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Abstract

We present a highly performant, minimally supervised system
for the challenging task of unconstrained conceptual property
extraction (e.g.,banana is fruit, spoon used for eating). Our
technique employs lightly supervised support vector machines
to acquire promising features from our corpora (Wikipedia and
UKWAC) and uses those features to anchor the search for plau-
sible unconstrained relations in our corpus. We introduce a
novel backing-off method to find the most likely relation for
each concept/feature pair and produce a number of metrics
which act as potential indicators of true relations, training our
system using a stochastic search algorithm to find the opti-
mal reweighting of these metrics. We also introduce a human
semantic-similarity dataset; our output shows a strong corre-
lation with human similarity judgements. Both our gold stan-
dard comparison and direct human evaluation results improve
on those of previous approaches, with our human judgements
evaluation showing a significant 20 percentage point perfor-
mance increase.

Introduction
Recent theories in cognitive psychology attest a property-
based, distributed and componential model of conceptual
representation for concrete concepts (e.g.,elephant, screw-
driver) in the brain (Farah & McClelland, 1991; Tyler, Moss,
Durrant-Peatfield, & Levy, 2000; Randall, Moss, Rodd,
Greer, & Tyler, 2004). To explore the validity of these the-
ories, researchers employ real-world knowledge taken from
property norming studies where human volunteers are asked
to list properties for concepts. McRae, Cree, Seidenberg, and
McNorgan (2005) performed the largest such study to date,
collecting properties for over 500 concrete nouns (we call
these the ‘McRae norms’). Some example properties from
these norms can be found in Table 1.

However, as has been widely discussed (Murphy, 2002;
McRae et al., 2005), these studies suffer from a number of
weaknesses. For example, human participants often under-
report certain properties, even when they are facts presum-
ably known by the volunteers: though all participants are
likely to have known that animals have hearts,has heart is
not reported as a property for any animal concept. Similarly,
is animal is listed as a property of all animals in the norms
while breathes is only cited as a property forwhale. A re-
lated issue is inconsistency across similar concepts:has legs
is listed as a property ofleopard but is absent fortiger.

Our task is to automatically extract such conceptual repre-
sentations from large text corpora using NLP techniques. We

Table 1: Top ten properties from McRae norms with produc-
tion frequencies forknife andpig.

knife pig
is sharp 29 an animal 21
used for cutting 25 lives on farms 20
is dangerous 14 is pink 20
has a handle 14 has a tail 17
has a blade 11 has a curly tail 15
a weapon 11 has a snout 12
a utensil 9 eaten as bacon 11
made of steel 8 oinks 9
is serrated 8 is fat 8
found in kitchens 8 is dirty 8

hope to extract features for a given concept as well as those
features’ relationship with that concept; specifically, weaim
to extract properties in the form ofconcept relation feature
triples (e.g.,knife used for cutting, pig lives on farm), where
both the relation and the feature are unconstrained. Our task
is particularly challenging because while we seek a very spe-
cific ‘type’ of information (namely, conceptual properties),
there is an enormous amount of variation across the features
and relations of properties which exhibit such characteristics.

Previous approaches to our specific conceptual property
extraction task (Baroni, Murphy, Barbu, & Poesio, 2009; De-
vereux, Pilkington, Poibeau, & Korhonen, 2009; Kelly, De-
vereux, & Korhonen, 2010, 2012) have been successful to
varying degrees, however each has suffered from limitations.
Baroni et al., for example, did not explicitly offer relations
between their extracted concepts and features. The relations
extracted by the Devereux et al., system were rather unso-
phisticated, with the relation corresponding to the verb found
along the grammatical relation path linking concept to fea-
ture. The Kelly et al. (2010) system had reasonable perfor-
mance but was founded on manually constructed rules and
relied heavily on WordNet for its feature selection.

