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Abstract: We completely characterize General Gauge Mediation (GGM) at the weak scale

by solving all IR constraints over the full parameter space. This is made possible through

a combination of numerical and analytical methods, based on a set of algebraic relations

among the IR soft masses derived from the GGM boundary conditions in the UV. We show

how tensions between just a few constraints determine the boundaries of the parameter

space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and

left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks

to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks.

Meanwhile, light EW superpartners are generic throughout much of the parameter space.

This is especially the case at lower messenger scales, where a positive threshold correction

to mh coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass

constraint.

Keywords: Supersymmetry Phenomenology

ArXiv ePrint: 1507.04364

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2016)046

mailto:smknapen@lbl.gov
mailto:dredigol@lpthe.jussieu.fr
mailto:dshih@physics.rutgers.edu
http://arxiv.org/abs/1507.04364
http://dx.doi.org/10.1007/JHEP03(2016)046


J
H
E
P
0
3
(
2
0
1
6
)
0
4
6

Contents

1 Introduction 1

2 GGM at the weak scale 7

2.1 IR relations in GGM 7

2.2 Imposing the Higgs mass constraint 10

3 Scanning the GGM parameter space 12

3.1 Details of the scan 12

3.2 Results: a “birds-eye view” 14

3.3 The L and E lines 14

3.4 The Q line 17

4 Interpretation 20

4.1 µ < 0: characterizing the M2 interval 22

4.2 µ < 0: approaching the boundaries 24

4.3 µ > 0: the role of the M2 ≈ 0 region 24

5 Discussion 26

5.1 Summary 26

5.2 Preview of the LHC phenomenology 27

5.3 Future directions 29

A Validation plots 31

B Chargino/neutralino contribution to mh 32

1 Introduction

The recent discovery of a Higgs boson near 125 GeV [1, 2] has important and far-reaching

implications for supersymmetry. In minimal implementations of SUSY (i.e. the MSSM),

the stops must now either be very heavy (& 10 TeV) or have a large trilinear coupling

to the Higgs, a so-called ‘A-term’ [3–11]. Although the heavy stop scenario is trivial to

achieve, it is less interesting from both the experimental and the theoretical point of view.

Meanwhile the large A-term scenario allows for stops to be observed at the LHC, and it

presents interesting challenges for model building.

While many ideas have been explored on how to generate large, multi-TeV A-terms

from integrating out the messengers of SUSY-breaking [12–30], perhaps the simplest mech-

anism comes from the MSSM itself — radiatively generating A-terms through the MSSM
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RGEs. This is especially necessary in the context of gauge mediated supersymmetry break-

ing (GMSB). Indeed, while GMSB naturally solves the SUSY flavor problem and remains

one of the most well-motivated frameworks for the origin of SUSY breaking at the weak

scale (for a review and many original references, see [31]), it predicts that the A-terms are

essentially zero at the messenger scale.

In this paper, we will perform a systematic and thorough investigation of GMSB in

the presence of the mh = 125 GeV Higgs constraint. For this purpose, we will employ the

framework of “General Gauge Mediation” (GGM) developed in [32, 33]. There the model-

independent parameter space and predictions of gauge mediation were shown to be:1

• Flavor universality

• Negligible A-terms and Bµ

• µ is “set by hand”

• The sfermion soft masses obey the following relations

m2
Hu = m2

Hd
= m2

L

m2
Q − 2m2

U +m2
D −m2

L +m2
E = 0

2m2
Q −m2

U −m2
D − 2m2

L +m2
E = 0

(1.1)

All of these conditions hold at the messenger scale Mmess and are generally modified by

the RG-running to the weak scale. They allow for seven independent UV parameters that

span the full parameter space plus Mmess itself, which sets the length of the RG-flow. A

convenient choice of parameters is2

M1, M2, M3, m
2
Q, m

2
U , m

2
L, and µ (1.2)

It was shown in [33] that the full GGM parameter space can be realized in terms of weakly

coupled messenger models. It was further shown in [7] that if one starts with zero A-

terms in the UV, then very large gluino masses and high messenger scales are required to

generate large A-terms at the weak scale. Our goal in this paper is to build on these works,

by exploring how the full set of constraints in the UV (the GGM boundary conditions) and

the IR (the Higgs mass, EWSB and a tachyon-free spectrum) impact the allowed parameter

space. In a companion paper [35] we will study the corresponding LHC phenomenology.

While the GGM parameter space (1.2) is a huge reduction in complexity compared to

the full 100+ parameters of the MSSM soft SUSY-breaking Lagrangian, it is still challenging

to survey it fully. The main reason is that the GGM boundary conditions that lead to (1.2)

1A common extension of gauge mediation is to include additional Higgs-messenger couplings in order to

generate µ and Bµ, see [19, 34] for a discussion in the context of GGM. This may also generate A-terms

and modify the boundary conditions for m2
Hu

and m2
Hd

. Such models are beyond the scope of this work;

see section 5.3 for further comments.
2In this paper, we assume real gaugino masses and µ to avoid problems with CP violation, but allow for

both positive and negative values for all the soft masses (including µ) in (1.2). We also assume messenger

parity in the hidden sector so that U(1)Y D-tadpoles are zero in the UV [32].
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are defined in the UV at Mmess while all of the other constraints are applied in the IR at

the weak scale. Even after RG evolving from Mmess down to the weak scale and imposing

the EWSB and Higgs mass conditions, a four dimensional parameter space remains. This

is further subject to the requirement of a viable (i.e. non-tachyonic) spectrum. Previous

attempts have dealt with this challenge primarily by taking various 2D slices of the UV

parameter space [36–40]. Aside from introducing artificial relations among the parameters,

this is also suboptimal because scanning the GGM parameter space in terms of the UV

parameters is in general quite inefficient. For instance, the IR constraints might not be

automatically satisfied at a generic point in the UV parameter space, or the UV parameters

might map to uninteresting IR parameters, e.g. where some sfermions are extremely heavy

and out of reach of the LHC.

A key idea of this paper is to work directly in terms of an equivalent set of IR soft

parameters defined at the weak scale:

M1, M2, At, m
2
Q3
, m2

U3
, m2

L3
, and µ (1.3)

In order to efficiently map UV to IR parameters, we make use of a “transfer matrix”

approach to the MSSM RGEs: for fixed tan β, Mmess andMS =
√
mQ3mU3 , we integrate the

RGEs once and for all and encode the result as the coefficients of a (bi)linear transformation

between UV and IR parameters. This approach is quite common in high-scale mediation

scenarios, but less so in gauge mediation scenarios. Via the transfer matrix and the GGM

boundary conditions, all other IR parameters are determined in terms of those in (1.3) by

a set of algebraic relations. (A subset of these relations — those that are one-loop RG

invariants — was previously presented and studied in detail in [41, 42].) Using these IR

relations to reduce the MSSM soft masses to (1.3) will streamline the task of scanning

over the parameter space, elucidate the phenomenology of GGM, and clarify the interplay

between the various IR constraints.

We will take two complementary approaches to exploring the GGM parameter space at

the weak scale. Our first method is to perform a high-resolution numerical scan on the pa-

rameter space in (1.3). Since the RGEs depend on M1 only through the small hypercharge

coupling, M1 plays very little role in the analysis, and so we set M1 = 1 TeV throughout. We

explore the role of Mmess by defining three benchmark scenarios with “low”, “medium” and

“high” messenger scales, Mmess = 107, 1011 and 1015 GeV respectively. (Messenger scales

higher than 1015 GeV are not considered because gravity-mediated effects are expected to

become important, spoiling the flavor-universal GGM boundary conditions.) Finally, we

choose (m2
Q3
,m2

U3
,M2) to scan finely over. For each choice of these parameters, we use the

Higgs mass and EWSB conditions to eliminate At, m
2
L3

and µ. We use SoftSUSY [43] to

take into account all relevant IR threshold corrections. For each point in the stop mass

plane, the allowed parameter space is an interval (or collection of intervals) in M2.

We will also study the GGM parameter space analytically in a simplified approxima-

tion, in order to gain deeper insights. First, we will neglect all of the threshold corrections

to the EWSB equations and truncate them to tree-level. As we will see, this approxima-

tion is surprisingly effective. Second, we will greatly simplify the IR relations by using the
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one-loop RGEs and by neglecting contributions from hypercharge and the bottom and tau

Yukawas. For example, the IR relation for the right-handed slepton mass becomes:

m2
E3
≈ 2m2

L3
+

1

2
µ2 +

3

2
(m2

U3
−m2

Q3
) (1.4)

A complete list of simplified IR relations and their derivation is given in section 2.1. They

are a central result of this paper, and they will prove to be quite powerful. Together with

the tree-level EWSB conditions and an accurate Higgs mass calculation via SoftSUSY, we

find that we can understand nearly all of the features of the GGM parameter space in this

approximate analytical approach.

