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ABSTRACT OF THE DISSERTATION

Demazure Modules and Fusion Products for the Current Algebra sln+1[t]

by

Jonathan P. Dugan

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2022

Dr. Vyjayanthi Chari, Chairperson

In 2021, authors Biswal, Chari, Shereen, and Wand showed for the type A current

algebra that under suitable conditions on pairs of dominant integral weights (ν, λ) that the

fusion product of a local Weyl module with a level 2 Demazure module D(2, λ) ∗Wloc(ν) is

isomorphic to the module M(ν, λ) first introduced by Wand in his 2015 PhD thesis. The

work of this thesis is to remove the condition on (ν, λ) by defining new modules N(ν, λ, γ)

which in the case when γ = 0 are isomorphic to M(ν, λ). We then construct short exact

sequences that show under suitable conditions on (ν, λ, γ) that the modules N(ν, λ, γ) are

isomorphic to the fusion product Wloc(ν)∗D(2, λ)∗D(2, γ). In particular, when γ = 0, this

gives us the desired isomorphism for M(ν, λ) for all pairs (ν, λ). This allows us to define

the fusion product of a local Weyl module and a level 2 Demazure module via generators

and relations.
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Chapter 1

Introduction

In 1985 Drinfeld [11] and Jimbo [15] independently introduced the notion of quan-

tized enveloping algebras in order to solve the quantum Yang-Baxter equation. The rep-

resentation theory of quantum affine algebras has been well-studied since, and has many

connections to areas in mathematics and physics, such as statistical mechanics, cluster al-

gebras, dynamical systems, the geometry of quiver varieties, and Macdonald polynomials.

One particular area of study is the category Fq of finite-dimensional representations of

quantum affine algebras, which even today not much is known about (change wording). For

example, we do not have a formula for the dimensions of these modules in general.

One method of studying these representations is by taking the classical (q → 1)

limit, which is a finite-dimensional representation of the affine Lie algebra ĝ, to go from

a quantum level to a classical level. By restricting and suitably twisting this limit, one

obtains the graded limit which is a graded representation for the corresponding current

algebra g[t] = g ⊗ C[t]; see [4] and [6] for more information on graded limits. Thus finite-
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dimensional graded representations of the current algebra present an interesting area of

research in their own right. In particular we wish to find presentations and graded characters

for these modules.

An interesting family of graded representations of the current algebra are the g-

stable Demazure modules. Given a representation of an affine Lie algebra ĝ, a Demazure

module is actually a representation of a Borel subalgebra of ĝ as introduced in [10]. When it

is stable under the action of the underlying simple algebra g, it naturally becomes a graded

representation of the corresponding current algebra. These g-stable Demazure modules are

indexed by pairs (ℓ, λ) ∈ N × P+, where ℓ is called the level of the Demazure module.

Demazure modules arise as the q → 1 limit of many families of modules of quantum affine

algebras. For example, for g simply laced, [5][9][13] showed level 1 Demazure modules

are the q → 1 limit of irreducible local Weyl modules for the quantum affine algebra first

introduced in [7]. In addition, higher level Demazure modules are the q → 1 limit of

Kirillov-Reshetikhin modules as shown in [4] and [6].

It is also known about these limits is that the tensor product of the classical limit

of quantum affine algebra modules is not isomorphic to the classical limit of their tensor.

Instead, the fusion product as introduced in [12] seems to be the appropriate substitute

for the tensor product. It is a very challenging problem to find presentations and graded

characters for the fusion product of g-stable Demazure modules. Much work has been done

recently in the type A case. Chari and Loktev in [5] solved the problem for the fusion

product of level one Demazure modules. For the fusion product of a level one and a level

two Demazure module in the type A case, Wand introduced in [17] the module M(ν, λ)
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indexed by pairs of dominant integral weights and which interpolate between level one and

level two Demazure modules. More recently in 2021 Biswal et. al. showed in [1] that

for certain restrictions on (ν, λ), the module M(ν, λ) is isomorphic to the fusion product

D(1, ν) ∗D(2, λ).

The work of this thesis is to improve on this result. We start by introducing the

module N(ν, λ, γ) indexed by triples of dominant integral weights and in the case when

γ = 0 is isomorphic to the module M(ν, λ). Then by constructing short exact sequences

and employing a dimension argument, we are able to show that for certain restrictions on

(ν, λ, γ) the module N(ν, λ, γ) is isomorphic to the fusion product D(1, ν)∗D(2, λ)∗D(2, γ).

In particular, by letting γ = 0 we get that M(ν, λ) ∼= D(1, ν) ∗D(2, λ) for every pair (ν, λ),

thus producing in general a presentation for the fusion product of a level one and a level

two Demazure module via generators and relations. In addition, when ν = 0, we also get

under certain restrictions on (λ, γ) a presentation for the fusion product D(2, λ) ∗D(2, γ)

of level two Demazure modules.
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Chapter 2

Background and Notation

This chapter will introduce the notation to be used in the rest of this dissertation,

as well as define the fusion product.

2.1 Notation

Let C denote the complex numbers, Z the integers, Z+ the nonnegative integers,

and N the positive integers. For i, j ∈ Z with i ≤ j we will let the set [i, j] = {i, i+1, . . . , j}.

Given V,W any two complex vector spaces, we will let V ⊗W denote their tensor product

over C.

Let g be the simple complex Lie algebra sln+1, and let U(g) be its universal

enveloping algebra. Fix a Cartan subalgebra h of g with basis elements {hi : i ∈ [1, n]}.

Let {ωi : i ∈ [1, n]} be a set of fundamental weights for (g, h), which are defined by setting

ωi(hj) = δi,j with δi,j the Kronecker delta. For notational purposes we let ω0 = ωn+1 = 0.

Let {αi : i ∈ [1, n]} be a set of simple roots defined by αi = −ωi−1 + 2ωi − ωi+1. We let
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R+ = {αi,j : 1 ≤ i ≤ j ≤ n} be the set of positive roots, where we note

αi,j = αi + αi+1 + . . .+ αj = −ωi−1 + ωi + ωj − ωj+1.

Fix a Chevalley basis {x±α : α ∈ R+} ∪ {hi : i ∈ [1, n]} of g. We have

g = n− ⊕ h⊕ n+, h =

n⊕
i=1

Chi, n± =
⊕
α∈R+

Cx±α .

Let x±i,j = x±αi,j
, and let x±β = hβ = 0 if β /∈ R.

Let the root lattice Q and the positive root lattice Q+ be the Z-span and Z+-span

of the simple roots, respectively. Similarly define the weight lattice P and positive weight

lattice P+ for the fundamental weights. Define a partial order ≤ on P by µ ≤ λ if and

only if λ − µ ∈ Q+. Let P+(1) = {λ ∈ P+ : λ(hi) ≤ 1 for all i ∈ [1, n]}. Equivalently,

P+(1) = {ωi1 + . . .+ ωik : 1 ≤ i1 < i2 < · · · < ik ≤ n}. Then for any λ ∈ P+ we define λ0

and λ1 to be the unique elements of P+ and P+(1), respectively, such that λ = 2λ0 + λ1.

Define the support of λ ∈ P+ to be the set

suppλ = {i ∈ [1, n] : λ− ωi ∈ P+}.

Lastly, let (·, ·) denote the symmetric, non-degenerate form on h∗ induced by the

Killing form and normalized so that the square length of a long root is 2.

2.2 The current algebra and graded modules

Let t be an indeterminate and C[t] the polynomial ring with complex coefficients,

and let a be a complex Lie algebra. We will let a[t] denote the current algebra associated

to a, which as a vector space is isomorphic to a⊗C[t]. As a Lie algebra, the bracket of a[t]
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is defined by

[x⊗ tr, y ⊗ ts] = [x, y]⊗ tr+s

for x, y ∈ a, r, s ∈ Z+. Let a[t]+ be the ideal a ⊗ tC[t]. We shall identify the Lie algebra

a with the subspace a ⊗ 1 of the current algebra. We note that a[t] inherits a Z+-grading

from the degree grading of C[t], and this also induces a grading on U(a[t]). In particular,

an element of the form (x1⊗tr1) · · · (xk⊗trk) has grade r1+ . . .+rk, for xj ∈ a and rj ∈ Z+,

j ∈ [1, k].

Since the current algebra is Z+-graded, we can define the notion of a Z-graded

module for a[t]. In particular, we say a representation V of a[t] is Z-graded if we have

V =
⊕
r∈Z

V [r], (x⊗ ts)V [r] ⊂ V [r + s], x ∈ a, r ∈ Z, s ∈ Z+.

We note that for any s ∈ Z, V [s] is an a-module. For any p ∈ Z let τ∗pV be the

graded a[t]-module which is given by shifting all of the grades of V up by p and leaving

the action of a[t] unchanged. We shall be interested in studying the category of finite-

dimensional Z-graded g[t]-modules whose objects are these modules and whose morphisms

are g[t]-module maps of grade zero.

2.3 Local Weyl and Demazure modules

Let a be a simple complex finite-dimensional Lie algebra. Given λ ∈ P+, recall

the definition of the local Weyl module Wloc(λ) to be the cyclic a[t]-module generated by

wλ subject to the relations

(x+i ⊗ 1)wλ = 0, (h⊗ tr)wλ = δr,0λ(h)wλ, (x−i ⊗ 1)λ(hi)+1wλ = 0, (2.3.1)
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for all i ∈ [1, n], h ∈ h, r ≥ 0. Since the relations are graded, it follows that Wloc(λ) is

a graded module for the current algebra by setting the grade of wλ to be 0. In [7] it was

shown that Wloc(λ) is finite dimensional. A quick calculation shows that for v ∈ Wloc(λ)

satisfying

(h⊗ tk)v = 0 for all k ∈ N, h ∈ h, (x−α ⊗ tr)v = 0 for some α ∈ R+, r ∈ Z+,

then (x−α ⊗ tr+s)v = 0 for all s ∈ N, as we have that

(x−α ⊗ tr+s)v = −1

2
[hα ⊗ ts, x−α ⊗ tr]v = 0.

Given ℓ ∈ N, we define the level ℓ Demazure module D(ℓ, λ) to be the quotient of

Wloc(λ) by the relations

(x−α ⊗ tsα)wλ = 0 for every α ∈ R+,

(x−α ⊗ tsα−1)mα+1wλ = 0 for every α ∈ R+ with mα < dαℓ,

where sα,mα ∈ Z+ are defined by setting λ(hα) = dαℓ(sα − 1) +mα, 0 < mα ≤ dαℓ and

dα = 2
(α,α) . In particular, if a is simply laced, then dα = 1 for all α ∈ R+. Since the

relations are graded, D(ℓ, λ) is also a graded a[t]-module where we declare the grade of wλ

to be 0. Demazure modules arise from the representation theory of affine Lie algebras, and

this particular definition is a result of the work in [9][13][16].

In [9], it was proved that for a simply laced and λ ∈ P+, the local Weyl module

Wloc(λ) is isomorphic to the level 1 Demazure module D(1, λ). In addition, simpler relations

were given for level 1 and level 2 Demazure modules in Proposition 3.4 and Theorem 2 of

that paper, which we reformulate here.
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Theorem 2.3.1. Let λ ∈ P+, wλ the generator of Wloc(λ), and suppose a is simply laced.

1. For all α ∈ R+,

(x−α ⊗ tλ(hα))wλ = 0. (2.3.2)

Equivalently, D(1, λ) is the quotient of Wloc(λ) by the above relations.

2. D(2, λ) is the quotient of Wloc(λ) by the relations

(x−α ⊗ t⌈λ(hα)/2⌉)wλ = 0 for every α ∈ R+. (2.3.3)

2.4 Garland’s Formula and a Useful Lemma

We start by defining the following set of sequences. For s, r ∈ Z+, let

S(r, s) =

(bp)p≥0 : bp ∈ Z+,
∑
p≥0

bp = r,
∑
p≥0

pbp = s

 .

Notice that S(0, s) is the empty set if s > 0, and also that if (bp)p≥0 ∈ S(r, s), then bp = 0

for p > s. Thus S(r, s) is a finite set.

Next, given x ∈ g and s, r ∈ Z+, define elements x(r, s) ∈ U(g[t]) by

x(r, s) =
∑

(bp)p≥0∈S(r,s)

(x⊗ 1)(b0)(x⊗ t)(b1) · · · (x⊗ ts)(bs)

where for any integer k and any x ∈ g[t], we set x(p) = xp/p!.

The following result was first proved in [14], and this current formulation can be

found in [9] Lemma 2.3.

Proposition 2.4.1 (Garland’s Formula). Given s ∈ N, r ∈ Z+, α ∈ R+, we have that

(x+α ⊗ t)(s)(x−α ⊗ 1)(s+r) − (−1)sx−α (r, s) ∈ U(g[t])n+[t]
⊕

U(n−[t]⊕ h[t]+)h[t]+.
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An immediate consequence of this proposition is that

(
(x+α ⊗ t)(s)(x−α ⊗ 1)(s+r) − (−1)sx−α (r, s)

)
wλ = 0

where λ ∈ P+ and wλ is the generator of Wloc(λ).

We now prove the following corollary of Garland’s formula that will be used in

later chapters.

Lemma 2.4.1. Let λ ∈ P+ and α ∈ R+, and let wλ be the generator of Wloc(λ).

(i) If (x−α ⊗ 1)2r+1wλ = (x−α ⊗ tr+1)wλ = 0 for some r ∈ Z+, then

(x−α ⊗ tr−1)(x−α ⊗ tr)wλ = 0.

(ii) If (x−α ⊗ 1)2r+2wλ = (x−α ⊗ tr+1)wλ = 0 for some r ∈ Z+, then

(x−α ⊗ tr)2wλ = 0.

Proof. We start by proving (i). By Garland’s Formula, we have that

(x+α ⊗ t)(2r−1)(x−α ⊗ 1)(2r+1)wλ −
r−1∑
k=0

(x−α ⊗ tk)(x−α ⊗ t2r−1−k)wλ = 0.

But our assumptions imply that

(x+α ⊗ t)(2r−1)(x−α ⊗ 1)(2r+1)wλ = 0, (x−α ⊗ tk)(x−α ⊗ t2r−1−k)wλ = 0 for k ≤ r − 2.

Hence the remaining term (x−α ⊗ tr−1)(x−α ⊗ tr)wλ is 0 as desired.

