
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Enhancing Apache AsterixDB for Efficient Big Data Search and Analytics

Permalink
https://escholarship.org/uc/item/1sd283kb

Author
Kim, Taewoo

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sd283kb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Enhancing Apache AsterixDB for Efficient Big Data Search and Analytics

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Taewoo Kim

Dissertation Committee:
Professor Chen Li, Chair

Professor Michael J. Carey
Professor Sharad Mehrotra

2018

Portions of Chapter 5 c© Taewoo Kim, Wenhai Li, Alexander Behm, Inci Cetindil, Rares
Vernica, Vinayak Borkar, Michael J. Carey, and Chen Li

All other materials c© 2018 Taewoo Kim

DEDICATION

To my family. I would not be who I am today without them.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xii

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1

2 Preliminaries 6
2.1 Apache AsterixDB . 6

2.1.1 Software Architecture . 6
2.1.2 Data Model . 8

3 Robust Memory Management in AsterixDB 10
3.1 Introduction . 10

3.1.1 Related Work . 12
3.2 Preliminaries - Memory Management in AsterixDB 15
3.3 Memory-Intensive Operator: Sort . 19

3.3.1 Sort: Original Implementation . 19
3.3.2 Sort: Current Implementation . 22

3.4 Memory-Intensive Operators: Hash-based . 23
3.4.1 Hash Group-by Operator . 23
3.4.2 Hash Join Operator . 31

3.5 Memory-Intensive Operator: Inverted-index Search 38
3.5.1 Inverted-index Search: Original Implementation 38
3.5.2 Inverted-index Search: Current Implementation 41

3.6 Global Memory Management . 43
3.6.1 In-memory LSM Components . 44
3.6.2 Query Admission Control . 45
3.6.3 Handling Big Objects . 49

3.7 Experiments . 52

iii

3.7.1 Test Datasets . 53
3.7.2 Accounting For Everything . 57
3.7.3 Living within The Budget . 64
3.7.4 When Objects Get Large . 71
3.7.5 Query Access Control . 73

3.8 Conclusion . 79

4 Index-only Query Plans in AsterixDB 82
4.1 Introduction . 82

4.1.1 Related Work . 83
4.2 Background . 84

4.2.1 Index Search . 84
4.2.2 Locking . 85

4.3 Implementing Index-only Query Plans . 86
4.3.1 Necessary Conditions . 87
4.3.2 Authoritative Secondary-index Search 89
4.3.3 Implementing an Index-only Plan . 91
4.3.4 Rewriting Scan-based Plans into Index-only Plans 94

4.4 Experiments . 96
4.4.1 Dataset . 96
4.4.2 Index . 97
4.4.3 B+-tree: Single Field . 99
4.4.4 B+-tree: Multiple Fields . 101
4.4.5 R-tree: Point Field . 102
4.4.6 R-tree: Rectangle Field . 104

4.5 Conclusions . 105

5 Performance Evaluation of Similarity Query Processing in AsterixDB 107
5.1 Introduction . 107

5.1.1 Related Work . 110
5.2 Preliminaries . 112

5.2.1 Similarity Functions . 112
5.2.2 Answering Similarity Queries . 113

5.3 Using Similarity Queries . 114
5.3.1 Supported Similarity Measures . 115
5.3.2 Expressing Similarity Queries . 116
5.3.3 Using Indexes . 116

5.4 Executing Similarity Queries . 117
5.4.1 Inverted Index . 118
5.4.2 Executing Similarity Selections . 120
5.4.3 Executing Similarity Joins . 122

5.5 Optimizing Similarity Queries . 127
5.5.1 Rewriting a Similarity Query . 127
5.5.2 AQL+ Framework . 132
5.5.3 The Optimization Rule For Similarity Queries 139

iv

5.5.4 Maintaining the AQL+ Framework 141
5.6 Experiments . 143

5.6.1 Datasets . 143
5.6.2 Index Size . 146
5.6.3 Selection Queries . 146
5.6.4 Join Queries . 149
5.6.5 Cluster Scalability Tests . 154
5.6.6 Comparison with Other Systems . 160

5.7 Conclusions . 163

6 Conclusions and Future Work 164
6.1 Conclusions . 164
6.2 Future Work . 166

Bibliography 168

A Analyses Of Parallel Jobs 175
A.1 Communication-bound Parallel Job . 175
A.2 Parallel Sort Job . 177

v

LIST OF FIGURES

Page

2.1 AsterixDB Architecture and layers. 7
2.2 ADM type and dataset. 9

3.1 Global memory components and concurrent query control in data management
systems. 13

3.2 Memory structure in AsterixDB. 15
3.3 Operator model. 16
3.4 Two phases of the external sort. 20
3.5 External sort: the original implementation. 21
3.6 Two phases of hash group-by. 25
3.7 Hash Group-By: the original implementation. 27
3.8 An example instance of a logical hash table and data partition table. 28
3.9 The detailed view of the hash table and the data partition table. 29
3.10 Aggregating a record. 29
3.11 The data flow on each iteration of the hash group-by operation. 30
3.12 Hash Group-By: the current implementation. 32
3.13 Two phases of the hash join. 33
3.14 Hash join: the build phase. 35
3.15 Hash join: the probe phase. 36
3.16 Hash join: the current implementation (probe step). 37
3.17 Inverted-index search: each iterative step. 39
3.18 Inverted-index search: the original implementation. 41
3.19 Inverted-index search: the current implementation. 42
3.20 LSM component memory and two configurable parameters. 45
3.21 Factors in query admission control. 46
3.22 Some example query admission cases. 47
3.23 Two ways to store a large record. 50
3.24 AsterixDB datasets. 54
3.25 Length distributions of large string fields using Normal distribution. 56
3.26 Two Gamma distributions of large string fields used for Wisconsin datasets. 56
3.27 The size of data structures for a sort operation (integer fields). 59
3.28 The size of data structures for a sort operation (string fields). 59
3.29 The size of data structures for a hash group-by operation (integer fields). . . 60
3.30 The size of data structures for a hash group-by operation (string fields). . . . 61

vi

3.31 The size of data structures for a hash join operation (integer fields). 62
3.32 The size of data structures for a hash join operation (string fields). 62
3.33 The inverted list size of an inverted index on the body field of the Reddit

comment dataset. 64
3.34 Query templates to measure the size of data structures during memory-intensive

operations. 65
3.35 The average execution time of sort queries. 66
3.36 The average execution time of hash group-by and hash join queries. 67
3.37 The average execution time of inverted-index search queries. 70
3.38 Query templates to measure the average execution time of memory-intensive

operations. 71
3.39 The average execution time of sort queries with large fields. 73
3.40 The average execution time of hash join queries with large fields. 74
3.41 Query templates to measure the average execution time of memory-intensive

operations with large fields. 74
3.42 The runtime execution activity graph of the TPCH query 3. 76
3.43 The heap size during an execution of one query. 77
3.44 The heap size during an execution of multiple concurrent queries using no

query admission control. 78
3.45 The heap size during an execution of multiple concurrent queries using the

conservative query admission control. 79
3.46 The heap size during an execution of multiple concurrent queries using the

current query admission control. 80
3.47 A variation of TPC-H query no.3. 80

4.1 A query that can utilize a secondary index on the username field. 83
4.2 Combinations of locking methods. 86
4.3 Index-only plan check. 87
4.4 A query that can utilize a composite B+-tree index on the user create at and

user posting count fields. 88
4.5 A query utilizing an R-tree index on the place bounding box field. 88
4.6 A query utilizing an inverted (full-text) index on the reviewText field. 89
4.7 A query that performs a range search on the primary index. 90
4.8 Primary-index search. 90
4.9 Comparison between REPLICATE and SPLIT operators. 92
4.10 UNIONALL operator. 93
4.11 Index-only plan. 94
4.12 Rewriting a scan-based plan to an index-only plan. 95
4.13 The DDL statements for the ds tweet dataset. 98
4.14 The DDL statements for creating indexes on the ds tweet dataset. 98
4.15 Average execution time of a clustered-single-field query. 100
4.16 Average execution time of an unclustered-single-field query. 101
4.17 Average execution time of a query using an unclustered two-field index. . . . 102
4.18 Average execution time of spatial queries (query shape: rectangle) on a point

field. 103

vii

4.19 Average execution time of spatial queries (query shape: circle) on a point field.103
4.20 Average execution time of spatial queries (query shape: rectangle) on a rect-

angle field. 105
4.21 Average execution time of spatial queries (query shape: circle) on a rectangle

field. 105
4.22 Query templates used for the experiments. 106

5.1 Example data of Amazon Review dataset (simplified). 113
5.2 Inverted lists for 2-grams of the username field. 113
5.3 Answering an edit-distance query for “q”=marla and T=2. 114
5.4 SQL++ join on the summary field of the Amazon review dataset using Jaccard

similarity. 117
5.5 The structure of an inverted index. 119
5.6 An example instance of an n-gram inverted LSM index. 119
5.7 A similarity-selection query. 120
5.8 Parallel execution of a similarity-selection query. 120
5.9 Similarity-selection query plans . 121
5.10 A similarity-join query. 122
5.11 Parallel execution of a similarity-join query. 123
5.12 A similarity-join query plan. 124
5.13 Three-stage set-similarity algorithm expressed in AQL for a self join on the

Amazon Review dataset using Jaccard similarity with a threshold of 0.5. . . 126
5.14 A plan of a three-stage-similarity join qeury. 128
5.15 Index-function compatibility table. 129
5.16 An optimized similarity-join query plan with the corner case. 131
5.17 Number of operators for a nested-loop join and three-stage-similarity join plan

for the same query. 132
5.18 Execution of a similarity-join query using AQL+. 134
5.19 Three-stage-similarity join algorithm expressed in AQL+. 136
5.20 An example query and the corresponding logical plan that AQL+ template

receives. 138
5.21 Rewriting a multi-way-similarity-join plan on four datasets. 139
5.22 The AQL and the original implementation of the AQL+. 142
5.23 The revised relationship between AQL and AQL+. 143
5.24 An example SQL++ similarity-selection query. 147
5.25 Execution time of Jaccard selection queries on the three datasets. 148
5.26 Execution time of edit-distance selection queries on the three datasets. . . . 149
5.27 An example SQL++ similarity-join query. 150
5.28 Execution time of Jaccard join queries on the three datasets. 151
5.29 Execution time of edit distance join queries on the three datasets. 151
5.30 Similarity joins on the Amazon Review dataset. 152
5.31 An example SQL++ multi-way-join query. 153
5.32 Multi-way-join queries on the three datasets. 154
5.33 An example SQL++ multi-way three-similarity-join query. 155
5.34 Speed-up on Jaccard on Amazon Review dataset. 156

viii

5.35 Times for Jaccard speed-up on Amazon Review dataset. 156
5.36 Per-stage execution time of the three-stage-similarity-join query on Amazon

Review dataset. 157
5.37 Detailed execution time of index-nested-loop-Jaccard-join queries on Amazon

Review dataset. 159
5.38 Scale-out for Jaccard on Amazon Review dataset 159
5.39 Three-stage-similarity-join queries on AsterixDB and Hadoop Map/Reduce. . 161
5.40 Edit-distance queries on AsterixDB and Couchbase. 162

A.1 speed-up of communication-bound parallel job and parallel sort job. 177

ix

LIST OF TABLES

Page

3.1 AsterixDB parameters for the experiments. 53
3.2 A part of the Wisconsin dataset fields. 55
3.3 Space utilization in the storage and during the runtime (22 K records). . . . 73

4.1 AsterixDB parameters for the experiments. 97
4.2 AsterixDB Dataset. 97
4.3 Index size. 99

5.1 AQL+ extensions (to AQL). 135
5.2 Rule controllers for a rule set. 141
5.3 AsterixDB parameters for the experiments. 144
5.4 Dataset characteristics. 145
5.5 Characteristics of the search fields. 145
5.6 Index size and build time for Amazon Review dataset. 146
5.7 Candidate size and the final result size for the indexed-Jaccard-selection query

for Amazon Review dataset in Figure 5.25. 148
5.8 Candidate size and the final result size for the indexed-edit-distance-selection

query for Amazon Review dataset in Figure 5.26. 149

A.1 Communication cost per node on a hash exchange operation 176
A.2 Per node cost of a parallel sort (1 million tuples). 177

x

ACKNOWLEDGMENTS

I would like to thank Professor Chen Li. We have been working together since January 2013.
I still remember how our relationship started. After I took his data management class, I
contacted him to get a sense of graduate level research. He kindly allowed me to work on
a project called the iPubMed search engine. Since then, I have been asking his opinion on
almost any topics during my Masters and Ph.D. program of study. In fact, he has been one
of the most influential personnel during my stay at UCI for six years. I can’t imagine how I
could complete my Ph.D. program in a timely fashion without his guidance.

I also would like to thank Professor Michael J. Carey. We have been working together since
June 2014 after I started my Ph.D. journey here at UCI. It has been my pleasure to meet
him regularly with Professor Li. During those weekly meetings, we discussed a lot of things
including research and other topics. Every discussion that we had helped and inspired me
to grow as a Ph.D. student. Whatever complicated issues that I had, he could guide me to
approach each issue in a concise and elegant way.

I also would like to thank Professor Sharad Mehrotra. One of Professor Mehrotra’s lectures
encouraged me to pursue Ph.D. program. I learned interesting concepts related to trans-
actional data processing through his class. After taking the class, I started thinking that
learning advanced topics about data management and applying this knowledge to applica-
tion developments could be wonderful. He has been really supportive and offered helpful
opinions on all the issues that I asked.

I was also helped by many other faculty, colleagues, and friends along my Ph.D. journey.
I especially want to thank my friends and colleagues, Youngseok Kim, Jianfeng Jia, Xikui
Wang, Ian Maxon, Shiva Jahangiri, Chen Luo, Gift Sinthong, Abdullah Alamoudi, Dmitry
Lychagin, Till Westmann, Murtadha Hubail, Abdulrahman Alsaudi, Dhrubajyoti Ghosh,
Primal Pappachan, Jeongheon Kim, Seulip Lee, Taemin Park, Minhaeng Lee, Eunjeong Shin,
Myungseo Kim, Eunbae Yoon, Myungguk Lee, Minsoo Kim, Juhwan Kim, Dokyung Song,
Yunho Heo, Hyungik Oh, and all other KGSA friends. I thank the Financial Supervisory
Service of Korea for allowing me to have a long-term leave to pursue my Ph.D. degree.