The system of Kelly et al. (2012) approached this task as
one of relation classification. The relations generated were
derived directly from its training set; it was therefore unable
to posit new or unseen relationships between its extracted
concepts and features. We believe their feature output, how-
ever, was promising and we extend and enhance their feature
extraction method in the first component of our own system.

Our system works by first employing a wealth of lexical,
syntactic and semantic machine-learning attributes to train a
support vector machine for feature-extraction. Unlike other
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approaches, we make heavy use of unlabelled training data,
rendering our system only very lightly supervised. Next, we
return to our unlabelled corpus to find relations for the ex-
tracted features, using a novel, probabilistically motivated
backing-off technique. In doing so, we are not constrained
by relations found in the McRae norms: our method allows
for the extraction ofanyrelation.

Data
Recoded norms
We used the same set of recoded norms employed by Kelly
et al. (2012) to train our system. This set, containing 510
concepts in total, is a coding of an anglicised version1 of the
McRae norms into a uniformconcept relation feature for-
mat, where eachfeature andconcept contain one word; the
relation slot can contain one or more words.

Corpora
We used Wikipedia and the more general UKWAC corpus
(Ferraresi, Zanchetta, Baroni, & Bernardini, 2008), contain-
ing English-language webpages, as corpora. Together these
offered a suitable balance of general and encyclopaedic text.
We used the C&C-parser (Clark & Curran, 2007) to extract
grammatical relations (GRs) and part of speech (POS) infor-
mation from sentences, allowing us to construct a GR-POS
graph for each. We trained our system on the corpora indi-
vidually and in combination.

Chunking
We also used chunked versions of our two corpora. Chunk-
ing is a technique which identifies the constituent blocks of
a sentence (verb phrase, noun phrase, prepositional phrase,
etc.). To chunk our corpora, we used the Apache OpenNLP
1.5 suite (Baldridge, 2005), using the Tokenizer, POS Tagger
and Chunker tools. The various components of the suite were
trained using models supplied with the OpenNLP package.

Method
We trained our system with 466 of the 510 concepts in the an-
glicised McRae set to fix our training parameters and evalu-
ated with the remaining 44 concepts, those in the ESSLLI ex-
pansion set (Baroni, Evert, & Lenci, 2008) (discussed later).

Feature derivation
In the first stage we focussed on extracting terms relevant to
our concepts in order to generate a promising set of features,
similar to those found in our norms.

Machine learning attributes Support vector machines
(SVMs) are non-probabilistic binary linear classifiers which
take a set of input data and predict, for each given input,
which of two possible classes it corresponds to. This works
by plotting training data points in a high-dimensional space
and separating them with a hyperplane which has the largest

1See Taylor, Devereux, Acres, Randall, and Tyler (2011) for de-
tails.

distance (or margin) to the nearest training data points of each
class. This plane is subsequently used to classify unseen data
points. SVMs can also be extended to the multi-class case.

We trained an SVM by constructing paths through each
sentence’s GR-POS graph from the concept to prospective
features and used the GR path labels, POS tags, relation verb
instances and path-length as machine learning attributes.We
augmented this (mostly syntactic) set of machine learning at-
tributes to incorporate additional semantic and lexical infor-
mation: bigrams and concept/feature clusters.2 The intuition
behind this was that similar types of concepts/features (as
exhibited by cluster membership) might also exhibit similar
types of relationships (e.g., ‘tool’ concepts andused for rela-
tions); the aim was to enable the SVM to detect the regulari-
ties that exist in the relationships between different semantic
classes of concepts and features.

Every possible attribute across the training set corre-
sponded to a distinct dimension of the vector space. The
majority of the co-ordinates of the training data points took
binary values depending on whether the dimension’s corre-
sponding attribute appeared in the path (except the clustering
and path-length attributes which took integer values). Each
training data point was labelled with its relation (or ‘class’).

