EDM) 

EDM is based on the idea that a time series is an observation of a state-dependent 

dynamic system (see introductory video https://youtu.be/fevurdpiRYg). Thus, if one were able to 

identify all the relevant variables (i.e. all “n” of them) and trace out the evolution of the system 

in this n-dimensional space, the trajectory would produce a geometric shape a.k.a. an “attractor.”  

These attractors can be used to predict future states by following the trajectories at similar 

locations on the attractor 17,20. However, in practice, it is difficult to collect or even to know what 

all the relevant variables in a system are; thus, it is not possible to reconstruct the original 

attractor. EDM acknowledges this fact and so relies on Takens’ theorem, which states that a 
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single time series contains information about the whole system from which it was measured 21. 

Assuming that the collected time series is 𝑥", one can reconstruct a “shadow” version of the 

original attractor by using lagged time series (eg. 𝑥".4, 𝑥".>) as proxies for other unknown time 

series of the same system. The principles and mechanics of EDM and Takens’ theorem are 

further explained in 22,23 and in a series of short animations (http://tinyurl.com/EDM-intro). 

Although it is possible to construct an attractor from a single time series, predictability 

can often be improved by using two or more time series of variables measured from the same 

system 17,24, such as fish stock biomass (𝑆") and number of recruits (𝑅"). Therefore, we 

reconstruct the attractors for each population using combinations of the original time series (𝑅", 

𝑆") and two time lags for each of them (𝑅".4, 𝑅".>, 𝑆".4, 𝑆".>), totaling up to 6 time series that 

can be combined in 63 different ways (ranging from using 1 to 6 time series at a time). In this 

study, we use two EDM techniques known as simplex projection 16 and S-maps 16 to predict 

numbers of recruits. Simplex projection uses the reconstructed attractor to find the nearest 

neighbors of a data point and follow their trajectories to calculate an average trajectory and make 

a prediction 25. S-maps then use a tuning parameter 𝜃 to evaluate the improvement of 

predictability as nearest neighbors are assigned more weight in the prediction, so that 𝜃 = 0 

equally weights all the points on the attractor, and 𝜃 > 0 gives more weight to nearby points. All 

our results report the predictability (ρ) achieved from S-maps optimizing 𝜃. 

 

Predictability – Standard Recruitment Models (SRM) 

In the same way as with the SRM, we perform a leave-one-out cross validation where 

each prediction involves excluding the single time point that we are trying to predict from the 

data that is used to build the forecast model. We then calculate ρ as the Pearson correlation 
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coefficient between the observations and their respective predicted values for each of the 137 

fish stocks. All analyses were performed using the rEDM (v.2018) package in R version 3.2.3. In 

order to test whether a particular model’s predictions were significantly different when using 

BDM, SPA and DO, we performed unpaired t-tests.  

 

Results 

SRM reported the highest recruitment predictability (ρ) when using data derived from 

BDM, with an average Pearson correlation coefficient of 0.39 ± 0.04 (s.e.), 0.40 ± 0.04 and 0.46 

± 0.04 for the density independent, Ricker and Beverton-Holt models respectively (Figure 3.1). 

In contrast, the SRM performed poorly with both the SPA and the observational data sets. In the 

case of the SPA data, the average ρ values were equal to 0.19 ± 0.03, 0.21 ± 0.03 and 0.22 ± 0.03 

respectively for the same models. This represents an average decrease of 49% in the predicting 

capacity of SRM when using SPA as compared to BDM. Finally, in the case of DO, the average 

ρ values were equal to 0.23 ± 0.09, 0.25 ± 0.10 and 0.22 ± 0.11 respectively (Figure 3.1). This 

represents an overall decrease of 43% when compared to BDM. We note that the reduction in 

predictability was significant (P < 0.05) for each of the SRM when comparing BDM to SPA and 

DO. 

EDM outperformed the three SRM in making predictions on the number of recruits 

regardless of the type of data used. EDM estimated Pearson correlation ρ values equal to 0.59 ± 

0.02, 0.61 ± 0.02 and 0.64 ± 0.07 for BDM, SPA and DO datasets respectively (Figure 3.1). We 

found no significant differences in the predictability of EDM between the different kinds of 

datasets (P > 0.05). 
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Discussions 

Unfortunately, there is an overall lack of direct observation datasets, and even the global 

repository used in this study only contained 6 of them that were long enough to be analyzed. This 

echoes the importance of continued investments in long-term observational data collection 

programs without interruption 1,2,15. The alternative, however, is the used of synthesized datasets.  

While these are useful for stock assessments when the priority is to set harvest quotas, it is 

questionable whether they are useful to analyze the population dynamics of target species 3,8.  

In this study, we demonstrate that BDM, which introduce an explicit SR relationship, are 

best predicted by SRM. This is to be expected, as it has been demonstrated that the estimates of 

fishing mortality and recruitment are highly dependent on the assumed SR relationship 4,8. In 

contrast, SPA and direct observations had 43-49% lower predictability when using SRM. In the 

case of direct observations, it is logical for such result to be the case, as no pre-conceptions were 

introduced into the data. However, in the case of the SPA, even though the data are treated with 

other assumptions, such as a constant natural mortality rates, there is never an explicit SR 

relationship introduced. As such, no SR dynamics are forced into the time series. The lack of 

predictability when using SRM in both, SPA and direct observations, shows that the assumed 

functional forms of SRM do not accurately describe the relationship between stock size and 

recruitment.  

There is increasing consensus about the fact that using synthesized data to perform 

recruitment meta analyses might introduce too many assumptions through each individual stock 

assessment 3,8. This has led many people to look for alternative routes to predict recruitment, 

primarily through environmental indices and ever-more parametrized models 12. This approach, 
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though useful when there is a clear signal due to the susceptibility of some species’ recruitment 

to poor environmental conditions, is far from solving the more general problem of recruitment 

predictability 26,27. Recent work has taken on this challenge from a different perspective, using 

EDM as a nonlinear and non-parametric approach to test whether stock size and recruitment are 

causally coupled, and thus how can recruitment be predicted from stock status or catch per unit 

effort time series 13,14,27. The results are promising, as stock size and recruitment have been 

consistently demonstrated to be causally coupled and predictable 13,14. 

In this work, we also demonstrate that EDM is better at predicting recruitment across 

different types of datasets and when compared to SRM 13,14. EDM derives the dynamic 

mechanisms and causes directly from the data and thus can easily accommodate the dynamics 

introduced to the BDM data. However, we caution about the interpretation of the predictions 

derived from these datasets, as they might only reflect the expected recruitment from such 

models. More importantly, EDM also performs well with the DO data, and thus predicts 

recruitment in the real population (Figure 3.1).  

EDM methods have previously been used to help improve recruitment predictability for a 

variety of stocks. Examples include: tuna in the North Pacific 28, sockeye salmon in the Fraser 

River system in British Columbia 27, red snapper in the Gulf of Mexico 29, and menhaden in the 

Gulf of Mexico and the Atlantic U.S. coast 29.  The challenge remains to identify more precisely 

the species for which improved recruitment predictability would make a significant improvement 

to their management and on how to integrate these benchmark predictions from EDM methods 

more broadly into enacted management schemes that are sustainably adaptive to non-stationary 

harvest targets.  
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Tables 

Table 3.1. List of stocks from the RAM Legacy database with 25 or more years of data. The 
table shows the scientific name of the species, original collection method (DO – Direct 
Observations, SPA – Sequential Population Analysis, BDM – Biomass Dynamics Model, length 
of the time series in number of years, and the predictability (ρ) achieved by each of the 3 SRM 
and EDM. 
 