Most importantly, I want to thank my wonderful family. My wife Soyhi, Mom, Dad, my
brother Taehyung, his wife, and my nephew Seoha: without your support, I could not have
completed this work. I am forever indebted to you all for that.

Some parts of Chapter 5 in this thesis/dissertation is a reprint of the material as it appears
in the proceedings of EDBT 2018. The authors of this paper are Taewoo Kim, Wenhai
Li, Alexander Behm, Inci Cetindil, Rares Vernica, Vinayak Borkar, Michael J. Carey, and
Chen Li. The AsterixDB project has been supported at UCI and UCR by an initial UC
Discovery grant, by NSF IIS awards 0910989, 0910859, 0910820, 0844574, and by NSF CNS
awards 1305430 and 1059436. The project has received industrial support from Amazon,
eBay, Facebook, Google, HTC, Infosys, Microsoft, Oracle Labs, and Yahoo! Research and
it benefits from ongoing software contributions from Couchbase.

xi

CURRICULUM VITAE

Taewoo Kim

EDUCATION

Doctor of Philosophy in Computer Science 2018
University of California, Irvine Irvine, California

Master of Science in Computer Science 2014
University of California, Irvine Irvine, California

Bachelor of Management in Management 2007
Korea Open University Seoul, Korea

Bachelor of Science in Computer Science 2004
Yonsei University Seoul, Korea

PUBLICATIONS

Supporting Similarity Queries in Apache AsterixDB 2018
International Conference on Extending Database Technology (EDBT)

Caching Geospatial Objects in Web Browsers 2017
International Conference on Advances in Geographic Information Systems (SIGSPATIAL)

A Comparative Study of Log-Structured Merge-Tree-Based
Spatial Indexes For Big Data

2017

IEEE International Conference on Data Engineering (ICDE)

Twitter Coverage of Climate Change and Health before and
after the 2016 US Presidential Election

2017

American Public Health Association

RILCA: Collecting and Analyzing User-Behavior Information
in Instant Search Using Relational DBMS

2015

VLDB Workshop on Business Intelligence for the Real Time Enterprise (BIRTE)

Efficient Instant-Fuzzy Search with Proximity Ranking. 2014
IEEE International Conference on Data Engineering (ICDE)

xii

ABSTRACT OF THE DISSERTATION

Enhancing Apache AsterixDB for Efficient Big Data Search and Analytics

By

Taewoo Kim

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Chen Li, Chair

In a typical minute of a day in 2018, the Internet generates 3,138 terabytes of traffic [4],

Twitter users send 473,000 tweets [4], and two million snaps are sent on Snapchat [4]. By

2020, it is estimated that for each person on earth, 1.7 MB of data will be created every

second on the average [4]. Due to the large volumes of Big Data, efficient search methods

and analytics are required to explore such data. Thus, there is a clear need for Big Data

management system, such as Apache AsterixDB, to enable users and applications to search

to explore Big Data.

Initiated in 2009, the AsterixDB project integrated ideas from three distinct areas - semi-

structured data, parallel databases, and data-intensive computing - to create an open-source

software platform that scales on large, shared-nothing commodity computing clusters. As-

terixDB currently provides various types of index, such as B+-tree, R-tree, and inverted

indexes to fetch data efficiently. Also, as the problem of supporting similarity queries has

become increasingly important in many applications, AsterixDB also supports similarity

query processing using various metrics and provides an efficient similarity join method [58].

It also provides various search and fundamental analytical functions. It can utilize external

third-party libraries using user-defined functions to augment its functionalities. Following

the release of the first public open-source version of AsterixDB in 2013, we identified several

xiii

optics that needed to be explored in depth to enhance AsterixDB further. Those topics are

the focus of this thesis.

We first share our memory management experiences in AsterixDB. We describe the original

implementation of the system’s memory-intensive operations and a set of design flaws (over-

sights) related to memory management that we found later. We then discuss how we have

addressed each of those oversights. We also discuss AsterixDB’s memory management at the

global level. We believe that future Big Data management system builders can benefit from

our memory management experiences. With memory management under control, we next

present the design and implementation of index-only query plans in AsterixDB. Use of these

plans can boost the performance of an index-based search by several orders of magnitude

compared to a scan-based or non-index-only approach. We discuss the challenges that we

faced regarding the implementation of index-only query plans in AsterixDB and how we

addressed these challenges.

Lastly, considering the importance of similarity query processing for Big Data searches and

analytics, we evaluate the performance of similarity query processing in AsterixDB. We

compare its approach to several other systems and report the efficacy and performance

results.

xiv

Chapter 1

Introduction

In a typical minute of the day in 2018, the Internet generates 3,138 terabytes of traffic [4]. 3.8

million searches are conducted on Google [4]. About 73,249 online shopping transactions are

made [4]. Twitter users send 473,000 tweets [4]. Two million snaps are sent on Snapchat [4].

By 2020, it is estimated that for each person on earth, 1.7 MB of data will be created every

second on the average [4]. That is, about 143 GB of data will likely be generated for each

person per day. Twitter also reported that there were 335 million monthly active users

worldwide in the second quarter 2018 [12]. Facebook reported that they had 1,471 million

daily active users in the second quarter of 2018 [6]; there were 2,234 million monthly active

Facebook users in the same quarter.

Clearly, efficient searching and analytic methods are required to deal with large volume of

data. Suppose that a data scientist in 2020 wishes to analyze the data generated by a group

of 400 university students for an experiment in one month. The scientist will then need to

process about 1,675 TB of data since each person will generate 4.3 TB of data (1.7 MB

per second). The scientist could choose to hand-build an application to process this large

amount of data. However, building an application that can store and analyze Big Data from

1

scratch requires a lot of effort and would take a large amount of time. It is better to use a

Big Data management system, such as Apache AsterixDB, to search and analyze the data.

Initiated in 2009, the Apache AsterixDB [13] project had integrated ideas from three dis-

tinct areas – semi-structured data, parallel databases, and data-intensive computing – to

create an open-source software platform that scales on large, shared-nothing commodity

computing clusters [15]. AsterixDB provides various types of indexes, such as B+-tree, R-

tree, and inverted indexes, to fetch data efficiently. As supporting similarity queries has

become increasingly important in many applications, including search, record linkage [29],

data cleaning [78], and social media analysis [21], AsterixDB also supports similarity query

processing using various metrics. The system includes both searches and an efficient similar-

ity join method [58]. Moreover, to the best of our knowledge, AsterixDB is the first Big Data

management system that supports queries with multiple similarity joins. The first public

open-source version of AsterixDB was released in 2013.

Following that, we identified several topics that needed to be explored in depth to enhance

AsterixDB further.

1) Similarity queries and analytics require many database operators in a query execution

plan, which can consume a large amount of memory, so the memory allocation and deal-

location of each operator should be controlled properly via careful budgeting. That is, the

system should be robust regarding its memory behaviors so as not to generate “Out Of

Memory” (OOM) exceptions in the middle of a query execution for any complex query plan.

Although the initial system assigned a memory budget for operators and tried to keep the

operators under their budgets, the original release of Apache AsterixDB in 2013 could still

generate OOM exceptions too easily under some conditions. This limitation motivated our

attention to enhance the memory management in AsterixDB.

2) Index-based searches that utilize various types of indexes are very important and benefi-

2

cial. However, a limitation of index-based searches also exists. For instance, if the selectivity

of an index-based search increases, the execution time increases as well since AsterixDB needs

to look in the primary index to fetch the original records using keys found from an index

search to generate final results. Thus, a full-scan actually becomes faster than an index-

based search beyond a certain selectivity. Thus we need an efficient index-based search that

can overcome this limitation when possible is required.

3) After the first release of AsterixDB, a study evaluated the performance of Big Data

management systems including MongoDB, Hive, and AsterixDB [75] using various kinds of

queries on a synthetic dataset. The overall performance of AsterixDB generally showed the

lowest query execution time or at least comparable performance to the fastest system, for

most of the benchmark queries. Among various kinds of queries, only one kind of similar-

ity queries that utilized edit distance was included. Considering the growing importance

of similarity query processing, we carefully evaluated the performance of similarity query

processing in AsterixDB and related data management systems.

This thesis consists of three major parts, each of which is now previewed briefly.

Robust and Efficient Memory Management in AsterixDB: Chapter 3 presents mem-

ory management solutions in AsterixDB. Many of today’s Big Data management systems

would like to handle Big Data that cannot fit into main memory. Traditional relational

database systems have done this by dividing the memory into a few regions such as a buffer

cache and working memory. They assign a memory budget to each region and control the

allocation of memory to each region to ensure the stability of the system’s memory be-

haviors. In addition, they assign certain memory budgets to memory-intensive relational

operators such as sort, group by, and hash joins, and control the allocation of memory to

these operations. This control is required since these memory-intensive operators support

both in-memory and disk-based operations to process large volumes of data. Each memory-

intensive operator attempts to maximize its memory usage to conduct an operation rather

3

than a disk-based operation whenever. Implementing memory-intensive operations requires

a careful design and the implementation of appropriate algorithms. In this chapter, we

report our memory management experiences in AsterixDB. We describe the original im-

plementation of its memory-intensive operations as well as the design limitations. These

limitations are not uncommon in the research literature. We then discuss how to address

those limitations. We also discuss AsterixDB’s global memory management. We conducted

an experimental study using several synthetic and real datasets to show the negative effects

of the initial implementation. We have also conducted experiments to show that our current

implementation is robust and scalable regardless of input data size.

Index-only Query Plans: Chapter 4 describes the design and implementation of index-

only query plans in AsterixDB to further enhance index-based search. An index-only plan

can improve the performance of an index-search by several orders of magnitude as compared

to a scan-based or non-index-only approach. We discuss the challenges in the implementation

of index-only plans and how we addressed these issues. We also explain how a scan-based

plan that meets certain conditions can be transformed into an index-only plan during the

optimization phase of query compilation. Lastly, we present a set of experimental results

that compare scan-based, index-based, and index-only plans on a dataset with temporal and

spatial fields using both B+-tree and R-tree indexes.

Performance Evaluation of Similarity Query Processing: Chapter 5 presents a per-

formance evaluation of similarity queries in AsterixDB and two other systems. Most existing

work has taken an algorithmic approach, to simplify queries, developing indexing structures,

algorithms, and/or various optimizations. Here we take a different, systems-oriented ap-

proach. We describe the similarity query support in AsterixDB. We describe the lifecycle

of a similarity query in the system, including the support provided at the query language,

indexing, query execution plans (with and without indexes), and plan rewrites to optimize

query execution. Our approach leverages the existing infrastructure of AsterixDB, including

4

its operators, parallel query engine, and rule-based optimizer. We conducted an experi-

mental study using several large, real data sets on a parallel computing cluster to evaluate

AsterixDB’s support for similarity queries. We also conducted experiments with two other

systems, and report the efficacy and performance results.

The thesis is organized as follows: We first describe the fundamentals of AsterixDB in

Chapter 2. In Chapter 3, we present robust and efficient memory management in AsterixDB.

In Chapter 4, we discuss index-only plans in AsterixDB. In Chapter 5, we evaluate the

performance of similarity query processing in AsterixDB and two other systems. Chapter 6

concludes the thesis and outlines a few potential directions for future work.

5

Chapter 2

Preliminaries

2.1 Apache AsterixDB

Initiated in 2009, the AsterixDB [13] project integrated ideas from three distinct areas – semi-

structured data, parallel databases, and data-intensive computing – to create an open-source

Big Data management software platform that can scale horizontally on large, shared-nothing

commodity computing clusters [15], as shown in the current architecture of AsterixDB as de-

picted in Figure 2.1(a). From the outset, the handling of truly large data volumes, exceeding

the memory capacity of a cluster, has been one of the project’s key objectives.

2.1.1 Software Architecture

As shown in Figure 2.1(b), Apache AsterixDB consists of several software layers. The top-

most layer provides a full, flexible data model (ADM). The SQL++ [71, 26] query language

for describing, storing, indexing, querying, and analyzing Big Data. The project’s layered

software architecture also allows for other projects (e.g., Apache VXQuery) to reuse the

6

Asterix Client Interface

Query Compiler Metadata
Manager

Hyracks Dataflow Engine

Dataset / Feed Storage

LSM Tree Manager
B+

Tree
R

Tree

Network

Data load and feeds from
external sources (JSON, CSV, …)

SQL++
queries / results Data Publishing

Asterix Client Interface

Query Compiler Metadata
Manager

Hyracks Dataflow Engine

Dataset / Feed Storage

LSM Tree Manager
B+

Tree
R

TreeN-gram Keyword N-gram Keyword

(a) Architecture.

Apache AsterixDB Apache VXQuery

SQL++ XQuery or JSONiq

Algebricks

Operator Library
(join, group-by,

sort, etc.)

Storage Library
(LSM B-Tree, R-Tree,

Inverted index)

Connector Library
(m-to-n, m-to-1,

etc.)
HDFS

Library

Hyracks General-Purpose DAG Execution Engine

Hyracks
Job

(b) Layers.

Figure 2.1: AsterixDB Architecture and layers.

system’s lower layers.

The second layer, a query compiler based on Algebricks [22], is used for parallel query pro-

cessing. This algebraic layer receives a translated logical SQL++ query plan from the upper

layer and performs rule-based optimizations. A rule can be assigned to multiple rule sets;

based on the configuration of a rule set, each rule can be applied repeatedly until no rule in

the set can further transform the plan. For logical plan transformation, there are currently

15 rule sets and 171 rules (including multiple assignments of a rule to different rule sets).

After performing logical optimization, the physical optimization phase of Algebricks selects

the physical operators for each logical operator in the plan. For example, for a logical join

operator, a hybrid-hash-join or nested-loop-join can be chosen based on the join predicate.

There are 3 rule sets and 30 rules for the physical optimization phase. After the physi-

cal optimization process is done, the Algebricks layer generates jobs to be executed on the

Hyracks [23] layer.

The Hyracks layer includes storage facilities for datasets that are stored and managed by As-

terixDB as partitioned LSM-based B+-trees with optional LSM-based secondary indexes [14].