Learning instances We applied the SVM Light software3

(Joachims, 1999) to our learning attributes to extract an SVM
score (the sum of absolute values of the decision function val-
ues, which can be interpreted as a measure of confidence of
the SVM in its classification) for each concept-feature pair.
We also calculated log-likelihood (LL) (Dunning, 1993) and
pointwise mutual information (PMI) (Church & Hanks, 1990)
statistics across the top 200 returned concept-feature pairs for
each concept.

Previous work has ignored a large amount of potentially
instructive training data by only examining sentences which
link entities explicitly found in the training set. However,
the use of ‘negative’ information could prove informative
and therefore we trained on all GR-POS paths linking one
of our concepts toany potential feature term4 in each sen-
tence. The size of our training set was 5.52 million instances
for the Wikipedia corpus and 20.07 million instances for the
UKWAC corpus.5 As we were unaware of the nature of the
relationship between these concept/feature terms, we labelled
these unknown training paths asunknownrel.

Our system was therefore only very lightly supervised:
only 6.8% of the UKWAC input and 8.7% of the Wikipedia
input to the system was labelled with relations drawn from
the McRae norms. Consequently, our SVM classified every

2We generated 50 and 150 clusters for the concepts and features
respectively using hierarchical clustering on WordNet.

3The multi-class implementation, SVM Multiclass (v. 2.20).
4Potential features were defined as all adjectives and singu-

lar/plural nouns in a sentence.
5Due to memory constraints associated with the very large num-

ber of training instances, we were only able to train our UKWAC
models on one third of the UKWAC corpus; we selected every third
learning pattern for training.
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concept/feature pair into theunknownrel relation class. We
therefore ignored the relation output from this stage of the
system, instead using the top 200 returned concept/feature
pairs ranked by their SVM scores as input to the next stage.
In this way, we were interpreting a higher-rated SVM score
as a proxy for the likelihood that a feature would havesome
kind of relationship with the concept at hand.

Relation extraction

The underlying hypothesis of our relation extraction stage
was that if we found sequences of chunks in our corpus sen-
tences which were anchored at each end by a knownconcept
andfeature (from the previous stage), and those chunks’ la-
bels matched the labels of our chunked property norms, then
we could use the surface text of the chunk(s) between the an-
chors as therelation in ourconcept relation feature format.

Chunk pattern selection To decide which patterns of
chunks were likely to be indicative of property norm rela-
tions, we turned to our training set. We passed the full text
of the non-ESSLLI McRae norms through the chunker, and
manually examined the output for chunk label patterns likely
to indicate relations.

Using this output, we created a ruleset for selecting sen-
tence fragments (chunk sequences) which were similar in
structure to our property norms. We called a sequence of three
labelled chunks a three-chunk, a sequence of four chunks a
four-chunk, etc. We employed the first four most frequent
label combinations (NP VP NP; NP VP PP NP; NP VP ADJP;
and,NP VP ADVP) to form our ruleset; together these covered
95.6% of the three- and four-chunk label patterns generated
from our training set. By using theNP VP PP NP-labelled
four-chunks we were able to extract multi-word, prepositional
verbs (e.g.,worn on, used for) as potential relations: previous
approaches to our task have not attempted this.

Chunk pre-selection We needed to select those chunks
most relevant to our relation extraction task. To do this we
passed through our chunked corpus, generating sets of 3 and
4 sequential chunks and pre-selecting those which were rele-
vant to our concepts. Our criterion for relevancy at this stage
was that the final term contained within the first chunk, when
lemmatised, corresponded to a training concept.