ID Species Method Length 
(yr) Linear Ricker Beverton 

Holt  EDM 

1 Alosa pseudoharengus DO 45 0.41 0.35 0.08 0.87 
3 Alosa pseudoharengus DO 35 0.5 0.67 0.67 0.79 

11 Engraulis encrasicolus SPA 27 0.81 0.79 0.82 0.78 
13 Salmo salar DO 37 -0.43 -0.05 -0.21 0.68 
14 Salmo salar DO 38 0.38 0.25 0.35 0.51 
24 Thunnus obesus SPA 35 0.22 0.23 -0.33 0.74 
25 Thunnus obesus SPA 26 -0.56 -0.35 0.01 0.47 
26 Thunnus obesus SPA 25 0.13 0.1 -0.4 0.74 

34 Oncorhynchus 
tshawytscha BDM 26 -0.09 -0.15 -0.21 0.89 

40 Oncorhynchus keta BDM 38 -0.5 -0.04 -0.44 0.31 
41 Oncorhynchus keta BDM 30 0.25 0.27 0.34 0.75 
43 Oncorhynchus keta BDM 28 0.45 0.43 0.48 0.45 
44 Oncorhynchus keta BDM 30 -0.33 -0.12 0.06 0.39 
45 Oncorhynchus keta BDM 25 -0.38 0.12 0.1 0.73 
46 Oncorhynchus keta BDM 25 -0.07 0.02 0.18 0.46 
47 Scomber japonicus SPA 36 0.49 0.35 0.41 0.4 
48 Gadus morhua SPA 35 0.7 0.53 0.6 0.62 
49 Gadus morhua SPA 28 0.75 0.7 0.73 0.89 
50 Gadus morhua SPA 27 0.29 0.19 0.39 0.77 
53 Gadus morhua SPA 31 -0.04 0.16 0.2 0.75 
54 Gadus morhua SPA 41 -0.27 -0.42 0.08 0.59 
55 Gadus morhua SPA 33 -0.21 -0.32 0.15 0.83 
56 Gadus morhua SPA 45 0.11 0.17 -0.19 0.42 
62 Gadus morhua SPA 33 -0.38 -0.23 -0.31 0.54 
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Table 3.1. List of stocks from the RAM Legacy database with 25 or more years of data. Cont. 

ID Species Method Length 
(yr) Linear Ricker Beverton 

Holt  EDM 

63 Gadus morhua DO 35 0.47 0.48 0.58 0.65 
64 Gadus morhua SPA 68 -0.1 0.07 -0.08 0.41 
65 Gadus morhua SPA 27 -0.62 -0.15 -0.28 0.54 
67 Gadus morhua SPA 43 0.24 0.37 0.33 0.59 
68 Gadus morhua SPA 45 -0.04 0.26 0.09 0.66 
69 Gadus morhua SPA 59 -0.28 -0.01 -0.1 0.47 
70 Gadus morhua SPA 30 0.16 0.25 0.26 0.43 
73 Gadus morhua SPA 27 0.12 0.05 -0.65 0.41 

77 Promoxis annularis and 
nigromaculatus DO 28 -0.22 -0.22 -0.55 0.52 

82 Coilia dussumieri SPA 26 0.84 0.78 0.68 0.61 

84 Melanogrammus 
aeglefinus SPA 38 0.56 0.47 0.7 0.67 

86 Melanogrammus 
aeglefinus SPA 26 -0.83 -0.6 -0.05 0.76 

87 Melanogrammus 
aeglefinus SPA 68 0.37 0.33 0.53 0.76 

88 Melanogrammus 
aeglefinus SPA 33 0.04 0.26 -0.06 0.64 

89 Melanogrammus 
aeglefinus SPA 28 -0.35 -0.27 -0.03 0.33 

90 Melanogrammus 
aeglefinus SPA 44 0.1 0.26 0.28 0.51 

91 Melanogrammus 
aeglefinus SPA 32 -0.12 -0.4 -0.21 0.88 

92 Melanogrammus 
aeglefinus SPA 66 -0.32 -0.4 -0.4 0.58 

94 Melanogrammus 
aeglefinus SPA 29 -0.39 -0.34 -0.58 0.65 

108 Clupea harengus SPA 38 -0.13 0.32 -0.06 0.58 
110 Clupea harengus SPA 65 0.66 0.51 0.44 0.75 
116 Clupea harengus DO 48 0.15 0.24 0.22 0.45 
122 Clupea harengus SPA 49 0.29 0.37 0.29 0.58 
124 Clupea harengus SPA 44 0.14 0.22 0.18 0.66 
125 Clupea harengus SPA 41 0.24 0.53 0.44 0.56 
126 Clupea harengus SPA 38 -0.32 0.16 -0.05 0.48 
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Table 3.1. List of stocks from the RAM Legacy database with 25 or more years of data. Cont. 

ID Species Method Length 
(yr) Linear Ricker Beverton 

Holt  EDM 

127 Clupea harengus SPA 38 -0.3 -0.29 -0.07 0.25 
128 Clupea harengus SPA 38 0.05 -0.1 0.31 0.6 
129 Clupea harengus SPA 38 -0.45 -0.13 -0.32 0.74 
135 Clupea harengus SPA 38 -0.04 0.07 0.24 0.64 
136 Clupea harengus SPA 38 -0.35 -0.34 -0.46 0.61 
140 Penaeus orientalis SPA 26 -0.03 0.11 0.11 0.16 
142 Salvelinus namaycush SPA 40 0.78 0.8 0.76 0.91 
143 Scomber scombrus DO 36 0.54 0.64 0.61 0.46 

144 Trachurus 
mediterraneus SPA 45 -0.16 -0.16 -0.04 0.67 

148 Brevoortia tyrannus SPA 40 0.05 0.37 0.2 0.71 
149 Brevoortia patronus SPA 26 0.36 0.38 0.4 0.67 
153 Sebastes alutus SPA 30 -0.62 -0.53 0.03 0.56 
154 Sebastes alutus SPA 31 0.23 0.07 0.4 0.66 
155 Sebastes alutus SPA 26 -0.81 -0.62 -0.03 0.79 
156 Sebastes alutus SPA 29 0.43 0.46 0.52 0.42 
158 Esox lucius SPA 35 0.15 0.22 0.16 0.33 
159 Esox lucius SPA 35 -0.09 0.01 -0.03 0.43 

160 Oncorhynchus 
gorbuscha BDM 25 0.6 0.63 0.63 0.51 

189 Oncorhynchus 
gorbuscha BDM 25 0.79 0.8 0.81 0.72 

193 Oncorhynchus 
gorbuscha BDM 27 0.1 -0.18 0.33 0.38 

194 Oncorhynchus 
gorbuscha BDM 25 0.15 0.15 0 0.28 

197 Oncorhynchus 
gorbuscha BDM 42 0.1 0.26 0.25 0.65 

200 Oncorhynchus 
gorbuscha BDM 34 0.48 0.54 0.6 0.57 

202 Oncorhynchus 
gorbuscha BDM 27 0.52 0.55 0.6 0.72 

203 Oncorhynchus 
gorbuscha BDM 27 0.25 0.24 0.33 0.67 

207 Oncorhynchus 
gorbuscha BDM 27 -0.66 -0.11 -0.05 0.3 
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Table 3.1. List of stocks from the RAM Legacy database with 25 or more years of data. Cont. 