AsterixDB translates a computation task into a Hyracks job – a directed-acyclic graph (DAG)

7

of operators and connectors – and sends it to Hyracks for execution. In Hyracks, operators

consume partitions of input data and produce partitions of output data. The output par-

titions produced by operators are then repartitioned by connectors to produce the input

partitions for the next operator. An operator consists of one or more activities (sub-steps or

phases), and there may be control dependencies between two activities of certain operators.

Using this information, one or more stages are created for the job. A stage includes a group

of activities (an activity cluster) that can be co-scheduled, and Hyracks jobs are executed on

a stage-by-stage-basis. Since data is represented as tuples of bytes at this level, Hyracks is

an execution layer that is data-model agnostic. It means that data is accessed at the binary

level rather than as language objects. This approach was used since creating and collecting

language objects is often a cause of performance bottlenecks that can prevent systems from

scaling [25].

2.1.2 Data Model

AsterixDB defines its data model (ADM) [13] targeting semi-structured data. ADM is a

superset of JSON, with support for multisets, arrays, nested types, and a variety of primitive

types. A dataverse is the top-level organizing concept and provides a namespace in which

to create types, datasets, indexes, functions, and other artifacts. A datatype specifies the

fields and types that should be included in each data instance. An ADM datatype can be

either an open type or a closed type. An open type means that instances must have all the

specified fields but may also contain extra fields that can vary from instance to instance. In

contrast, a closed type enforces that its instances have only the specified fields. A dataset

is a collection of data instances of a datatype. Figure 2.2 shows a simple example of some

ADM DDL statements. The first two create a dataverse called exp and a data type for a

dataset called the Reddit dataset. Its type, RedditType, is defined as an open type.

8

create dataverse exp;
use exp;

create type RedditType as open {
id: int,
author: string,
body: string,
controversiality: int,
created_utc: bigint,
retrieved_on: bigint,
subreddit: string,
subreddit_id: int,
subreddit_type: string

}

create dataset Reddit(RedditType) primary key id;

Figure 2.2: ADM type and dataset.

Each record in an AsterixDB dataset is identified by a unique primary key, and records are

hash-partitioned across the nodes of a cluster based on their primary keys. Each record in

a dataset has to comply with its associated datatype. Figure 2.2 also includes a SQL++

statement for creating an Reddit dataset. Each partition of an AsterixDB dataset is locally

indexed by a primary key in an LSM B+-tree, a.k.a. the primary index, and resides on its

node’s local storage. AsterixDB also supports secondary indexing, including B+-tree, R-tree,

and inverted index options; indexes are local, i.e., they are partitioned in the same way as

the primary index. Like the primary index, each secondary index also adopts an LSM-based

structure. Further details of LSM-based index structures in AsterixDB can be found in the

AsterixDB storage management paper [14].

9

Chapter 3

Robust Memory Management in

AsterixDB

3.1 Introduction

Jim Gray’s now famous 5-minute rule [49] stated that a data item should be only in memory if

it is referenced every 5 minutes or less. Although this rule has been revised over time [48, 43]

to reflect changes in the cost and performance of memory and persistent storage, the principle

that only a sufficiently frequently referenced item should be resident in memory still holds.

We need to properly deal with data on disk (be it magnetic or solid state) since we cannot

load a large amount of data into memory and keep it there.

Most robust data management systems handle data by using a disk buffer cache to hold

the data items from disk and allocating a certain amount of memory to memory-intensive

database operators such as sort, join, and group-by to ensure the stability of the system’s

memory behaviors. A database operator is memory-intensive if it supports both in-memory

and disk-based operation to deal with the data size. For example, the operations listed above

10

can operate in memory when the memory budget is enough to hold and process the entire

data. If the budget is not enough, they switch to disk-based (or “spilling”) operation. Both

in-memory and disk-based operations will generate the same logical result although their

performance can be different. Supporting both types of operations means that an operator

can process any amount of memory if the assigned budget is greater than the minimum

memory requirement of the operator. Thus, systems need to carefully control the memory

use of an in-memory operator to perform its operation under a budget since such operators

can consume a lot of memory. For instance, a hash join can work with a small amount of

memory, but its performance generally gets better when a system allocates more memory

to it. In contrast, other kinds of operators such as select or project do not have these

characteristics. They only require a fixed amount of memory to operate, and allocating

more memory usually does not yield a better performance. Thus, there is no reason to

control a memory budget for such non-memory-intensive operators. A critical aspect of Big

Data memory management is ensuring that the memory-intensive operators operate within

a specified budget.

Despite the importance of good memory management, even today, searching “out of mem-

ory” together with a Big Data management system’s name, such as MongoDB, Oracle, and

PostgreSQL, in a web-search engine still yields many results. Furthermore, it is the devel-

oper’s responsibility to manage the memory usage in some Big Data analysis engines, such

as Apache Spark. From its inception, the AsterixDB system has sought to be effective for

large data volumes that can far exceed memory. Although we assigned a memory budget

for memory-intensive operators and tried to keep the operators perform its operation under

the budget, the original release of Apache AsterixDB in 2013 could still generate “Out of

Memory” exceptions in some cases.

In this chapter, we discuss the implementation of AsterixDB, focusing on its memory man-

agement, the design flaws (oversights) in the first implementation, and how we addressed

11

those oversights. We believe that our experiences can help other researchers understand

the importance of considering the size of data structures, which have not been considered

carefully in many research studies and systems.

The rest of the chapter is organized as follows. In Section 3.2, we present the architecture, the

data model, and memory management model of AsterixDB. In Sections 3.3 through 3.5, we

describe the implementations of the memory-intensive operators, the identified issues, and

how we addressed them. Section 3.6 describes AsterixDB’s global memory management.

Section 3.7 shows experiments comparing the original implementation and the current As-

terixDB implementation. Section 3.8 concludes the chapter.

3.1.1 Related Work

In this section, we briefly review how other database systems and Big Data management

systems deal with memory-intensive operations such as join, sort, and text (inverted-index)

search, and highlight some studies on memory-intensive operations related to our work.

Relational Database Systems: Most open-source and commercial database management

systems, such as DB2 [32], MySQL [52], Oracle [17], and PostgreSQL [81], divide their

memory into a few sections and assign a memory budget to each of them. They control

the allocation of memory to each section to ensure the stability of its memory behavior as

shown in Figure 3.1. These systems also control the number of concurrent queries to properly

manage memory, as shown in the figure.

These systems allocate a certain memory budget to memory-intensive operations, such as

sort or join operations, to ensure the memory stability of the system. For example, DB2 [33]

allocates memory buffers to each join or sort operation as specified by the “sortheap” param-

eter. Another DB2 parameter called “sortheapthres” controls the overall number of memory

12

Postgres
- Shared buffers
- Temporary buffers
- Work memory

The maximum number of concurrent
connections to a database is
controlled by the system.

The maximum number of concurrent
connections to a database is
controlled by the system.

Oracle
- Software Code Area
- System Global Area (data and control information for one DB instance)
- Program Global Area (data and control information for server process)

- Buffer pool (holds cached data)
- In-memory temporary tables
- Thread memory
- Cache (table and query)
- Sort buffer

The maximum number of concurrent
connections per database account is
controlled by the system.

MySQL

- DBMS (used for basic infrastructure purposes)
- FMP (communication between agents and fenced mode process)
- PRIVATE (used for general purposes)
- DATABASE (buffer pools, catalog cache, shared sort heap)
- APPLICATION (application-specific processing)
- FCM (used exclusively by the fast communications manager)

The number of maximum concurrent
queries is based on a heuristic
calculation that factors in system
hardware attributes such as the
number of CPU sockets, CPU cores,
and threads per core.

Global memory componentsDatabase

DB2

Concurrent query control

Figure 3.1: Global memory components and concurrent query control in data management
systems.

buffers that all concurrent join or sort operations can use. If the number of allocated pages

becomes greater than this parameter, fewer memory buffers will be allocated to such op-

eration. Similarly, PostgreSQL [76] allocates buffers to each sort or join operation using a

“work mem” parameter. MySQL [70] also has a similar parameter called “sort buffer size”

to control the number of memory pages allocated per session. Oracle [72] has an area called

the “SQL Work Area” to allocate memory pages to sort-based operators such as order-by,

group-by, and roll-up; a hash join operator also gets its memory from this area.

Big Data analysis engines: Apache Spark uses two kinds of memory – execution and

storage [16]. Execution memory is used for sorts, joins, shuffles, and aggregations. Storage

memory is used for caching and propagating internal data across the cluster. These two

kinds of memory share a total amount. Execution memory can evict parts of the storage

memory, but Storage memory cannot evict the execution memory. Apache Hive is using

Hadoop so that the heap sizes of mappers and reducers can be set. The maximum heap size

for a Hive instance can be also set [92]. For Apache Tez, the maximum heap memory for a

Tez instance can be defined [90]. Apache Impala similarly has parameters to set maximum

13

budgets for entire queries and an individual query [53].

External sorting: Since one cannot guarantee that data can be always loaded completely in

main memory, most data management systems employ a memory-conscious external sorting

method [60] to perform their sort operations. Since the time when external sorting was first

developed many decades ago, various methods have been developed to allow for memory

fluctuations during an external sort process [73, 101, 102, 41]. These methods assume that

the system may wish to allocate or deallocate memory pages during a sort process based on

a memory management policy for concurrent queries.

Hash joins: Various memory-conscious hash-based join algorithms were proposed in the

early 1980s, such as Grace Hash Join [59] and Hybrid Hash Join [36, 85]. Similar to sort

algorithms that can deal with memory fluctuations, several methods have since been proposed

to deal with memory fluctuations during a hash join [100, 74, 31].

Text search using an inverted index: Another potentially memory-intensive operator

today is text-search using an inverted index. A naive non-memory-intensive solution for

text search is scanning the entire dataset and applying the search predicate to each record.

To perform a more efficient text search, many algorithms and data structures have been

proposed. Among them, inverted index [60] and its variants are widely used. Search engines

such as Elastic Search [5] and Apache Solr [1] are based on Apache Lucene [64], which uses

an inverted index. Lucene recommends using a large memory buffer [54] for a high indexing

performance. It also recommends allocating more memory to the Java Virtual Memory

(JVM) instance heap of the application that accesses a Lucene index. A heap size can be

configured for Elastic Search and Solr JVM instances to load indexes from disk and necessary

structures to perform searches.

14

3.2 Preliminaries - Memory Management in AsterixDB

The fundamentals of AsterixDB were discussed in Section 2.1. Thus, we discuss memory

management in AsterixDB that is closely related to this Chapter. Figure 3.2 shows the

memory structure of an AsterixDB partition in a Java Virtual Memory (JVM) instance.

There are three main sections of memory, the section used for in-memory components (a.k.a.

in-memory component memory), the buffer cache, and working memory [14].

Buffer cache

Disk

Primary index

Secondary
index(es)

User datasets

Java Virtual Machine
Heap

In-memory
components

Working
memory

Primary index

Dataset 1 Dataset n

Flush Read (pin)

Flush

LSM indexes

Secondary
index(es)

Metadata

Flush

Figure 3.2: Memory structure in AsterixDB.

The first component, the in-memory components section, holds in-memory components of

the currently active datasets. Due to the nature of LSM index structures, the results of every

insert, upsert, and delete operation on records of a dataset first go into an in-memory LSM

component before being persisted to disk. The amount of memory used for this purpose is

controlled by an in-memory component budget parameter that limits the maximum amount

of this memory that a dataset can occupy. This budget is shared by the primary and

secondary indexes of a dataset. When the overall in-memory component size of a dataset

15

reaches this budget limit after an operation, the primary index and all secondary indexes of

the dataset are flushed to the disk and become immutable disk components. The allocated

in-memory component memory then becomes available again. AsterixDB also controls the

maximum size of the overall in-memory component memory for the JVM instance. If this

limit is reached and an in-memory component of a new dataset needs to be created, an active

dataset is chosen based on a policy to be flushed to disk to accommodate this new dataset.

The second major section of main memory, the buffer cache, is used to read disk pages from

the LSM disk components. Since AsterixDB employs LSM index structures, a page of a disk

index component is always immutable. Thus, there is never a dirty page in the buffer cache

for a page that was read from a disk component. The maximum size of the buffer cache

size is limited by a buffer cache size parameter. Since the memory usage of the buffer cache

stays within this budget, and its behavior is very similar to the buffer caches [38] in other

database systems, we will not discuss its detailed structure further.

The last memory section, working memory, honors the memory allocation requests from

operators in an execution plan. An allocation request from an operator requires careful

management since there can be a large number of operators in a complex query plan and

each operator has different characteristics regarding its memory usage and requirements. In

AsterixDB, an operator uses a set of memory pages as its input buffer, uses zero or more

pages as its execution memory, and has a set of memory pages as its output buffer as shown

in Figure 3.3.

The current operator’s memory
Previous

operator(s)
Next

operator(s)

Input buffer Execution memory Output buffer

a page

Figure 3.3: Operator model.

Since each operator uses input/output buffer pages, the difference among the operators re-

16

garding their memory requirements mainly comes from their execution memory requirement.

Regarding the execution memory usage, there are three types of operators. The first type of

operators requires no intermediate execution memory for any amount of data. For example,

a select operator uses one input buffer page to read records from the previous operator in

the given plan. If its operation is a simple scalar function, it does not require execution

memory proportional to its overall input data size. If a condition such as c name = “Smith”

is provided, the operator can easily apply this predicate on each record in the incoming input

buffer page. If a record satisfies this predicate, the record is copied to the output buffer page.

When the output buffer page becomes full, that page is pushed to the next operator. The

second type of operators requires a constant number of pages for its execution memory. Al-

locating more pages would not significantly accelerate its operation. For instance, a B+-tree

INDEX-SEARCH operator needs to keep the current leaf page per LSM disk component

that contains the result of an index-search predicate. The third type of operators also re-

quires a certain number of pages as its minimum execution memory. However, if more pages

are allocated, its performance can be improved. This type of operators is memory-intensive

operators, as briefly described in Section 5.1. For example, a sort operator requires at least

three pages to hold the incoming records in a page, sort them using an in-memory pointer

array, and generate the output for them in a page. If there is no available space to hold

incoming records, the operator then creates a temporary run file on disk after sorting the

current records in the available working pages. After processing all records in this phase, it

merges the run files on disk to generate the final results. However, if the number of available

working pages is enough to accommodate all incoming records, the operator can instead

perform an in-memory sort to improve performance. The operators that we focus on in this

chapter are these memory-intensive operators.