As we will see, the IR relations imply certain orderings of the soft masses. For example,

we will show that the first and second generation Q and U squarks are always heavier than

their third generation counterparts, and that the D squarks are always heavier than the

lightest stop. For the other sparticles, the ordering generally depends on where we are in

the parameter space. Most importantly, if mQ3 < mU3 , then according to (1.4), left-handed

sleptons are always lighter than right-handed sleptons. Meanwhile for mQ3 > mU3 , right-

handed sleptons are always lighter provided µ is not too large. Based on these orderings,

we show that the boundaries of GGM parameter space are solely determined by the Higgs

mass, EWSB, slepton tachyons, and left-handed stop/sbottom tachyons. All other potential

constraints (such as tachyons from the other scalars) are irrelevant.

Not surprisingly, the Higgs mass constraint plays an especially important role. The

reason is that, as noted above, large radiative A-terms with light stops require very heavy

gluinos in GGM. Such heavy gluinos have a number of effects on other soft parameters

through the RGEs. For example, as was noted in [7], the stops must be tachyonic at the

messenger scale and over much of the RG. (See also the nice discussion in the earlier work

of [44] and its possible implications for fine-tuning.) This is in tension with EWSB, since

negative soft masses for the stops drive m2
Hu

upwards in the RG-running,

16π2
d

dt
m2
Hu = 6y2t (m

2
Q3

+m2
U3

) + . . . (1.5)

while EWSB requires m2
Hu

< 0 at the weak scale. Of course, the simple way out is to start

with sufficiently negative m2
Hu

already at the messenger scale. But in models of GMSB,

m2
L3

= m2
Hu

at the messenger scale, and so left-handed slepton tachyons come into play,

ruling out combinations of stop masses and A-terms which would otherwise have satisfied

the mh = 125 GeV constraint. This logic is further illustrated in figure 1 for an example

point with low stop masses.

Given the role of the stop masses in determining not only the Higgs mass, but also the

ordering of the slepton masses, the projection of the GGM parameter space into the stop

soft-mass plane (mQ3 , mU3) will prove to be extremely useful throughout this paper. A

schematic representation of the stop mass plane is shown in figure 2. We have divided it

into two halves along the diagonal, and we will refer to the mQ3 < mU3 (mQ3 > mU3) half

as the “l.h.s.” (“r.h.s.”) of the stop mass plane. According to our discussion above, on the

l.h.s. (r.h.s.), left-handed (right-handed) slepton tachyons take precedence in determining

the boundaries of parameter space.
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Figure 1. Examples of spectra where both mQ3 and mU3 are small at the weak scale. mHu is

driven upward in the RG-running and EWSB is not achieved in the IR (left panel) or the left-handed

slepton remains tachyonic in the IR (right panel).

These tachyon constraints do not act symmetrically across the diagonal of the stop mass

plane. In fact, we will show that the right-handed slepton tachyon constraint leads to a

strict lower bound on mU3 of & 1.5 TeV (and becoming even more stringent with decreasing

messenger scale). Because of the IR relations, there are similarly stringent bounds for all

of the other right-handed squarks (both up and down-type). Meanwhile, no comparable

lower bound on mQ3 exists on the l.h.s. . Instead, here the boundary arises because a

large hierarchy between mQ3 and M3 induces a large, negative threshold correction to the

left-handed stop/sbottom mass, driving it tachyonic. The left-handed squark masses of

the first/second generation track mQ3 , again because of the IR relations. As a result, we

find that all three generations of left-handed squarks can be arbitrarily light, despite the

constraints on GGM parameter space.

Near the boundaries of parameter space, a convergence of constraints leads to a highly

predictive set of spectra with definite implications for the collider phenomenology. In

particular, since the boundaries are always determined in part by a sparticle mass going

tachyonic, the spectrum there is always characterized by light sparticles. For instance, the L

and E boundaries are always accompanied by relatively light left and right handed sleptons

respectively, while the Q boundary predicts light left-handed stops/sbottoms. The tension

with EWSB generally implies light Higgsinos as well. These are interesting predictions for

the boundary of the GGM parameter space and provide additional motivation for LHC

searches focused on stops, sbottoms and EW superpartners.

Finally, we will see from both the full numerical scan and the approximate analytic

approach that the sign of µ is an important discrete choice that affects many qualitative

features of the GGM spectrum. Requiring that there be no pseudoscalar tachyons correlates

the sign of µ and the range of M2 throughout GGM parameter space; in particular, only

for µ > 0 can one obtain M2 = 0. The Higgs mass receives a ∼ 2–3 GeV boost from light

charginos and neutralinos in the neighborhood of M2 = 0, and this leads to a significant

decrease in the required At for µ > 0 compared to µ < 0. We will see how this difference

between the two signs of µ becomes more striking as Mmess is decreased and all the various

constraints become much stronger. Eventually, the positive chargino/neutralino threshold

– 5 –
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Figure 2. The anatomy of the IR stop mass plane in GGM. The red line schematically indicates

the boundary of the viable parameter space; for the actual bounds we refer to figure 6. The GGM

sum rules divide the plane along the diagonal, inducing L tachyons on the left and E tachyons on

the right of the diagonal. On the far left, the parameter space is cut off by left-handed stop/sbottom

tachyons coming from gluino-induced threshold corrections.

correction becomes critical to fulfill the Higgs mass constraint and µ > 0 with M2 ≈ 0

dominates the parameter space. Light winos are therefore another robust feature of the

GGM parameter space with lower Mmess, with possibly important consequences for the

LHC phenomenology.

Our main results are summarized in figure 6 where the allowed parameter space after

the Higgs mass constraint is projected in the stop mass plane. From the discussion above,

it should be clear that the bounds strengthen as the messenger scale is decreased, since

larger gluino masses are needed to accommodate the required A-term. The messenger scale

is also likely to have an impact on the phenomenology through the NLSP lifetime, although

strictly speaking, there is no precise relation between the two in GGM. However, it is true

that in many explicit models, the NLSP is typically detector-stable at higher messenger

scales, which leads to missing transverse energy or heavy stable charged particles (HSCP’s).

Meanwhile, in many models, the NLSP decays promptly or displaced for lower messenger

scales (Mmess . 107 GeV).

The remainder of this paper is organized as follows. In section 2 we discuss the general

features of the GGM parameter space at the weak scale, and in particular the impact of

imposing the Higgs mass constraint. We derive the approximate IR relations that result

from the GGM boundary conditions in the UV. We use these to identify the relevant

constraints (EWSB, Higgs, slepton and left-handed stop/sbottom tachyons) and show how

they restrict the parameter space. Section 3 contains the methodology and results of our

numerical scan with SoftSUSY. We present results in the stop mass plane, and also along

several benchmark slices of parameter space, which serve to further illustrate the features

– 6 –
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of the parameter space and the impact of the various constraints. Section 4 is devoted to a

detailed semi-analytic study of the parameter space, which we use to validate and elucidate

features of the full numerical scan. We conclude in section 5 with a summary of our

results, a brief preview of the upcoming paper [35] on GGM collider phenomenology, and a

discussion of future directions. Appendix A contains validation plots for the transfer matrix

and our numerical scan, while appendix B discusses in more detail the chargino/neutralino

threshold correction to the Higgs mass.

2 GGM at the weak scale

2.1 IR relations in GGM

As described in the introduction, one of the key ideas of this paper is to work directly in

terms of the IR soft parameters:

M1, M2, At, m
2
Q3
, m2

U3
, m2

L3
, µ (2.1)

We are able to do this efficiently by using a “transfer matrix” approach to the MSSM

RGEs. For fixed tan β, Mmess, and MS =
√
mQ3mU3 , we can integrate the MSSM RGEs

once and for all and relate the UV soft parameters to the IR ones using a set of simple

algebraic relations. For instance, for Mmess = 1015 GeV, MS = 3 TeV and tan β = 20

we find3

m2
Q3
≈ 0.9 m̂2

Q + 2.3 M̂2
3 + 0.3 M̂2

2 + . . .

m2
U3
≈ 0.8 m̂2

U + 2.0 M̂2
3 + . . .

At ≈ −0.99 M̂3 − 0.2 M̂2 + . . .