ID Species Method Length 
(yr) Linear Ricker Beverton 

Holt  EDM 

208 Oncorhynchus 
gorbuscha BDM 34 0.05 -0.01 0.31 0.57 

211 Oncorhynchus 
gorbuscha BDM 27 0.04 0.07 0.47 0.55 

212 Oncorhynchus 
gorbuscha BDM 27 0.48 0.51 0.56 0.85 

217 Pleuronectes platessa SPA 28 -0.17 -0.39 -0.22 0.62 
219 Pleuronectes platessa SPA 35 0.03 0.08 -0.37 0.48 
221 Pollachius virens SPA 32 -0.26 -0.12 -0.07 0.52 
222 Pollachius virens SPA 32 0.2 0.2 -0.38 0.55 
223 Pollachius virens SPA 32 0.12 0.14 0.35 0.5 
224 Pollachius virens SPA 33 0.21 0.27 0.55 0.55 
225 Pollachius virens SPA 30 -0.01 0.27 0.24 0.73 
233 Anoplopoma fimbria SPA 25 0.01 0.07 0.19 0.54 
236 Sardinops sagax SPA 31 0.05 0.13 0.13 0.8 
239 Sardinops sagax SPA 31 0.7 0.73 0.71 0.78 
245 Thunnus maccoyii SPA 45 0.75 0.77 0.77 0.91 
249 Merluccius bilinearis SPA 33 0.83 0.82 0.85 0.95 
250 Merluccius bilinearis SPA 33 0.53 0.59 0.57 0.92 
251 Oncorhynchus nerka BDM 39 0.86 0.86 0.88 0.77 
252 Oncorhynchus nerka BDM 43 0.59 0.68 0.66 0.82 
253 Oncorhynchus nerka BDM 39 0.35 0.35 0.42 0.57 
254 Oncorhynchus nerka BDM 43 0.43 0.63 0.55 0.55 
255 Oncorhynchus nerka BDM 38 0.27 0.28 0.25 0.61 
256 Oncorhynchus nerka BDM 33 0.39 -0.28 0.46 0.56 
257 Oncorhynchus nerka BDM 45 0.75 0.8 0.8 0.66 
258 Oncorhynchus nerka BDM 38 -0.34 0.14 -0.19 0.75 
259 Oncorhynchus nerka BDM 39 0.63 0.68 0.72 0.54 
260 Oncorhynchus nerka BDM 43 0.69 0.76 0.7 0.61 
262 Oncorhynchus nerka BDM 32 0.55 0.53 0.69 0.35 
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Table 3.1. List of stocks from the RAM Legacy database with 25 or more years of data. Cont. 

ID Species Method Length 
(yr) Linear Ricker Beverton 

Holt  EDM 

264 Oncorhynchus nerka BDM 39 0.61 0.6 0.62 0.76 
267 Oncorhynchus nerka BDM 39 0.77 0.74 0.9 0.97 
268 Oncorhynchus nerka BDM 43 0.94 0.91 0.91 0.85 
270 Oncorhynchus nerka BDM 39 -0.01 0.21 -0.05 0.63 
271 Oncorhynchus nerka BDM 62 0.35 0.38 0.28 0.45 
274 Oncorhynchus nerka BDM 38 0.67 0.67 0.69 0.66 
275 Oncorhynchus nerka BDM 38 0.69 0.8 0.76 0.56 
276 Oncorhynchus nerka BDM 42 0.81 0.85 0.78 0.51 
277 Oncorhynchus nerka BDM 32 0.65 0.49 0.67 0.54 
279 Oncorhynchus nerka BDM 38 0.7 0.58 0.74 0.74 
280 Oncorhynchus nerka DO 32 0.17 0.23 0.28 0.63 
283 Oncorhynchus nerka BDM 42 -0.07 -0.03 0.01 0.55 
284 Oncorhynchus nerka BDM 39 0.23 0.31 0.24 0.66 
285 Oncorhynchus nerka BDM 45 0.37 0.4 0.43 0.26 
287 Oncorhynchus nerka BDM 39 0.63 0.58 0.53 0.62 
288 Oncorhynchus nerka BDM 43 0.33 0.66 0.42 0.61 
289 Oncorhynchus nerka BDM 39 0.72 0.71 0.83 0.6 
290 Oncorhynchus nerka BDM 43 0.78 0.8 0.83 0.46 
293 Oncorhynchus nerka BDM 33 -0.12 0.12 0.14 0.41 
294 Oncorhynchus nerka BDM 30 0.19 -0.12 0.28 0.64 
296 Oncorhynchus nerka BDM 38 0.59 0.63 0.59 0.52 
298 Oncorhynchus nerka BDM 39 0.78 0.04 0.82 0.67 
299 Oncorhynchus nerka BDM 43 0.43 0.5 0.44 0.66 
301 Oncorhynchus nerka BDM 40 -0.08 0.18 0.05 0.5 
305 Solea vulgaris SPA 36 -0.27 -0.19 -0.29 0.59 
305 Solea vulgaris SPA 36 -0.27 -0.19 -0.29 0.59 
311 Sprattus sprattus SPA 43 0.55 0.55 0.54 0.64 
323 Merlangius merlangus SPA 27 -0.34 -0.3 -0.18 0.49 
324 Merlangius merlangus SPA 74 -0.37 -0.35 -0.29 0.28 
326 Merlangius merlangus SPA 27 -0.69 -0.04 -0.05 0.73 
331 Thunnus albacares SPA 25 0.28 0.05 0.39 0.7 
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Figures 

 

Figure 3.1. Comparison of predictability of the Spawner-Recruit relationships using three 
standard recruitment models (Linear, Ricker and Beverton-Holt) and S-maps across datasets 
obtained with three approaches: Biomass Dynamic Models – BDM, Sequential Population 
Analysis – SPA, and Direct Observations – DO. The y-axis represents the average predictability 
as measured by the correlation coefficient between 25 observed data points and their 
corresponding modeled predictions. The error bars represent the standard error.  
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Abstract 

The high variability of small pelagic fisheries is regularly attributed by fisheries 

managers to environmental processes, such as El Niño Southern Oscillation and the Pacific 

Decadal Oscillation, often neglecting the role that fisheries play themselves. Here, we use a 

nonparametric, nonlinear modeling approach (Empirical Dynamics Modeling) to test whether we 

can identify the separate effects of fishing pressure and environmental variability on the 

dynamics exhibited by the Pacific sardine fishery in the Gulf of California, Mexico. Our results 

show that the effect of fishing pressure is not only detectable but comparable to that of 

environmental variability. Even further, when trying to predict total catches two years into the 

future, the best models are those that account for both fishing effort and environmental indices 

together. Even though there have been reports on the mechanisms that explain the increased 

variability of exploited populations, our work is the first to use this knowledge to predict yields 

from multiple years in advance. We think that our models can be adapted to develop harvesting 

strategies based on predictions of high and low fisheries productivity, giving a chance to the fleet 

to reduce the fishing effort in time to prevent the associated economic and social loses. 