All memory-intensive operators share two common characteristics. First, when we allocate

more memory to such an operator, its performance should be improved. Second, these opera-

tors support both in-memory operation and disk-based operation to deal with any volume of

17

data. As these operators receive incoming records, they gradually allocate memory as neces-

sary to process those records. When they cannot allocate more memory to process incoming

records due to their budget limits, they switch to disk-based operation. For instance, a hash

join operator spills some records to disk and deals with them later after processing records in

memory. If they can allocate enough memory to process all records, an entirely in-memory

operation can be performed. For instance, a sort operator can perform an in-memory sort

to sort all of the records. As a consequence, the memory consumption of memory-intensive

operators needs to be carefully controlled since they have memory allocation/deallocation

logic inside to maximize their performance.

The budget for any memory-intensive operator is determined by operator-specific system

parameters (e.g., 32 MB) and the system converts the budget into a number of pages using

the system’s page size parameter. Suppose that the assigned budget is M pages. This

means the memory-intensive operator can request M pages from the working memory at a

maximum and uses these pages as its execution memory. Each page can contain multiple

records. (A page is the smallest data-transfer unit in Hyracks. For instance, an operator

passes a page of records to the next operator, not just a single record.) Within an operator, a

page pool whose maximum capacity is M is created and managed by a page manager. When

a memory-intensive operator requires a memory page, it makes an allocation request to the

page manager. The page manager then checks the page pool. If there are already available

pages in the pool, one page is chosen and allocated. If there are no available pages but

there is still enough space, a new page is created and allocated. When a memory-intensive

operator releases a page, it issues a release request to the page manager, which returns the

page to the page pool.

18

3.3 Memory-Intensive Operator: Sort

We released the first public open-source version of AsterixDB in 2013. Here we discuss

the original implementations of memory-intensive operators in the release including the sort,

hash group-by, hash join, and inverted-index search. In Sections 3.3 through 3.5, we will first

discuss the implementation of each memory-intensive operator in detail. We will discuss how

AsterixDB initially handled both in-memory and disk-based operations for each operator.

We later found that there were significantly lingering memory management issues in each

memory-intensive operator after the release of AsterixDB, so we will discuss those issues, too.

We will then discuss how we have addressed those issues. In this first section, we describe

the original implementation of the sort operator, its issues regarding memory management,

and how we have addressed the issues.

3.3.1 Sort: Original Implementation

AsterixDB performs an external sort [60] when a sort operation is needed in a query execution

plan. There are a few techniques to improve the performance of the sorting process. Since

comparing binary-representations of field values is more efficient than comparing the original

values of a field, the concept of normalized key can be found as far back as System R [20, 50].

Also, rather than moving an actual record during a sort, normally an array of record pointers

is used in most implementations [42] to deal with variable-length records. AsterixDB adopts

these two techniques, too.

An external sort consists of two phases – build and merge – as shown in Figure 3.4. In

the first phase, a sort operator gradually allocates memory pages to hold incoming records

in each page. If it cannot allocate more pages because the budget is fully utilized, it will

switch to disk-based operation. That is, it sorts the currently loaded records in its execution

19

memory using an in-memory sort algorithm. Currently, AsterixDB utilizes merge sort as the

in-memory sort algorithm. After this in-memory sorting is done, it creates a temporary run

file on disk to keep this partially sorted result. It then clears the memory pages and receives

more incoming records. The build phase is done after processing all incoming records. The

result of the first phase is either the generated run files on disk or all incoming records being

resident in memory if the budget M was greater than the number of incoming pages. In the

second phase, for the spilled case where there are run files on disk, the operator recursively

merges the run files and generates the final results. For the in-memory case, it performs an

in-memory sort and generates the final results. In either case, the result will be passed (page

by page) to the next operator.

A
Z

1. Sort records in
 Execution memory.

2. Write the results to
 the next operator.

Keep each incoming page
in Execution memory.

1. Keep each incoming page in Execution memory.
2. If no more pages can be allocated, sort records
 in memory and flush them to disk. Clear Execution memory.

A
Z

1. Merge run files in Execution Memory.

2. Write the results to
 the next operator.

page

Execution
MemoryPhase 1

Phase 2

Disk

Temporary run file 1

Temporary run file n
page

Execution
Memory

In-memory operation Disk-based operation

Switching
when
no more
memory
can be
allocated. 3. Repeat 1 and 2 to process all pages.

Build

Merge

Disk

Temporary run file 1

Temporary run file n
Execution
Memory

Figure 3.4: Two phases of the external sort.

In addition to utilizing pages, the sort operator also uses an additional data structure called

record pointer array. In the first phase as shown in Figure 3.5, for an incoming page, the sort

operator allocates one memory page to store the records in the current incoming page. At

the same time, it adds the information about each record such as the page and offset of the

record in the page to the record pointer array. The array also contains the normalized key for

the field(s) that is being sorted. This array is needed to avoid performing an in-place swap

20

between two records during in-memory sorting since each record’s length is generally different

because of variable-length fields. Also, using this array can improve the performance since

comparing two normalized keys in the record pointer array using binary string comparison

can be performed much faster than comparing the actual values between two records since

the latter requires accessing the actual records in the pages. Another benefit of using the

array is that its size is relatively small compared to actual records. Thus, there are higher

chances that a record pointer array can be kept in CPU cache due to frequent accesses

during in-memory sorting. When reading an incoming page, when the sort operator cannot

allocate any more pages from the working memory, it first sorts the record pointers in the

array using the normalized keys in each pointer. After that, it creates a temporary run file

on disk. It does so by adding records to the output page by scanning the array from the

beginning. When an output page becomes full, the page is flushed to the temporary file on

disk. This process continues until all sorted records are flushed to the file. The array will

then be cleared and its pages will be deallocated. The sort operator then reads the next

incoming page to fill in the execution memory with pages and to fill the array in again.

Execution memory of a sort operator

Disk

Run 1

Run n

PagePool (capacity: M pages)

PageManager

n1 2

Record pointer array

Record 1 Record 2
Record 3 ……

Page meta-data

Working memory

Record i

Incoming page

Total n records

Figure 3.5: External sort: the original implementation.

During the second phase of its operation, the sort operator merges the temporary sorted run

files created in the first phase. By default, it attempts to allocate one working page per run

file to use as an input buffer for that run. If the number of runs is smaller than M , this

21

phase allocates more pages per run as an input buffer to allow it to read a series of pages

from that run on disk at once. In contrast, if the number of runs is greater than M , it first

merges the number of runs equal to M and generates an additional (M times longer) run

file. This run file is added at the end of the current run file list. At the same time, it removes

the newly merged run files from the list. The operator repeats this merge process until the

run file list becomes empty.

An important issue in our initial implementation of this operator was that we did not consider

the size of the record pointer array (depicted in red in Figure 3.5) within the budget M since

we regarded it as a small auxiliary data structure that would “just” consist of a few integer

values. Thus, the entire budget of M pages was made available to hold incoming data pages.

The record pointer array was created and maintained separately and not considered for

memory accounting purposes. In Section 3.7.3.1, we will show the actual size of the record

pointer array during a sort operation and we will see that this can lead to significant memory

allocation overages in some cases.

3.3.2 Sort: Current Implementation

To address this issue, AsterixDB now also considers and manages the size of the record

pointer array within the budget M . That is, every time the sort operator receives a new

page in the first phase, it calculates the total size impact of this page by adding the page

size and the size of the needed record pointers for records in that page. Space for the record

pointer array is thus now a part of the operator’s page pool. If the sum of the current memory

footprint and this size is less than the budget M , the incoming page is inserted and the size

of the current memory footprint is updated. Otherwise, AsterixDB first sorts the currently

loaded pages and flushes them to disk as a temporary run file. (Note that the record pointer

array does not need to be flushed.) This process continues until all incoming pages are

22

processed. The second phase then merges the generated run files on disk to generate the

final result, as explained earlier.

3.4 Memory-Intensive Operators: Hash-based

In this section, we describe two memory-intensive hash-based operators – hash group-by and

hash join. Both operators utilize a hash table and a data partition table as their core data

structures. The data partition table stores records and the hash table holds pointers to those

records to locate them efficiently. That is, the hash table is used to guide searches to the

actual records in memory based on hash values. We first present the hash group-by operation

since its operation flow is somewhat simpler. We then describe the hash join operator.

3.4.1 Hash Group-by Operator

A group-by operation is used with aggregating functions, such as COUNT, MIN, MAX, SUM,

or AVG, to group the results of an aggregation operation by one or more fields. The field(s)

that are being grouped is the group field(s) and the field(s) that is being aggregated is

the aggregate field. The group field(s) and aggregate field(s) can be the same or different

depending on the semantics of a query. For instance, suppose there is an employee dataset

that includes empId, age, and salary fields. If a user wants to compute the average salary of

employees per age, the group field is age and the aggregate field is salary. If the user wants

to compute the number of employees per age, both the group field and the aggregate field is

age.

By default, when a user includes a group by clause in a SQL++ query, AsterixDB performs

a sort-based group-by. This operation is quite similar to the external sort operation. The

main difference is that the group-by operator generates an aggregate result per group field(s)

23

value. Thus, the sort-based group-by operator also shared the same memory accounting issue

as the sort operator. Therefore, we will not discuss the sort-based group-by operation in

further detail as its issue was similarly addressed.

If a sorted result order after a group-by is not required, a user can optionally provide a hash

group-by hint in a SQL++ query to instruct AsterixDB to instead perform a hash-based

group-by computation. The budget for either group-by can be set using the groupmemory

parameter. We first describe the operation flow of the hash group-by operator and the

structure of the hash table and the data partition table in its original implementation. We

then discuss the major memory issue that we subsequently identified. Lastly, we explain

how we addressed the issue.

3.4.1.1 Hash Group-by: Original Implementation

The conceptual operation flow of the hash group-by is as follows. For each record i in an

incoming page, the hash group-by operator first calculates a hash value h(i) for the record

i by applying a hash function h to the group field value. It then checks whether a partial

aggregate result for the group field value exists using the hash value h(i) since the hash value

h(i) guides it to the actual location of the aggregate results for each group whose hash value

is h(i). If the partial aggregate result exists, the operator aggregates the record i into the

aggregate result (e.g., adding the incoming salary to the running total) using the aggregate

field value. If the aggregate result does not exist, it creates a new aggregate result record

for the group field value. After the operator processes all incoming records, the accumulated

aggregate results will be finalized and passed to the next operator.

The actual hash group-by operation flow consists of two phases, similar to the sort operator,

as shown in Figure 3.6. In the first phase, the hash group-by operator first calculates the

number of hash partitions that it will use based on the input data size and the given budget

24

Write the aggregate
results to the
next operator.

Aggregate records
in Execution memory.

1. Aggregate records in Execution memory.

2. If no more pages can be allocated, spill a partition to disk.

page

Execution
Memory

Phase 1

Phase 2

Disk

Partition i

Partition npage

In-memory operation Disk-based operation

Switching
when
no more
memory
can be
allocated.

Disk

Partition i

Partition n

Execution
Memory Next operator

1. Write the results in Execution memory to the next operator.

2. Read the partitions on disk and repeat the phase 1.

3. Continue the process until there are no partitions on disk.

New partition o

3. Repeat 1 and 2 to process all pages.

Next
operator

Execution
Memory

Execution
Memory

G, max: 65

C, max: 11
F, max: 55

A, max: 41 D, max: 36

B, max: 69 E, max: 70

B, max: 69
A, max: 41

C, max: 11

A, max: 41
E, max: 70

B, max: 69

B, max: 69
A, max: 41

C, max: 11

D, max: 36

(Aggregating A, B, and C) (Aggregating A, B, C, D, E, F, and G)The capacity of
Execution memory : 3

Figure 3.6: Two phases of hash group-by.

M . (This calculation aims to partition the aggregation assumption into pieces that can

perhaps be performed in memory if the data size permits [40].) Each partition consists of

one or more pages, and each page contains one or more groups and their aggregate results.

Based on the possible number of hash values that is estimated by the query optimizer, each

partition covers the same number of contiguous hash values. For instance, if there are 1,000

expected hash values and 10 partitions, each partition covers 100 hash values. That is,

the first partition stores the aggregate results for groups if the hash value of the group is

between 0 and 99. After the number of partitions and their hash value ranges are set, for

each incoming record i, the hash group-by operator aggregates the record i using the h(i)

value of the group field value and the aggregate field value. It gradually allocates memory

when a new page needs to be allocated in a partition to create a new group’s aggregate result.

When the operator cannot allocate more memory, it switches to disk-based operation. It

spills an in-memory partition to disk based on a spill policy to make space in memory. Unlike

sorting, the operator does not need to spill all partitions in memory to disk, as the purpose

25

of spilling a partition is to create some space, and the aggregate result of one group does

not depend on that of other groups. The memory pages occupied by the spilled partition

are deallocated and the operator continues receiving incoming pages and spilling a partition

whenever it cannot allocate more pages. Thus, in-memory partitions and spilled partitions

are dynamically decided upon as the operator processes incoming pages.

After processing all incoming records, phase 2 of the hash group-by begins. At this point,

some partitions are in memory and some partitions are on disk. The operator passes in-

memory partitions to the next operator since it does not need to read spilled partitions on

disk to generate the final results for in-memory partitions. The operator then goes through

phase 1 again for the spilled partitions to generate the final results for these partitions.

Again, when phase 1 for the spilled partitions is done, either all partitions are in memory

or some partitions are still in memory and some partitions are on disk. The operator passes

the aggregate results in memory to the next operator and repeats phase 1 again for the

remaining spilled partitions on disk. This recursive process continues until there are no

spilled partitions remaining on disk.

To implement the above operation flow, the hash group-by operator uses a data partition

table to hold the aggregate records in partitions and a hash table to guide it to the location

of the aggregate records that share the same hash value, as shown in Figure 3.7. The data

partition table and the hash table are separated to increase the chance of CPU-caching

the hash table entries by making its size smaller. This choice also gives the operator more

flexibility when dealing with hash slot overflows due to hash value collisions. If the hash

table contained the actual aggregate records, not just pointers to aggregate records, when

an overflow happens in a hash slot, the aggregate records would also need to be migrated

to another expanded slot and could cause more overhead than only moving the slot with

pointers to the aggregate records.