(2.2)

where . . . refers to contributions with smaller coefficients, and the hatted (unhatted) quan-

tities are the UV (IR) parameters. To achieve optimal convergence with the remainder of

our algorithm, we extracted these coefficients using the full 2-loop RGEs of SoftSUSY-

3.5.1 [43].4

Using the transfer matrix, we can algebraically reduce all other IR soft parameters

to those in (2.1). These IR relations are the low-energy versions of the GGM boundary

conditions. The full set of IR relations is very complicated and we will not reproduce

them here. (For a subset of these relations that are renormalization group invariants,

independent of the messenger scale, see the in-depth discussion in [41, 42].) Rather, in

this subsection, we will study the IR relations in a simplified approximation that consists

of using the one-loop RGEs; neglecting y2b , y
2
τ and g21 corrections; and imposing EWSB at

large tan β:

m2
Z = − 2(m2

Hu + |µ|2) + . . .

Bµ tanβ = m2
Hd
−m2

Hu + . . .
(2.3)

3We will fix tan β = 20 everywhere in this paper, as this saturates the tree-level contribution to the

Higgs mass in the MSSM, without being so large that bottom and tau Yukawa effects cannot be neglected.

As long as tan β remains moderately large, we do not expect our conclusions to change much.
4The full set of transfer matrix coefficients used in this paper can be accessed in a accompanying

Mathematica notebook, which is included in the source of this paper on http://arxiv.org/ .

– 7 –

http://arxiv.org/


J
H
E
P
0
3
(
2
0
1
6
)
0
4
6

These simplified IR relations will form the basis of our understanding of the GGM param-

eter space. Note that they are independent of the Higgs mass constraint; we will come

to that in the next subsection. All of the sub-leading corrections (and more) are properly

taken into account in a full numerical scan using SoftSUSY, to be described in section 3.

However, as we will see through numerous detailed comparisons with this scan, the ap-

proximate treatment introduced here manages to capture most of the qualitative and even

quantitative features of the parameter space.

We begin with the IR relations for the sfermion masses:

m2
Q1,2

≈ m2
Q3

+
1

3
(m2

L3
−m2

Hu)

m2
U1,2

≈ m2
U3

+
2

3
(m2

L3
−m2

Hu)

m2
L1,2

≈ m2
L3

m2
D1,2,3

≈ 1

2
(m2

Q3
+m2

U3
)− 1

2
m2
Hu

m2
E1,2,3

≈ 2m2
L3
− 1

2
m2
Hu +

3

2
(m2

U3
−m2

Q3
)

(2.4)

These relations are satisfied exactly at the messenger scale due to the GGM boundary

conditions. In the IR, they are only violated by small effects proportional to y2b and

y2τ . Working in the same approximation, we do not concern ourselves with the small

splittings amongst the three generations of sleptons and right-handed sbottoms (see [45] for

a discussion of the slepton splitting in GGM). Notice that these relations are independent

of the messenger scale and the details of the transfer matrix. Thus they are examples of

the renormalization group invariants discussed in [41, 42].

After imposing the large tan β EWSB condition m2
Hu
≈ −µ2, we reduce the other

sfermion masses to simple combinations of the IR parameters in (2.1). These IR relations

have a number of interesting consequences, which we list here:

• The 1st/2nd generation Q and U squarks are always heavier than their 3rd generation

counterparts. We emphasize that this result is not completely trivial once negative

mass-squareds in the UV are allowed (as is the case in GGM), as these could a

priori reverse the Yukawa effects in the RGEs that usually drive the third generation

squarks lighter.

• The D squarks are always heavier than the root-mean-squared of the stop masses.

• The right-handed sleptons are strictly heavier than the left-handed sleptons, provided

that mQ3 < mU3 . For mQ3 > mU3 , which is lighter depends on µ2.

Next we turn to the Higgs sector. Here the IR relations are:5

m2
Hd
≈ m2

L3

m2
Hu ≈ e (δM2 + dAt)

2 + am2
L3
−m2

0

m2
A ≈ Bµ tanβ ≈ −g δM2 µ tanβ

(2.5)

5Note that we are assuming At = Bµ = 0 in the UV for simplicity. In practice there are generally small,

higher-loop contributions to these quantities in GGM. We have checked that none of our results depend

sensitively on At and Bµ being literally zero in the UV.
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Mmess a b c d e f g p q

1015 GeV 0.59 0.43 0.46 0.7 0.2 0.73 0.45 1.62 0.47

1011 GeV 0.69 0.33 0.49 0.83 0.1 0.87 0.28 1.95 0.39

107 GeV 0.83 0.18 0.44 1.51 0.02 1.09 0.13 3.08 0.31

Table 1. Parameters used in the IR relations (2.5)–(2.10) for various values of Mmess, with tan β =

20 and MS = 3 TeV.

where we have defined

δM2 ≡M2 + f At (2.6)

and

m2
0 ≡ b (m2

Q3
+m2

U3
)− cA2

t (2.7)

The first relation in (2.5) is a consequence of the GGM boundary conditions at the mes-

senger scale and it is only violated by yb effects. The second and third relations are derived

by integrating the MSSM RGEs, dropping subdominant contributions proportional to g21.

Unlike the previous IR relations, these depend on the messenger scale; see table 1 for

benchmark values of the coefficients a, b, . . . . In terms of (2.5), the tree-level EWSB

equations (2.3) become

e (δM2 + dAt)
2 + am2

L3
+ µ2 ≈ m2

0

−g δM2 µ tanβ ≈ m2
L3

+ µ2
(2.8)

From these IR relations, we learn that

• An important corollary of the formula for m2
A in (2.5) is that the sign of µ and δM2

are correlated. Concretely, if µ < 0 (µ > 0) we must have δM2 > 0 (δM2 < 0) to

avoid pseudoscalar tachyons.

• In fact, pseudoscalar tachyons are always superseded by positivity of m2
L3

and µ2,

according to the second EWSB condition in (2.8).

• Also from the second line in (2.8) it is clear that µ = 0 is not an independent

constraint, at least in our current approximation, since it always implies m2
L3

= 0.

• From (2.4) and (2.8), it follows that

m2
E3
<

(
3

2
+

2b

a

)
m2
U3
−
(

3

2
− 2b

a

)
m2
Q3
− 2c

a
A2
t . (2.9)

Since 2b
a < 3

2 for all messenger scales, we expect that E tachyons are always a stronger

constraint than U3 tachyons. Ultimately this translates into a strong lower bound on

mU3 , as we will show in section 3.

• The quantity m2
0 defined in (2.7) must be positive, otherwise the first EWSB condition

in (2.8) cannot be satisfied with non-tachyonic sleptons. This places an upper bound

on the magnitude of the A-term allowed at each point in the stop mass plane.
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Finally, let us comment on the role played by the gluino. The IR gluino mass is given

in terms of At and δM2 by

M3 ≈ −(pAt + q δM2) (2.10)

where benchmark values of p and q are listed in table 1. This equation shows how M3 is

linearly related to At and δM2. The proportionality constant p moreover increases with

lowered Mmess. This reflects the fact that a larger gluino mass is needed to achieve the

same At for a shorter amount of RG running. As we will see in the following sections,

enormous gluino masses are generally required to achieve the large A-term scenario with

lower messenger scales, and this can result in large gluino-induced threshold corrections to

the IR squark masses, as given by equation (34) in [46]:

δm2
q̃ =

g23
6π2

m2
q̃

(
1 + 3x+ (x− 1)2 log |x− 1| − x2 log x+ 2x log

[
M2
S

m2
q̃

])
(2.11)

Here mq̃ stands for any of the squark soft masses, and x ≡ M2
3 /m

2
q̃ . These threshold

corrections are generally negative for the gluino masses of interest (i.e for M3 � MS),

and will eventually turn the physical squark mass tachyonic. As we will see, this effect is

ultimately responsible for the left-most boundary in figure 2.

2.2 Imposing the Higgs mass constraint

Now we will impose the Higgs mass constraint and discuss its implications for GGM.

Throughout this work, we will require mh = 123 GeV, in order to account conservatively

for the theory uncertainty [47] in the Higgs mass calculation. In the MSSM, the Higgs

mass is given by the well-known formula

m2
h = m2

Z cos2(2β) +
3v2

4π2

(
|yt|4 log

(
M2
S

m2
t

)
+
A2
t

M2
S

(
|yt|2 −

A2
t

12M2
S

))
+ . . . (2.12)

Here the . . . denote important additional corrections from mQ3 6= mU3 , other sparticle

thresholds and higher loops. These are accounted for in our analysis using SoftSUSY.

The Higgs mass stringently constrains the stop masses and the A-terms in the MSSM;

for TeV-scale stops, the A-terms must generally be multi-TeV. An example of this is given

in figure 3. Shown here are contours of the “normalized A-term”

Rt ≡
|At|√

m2
Q3

+m2
U3

(2.13)

required for mh = 123 GeV in SoftSUSY, with all other superpartner masses set to MS .6

As we lower the stop masses, the required Rt increases, and for stops below ∼ 1 TeV, the

Higgs mass constraint cannot be satisfied.