 

Introduction 

Small pelagic fish, such as sardines and anchovies, support the largest fisheries in the 

world, contributing with up to 37% of global landings by weight 1,2. However, these fisheries are 

subject to large fluctuations, with total landings often varying by two orders of magnitude over 

just a couple of years 2–4. This high variability is often attributed to stochastic processes and 

environmental drivers, such as temperature, wind patterns and primary productivity 4–6; often 

neglecting the impacts of fishing activities on the population dynamics of the target resources 7. 
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As a result, fisheries management for these species is not always effective, as it often relies 

exclusively on highly uncertain climate models 8. 

Recent work has proposed that fishing activities might affect forage fish population 

dynamics and increase their variability by two main mechanisms. (1) Given that fishing is size-

selective, it truncates the age structure, making the population less capable of recovering from 

extreme environmental events 9. And (2), higher mortality rates generate nonlinear instabilities 

that change the intrinsic population dynamics 1,9. Still, these two effects are rarely incorporated 

into the models used to manage small-pelagics’ fisheries 10. Here, we use a case study of the 

Pacific sardine (Sardinops sagax) in the Gulf of California, Mexico (Fig. 4.1), to ask the 

following questions. How does the effect of fishing activities compare to that of environmental 

variability on the species’ population dynamics and how can we use this information to make 

better predictions that inform management?  

The Gulf of California, Mexico, is one of the most productive and biodiverse marine 

ecoregions in the world 5, contributing approximately 50% of Mexico’s total fisheries landings. 

Small pelagic fish captured in the Gulf of California alone contribute up to 21% of the total 

national reports by weight, with the Pacific sardine being the dominant species caught during 

many years 11. This fishery developed in the late 1960s in the very productive waters around the 

city of Guaymas, which to date is still the largest port for sardine fisheries in Mexico 12. In 1991, 

the fishery experienced its first collapse, going from total annual landings of almost 300,000 

tonnes to less than 10,000 tonnes in a period of two years 2,12 (Fig. 4.2a). After this first collapse, 

the fishery has undergone three more collapses with a periodicity of between 3-8 years, and 

which clearly show a boom and bust dynamic behavior (Fig. 4.2a). 
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Even though there is evidence suggesting that fisheries can have an impact in the 

population dynamics of Pacific sardine in the Gulf of California 2,11, as in other regions of the 

world, fisheries managers in the region have assumed that the boom and bust cycles are primarily 

driven by large-scale environmental variability 3,13,14. In particular, by the Pacific Decadal 

Oscillation (PDO) and El Niño Southern Oscillation (ENSO) 3,13,14. As such, fishing is often 

assumed to have no effect on the observed dynamics and it has been recommended that to deal 

with the unpredictable environmental conditions, it is preferable to set a constant harvest rate 

(HR = 0.25 – 0.29) relative to the total available biomass 10,15. In this work we use a non-

parametric approach known as Empirical Dynamics Modelling (EDM) 16,17 to characterize and 

quantify the causal influence of environmental variability and fishing pressure on the population 

dynamics of the Pacific sardine in the Gulf of California. We then construct a model to test 

whether or not incorporating explicit estimates of fishing effects improves the predictability of 

fisheries yields.  

 

Materials and methods 

Our analysis is divided into three components: (1) a multivariate linear analysis to test for 

the direct and lagged correlations between environmental variables and Pacific sardine’s 

catch/abundance time series, (2) a non-parametric analysis by using Empirical Dynamics 

Modelling (EDM) to test for the causal influence of environmental variables and fishing effort on 

catch/abundance time series, and (3) a simple Markovian model calibrated with literature-based 

population parameters to test the relationships found in the previous analyses. 
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Data collection 

We collected fisheries dependent data from the Sonoran small pelagic fishing fleet based 

at the ports of Guaymas and Yavaros, Sonora, Mexico (Fig. 4.1). The data span from 1969 to 

2015, and include total catch, effort in number of trips and catch per unit effort (CPUE). Most 

data were obtained from published material 11,12 and updated with data extracted from the annual 

reports of the Centro Regional de Investigacion Pesquera (CRIP) in Guaymas. We present the 

time series for each of these three variables in Fig. 4.2. 

We also collected published fisheries independent data to estimate total abundance of 

Pacific sardines in the region. These data are based on the proportion of Pacific sardine in the 

diet of Elegant Terns (Thalasseus elegans) in the Midriff Island Region (Fig. 4.1) from 1985 to 

2013 11. Given the shorter time span of this time series, we tested whether the CPUE could be a 

valid proxy for abundance as estimated by the birds’ stomach contents. We found a significant 

linear relationship between these variables (Fig. 4.S4a, R2 = 0.34, P < 0.01). As previous works 

suggest, we also tested for an exponential relationship that can account for hyperstability effects, 

however, the achieved correlation was much lower when compared to the linear model (R2 = 

0.14, P < 0.01). We also found a strong linear relationship between the derivatives of CPUE and 

the proportion of sardines in the diet of birds (Fig. 4.S4b, R2 = 0.33, P < 0.01). For all posterior 

analyses, we considered CPUE as a valid proxy for Pacific sardine’s abundance. 

Finally, we collected the annual average for different environmental indices spanning the 

time range from 1951 to 2015. The collected variables were the El Niño Southern Oscillation 

Index (SOI) 18, the Pacific Decadal Oscillation (PDO) index 19 and an upwelling index derived 

from wind measurements at the mouth of the Gulf of California (21˚N, 107˚W), which was the 

closest monitoring station that had data for the whole time span 20. The upwelling index was 
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specific for the spring season, often associated to the spawning period for Pacific sardine 21. Fig. 

4.2a shows in red and blue the strong El Niño and la Niña events respectively. 

For all subsequent analyses, we consider total catch, ∆catch and CPUE as the dependent 

variables; while effort, ENSO, PDO and the upwelling index were considered as the explanatory 

variables. All variables were normalized by subtracting the mean and dividing by their standard 

deviation prior to every analysis. 

 

Multivariate linear analysis 

We evaluated the linear correlation and the lagged linear correlation between the total 

catch and the explanatory variables as presented in the correlograms in Fig. 4.S1. We selected 

the lag with the highest predictability for each explanatory variable to construct a multivariate 

model. The optimal lags for each variable were used in posterior analyses that considered the 

response time of each variable to make predictions. 

In order to test the predictability of the multivariate model, we ran a leave-one-out cross 

validation. To do it, we excluded one single time point at a time and built the multivariate model 

with the rest of the time points. Then, we predicted the excluded total catch value. Finally, we 

performed a linear regression between the predicted and observed values. We report the Pearson 

correlation coefficient (ρ) as the predictability of this model. 