The data partition table stores the records for groups and their aggregate results. It consists

26

Working memory

Execution memory of a hash group-by operator

Data partition table

Partition 1

Partition 2

Partition n

: Page

Hash table

Header

Content

Disk

Spilled
partition i

Spilled
partition k

PagePool (total number of all pages = M)

PageManager

Record i

Incoming page

Figure 3.7: Hash Group-By: the original implementation.

of several partitions, and each partition contains zero or more pages to hold groups and

their aggregate records. Each partition covers an equal range of contiguous hash values as

described earlier. Using the hash value of a group, the operator can easily find which partition

the aggregate record for that group belongs to. When a page allocation/deallocation is

needed, the operator makes a request to the page manager, as shown in Figure 3.7. The

page manager is backed by the page pool whose maximum capacity is M .

The hash table holds pointers to the actual aggregate records to locate them efficiently as

described before. Figure 3.8 shows an example instance of a logical hash table and data

partition table. We can see that the locations of aggregate records that share the same hash

value are stored in each hash slot. For instance, there are five aggregate records whose hash

value is zero in the figure. In the data partition table, each aggregate record contains a group

field value and its aggregate result. In this example, we use SUM as the aggregate function.

Physically, the hash table itself consists of two parts – header and content pages – as shown

in Figure 3.9. Each slot in a header page indicates the location of a content slot in a content

page and corresponds to one hash value. For instance, the first slot is for the first hash

value (zero) and the second slot is for the second hash value (one). If each header page

contains 1,000 slots, the header slot for the 1,001st hash value will be the first slot in the

27

1

k

<0,0>, <1,2>, <1,3>,
<1,0>, <2,0>
<0,1>, <1,1>

…

0

<a,b>, <c,d>, <e,f>

Locations

…

h
Header Content

Hash table

 <x,y> x: page ID in a data
partition, y: offset of the

aggregate result in page x

Partition 1

Partition n

M, sum=99
C, sum=67
D, sum=32
T, sum=87

R, sum=99

K, sum=32
N, sum=15

X, sum=45…

A, sum=65
G, sum=95
U, sum=12

Y, sum=35

Data partition table

Page 0 Page 1 Page 2

Page 0

Figure 3.8: An example instance of a logical hash table and data partition table.

second header page. A content slot contains the actual in-memory location information for

the aggregate records in the corresponding data partition that share the same hash value.

Thus, locating aggregate results for a hash value k can be done by getting the location of the

content slot in the kth slot in the header page, fetching pointers for actual aggregate results

from the content slot, and then accessing the actual aggregate results in the corresponding

data partition. We have chosen this detailed design to let the operator locate a hash slot

quickly since the location for each hash value in a header page is fixed. The operator can

also cope flexibly with hash slot overflows since it just needs to update the location of the

content slot in the header page after migrating the old content slot to a newly extended

content slot. A content slot is always added to the last content page when the first aggregate

record for the given hash value is created or when a slot is migrated. When a new aggregate

record pointer is inserted into a content slot that is fully occupied, this causes an overflow of

the content slot. In this case, the operator creates a new content slot whose capacity is twice

that of the original slot and adds it to the last content page. (In order to reduce the number

of content slot overflows, we set the initial capacity of a slot to three to prevent a small

number of aggregate records that share the same hash value from causing an overflow.) It

also migrates the current aggregate record pointers from the original slot into the new slot.

It also inserts the new aggregate record pointer that caused the overflow into the new slot.

The content slot location will then be updated in the corresponding header slot in the header

28

page.

Content slot pointer 0
Header slot 0: h(group)=0

……
Header
page #1

……

Content
page #1

Header slot k: h(group)=k
Content slot pointer k

Pointer to
Group m

Pointer to
Group c

Capacity
(e.g., 3)

of groups
(e.g., 2)

……

Content slot for h(group) = k

Content slot for h(group) = j

Data
partition #1

……
Data

partition #n

Aggregate
result of
group m

(e.g., m, sum=99)

Aggregate
result of
group o

(e.g., o, sum=76)

……

Page meta-data ……

Aggregate
result of
group c

(e.g., c, sum=35)
Aggregate
result of
group n

(e.g., n, sum=64)

Content page #1

Header page #1

Data page #1

Header
page #2

Content
page #2

……

Data
page #1

Data
page #1

Data
page #n

Data
page #2

Data
page #3

Hash table Data partition table

Pointer to
Group o

Pointer to
Group f

Pointer to
Group v

Pointer to
Group x

Pointer to
Group b

Capacity
(e.g., 7)

of groups
(e.g., 5)

…… ……

……

Figure 3.9: The detailed view of the hash table and the data partition table.

Calculate h(i)
using the group
field value of the

record i.

Does the slot for
h(i) exist in the

hash table?

Get the current groups
whose hash value is h(i).

Create the slot for h(i) in
the hash table.

Is the grouping field value
of the record i equal to one

of the current groups?

Aggregate record i into
the group using the

aggregate field value.

Is there enough space in the
corresponding data partition?

(1) Initialize the group field value and
aggregate result of the record i in the
corresponding partition in the data table.
(2) Insert a pointer to this group into the
slot for h(i) in the hash table.

Spill the corresponding
data partition.

Yes

No

Yes

No

Yes

No

Figure 3.10: Aggregating a record.

Figure 3.10 shows how the data table and the hash table are used during the aggregation

process for an incoming record i. This aggregation process allows the hash table and the

data partition table to grow gradually as incoming records are aggregated. When all records

are processed, the partitions in memory will be passed to the next operator since they

contain the final aggregate results for the corresponding hash value ranges. We define this

process as the first iteration of the hash group-by operation since there can be multiple

recursive operations for spilled data partitions when dealing with large input sizes. In the

29

new iteration, the operator clears both the hash table and the data partition table in memory,

and it processes each record in the spilled partitions one by one by aggregating it into the

data partition table and inserting a pointer to the group into the hash table. Therefore,

after each iteration, the operator passes data partitions in memory to the next operator.

The spilled data partitions are then processed in the next iteration. This recursive process

continues until there are no remaining spilled data partitions. This process is depicted in

Figure 3.11. (This incremental aggregation process that deals with the hash table and the

data partition table at the same time is different from that of hash join, and the effect of

this difference will be discussed in Section 3.7.3.3.)

Disk

In-memory data
partitions

Spilled
partitions

Hash
table The next operator

Record i

Page

Provide records for
the k+1th iteration

kth iteration

Aggregate

Memory

Figure 3.11: The data flow on each iteration of the hash group-by operation.

A major oversight in the original implementation was that the size of the hash table was

not controlled within the budget M . Regarding this hash table size, most work including

the original hybrid hash join paper [85] has treated the actual footprint of the hash table

as being negligible, using the concept of a fudge factor F during a hash-based operator’s

execution. For example, if the number of memory blocks that a dataset (table) R occupies

is |R|, its hash table is assumed to occupy F × |R| and F is assumed to be small (e.g.,

0.2) [85]. There is one report that explained how hash join was implemented in DB2 that

did consider the hash table as a part of the hash join memory footprint [63]. Following

the popular literature, the original AsterixDB implementation also used the fudge factor to

estimate the hash table memory footprint. Specifically, it used 20% of the budget M as the

30

fudge factor. However, the actual runtime hash table size was not constrained by this value.

The operator could thus freely create header pages and content pages in the hash table as

needed. When the working memory of the JVM instance was exhausted, an OOM could

happen. We can see this issue (depicted in red) in Figure 3.7. The data partition table was

placed in the execution memory. In contrast, the hash table was simply allocated from the

working memory of the JVM instance. In fact, however, based on the size of the group-by

field in a record, the size of the hash table can become even greater than that of the data

partition table. We will see such a case in Section 3.7.3.2.

3.4.1.2 Hash Group-by: Current Implementation

To address the identified budgeting and control issue, we changed the design to account for

the actual size of the hash table during the hash group-by operation. In short, the hash

table now allocates/deallocates memory pages from/to a newly introduced hash table page

manager. This new page manager shares the same page pool with the page manager of the

data partition table. That is, the combined memory usage of both the data partition table

and the hash table is bounded by the group-by budget M . (The reason why we do not use

just one page manager is that the properties of the pages that these two page managers

manage are different.) The current implementation is shown in Figure 3.12.

3.4.2 Hash Join Operator

The hash join operator also utilizes a data partition table and a hash table very similar to

those just described. Since we already have discussed the detailed structure of these two

tables, we focus on the operation flow of the hash join here.

31

Working memory

Execution memory of a hash group-by operator

Data partition table

Partition 1

Partition 2

Partition n

Hash table

Header

Content

Disk

Spilled
partition i

Spilled
partition k

PagePool (total size of all pages = M)

PageManagerHash Table PageManager

Figure 3.12: Hash Group-By: the current implementation.

3.4.2.1 Hash Join: Original Implementation

We have implemented a variation of a hybrid hash join [85] called optimized hybrid hash

join in AsterixDB. The main difference between the hybrid hash join and our join technique

is that the optimized-hybrid-hash-join operator does not pre-decide which data partitions

should be kept in memory during the build phase of a hash join. Rather, these in-memory

partitions are dynamically decided during the join process, similar to the hash group-by

operation.

In AsterixDB, the hash join and the hash group-by operators use very similar hash table

and data partition table structures. Therefore, their overall processing is similar except for

a few places. We focus primarily on the differences between the hash group-by and the hash

join here to avoid duplicated descriptions.

The conceptual operation flow for a hash join is shown in Figure 3.13. A hash join has two

input branches. The first input branch is called the outer branch and the second branch is

called the inner branch. A hash join consists of two phases – build and probe. In the build

phase, for each record i in each incoming page from the inner branch, the hash join operator

32

first calculates its hash value h(i) using the join field(s) value. Based on h(i), it places the

record in the corresponding partition in memory for the hash value h(i). For simplicity,

let us first suppose that the inner input’s data will fit in memory. If so, the build phase

finishes after processing all incoming records from the inner branch. In the probe phase, it

starts reading records from the outer branch. For each record j, the operator calculates the

hash value h(j) of the record j using the join field(s) value. It then finds the corresponding

partition in memory for the hash value h(j) and checks whether there are matches between

the record j and the records from the inner branch whose hash value is h(j). If there is a

match, the pair will be joined and passed to the next operator. The probe phase finishes

after processing all the records from the outer branch.

2. Write the results to
 the next operator.

Keep each record in the
corresponding partition in
memory using its hash value.

1. Keep each record in the corresponding partition in memory
 using its hash value.
2. If no more pages can be allocated,
 flush a partition to disk.

pagePhase 1

Phase 2

Disk

Partition j

Partition n
page

In-memory operation Disk-based operation

Switching
when
no more
memory
can be
allocated.

Disk
Partition j (build)

Partition n (build)

Next
operator

1. Guide each record to the corresponding partition.
 If the partition exists in memory, find matches and
 passes the matches to the next operator.
 If the partition exists on disk, flush the record to
 a new partition on disk that corresponds to the partition.

3. Continue the process until there are no partitions on disk.

h(i)
h(i)

page

h(i)

Build side

Probe side

1. Guide each record to the
 corresponding partition in
 memory using its hash value
 and find matches.

A A

page

h(i)

2. Repeat the phase 1 and 2 for those partition pairs on disk.

A A

Build side

3. Repeat 1 and 2 to process all pages.

Probe side

Execution
Memory

A, payload

B, payload

C, payload

Execution
Memory

C, payload

F, payload

G, payload

Build side: A, B, and C
Probe side: A, C, and E

Build side: A, B, C, D, E, F, and G
Probe side: A, B, C, and F

The capacity of
Execution memory : 3

A, payload D, payload

B, payload E, payload

Execution
Memory

A, payload

B, payload

C, payload

Next
operator

A, payload

C, payload

Execution
Memory

C, payload

F, payload

G, payload

A, payload

B, payload E, payload

C, payload

F, payload
Partition j (probe)

A, payload

D, payload

Partition n (probe)
B, payload

Figure 3.13: Two phases of the hash join.

To implement the above operation flow, a data partition table and a hash table are used

during the hash join. In the build phase, the operator first calculates the number of partitions

33

to be used based on the budget M and the input data size. The overall number of possible

hash values is set to the number of input records. Based on this number of possible hash

values, the same number of contiguous hash values are allocated to each partition, similar to

the hash group-by case. For each incoming record i from the build side, after calculating h(i)

using the join field values of the record i, the operator inserts the record into a corresponding

data partition using h(i) as shown in Figure 3.14. Note that, for a join, this operation is an

insertion, not an aggregation. Thus, if there are two records whose join field(s) values are

the same, they will be kept separately. (For the hash group-by case, these two records would

be aggregated if their group field(s) values are the same.) As a consequence, the overall

memory footprint of hash group-by is usually smaller.

Let us now consider the case of larger input data. A data partition gradually grows by

adding a new page if the current page is full. If a data partition cannot grow because

the budget M is fully utilized, the operator spills a data partition to disk based on a spill

policy. It deallocates all pages in that partition to make space and continues the insertion

process. Thus, similar to the hash group-by case, in-memory data partitions and spilled

data partitions on disk are decided dynamically during this process. When the build phase

is finished, some data partition’s records are already spilled to disk and some data partition’s

records reside in memory. The operator then builds a hash table for the in-memory resident

data partitions in order to perform an in-memory hash join for those partitions, and it then

begins the probe phase as shown in Figure 3.15. Note that the hash table is created and

populated at this later point in time, unlike the hash group-by case where the hash table is

created right at the beginning of phase 1. The hash join operator builds the hash table at

the end of the build phase since the operator does not know which data partitions will still

be in memory by the end of the build phase. In contrast, the hash group-by requires a hash

table from the beginning since it needs to incrementally aggregate incoming records. In the

hash join case, no aggregation is needed, so the operator can postpone building the hash

table until the end of the build phase. Its hash table is used to guide records from the probe

34

side, based on their hash values, to the records in the corresponding data partition from the

build side.

Record i
 Insert the

record i to the
corresponding
partition using
h(i) of the join
field(s) value.

Execution memory of a hash join operator

Data partition table

Partition 1

Partition 2

Partition n

PagePool (total number of pages = M)

PageManager

Incoming page
from the build side

Disk

Spilled
partition j

Spilled
partition k

Spilling

Working memory

Figure 3.14: Hash join: the build phase.