Chunk to triple conversion Having pre-selected our
chunks we generated triples from the chunk text. For three-
chunks we did this by simply taking the final term in the first,
second and third chunks and lemmatising each to give our
concept, relation and feature terms respectively. For four-
chunks we followed the same process for the first and fourth
chunks to yield ourconcept andfeature. To extract there-
lation we took the final term of the second (VP) chunk and
compounded it with the final term of the third (PP) chunk;
the only exception to this was if the POS of the final term of
the second chunk wasVBG, in which case we lemmatised that
term and compounded it with the third chunk’s final term. For
example:

• [NP Mirrors_NNS] [VP are_VBP found_VBN] [PP in_IN]
[NP the_DT bedroom_NN] becamemirror found in bedroom

• [NP Most_JJS cats_NNS] [VP have_VBP] [NP furry_NN
tails_NNS] becamecat have tail

• [NP The_DT microwave_NN] [VP was_VBD running_VBG]
[PP on_IN] [NP electricity_NN] becamemicrowave run
on electricity

Relation selection

The third stage of our system worked by taking eachcon-
cept–feature pair from both the SVM and chunking output,
and finding the best relation for that pair from the chunking
output to generate a triple. It also assigned to that triple a
number of metrics relating to its constituent parts, their rela-
tive frequency and association scores.

We assumed that eachconcept–feature pair had one cor-
responding relation. We called the set of extracted triplesgen-
erated by Stage 2,T (with triples(c, r, f ) ∈ T) and the set of
all extracted relations from Stage 2,R. For each concept, we
also generated a final potential feature set,Fc, which, for a
given concept, was the union of the top 200 features from
Stage 1 (ranked by their SVM score) and the top 200 features
from Stage 2 (ranked by their frequency in the extracted rela-
tions, but excluding features which appeared only once).

We defined Concept Feature Frequency (CFF) to be the
number of times a concept,c, and feature,f , co-occurred
across our extracted relations:

CFF(c, f ) = ∑
r∈R

freq(c, r, f ) (1)

We also calculated a Distinct Relation Score which mea-
sured the number of distinct relations linkingc to f :

DRS(c, f ) = |Dc, f | for Dc, f = {r : (c, r, f ) ∈ T} (2)

We next wanted to choose relations for our variouscon-
cept–feature pairs,(c, f ) ∈C×Fc. We did this in three steps.

Step 1 For each concept,c, and feature,f , we iterated
through all relations relating to that pair and calculated an
Exact Match Score:

EMS(c, f ) = max{freq(c, r, f ) : r ∈ R} (3)

If EMS(c, f ) > 0 then we selected as our best relation, ˆr,
the relation corresponding to that score. If there was more
than one relation with the same score, then we chose the least
common (i.e., that which had the lowest frequency across all
our relations). If EMS(c, f ) = 0 then we left ˆr undefined.

Step 2 Our first step only retrieved a relation if there was an
exact match amongst our relation extraction output.

If there wasn’t, we took a split approach; given a particular
concept,c, and feature,f , we calculated separate probabili-
ties across all our relations ofc occurring with each relation,
and of f occurring with each relation. We then calculated for
each relation,r, a combined score for the combination ofc,
r and f by multiplying the constituent probabilities together.
Our pairwise combination score was defined:

p(c, r) = ∑
f∈F

freq(c, r, f )
freq(c) · freq(r)

(4a)
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p(r, f ) = ∑
c∈C

freq(c, r, f )
freq(r) · freq( f )

(4b)

PCS(c, f ) =

{

p(c, r̂) · p(r̂, f ) if r̂ defined
max{p(c, r) · p(r, f ) : r ∈ R}

(4c)

If we had not already selected a best relation, ˆr, then we de-
fined it as the relation,r, which corresponded to this pairwise
combination score. Again, if there was more than one relation
with the same score, then we chose the least common.

Step 3 Our final step assigned relations to concept/feature
pairs which lacked an exact mutually linking relation. This
occurred around 17% of the time and was usually due to both
the concept and feature terms being relatively low frequency.6

To achieve this, we backed-off to semantic feature clusters:
we definedf⋆ as the cluster for featuref , andF⋆ as the set of
all feature clusters, and defined our Feature Cluster Score,
FCS(c, f⋆), analogously to our Pairwise Combination Score,
merely substituting all instances off for f⋆. Our best relation,
r̂, was defined as the relation corresponding to this FCS.