 

Empirical Dynamics Modelling (EDM) 

EDM is a set of methods based on the idea that a time series is an observation of a state-

dependent dynamic system. For example, if it was possible to identify all the variables that 
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interact in one system, one could plot each of them in an axis of an n-variables dimensional 

space. Then, by connecting the dots in a sequential order, they would reveal trajectories that form 

a geometric shape or “attractor.” Such attractors can be used to predict future states of the system 

by following the trajectories of points nearby to the point of interest in the n-dimensional space 

22,23.  

In reality, however, it is difficult to measure or even to know all the variables that interact 

in an ecosystem. Thus, it is impossible to reconstruct the original attractor. However, Takens’ 

theorem states that it is possible to recover information about a whole system by using only one 

time series, given that this one was influenced by every other variable in the system and thus 

recorded information about all of them 24. Assuming that the collected time series is 𝑥", one can 

reconstruct a “shadow” version of the original attractor by using lagged time series (eg. 𝑥".4, 

𝑥".>) as proxies for other unknown time series of the same system. The principles and mechanics 

of EDM and Takens’ theorem are further explained in a series of short animations 

(http://tinyurl.com/EDM-intro).  

 

Simplex projection 

Simplex projection is an EDM technique that evaluates the one-step-ahead predictive 

skill for each individual time series. It does it by constructing a shadow manifold of the system 

by using an individual time series with E dimensions and E-1 time lags. We tested the 

predictability achieved by using E values spanning from 1 to 10. As with the multivariate model, 

predictability was measured by performing a leave-one-out cross validation. The results are 

presented in Fig. 4.S2. For posterior EDM analyses, we use the E value that achieved the highest 

predictability from simplex projection for each variable. 
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Convergent Cross-Mapping (CCM) 

CCM is a technique based on the concept that if two time series come from the same 

dynamic system, their shadow manifolds will share topological properties, and if so, they could 

be identified to be causally coupled 17. For example, if the variables x and y share a common 

attractor, one would expect that nearby points in the attractor reconstructed by just using x, 

would map to points that would be nearby in the attractor reconstructed by just using y, and vice 

versa. Additionally, CCM is able to identify directional influence, as has been demonstrated for 

Pacific sardine and Northern anchovy in the California Current System, both being causally 

driven by Sea Surface Temperature, but not influencing each other, nor temperature 17,23. In this 

study, we used CCM to identify if any of the explanatory variables (effort, SOI, PDO or 

upwelling) had a causal influence on the observed time series of total catch, its derivative, or 

CPUE. When testing whether variable x is causally driven by y, we use the embedding 

dimension (E) for x that was obtained in the simplex analysis and as reported in Fig. 4.S2. We 

report the predictability achieved by performing a leave-one-out cross-validation and report the 

Pearson correlation coefficient (ρ) between predictions and observations. In Fig. 4.S3 we only 

present the significant relationships.  

 

Multivariate predictive EDM and scenario exploration 

The predictability of a simplex projection can be improved by substituting some of the 

lagged time series in an attractor for the proper explanatory variable 22,23,25. For example, if we 

were to predict total catch and we knew that upwelling had a strong causal influence on it, 

instead of reconstructing a manifold by using three-time lags of total catch, we would use two 

and substitute the third one for the upwelling time series. Here, we first reconstructed the 
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attractor for total catch and CPUE with an E = 3. Then, we used different combinations of total 

catch/CPUE and the explanatory time series with lags between 0 and 4 to reconstruct new 

attractors and predict total catch and CPUE 2-years into the future. In Table 4.1 and Table 4.2, 

we present the five models with the highest predictability along with the univariate model 

predictability. The univariate model, highlighted in grey, represents the attractor that was solely 

reconstructed with catch or CPUE. For the rest of the models, they were constructed by 

substituting a lagged time series by the indicated variable with the corresponding time lag. We 

report the predictability and mean absolute error (m.a.e.) of the correlation between observed and 

predicted values by performing a leave-one-out cross validation. Given that all the models use 

three variables to make predictions, we considered them to be on an even ground, allowing the 

use of predictability as a valid metric to select for the best models. 

Additionally, we evaluated the effect that increasing effort and upwelling (the two 

variables that were identified to have the strongest influence in the CCM analysis) would have in 

the dynamic behavior of total catch in subsequent years. To do so, we increased effort and 

upwelling at each time step by 5% of their standard deviation 25. Then, we predicted what the 

total catch value would be two years ahead in the case of effort, and four years ahead in the case 

of upwelling, as these were demonstrated to be the time lags for which each variable had the 

strongest signal. This approach allows us not only to quantify the magnitude of the effect that 

increasing a variable would have, but also to know the direction. Additionally, it allows us to 

evaluate how different starting conditions (e.g. a certain level of initial effort) will evolve with 

the same perturbation. Fig. 4.3 presents the results by using the initial value for the explanatory 

variable in the x-axis and the coefficient (∆catch) / (∆variable) in the y-axis. We also calculated 
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the percentage that these changes would represent when compared to their original values as 

(∆catch%) / (∆variable%) (Fig. 4.S5). 

 

Markovian model 

In order to test the findings from the EDM analysis that effort and environmental 

variability could both have an influence in future catch, we performed a simple Markovian 

simulation. Given that the population size was drawn to very low levels during the first collapse, 

we assumed that the population experienced no density dependent processes and grew in an 

exponential fashion. We performed an extensive literature review to obtain a stable size 

structure, mortality and fecundity rates for the Pacific sardine 10,12,13,26. These parameters are 

reported in Table 4.S1. Then, we ran a Markovian simulation for 30-time steps by applying 

different fishing rates (F), fishing behavior, and environmental variability parameters. The 

fishing behavior parameter reproduced a myopic behavior, which refers to fishers expecting to 

catch a similar amount to what they caught last year, as has been reported for other fisheries 

around the world 27,28. Therefore, after a good year, they would expect a good catch. If this was 

not the case, they would increase fishing effort by trying to compensate for the initial loses. In 

our model, they elevate the effort by 50%. We named this parameter Adjust. On the other hand, 

we simulated periodic environmental variability by incorporating a sinusoidal function with 

approximately the SOI periodicity. This function was then multiplied by the natural mortality for 

each age-class. We named the parameter that turns on or off these dynamics as Env. We ran five 

simulations as shown in Fig. 4.4 and described below: 

i. Low fishing mortality (F = 0.2), No Adjust, No Env 

ii. Low fishing mortality (F = 0.2), No Adjust, Yes Env 
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iii. Medium fishing mortality (F = 0.4), No Adjust, No Env 

iv. Medium fishing mortality (F = 0.4), Yes Adjust, No Env 

v. Medium fishing mortality (F = 0.4), Yes Adjust, Yes Env 

 

All the results were normalized to the maximum catch value for each scenario to compare 

the dynamic behavior of the four models in the same scale from 0 to 1. Scenario five was run 

several times by changing the period (3 to 7 years) and phase (-180˚ to 180˚) of the sinusoidal 

function that controlled environmental variability and hence natural mortality to test for the 

robustness of our results (Fig. 4.S6). The scenario five in Fig. 4.4 reports the results from the 

simulation with period = 7 years and phase = 0˚. 