Part (ii) is proved similarly. Again by Garland’s Formula, we have that

(x+α ⊗ t)(2r)(x−α ⊗ 1)(2r+2)wλ −

(
r−1∑
k=0

(x−α ⊗ tk)(x−α ⊗ t2r−k)wλ

)
− 1

2
(x−α ⊗ tr)2wλ = 0.
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But our assumptions imply that

(x+α ⊗ t)(2r)(x−α ⊗ 1)(2r+2)wλ = 0, (x−α ⊗ tk)(x−α ⊗ t2r−k)wλ = 0 for k ≤ r − 1.

Therefore, (x−α ⊗ tr)2wλ = 0, completing the proof.

2.5 The Fusion Product

Given a finite-dimensional cyclic g[t]-module V with generator v, we define for

every r ∈ Z+ the set

F rV =

 ⊕
0≤s≤r

U(g[t])[s]

 v.

Then F rV is a g-submodule of V and defines a g-module filtration

0 ⊂ F 0V ⊂ F 1V ⊂ · · · ⊂ F pV = V,

for some p ∈ Z+. The associated graded vector space

grV :=

p⊕
i=0

F iV/F i−1V, F−1V = 0,

acquires a natural structure as a cyclic g[t]-module with the action

(x⊗ tm)w = (x⊗ tm)w, x ∈ g, m ∈ Z+, w ∈ V, w ∈ F iV/F i−1V.

In addition, grV ∼= V as g-modules and is generated by v.

We now define the fusion product first introduced in [12]. First, given g[t]-module

V and z ∈ C, let V z be the g[t]-module with underlying vector space V and with twisted

action given by

(x⊗ tr)w = (x⊗ (t+ z)r)w, x ∈ g, r ∈ Z+, w ∈ V.
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Next, let V1, . . . , Vs be finite-dimensional cyclic g[t]-modules generated by v1, . . . , vs, respec-

tively, and let z1, . . . , zs be distinct complex numbers. In [12] it was shown that the tensor

product V z1
1 ⊗ · · · ⊗ V zs

s is cyclic and generated by v1 ⊗ · · · ⊗ vs. Then define the fusion

product

V z1
1 ∗ · · · ∗ V zs

s := gr (V z1
1 ⊗ · · · ⊗ V zs

s ) .

We denote the image of v1⊗· · ·⊗vs in the fusion product by v1∗· · ·∗vs. It is conjectured that

under suitable conditions the fusion product is independent of the choice of the complex

numbers. For ease of notation we shall suppress the dependence on the complex numbers

and write V1 ∗ · · · ∗ Vs for V z1
1 ∗ · · · ∗ V zs

s . In addition, we note that

dimV1 ∗ · · · ∗ Vs = (dimV1) · · · (dimVs)

which lets us use dimension arguments when using fusion products. However, we do not

know the defining relations for fusion products in general.

In [8] a certain factorization of Demazure modules for the type A case was shown,

which we state here.

Theorem 2.5.1. Let g = sln+1. Let λ ∈ P+, and let λ = ℓ(
∑k

j=1 λ
j) + λ0 for λj ∈ P+ for

0 ≤ j ≤ k and k, ℓ ∈ N. Then there exists an isomorphism of g[t]-modules

D(ℓ, λ) ∼= D(ℓ, λ0) ∗D(ℓ, ℓλ1) ∗ · · · ∗D(ℓ, ℓλk).
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Chapter 3

Compatible Triples and the Main

Theorem

In this chapter we define the modules of study, discuss their connections with the

fusion product and Demazure modules, and state the main results of this thesis.

3.1 Modules M(ν, λ) and N(ν, λ, γ)

First introduced in [17], the modules M(ν, λ) are parametrized by pairs of domi-

nant integral weights (ν, λ) and interpolate between level 1 and level 2 Demazure modules.

Formally, given λ, ν ∈ P+, define the module M(ν, λ) as the quotient of Wloc(ν + λ) by the

submodule generated by

{(x−α ⊗ tν(hα)+⌈λ(hα)/2⌉)wν+λ : α ∈ R+}.
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Let wν,λ denote the image of wν+λ under this quotient. Since these relations are graded,

M(ν, λ) is a graded representation of the current algebra by setting the grade of wν,λ to be

0. By Theorem 2.3.1, we see that

M(ν, 0) ∼=Wloc(ν), M(0, λ) ∼= D(2, λ).

For µ ∈ P+ \ {0} let

maxµ = max{ i : µ(hi) > 0 }, minµ = min{ i : µ(hi) > 0 }

and for µ = 0 set maxµ = 0, minµ = n+1. Then we say a pair (ν, λ) of dominant integral

weights is compatible if either

• λ1 = 0, or

• λ1 ̸= 0, in which case we must have ν0 = ωi for some i ∈ [0, n] and max ν1 < minλ1.

If in addition i ≥ 1 (equivalently ν0 ̸= 0) then we require that i < minλ1 − 1 and

ν1(hi) = ν1(hi+1) = 0.

In [1] the following connection between the modules M(ν, λ) and fusion products

of Demazure modules was shown.

Theorem 3.1.1. Let (ν, λ) ∈ P+ × P+ be a compatible pair. Then there exists an isomor-

phism of g[t]-modules

M(ν, λ) ∼=Wloc(ν) ∗D(2, λ).

The goal of this dissertation is to expand this isomorphism to all pairs of dominant

integral weights. To do so, we introduce the following generalization of the modules above.
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Given ν, λ, γ ∈ P+, define module N(ν, λ, γ) to be the quotient of Wloc(ν + λ+ γ)

by the relations

(x−α ⊗ tν(hα)+⌈λ(hα)/2⌉+⌈γ(hα)/2⌉)wν+λ+γ = 0, α ∈ R+. (3.1.1)

Let wν,λ,γ denote the image of wν+λ+γ under this quotient. Note that since these relations

are graded, N(ν, λ, γ) becomes a graded representation of the current algebra by setting the

grade of wν,λ,γ to be 0. An inspection of the defining relations and Theorem 2.3.1 imply

N(ν, λ, 0) ∼= N(ν, 0, λ) ∼=M(ν, λ),

N(ν, λ, γ) ∼= N(ν, γ, λ),

N(ν, 0, 0) ∼=Wloc(ν), (3.1.2)

N(0, λ, 0) ∼= N(0, 0, λ) ∼= D(2, λ). (3.1.3)

In addition, if γ0 − µ ∈ P+ for some µ ∈ P+, then

N(ν, λ, γ) ∼= N(ν, λ+ 2µ, γ − 2µ). (3.1.4)

The following proposition collects some properties of these modules.

Proposition 3.1.1. Let ν, λ ∈ P+. Then the following hold:

(i) N(ωi, 0, 0) ∼=g[t] N(0, ωi, 0) ∼=g[t] N(0, 0, ωi) ∼=g V (ωi) for every i ∈ [1, n].

(ii) N(0, ωi + ωj , 0) ∼=g[t] N(0, 0, ωi + ωj) ∼=g V (ωi + ωj) for every i, j ∈ [1, n]

(iii) dimN(λ+ ν, 0, 0) = dimN(ν, 0, 0) dimN(λ, 0, 0).

(iv) For all µ ∈ P+ such that λ0 − µ ∈ P+,

dimN(0, λ, 0) = dimN(0, λ− 2µ, 0) dimN(0, 2µ, 0).
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Parts (i) and (ii) follow from inspecting the defining relations of N(ν, λ, γ). Part

(iii) was proved in [5], while part (iv) follows from Theorem 2.5.1.

We finish this section by proving the following result about N(ν, λ, γ).

Theorem 3.1.2. There exists a surjection of g[t]-modules

N(ν, λ, γ) →Wloc(ν) ∗D(2, λ) ∗D(2, γ) → 0.

Proof. Let w, wν , wλ, and wγ be the generators of N(ν, λ, γ), Wloc(ν), D(2, λ), and D(2, γ),

respectively, and let z1, z2, and z3 be the parameters of their fusion product. Define map

ϕ : N(ν, λ, γ) → Wloc(ν) ∗ D(2, λ) ∗ D(2, γ) to be the map sending w to wν ∗ wλ ∗ wγ .

It remains to show that ϕ is well-defined. For this, it is enough to show that relations

(2.3.1) and (3.1.1) in N(ν, λ, γ) hold for wν ∗wλ ∗wγ . For the proof, we work with element

wν ⊗ wλ ⊗ wγ in the tensor product, since for any u ∈ U(sln+1[t]), by definition

u(wν ∗ wλ ∗ wγ) = u(wν ⊗ wλ ⊗ wγ) = u(wν ⊗ wλ ⊗ wγ).

First, note that for i ∈ [1, n], we have that (x+i ⊗ 1)(wν ⊗ wλ ⊗ wγ) is equal to

((x+i ⊗ 1)wν)⊗ wλ ⊗ wγ + wν ⊗ ((x+i ⊗ 1)wλ)⊗ wγ + wν ⊗ wλ ⊗ ((x+i ⊗ 1)wγ) = 0.

Thus (x+i ⊗ 1)(wν ∗ wλ ∗ wγ) = 0.

Next for h ∈ h, r ≥ 0, we have that (h⊗ tr)(wν ⊗ wλ ⊗ wγ) is equal to

((h⊗ tr)wν)⊗ wλ ⊗ wγ + wν ⊗ ((h⊗ tr)wλ)⊗ wγ + wν ⊗ wλ ⊗ ((h⊗ tr)wγ).

Note that for µ ∈ {ν, λ, γ}, from the twisted action we have that

(h⊗ tr)wµ = (h⊗ (t+ zi)
r)wµ = zri µ(h)wµ
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where (i, µ) ∈ {(1, ν), (2, λ), (3, γ)}. Thus

(h⊗ tr)(wν ⊗ wλ ⊗ wγ) = (zr1ν(h) + zr2λ(h) + zr3γ(h))wν ⊗ wλ ⊗ wγ

This implies that if r = 0,

(h⊗ tr)(wν ∗ wλ ∗ wγ) = (ν + λ+ γ)(h)(wν ∗ wλ ∗ wγ)

and if r > 0, then (h ⊗ tr)wν ∗ wλ ∗ wγ has both grade 0 and grade r and therefore must

equal 0. Thus

(h⊗ tr)(wν ∗ wλ ∗ wγ) = δr,0(ν + λ+ γ)(h)(wν ∗ wλ ∗ wγ).

Thirdly, for i ∈ [1, n], we have that (x−i ⊗ 1)(ν+λ+γ)(hi)(wν ⊗ wλ ⊗ wγ) is equal to

((x−i ⊗ 1)(ν+λ+γ)(hi)wν)⊗ wλ ⊗ wγ + wν ⊗ ((x−i ⊗ 1)(ν+λ+γ)(hi)wλ)⊗ wγ

+ wν ⊗ wλ ⊗ ((x−i ⊗ 1)(ν+λ+γ)(hi)wγ).

This is 0 since (x−i ⊗ 1)(ν+λ+γ)(hi)wµ = 0 for (i, µ) ∈ {(1, ν), (2, λ), (3, γ)}. Thus

(x−i ⊗ 1)(ν+λ+γ)(hi)(wν ∗ wλ ∗ wγ) = 0,

proving relation (2.3.1).

To show (3.1.1), we first note that

(x−α ⊗ (t− z1)
ν(hα)(t− z2)

⌈λ(hα)/2⌉(t− z3)
⌈γ(hα)/2⌉)(wν ⊗ wλ ⊗ wγ)

= (x−α ⊗ tν(hα)+⌈λ(hα)/2⌉+⌈γ(hα)/2⌉)(wν ⊗ wλ ⊗ wγ) + (x−α ⊗ f(t))(wν ⊗ wλ ⊗ wγ)

for some f ∈ C[t] with deg f(t) < ν(hα) + ⌈λ(hα)/2⌉+ ⌈γ(hα)/2⌉. Since

(x−α ⊗ f(t))(wν ∗ wλ ∗ wγ) = 0
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in the (ν(hα) + ⌈λ(hα)/2⌉ + ⌈γ(hα)/2⌉)-graded piece of Wloc(ν) ∗ D(2, λ) ∗ D(2, γ), this

implies that

(x−α ⊗ tν(hα)+⌈λ(hα)/2⌉+⌈γ(hα)/2⌉)(wν ∗ wλ ∗ wγ)

= (x−α ⊗ (t− z1)
ν(hα)(t− z2)

⌈λ(hα)/2⌉(t− z3)
⌈γ(hα)/2⌉)(wν ∗ wλ ∗ wγ). (3.1.5)

However, we calculate that

(x−α ⊗ (t− z1)
ν(hα)(t− z2)

⌈λ(hα)/2⌉(t− z3)
⌈γ(hα)/2⌉)(wν ⊗ wλ ⊗ wγ)

= ((x−α ⊗ tν(hα)(t+ z1 − z2)
⌈λ(hα)/2⌉(t+ z1 − z3)

⌈γ(hα)/2⌉)wν)⊗ wλ ⊗ wγ

+ wν ⊗ ((x−α ⊗ (t+ z2 − z1)
ν(hα)t⌈λ(hα)/2⌉(t+ z2 − z3)

⌈γ(hα)/2⌉)wλ)⊗ wγ

+ wν ⊗ wλ ⊗ ((x−α ⊗ (t+ z3 − z1)
ν(hα)(t+ z3 − z2)

⌈λ(hα)/2⌉t⌈γ(hα)/2⌉)wγ)

which is 0 by (2.3.3) and (2.3.2). Thus (3.1.5) is equal to 0 and relation (3.1.1) holds,

whence map ϕ is well-defined.

We immediately get the following corollary.

Corollary 3.1.1. For (ν, λ, γ) ∈ P+ × P+ × P+,

dimN(ν, λ, γ) ≥ dimN(ν, 0, 0) dimN(0, λ, 0) dimN(0, 0, γ).

Proof. This follows from Theorem 3.1.2 and isomorphisms (3.1.2) and (3.1.3), as well as the

fact that

dimWloc(ν) ∗D(2, λ) ∗D(2, γ) = dimWloc(ν) dimD(2, λ) dimD(2, γ).
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3.2 Compatible triples and the Main Theorem

Given ν, λ, γ ∈ P+, we say the triple (ν, λ, γ) is compatible if maxλ1 < min γ1.