During the probe phase, for each incoming record j from the probe side, the operator first

calculates h(j) and see whether the corresponding build partition has been spilled or not. If

the build partition has been spilled, the operator just adds the record to the output buffer

for the corresponding probe partition on disk to deal with spilled partition pairs later, as the

operator cannot bring the spilled build partition into memory at this moment. When the

output buffer for a probe partition becomes full, the page is added to the probe partition on

disk. If the corresponding build partition is in memory, the operator fetches records whose

hash value is equal to h(j) and add joined output records to the result output buffer page if

the actual join condition holds. When the result output buffer becomes full, the page in the

output buffer will be passed to the next operator. After the probe phase is done, there can

be pairs of spilled data partitions from both build and probe side. For each pair, the hash

join operator picks the smaller spilled partition of the pair as the build side and picks the

other side as the probe (possibly involving role reversal) and begins a new hash join phase.

This recursive process continues until there are no remaining spilled data partitions.

35

Record j Send the
record j to the
corresponding
partition based

on h(j)

Execution memory of a hash join operator

Data partition table

Partition 1

Partition 2

Partition n

PagePool (total number of pages = M)

PageManager

Incoming page
from the probe side

Disk

Spilled
partition j

(build side)

Spilled
partition k
(build side)

jOutput buffer for
spilled partitions

Working memory

Hash table

Header

Content
k

Spilled
partition j

(probe side)

Spilled
partition k

(probe side)

Output
buffer

Next operator

Figure 3.15: Hash join: the probe phase.

3.4.2.2 Hash Join: Current Implementation

Similar to the hash group-by case, the major budgeting oversight in the original implemen-

tation of the hash join was that the size of the hash table was not accounted for within the

budget M , which was solely used for the data partitions. When building a hash table after

processing all the records from the build side, the operator could thus allocate pages for

the hash table from working memory without any limitation. An OOM could happen when

building the hash table for in-memory partitions. This is depicted in Figure 3.15.

To address this issue, we changed the design of the hash join process to also consider the

hash table size. However, a challenge exists when building the hash table, unlike in the hash

group-by case where the data partition table and the hash table grow gradually together

from the beginning of the process. Since the budget M is already used to control the data

partition table during the build phase of a join, there may not be enough space left for the

hash table. In this case, the operator needs to spill some additional data partitions to disk

to make space for the hash table. Each time an in-memory partition is spilled to disk, the

operator needs to estimate the hash table size (based on the number of current records in

memory) to find the point where it can stop spilling partitions to disk. When this spilling

36

of partitions is done and there is enough space for the hash table, the operator builds the

hash table for the in-memory partitions. A minor detail is that the estimated hash table size

and the actual hash table size can be different, so the budget M may not be 100% utilized.

As described before, the default capacity of a content slot is three. However, since it is

difficult to estimate the actual number of hash value collisions and hash slot overflows, the

estimation logic conservatively assumes that a content slot in a hash table is occupied by

only one record pointer to prevent the actual hash table size from possibly growing beyond

the estimated size. However, due to some hash value collisions, the actual memory usage of

the hash table is usually smaller than the estimate. The current implementation is shown in

Figure 3.16. We can see there that the hash table allocates/deallocates pages from the hash

table page manager and this manager shares the same page pool with the data partition

page manager. (The reason why we use two page managers for one page pool is again that

the properties of the pages that they manage are different.)

Record i

Execution memory of a hash join operator

Data partition table

Partition 1

Partition 2

Partition n

PagePool (total number of all pages = M)

PageManager

Incoming page
from the probe side

Disk

Spilled
partition j

(build side)

Spilled
partition k
(build side)

jOutput buffer for
spilled partitions

Working memory

Hash table

Header

Content
k

Spilled
partition j

(probe side)

Spilled
partition k

(probe side)

Output
buffer

Next operator

Hash Table
PageManager

 Send record i to
the corresponding
partition based on

h(i)

Figure 3.16: Hash join: the current implementation (probe step).

37

3.5 Memory-Intensive Operator: Inverted-index Search

In this section, we present the last memory-intensive operator – inverted-index Search. We

first describe the original implementation of the inverted-index search operator and its mem-

ory management related issues. We then describe how we have addressed those issues in the

current implementation.

3.5.1 Inverted-index Search: Original Implementation

An inverted-index edit-distance search in AsterixDB is performed using the T -Occurrence

problem [57] approach. We can answer a text search query by computing the n-grams of the

query string and retrieving the inverted lists of these grams. We then process the inverted

lists to find all string ids that occur at least T times, since a string r within edit distance k of

another string s must share at least T = |G(r)| − k× n grams with s [57]. Exact search can

be treated as a special case of this formula where k is zero. Solving the T -occurrence problem

yields a set of candidate string ids. The false positives are removed in a final verification

step by fetching the strings of the candidate string ids and computing their real similarities

to the query string. As an example, given a gram length n = 2, an edit distance threshold

k = 1, and a query string q = “memory”, we would first compute the 2-grams of q as {“me”,

“em”, “mo”, “or”, “ry”} and retrieve the inverted lists of these 2-grams. We consider the

records that appear at least T = 5 − 1 × 2 = 3 times on these lists as candidates. Last,

we compute the similarity of these candidates to answer the similarity query. For the exact

match case, we then compare the two strings to generate the final answer.

The conceptual operation flow for the inverted-index search operator is as follows. The

operator first generates a token list from a query string. It orders the token list based on the

length of the inverted lists from the shortest to longest. It then iterates over each token in the

38

token list. For each token, the operator fetches its inverted list and generates an intermediate

result based on the previous result and the current inverted list. After it processes all tokens,

the operator generates the final results, which are passed to the next operator. More details

of this approach can be found in one of our previous papers [61].

As shown in Figure 3.17, in each iterative step, the operator processes one token, and its

entire inverted list is loaded into the buffer cache. The operator then performs an intersection

or union operation between the current inverted list and the previous intermediate search

result to generate a new search result. Physically, each search result consists of zero or more

pages, and a page consists of one or more entries. Each entry contains a primary key and

its occurrence count during the search process. Initially, there is no previous search result.

Thus, when processing the first token, the previous search result is an empty list. During

each step, which set operation is used depends on the query predicate. If a query contains

a disjunctive (OR) predicate, the operator performs a union operation. If a query contains

a conjunctive (AND) predicate, the operator performs an intersect operation. For the next

token, the new search result for the previous token becomes the previous search result, and

the operator reads the inverted list of the next token from the inverted index to generate a

new search result. At any moment during this iterative step, two intermediate search results

(the previous and the new) and one inverted list will all reside in memory. When processing

the last token, the final search result is created to keep the final results, which will be passed

to the next operator after the last set operation is finished.

Disk

Inverted list Inverted list
Working memory

pin
(load)

\ [or
inverted list in

the buffer cache
1 2

previous search
result

new
search result

Components of an inverted index

will be used as the
previous search result

for the next token

operation

 ((

Figure 3.17: Inverted-index search: each iterative step.

39

Figure 3.18 shows the memory usage during this iterative search in the original implementa-

tion. The entire inverted list of the current token is loaded into the buffer cache. Also, the

previous search result, the new search result, and the final search result can allocate memory

pages as needed from the working memory.

There were several issues regarding memory management in this implementation. First of

all, there was actually no defined budget M for an inverted-index search operation. (This

operator was originally classified as an index lookup operation for budgeting purposes.)

Therefore, the size of the previous search result and the size of the new search result were

not controlled properly within a budget. This also means that there was no flexible disk-

based operation for the inverted-index search. At any iterative step except the first step,

working memory had to keep both the previous and the new search result. If an operation

was a union, the size of the new search result could be the sum of the previous search result

and the current inverted list. In other words, the size of these structures could easily increase,

so an OOM could happen at any iterative step. The second issue was that the buffer cache

was required to hold (pin) an entire inverted list for a token regardless of its size. If the

inverted list size was greater than the buffer cache size, it would generate an exception after

trying to find space to hold the entire inverted list in the buffer cache. Even if an inverted

list could be loaded into the buffer cache, the inverted list had to be kept during the set

operation. Unlike other page-level buffer cache related operations [38], this duration could

be long depending on the size of the previous search result. In addition, the operator finished

the entire calculation process before passing any result to the next operator. Thus, it needed

to keep many pages for the final result as a consequence. (Keeping many pages for the final

search result could be avoided if the operator had keep only one page as the final search

result buffer and flushed the result each time this page became full.)

40

Buffer cache

Allocated memory for an AsterixDB JVM

Working memory

Previous intermediate result

New intermediate result

Final result

Disk

Inverted list Inverted list

Components of an inverted index

Figure 3.18: Inverted-index search: the original implementation.

3.5.2 Inverted-index Search: Current Implementation

To address the issues, we have introduced budget M for inverted-index searches. As a

consequence, we changed the design of the inverted-index search operator to support disk-

based operation so that its memory usage can be properly controlled within the budget M

regardless of the inverted list size.

To support efficient disk-based operation, we set the minimum number of required pages to

four since it needs at least one page for the current inverted list, one page for the previous

search result, one page for the new search result, and one page for the final search result

should be allocated as shown in Figure 3.19. When there is not enough memory, these pages

will be used as I/O buffers to read the current inverted list and the previous search result

from disk. Also, one page will be used to incrementally write a new search result to disk.

One page will be used to keep the final search result.

Since the essential part of the T -Occurrence problem is traversing a new inverted list using

the previous search result, we put the highest memory allocation priority on the inverted list.

Except for two buffer pages that are used for reading/writing the previous and the new search

result from/to disk, the rest of the budget M is used to read a chunk of the current inverted

list. The reason is to read a large chunk of the inverted list and use more efficient means

to traverse the chunk (e.g., a binary search) to avoid an expensive full-scan that traverse all

41

Buffer cache

Working memory

Execution memory

New intermediate result
(a page or the entire result)

Final result

Disk

Inverted list Inverted list

Components of an inverted index

Immediately copy a page to
the execution memory and

unpin the buffer page
Previous intermediate result
(a page or the entire result)

The current inverted list
(a page or a chunk)

Required pages

pin
(load)

Disk

Previous result

New result

Spill when
there is not

enough memory

Intermediate result files

PagePool (total number of all pages = M)

PageManager

Figure 3.19: Inverted-index search: the current implementation.

keys in the chunk one by one. If the operator is indeed able to read the current inverted

list in its entirety, it checks whether it can also read the previous search result entirely into

memory if the result was written to disk. If there is still leftover memory, the new search

result can also be written into memory. Thus, if the operator has a large enough budget M ,

the search behavior becomes exactly the same as the original implementation. The difference

is that its memory usage is now properly controlled within the budget M : When there is not

enough memory to hold the entire inverted list, the operator then only uses two buffer pages

to read the previous search result from disk and write a new intermediate search result to

disk and stays within its M -page limit.

In addition, to solve the issue where inverted list pages were pinned for a long time in the

buffer cache, now when the operator reads a chunk of the current inverted list, as soon as a

page from the current inverted list has been loaded into the buffer cache, the operator copies

its content to a page in the execution memory of the inverted-index search operator. After

this copying of the page is done, the page in the buffer cache will be freed immediately.

One more change that we have made is that the operator no longer generates the entire final

search result before passing it to the next operator. Since the next operator in an AsterixDB

query plan only needs to access one incoming page at a time, passing one page to the next

42

operator is enough. Therefore, for the final search result, the operator only assigns one page

as the output buffer. When this buffer page becomes full, the operator pauses the search

operation and passes the content of the page to the next operator. After the next operator

receives the result, the operator continues the search process to fill the search result buffer

page in again.

The final change that we have applied is that the inverted-index search operator avoids

creating a separate final search result when the number of tokens in the query is just one. In

the original implementation, even when the number of tokens was one, the operator loaded

the token’s inverted list into the buffer cache and generated the separate final search result.

This was wasteful since if the operator was able to return the result directly from the inverted

list, this copy operation was not necessary. In the current implementation, the operator reads

entries from the inverted list page by page and returns each page to the next operator in the

one-token case (one inverted list). Thus, the redundant copying operation is not required

anymore.

3.6 Global Memory Management

So far, we have discussed the individual memory-intensive operators in detail. Even though

each memory-intensive operator now conforms to its budget properly, a higher level of mem-

ory management is still necessary. In this section, we discuss memory management at the

global system level. We present a way of controlling the memory impact of the in-memory

LSM index components, and we explain how we handle query admission control. We then

discuss another miscellaneous but important memory-related issue, namely, how we manage

memory for records that may be larger than one disk page.

43

3.6.1 In-memory LSM Components

As described in Section 3.2, as a result of having the LSM index structure, we need to

explicitly allocate some of the system’s memory space to the LSM indexes to initially hold

the results of insert/upsert/delete operations on a dataset. This section of memory is called

the in-memory components area. To control the size of this section of memory, we originally

had three parameters as illustrated in Figure 3.20. The globalbudget parameter determined

the overall maximum size of all in-memory components. The numcomponent parameter set

the number of in-memory components that each index could have. (The purpose of this

parameter was dealing with the flush operation of an in-memory component. When an in-

memory component is flushed to disk, the status of the component is changed to immutable

to prevent further modifications during a flush operation. If the number of components for a

dataset is one, when one needs to be flushed, the status would be changed to immutable and

no more insert/upsert/delete operations could be made to the dataset. To avoid immediate

blocking operations, we set the default number of in-memory components for each index to

two so that when flushing an in-memory component to disk, an additional component can

be allocated to accept continued insert/upsert/delete operations.) The numpages parameter

set the maximum number of in-memory pages that any given dataset could allocate before

triggering a flush operation for its components. All in-memory components of the primary

and secondary indexes of a dataset shared this budget. For example, if this parameter was

set to 1,000 and the page size was set to 128 KB, then each dataset could use about 128 MB

of memory at a maximum.

Using the aforementioned parameters, the maximum number of concurrently active datasets

was determined indirectly. For instance, if the maximum size of the in-memory components

area was 1,000 MB, the maximum number of pages for a dataset was 200, and the page size

was 0.1 MB, each dataset could occupy about 20 MB. That is, the number of maximum

concurrent datasets was 50. A user of the original implementation had to perform this

44

Primary index

Secondary
index(es)

User datasets

In-memory
components

Primary index

Dataset 1 Dataset n

Secondary
index(es)

Parameter #1 - specifies the global in-memory component budget

Parameter #3 - specifies the maximum number of in-memory pages per dataset

Metadata

Parameter #2 - specifies
the number of

in-memory index
components

Figure 3.20: LSM component memory and two configurable parameters.

calculation to get the number of maximum concurrent user datasets supportable for their

workload.