 

Results 

Multivariate linear regression  

We found a significant correlation between each of the explanatory variables and total 

catch, although for most of them, it was only after taking into account time lags. We found that 

fishing effort was correlated with total catch at 0-, 1- and marginally at 2-time steps. The SOI 

was only significantly and negatively correlated at 4-time steps, while the PDO was positively 

correlated at 2-, 3- and 4-time steps. Finally, the upwelling index was positively correlated from 

4-, through 10-time steps. Given the very high correlation between catch and effort at no time 

lag, we only used the largest possible time lag (2) for subsequent analyses in an attempt to 

decouple the immediate effects of fishing harder to catch more. For the rest of the variables, we 

used the smallest significant lag. Thus, the selected time lags were 2, 4, 2 and 4 for effort, SOI, 
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PDO and upwelling respectively. By using these time lags, the best multiple linear regression 

model selected upwelling and the SOI as the two variables that together could explain the most 

observed variability in total catch. The achieved R2 was equal to 0.28, while the leave-one-out 

cross validation predictability was equal to 0.21.  

 

EDM predictability and scenario exploration 

We obtained the embedding dimension values (E) for each variable through simplex 

projection (Fig. 4.S2). The values for catch, ∆catch and CPUE were 3, 6 and 4 respectively. For 

the explanatory variables, the values for effort, SOI, PDO and upwelling were 6, 6, 6, and 3 

respectively. These values were subsequently used in each analysis where the selected variable 

was being predicted from another time series. 

We performed a CCM analysis to detect whether the explanatory variables had a causal 

influence on catch, ∆catch and CPUE (Fig. 4.S3). We found a strong effect of effort on total 

catch and CPUE, as well as a strong effect of ∆catch in current effort. This means that the 

comparison between this year and last year’s catch influences effort, as fishers will try to make 

as much or more profit as last year. The SOI showed no causal effect on any of the fishery 

variables. The PDO and the upwelling index showed a weak causal influence on ∆catch and a 

stronger influence on total catch and CPUE, comparable to the effect of fishing effort. 

We used an E = 3 (derived from Fig. 4.S2) to build a predictive model for total catch and 

CPUE two years into the future. We found that the univariate model achieved a predictability 

equal to 0.51, with m.a.e. equal to 0.69 (Table 4.1) for total catch and equal to 0.41 for CPUE 

(Table 4.2). However, when incorporating the explanatory variables at different time lags, the 
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best five models ranged in predictability between 0.81 to 0.85 for total catch and 0.77 to 0.80 for 

CPUE. In the case of total catch, the best model (ρ = 0.85, m.a.e. = 0.45) used total catch with a 

lag of 2 years, the PDO with a lag of 1 year, and effort with a lag of 4 years. The next two best 

models used only effort and upwelling time lags (Table 4.1). In the case of CPUE, the best 

model (ρ = 0.80, m.a.e. = 0.45) used SOI with lag 1, upwelling with lag 4 and effort with lag 4. 

The next two best models used primarily upwelling lags (Table 4.2). 

Given that effort and upwelling showed to be the most important variables to improve 

predictability, thus being the ones with the strongest causal influence, we performed scenario 

explorations to discern their effects on total catch. The scenario explorations showed that when 

the starting effort condition is low, increasing effort would result in higher yields 2 years into the 

future (Fig. 4.3a). However, as the starting effort increases, increasing effort would eventually 

reduce total catch, probably due to the overexploitation of the resource. On the other hand, when 

the starting upwelling condition is low, increasing upwelling will result in higher yields 4 years 

into the future (Fig. 4.3b). However, as the starting upwelling condition increases, the effect of 

increased upwelling will remain positive, although reaching an asymptote for the highest values. 

When we analyzed the changes as a percentage of the starting value, we found similar trends, 

with changes in catch between -5% and 5% for increasing effort and between 0% and 2.5% for 

increasing upwelling (Fig. 4.S5). 

 

Markovian model 

The Markovian model showed that for the scenario when fishing effort was low (F = 0.2) 

and with the parameters Adjust and Env off, the total catch experienced an indefinite exponential 

growth (Fig. 4.4). On the other hand, when fishing effort was kept low, Adjust off, but Env on, 
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the total catch experienced cycles but still with an increasing trend. When the fishing pressure 

was increased (F = 0.4), and the parameters Adjust and Env were off, the total catch showed 

irregularities in the exponential growth. Approximately every 6-8 years the total catch reached a 

semi-stable point, after which it increased in an almost exponential fashion. When keeping 

fishing pressure up (F = 0.4), and turning on the Adjust parameter, the total catch started 

experiencing boom and bust cycles with a periodicity of approximately 5-6 years. These cycles 

also got more extreme with each iteration, with maximums increasing at a faster rate than 

minimums. Finally, when both, Adjust and Env were turned on, the total catch experienced more 

pronounced boom and bust cycles and higher variability, even leading to total catch decreases 

after a couple of cycles. 

 

Discussions 

As in previous reports, our findings show that environmental variability, especially 

upwelling, has a detectable effect on the Pacific sardine’s population dynamics in the Gulf of 

California 12,13. In previous work, however, this variability has been primarily associated to long-

term environmental phenomena, such as El Niño 13,14. Even though it is possible to appreciate 

some degree of correlation between the fishery collapses and El Niño events in 1987/1988, 

1991/1992 and 1997/1998 (Fig. 4.2a), it is also clear that for the following two collapses, that 

was not the case. Instead, it has been suggested that in the last decade, the Gulf of California Sea 

Surface Temperature (SST) anomalies have decoupled from El Niño events, with as many as five 

warm decoupled anomalies that occurred between 2007-201629. The mechanisms by which El 

Niño affects the oceanographic local conditions in the Gulf of California are poorly understood 

to date 30. Recent research suggests that while the Southern Gulf might be generally forced by 
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the Eastern Tropical Pacific and possibly by El Niño, the region closer to Guaymas, and thus to 

the sardine’s spawning grounds, is forced primarily by tidal mixing in the Midriff Islands Region 

5,30. Even further, researchers in the region have not been able to find conclusive evidence 

regarding El Niño controlling primary productivity patterns 5,31,32, thus using a metric of wind-

driven upwelling is a closer proxy to estimating primary production and food availability. 

The Markovian model also supports the hypothesis that environmental variability can 

induce a cyclical dynamic behavior in the population of Pacific sardine in the Gulf of California 

(Fig. 4.4), even at low fishing pressure levels. However, it can also be appreciated that elevated 

fishing effort by itself can induce boom and bust cycles, becoming more evident when fishers 

have a myopic behavior 27,28. Additionally, when fishing effort, myopic expectations and 

environmental variability act in synchrony, the boom and bust cycles become much more 

pronounced, show up earlier, and lead to a permanent collapse. 

These results were also verified by our empirical analyses, which showed that fisheries 

not only have a detectable effect on the sardine’s population, but even comparable to that of 

environmental variability. Through our EDM analyses, we identified that fishing activities have a 

causal influence in total catch, ∆catch and CPUE (Fig. 4.S3), something that had not been 

systematically demonstrated for this fishery. We also found that ∆catch influences the amount of 

effort in the current season. This supports the idea that fishers in the region follow a myopic 

behavior (our Adjust parameter in the Markovian model).  