Define a partial order on compatible triples by letting (ν̃, λ̃, γ̃) < (ν, λ, γ) if either:

• ν + λ+ γ − ν̃ − λ̃− γ̃ ∈ Q+ \ {0},

• γ = γ′ = 0, ν̃ + λ̃ = ν + λ, and ν − ν̃ ∈ P+ \ {0}, or

• ν = ν̃, γ ̸= 0, γ̃ = 0, and λ̃ = λ+ γ,

and imposing transitivity. We claim that the triples {(0, ωi, 0) : i ∈ [0, n]} are minimal

with respect to this order. To see this, take a compatible triple (ν, λ, γ). If γ ̸= 0 then

(ν, λ+ γ, 0) is compatible and less than (ν, λ, γ). If γ = 0 and ν(hj) ≥ 1 for some j ∈ [1, n]

then (ν−ωj , λ+ωj , 0) is compatible and less than (ν, λ, 0). Lastly, if ν = γ = 0 with λ ̸= 0,

pick i ∈ [0, n] such that λ − ωi ∈ Q+ \ {0}. Then (0, ωi, 0) < (0, λ, 0) and hence the claim

is proved.

The following is the main result of this thesis.

Theorem 3.2.1. Let (ν, λ, γ) ∈ P+ × P+ × P+ be a compatible triple. Then there exists

an isomorphism of g[t]-modules

N(ν, λ, γ) ∼=Wloc(ν) ∗D(2, λ) ∗D(2, γ).

An immediate corollary of this theorem is the following.

Corollary 3.2.1. For every ν, λ ∈ P+, there exists isomorphism of g[t]-modules

M(ν, λ) ∼=Wloc(ν) ∗D(2, λ).

This follows by noting that (ν, λ, 0) is a compatible triple and N(ν, λ, 0) ∼=M(ν, λ).
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3.3 Short Exact Sequences

The proof of Theorem 3.2.1 requires the establishment of certain short exact se-

quences. We next define some notation to be used in the statement of these short exact

sequences.

Given λ ∈ P+ and 1 ≤ p ≤ q ≤ n, define λ(p, q) ∈ P+ by λ(p, q)(hj) = λ(hj) if

p ≤ j ≤ q and 0 otherwise. In addition, if λ ∈ P+ with λ1 ̸= 0, define ′λ = λ − ωp + ωp+1

where p = minλ1, and define λ′ = λ− ωq + ωq−1 where q = maxλ1.

Next, given m ∈ [1, n] and λ ∈ P+, let m⋄ be minimal such that m⋄ > m with

m⋄ ∈ suppλ1, where we let m⋄ = n+ 1 if m > maxλ1. Similarly define m• to be maximal

such that m• < m with m• ∈ suppλ1, where we let m• = 0 if m < minλ1.

Given ν, λ ∈ P+ and m ∈ [1, n] with ν − ωm ∈ P+, set

Um,ϵ(ν, λ) = N(ν − ωm, 2λ0 + λ1(1,m− δϵ,−1)
′, ′λ1(m+ δϵ,1, n)), ϵ ∈ {−1, 0, 1},

and let Km(ν, λ) be equal to

τ∗(ν+λ0)(hm)Um,0(ν, λ)
⊕

(1− δm,minλ1)(1− δm,maxλ1)τ
∗
(ν+λ0)(hm•,m⋄ )+1Um,0(ν, λ+ ωm)

if m ∈ suppλ1 and otherwise equal to

Jm > minλ1Kτ∗(ν+λ0)(hm•,m)Um,−1(ν, λ+ ωm)
⊕

Jm < maxλ1Kτ∗(ν+λ0)(hm,m⋄ )
Um,1(ν, λ+ ωm)

where J · K is the Iverson bracket defined by JP K = 1 if P is true and 0 if P is false.

The remainder of this thesis will focus on proving the following theorem, which in

the process will prove Theorem 3.2.1.
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Theorem 3.3.1. Let (ν, λ, γ) be a compatible triple of dominant integral weights.

(a) Suppose γ ̸= 0. Then there exists a short exact sequence of g[t]-modules

0 → (1− δλ1,0)(1− δγ1,0)τ
∗
(ν+λ0+γ0)(hp,q)+1N(ν, λ′, ′γ)

ψ−
−−→ N(ν, λ, γ)

ψ+

−−→ N(ν, λ+ γ, 0) → 0

where p = maxλ1, q = min γ1.

(b) Suppose that γ = 0 and ν − ωm ∈ P+ for some m ∈ [1, n]. There exists a short exact

sequence of g[t]-modules

0 → Km(ν, λ)
φ−
−−→ N(ν, λ, 0)

φ+

−−→ N(ν − ωm, λ+ ωm, 0) → 0.
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Chapter 4

The Map φ+ and Its Kernel

We start by defining some notation to be used in the rest of this chapter. Given

λ ∈ P+ and m ∈ [1, n] define βλ,m, ηλ,m ∈ R+ ∪ {0} as follows:

βλ,m =



αm if m ∈ suppλ1

αm,m⋄ if m ̸∈ suppλ1, m < maxλ1

0 otherwise

,

ηλ,m =



αm•,m⋄ if m ∈ suppλ1, minλ1 < m < maxλ1

αm•,m if m ̸∈ suppλ1, m > minλ1

0 otherwise

.

Given ν ∈ P+ with m ∈ supp ν, for each α ∈ R+ define integers

aα(ν, λ) = ν(hα) + ⌈λ(hα)/2⌉,

bα(ν, λ,m) = (ν − ωm)(hα) + ⌈(λ+ ωm)(hα)/2⌉.
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4.1 Statement of the Proposition

The following proposition will be the subject of the remainder of this chapter.

Proposition 4.1.1. Let ν, λ ∈ P+ with m ∈ supp ν for some m ∈ [1, n]. Let w denote the

generator of N(ν, λ, 0), and set

β := βλ,m, η := ηλ,m, bβ := bβ(ν, λ,m), bη := bη(ν, λ,m).

Then there exists a surjective map of sln+1[t]-modules

φ+ : N(ν, λ, 0) → N(ν − ωm, λ+ ωm, 0)

sending generator to generator whose kernel is generated by

(x−β ⊗ tbβ )w and (x−η ⊗ tbη)w.

In addition, the generators of the kernel are highest weight vectors.

In the rest of this chapter, for each α ∈ R+ we will let

aα := aα(ν, λ), bα := bα(ν, λ,m).

Then by (3.1.1), N(ν, λ, 0) and N(ν−ωm, λ+ωm, 0) are both quotients ofWloc(ν+λ), with

the additional relations

(x−α ⊗ taα)wν,λ,0 = 0 and (x−α ⊗ tbα)wν−ωm,λ+ωm,0 = 0,

respectively, for every α ∈ R+. Thus, existence of map φ+ follows from the fact that

aα ≥ bα for all α. In particular, the kernel is generated by

(x−α ⊗ tbα)w for all α ∈ R+ such that aα > bα.
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In addition, if λ1 = 0, then aα = bα for all α and φ+ is an isomorphism as desired, since

β = η = 0 in this case. In the following sections, we prove in the remaining cases that the

generators of the kernel of φ+ can be reduced to those listed in the proposition, and that

these generators are highest weight.

4.2 Highest weight vectors

Before we continue with proving the proposition, we start by proving the following

useful lemma.

Lemma 4.2.1. Let ν ∈ P+ and α ∈ R+ such that ν − α ∈ P+. Let s ∈ N such that

(x−α ⊗ ts+1)wν = 0. Additionally, suppose that (x−α−αj
⊗ ts)wν = 0 for any j ∈ [1, n] such

that α − αj ∈ R+. Then (x−α ⊗ ts)wν is highest weight; that is, there exists a map of

sln+1[t]-modules

τ∗sWloc(ν − α) →Wloc(ν) → 0

sending wν−α to (x−α ⊗ ts)wν .

Proof. It is sufficient to show that (x−α ⊗ ts)wν satisfies relations (2.3.1) in Wloc(ν − α).

Indeed, note that for h ∈ h, r ≥ 0, we have that

(h⊗ tr)(x−α ⊗ ts)wν = −α(h)(x−α ⊗ ts+r)wν + δr,0ν(hα)(x
−
α ⊗ ts)wν

= δr,0(ν − α)(hα)(x
−
α ⊗ ts)wν

since by our assumption (x−α ⊗ ts+r)wν = 0 if r > 0.

Next, let j ∈ [1, n], and note by (2.3.1) that (x+j ⊗ 1)wν = 0. Thus

(x+j ⊗ 1)(x−α ⊗ ts)wν = ([x+j , x
−
α ]⊗ ts)wν . (4.2.1)
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Thus we wish to show that (4.2.1) is 0.

If [x+j , x
−
α ] = 0, then this follows trivially.

If α = αj , then (4.2.1) is equal to (hj ⊗ ts)wν which is 0 since s > 0.

If α−αj ∈ R+, then (4.2.1) is equal to ±(x−α−αj
⊗ ts)wν which is 0 by assumption.

Finally,

(x−j ⊗ 1)(ν−α)(hj)+1(x−α ⊗ ts)wν = 0

by a standard application of Lie theory.

Therefore, this map is well-defined, and we may conclude that (x−α ⊗ ts)wν is

highest weight.

4.3 Proof of Proposition 4.1.1

This section will be devoted to the proof of the proposition, which we split into

several cases.

4.3.1 The kernel when λ1 ̸= 0 with m ≤ minλ1 or m ≥ maxλ1

Assume that m ≤ minλ1, as the case when m ≥ maxλ1 is similar. Let p = λ1.

Then β = αm,p and η = 0. Thus we wish to show that

(x−α ⊗ tbα)w ∈ U(g[t])(x−m,p ⊗ tbαm,p )w for all α ∈ R+.

Note that if α is either in the span of {αj : j < m} or in the span of {αj : j > m}, then

ωm(hα) = 0 and aα = bα, implying in this case that (x−α ⊗ tbα)w = 0 by (3.1.1). Similarly, if

α is in the span of {αj : j < p} then λ1(hα) = 0, implying aα = bα and that (x−α ⊗ tbα)w = 0

by (3.1.1).
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Thus we may assume α = β + αm,p + µ for β in the span of {αj : j < m} and µ

in the span of {αj : j > p}. If β ̸= 0, note that bα = bβ + bαm,p+µ since λ1(hβ) = 0. Then

since bβ = aβ since ωm(hβ) = 0, we have that

(x−α ⊗ tbα)w = [x−αm,p+µ ⊗ tbαm,p+µ , x−β ⊗ taβ ]w = −(x−β ⊗ taβ )(x−αm,p+µ ⊗ tbαm,p+µ)w.

Thus we may assume that β = 0. But if µ ̸= 0, then similarly to before, bα = bαm,p + aµ

since λ1(hµ) = ωm(hµ) = 0. Therefore

(x−α ⊗ tbα)w = [x−µ ⊗ taµ , x−m,p ⊗ tbαm,p ]w = (x−µ ⊗ taµ)(x−m,p ⊗ tbαm,p )w

showing (x−m,p ⊗ t(ν+λ0)(hm,p))w generates the kernel as desired.

Finally, since (3.1.1) implies that

(x−m,p ⊗ t(ν+λ0)(hm,p)+1)w = 0

and, if m < p, then

(x−m+1,p ⊗ t(ν+λ0)(hm,p))w = (x−m,p−1 ⊗ t(ν+λ0)(hm,p))w = 0,

since (ν+λ0)(hm) ≥ 1, we conclude by Lemma 4.2.1 that (x−m,p⊗t(ν+λ0)(hm,p)+1)w is highest

weight.

4.3.2 The kernel when m ∈ suppλ1 with minλ1 < m < maxλ1.

Let m ∈ suppλ1 with minλ1 < m < maxλ1. Then β = αm and η = αm•,m⋄ .

Hence we wish to show that (x−α ⊗ tbα)w is in the module generated by (x−m ⊗ tbαm )w

and (x−m•,m⋄ ⊗ tbαm•,m⋄ )w for all α ∈ R+. Note that bαm = (ν + λ0)(hm) and bαm•,m⋄ =

(ν + λ0)(hm•,m⋄) + 1.
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Note that if α is either in the span of {αj : j < m} or in the span of {αj : j > m},

then ωm(hα) = 0 and so aα = bα. Thus (x
−
α⊗tbα)w = 0 by (3.1.1). So suppose α = β+αm+µ

for β in the span of {αj : j < m} and µ in the span of {αj : j > m}. Note that if

(λ1 + ωm)(hα) is odd, then

⌈(λ1 + ωm)(hα)/2⌉ = ωm(hα) + ⌈λ1(hα)/2⌉

and so aα = bα, implying (x−α ⊗ tbα)w = 0 by (3.1.1). So further assume that (λ1+ωm)(hα)

is even. Then (λ1 + ωm)(hβ) and (λ1 + ωm)(hµ) are either both even or both odd, since

(λ1 + ωm)(hm) = 2.

First, suppose (λ1+ωm)(hβ) and (λ1+ωm)(hµ) are both even. If β ̸= 0, then this

implies

⌈(λ1 + ωm)(hα)/2⌉ = ⌈(λ1 + ωm)(hβ)/2⌉+ ⌈(λ1 + ωm)(hαm+µ)/2⌉

and so bα = bβ + bαm+µ. Furthermore since ωm(hβ) = 0, bβ = aβ, and so

(x−α ⊗ tbα)w = [x−αm+µ ⊗ tbαm+µ , x−β ⊗ taβ ]w = −(x−β ⊗ taβ )(x−αm+µ ⊗ tbαm+µ)w.

Thus we may assume that β = 0. If µ ̸= 0, then similarly as before,

(x−α ⊗ tbα)w = (x−µ ⊗ taµ)(x−m ⊗ tbαm )w

because bα = bαm + bµ since

⌈(λ1 + ωm)(hαm+µ)/2⌉ = ⌈(λ1 + ωm)(hm)/2⌉+ ⌈(λ1 + ωm)(hµ)/2⌉

and bµ = aµ since ωm(hµ) = 0. Thus when (λ1+ωm)(hβ) and (λ1+ωm)(hµ) are both even,

(x−α ⊗ tbα)w is in the module generated by (x−m ⊗ tbαm )w as desired.
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Lastly assume (λ1 + ωm)(hβ) and (λ1 + ωm)(hγ) are both odd. Then ωm•(hβ)

and ωm⋄(hγ) are both nonzero. Thus α = β̃ + αm•,m⋄ + γ̃ where β̃ = β − αm•,m−1 and

γ̃ = γ − αm+1,m⋄ are positive roots, and (λ1 + ωm)(hβ̃) and (λ1 + ωm)(hγ̃) are both even.