To make AsterixDB’s controls more user-friendly, we have introduced a new parameter called

maxdatasets to directly set the maximum number of concurrent active datasets in the in-

memory components section of memory. Now, based on the overall size of the in-memory

components area, a user can choose a number and it is easier for them to understand the

maximum size that each dataset can have. The system then sets the parameter based on

this number. For example, if the size of the overall in-memory components is 800 MB and

maxdatasets is set to 10, each dataset can occupy 80 MB in the in-memory components

section in memory.

3.6.2 Query Admission Control

The original implementation of AsterixDB did not have a query admission control feature.

While controlling the amount of memory for memory-intensive operators, in-memory compo-

nents, and the buffer cache size was sufficient to support the execution of concurrent queries,

45

an AsterixDB instance could generate an OOM in case of too many concurrent queries.

To address this issue, explicit query admission control logic was added to AsterixDB. This

logic considers two factors in each query’s plan to manage the number of concurrent queries

in an AsterixDB instance. The two considered factors are the number of CPU cores desired

and the required memory size for the query plan as shown in Figure 3.21. For memory, if a

query requires more memory than the available memory, it should be immediately rejected.

The other factor, the CPU core requirement, considers the degree of parallelism. By default,

AsterixDB queries use one execution worker thread per physical storage partition. However,

a user can request (via a query parameter called parallelism) to set a different number of

worker threads. For instance, if there are four partitions and there is a sort operator in the

plan, the default parallelism would use four sort operators in four execution worker threads.

A user can request to increase the number of worker threads by setting the parameter to a

higher number (e.g., 16). The number of execution threads that contain the sort operator will

then be increased respectively. In addition, if the system were to only allow one execution

thread per CPU core, when a thread is performing disk I/O, the CPU core would be idle at

that time even though it can handle other operations. Thus, in order to fully utilize CPU

cores on the system, when considering the number of CPU cores, AsterixDB’s admission

control policy also includes a tuneable coremultiplier parameter (which defaults to 3).

Storage
Partition 1

Storage
Partition n

CPU
Core: C1

Operator 1

Operator 2

Operator n

Budget: M1

Budget: M2

Budget: Mn

Operator 1

Operator 2

Operator n

Budget: M1

Budget: M2

Budget: Mn

CPU
Core: Cn

Memory budget
(size)

CPU cores
(number)

Degree of
Parallelism

Degree of
Parallelism

Plan Plan

Figure 3.21: Factors in query admission control.

46

When an instance starts, AsterixDB collects the number of CPU cores and the available

JVM heap memory that the instance can use by checking the JVM runtime. It uses the

collected data as the maximum capacity, and considers each query’s plan in their arrival

order. Using the query plan, AsterixDB calculates the required number of CPU cores and

the required memory size. (The details of this calculation will be discussed shortly.) As

shown in Figure 3.22, a query can be executed immediately if both the required number of

CPU cores and the required memory size are available. A query will be queued if either

the required number of CPU cores or the required memory size is less than the maximum

capacity but one of them is greater than currently available capacity. A query that is placed

in the execution queue will be executed later, once the necessary resources become available.

A query will be rejected immediately if either the required number of CPU cores or the

required memory size is greater than the cluster’s overall maximum capacity.

Maximum working memory (2 GB)

Required - 800 MB
: can be executed

Required - 1,500 MB
: will be queued

Required - 2.2 GB

Case 1.

Case 2.

Case 3.
: will be rejected

Maximum number of CPU cores (10)

Currently available memory (1 GB)

(2) : can be executedCase 1.

Case 2.

Case 3.

(12) : will be rejected

Currently available (5)

(6) : will be queued

Figure 3.22: Some example query admission cases.

The degree of parallelism per query is controllable via a user-provided parallelism parameter

called parallelism. Based on the number of physical dataset partitions and this user-provided

parameter, the number of CPU cores that a plan will request is decided. The required overall

memory for a query plan is computed based on the plan’s operators and their budgets.

Each operator’s memory requirement can be computed based on the characteristics of the

operators. If an operator is not memory-intensive, the memory control logic assumes that

47

the operator requires only one page. Memory requirements of memory-intensive operators

can be computed by from their system configuration parameter value or a query-specific

parameter. For instance, the per-operator sort memory size (e.g., 128 MB) can be set in

the system configuration file. Its value will be used to compute the memory requirement

of each sort operator unless it is overwritten by a query-specific parameter included in the

given query by using a set statement.

Initially, AsterixDB’s admission control logic conservatively assumed that all operators in

the plan may execute at the same time, making the query’s required memory estimate be

the sum of the requested memory per operator. However, because of wait-for dependencies

among the activities in operators, there are usually multiple execution stages in an query

execution plan. It is not always the case that all operators can be executed in parallel. For

example, as described earlier, there are two activities in the hybrid hash join operator – build

and probe. The probe phase cannot start until the build phase finishes, so the operators

after the join operator cannot be executed together with the build phase of the given join

operator; they need to wait until the build phase of the hash join finishes and the probe

phase has begun.

While the initial conservative admission control logic was sufficient to eliminate OOMs, we

found that it was prone to underutilizing the system’s resources. We have now improved

the logic to allow more concurrent queries while still ensuring the stability of the memory

behavior of the system. As described before, only operators (activities) in the same stage

of a query plan can be executed in parallel. Based on this fact, the current admission

control logic considers the generated execution stages (steps) in the query plan. The current

logic calculates the required number of CPU cores and the required memory size per stage.

Among all stages, it then finds the maximum number of CPU cores and the maximum size

of memory requirement and sets those as the required resources for the plan. (A comparison

between the initial logic and the current logic will be discussed in Section 3.7.)

48

3.6.3 Handling Big Objects

When discussing the memory use of the memory-intensive operators so far, our implicit

assumption has been that each record will fit into a page. All operations that we have

described work based on this assumption. However, in practice, this assumption is not

always true. Although the page size can be set by a user, the length of some record fields is

essentially unlimited in AsterixDB. We obviously cannot ask users to increase the page size

each time they need to store records whose length is greater than the page size. Thus, we

need to deal with the situation where a record’s size is greater than one page. For example,

in the second phase of the sort operator, the operator (as described earlier) assigns one

page per run files on disk to merge them. If the run file has a large record that cannot

fit into one page, the operator cannot read this record and thus the second phase cannot

be finished. This section explains how AsterixDB has been adopted to accommodate large

records without exceeding its memory budget.

3.6.3.1 Adjusting the Storage layer

Let us first focus on the storage aspects of coping with large records. To make our design

simple and to minimize the codebase impact, we chose to keep the basic page size identical

(and fixed) since changing it would affect many parts of the system. For example, we did

not want to introduce a situation where one page is 100 KB and another page is 200 KB.

Instead, our solution is to store a large record on multiple pages as shown on the right side

of Figure 3.23. We can logically coalesce multiple pages into one sequential block of buffer

cache pages (a “logical” buffer page) so that a large record still can fit into one “logical”

page. Runtime operators, whose code assumes the bytes of an object to be in contiguous

memory, will also treat this logical page as one page although its actual physical storage

consists of multiple sequential pages. To reflect this concept, we add new metadata on the

49

first page called the page multiplier and let it contain the number of actual physical pages.

For instance, the page multiplier in the first page on the right side of Figure 3.23 is set to 6

since this logical page consists of 6 physical pages.

A large recordA large record

A large record in one large page A large record in multiple pages

Supplemental block

Figure 3.23: Two ways to store a large record.

At runtime, by checking the page multiplier upon reading the first page, the system can tell

whether a page that has just been read from storage is logically a large page that contains

a large record. After the metadata in the first page, the contents of a large record is stored

across all pages (including the first page) as shown in Figure 3.23. All pages after the first

page consist entirely of the record data and there is no metadata in those pages. We call

those pages a supplemental block for this reason. Thus, a logical page consists of its first page

and possibly a supplemental block that spans one or more additional pages. The beginning

page ID of the supplemental block is also stored in the first page so that a logical page can

be fetched using the page multiplier and this page ID.

Another storage consideration is how to intermix a large record with non-large records.

AsterixDB will attempt to separate (page-wise) a large record from other non-large records

whenever possible. If a large record is being inserted into a page where the number of records

in the page is less than two, it logically expands the page by setting the page multiplier to

accommodate the large record. (The intuition behind not separating the new large record

from the existing single small record is to avoid creating a page whose space utilization is

very low.) However, if there are multiple records in the page, we insert the large record

into a new page. The reason this is done is to prevent the (costly) need to fetch multiple

physical pages when accessing most of the regular-size records. That is, if a large record

50

and many regular-size records were allowed to reside in the same large logical page, even

when accessing its regular-size records, multiple physical pages would need to be fetched to

construct a logical page.

With this approach, the actual writing of a record to disk and reading it from disk is executed

as follows: For a write operation, AsterixDB checks the meta-data of a page in the buffer

cache to get the actual number of pages and writes those pages sequentially to disk. When

AsterixDB reads a page from disk, it reads the (first) page and checks its page multiplier.

If it is greater than 1, the supplemental block of the page is then read into the buffer cache,

too. To make this possible, the buffer cache first allocates a contiguous space whose size is

equal to the total number of physical pages. It copies the first page to that space and then

loads the supplemental block into the allocated space.

3.6.3.2 Adjusting the Runtime Operators

Because of the logical page approach to handle big objects, when runtime operators read

a logically large page, it can be regarded as “one page”. Since we have encapsulated page

access, all runtime operators can access a larger logical page as if it were accessing a regular

single page. However, one thing needs to be adjusted. The size of an incoming page can be

different now, and this fact should be reflected in each operator. The detailed considerations

for each memory-intensive operation are as follows.

Sort Operator: By default, when the operator merges runs, it allocates one buffer “page”

to each run. This one page should now be a logical page since if it were a regular page, there

could be a case where the operator could load a logically large page from a run and exceed

its memory budget in doing so. Thus, when loading each incoming page into the execution

memory of a sort operator during its first phase, the operator keeps track of the current

run’s maximum number of physical pages. When it spills a run to disk, it also remembers

51

information about the maximum number of physical pages for that run. After creating all

runs, when allocating an input buffer page for a run, the operator allocates the maximum

logical page size on a per run basis. This way, any logical page in each run can be read

without an issue during the merge phase.

Hash Group-by Operator: The hash table’s memory logic did not need to be revised

since the hash table only contains pointers to the actual groups and their aggregated results

in the data partition table. However, we did need to take care of their possible aggregation

situation where a large record is being aggregated in a spilled data partition. For this case,

we extended the concept of a page to a logical page in the page manager for this operator

as well.

Hash Join Operator: Similar to the hash group-by case, when a logical page that contains

a large record is being inserted into a spilled data partition during the build or the probe

phase, the operator still keeps only one (now logical) page in the spilled partition.

Inverted-index Search Operator: An inverted list only contains a list of primary keys.

AsterixDB only allows an inverted index to be a regular fixed-size primary key. (It does not

seem realistic to expect a primary key to be a large field that spans multiple pages, so we

do not consider that case.)

3.7 Experiments

We have performed an experimental evaluation of our budget-driven memory management

implementation using both synthetic and real datasets. We used a single-node cluster to host

an AsterixDB (0.9.4) instance. This instance had one physical storage partition since we

wanted to observe and analyze the behavior of the system in a simple cluster environment.

This node ran CentOS 6.9 with a Quadcore AMD Opteron CPU 2212 HE (2.0GHz), 8GB

52

RAM, 1 GB Ethernet NIC, and had two 7,200 RPM SATA hard drives. We used only one

hard drive since we created only one physical storage partition. (The node’s other drive

was reserved for the system’s transaction log.) Table 5.3 shows the AsterixDB configuration

parameters for the experiments.

Table 3.1: AsterixDB parameters for the experiments.

Parameter Value Parameter Value
Total memory allocated to the in-
stance

6 GB Sort memory
128
MB

LSM component memory 1 GB Join memory
128
MB

Disk buffer cache 2 GB Group-by memory
128
MB

Working memory 3 GB Inverted-index search memory
128
MB

Runtime page size 32 KB Storage page size 32 KB

3.7.1 Test Datasets

We used one variants of synthetic dataset called the Wisconsin benchmark dataset [47] to

check the behavior of memory-intensive operators since we could control various aspects of

the input data. We also used the TPC-H benchmark dataset [91] to perform the query

admission control experiment since it contained many memory-intensive operators in its

queries. We also used a real dataset of Reddit comments [79] to test the behavior of the

inverted-index search operator. Figure 3.24 shows the characteristics of all datasets. For

TPC-H, the input format of the raw data file was CSV. Thus, it did not contain any additional

information. In contrast, AsterixDB needed to store some metadata per record and per page.

Thus, the size of the corresponding TPC-H dataset was greater than that of the raw data

file. For the basic Wisconsin dataset, the format of the raw data files was JSON. Since we

declared the records’ fields in the datatype, the AsterixDB records do not have to include

the field name, so the size of the AsterixDB dataset was smaller than that of the original

53

JSON file. However, for the five Wisconsin datasets with a large string field, the size of the

AsterixDB dataset was greater than that of the original JSON file since some unused space

in pages existed for each large string field instance (i.e., due to internal fragmentation). For

instance, for the Wisconsin-Norm-0 dataset, the page size was 32 KB and a typical large

string field was 26 KB, leaving 8 KB unused on such a record’s page.

91,558,594Reddit-
comment 59,817 Reddit comment (January 2018)103,049

21100,000 TPC-H Dataset (scale factor:10)TPCH-
Supplier 14

361TPCH-Part 2332,000,000 TPC-H Dataset (scale factor:10)

8,000,000 1,6191,150 TPC-H Dataset (scale factor:10)TPCH-
Partsupp

TPC-H Dataset (scale factor:10)TPCH-
Lineitem 7,416 16,15059,986,052

1,500,000 234TPCH-
Customer 326 TPC-H Dataset (scale factor:10)

37,6511,000,000 28,773
A large string field was included. The field length

followed a Gamma distribution (shape: 1, scale: 0.5).
The average length was 26K.

Wisconsin-
Gam-2

28,603
A large string field was included. The field length

followed a Gamma distribution (shape: 1.5, scale: 1).
The average length was 26K.

Wisconsin-
Gam-1 39,4171,000,000

10,000,000

Wisconsin-
Norm-M

No large string field included32,193

Cardinality

A large string field was included. The length of all
instances of the field was 26K.