Through an empirical simulation, we were able to show the isolated effects that 

increasing fishing effort would have in total catch 2 years into the future, or that increasing 

upwelling would have 4 years into the future.  Our results show an expected behavior in which 

increasing fishing effort when effort is originally low, yields more catch. However, increasing 
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effort when effort is already high, provokes a fishery collapse and thus the total catch decreases 

in the future (Fig. 4.3a). Conversely, increasing upwelling always results in increased total catch 

(Fig. 4.3b).  

The more policy-relevant question, however, is whether or not incorporating fishing 

effort in our analyses could lead to better predictability of the fishery. This could be useful in 

order to enforce fishing regulations that take fisheries’ effects into consideration, rather than 

assuming that stochastic environmental variability is the only driver 10,33. Based on the premise 

of unpredictability, current management strategies have set a constant harvest quota, which 

implicitly estimates that the prediction each year should be equal to the mean total catch. Such 

assumption, unfortunately, leads to no real predictability (Fig. 4.S7). In contrast, some authors 

have suggested that there is a linear correlation between environmental variability and total 

landings 13. To test this hypothesis, we used the most optimized version of a multivariate linear 

model and estimated its predictability, which was ρ = 0.21 (Fig. 4.S7). Even though this 

prediction is better, it is still not enough to rely on it when designing a management scheme. 

Through our empirical dynamic framework, we demonstrated that incorporating fishing effort 

and environmental variability into a dynamic model can yield to predictions of total catch with ρ 

= 0.85 (Table 4.1, Fig. 4.S7). We also demonstrated that CPUE could be predicted with ρ = 0.80 

(Table 4.2). Thus, not only it is necessary to identify and use the proper explanatory variables, 

such as catch and effort, but also to use a modelling scheme that does not rely on predefined 

assumptions (e.g. functional forms) to make predictions about future states of the system. 

In summary, our results can be used to predict total catch and CPUE up to two years 

ahead, giving the fleet the opportunity to adapt by either, reducing the fleet’s size, or targeting 

other species 21, thus reducing their economic risk. Additionally, these strategies will not only 
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lead to the recovery of the Pacific sardine population in periods of lower abundance but can also 

trickle down to other parts of the marine ecosystem that heavily rely on these resources 14,34,35. 
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Figures 

 

 

Figure 4.1. Map of the Gulf of California showing the geographical location of Guaymas and 
Yavaros, where the Pacific sardine fishing fleet is based. The map also highlights the Midriff 
Island Region, where the bird crop content samples were taken from. 
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Figure 4.2. Pacific sardine fisheries time series in the Gulf of California from the Sonora’s fleet. 
(A) Total catch in tonnes. The shaded areas represent strong El Niño (red) and La Niña (blue) 
events, which are defined as five consecutive overlapping 3-month periods at or above 1.5˚C 
anomaly. (B) Catch per unit effort (CPUE) in tonnes per trip (dashed blue line) and effort in total 
number of trips (solid black line). The red dotted lines indicate the first fishery collapse in 
1991/1992. Data were obtained from published sources and updated with data extracted from the 
annual reports of the Centro Regional de Investigacion Pesquera (CRIP) in Guaymas. 
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Figure 4.3. Scenario exploration for the effects of increased (A) effort and (B) upwelling in total 
catch. The x-axis represents the starting values for effort and upwelling in a normalized scale. 
The y-axis represents the effect that increasing a normalized unit of effort/upwelling would have 
on catch in future years (two years for effort and four years for upwelling). 
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Figure 4.4. Simulations of total annual catch as a result of the simple Markovian model with 
varying fishing effort (F), fishers’ myopic behavior (Adjust), and cyclical environmental 
variability that affects natural mortality (Env). It is observed that when effort is high and fishers 
behave in a myopic way, the total catch fluctuates with a period of approximately five years. The 
other two scenarios did not present oscillations. The results are scaled to the maximum value for 
each time series. 
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Tables 

Table 4.1. Top 5 nonlinear empirical models to predict total catch two years into the future. The 
univariate model refers to using only the total catch time series and lags of it to build the 
attractor. For each model, the indicated explanatory variables substitute one time series of lagged 
total catch to build a new manifold. All models were done with an E = 3 as this was the 
identified embedding dimension to predict total catch. Models are sorted from more explanatory 
to less explanatory power.  

 

Model Var1 Var2 Var3 ρ m.a.e. 
C2P1E4 Catch lag 2 PDO lag 1 Effort lag 4 0.85 0.45 
U1U4E4 Upw lag 1 Upw lag 4 Effort lag 4 0.83 0.46 
E2U4E4 Effort lag 2 Upw lag 4 Effort lag 4 0.83 0.49 
C2U4U1 Catch lag 2 Upw lag 4 Upw lag 1 0.82 0.48 
S1U4U1 SOI lag 1 Upw lag 4 Upw lag 1 0.81 0.45 
Univariate Catch lag 0 Catch lag 1 Catch lag 2 0.51 0.69 
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Table 4.2. Top 5 nonlinear empirical models to predict Catch Per Unit Effort (CPUE) two years 
into the future. The univariate model refers to using only the CPUE time series and lags of it to 
build the attractor. For each model, the indicated explanatory variables substitute one time series 
of lagged CPUE to build a new manifold. All models were done with an E = 3 as this was the 
identified embedding dimension to predict CPUE. Models are sorted from more explanatory to 
less explanatory power.  
 