We then proceed as above. If β̃ ̸= 0, then this implies that

⌈(λ1 + ωm)(hα)/2⌉ = ⌈(λ1 + ωm)(hβ̃)/2⌉+ ⌈(λ1 + ωm)(hαm•,m⋄+γ̃)/2⌉.

Thus bα = bβ̃ + bαm•,m⋄+γ̃ . Furthermore since ωm(hβ̃) = 0, bβ̃ = aβ̃, and so

(x−α⊗tbα)w = [x−αm•,m⋄+γ̃
⊗tbαm•,m⋄+γ̃ , x−

β̃
⊗taβ̃ ]w = −(x−

β̃
⊗tMβ̃ )(x−αm•,m⋄+γ̃

⊗tM
′
αm•,m⋄+γ̃ )w.

Therefore we may assume that β̃ = 0. Then if γ̃ ̸= 0, we have that

⌈(λ1 + ωm)(hαm•,m⋄+γ̃)/2⌉ = ⌈(λ1 + ωm)(hm•,m⋄)/2⌉+ ⌈(λ1 + ωm)(hγ̃)/2⌉

and that ωm(hγ̃) = 0. Therefore so bαm•,m⋄+γ̃ = bm•,m⋄ + aγ̃ . Thus we have that

(x−αm•,m⋄+γ̃
⊗tbαm•,m⋄+γ̃ )w = [x−γ̃ ⊗t

aγ̃ , x−m•,m⋄⊗t
bm•,m⋄ ]w = (x−γ̃ ⊗t

Mγ̃ )(x−m•,m⋄⊗t
M ′

m•,m⋄ )w.

Thus we have shown that (x−α ⊗ tbα)w is in the module generated by (x−m ⊗

t(ν+λ)(hm))w and (x−m•,m⋄ ⊗ t
(ν+λ)(hm•,m⋄ )+1)w, and so these elements generate the kernel of

φ+.

We conclude by showing these elements are highest weight. But since we see by

(3.1.1) that

(x−m ⊗ t(ν+λ)(hm)+1)w = 0

(x−m•,m⋄ ⊗ t(ν+λ)(hm•,m⋄ )+2)w = 0

(x−m•+1,m⋄
⊗ t(ν+λ)(hm•,m⋄ )+1)w = 0

(x−m•,m⋄−1 ⊗ t(ν+λ)(hm•,m⋄ )+1)w = 0
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then this follows by Lemma 4.2.1.

4.3.3 The kernel when minλ1 < m < maxλ1 with m ̸∈ suppλ1

Assume that m ̸∈ suppλ1 with minλ1 < m < maxλ1. Then β = αm•,m and

η = αm,m⋄ . Hence it suffices to show that (x−α ⊗ tbα)w is in the module generated by

(x−m•,m⊗ tbm•,m)w and (x−m,m⋄ ⊗ tbm,m⋄ )w for all α ∈ R+. We note bm•,m = (ν +λ0)(hm•,m)

and bm,m⋄ = (ν + λ0)(hm,m⋄).

First note that if α is in either the span of {αj : j < m} or the span of {αj : j > m},

then ωm(hα) = 0, and so (x−α ⊗ tbα)w = 0 by (3.1.1) as bα = aα.

So from now on assume ωm(hα) ̸= 0, and write α = β + αm + µ for β in the span

of {αj : j < m} and µ in the span of {αj : j > m}. If β = 0 or ωm•(hβ) = 0, and µ = 0 or

ωm⋄(hµ) = 0, then note that

(ωm + λ1)(hα) = (ωm + λ1)(hm) = 1.

Thus bα = aα and so (x−α ⊗ tbα)w = 0 by (3.1.1).

Next assume that ωm•(hβ) ̸= 0 but either µ = 0 or ωm⋄(hµ) = 0. If µ ̸= 0, note

that

(ωm + λ1)(hα) = (ωm + λ1)(hβ+αm).

Therefore bα = bβ+αm + bµ. But since ωm(hµ) = 0, this implies bµ = aµ, and so

(x−α ⊗ tbα)w = [x−µ ⊗ taµ , x−β+αm
⊗ tbβ+αm ]w = (x−µ ⊗ tMµ)(x−β+αm

⊗ tbβ+αm )w.

Thus in this case we may assume that µ = 0. So let α = β̃+αm•,m where β̃ = β−αm•,m−1

28



is a positive root. If β̃ ̸= 0 then since (ωm + λ1)(hm•,m) = 2, we have

⌈(ωm + λ1)(hβ̃+αm•,m
)/2⌉ = 1 + ⌈(ωm + λ1)(hβ̃)/2⌉.

Hence bβ̃+αm•,m
= bβ̃ + bm•,m = aβ̃ + bm•,m Then since bβ̃ = aβ̃ since ωm(hβ̃) = 0, we

conclude that

(x−
β̃+αm•,m

⊗ t
bβ̃+αm•,m )w = [x−m•,m ⊗ tbm•,m , x−

β̃
⊗ taβ̃ ]w = −(x−

β̃
⊗ taβ̃ )(x−m•,m ⊗ tbm•,m)w

as desired.

Likewise, if ωm⋄(hµ) ̸= 0 but either β = 0 or ωm•(hβ) = 0, then a similar compu-

tation shows that (x−α ⊗ tbα)w is in the module generated by (x−m,m⋄ ⊗ tbm,m⋄ )w.

It remains to show the case when ωm•(hβ) and ωm⋄(hµ) are both nonzero. If

(ωm + λ1)(hα) is odd, then

⌈(ωm + λ1)(hα)/2⌉ = ωm(hα) + ⌈λ1(hα)/2⌉

and so bα = aα. Thus (3.1.1) implies (x−α ⊗ tbα)w = 0. So assume (ωm + λ1)(hα) is even.

Then since (ωm+λ1)(hm) = 1, this implies either (ωm+λ1)(hβ) is even and (ωm+λ1)(hµ)

is odd or vice versa. If (ωm + λ1)(hβ) is even then this implies that

⌈(ωm + λ1)(hα)/2⌉ = ⌈(ωm + λ1)(hβ)/2⌉+ ⌈(ωm + λ1)(hαm+µ)/2⌉.

Hence bα = bβ + bαm+µ. In addition bβ = aβ since ωm(hβ) = 0. Therefore,

(x−α ⊗ tbα)w = [x−αm+µ ⊗ tbαm+µ , x−β ⊗ taβ ]w = −(x−β ⊗ taβ )(x−αm+µ ⊗ tbαm+µ)w.

But we already showed above that (x−αm+µ⊗tbαm+µ)w is in the module generated by (x−m,m⋄⊗

tbm,m⋄ )w.
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Likewise, if (ωm + λ1)(hµ) is even and (ωm + λ1)(hβ) is odd, then a similar com-

putation shows that (x−α ⊗ tbα)w is in the module generated by (x−m•,m ⊗ tbm•,m)w. There-

fore for every α ∈ R+, we have shown that (x−α ⊗ tbα)w is in the module generated by

(x−m•,m ⊗ t(ν+λ0)(hm•,m))w and (x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))w as desired.

It now remains to show that these generators are highest weight. But since by

(3.1.1), we have that

(x−m ⊗ t(ν+λ)(hm•,m)+1)w = 0

(x−m•,m⋄ ⊗ t(ν+λ)(hm,m⋄ )+1)w = 0

(x−m•+1,m⋄
⊗ t(ν+λ)(hm•,m))w = 0

(x−m•,m⋄−1 ⊗ t(ν+λ)(hm,m⋄ ))w = 0

then this follows by Lemma 4.2.1.
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Chapter 5

The Leftmost Map φ−

We now define some notation to be used in the rest of this section. Given λ ∈ P+

and m ∈ [1, n], define Pm(λ) ⊂ [1, n]× [1, n] as follows:

Pm(λ) =



{(m,m)} if m ∈ suppλ1 with m = minλ1 or m = maxλ1,

{(m,m), (m•,m⋄)} if m ∈ suppλ1 with minλ1 < m < maxλ1,

{(m,m⋄)} if m /∈ suppλ1 with m < minλ1,

{(m•,m)} if m /∈ suppλ1 with m > maxλ1,

{(m•,m), (m,m⋄)} if m /∈ suppλ1 with minλ1 < m < maxλ1,

∅ otherwise.

Given i,m, j ∈ [1, n], define integer

ε(i,m, j) = (1− δi,m)(1− δm,j).

In particular, for i ≤ m ≤ j, ε(i,m, j) = 0 unless i < m < j, in which case ε(i,m, j) = 1.
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Let ν, λ ∈ P+ and m ∈ supp ν with (i, j) ∈ Pm(λ). Then for each α ∈ R+ define

integers

aα(ν, λ) = ν(hα) + ⌈λ(hα)/2⌉,

bα(ν, λ,m) = (ν − ωm)(hα) + ⌈(λ+ ωm)(hα)/2⌉,

cα(ν, λ, i,m, j) = (ν + (ε(i,m, j)− 1)ωm + λ0)(hα)

+ ⌈( (δλ1(hm),0ωm + λ1)(1, i) )
′ (hα)/2⌉

+ ⌈ ′( (δλ1(hm),0ωm + λ1)(j, n) ) (hα)/2⌉.

5.1 The Main Proposition

In this section, our goal is to show the existence of map φ−. The main result

needed for that is the following proposition:

Proposition 5.1.1. Let ν, λ ∈ P+, and let m ∈ [1, n].

If m ∈ suppλ1, then there exists map of sln+1[t]-modules

φ−
1 : τ∗(ν+λ0)(hm)Um,0(ν, λ) → N(ν, λ, 0)

sending generator to (x−m ⊗ t(ν+λ0)(hm))w. Furthermore, if m ∈ suppλ1 and minλ1 < m <

maxλ1, then then there exists map of sln+1[t]-modules

φ−
2 : τ∗(ν+λ0)(hm•,m⋄ )+1Um,0(ν, λ+ ωm) → N(ν, λ, 0)

sending generator to (x−m•,m⋄ ⊗ t(ν+λ0)(hm•,m⋄ )+1)w.

If m ̸∈ suppλ1 and m > minλ1, then there exists map of sln+1[t]-modules

φ−
L : τ∗(ν+λ0)(hm•,m)Um,−1(ν, λ+ ωm) → N(ν, λ, 0)
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sending generator to (x−m•,m ⊗ t(ν+λ0)(hm•,m))w.

If m ̸∈ suppλ1 and m < maxλ1, then there exists map of sln+1[t]-modules

φ−
R : τ∗(ν+λ0)(hm,m⋄ )

Um,1(ν, λ+ ωm) → N(ν, λ, 0)

sending generator to (x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))w.

The rest of this section will consist of the proof of this proposition, whose orga-

nization will be as follows. First, we introduce an important lemma, and then assuming

the lemma prove this proposition. The remainder of the section will consist of proving the

lemma.

5.2 Lemma and Proof of proposition

We state the following lemma, which we will use to prove Proposition 5.1.1.

Lemma 5.2.1. Let ν, λ ∈ P+ and m ∈ supp ν. Let (i, j) ∈ Pm(λ). Let w denote the

generator of N(ν, λ, 0), and set

cα := cα(ν, λ, i,m, j) for each α ∈ R+, bαi,j := bαi,j (ν, λ,m).

Then for all α ∈ R+,

(x−α ⊗ tcα)(x−i,j ⊗ tbαi,j )w = 0. (5.2.1)

Assuming this lemma, we may now prove the main proposition.

Proof of Proposition 5.1.1. Suppose first that m ∈ suppλ1. Note

(x−m ⊗ t(ν+λ0)(hm))w = (x−β ⊗ tbβ )w
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as in the notation of Proposition 4.1.1. Since

Um,0(ν, λ) ∼= N(ν − ωm, 2λ0 + λ1(1,m)′ , ′λ1(m,n))

and (x−m ⊗ t(ν+λ0)(hm))w is highest weight by Proposition 4.1.1 of weight

ν + λ− αm = ν − ωm + 2λ0 + λ1(1,m)′ +′ λ1(m,n),

then by (3.1.1) the map φ−
1 exists if and only if

(x−α ⊗ t(ν−ωm+λ0)(hα)+⌈(λ1(1,m)′)(hα)/2⌉+⌈(′λ1(m,n))(hα)/2⌉)(x−m ⊗ t(ν+λ0)(hm))w = 0

for every α ∈ R+. But this follows from Lemma 5.2.1 since

(ν − ωm + λ0)(hα) + ⌈(λ1(1,m)′)(hα)/2⌉+ ⌈(′λ1(m,n))(hα)/2⌉

is equal to cα(ν, λ,m,m,m) for every α ∈ R+ and

(ν + λ0)(hm) = bαm(ν, λ,m)

where we note (m,m) ∈ Pm(λ).

Next suppose m ∈ suppλ1 with minλ1 < m < maxλ1. Note

(x−m•,m⋄ ⊗ t(ν+λ0)(hm•,m⋄ )+1)w = (x−η ⊗ tbη)w

as in the notation of Proposition 4.1.1. Since

Um,0(ν, λ+ ωm) ∼= N(ν − ωm, 2λ0 + 2ωm + λ1(1,m− 1)′ , ′λ1(m+ 1, n))

and (x−m•,m⋄ ⊗ t(ν+λ0)(hm•,m⋄ )+1)w is highest weight by Proposition 4.1.1 of weight

ν + λ− αm•,m⋄ = ν + 2λ0 + ωm + λ1(1,m− 1)′ +′ λ1(m+ 1, n),
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then by (3.1.1) the map φ−
2 exists if and only if

(x−α ⊗ t(ν+λ0)(hα)+⌈(λ1(1,m−1)′)(hα)/2⌉+⌈(′λ1(m+1,n))(hα)/2⌉)(x−m•,m⋄ ⊗ t(ν+λ0)(hm•,m⋄ )+1) = 0

for every α ∈ R+. But this follows from Lemma 5.2.1 since

(ν + λ0)(hα) + ⌈(λ1(1,m− 1)′)(hα)/2⌉+ ⌈(′λ1(m+ 1, n))(hα)/2⌉ = cα(ν, λ,m•,m,m⋄)

for every α ∈ R+,

(ν + λ0)(hm•,m⋄) + 1 = bαm•,m⋄ (ν, λ,m)

where we note (m•,m⋄) ∈ Pm(λ).