6We emphasize that this figure is meant to give a general impression and should not be taken literally.

The A-term required for mh = 123 GeV can depend sensitively on the masses of the other superpartners

and their contributions to the Higgs mass.
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Figure 3. Contour plot of the Rt needed in the MSSM for mh = 123 GeV as a function of the

stop soft masses. Other soft masses were set to MS =
√
mQ3mU3 . The gray regions indicate places

where the Higgs mass constraint was impossible to satisfy. In the lower left corner, this is because

no A-term satisfies the constraint. On the sides, this is because various threshold corrections coming

from the very split stops render the output of SoftSUSY unreliable.

In GGM the Higgs mass constraint is even more stringent, since we cannot vary the

other parameters of the MSSM arbitrarily. As noted in the previous subsection, for m2
0 < 0,

the first EWSB equation in (2.8) has no valid solution, since the l.h.s. must be a sum of

non-negative quantities. This translates to the requirement that

R2
t < b/c (2.14)

and from table 1, we see that
√
b/c = 1.01, 0.85, 0.69 for Mmess = 1015, 1011, 107 GeV

respectively. Comparing with figure 3, we see that stop masses that would otherwise

be allowed by the Higgs mass constraint are ruled out in GGM by the combination of

EWSB and no-tachyon conditions. (Keep in mind that while m2
0 = 0 furnishes an absolute

boundary to the parameter space, there can be even more stringent boundaries due to

tachyon constraints.)

Clearly, the decrease of
√
b/c with messenger scale amplifies the tension between large

A-terms and the other constraints. This will serve to enhance the role of secondary thresh-

old corrections that can increase mh and allow for smaller At. As we will see in section 3.3

(and will discuss further in appendix B), chief among these is a ∼ 2 GeV positive threshold

correction to mh coming from light winos and Higgsinos when M2 and µ are both close

to zero. Since the M2 ≈ 0 region requires µ > 0 according to the first bullet point be-

low (2.8), this will lead to a marked difference between µ < 0 and µ > 0 parameter spaces

as Mmess decreases.

To summarize, we have seen in this section that the IR soft parameters of GGM are

related to those in (2.1) via a set of simple algebraic relations. Some of these IR relations
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Mmess M1 mQ3
,mU3

,M2 At mL3 , µ

107, 1011, 1015

GeV
1 TeV fine scan mh = 123 GeV EWSB conditions

Figure 4. A schematic diagram illustrating the steps in our numerical scan over the GGM pa-

rameter space. We trade all UV parameters for the more physical IR parameters in (2.1) using the

transfer matrix and use the EWSB conditions and the Higgs mass constraint to eliminate At, m
2
L3

and µ. We further fix M1 = 1 TeV, tan β = 20, scan coarsely over Mmess, and scan finely over

mQ3 , mU3 and M2.

are renormalization group invariants along the lines of [41, 42], while others are not. Using

these relations, we have shown that the IR soft masses obey certain fixed orderings. In

particular, the only soft masses in GGM that can become tachyonic independently of others

arem2
Q3

, m2
L3

andm2
E3

. All other soft masses are always positive as long as these soft masses

are positive. Together with the Higgs mass and EWSB constraints, these determine the

boundaries of GGM parameter space.

We also showed that important qualitative dividing lines cutting through the parameter

space include: the diagonal of the stop mass plane, the sign of µ, and the (anti-correlated)

sign of δM2. Using the important variables m2
0 and Rt, we saw how decreasing the mes-

senger scale results in increasingly stringent constraints on the parameter space. In the

following sections, we will confirm this general picture using a high-resolution numerical

scan of the GGM parameter space, together with an analytical approach based on the

approximate IR relations and tree-level EWSB conditions.

3 Scanning the GGM parameter space

3.1 Details of the scan

In the introduction, we sketched out the steps in our numerical scan of the GGM parameter

space. These steps are summarized in figure 4. Here, we will describe them in more detail.

1. We define “low”, “medium” and “high” messenger scale benchmarks corresponding

to Mmess = 107, 1011 and 1015 GeV respectively. Moreover, having verified that

α1 effects have very little impact on the analysis we set M1 = 1 TeV throughout

this paper.

2. We choose to eliminate At, m
2
L3

and µ using the Higgs mass and EWSB equations,

since the former depends strongly on At, while the latter are sensitive to m2
L3

and

µ. An additional benefit of this choice is that m2
L3

appears linearly in the EWSB

equations (2.8).

3. This leaves mQ3 , mU3 and M2 as independent parameters. As described in the

introduction, a convenient way to view this remaining parameter space is that for
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Figure 5. Example of the behavior of various soft parameters over the M2 interval. Here mQ3
=

1 TeV, mU3
= 3 TeV and Mmess = 1015 GeV. The feature around M2 ≈ 0 is due to threshold

correction to mh and will be discussed in detail in the next sections.

every point in the stop mass plane, all soft parameters are functions defined on an

interval or collection of intervals in M2. The A0 tachyon condition cuts the M2

interval into two disconnected pieces, one for each sign of µ. Both pieces are further

bounded by requiring the absence of slepton tachyons and by the µ2 > 0 conditions.

These features are illustrated in figure 5 for an example point in the stop mass plane.

4. Finally, we perform a high-resolution three-dimensional scan over (mQ3 ,mU3 ,M2).

Near the boundary of the parameter space the resolution of the scan is further in-

creased, such that this important region is sampled as accurately as possible. The

end result is a complete grid of valid spectra spanning the GGM parameter space and

satisfying the Higgs mass and all other IR constraints. Appendix A contains several

validation plots which demonstrate the convergence of our algorithm.

In practice, step 2 above is the most challenging part of the analysis, because of

the complicated threshold corrections that must be taken into account. Because we use

SoftSUSY to implement all the threshold corrections and RGEs, there is a particular order

in which we must solve these constraints. For a given input m2
Hu

and m2
Hd

at the messenger

scale, SoftSUSY imposes the EWSB conditions and returns µ and Bµ at the messenger

scale. It also computes mh. Thus for each (mQ3 ,mU3 ,M2), µ is given automatically by

SoftSUSY, but we must perform an auxiliary 2D scan over At and m2
L3

and numerically

solve the Bµ(UV) = 0 and mh = 123 GeV constraints. In principle, this adds two extra

dimensions to our scan. A brute force, flat scan over (At,m
2
L3

) proves to be computationally

unfeasible. Instead, we use an iterative method where we sample a few points in the

neighborhood of a seed guess, linearly interpolate in Bµ(UV) and mh to establish a new

seed, and repeat. Typically this converges quickly, after just a few steps, on an extremely

accurate solution. Of course, for this to work, it is crucial to obtain an accurate initial

seed for (At,m
2
L3

). We accomplish this by extrapolating from a neighboring point in the

(mQ3 ,mU3 ,M2) parameter space.
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3.2 Results: a “birds-eye view”

In the rest of this section, we will exhibit the results of the scan outlined above. The

primary focus here will be on describing its features; a fuller analytic understanding in

terms of the IR relations (2.4) and (2.5) and the tree-level EWSB equations (2.8) will

follow in section 4.

We begin with a “birds-eye view” of the parameter space: the viable region projected

onto the stop mass plane. Shown in figure 6 is the full result of our numerical scan for

the three different values of Mmess and the two signs of µ. There are several interesting

features of these plots which highlight the general points made in section 2. These include:

• As expected from the discussion in section 2.2, the allowed region shrinks as Mmess

decreases.

• For Mmess = 1015 GeV, the difference between µ < 0 (blue) and µ > 0 (orange) is

minimal, but it becomes increasingly dramatic as Mmess decreases. As we will see in

more detail below, this is due to the increasing importance of the chargino/neutralino

threshold correction to mh.

• Although the lower bound on mQ3 becomes increasingly stringent with lower Mmess,

the physical mass of the mostly-left-handed stop can be arbitrarily low. We will verify

in section 3.4 that this is due to the gluino threshold correction.

• The same is not true for the mostly-right-handed stop, whose mass is bounded from

below by ∼ (1.5, 2, 2.5) TeV for Mmess = (1015, 1011, 107) GeV. According to (2.9),

the right-handed slepton tachyon constraint prevents mU3 from becoming too light.

In the remainder of this section, we will further elaborate on these and other features

by “zooming in” on these plots and exploring the parameter space along three different

benchmark lines depicted in figure 7. These lines are chosen in order to illustrate the

behavior of the parameter space as we approach the L, E and Q tachyon boundaries.