Model Var1 Var2 Var3 ρ m.a.e. 
S1U4E4 SOI lag 1 Upw lag 4 Effort lag 4 0.80 0.45 
CP2U4U1 CPUE lag 2 Upw lag 4 Upw lag 1 0.79 0.47 
S1U4P1 SOI lag 1 Upw lag 4 PDO lag 1 0.78 0.50 
CP2P1E4 CPUE lag 2 PDO lag 1 Effort lag 4 0.77 0.50 
CP2S1E4 CPUE lag 2 SOI lag 1 Effort lag 4 0.77 0.52 
Univariate CPUE lag 0 CPUE lag 1 CPUE lag 2 0.41 0.70 
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Figure 4.S1. Correlograms between explanatory variables and total catch. The dashed lines 
indicate the significance thresholds. 
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Figure 4.S2. Nonlinearity tests for each of the time series that were used in this study. The first 
and third rows show the embedding dimension against predictability (ρ), the dots indicate the 
value of the maximum predictability. The second and fourth rows show the parameter theta 
against predictability. Time series for which increasing the value of theta increases the 
predictability, are classified as nonlinear.  
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Figure 4.S3. Convergent cross-mapping (CCM) between the three analyzed fishery variables 
(catch, ∆catch and CPUE) against the four explanatory variables (fishing effort, SOI, PDO and 
upwelling index). The red lines indicate a causal influence from the explanatory variable to the 
fishery. The black lines indicate a causal influence from the fishery variables to the explanatory 
variables. 
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Figure 4.S4. Correlation between Pacific abundance indices estimated from the fleet as Catch 
per Unit Effort (CPUE) and from the percentage of sardine present in the elegant terns’ 
(Thalasseus elegans) stomach content. (A) Direct correlation between the elegant terns’ diet 
percentage and CPUE. (B) Correlation between the annual difference between the elegant terns’ 
diet percentage and CPUE. The annual differences in abundance are considered to be proxies for 
recruitment. 
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Figure 4.S5.  Scenario exploration for the effects of increased (A) effort and (B) upwelling in 
total catch. The x-axis represents the starting values for effort and upwelling in a normalized 
scale. The y-axis represents the percentage change from the original value of catch that 
increasing a percentage unit of effort/upwelling would have in future years (two years for effort 
and four years for upwelling). In (A), two points were identified as outliers and excluded from 
the plot (Cook’s distance > 0.4). However, even if included, the relationship follows the same 
trend. 
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Figure 4.S6. Simulations of relative total catch from the Markovian model ran with fishing effort 
F=0.3, fishers’ myopic behavior (Adjust: ON) and with environmental variability (Env: ON). 
The environmental variability was incorporated by using a sinusoidal function that multiplies by 
the natural mortality rates. In order to test for the robustness of our findings to different 
environmental conditions, we varied the sinusoidal function’s period (3 to 7 years) and phase (-
180˚ to 180˚). The results represent the simulated total catch scaled from 0 to 1. The blue lines 
represent the average value for a particular period and across all the tried phases. The grey areas 
represent the bootstrapped 95% confidence intervals for the phases. It can be observed that the 
overall pattern is the same across different periods and phases. Total catch presents a cyclical 
behavior with increasing differences between the minimum and maximum values on each cycle. 
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Figure 4.S7. Total catch observations (black line) and predictions with three different models: 
(1) assuming the average catch is the prediction (red line), (2) using the best multivariate linear 
model with lags of environmental upwelling and ENSO (blue line), and (3) using the best 
multivariate EDM model (orange line). The presented predictability (ρ) estimates the correlation 
between observed and predicted values.  
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Table 4.S1. Leslie matrix describing the fecundity and survival rates for the simple Markovian 
model used to simulate fishing effects in the Pacific sardine population. 
 

age-
classes 

0 1 2 3 4 5 6 7 8 

0 0 0 0 0 100 100 200 350 350 
1 0.5 0 0 0 0 0 0 0 0 
2 0 0.6 0 0 0 0 0 0 0 
3 0 0 0.5 0 0 0 0 0 0 
4 0 0 0 0.5 0 0 0 0 0 
5 0 0 0 0 0.5 0 0 0 0 
6 0 0 0 0 0 0.5 0 0 0 
7 0 0 0 0 0 0 0.5 0 0 
8 0 0 0 0 0 0 0 0.3 0 
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Throughout the course of this dissertation, the main and most important thing that I have 

learned is that studying fisheries is not only about fish. Studying fisheries needs to consider the 

people that fish for a living, for recreation, or even for subsistence. As such, there is no simple or 

one-size-fits-all solution to manage a fishery. Every case will be as dependent on the health of 

the ecosystem, as on the cultural set of values and interactions between fishers. 

 

Traditional fisheries models make too many assumptions 

More than 50 years ago, brilliant fisheries scientists came up with models that could 

apparently estimate the sustainable rates of exploitation that a fishery could be subject to 1. 

Today, we know that such models offer a great point of entry, but are by no means enough to 

correctly manage a fishery 2. This is in part because these models often assume that exploited 

populations are stationary and at equilibrium, neglecting the effects of environmental variability 

and changing fishing behaviors. Recent years have seen a surge of arguments against traditional 

fisheries management tools, such as the concept of Maximum Sustainable Yield, which assumes 

that there is a constant rate of exploitation that can provide the maximum harvest for an 

indefinite amount of time 1,3. The truth is, however, that the concept of MSY is still broadly used 

by fisheries managers due to its simplicity and familiarity. As such, Chapter 1 focuses on 

understanding whether achieving MSY (assuming it could be perfectly achieved) could also 

provide enough economic benefits to maintain fishers in the Gulf of California above local 

poverty levels. Unfortunately, we found that this is not the case, and that fishers very often have 

to rely on alternative sources of income to fulfill their basic necessities 3. Therefore, I have aimed 

my research at trying new methods that could offer a viable solution to study fisheries and 

propose adaptive management schemes. 
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Throughout this dissertation, I decided to use Empirical Dynamics Modeling (EDM), a 

nonlinear and equation-free approach that uses empirical data to make predictions about a 

system. These techniques have been used to predict variables across different disciplines and 

problems, such as epidemics 4, red tides 5, solar flares 6, and also fisheries 7,8. Throughout my 

dissertation I focused on understanding the conditions under which these methods were the most 

effective. In Chapter 2, I demonstrated that these methods can be broadly applied to marine 

ecosystems, as long as there are long-term datasets available 9. I also focused on adapting these 

methods to study old and unsolved problems in fisheries sciences, such as the prediction of the 

number of recruits from estimates of the numbers of adults 10. Based on previous work that I had 

done with collaborators, we found that despite traditional fisheries knowledge, recruitment is 

indeed predictable from the number of adults. However, this predictability is dependent on life-

history traits, being short-lived species the most suitable to use with an EDM approach 11. In 

Chapter 3, I went further into understanding how different data sources could affect the 

usefulness of traditional fisheries models and demonstrated that EDM is always a useful 

alternative regardless of the data source. 

 

Lessons learned from a case study 

After realizing that EDM could be a viable approach to understand short-lived species 

population dynamics, I wondered whether it could also be used to propose management 

strategies that account for both, environmental variability and fishing impacts. As such, I decided 

to study the Pacific sardine fishery in the Gulf of California, Mexico, which has traditionally 

been managed from a perspective in which fishing effort is not considered to have any detectable 

effect. Additionally, local authorities consider that the population is primarily driven by 
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stochastic environmental processes, making future yields hard to predict 12. This has led fisheries 

scientist to suggest a constant fishing rate as a conservative measure to manage a highly variable 

fishery. In Chapter 4, I found that fishing effort has not only a detectable effect on this fishery, 

but that this effect is comparable to that of upwelling, the environmental variable with the 

strongest influence. This led me to calibrate a predictive model that is best improved when 

considering both effects simultaneously, and which will help me to produce a harvest policy that 

accounts for both effects. 

 

Future directions 

This dissertation contributes to a large body of literature that encompasses Ecosystems-

Based Management and Social Ecological Systems. However, through the use of EDM, it opens 

up the possibility to use a quantitative framework that accounts for social and ecological 

processes with the common currencies of predictability and causality. 

In this work, I was able to demonstrate that the methods that I have used could be 

especially useful for short-lived species, such as sardines, anchovies, herrings, among other 

small-pelagics. Still, there are a lot of research opportunities ahead to expand their use for other 

species, and even to combine them with other modern methods to develop a new toolkit for 

fisheries management that reflects all the knowledge that we have acquired since concepts like 

the Maximum Sustainable Yield were first proposed. 

In the near future I will keep working towards expanding this toolkit and getting closer to 

managers. I am optimistic that we can work together with managers and local communities to 

find suitable targets that make use of the best tools for each particular case and that respond to 

ecological and social needs. 
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