Reweighting

In our system’s fourth and final stage we used the metrics
derived above to assign an overall score for each triple using
a weighting of parameters; we used our training set to derive
the most optimal values for these parameters. We normalised
our various metrics so that they all lay between 0 and 1.

Our relation selection stage had already fixed a relation, ˆr,
for each concept and feature. Hence we calculated for each
of our triplest = (c, r̂, f ) an overall score:

score(t) = βPMI ·PMI(t)+βLL ·LL(t)+βSVM ·SVM(t)

+βCFF·CFF(t)+βDRS·DRS(t)+βEMS ·EMS(t)

+βPCS·PCS(t)+βFCS·FCS(t)

(5)

We wished to optimise our parameters for superior feature
F-score performance against our training set. We employed a
stochastic process to find best-possible values for our training
parameters, using a random-restart hill-climbing algorithm,
repeated 1000 times and selecting the output (andβ values)
offering the best F-score across these iterations.

This process offered a reasonable approximation of the best
possible F-scores our system could produce and their corre-
spondingβ values; following this process, our best F-scores
were 0.2739, 0.2803 and 0.2996 for our Wikipedia, UKWAC
and combined corpora respectively.

Evaluation
We evaluated our system using gold standard, human
semantic-similarity and direct human evaluations.

Gold standard evaluation

We began by comparing our top twenty output using the ESS-
LLI gold standard set. This ‘expansion’ set comprises the top

6Only a small proportion of our triples derived their relations in
this way; at this point, in our training sets we had assigned relations
to over 94% of triples from our Wikipedia corpus, and 97% fromthe
UKWAC corpus.

Table 2: Our best precision, recall and F-scores against the
synonym-expanded ESSLLI norms across our corpora, found
using the trainingβ parameters.

Relation Corpus Prec. Recall F

With

Wikipedia 0.1131 0.2265 0.1509
UKWAC 0.1000 0.2005 0.1335
Combined 0.1214 0.2431 0.1620
Kelly et al. 0.1238 0.2493 0.1654

With (aug.)
Wikipedia 0.1214 0.2431 0.1620
UKWAC 0.1048 0.2101 0.1398
Combined 0.1298 0.2598 0.1731

Without

Wikipedia 0.2798 0.5603 0.3732
UKWAC 0.2560 0.5132 0.3416
Combined 0.2798 0.5606 0.3733
Kelly et al. 0.2417 0.4847 0.3225

ten lemmatised properties for each of 44 concepts from the
recoded McRae norms, together with a feature expansion set
generated for eachconcept relation feature triple. One of
the reasons for using this set is that McRae et al. normalised
their features by channelling synonymous properties into a
single representation. The ESSLLI set undoes some of these
normalizations, expanding the feature terms to a set of syn-
onyms. In this way,loud, noise andnoisy (for example) can
all be counted as matches against the propertyis loud. The
relations were not expanded.

Our results can be found in Table 2. We also assessed our
system using the full text of the relations found in the original
McRae norms as additional ‘relation synonyms’; these aug-
mented results can be found under the ‘With (aug.)’ relation
heading. We have exceeded the performance of Kelly et al.
(2012) (best F-score of 0.1654) with a best overall F-score of
0.1731 for the combined corpus.

We also note that performing these evaluations on the top
ten properties returned further improved the situation (per-
haps unsurprising since the ESSLLI set contains only ten
properties per concept); for example, evaluating our top ten
triples against the relation synonyms set returned a precision
of 0.2215 for the combined corpus. Furthermore, the pre-
cision on the combined corpus for the top ten evaluation of
features-only was 0.4409, surpassing Baroni et al. (2009) who
offer a best score of 0.239 on the same evaluation.