Since the allowed parameter space for Mmess = 107 GeV is smaller, we will focus on the

Mmess = 1015 GeV and Mmess = 1011 GeV cases.

3.3 The L and E lines

These lines are defined by varying mU3 while holding mQ3 fixed to the benchmark values

shown in figure 7. The physics along the L and E lines is qualitatively similar, so we will

consider both simultaneously in this subsection.

Shown in figure 8 are plots of the normalized A-term Rt vs. mU3 for these lines in the

stop mass plane. As mU3 approaches the boundary (i.e. its minimal allowed value), there

are two features worth noticing: first, Rt increases due to the Higgs mass constraint, as

expected from figure 3. This leads to an increasing tension with EWSB, as explained in

section 2.2. Second, there is a range of Rt values for each mU3 , which occurs because we

marginalized over the M2 interval in this figure. The range for Rt shrinks to zero once mU3

approaches its minimal allowed value. This indicates that the viable M2 interval shrinks

to a point prior to disappearing completely.
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Figure 6. Allowed regions in the stop soft mass plane for µ < 0 (µ > 0) indicated by the blue

(orange) shaded regions. The gray dots are the allowed physical stop masses, which can differ

significantly from the soft masses due to the gluino threshold correction. The wedge along the

diagonal is a result of the level repulsion between the two stop mass eigenstates.

Figures 8 and 9 also illustrate very starkly the difference between µ < 0 and µ > 0:

we see that the A-terms are mostly constant across the M2 interval for µ < 0, as would be

expected from the Higgs mass constraint, but for µ > 0 they vary quite a lot across the

M2 interval. Evidently, the magnitude of the A-term required for mh = 123 GeV decreases

significantly in the neighborhood of M2 = 0.

The reason for this decrease can be traced back to a positive one-loop threshold correc-

tion to the Higgs mass coming from loops of light Higgsinos and winos, see appendix B for
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Line Mmess

L 1015 GeV mQ3 = 1 TeV

L 1011 GeV mQ3 = 1.5 TeV

E 1015 GeV mQ3 = 4 TeV

E 1011 GeV mQ3 = 4 TeV

Q 1015 GeV mU3 = 4 TeV

Q 1011 GeV mU3 = 4 TeV

Figure 7. The same schematic cartoon of the GGM parameter space shown in figure 2, now with

three lines labeled by (Q), (L) and (E) indicating the three benchmark lines we study in detail in

this section and the next.

more details. As the magnitude of M2 decreases, mh grows by ∼ 2–3 GeV, and this greatly

relaxes the demands on the A-term. Since M2 = 0 is only accessible for µ > 0 due to the

pseudoscalar tachyon constraint (first bullet point below (2.8)), only µ > 0 is sensitive to

this threshold correction. This explains why the allowed parameter space (figure 6) for

µ > 0 becomes much larger than the one for µ < 0 as Mmess decreases. As the constraints

on the stop mass plane become more stringent, the importance of the small-M2 threshold

correction is magnified. To the point that for Mmess = 107 GeV, the constraints basi-

cally kill off the entire parameter space, except where this small-M2 threshold correction

is present.

Finally, in figures 10 and 11 are plots of µ and the relevant slepton mass across the M2

interval, again with mU3 varying along the L or E line as indicated by the color coding. In

these figures the correlation between the sign of µ and the viable range of M2 is especially

manifest. We highlight some other general features of these plots. For µ < 0:

• |µ| is always monotonically decreasing with M2.

• The lower end of the M2 interval is determined by mL3 → 0 or mE3 → 0 on the L or

E line respectively, always with µ 6= 0.

• The upper end is determined by µ→ 0, and on the E line it is sometimes accompanied

by mE3 → 0 (i.e. for Mmess = 1015 GeV and lowering mU3 closer to the boundary).

Meanwhile, for µ > 0:

• Again, the M2 = 0 region has a large effect on the plots. |µ| is no longer monotonic

but tends to rise and fall as we cross M2 = 0.

• In all cases, the allowed M2 interval starts to center around M2 = 0 as mU3 is lowered.

When this happens, the M2 interval becomes bounded by µ → 0 and mE3 → 0 on

both ends along L and E lines respectively.
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Figure 8. Rt as a function of mU3
along the L (top) and E (bottom) benchmark lines, for

Mmess = 1015 GeV (left) and 1011 GeV (right). The orange and blue shaded points correspond to

the µ > 0 and µ < 0 branches respectively.

In section 4, we will understand these features analytically in terms of the approximate IR

relations and tree-level EWSB equations described in section 2.1.

3.4 The Q line

Finally, we come to the Q benchmark line shown in figure 7. Here we fix mU3 = 4 TeV

for both Mmess = 1015 GeV and Mmess = 1011 GeV. The normalized A-term, µ and slepton

masses all exhibit the same general behavior along the M2 interval as on the L line, so we

will not show these plots again for the Q line. The big difference with the L and E lines is

that the Q line is not cut off by EWSB and slepton tachyons, but rather by a Q tachyon.
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Figure 9. Plots of Rt vs. M2 along the L (top) and E (bottom) benchmark lines, for Mmess =

1015 GeV (left) and 1011 GeV (right). The orange and blue shaded points correspond to the µ > 0

and µ < 0 branches respectively. The progressively darker shading of the colors indicates decreas-

ing mU3
.

Shown in figure 12 is the pole mass of the lightest stop vs mQ3 along the Q line. We see

that mt̃1
begins to differ significantly from the soft mass mQ3 as we approach the boundary

of the stop mass plane, ultimately decreasing to zero. (A similar effect occurs for the pole

mass of mb̃1
.) As in figure 6, we see that the mostly left-handed stop mass eigenstate can

be arbitrarily light despite the Higgs mass constraint.

Also shown in figure 12 is the range across the M2 interval of mQ3 subject to the gluino

threshold correction (2.11). We see that it agrees quite well with the full numerical result
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Figure 10. Plots of |µ| (top), mL3
(bottom) vs. M2 along the L benchmark line, for Mmess =

1015 GeV (left) and 1011 GeV (right). Color schemes are as in figure 9. The black curves correspond

to the quantitative predictions of the lower end of the M2 interval for µ < 0 in the semi-analytic

approximation, see section 4 for details.

given by SoftSUSY. This confirms that the gluino loops dominate the threshold corrections

to the lightest stop mass and are ultimately responsible for mt̃1
going tachyonic at low mQ3 .

The plots in figure 13 illustrate more properties of the gluino mass along the Q line. For

µ < 0 where the A-term is mostly constant, we see the tight linear relationship between M2

and M3 encoded in equation (2.10). Furthermore, we see that the Higgs mass constraint

forces the gluino mass to be quite large overall, and causes it to grow as mQ3 is lowered.

Also the gluino mass is generally larger for Mmess = 1011 GeV than for Mmess = 1015 GeV,

since a larger M3 is needed to obtain the desired A-term as predicted by equation (2.10).
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Figure 11. Plots of |µ| (top), mE3
(bottom) vs. M2 along the E benchmark line, for Mmess =

1015 GeV (left) and 1011 GeV (right). Color schemes are as in figure 9. The black curves correspond

to the quantitative predictions of the lower end of the M2 interval for µ < 0 in the semi-analytic

approximation, see section 4 for details.

The large hierarchy between mQ3 and M3 enhances the gluino threshold correction for low

values of mQ3 and lower messenger scales. This is the reason for the increasing lower bound

on mQ3 in the plots in figure 6.

4 Interpretation

In this section, we will understand the features of the numerical solution in terms of the

tree-level EWSB equations (2.8) and the IR relations (2.4) and (2.5) . Having achieved
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Figure 12. Plots of the physical stop pole mass mt̃1
as a function of mQ3 along the Q benchmark

for µ > 0. (The µ < 0 plots show similar behavior.) The blue shaded region shows the variation

within the allowed M2 interval of mQ3
subject to the gluino threshold correction (2.11).

Figure 13. Plots of M3 vs. M2 along the Q benchmark line, for Mmess = 1015 GeV (left) and

1011 GeV (right). Color schemes are as in figure 9.

an analytical understanding of the Q tachyon boundary through (2.11) in the previous

subsection, we will focus on how the EWSB and slepton tachyon boundaries are deter-

mined analytically.

We will organize our discussion in this section around the sign of µ. In previous

sections, we have seen repeatedly that the µ < 0 and µ > 0 branches differ qualitatively
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due to the presence of the M2 = 0 threshold correction to the Higgs mass for the latter

branch. As a consequence, At is basically constant across the M2 interval for µ < 0, while

this is not the case for the µ > 0 branch. For µ < 0, this gives us much greater control over

the parameter space, since we can fix At in all the equations above. The µ > 0 branch on

the other hand requires greater care, and we will consider it separately.