Next we assume m /∈ suppλ1 and m > minλ1. Note

(x−m•,m ⊗ t(ν+λ0)(hm•,m))w = (x−η ⊗ tbη)w

as in the notation of Proposition 4.1.1. Since

Um,−1(ν, λ+ ωm) ∼= N(ν − ωm, 2λ0 + λ1(1,m− 1)′ , ωm+1 + λ1(m+ 1, n))

and (x−m•,m ⊗ t(ν+λ0)(hm•,m))w is highest weight by Proposition 4.1.1 of weight

ν + λ− αm•,m = ν + 2λ0 + λ1(1,m− 1)′ − ωm + ωm+1 + λ1(m+ 1, n),

then by (3.1.1) the map φ−
L exists if and only if

(x−α⊗t(ν−ωm+λ0)(hα)+⌈(λ1(1,m−1)′)(hα)/2⌉+⌈(ωm+1+λ1(m+1,n))(hα)/2⌉)(x−m•,m⊗t(ν+λ0)(hm•,m)) = 0

for every α ∈ R+. But this follows from Lemma 5.2.1 since

(ν − ωm + λ0)(hα) + ⌈(λ1(1,m− 1)′)(hα)/2⌉+ ⌈(ωm+1 + λ1(m+ 1, n))(hα)/2⌉

= cα(ν, λ,m•,m,m) for every α ∈ R+,

(ν + λ0)(hm•,m) = bαm•,m(ν, λ,m)
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where we note (m•,m) ∈ Pm(λ).

Last suppose that m /∈ suppλ1 and m < maxλ1. Note

(x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))w = (x−β ⊗ tbβ )w

as in the notation of Proposition 4.1.1. Since

Um,1(ν, λ+ ωm) ∼= N(ν − ωm, 2λ0 + λ1(1,m− 1) + ωm−1 ,
′λ1(m+ 1, n))

and (x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))w is highest weight by Proposition 4.1.1 of weight

ν + λ− αm,m⋄ = ν + 2λ0 + λ1(1,m− 1) + ωm−1 − ωm +′ λ1(m+ 1, n),

then by (3.1.1) the map φ−
R exists if and only if

(x−α⊗t(ν−ωm+λ0)(hα)+⌈(λ1(1,m−1)+ωm−1)(hα)/2⌉+⌈(′λ1(m+1,n))(hα)/2⌉)(x−m,m⋄⊗t
(ν+λ0)(hm,m⋄ )) = 0

for every α ∈ R+. But this follows from Lemma 5.2.1 since

(ν − ωm + λ0)(hα) + ⌈(λ1(1,m− 1) + ωm−1)(hα)/2⌉+ ⌈(′λ1(m+ 1, n))(hα)/2⌉

= cα(ν, λ,m,m,m⋄) for every α ∈ R+,

(ν + λ0)(hm,m⋄) = bαm,m⋄ (ν, λ,m)

where we note (m,m⋄) ∈ Pm(λ).

Thus the existence of all four maps has been shown.
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5.3 Proof of Lemma 5.2.1

We finish the section with a proof of the main lemma. For the rest of this section,

we will let

aα := aα(ν, λ) for every α ∈ R+.

Then (3.1.1) in N(ν, λ, 0) can be written as

(x−α ⊗ taα)w = 0 for every α ∈ R+. (5.3.1)

In addition, let

ε := ε(i,m, j).

5.3.1 The case when α = αi,j

Lemma 5.3.1. Relation (5.2.1) holds for α = αi,j.

Proof. A simple calculation shows that

cαi,j = (ν + λ0)(hi,j)− 1 + ε,

bαi,j = (ν + λ0)(hi,j)− 1 + ⌈λ1(hi,j)/2 + 1/2⌉ = (ν + λ0)(hi,j) + ε.

Thus to show (5.2.1) for α = αi,j , we must show that

(x−i,j ⊗ t(ν+λ0)(hi,j)+ε−1)(x−i,j ⊗ t(ν+λ0)(hi,j)+ε)w = 0. (5.3.2)

Let r = (ν + λ0)(hi,j) + ε. Then

2r + 1 = 2(ν + λ0)(hi,j) + 2ε+ 1 = (2ν + λ)(hi,j) ≥ (ν + λ)(hi,j) + 1

since ν(hi,j) ≥ 1. By (2.3.1), (x−i,j)
(ν+λ)(hi,j)+1w = 0. Since w is highest weight, this implies

that (x−i,j)
2r+1w = 0.
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Second, note that by (3.1.1), we have that

(x−i,j ⊗ tr+1)w = (x−i,j ⊗ taαi,j )w = 0.

Hence by Lemma 2.4.1, we can conclude that relation (5.3.2) is true, finishing the proof.

5.3.2 The case when α = β + αi−1 or α = αj+1 + µ

Lemma 5.3.2. Relation (5.2.1) holds for α = β + αi−1 or α = αj+1 + µ for β in the span

of {αℓ : ℓ < i− 1} and µ in the span of {αℓ : ℓ > j + 1}.

Proof. We prove the case when α = β + αi−1, as the case when α = αj+1 + µ is similar.

First, note that if i − 1 = 0, there is nothing to show. So let i − 1 > 0. Then since

[x−β+αi−1
, x−i,j ] = −x−β+αi−1,j

, the left hand side of (5.2.1) is equal to

−(x−β+αi−1,j
⊗ tcβ+αi−1

+bαi,j )w + (x−i,j ⊗ tbαi,j )(x−β+αi−1
⊗ tcβ+αi−1 )w.

We begin by showing the first term in the sum is zero. But this follows from the fact that

cβ+αi−1
+ bαi,j = (ν + λ0)(hβ+αi−1,j

) + ⌈λ1(hβ+αi−1
)/2 + 1/2⌉+ ε = aβ+αi−1,j

.

It now suffices to show that (x−β+αi−1
⊗ tcβ+αi−1 )w = 0. But note that

cβ+αi−1
= (ν + λ0)(hβ+αi−1

) + ⌈λ1(hβ+αi−1
)/2 + 1/2⌉ ≥ aβ+αi−1

finishing this lemma.

5.3.3 A Useful Lemma

The next lemma will be used in proving the following lemma.
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Lemma 5.3.3. Suppose i ̸= m or j ̸= m. Then

(x−m ⊗ tcαm−Jm∈suppλ1K)(x−m ⊗ tcαm )w = 0.

Proof. Note that

cα = (ν + λ0)(hm)− 1 + ε.

First, suppose m ∈ suppλ1. Then we wish to show that

(x−m ⊗ t(ν+λ0)(hm)−1)(x−m ⊗ t(ν+λ0)(hm))w = 0.

But by Lemma 2.4.1(i), this follows from the fact that

(x− ⊗ 1)2(ν+λ0)(hm)+1w = 0 and (x− ⊗ t)(ν+λ0)(hm)+1w = 0

by (2.3.1) and (3.1.1) in N(ν, λ, 0), respectively, where we note that

2(ν + λ0)(hm) + 1 = (2ν + λ)(hm) ≥ (ν + λ)(hm) + 1

since ν(hm) ≥ 1.

Second, suppose m ̸∈ suppλ1. Then we wish to show that

(x−m ⊗ t(ν+λ0)(hm)−1)2w = 0.

But by Lemma 2.4.1(i), this follows from the fact that

(x− ⊗ 1)2(ν+λ0)(hm)w = 0 and (x− ⊗ t)(ν+λ0)(hm)w = 0

by (2.3.1) and (3.1.1) in N(ν, λ, 0), respectively, where we note that

2(ν + λ0)(hm) = (2ν + λ)(hm) ≥ (ν + λ)(hm) + 1

since ν(hm) ≥ 1.
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5.3.4 The case when α = β + αm + µ

Lemma 5.3.4. Relation (5.2.1) holds for α = β + αm + µ for β in the span of {αℓ : i <

ℓ < m} and µ in the span of {αℓ : m < ℓ < j}.

Proof. By Lemma 5.3.1 this is already shown for when i = j = m with m ∈ suppλ1. So

assume that m ̸= i or m ̸= j. Note that

cβ+αm+µ = (ν + λ0)(hβ+αm+µ) + ε− 1 = aβ + cαm + aµ.

Thus if µ ̸= 0, then x−β+αm+µ = [x−µ , x
−
β+αm

] and [x−µ , x
−
i,j ] = 0, and so (5.2.1) is equivalent

to the relation

(x−µ ⊗ taµ)(x−β+αm
⊗ taβ+cαm )(x−i,j ⊗ tbαi,j )w = 0.

Thus it suffices to show

(x−β+αm
⊗ taβ+cαm )(x−i,j ⊗ tbαi,j )w (5.3.3)

is equal to 0. Similarly, since x−β+αm
= [x−m, x

−
β ] and [x−β , x

−
i,j ] = 0 when β ̸= 0, (5.3.3) is

equal to

−(x−β ⊗ taβ )(x−m ⊗ tcαm )(x−i,j ⊗ tbαi,j )w.

Thus, it suffices to show that

(x−m ⊗ tcαm )(x−i,j ⊗ tbαi,j )w = 0. (5.3.4)

We proceed in cases.

First, suppose that i < m < j with m ∈ suppλ1. Then i = m• and j = m⋄. Then

since [x−m, x
−
m•,m⋄ ] = 0, we wish to show that

(x−m•,m⋄ ⊗ t(ν+λ0)(hm•,m⋄ )+1)(x−m ⊗ t(ν+λ0)(hm))w = 0. (5.3.5)
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But since x−m•,m⋄ = [x−m+1,m⋄
, x−m•,m], the left hand side of (5.3.5) is equal to

[x−m+1,m⋄
⊗ t(ν+λ0)(hm+1,m⋄ )+1, x−m•,m ⊗ t(ν+λ0)(hm•,m)](x−m ⊗ t(ν+λ0)(hm))w (5.3.6)

Note that

(x−m+1,m⋄
⊗ t(ν+λ0)(hm+1,m⋄ )+1)(x−m ⊗ t(ν+λ0)(hm))w

is equal to

(x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ )+1)w + (x−m ⊗ t(ν+λ0)(hm))(x−m+1,m⋄
⊗ t(ν+λ0)(hm+1,m⋄ )+1)w.

But this is equal to 0 since

aαm,m⋄ = (ν + λ0)(hm,m⋄) + 1,

aαm+1,m⋄ = (ν + λ0)(hm+1,m⋄) + 1.

This combined with (5.3.6) implies that it is sufficient to show that

(x−m•,m ⊗ t(ν+λ0)(hm•,m))(x−m ⊗ t(ν+λ0)(hm))w = 0. (5.3.7)

Again, since x−m•,m = [x−m, x
−
m•,m−1], the left hand side of (5.3.7) is equal to

[x−m ⊗ t(ν+λ0)(hm)−1, x−m•,m−1 ⊗ t(ν+λ0)(hm•,m−1)+1](x−m ⊗ t(ν+λ0)(hm))w.

A similar computation shows that

(x−m•,m−1 ⊗ t(ν+λ0)(hm•,m−1)+1)(x−m ⊗ t(ν+λ0)(hm))w = 0.

Therefore, we may further reduce the problem to showing that

(x−m ⊗ t(ν+λ0)(hm)−1)(x−m ⊗ t(ν+λ0)(hm))w = 0.
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But since

cαm = (ν + λ0)(hm),

this follows by Lemma 5.3.3.

Next we assume instead that m ̸∈ suppλ1 with i = m < j = m⋄. Then relation

(5.3.4) is equivalent to showing that

(x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))(x−m ⊗ t(ν+λ0)(hm)−1)w = 0. (5.3.8)

Since x−m,m⋄ = [x−m+1,m⋄
, x−m], then the left hand side of (5.3.8) is equal to

[x−m+1,m⋄
⊗ t(ν+λ0)(hm+1,m⋄ )+1, x−m ⊗ t(ν+λ0)(hm)−1](x−m ⊗ t(ν+λ0)(hm)−1)w. (5.3.9)

Note that

(x−m+1,m⋄
⊗ t(ν+λ0)(hm+1,m⋄ )+1)(x−m ⊗ t(ν+λ0)(hm)−1)w = (x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))w

since

(x−m+1,m⋄
⊗ t(ν+λ0)(hm+1,m⋄ )+1)w = 0 and [x−m+1,m⋄

, x−m] = x−m,m⋄ .

Thus (5.3.9) is equal to

(x−m+1,m⋄
⊗ t(ν+λ0)(hm+1,m⋄ )+1)(x−m ⊗ t(ν+λ0)(hm)−1)2w

− (x−m ⊗ t(ν+λ0)(hm)−1)(x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))w. (5.3.10)

But since

cαm = (ν + λ0)(hm)− 1,

Lemma 5.3.3 implies that the first term of (5.3.10) is equal to 0. Therefore, we have that

(x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))(x−m ⊗ t(ν+λ0)(hm)−1)w

= −(x−m ⊗ t(ν+λ0)(hm)−1)(x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))w
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But since [x−m,m⋄ , x
−
m] = 0, we get (5.3.8) as desired.

A similar computation holds for when m ̸∈ suppλ1 with i = m• < m = j, finishing

the proof of the lemma.

5.3.5 The case when α = αi + β or α = µ+ αj

Lemma 5.3.5. Relation (5.2.1) holds for α = αi+β for β in the span of {αℓ : i < ℓ < m};

and when α = µ+ αj for µ in the span of {αℓ : m < ℓ < j}.

Proof. We prove the case when α = αi + β, as the computations when α = µ + αj are

similar. Note that if i = m then by Lemma 5.3.4 we are done. So assume i < m; then

i = m• with either m ∈ suppλ1 or m ̸∈ suppλ1. In either case, note that if β ̸= 0, then

cαm•+β = (ν + λ0)(hαm•+β) = aβ + cαm• .

Then since x−αm•+β
= [x−β , x

−
m• ], (5.2.1) is equivalent to

[x−β ⊗ taβ , x−m• ⊗ tcαm• ](x−m•,j
⊗ tbαm•,j )w = 0.