Human-generated semantic similarity
Comparison with the ESSLLI gold standard is still an in-
complete evaluation: not all conceptual properties for a given
concept are contained therein, and lexical variation can mark
valid relations as wrong. Furthermore, one of the primary ad-
vantages of our computational approach is its ability to extract
a large number of properties for a given concept. Hence, we
introduced an alternative approach to calculate how seman-
tically meaningful our output was by evaluating the triples’
capacity to predict human-rated similarity between words.

We asked five native English speakers to rate the similar-
ity of 90 concept pairs, where concepts in the pairs were all
drawn from the ESSLLI set. The raters were given instruc-
tions explaining the task and then presented with each con-
cept pair, one by one, a scale of 1 to 7 and asked to rate how
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Table 3: Pearson correlation (r) results with confidence inter-
vals between ourVHuman vector and our similarity vectorsV
(with dimensionalityD and derived from the topn properties)
from our system.

Relation V n D r Conf. Int.

With

Wikipedia 654 0.598 [0.446, 0.716]
UKWAC 20 712 0.629 [0.486, 0.740]
Combined 692 0.671 [0.539, 0.771]
Wikipedia 3585 0.693 [0.568, 0.787]
UKWAC 300 3442 0.683 [0.555, 0.780]
Combined 3380 0.723 [0.606, 0.809]

Without

Wikipedia 478 0.720 [0.603, 0.807]
UKWAC 20 456 0.754 [0.649, 0.832]
Combined 475 0.742 [0.632, 0.822]
Wikipedia 7324 0.782 [0.685, 0.851]
UKWAC 300 8698 0.806 [0.719, 0.868]
Combined 8727 0.807 [0.721, 0.869]

With McRae 410 0.785 [0.691, 0.854]
Without 355 0.787 [0.693, 0.855]

LSA 300 0.708 [0.586, 0.798]

similar the two concepts were.
To compare our system with these ratings we constructed

a vector space of dimensionD, whereD was the number
of distinct properties across our triples. For each of our 44
concepts, we generated a concept-score vector with non-zero
entries by inserting the triple scores, score(t), into their cor-
rect entries in the concept-score vector. We then constructed
a 44× 44 symmetric pairwise similarity matrix across our
concepts by calculating the cosine similarity between their
concept-score vectors. From this we extracted a similarity
vector,V, for our 90 pairwise comparisons.

We calculated twelve such matrices (using the top twenty
and top 300 extracted triples, across three corpora and ex-
cluding and including the relation term). We also generated
two such matrices using both the feature-heads and the full
text of the McRae property norms, using the norm produc-
tion frequencies as entries in each concept’s vector, as well as
comparing our ratings with LSA-predicted (Landauer, Foltz,
& Laham, 1998) similarities.7 Our results are in Table 3.8

Our systems’ performance, evaluating with and without re-
lation and when using the top twenty triples, was comparable
to LSA (correlation 0.708) with average correlations across
our corpora of 0.754 and 0.671 respectively. Including the
top 300 extracted triples brought our correlations up to 0.807
and 0.754 respectively, an extremely strong result given that
the average Pearson coefficient of correlation across the five
judges (considering all pairwise combinations) was 0.820.

Human evaluation

In our final evaluation, we asked two native English speak-
ing human judges to assess the accuracy of our triples. Fol-
lowing the methodology of Devereux et al. (2009), we asked
them to classify output triples for 15 concepts into four cate-
gories: ‘correct’ (c), ‘plausible’ (p), ‘related’ (r) and ‘wrong’

7300 factors, using the TASA corpus atlsa.colorado.edu.
8The correlation confidence intervals, calculated using Fisher

transformations (Fisher, 1915), are given at the 95% level of con-
fidence, and two-tailedp < 0.05.

Table 4: Inter-annotator agreement and judgements for our
extraction system applied to our three corpora.