For the convenience of the reader, we repeat here the most important formulas and

definitions from section 2.2 used in the analysis below. The EWSB equations can be

written as

e (δM2 + dAt)
2 + am2

L3
+ µ2 ≈ m2

0

−g δM2 µ tanβ ≈ m2
L3

+ µ2
(4.1)

with

δM2 ≡M2 + f At

m2
0 ≡ b (m2

Q3
+m2

U3
)− cA2

t .
(4.2)

The {a, b, c, d, e, f, g} are the numerical constants in table 1 and are determined by the

RGEs. The soft mass of the right-handed slepton is furthermore given by

m2
E3
≈ 2m2

L3
+

1

2
µ2 +

3

2
(m2

U3
−m2

Q3
). (4.3)

In the remainder of this section, we will heavily rely on these relations. We further make the

following approximations: all of our formulas in this section will be to first non-trivial order

in the 1/ tanβ expansion; we are using the tree-level EWSB equations; we are neglecting

corrections proportional to g1, yb and yτ . Also, for the most part, we will ignore the mild

variation of the {a, b, c, d, e, f, g} coefficients across the stop mass plane.

4.1 µ < 0: characterizing the M2 interval

The analysis presented in this subsection and the next applies to points with µ < 0, which

are the blue shaded points in the plots in section 3.2. We begin our discussion in the bulk

of the stop mass plane, i.e. with large m2
0. Here it is convenient to introduce a new variable:

m2 ≡ m2
0 −

3

4
a(m2

Q3
−m2

U3
)θ(m2

Q3
−m2

U3
) (4.4)

where θ is the Heaviside step function and m2
0 is defined in (4.2). So m2 = m2

0 on the

l.h.s. of the stop mass plane, while it equals m2
0 − 3

4a(m2
Q3
−m2

U3
) on the r.h.s. of the stop

mass plane.

On the l.h.s. of the stop mass plane, we expect the M2 interval is bounded by left-

handed slepton tachyons. Setting m2
L3

= 0 on the l.h.s. , we find two solutions to (4.1), one

at small δM2:

δM2 =
1

g tanβ

√
m2 − e d2A2

t

µ = −
√
m2 − e d2A2

t

(4.5)
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and one at large δM2:

δM2 = −dAt +

√
m2

e

µ = 0

(4.6)

The solutions in (4.5) and (4.6) should thus correspond to the two endpoints of the M2

interval.

Sufficiently far into the r.h.s. of the stop mass plane, the M2 interval should be bounded

by right-handed slepton tachyons. Setting m2
E3

= 0 on the r.h.s. again yields two solutions,

one at small δM2:

δM2 =
3

4

m2 − e d2A2
t + a′(m2

Q3
−m2

U3
)

g tanβ
√
a′(m2 − e d2A2

t )

µ = −
√
m2 − e d2A2

t

a′

(4.7)

and one at large δM2:

δM2 = −dAt +

√
m2

e

µ = −3

4

m2
Q3
−m2

U3

g δM2 tanβ

(4.8)

with a′ ≡ 1− a/4.

In general, the approximate solutions (4.5) and (4.7) correctly characterize the lower

endpoint of the M2 interval and the general trends along the M2 interval, but (4.6) and (4.8)

fail to characterize the behavior at the upper endpoint of the M2 interval. In more detail:

• According to the approximate solutions, the lower endpoint of the M2 interval is

characterized by m2
L3
→ 0 or m2

E3
→ 0 with µ 6= 0. These features are all clearly

borne out in the full solution, see figures 10 and 11. In these figures, we have also

indicated the quantitative predictions of (4.5) and (4.7) for the location of the lower

M2 endpoint, as shown by the black line. We see that it describes the full solution well.

• As δM2 increases, it is straightforward to show from the EWSB equations (4.1) that

|µ| always monotonically decreases with δM2, while m2
L3

and m2
E3

must rise and fall.

These trends are clearly borne out in figures 10 and 11.

• Finally, at the upper endpoint of the M2 interval, the approximate solutions in (4.6)

and (4.8) predict m2
L3
→ 0 or m2

E3
→ 0 with tan β-suppressed (or zero) µ. While µ

does become quite small in general, we observe that m2
L3

and m2
E3

appear to be cut

off at a large value at the upper end of the M2 interval. This can be traced back to

the first EWSB relation in (4.1) which implies

m2
L3
≈ −g δM2 µ tanβ

m2
E3
≈ −2g δM2 µ tanβ − 3

2
(m2

Q3
−m2

U3
)

(4.9)
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when µ is small. The factor of tan β and large δM2 mean that µ has to become

extremely small before mL3 and mE3 start to visibly approach zero. Such small values

of µ become sensitive to various effects we have neglected, e.g. threshold corrections to

the tree-level EWSB equations, and the finite-resolution effects of our grid. Evidently,

these are enough to cut out the mL3 → 0 and mE3 → 0 behavior at large M2.

• Correspondingly, we find that the quantitative predictions for the upper endpoint

given in (4.6) and (4.8) do not work so well since these assumed m2
L3

= 0 and

m2
E3

= 0 from the start.

4.2 µ < 0: approaching the boundaries

Having discussed the behavior of the M2 interval in the bulk of the stop mass plane,

now we turn to its behavior as we approach the boundaries of the stop mass plane, i.e.

as we decrease m2. Shown in figure 14 are contours of m2 − ed2A2
t for Mmess = 1015

and 1011 GeV.7 At the zero contour, the approximate solutions (4.5) and (4.7) become

imaginary and are no longer valid. We see that the zero contour does a fairly good job

of characterizing the boundary of the stop mass plane. We have verified that the largest

discrepancies for Mmess = 1015 GeV (l.h.s. ) arise due to sub-leading effects that we have

neglected in this simplified semi-analytic treatment, specifically corrections proportional to

M1 and the variation of the transfer matrix along the stop mass plane.

We must address one technicality, however, before declaring victory. For m2 < ed2A2
t ,

the approximate solutions actually have a second phase where the M2 interval is bounded

by δM2 = −dAt ±
√

m2

e . This phase is distinguished by small µ throughout the M2

interval; in fact, on the l.h.s. , µ goes to zero at both ends and is non-monotonic on the

interval. Because of the very small µ, we expect this entire phase to not be robust against

threshold corrections and finite-resolution effects. Indeed, we find that the first phase

seems to dominate the parameter space of the full numerical solution, and we only see

any evidence for the second phase in a tiny sliver of the l.h.s. of the stop mass plane for

Mmess = 1015 GeV. In any event, the question as to whether this phase exists or not is

mainly academic, since it would be largely excluded by the LEP bound on charginos.

4.3 µ > 0: the role of the M2 ≈ 0 region

Next we turn to the µ > 0 case. With just a constant A-term, the situation for µ > 0

would be nearly identical to that of µ < 0. However, we have seen in figures 8 and 9 that

the A-term needed to achieve mh = 123 GeV depends strongly on M2 in the neighborhood

of M2 = 0. As explained in appendix B, this is due to the influence of one-loop chargino-

neutralino threshold corrections. Since these threshold corrections are positive, the required

A-term is significantly smaller around M2 ≈ 0. A smaller A-term relieves the tension with

tachyons and EWSB, and so this can allow points to survive further into the stop mass

7Again, we don’t show Mmess = 107 GeV here because it is a very tiny region for µ < 0 and appears to be

subject to threshold corrections from enormous gluino masses that make the semi-analytic approximation

unreliable.
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Figure 14. Viable points in the stop mass plane for µ < 0, with contours of constant m2 − ed2A2
t

in TeV2 (thin) overlaid. The blue dots are the individual points of our full numerical scan, to

illustrate our resolution. We see that the boundary of the stop mass plane is characterized fairly

well by m2 = ed2A2
t (thick).

plane than would otherwise be the case. We have already seen this illustrated in figure 6,

most dramatically for Mmess = 107 GeV.

Here we will understand this in more detail using the approximate tree-level equations.

To begin, let’s set M2 = 0 (i.e. δM2 = fAt) in (4.1). We see that m2
L3

is always large and

positive in this regime. Solving for µ and m2
E3

we find

µ(M2 = 0) =
m2

0 − e(d+ f)2A2
t

agf(−At) tanβ
+ . . .

m2
E3

(M2 = 0) = 2
m2

0 − e(d+ f)2A2
t − 3

4a(m2
Q3
−m2

U3
)

a
+ . . .

(4.10)

where . . . denote higher order corrections in 1/ tanβ. These are monotonically decreasing

functions of −At. As we move away from M2 = 0, the value of −At needed to realize mh =

123 GeV increases significantly, so this has the effect of decreasing µ and m2
E3

. This results

in the rise and fall of these parameters around M2 observed in figures 10 and 11.