Since [x−β , x
−
m•,j

] = 0, (5.3.1) implies that it is sufficient to show that

(x−m• ⊗ tcαm• )(x−m•,j
⊗ tbαm•,j )w = 0. (5.3.11)

Note that

bαm•,j = (ν + λ0)(hm•,j) + ε = cαm• + aαm•+1,j .

Since x−m•,j
= [x−m•+1,j , x

−
m• ], (5.3.1) implies that the left hand side of (5.3.11) is equal to

(x−m• ⊗ tcαm• )(x−m•+1,j ⊗ taαm•+1,j )(x−m• ⊗ tcαm• )w. (5.3.12)
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Again since [x−m• , x
−
m•+1,j ] = −x−m•,j

, it follows that (5.3.12) is equal to

− (x−m•,j
⊗ tbαm•,j )(x−m• ⊗ tcαm• )w + (x−m•+1,j ⊗ taαm•+1,j )(x−m• ⊗ tcαm• )2w. (5.3.13)

We claim that the second term in this sum is equal to 0. Indeed, since

(x−m• ⊗ 1)(ν+2λ0)(hm• )+2w = 0 and (x−m• ⊗ t(ν+λ0)+1)w = 0

by (2.3.1) and (3.1.1) in N(ν, λ, 0), respectively, where we note that

2(ν + λ0)(hm•) + 2 ≥ (ν + 2λ0)(hm•) + 2

since ν(hm•) ≥ 0, (x−m• ⊗ tcαm• )2w is 0 by Lemma 2.4.1(ii).

Therefore, since (5.3.11) is equal to (5.3.13), by rearranging terms we get (5.3.11)

is equal to zero whence the lemma is proven.

5.3.6 The General Case

We now proceed to proving the main lemma. First suppose α ∈ R+ such that

ωℓ(hα) = 0 for ℓ ∈ {i− 1, i,m, j, j+1}. Then (5.2.1) follows from the fact that cα = aα and

[x−α , x
−
i,j ] = 0 for such α.

From now on we may assume that ωℓ(hα) ̸= 0 for some ℓ ∈ {i − 1, i,m, j, j + 1}.

So first suppose that ωi−1(hα) ̸= 0. Then we may also assume that ωi(hα) ̸= 0 as otherwise

by Lemma 5.3.2 we are done. So let α = β + αi−1,i + µ for β in the span of {αℓ : ℓ < i− 1}

and µ in the span of {αℓ : ℓ > i}. Note that

cβ+αi−1,i+µ − cαi+µ = (ν + λ0)(hβ+αi−1
) + ⌈λ1(hβ+αi−1

)/2 + 1/2⌉ = cβ+αi−1
.
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This then implies that (5.2.1) is equivalent to showing

[x−αi+µ
⊗ tcαi+µ , x−β+αi−1

⊗ tcβ+αi−1 ](x−i,j ⊗ tbαi,j )w = 0.

By Lemma 5.3.2 we have that

(x−β+αi−1
⊗ tcβ+αi−1 )(x−i,j ⊗ tbαi,j )w = 0.

Therefore we see it is sufficient to show (5.2.1) for α ∈ R+ such that ωi−1(hα) = 0. A

similar calculation lets us also assume that ωj+1(hα) = 0.

So from now on assume that ωi−1(hα) = ωj+1(hα) = 0, and that ωℓ(hα) ̸= 0 for

some ℓ ∈ {i,m, j}. Then by Lemma 5.3.1, Lemma 5.3.4, and Lemma 5.3.5 we see that we

may further assume that i = m• < m < m⋄ = j, and that either α = αm•,m + µ for µ in

the span of {αℓ : m < ℓ < m⋄} or α = β + αm,m⋄ for β in the span of {αℓ : m• < ℓ < m}.

We shall show the case when α = αm•,m+µ, as the proof for α = β+αm,m⋄ is similar. We

have

cαm•,m+µ = (ν + λ0)(hαm•,m+µ) = cαm• + cαm•+1,m .

Therefore the left hand side of (5.2.1) is equal to

[x−αm•+1,m+µ ⊗ tcαm•+1,m+µ , x−m• ⊗ tcαm• ](x−i,j ⊗ tbαi,j )w,

which is equal to 0 by Lemma 5.3.4 and Lemma 5.3.5. Therefore we have shown that (5.2.1)

holds for all α ∈ R+.
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Chapter 6

The Maps ψ+ and ψ−

We define the following notation to be used in the rest of this chapter.

Given λ, γ ∈ P+ with maxλ1 < min γ1, define βλ,γ ∈ R+ ∪ {0} by

βλ,γ =


αmaxλ1,min γ1 if λ1, γ1 ̸= 0,

0 otherwise

.

Furthermore, given ν ∈ P+, for each α ∈ R+ define integers

aα(ν, λ, γ) = ν(hα) + ⌈λ(hα)/2⌉+ ⌈γ(hα)/2⌉,

bα(ν, λ, γ) = ν(hα) + ⌈(λ+ γ)(hα)/2⌉.

If λ1, γ1 ̸= 0, for each α ∈ R+ define integer

cα(ν, λ, γ) = ν(hα) + ⌈ λ′ (hα)/2⌉+ ⌈ ′γ (hα)/2⌉.
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6.1 The map ψ+

We prove the following proposition to begin the proof of the other short exact

sequence in Theorem 3.3.1.

Proposition 6.1.1. Let (ν, λ, γ) ∈ P+×P+×P+ be compatible. Let w denote the generator

of N(ν, λ, γ), and set

β := βλ,γ , bβ := bβ(ν, λ, γ).

Then there exists a surjective map of sln+1[t]-modules

ψ+ : N(ν, λ, γ) → N(ν, λ+ γ, 0) → 0

sending generator to generator, whose kernel is generated by (x−β ⊗ tbβ )w. In addition, this

element is highest weight.

Proof. For each α ∈ R+ we will let

aα := aα(ν, λ), bα := bα(ν, λ)

Note that N(ν, λ, γ) and N(ν, λ + γ, 0) are quotients of Wloc(ν + λ + γ) by the additional

relations

(x−α ⊗ taα)wν,λ,γ = 0 and (x−α ⊗ taα)wν,λ+γ,0 = 0,

respectively, for every α ∈ R+. Thus, existence of the map ψ+ follows from the fact that

aα ≥ bα for all α. In particular, the kernel of ψ+ is generated by elements of the form

(x−α ⊗ tbα)w for all α such that aα > bα. (6.1.1)

In addition, if either λ1 = 0 or γ1 = 0, then aα = bα for all α and so ψ+ is an isomorphism

as desired, since in this case β = 0.
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So now assume that both λ1, γ1 ̸= 0. Let p = maxλ1 and q = min γ1. Then we

wish to show that all elements of the form (6.1.1) are in the module generated by

(x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+1)w

and that this element is highest weight.

First, suppose that α ∈ R+ such that ωj(hα) = 0 for j ≤ p. Then aα = bα since

λ1(hα) = 0, and thus (x−α ⊗ tbα)w = 0. Similarly, if α ∈ R+ with ωj(hα) = 0 for j ≥ q, then

aα = bα since γ1(hα) = 0, and so (x−α ⊗ tbα)w = 0.

So now assume that α ∈ R+ such that ωj(hα) ̸= 0 for p ≤ j ≤ q. Write α =

β + αp,q + µ for β in the span of {αj : j < p} and µ in the span of {αj : j > q}. Then note

that

bα = (ν + λ0 + γ0)(hα) + ⌈(λ1(hβ) + 2 + γ1(hµ))/2⌉.

If at most one of λ1(hβ) and γ1(hµ) is odd, then this implies that

bα = (ν + λ0 + γ0)(hα) + 1 + ⌈λ1(hβ)/2⌉+ ⌈γ1(hµ)/2⌉ = aβ + bαp,q + aµ.

This implies that

(x−α ⊗ tbα)w = [x−µ ⊗ taµ , [x−p,q ⊗ tbαp,q , x−β ⊗ taβ ]]w = −(x−µ ⊗ taµ)(x−β ⊗ taβ )(x−p,q ⊗ tbαp,q )w.

If instead both λ1(hβ) and γ1(hµ) are odd, then both λ1(hβ) + 1 and γ1(hµ) + 1 are even.

Thus

bα = (ν + λ0 + γ0)(hα) + ⌈(λ1(hβ) + 1)/2⌉+ ⌈(γ1(hµ) + 1)/2⌉

= (ν + λ0 + γ0)(hα) + ⌈λ1(hβ+αp)/2⌉+ ⌈γ1(hαq+µ)/2⌉

= aβ+αp + aαp+1,q−1 + aαq+µ
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where we let aαp+1,q−1 = 0 if p+ 1 > q − 1. This implies that

(x−α ⊗ tbα)w =


[x−αq+µ ⊗ taαq+µ , x−β+αp

⊗ taβ+αp ]w if p+ 1 > q − 1,

[x−αq+µ ⊗ taαq+µ , [x−p+1,q−1 ⊗ taαp+1,q−1 , x−β+αp
⊗ taβ+αp ]]w otherwise

which in either case is equal to 0.

Thus (x−α ⊗ tbα)w is in the module generated by (x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+1)w for all

α ∈ R+, and so this element generates the kernel of ψ+.

We lastly conclude by Lemma 4.2.1 that (x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+1)w is highest

weight, since

(x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+2)w = 0,

(x−p+1,q ⊗ t(ν+λ0+γ0)(hp+1,q)+1)w = 0,

(x−p,q−1 ⊗ t(ν+λ0+γ0)(hp,q−1)+1)w = 0.

6.2 The map ψ−

Proposition 6.2.1. Let (ν, λ, γ) be a compatible triple, and let w denote the generator of

N(ν, λ, γ). If γ1, λ1 ̸= 0, then there exists map of sln+1[t]-modules

ψ− : τ∗bαp,q
N(ν, λ′, ′γ) → N(ν, λ, γ)

sending generator to (x−p,q ⊗ tbαp,q )w, where

p = maxλ1, q = min γ1, and bαp,q := bαp,q(ν, λ, γ).
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Proof. By Proposition 6.1.1 (x−p,q ⊗ tbαp,q )w is a highest weight vector, with weight

ν + λ+ γ − αp,q = ν + λ′ + ′γ.

Thus τ∗bαp,q
N(ν, λ′, ′γ) and U(sln+1[t])(x

−
p,q⊗tbαp,q )w are both quotients ofWloc(ν+λ

′+′γ).

Therefore, to prove that ψ− is well-defined, by relation (3.1.1) in N(ν, λ′, ′γ) it suffices to

show that

(x−α ⊗ tcα)(x−p,q ⊗ tbαp,q )w = 0 (6.2.1)

for every α ∈ R+, where we let

cα := cα(ν, λ, γ).

We also define

aα := aα(ν, λ, γ)

for every α ∈ R+, and note that N(ν, λ, γ) is the quotient of Wloc(ν+λ+γ) by the relation

(x−α ⊗ taα)wν+λ+γ = 0 for all α ∈ R+. (6.2.2)

First suppose that ωℓ(hα) = 0 for ℓ ∈ {p− 1, p, q, q+1}. Then (6.2.1) follows from

the fact that cα = aα and [x−α , x
−
p,q] = 0 for such α.

Next suppose that α = β + αp−1 for β in the span of {αℓ : ℓ < p− 1} and p > 1.

Then since [x−β+αp−1
, x−p,q] = −x−β+αp−1,q

, the left hand side of (5.2.1) is equal to

−(x−β+αp−1,q
⊗ t

cβ+αp−1
+bαp,q )w + (x−p,q ⊗ tbαp,q )(x−β+αp−1

⊗ t
cβ+αp−1 )w.

Note the first term in this sum is zero since

cβ+αp−1 + bαp,q = (ν + λ0 + γ0)(hβ+αp−1,q) + ⌈λ1(hβ+αp−1)/2 + 1/2⌉+ 1 = aβ+αp−1,q .
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The second term in this sum is also zero since

cβ+αp−1 = (ν + λ0 + γ0)(hβ+αp−1) + ⌈λ1(hβ+αp−1)/2 + 1/2⌉ ≥ aβ+αp−1

showing (6.2.1) in this case.

We omit the case when α = αq+1 + µ for µ in the span of {αℓ : ℓ > q + 1} and

q < n as the computation is similar.

Next suppose that α = β + αp−1,p + µ for β in the span of {αℓ : ℓ < p − 1}, µ in

the span of {αℓ : ℓ > p}, and p > 1. We calculate that

cβ+αp−1,p+µ = (ν+λ0+γ0)(hβ+αp−1,p+µ)+⌈ λ′1(hβ+αp−1)/2 ⌉+⌈ ′γ1(hµ)/2 ⌉ = cβ+αp−1+cαp+µ

Then since x−β+αp−1,p+µ
= [x−αp+µ, x

−
β+αp−1

], we see that (6.2.1) is equivalent to showing

[x−αp+µ ⊗ tcαp+µ , x−β+αp−1
⊗ t

cβ+αp−1 ](x−p,q ⊗ tbαp,q )w = 0.

But since we have already shown that

(x−β+αp−1
⊗ t

cβ+αp−1 )(x−p,q ⊗ tbαp,q )w = 0,

we see that it suffices to show the case when ωp−1(hα) = 0. A similar argument lets us also

assume that ωq+1(hα) = 0.

Next suppose that α = αp,q. Then (6.2.1) is equivalent to showing that

(x−p,q ⊗ t(ν+λ0+γ0)(hp,q))(x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+1)w = 0.

But this follows by Lemma 2.4.1 since

(x−p,q ⊗ 1)(ν+2λ0+2γ0)(hp,q)+3w = 0 and (x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+2)w = 0

by (2.3.1) and (3.1.1) in N(ν, λ, γ), respectively.
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Next suppose that α = αp + β for β in the span of {αℓ : p < ℓ < q}. Note that if

β ̸= 0, then

cαp+β = (ν + λ0 + γ0)(hαp+β) = cαp + aβ.

Then since x−αp+β
= [x−β , x

−
p ], (6.2.1) is equivalent to showing that

[x−β ⊗ taβ , x−p ⊗ tcαp ](x−p,q ⊗ tbαp,q )w = 0.