Judge % Kappa
Corpus A B Avg c / p (Agree)

Wikipedia c / p 202 204 203 67.7 0.6343
r / w 98 96 97 (252)

UKWAC c / p 193 204 198.5 66.2 0.7398
r / w 107 96 101.5 (265)

Combined c / p 212 216 214 71.3 0.7229
r / w 88 84 86 (266)

(w). Our judges were unaware of the aims of the evaluation.
We concatenated their ratings using the methodology of De-
vereux et al.9 however our instructions reflected the fact that,
unlike previous systems, our output contained prepositional
relations and we therefore did not wish our volunteers to al-
low for absent prepositions. This evaluation offers an impor-
tant insight into the viability of our method as a property ex-
traction system. Our results are in Table 4, and Table 5 shows
a sample of our output and the corresponding judgements.

It is clear that our best results were again in the combined
corpus, where an impressive 71.3% of our returned triples
were marked as either plausible or correct with a Kappa
(Fleiss, 1971) score of 0.7229 indicating substantial agree-
ment between annotators. This constitutes a major improve-
ment over Kelly et al. (2012) who evaluated on the same set
of concepts and whose corresponding score was just 51.1%.

Discussion
As the first system to offer viable unconstrained property
norm-like extraction, this paper brings research into concep-
tual property extraction to the next level. Our system employs
both full parsing and chunking to extract features and rela-
tions respectively and introduces a novel multi-step backing-
off method for relation selection. Our gold standard perfor-
mance exceeded that of previous approaches, and our human
evaluation indicated that we have outperformed the system
of Kelly et al. (2012) by a significant margin. We also intro-
duced a semantic similarity evaluation for this task, showing a
strong Pearson correlation of 0.754 with human ratings when
employing just 20 extracted properties per concept, with the
correlation rising to 0.807 when using 300 properties. In this
latter case, the predicted similarities were almost as corre-
lated with human judgements as the human judgements are
with each other.

Potential criticisms of our system include the fact that our
chunk to triple conversion process won’t necessarily always
yield a true reflection of the sentence’s original meaning. It
is, for example, possible for the final chunk to contain ad-
jectives which modify the final noun. These could have im-
portance from a conceptual representation perspective (e.g.,
features such aslong neck for giraffe has long neck). Also,
the modifying portion of a chunk may be semantically signifi-
cant, altering the final term’s meaning (e.g., atea bag is quite
different from abag). It should be possible to have more gen-

9i.e. both ‘correct’ and ‘plausible’ triples were counted ascor-
rect, while ‘related’ or ‘wrong’ triples were considered incorrect.
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Table 5: Judges’ assessments of the top twenty extracted re-
lation/feature pairs (combined corpus) for two concepts.

Judge Judge
knife A B pig A B

sharpened by hand c c eat piglet c p
based on design c c get fat c c
made of steel c c produce pork r c
be small c p breed farm r r
pick on fork r r put into sausage c c
be make p r be large p p
crafted from metal c c have baby c c
scaled for use p p be different p p
make cut c c stunned through use r w
be sharp c c be bacon c r
be weapon c c be welfare r r
have edge c c discover sheep c c
have handle c c killed for meat c c
be serrated c c used for food c c
made of stainless w r label cattle w w
is for cutting c c be animal c c
have blade c c shackled by ham r r
be useful p c chew tail c c
be tool c c have disease c c
be dangerous c c found in guinea c c

eral chunk to triple extraction (e.g., by using a larger corpus
to mitigate the sparsity associated with multi-word terms).

Finally, a major issue is our lack of comprehensive train-
ing/testing data; our norms are incomplete insofar as there
were a large number of ‘correct’ properties absent from our
gold standard. In future work we hope to implement large-
scale evaluation of our system’s output (e.g., using Amazon
Turk) which would allow us to rapidly obtain large amounts
of human-generated feedback. We could then use active-
learning to introduce a feedback loop of human-annotation
to better pinpoint inaccurate features or relations. Feedback
which strongly indicated that certain properties were unin-
teresting could prove invaluable in getting even closer to a
conceptual structure-like representation of concepts.
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