As we decrease m2
0, the values of µ(M2 = 0) and m2

E3
(M2 = 0) decrease, until eventu-

ally they cross zero. Since the A-term here is so much smaller than away from M2 = 0, this

can occur further into the stop mass plane than the boundaries discussed in the previous

subsection. In figure 15 we show the allowed points for µ > 0, with the zero contours of

µ(M2 = 0) and m2
E3

(M2 = 0) overlaid as predicted by the semi-analytic method. (To im-

prove the accuracy of these contours, we have included the sub-leading 1/ tanβ corrections

in (4.10).) We see that this does an excellent job of characterizing the boundary of the

stop mass plane for µ > 0.
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Figure 15. Viable points in the stop mass plane for µ > 0, with contours of µ(M2 = 0) = 0

(dashed) and m2
E3

(M2 = 0) = 0 (solid) overlaid. The orange dots are the individual points of our

full numerical scan, to illustrate our resolution.

5 Discussion

5.1 Summary

In this paper, we have initiated a comprehensive study of the GGM parameter space

following the discovery of the Higgs at mh = 125 GeV. In pure GGM, we have at the

messenger scale: flavor universality, three independent gaugino masses, Bµ = At = 0,

and µ “set by hand”. Using a transfer matrix approach to the MSSM RGEs, we traded

the GGM parameter space defined at the messenger scale Mmess for a set of IR variables

(mQ3 , mU3 , mL3 , M1, M2, At, µ). The RGEs depend only weakly on M1 through the

hypercharge coupling, and the results do not qualitatively depend on it. We therefore fixed
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M1 = 1 TeV throughout the analysis. We furthermore chose three benchmark values of

Mmess = 1015, 1011, 107 GeV. Then the EWSB and Higgs mass constraints eliminated three

variables, leaving us to scan over (mQ3 , mU3 , M2). At each point in the stop mass plane,

the viable parameter space was an interval in M2.

We performed a detailed numerical scan and validated it analytically using a set of

approximate IR relations together with the tree-level EWSB conditions. Through these

methods, we thoroughly explored the physically viable parameter space, with a special

focus on how its boundaries are determined. By using the IR relations to express all

other IR soft masses in terms of (1.3), we showed that the only relevant constraints on

the GGM parameter space (besides EWSB and the Higgs mass) were slepton tachyons

and left-handed stop/sbottom tachyons. All other scalar tachyons were less constraining.

Furthermore, we showed that for mQ3 < mU3 , only left-handed slepton tachyons and

left-handed stop/sbottom tachyons were relevant, while for mQ3 > mU3 only right-handed

slepton tachyons were relevant. Finally, we saw that the constraints became more stringent

and the viable parameter space smaller as Mmess was lowered.

One of the most striking results of our analysis was an absolute lower bound on

right-handed stop mass, coming from a combination of EWSB and slepton tachyon con-

straints. In particular mU3 & 1.5, 2, 2.5 TeV for Mmess = 1015, 1011, 107 GeV respectively.

However, for any messenger scale, the left-handed stop and sbottom could be arbitrarily

light. The constraints were always such that the optimal point for mh = 125 GeV with

mQ3 ∼ mU3 ∼ |At|/
√

6 ∼ 1 TeV could not be achieved in GGM.

We also identified the sign of µ as playing an important role in the qualitative behavior

of the parameter space. For µ < 0, the A-term was mostly constant across the M2 interval,

being determined by the Higgs mass constraint. However, for µ > 0, a positive threshold

correction to mh coming from light charginos and neutralinos allowed the A-term to be

much smaller in the neighborhood of M2 ≈ 0. This played an especially important role

for Mmess = 107 GeV, where the tension between the Higgs mass constraint and EWSB

and tachyons was so strong that essentially the only viable parameter space had µ > 0

and M2 ≈ 0.

5.2 Preview of the LHC phenomenology

In a companion paper [35], we will explore the LHC phenomenology of the GGM parameter

space with mh = 125 GeV. In this subsection we will give a brief preview.

Our semi-analytic understanding of the GGM parameter space gives us great control

over the spectrum as we move around in the stop mass plane and the M2 interval. In

particular, it allows us to understand under which conditions a given SUSY particle can

be light. On the one hand, this gives us sharp predictions for the properties of the NLSP,

and on the other hand it singles out the dominant production channels. Together these

two pieces of information determine most of the collider phenomenology.

We saw in our analysis how the constraints became increasingly more stringent as

Mmess was decreased. Assuming the conventional relation between NLSP lifetime and

the messenger scale (see e.g. [31] for a review), this implies a strong preference for long-

lived NLSPs at the LHC. While long-lived neutral NLSPs escape the detector without
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leaving any track, long-lived NLSPs carrying SM charges are very well constrained at

the LHC by inclusive CHAMP searches. These bounds will play a substantial role in

constraining the GGM parameter space. For the lowest value of Mmess that we considered

(Mmess = 107 GeV), the NLSP decay to the gravitino may be non-prompt but still inside

the detector volume. Constraining these scenarios is an interesting challenge for LHC

searches (see [48] for a recent discussion) and our work further motivates efforts to improve

coverage at Run II.

The dominant component of the colored production cross section will come from left-

handed squarks throughout much of the GGM parameter space. We showed already that

the left-handed stop/sbottom can be arbitrarily light. The IR relations (2.4) indicate

that the left-handed squarks of the first and second generations are heavier, but there are

points on the M2 interval where µ ∼ mL3 ∼ 0, so they can also become very light. This

can be verified in our full numerical scan. Meanwhile, the gluinos are generally forced to

be very heavy by the Higgs mass constraint, especially at lower stop masses and/or lower

messenger scales. (Of course, with sufficiently heavy stops, A-terms are not required for

the Higgs mass, and then the gluino can be arbitrarily light.) Finally we saw how the

right-handed stops are always forced to be at least 1.5 TeV due to the right-handed slepton

tachyon constraint. The IR relations (2.4) imply that the 1st/2nd generation right-handed

up squarks are even heavier. A more detailed study of the parameter space reveals that

the same is true for the right-handed down squarks.

Light EW superpartners are a generic feature of the GGM parameter space. For

example, we have seen that light Higgsinos in conjunction with light left or right-handed

sleptons always accompany the L and E boundaries of figure 2 respectively. If µ > 0 we

also expect a light wino throughout much of the parameter space, since the Higgs mass

constraint selects out the neighborhood of M2 ≈ 0. This feature is especially important

for low messenger scales, where the µ < 0 branch does not allow for light stops. Finally,

due to the IR relation

m2
A ≈ m2

L3
+ µ2, (5.1)

the pseudoscalar may also be light. (Note that (5.1) holds anywhere in the parameter space,

and will be strong test of GGM should these particles all be discovered.) The prevalence

of all these light EW sparticles in GGM, often accompanied by decoupled colored sparti-

cles, provides further motivation for dedicated Run II searches of direct EW superpartner

production.

Since the boundaries of the parameter space were determined by the combination of

the Higgs mass, EWSB, and a tachyon, the GGM spectrum becomes especially predictive

here. The tight connection between light EW states and the lightest possible mU3 for a

given Mmess has a number of important consequences for collider searches. In particular,

LEP bounds on EW states indirectly provide a lower bound on mU3 . A future lepton

collider such as ILC is expected to further probe a very large portion of the low mU3 region

of the GGM parameter space.
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5.3 Future directions

We conclude by discussing some future directions. First, an important question is to what

extent the constraints we derived here depend on the particular structure of the GGM

boundary conditions at Mmess. Here we briefly comment on more general scenarios:

• The minimal extension of GGM relaxes the requirement of messenger parity, allowing

for U(1)Y D-tadpoles. This possibility was already discussed in [32]; see [49, 50] for

explicit weakly coupled realizations. This breaks one of the sum rules in (1.1), leaving

the residual ones:

m2
Hd

= m2
L

m2
Q + 3m2

U − 9m2
D − 6m2

L +m2
E = 0

2m2
Q − 3m2

U + 3m2
L − 2m2

E − 6m2
Hu = 0

(5.2)

Consequently, an additional parameter must be added to the list (1.2). Full control

over the resulting 8 dimensional parameter space might still be feasible by applying

a similar strategy to the one we used here. The result can be interesting since the

direct relation between mHu and mL induced by (1.1) is now broken by the D-tadpole

contributions. As a consequence the friction between large At and EWSB which was

at the basis of our reasoning might be considerably alleviated and lighter stop masses

could be viable.