Since [x−β , x
−
p,q] = 0, (6.2.2) implies that it suffices to show that

(x−p ⊗ tcαp )(x−p,q ⊗ tbαp,q )w = 0. (6.2.3)

We compute that

bαp,q = (ν + λ0 + γ0)(hp,q) + 1 = cαp + aαp+1,q

Since x−p,q = [x−p+1,q, x
−
p ], (6.2.2) implies that the left hand side of (6.2.3) is equal to

(x−p ⊗ tcαp )(x−p+1,q ⊗ taαp+1,q )(x−p ⊗ tcαp )w. (6.2.4)

Again applying the fact that = [x−p , x
−
p+1,q] = −x−p,q, we have that (6.2.4) is equal to

−(x−p,q ⊗ tbαp,q )(x−p ⊗ tcαp )w + (x−p+1,q ⊗ taαp+1,q )(x−p ⊗ tcαp )2w.

We claim the second term of this sum is zero, which then implies (6.2.3) since [x−p,q, x
−
p ] = 0.

Indeed, note that

(x−p ⊗ 1)(ν+2λ0+2γ0)(hp)+2w = 0 and (x−p ⊗ t(ν+λ0+γ0)(hp)+1)w = 0

by (2.3.1) and (3.1.1) in N(ν, λ, γ), respectively. Then Lemma 2.4.1(ii) implies that

(x−p ⊗ tcαp )2w = 0,
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finishing this case.

We omit the case when α = β + αq for β in the span of {αℓ : p < ℓ < q} as the

computation is similar.

As we have shown (6.2.1) for every possible α ∈ R+, this completes the proof of

the proposition.
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Chapter 7

Proof of Short Exact Sequences

In this chapter we prove Theorem 3.3.1 and Theorem 3.2.1. We start by proving

that the sequences in Theorem 3.3.1 are right exact, and then use a dimension argument to

show left exactness. We then note that the dimension argument also implies Theorem 3.2.1.

7.1 Right exact sequences

Combining the results of the previous two chapters allows us to establish the right

exactness of the sequences in Theorem 3.3.1.

Proposition 7.1.1. Let (ν, λ, γ) be a compatible triple.

(a) Suppose γ ̸= 0. Then there exists a right exact sequence of g[t]-modules

(1−δλ1,0)(1−δγ1,0)τ∗(ν+λ0+γ0)(hp,q)+1N(ν, λ′, ′γ)
ψ−
−−→ N(ν, λ, γ)

ψ+

−−→ N(ν, λ+γ, 0) → 0

where p = maxλ1, q = min γ1.
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(b) Suppose that γ = 0 and ν − ωm ∈ P+ for some m ∈ [1, n]. There exists a right exact

sequence of g[t]-modules

Km(ν, λ)
φ−
−−→ N(ν, λ, 0)

φ+

−−→ N(ν − ωm, λ+ ωm, 0) → 0.

Proof. We start with the case when γ ̸= 0. Existence of surjective map ψ+ was estab-

lished in Proposition 6.1.1, with trivial kernel if λ1 = 0 or γ1 = 0, and otherwise with

kernel generated by (x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+1)wν,λ,γ . In the case when λ1 ̸= 0 and γ1 ̸= 0,

Proposition 6.2.1 established map ψ− sending generator of τ∗(ν+λ0+γ0)(hp,q)+1N(ν, λ′, ′γ) to

(x−p,q ⊗ t(ν+λ0+γ0)(hp,q)+1)wν,λ,γ , establishing the right exact sequence in (a).

Next, suppose γ = 0, and let m ∈ [1, n] with ν − ωm ∈ P+. Existence of map φ+

was established in Proposition 4.1.1, with kernel depending on m and λ. The map φ− can

be constructed using Proposition 5.1.1 as follows:

If λ1 = 0, then kerφ+ is trivial by Proposition 4.1.1. But also Km(ν, λ) = 0, and

so we let φ− = 0.

If m ∈ suppλ1 with m ∈ {minλ1,maxλ1}, then by Proposition 4.1.1 kerφ+ is

generated by (x−m ⊗ t(ν+λ0)(hm))wν,λ,0. But Km(ν, λ) ∼= τ∗(ν+λ0)(hm)Um,0(ν, λ). Thus we let

φ− := φ−
1 as defined in Proposition 5.1.1.

If m ∈ suppλ1 with minλ1 < m < maxλ1, then by Proposition 4.1.1 kerφ+ is

generated by (x−m ⊗ t(ν+λ0)(hm))wν,λ,0 and (x−m•,m⋄ ⊗ t(ν+λ0)(hm•,m⋄ )+1)wν,λ,0. But Km(ν, λ)

is equal to τ∗(ν+λ0)(hm)Um,0(ν, λ)
⊕
τ∗(ν+λ0)(hm•,m⋄ )+1Um,0(ν, λ + ωm). Thus we let φ− :=

φ−
1 ⊕ φ−

2 as defined in Proposition 5.1.1.

If m /∈ suppλ1 with m > maxλ1, then by Proposition 4.1.1 kerφ+ is generated

by (x−m•,m⊗ t(ν+λ0)(hm•,m))wν,λ,0. But Km(ν, λ) ∼= τ∗(ν+λ0)(hm•,m)Um,−1(ν, λ+ωm). Thus we
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let φ− := φ−
L as defined in Proposition 5.1.1.

If m /∈ suppλ1 with m < minλ1, then by Proposition 4.1.1 kerφ+ is generated by

(x−m,m⋄ ⊗ t(ν+λ0)(hm,m⋄ ))wν,λ,0. But Km(ν, λ) ∼= τ∗(ν+λ0)(hm,m⋄ )
Um,1(ν, λ + ωm). Thus we let

φ− := φ−
R as defined in Proposition 5.1.1.

Lastly if m /∈ suppλ1 with minλ1 < m < maxλ1, then by Proposition 4.1.1

kerφ+ is generated by (x−m•,m⊗ t(ν+λ0)(hm•,m))wν,λ,0 and (x−m,m⋄ ⊗ t
(ν+λ0)(hm,m⋄ ))wν,λ,0. But

Km(ν, λ) is equal to τ
∗
(ν+λ0)(hm•,m)Um,−1(ν, λ+ ωm)

⊕
τ∗(ν+λ0)(hm,m⋄ )

Um,1(ν, λ+ ωm). Thus

we let φ− := φ−
L ⊕ φ−

R as defined in Proposition 5.1.1.

Thus in all cases we have defined map φ−, which by construction gives the right

exact sequence in (b).

The proposition above immediately implies the following corollary.

Corollary 7.1.1. Let (ν, λ, γ) be a compatible triple. If γ ̸= 0 then

dimN(ν, λ, γ) ≤ dimN(ν, λ+ γ, 0) + (1− δλ1,0)(1− δγ1,0) dimN(ν, λ′, ′γ). (7.1.1)

If γ = 0 and ν − ωm ∈ P+, then

dimN(ν, λ, γ) ≤ dimN(ν − ωm, λ+ ωm, 0) + dimKm(ν, λ). (7.1.2)

To prove these sequences are left exact, it suffices to show that that equality holds

in the above. We do this by inducting on the partial order on compatible triples of dominant

integral weights introduced in section 3.2.
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7.2 Some Useful Propositions and Lemmas

The following is a consequence of Theorem 4 in [2] and Theorem 1 and Proposition

1.11 in [3], and it will be used in our proof of the main theorem.

Proposition 7.2.1. Let ν, λ ∈ P+(1) \ {0} such that max ν < minλ. Then

dimD(2, ν) dimD(2, λ) = dimD(2, ν + λ) + dimD(2, ν ′ ) dimD(2, ′λ ). (7.2.1)

In addition, if max ν < m < minλ, we have the following equations:

dimD(2, ν + ωm + λ) dimD(2, ωm) = dimD(2, ν) dimD(2, 2ωm) dimD(2, λ)

+ dimD(2, ν + ωm−1) dimD(2, ωm+1 + λ)

(7.2.2)

dimD(2, ν + λ) dimD(2, ωm) = dimD(2, ν + ωm) dimD(2, λ)

+ dimD(2, ν ′ ) dimD(2, ωm+1 + λ)

(7.2.3)

In addition, the following result from [1] will be used in the proof of left exactness.

Lemma 7.2.1. Let λ ∈ P+ with | suppλ1| ≥ 2, and let p = minλ1. Then

dimN(0, λ, 0) = dimV (ωp) dimN(0, λ− ωp, 0)

− dimV (ωp−1) dimN(0, 2λ0 +
′λ1(p+ 1, n), 0)

Proof. By Proposition 2.5(i)(b) in [1] there exists a short exact sequence of g[t]-modules

0 → τ∗λ0(hp,p⋄ )+1N(ωp−1, 2λ0 +
′λ1(p+ 1, n), 0) → N(ωp, λ− ωp, 0) → N(0, λ, 0) → 0.

Therefore

dimN(0, λ, 0) = dimN(ωp, λ− ωp, 0)− dimN(ωp−1, 2λ0 +
′λ1(p+ 1, n), 0).

The lemma then follows by noting that (ωp, λ − ωp) and (ωp−1, 2λ0 + ′λ1(p + 1, n)) are

compatible pairs and then applying Proposition 3.1.1(i).
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7.3 Proof of Dimensions

We now prove the following proposition, which will complete the proof of our short

exact sequences.

Proposition 7.3.1. The inequalities in Corollary 7.1.1 are all equalities. In particular, for

(ν, λ, γ) ∈ P+ × P+ × P+ compatible, we have that

dimN(ν, λ, γ) = dimN(ν, 0, 0) dimN(0, λ, 0) dimN(0, 0, γ). (7.3.1)

We prove this proposition via an induction on the partial order on compatible

triples in P+ × P+ × P+. We note that induction begins, since for minimal elements

(0, ωi, 0) with i ∈ [0, n], we have dimN(0, 0, 0) = 1 and so (7.3.1) follows.

For the inductive step, we will fix compatible triple (ν, λ, γ) and suppose that

(7.3.1) holds for all compatible triples (ν̃, λ̃, γ̃) < (ν, λ, γ), as well as equality in (7.1.1) for

any (ν̃, λ̃, γ̃) < (ν, λ, γ) with γ̃ ̸= 0 and (7.1.2) for any (ν̃, λ̃, 0) < (ν, λ, γ) and ℓ ∈ [1, n] with

ν̃ − ωℓ ∈ P+. Before continuing, we recall by Corollary 3.1.1 that for any ν, λ, γ ∈ P+,

dimN(ν, λ, γ) ≥ dimN(ν, 0, 0) dimN(0, λ, 0) dimN(0, 0, γ)

= dimN(ν, 0, 0) dimD(2, λ) dimD(2, γ) (7.3.2)

where the equality follows from (3.1.3).

The rest of the proof proceeds by cases on (ν, λ, γ), which constitutes the remaining

sections of this chapter.

7.4 The case when γ ̸= 0

Assume that γ ̸= 0. There are two possibilities for (ν, λ, γ) in this case.
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If λ1, γ1 ̸= 0, then (ν, λ + γ, 0) and (ν, λ′, ′γ) are both less than (ν, λ, γ) in our

partial order. Also by (7.1.1) we have that

dimN(ν, λ, γ) ≤ dimN(ν, λ+ γ, 0) + dimN(ν, λ′, ′γ)

= dimN(ν, 0, 0)(dimN(0, λ+ γ, 0) + dimN(0, λ′, 0) dimN(0, 0, ′γ))

= dimN(ν, 0, 0) dimD(2, λ) dimD(2, γ)

where the first equality follows from the inductive hypothesis and the second equality follows

from (7.2.1).

On the other hand, by (7.3.2) we have that

dimN(ν, λ, γ) ≥ dimN(ν, 0, 0) dimN(0, λ, 0) dimN(0, 0, γ)

and therefore equality holds in (7.3.1) and (7.1.1).

Next suppose that γ ̸= 0 but γ1 = 0 or λ1 = 0. Then (ν, λ + γ, 0) < (ν, λ, γ) and

N(ν, λ, γ) ∼= N(ν, λ+ γ, 0). Hence by the inductive hypothesis,

dimN(ν, λ, γ) = dimN(ν, λ+ γ, 0) = dimN(ν, 0, 0) dimN(0, λ+ γ, 0).

But note that by Proposition 3.1.1(iv),

dimN(0, λ+ γ, 0) = dimD(2, λ+ γ) = dimD(2, λ) dimD(2, γ)

since either λ = 2λ0 or γ = 2γ0. Therefore equality holds in (7.3.1) and (7.1.1), completing

all cases when γ ̸= 0.
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7.5 The case when γ = 0

From now on we shall assume γ = 0. If ν = 0 then (7.3.1) follows trivially, so from

now on we shall also assume that m ∈ supp ν for some m ∈ [1, n]. By Corollary 3.1.1, we

have that

dimN(ν, λ, 0) ≥ dimN(ν, 0, 0) dimN(0, λ, 0)

= dimN(ν − ωm, 0, 0) dimN(ωm, 0, 0) dimN(0, λ, 0). (7.5.1)

where the equality follows from Proposition 3.1.1(iii). On the other hand, by (7.1.2), we

have that

dimN(ν, λ, 0) ≤ dimN(ν − ωm, λ+ ωm, 0) + dimKm(ν, λ)

= dimN(ν − ωm, 0, 0) dimN(0, λ+ ωm, 0) + dimKm(ν, λ) (7.5.2)

where the equality follows by the inductive hypothesis, since (ν−ωm, λ+ωm, 0) < (ν, λ, 0).

We thus wish to show that (7.5.1) is equal to (7.5.2).

The remaining subsections consider all possibilities for (ν, λ, 0) and m.

7.5.1 The case when m ∈ suppλ1

Suppose that m ∈ suppλ1. Then by Proposition 3.1.1(ii) and (iv) we have that

dimN(0, λ+ ωm, 0) = dimN(0, λ− ωm, 0) dimV (2ωm). (7.5.3)

Additionally, dimKm(ν, λ) is equal to

(1− δm,minλ1)(1− δm,maxλ1) dimN(ν − ωm, 2λ0 + 2ωm + λ1(1,m− 1)′, ′λ1(m+ 1, n))

+ dimN(ν − ωm, 2λ0 + λ1(1,m)′, ′λ1(m,n)). (7.5.4)
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Since (ν − ωm, 2λ0 + λ1(1,m)′, ′λ1(m,n)) < (ν, λ, 0) and, if minλ1 < m < maxλ1, then

(ν − ωm, 2λ0 + 2ωm + λ1(1,m − 1)′, ′λ1(m + 1, n)) < (ν, λ, 0), by the inductive hypothesis

(7.5.4) is equal to

(1− δm,minλ1)(1− δm,maxλ1) dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + 2ωm + λ1(1,m− 1)′, 0)

· dimN(0, 0, ′λ1(m+ 1, n))

+ dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n)). (7.5.5)

Therefore, by substituting (7.5.3) and (7.5.5) into (7.5.2), we see it is enough to show that

(7.5.1) is equal to

dimN(ν − ωm, 0, 0) dimN(0, λ− ωm, 0) dimV (2ωm)

+ dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n))

+ (1− δm,minλ1)(1− δm,maxλ1) dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + 2ωm + λ1(1,m− 1)′, 0)

· dimN(0, 0, ′λ1(m+ 1, n)). (7.5.6)

The case when m ∈ {minλ1,maxλ1}

We will assume that m = minλ1, as the case when m = maxλ1 is similar. Then

(7.5.6) is equal to

dimN(ν − ωm, 0, 0) dimN(0, λ− ωm, 0) dimV (2ωm)

+ dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n)). (7.5.7)

By the character theory of sln+1, we have that

dimV (2ωm) = (dimV (ωm))
2 − dimV (ωm−1) dimV (ωm+1).
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Therefore (7.5.7) is equal to

dimN(ν − ωm, 0, 0) dimN(0, λ− ωm, 0)
(
(dimV (ωm))

2 − dimV (ωm−1) dimV (ωm+1)
)

+ dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n)). (7.5.8)

We thus wish to show that (7.5.1) is equal to (7.5.8).

If | suppλ1| = 1, i.e. λ1 = ωm, an application of Proposition 3.1.1(i) and (iv)

shows that

dimN(0, 2λ0 + λ1(1,m)′, 0) = dimN(0, 2λ0 + ωm−1, 0) = dimN(0, 2λ0, 0) dimV (ωm−1).

We also note that

N(0, 0, ′λ1(m,n)) = N(0, 0, ωm+1) ∼=g V (ωm+1) by Proposition 3.1.1(i).

Thus after substitution and cancellation (7.5.8) is equal to

dimN(ν − ωm, 0, 0) dimN(0, 2λ0)(dimV (ωm))
2.

But this is equal to (7.5.1) since by Proposition 3.1.1(i) and (iv), we have that

dimN(0, λ, 0) = dimV (ωm) dimN(0, 2λ0, 0).

So now assume that m = minλ1 and | suppλ1| ≥ 2. By Lemma 7.2.1 we have that

(7.5.1) is equal to

dimN(ν − ωm, 0, 0)(dimV (ωm))
2 dimN(0, λ− ωm, 0)

− dimN(ν − ωm, 0, 0) dimV (ωm−1) dimV (ωm) dimN(0, 2λ0 +
′λ1(m+ 1, n), 0). (7.5.9)
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We thus wish to show that (7.5.8) is equal to (7.5.9). By Proposition 3.1.1(i) and (iv) we

note that

dimN(0, 2λ0 + λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n))

= dimN(0, 2λ0 + ωm−1, 0) dimN(0, 0, λ1 − ωm + ωm+1)

= dimV (ωm−1) dimN(0, 0, λ− ωm + ωm+1)

Thus after removing the common term of

dimN(ν − ωm, 0, 0)(dimV (ωm))
2 dimN(0, λ− ωm, 0)

in(7.5.8) and (7.5.9), we see it is sufficient to show that

− dimN(ν − ωm, 0, 0) dimV (ωm−1) dimV (ωm+1) dimN(0, λ− ωm, 0)

+ dimN(ν − ωm, 0, 0) dimV (ωm−1) dimN(0, 0, λ− ωm + ωm+1) (7.5.10)

is equal to

−dimN(ν−ωm, 0, 0) dimV (ωm−1) dimV (ωm) dimN(0, 2λ0+
′λ1(m+1, n), 0). (7.5.11)

If | suppλ1| = 2, let λ1 = ωm + ωp for p > m. Then after factoring out a common

term of dimN(ν − ωm, 0, 0) dimV (ωm−1) from (7.5.10) and (7.5.11), we see it suffices to

show

− dimV (ωm+1) dimN(0, 2λ0 + ωp, 0) + dimN(0, 0, 2λ0 + ωm+1 + ωp)

= −dimV (ωm) dimN(0, 2λ0 + ωp+1, 0) (7.5.12)

By Proposition 3.1.1(iv) we may factor out a common term of dimN(0, 2λ0, 0) from (7.5.12),

and thus need to prove that

−dimV (ωm+1) dimN(0, ωp, 0) + dimN(0, 0, ωm+1 + ωp) = −dimV (ωm) dimN(0, ωp+1, 0).
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But Proposition 3.1.1(i) and (ii) and the the character theory of sln+1 imply this is true.

Now suppose | suppλ1| ≥ 3. Again we wish to show (7.5.10) is equal to (7.5.11).

By Proposition 3.1.1(i) and (iii) we have that

dimN(ν − ωm, 0, 0) dimV (ωm−1) dimV (ωm+1) dimN(0, λ− ωm, 0)

= dimN(ν − ωm + ωm−1 + ωm+1, 0, 0) dimN(0, λ− ωm, 0). (7.5.13)

Since (ν − ωm + ωm−1 + ωm+1, λ− ωm, 0) < (ν, λ, 0), the inductive hypothesis implies that

(7.5.13) is equal to

dimN(ν − ωm + ωm−1 + ωm+1, λ− ωm, 0). (7.5.14)

In addition the inductive hypothesis implies there exists short exact sequence

0 → τ∗(ν+λ0)(hm+1,m⋄ )+1N(ν − ωm + ωm−1, 2λ0 + ωm,
′λ1(m+ 1, n))

→ N(ν − ωm + ωm−1 + ωm+1, λ− ωm, 0) → N(ν − ωm + ωm−1, λ− ωm + ωm+1, 0) → 0.

This and (3.1.4) imply that (7.5.14) is equal to

dimN(ν − ωm + ωm−1, λ− ωm + ωm+1, 0)

+ dimN(ν − ωm + ωm−1, ωm, 2λ0 +
′λ1(m+ 1, n)). (7.5.15)

Lastly, since (ν−ωm+ωm−1, λ−ωm+ωm+1, 0) and (ν−ωm+ωm−1, ωm, 2λ0+
′λ1(m+1, n))

are less than (ν, λ, γ) in our partial order, the inductive hypothesis and Proposition 3.1.1(i)

and (iii) imply that (7.5.15) is equal to

dimN(ν − ωm, 0, 0) dimV (ωm−1) dimN(0, λ− ωm + ωm+1, 0)

+ dimN(ν − ωm, 0, 0) dimV (ωm−1) dimV (ωm) dimN(0, 0, 2λ0 +
′λ1(m+ 1, n)). (7.5.16)
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Therefore by substituting (7.5.16) for

dimN(ν − ωm, 0, 0) dimV (ωm−1) dimV (ωm+1) dimN(0, λ− ωm, 0)

in (7.5.10), we see it is equal to (7.5.11) as desired, finishing the case when m = minλ1.

The case when minλ1 < m < maxλ1

Now suppose that m ∈ suppλ1 with minλ1 < m < maxλ1. Then we wish to show

that (7.5.1) is equal to

dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n))

+ dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + 2ωm + λ1(1,m− 1)′, 0) dimN(0, 0, ′λ1(m+ 1, n))

+ dimN(ν − ωm, 0, 0) dimN(0, λ− ωm, 0) dimV (2ωm). (7.5.17)

Note that by Proposition 3.1.1(iv), every term of (7.5.1) and (7.5.17) is divisible by

dimN(0, 2λ0, 0). Thus by removing a common factor of dimN(ν−ωm, 0, 0) dimN(0, 2λ0, 0),

we see it is enough to show that

dimN(0, λ1 − ωm, 0) dimV (2ωm) + dimN(0, λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n))

+ dimN(0, 2ωm + λ1(1,m− 1)′, 0) dimN(0, 0, ′λ1(m+ 1, n)) (7.5.18)

is equal to

dimN(ωm, 0, 0) dimN(0, λ1, 0). (7.5.19)

By (7.2.1), dimN(0, λ1 − ωm, 0) is equal to

dimN(0, λ1(1,m− 1), 0) dimN(0, 0, λ1(m+ 1, n))

− dimN(0, λ1(1,m− 1)′, 0) dimN(0, 0, ′λ1(m+ 1, n)). (7.5.20)
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Since by Proposition 3.1.1(ii) and (iv) we have

dimN(0, 2ωm + λ1(1,m− 1)′, 0) = dimV (2ωm) dimN(0, λ1(1,m− 1)′, 0), (7.5.21)

substituting (7.5.20) and (7.5.21) into (7.5.18) and cancelling like terms yields the expression

dimV (2ωm) dimN(0, λ1(1,m− 1), 0) dimN(0, 0, λ1(m+ 1, n))

+ dimN(0, λ1(1,m)′, 0) dimN(0, 0, ′λ1(m,n)).

But this is equal to (7.5.19) by (7.2.2), completing this case.

7.5.2 The case when m /∈ suppλ1

From now on, we assume that m ̸∈ suppλ1. Then dimKm(ν, λ) is equal to

Jm > minλ1KdimN(ν − ωm, 2λ0 + λ1(1,m− 1)′, ωm+1 + λ1(m+ 1, n))

+ Jm < maxλ1KdimN(ν − ωm, 2λ0 + λ1(1,m− 1) + ωm−1,
′λ1(m+ 1, n)) (7.5.22)

Since (ν − ωm, 2λ0 + λ1(1,m − 1)′, ωm+1 + λ1(m + 1, n)) < (ν, λ, γ) if m > minλ1 and

(ν − ωm, 2λ0 + λ1(1,m − 1) + ωm−1,
′λ1(m + 1, n)) < (ν, λ, γ) if m < maxλ1, by the

inductive hypothesis (7.5.22) is equal to

Jm > minλ1KdimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m− 1)′, 0)

· dimN(0, 0, ωm+1 + λ1(m+ 1, n))

+ Jm < maxλ1KdimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m− 1) + ωm−1, 0)

· dimN(0, 0, ′λ1(m+ 1, n)) (7.5.23)
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Thus, by substituting (7.5.23) into (7.5.2), we see that it is enough to show that (7.5.1) is

equal to

dimN(ν − ωm, 0, 0) dimN(0, λ+ ωm, 0)

+ Jm > minλ1KdimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m− 1)′, 0)

· dimN(0, 0, ωm+1 + λ1(m+ 1, n))

+ Jm < maxλ1KdimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m− 1) + ωm−1, 0)

· dimN(0, 0, ′λ1(m+ 1, n)) (7.5.24)

If λ1 = 0, then (7.5.24) is equal to

dimN(ν − ωm, 0, 0) dimN(0, λ+ ωm, 0).

But this is equal to (7.5.1) by Proposition 3.1.1(i) and (iv). We proceed to when λ1 ̸= 0.

The case when m < minλ1 or m > maxλ1

Suppose that m < minλ1. We note that the case when m > maxλ1 is similar and

omit the computation here. Then (7.5.24) is equal to

dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + ωm−1, 0) dimN(0, 0, ′λ1)

+ dimN(ν − ωm, 0, 0) dimN(0, λ+ ωm, 0) (7.5.25)

An application of Proposition 3.1.1(i) and (iv) implies that

dimN(0, 2λ0 + ωm−1, 0) dimN(0, 0, ′λ1) = dimV (ωm−1) dimN(0, 0, ′λ) (7.5.26)
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Substituting (7.5.26) into (7.5.25), we see we wish to show that (7.5.1) is equal to

dimN(ν − ωm, 0, 0) dimV (ωm−1) dimN(0, 0, ′λ)

+ dimN(ν − ωm, 0, 0) dimN(0, λ+ ωm, 0). (7.5.27)

But by Lemma 3.1.1(i) and Lemma 7.2.1, dimN(ωm, 0, 0) dimN(0, λ, 0) is equal to

dimN(0, λ+ ωm, 0) + dimV (ωm−1) dimN(0, ′λ).

Substituting this into (7.5.1) shows that it equals (7.5.27) as desired.

The case when minλ1 < m < maxλ1

Finally, assume that minλ1 < m < maxλ1 with m /∈ suppλ1. Then we wish to

show that (7.5.1) is equal to

dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m− 1)′, 0) dimN(0, 0, ωm+1 + λ1(m+ 1, n))

+ dimN(ν − ωm, 0, 0) dimN(0, 2λ0 + λ1(1,m− 1) + ωm−1, 0) dimN(0, 0, ′λ1(m+ 1, n))

+ dimN(ν − ωm, 0, 0) dimN(0, λ+ ωm, 0). (7.5.28)

By Proposition 3.1.1(iv), we note that every term of (7.5.1) and (7.5.28) is divisible by

dimN(0, 2λ0, 0). Thus by factoring out a common term of dimN(ν−ωm, 0, 0) dimN(0, 2λ0, 0),

we see that it suffices to show that

dimN(0, λ1 + ωm, 0) + dimN(0, λ1(1,m− 1)′, 0) dimN(0, 0, ωm+1 + λ1(m+ 1, n))

+ dimN(0, λ1(1,m− 1) + ωm−1, 0) dimN(0, 0, ′λ1(m+ 1, n)) (7.5.29)

is equal to

dimN(ωm, 0, 0) dimN(0, λ1, 0). (7.5.30)
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By (7.2.3), (7.5.30) is equal to

dimN(0, λ1(1,m− 1) + ωm, 0) dimN(0, 0, λ1(m+ 1, n))

+ dimN(0, λ1(1,m− 1)′, 0) dimN(0, 0, ωm+1 + λ1(m+ 1, n)).

Then by removing common terms, we see it is sufficient to show that

dimN(0, λ1 + ωm, 0) + dimN(0, λ1(1,m− 1) + ωm−1, 0) dimN(0, 0, ′λ1(m+ 1, n))

is equal to

dimN(0, λ1(1,m− 1) + ωm, 0) dimN(0, 0, λ1(m+ 1, n)).

But this follows from (7.2.1), finishing the proof.
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