• Adding a flavor blind mechanism to generate µ and Bµ will generically break the sum-

rules (1.1) in a model dependent way which cannot be parametrized by a reduced set

of sum-rules like (5.2). Non-zero At may also be generated at Mmess, which would

obviously fundamentally alter the nature of the Higgs mass constraint. None of our

conclusions can be then directly extrapolated to extended gauge mediation scenarios

such as those in [12–28]. It may however be possible to perform a similar model

independent analysis by making use of the framework developed in [19, 34].

• One can still focus on extended gauge mediation scenarios where At is suppressed at

Mmess and is purely generated by RG evolution. This happens for example in solutions

of the µ/Bµ problem which involve Higgs interactions with heavy singlets [34]. At
can also be suppressed by an appropriate discrete R-symmetry [51]. In this context it

would be interesting to account for the extra UV contributions to m2
Hu

and m2
Hd

along

the lines of what we have done here. As in the hypercharge D-term scenario, such

contributions could alleviate the tension between EWSB and light stops, and possibly

allow for the optimal point of mh = 125 GeV with mQ3 ∼ mU3 ∼ |At|/
√

6 ∼ 1 TeV.

Another interesting direction for the future would be to study other aspects along the

GGM parameter space which are not directly related to collider searches:

• One of the peculiar features of GGM is that large At can only be achieved via large

M3 and therefore light stops require a careful tuning of the UV soft masses against

the gluino RGE contribution. We expect this extra source of fine-tuning to play a
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significant role in the tuning measure. While we did not attempt to do so in this

paper it would be interesting to quantify the tuning in GGM and comparing it against

other UV complete gauge mediation models like the ones in [20].

• In order to compensate for the effect of heavy gluinos, the stops run tachyonic shortly

above the weak scale [7]. Moreover, depending on the region of the parameter space,

other UV tachyons are necessary in order to obtain EWSB in the IR. Thus the

electroweak vacuum tends to be metastable. The estimates in [52] suggest that the

vacuum decay is not a stringent constraint, but it would be interesting to perform a

careful analysis in these GGM scenarios.

• Cosmological bounds can also play an important role in GGM parameter space. In

order to avoid gravitino overabundance and possible dangerous effects of the NLSP

decays on the BBN products, inflation at particularly low temperature is required

(see for example [31] and references therein for a discussion of the GGM cosmology).

This bound on the reheating temperature can be evaded for example by adding tiny

RPV couplings. However, it would be interesting to take it seriously and investigate

in full generality the allowed cosmological scenarios in GGM.

Finally, let us mention that our procedure has some intrinsic limitations due to the

theoretical uncertainty in the Higgs mass computation. In this paper, we imposed mh =

123 GeV in order to optimistically account for this uncertainty. It will be important to

revisit this work after future improvements to the accuracy of the Higgs mass calculation,

especially if these turn out to contribute negatively to mh. (See for example the recent

discussion in [53].) Aside from the usual corrections from higher orders and uncertainties

in SM inputs like mt, the Higgs mass computation in GGM is particularly challenging

due to the large hierarchies that are present in the colored spectrum. Perhaps the most

acute example of such a situation is given by the Q boundary of our parameter space,

where mU � mQ and also the gluino mass is very large. Using effective field theory

techniques such as in [54], it would be interesting to have a better control on the Higgs

mass computation in such a scenario where the lightest stop masses are realized in GGM.
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Figure 16. Histograms showing the changes in mQ3
and mU3

after running them up to the

messenger scale using the transfer matrix and then back down to the weak scale using SoftSUSY,

for every point in our GGM scan (Mmess = 107, 1011, 1015 GeV).

Figure 17. Histograms of mh and
√
Bµ(UV) across the entire GGM parameter scan.

A Validation plots

In this section we will exhibit some plots validating the accuracy of the transfer matrix

and the numerical algorithm for solving Bµ(UV) = 0 and mh = 123 GeV.

Shown in figure 16 are distributions of δmQ3 and δmU3 across our entire scan of GGM

parameter space, which contains ∼ 3× 105 points. Here δmQ3 and δmU3 are the change in

mQ3 and mU3 after running them up to the messenger scale using the transfer matrix and

then back down to the weak scale using SoftSUSY. We see that the accuracy of the transfer

matrix is very good, generally differing by less than ∼ 50 GeV, and never differing by more

than ∼ 200 GeV across the entire parameter space. These minor differences are due to

effects not captured by the transfer matrix, primarily SoftSUSY’s iterative determination

of MS , and IR threshold corrections to g3 and yt.

Shown in figure 17 are mh and
√
Bµ(UV) for every point in our GGM parameter

scan. We see that the convergence on mh is excellent, and the convergence on
√
Bµ(UV) is

decent (99% of the points have |
√
Bµ(UV)| < 400 GeV). We also note in passing that the

accuracy of the numerical scan is easily comparable to or larger than a naive estimate of

the higher-loop Bµ(UV ) expected from GGM. Given that the numerical scan was validated

using the semi-analytic approach which assumed Bµ(UV ) = 0, we do not expect that the

small corrections to Bµ(UV ) from GGM will make any difference to our conclusions.
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Figure 18. Plot of −At vs M2 for the benchmark point indicated in the figure. Orange (blue)

points correspond to µ > 0 (µ < 0). The black star corresponds to rightmost point in the M2

interval which has the biggest At.

B Chargino/neutralino contribution to mh

In this appendix we will delve into the threshold correction to mh from light winos and

Higgsinos that greatly reduces the A-term required to achieve mh = 123 GeV in the neigh-

borhood of M2 = 0.

Shown in figure 18 is a plot of −At vs M2 for a benchmark point extracted from our

grid with Mmess = 1011 GeV and (mQ3 ,mU3) = (1.5, 3.5) TeV. We see that At varies by

∼ 40% for µ > 0 (orange points), yet only varies by ∼ 1.5% for µ < 0 (blue points). The

variation for µ > 0 comes in the form of a sharp decrease in the magnitude of At as we

move from large M2 to small M2. This is characteristic of much of the parameter space,

as we already saw in figure 9.

Clearly, the decrease in magnitude of At must be driven by a positive correction to

the Higgs mass in the neighborhood of M2 = 0, as shown in figure 19. On the left, we

have a plot of mh vs M2 for the same benchmark of figure 18. We see again the excellent

convergence on mh = 123 GeV. Meanwhile in black we plot the same points, but hold At
fixed at −2.8 TeV, which corresponds to the right-most point on the M2 interval (indicated

with a black star in figure 18). We see that as we move towards M2 = 0, if we don’t

decrease the magnitude of At to compensate for the effect at M2 ≈ 0, then the Higgs mass

increases by as much as ∼ 2.5 GeV.

Alternatively one can see the same effect on the right plot of figure 19. Here we show

mh vs At with all other soft parameters fixed to the values corresponding to the right-most

point on the M2 interval of figure 18. We see that from At = −2.8 TeV to At = −2 TeV, mh

decreases by 2.5 GeV. So we confirm that the origin of the variation in At is a ∼ 2.5 GeV

enhancement to mh as we move to M2 → 0.

It remains to isolate the origin of the 2.5 GeV threshold correction to mh. Shown in

figure 20 is a contour plot of mh vs µ and M2, with all other parameters fixed to those of

the right-most point on the M2 interval. We see that the threshold correction is due to
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Figure 19. Left: plot of mh vs M2. Orange (blue) dots are grid points with µ > 0 (µ < 0). Black

dots have At = −2.8 TeV as in the right-most point of the M2 interval (the black star in figure 18).

Right: plot of mh vs −At. We fix all the other parameters as in the right-most point of the M2

interval in figure 18. The dashed lines indicate the enhancement of the Higgs mass induced by the

drop of M2 which can be extracted again from figure 18.

Figure 20. Contour plot of mh in the (M2, µ) plane, with all other parameters fixed to those of

the right-most point on the M2 interval (the black star in figure 18) and Xt = At − ytµ cotβ kept

fixed to −2.8 TeV. Overlaid in orange (blue) are the actual values of M2 and µ for the benchmark

point in figure 18 for µ > 0 (µ < 0).

light charginos and neutralinos, and both light higgsinos and winos (i.e. both small µ and

M2) are required for the full effect. A similar effect was recently mentioned in the context

of EFT calculations of the Higgs mass in [53]. We have further verified that this is the

origin of the threshold correction, by direct calculation of the relevant one-loop diagrams

as done in [46].
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We conclude that the sharp decrease in the magnitude of At for µ > 0 is fully warranted.

It corresponds to a few GeV threshold correction to the Higgs mass in the neighborhood of

M2 = 0 from light higgsinos and winos. It would be interesting to explore the implications

of this threshold correction further in a more general context. Perhaps it could provide

another motivation for EWKino searches at the LHC.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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