28,651

37,73328,645

Wisconsin

A large string field was included. The field length
was normally distributed. The average length was

26K and the standard deviation was 8.8K.
(95% range: 8.4K ~ 43.6K)

NotesDataset
size (MB)

31,277

AsterixDB
Dataset

Wisconsin-
Norm-0 1,000,000

24,704

Wisconsin-
Norm-L

Rawdata
size (MB)

41,4231,000,000

28,647

A large string field was included. The field length
was normally distributed. The average length was

26K and the standard deviation was 4.4K.
(95% range: 17.8K ~ 35K)

1,000,000

Figure 3.24: AsterixDB datasets.

To control various aspects of the synthetic data, such as the selectivity or size of a field, we

used a variation of the Wisconsin dataset. We added some extra fields to the dataset to

54

make it meet our needs. Table 3.2 shows a part of the schema of our Wisconsin benchmark

dataset. The italicized field represents an extra field that we added.

Table 3.2: A part of the Wisconsin dataset fields.

Name Type Bytes Remarks
unique1 int 8 unique, random order
unique2 int 8 unique, sequential
unique3 int 8 unique1
stringu1 string 100 random
stringu2 string 100 random

largeString string 26 K random, variable-length HEX string
...

For the experiments where no large string field was involved, we used the basic Wisconsin

dataset in Figure 3.24. For performing experiments on records with a large string field,

based on the schema in Table 3.2, we created five more datasets as shown in Figure 3.24 to

see how the length distribution of a large string field affected performance. Each record in

those datasets had a large string field, and its average length was the same, 26 KB, which

was slightly smaller than the page size (32 KB). This big-object field was a string field

that contained a random HEX string. Each character was chosen randomly among 16 HEX

characters (0 to F). The only difference among the latter 5 Wisconsin datasets was that the

length distribution of the large string field was different; the first three datasets were based

on a normal distribution as shown in Figure 3.25 and the other two datasets were based

on a gamma distribution as shown in Figure 3.26. Since the standard deviation of the first

dataset, Wisconsin-Norm-0, was zero, all large string field instances had the same size (26

KB). The standard deviation of the second dataset, Wisconsin-Norm-M, was 4,400, and that

of the third dataset, Wisconsin-Norm-L was 8,800. Therefore, the third dataset had more

records whose length was greater than 26 KB.

The last two datasets were based on a gamma distribution for the large string field’s size.

The length distribution range of the first gamma dataset, Wisconsin-Gam-1, was smaller than

55

0 +σ-σ-2σ-3σ +2σ +3σ
68.27%
95.45%
99.73%

26 K 26 K 26 K 26 K 26 K 26 K 26 K

12.8 K 17.2 K 21.6 K 26 K 30.4 K 34.8 K 39.2 K

Winsconsin-Norm-0
Winsconsin-Norm-M
Winsconsin-Norm-L 0 K 8.4 K 17.2 K 26 K 34.8 K 43.6 K 52.4 K

Figure 3.25: Length distributions of large string fields using Normal distribution.

that of the second dataset, Wisconsin-Gam-2, since the second dataset had a more skewed

distribution toward zero.

(a) Gamma distribution 1. (b) Gamma distribution 2.

Figure 3.26: Two Gamma distributions of large string fields used for Wisconsin datasets.

For the query admission control experiment, we used the standard TPC-H benchmark dataset

with a scale factor of 10. In addition, we used one TPC-H query that had two joins, one

group-by, and one order-by predicate to use multiple memory-intensive operators to em-

phasize the memory usage. For the TPC-H dataset, other than creating a few indexes to

expedite the query execution time, we did not add additional fields.

56

For the inverted-index search experiment, we used a non-synthetic dataset that contained

text data. It contained actual Reddit comments collected in January 2018. We used the

dataset’s body field to perform a full-text search to check the behavior of the inverted-index

search. Since it did not have a field that could be used as a primary key field, we instructed

AsterixDB to assign an additional auto-generated UUID primary key field when importing

the data, as AsterixDB currently requires that the records of each dataset have a primary

key. Other than this field, no additional fields were added to the Reddit records.

3.7.2 Accounting For Everything

To measure the potential consequences of not including the size of all supporting data struc-

tures in the budget M for memory-intensive operators, we compared the original implemen-

tation with the current implementation of each of AsterixDB’s memory-intensive operations.

We measured the memory footprint of the data structures during memory-intensive opera-

tions.

We first considered a case where the referenced portion of each input record only consisted of

one to three integer fields from Wisconsin dataset. Since the size of an integer field is relatively

small (less than 10 bytes), the number of records that could fit into the execution memory

of each memory-intensive operator was greatest in this case. Additionally, we measured a

more relaxed case where the referenced part of an input record consisted of one integer and

one or two string fields whose length was 100, which seems more realistic. We used the same

source dataset for that case, too. For all memory-intensive operators, we set the operator’s

memory budget to 128 MB.

For each case, we first determined the input record cardinality where each memory-intensive

operator used its budget at full capacity. To find this cardinality, we gradually increased the

number of input records to each memory-intensive operator and found the exact operating

57

point where adding any additional input records could cause the operator to switch to disk-

based operation, and we used that cardinality to measure the size of the in-memory data

structures. For instance, if the sort operator started generating run files on disk once the

number of input records was 2,000,000, we used 1,999,999 records as the input cardinality

and measured the operator’s memory use at that operating point.

3.7.2.1 Sort Operator

To study the memory usage of the sort operator, we used query templates Q1 and Q2 shown

in Figure 3.34 at the end of this section. The template shows the queries for the three-field

cases for integers and strings. For the one-field case, we excluded two fields. For the two-field

case, we excluded one field. In the select value count clauses, we included all fields so as not

to let the optimizer project out the fields before the sort operator.

As described earlier, in the original implementation, AsterixDB’s sort memory control logic

did not consider the record pointer array size in the budget M , viewing it as negligible

overhead. In reality, the size of the record pointer array during a sort operation is generally

not negligible, as shown in Figure 3.27(a). When the record to be sorted is small, consisting of

only one integer field, the pointer array size was 301 MB, and this was almost three times the

allocated budget, which was 128 MB. For the first sort implementation, the budget M was

solely used to track the memory used to load data pages. Thus, in this case, sort operation

would actually use 430 MB in total even though the operator’s budget was set to 128 MB. As

the number of integer fields increases, the record pointer array size becomes smaller since the

number of records that fit in the execution memory becomes smaller. However, even for the

three integer-field case, the record pointer array size was 119 MB, and this alone is similar to

the allocated budget M . In the current AsterixDB sort implementation, in Figure 3.27(b),

we can see that both record pointer array and the data pages properly share the budget M ,

so their total size never exceeded the budget M .

58

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

data pages

pointer array

Total

(a) The first AsterixDB sort implementation.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

data pages

pointer array

Total

(b) The current AsterixDB sort implementation.

Figure 3.27: The size of data structures for a sort operation (integer fields).

For the second case, where a record consisted of one integer and one or two string fields

whose length was 100, the record pointer array’s relative overhead was significantly reduced

since there were fewer records in the execution memory, as shown in Figure 3.28. Still, the

size of the record pointer array was not negligible. For example, in the case where a record

consists of one integer and two string fields, the pointer array size was 19 MB, which was

about 15% of the budget (128 MB).

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

data pages

pointer array

Total

(a) The first AsterixDB sort implementation.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

data pages

pointer array

Total

(b) The current AsterixDB sort implementation.

Figure 3.28: The size of data structures for a sort operation (string fields).

3.7.2.2 Hash Group-by Operator

Next, we evaluated the memory usage of the hash group-by operator in a similar fashion

using query templates Q3 and Q4 in Figure 3.34. The figure shows the queries for the three-

59

field cases for integers and strings case. In the select value count clauses, we again included all

fields so as not to let the optimizer project out the fields before the hash group-by operator.

In the first AsterixDB hash group-by implementation, the hash table size was not accounted

for within the budget M . In this experiment, we first identified the maximum input record

cardinality for which the operator would not spill any partition to disk by gradually increasing

the number of input records. We then measured the hash table size at this cardinality

since the execution memory was utilized at full capacity at this point. As we can see in

Figure 3.29(a), the hash table size for the one integer case field was 156.5 MB, and the

budget M (128 MB) was entirely used for keeping the data partition table. The total

memory used was thus 284 MB, which is more than twice the assigned budget.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(a) The first AsterixDB hash group-by
implementation.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(b) The current AsterixDB hash group-by
implementation.

Figure 3.29: The size of data structures for a hash group-by operation (integer fields).

For the string-field cases, the hash table size was smaller than the integer-field cases since

the number of records that fit in memory was smaller. However, even for the two-string-field

case, the hash table size was 30.6 MB, which was about 25% of the assigned budget. The

current implementation addressed this issue successfully. We can see in Figure 3.30(b) that

the data partition table and the hash table now utilize the budget together, so their total

memory use was always within the assigned budget.

60

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(a) The first AsterixDB hash group-by
implementation.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(b) The current AsterixDB hash group-by
implementation.

Figure 3.30: The size of data structures for a hash group-by operation (string fields).

3.7.2.3 Hash Join Operator

We next measured the memory usage of the hash-based join operator which also uses a hash

table and a data partition table. We used query templates Q5 and Q6 in Figure 3.34. The

template shows the three-field cases for integers and strings. In the select value count clauses,

we included all fields so as not to let the optimizer project out the fields before the hash

join operator. For these queries, we selected 1,000 records from the outer (probe) branch.

Similar to the previous experiments, we identified the maximum number of records from the

inner (build) branch where the join operator would not spill any data partitions to disk by

gradually increasing the number of records. We used this cardinality for the inner branch so

that the memory usage would be at a maximum.

Like the hash group-by operation, the hash table’s size during a hash join operation was

not considered within the budget M in the first AsterixDB implementation, instead being

assumed to be negligible overhead. As we can see in Figure 3.31(a), the hash table size for

the one integer field was 159.9 MB, while the budget (128 MB) was entirely used for the

data partition table. The resulting total amount of memory used by the query was 287.81

MB, which was more than twice the assigned budget.

61

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(a) The first AsterixDB hash join implementation.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(b) The current AsterixDB hash join
implementation.

Figure 3.31: The size of data structures for a hash join operation (integer fields).

For the string-field cases, as before, the number of records used was smaller since the record

size was larger. We can see that the hash table overhead was smaller compared to the integer-

field cases. For instance, when there were one integer field and two string fields, where the

length of each string field was 100, the hash table size was 12.4 MB while the entire budget

M was used to hold the data partition table. In total, the hash join operator used 140.4

MB, which was greater than the assigned budget (128 MB), though less drastically so in this

case.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(a) The first AsterixDB hash join implementation.

 0

 50

 100
 150

 200

 250

 300
 350

 400

 450

1 2 3

Budget

S
iz
e

(M
B
)

Number of felds

Data partition table

Hash table

Total

(b) The current AsterixDB hash join
implementation.

Figure 3.32: The size of data structures for a hash join operation (string fields).

The current AsterixDB implementation successfully addressed the issue. We can see in the

figures that the space utilization during a hash join operation is now always kept within the

62

operator’s assigned budget. Note that the utilization of the hash join memory budget is a bit

lower than for the sort and hash group-by operations. Those operators utilized almost 100%

of their budget, while the hash join operator did not fully utilize 100% of its allotted budget.

For instance, in the three-integer-field case, the total execution memory usage was 116.3

MB, which was 90.8% of the assigned budget (128 MB). This is because the hash table for

the hash join operator is built after processing all records from the build side, as described

in Section 3.4.2. Based on the number of records in the in-memory data partitions, the

operator estimates the expected hash table size by assuming that each record might reside

in a separate hash slot. This estimation is a safe way to ensure that the hash table size

will not exceed the estimated budget when constructing it. In reality, because of hash value

collisions, not all hash slots were allocated and used. That is why the space utilization was

lower than 100%. (We did not observe this behavior in the hash group-by operation since

its hash table gradually grows with the data partition table, and the spilling of an aggregate

data partition only happens when its space utilization reaches near 100%.)

3.7.2.4 Inverted-index Search Operator

We now examine the memory use of the inverted-index search operator. The first imple-

mentation of AsterixDB’s inverted-index search did not have a budget at all, so the size of

its data structures was not accounted for. As described in Section 3.5.1, there can be two

intermediate search results and one final search result in memory during an inverted-index

search. If the operation is a union, the inverted list for the current token will be added to

the new search result. Thus, the memory footprint of these data structures can easily be

significant. We can estimate the footprint of these data structures by examining an actual

inverted index. Figure 3.33(a) shows the size of the top 1,000 inverted lists in a full-text

index on the body field of the Reddit comment dataset. We can clearly see that the distribu-

tion follows Zipf’s law. Figure 3.33(b) shows the first 50 entries of the previous figure. Let

63

us examine the first entry of the inverted list. The frequency of occurrence of the first entry

was about 34 million. With the primary key size being 16 bytes, the size of this inverted

list was about 518 MB. Therefore, processing this inverted list would require about 1 GB

of memory even before considering the previous search result size. Note that this dataset

contained only one month’s worth of the entire Reddit comment data; if more data were in-

serted, this size would increase proportionally as well. Clearly, based on these numbers, the

first inverted-index search implementation could generate an OOM early for such real-world

data sets. We do not include an actual comparison between the first implementation and

the current memory-conscious implementation here since the first implementation was not

a budget-based approach. Our current implementation has an assigned budget M and now

properly supports disk-based operation as a consequence (as we will see shortly).

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

 2.5x10
7

 3x10
7

 3.5x10
7

C
o
u
n
t

Index entry

(a) Inverted list size (first 1,000 entries).

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

 2.5x10
7

 3x10
7

 3.5x10
7

C
o
u
n
t

Index entry

(b) Inverted list size (first 50 entries).

Figure 3.33: The inverted list size of an inverted index on the body field of the Reddit
comment dataset.

3.7.3 Living within The Budget

Our next experiment focused on the current AsterixDB operator implementations, which

properly use the assigned budget M . We measured the average execution time of each of

AserixDB’s memory-intensive operations in the current implementation to verify that these

operations are scalable since they need to work well regardless of the input data size. That is,

64

/* Q1. Sort - three-fields (int) */
select value count(first.unique1 + first.unique2 + first.unique3) from (
select unique1, unique2, unique3 from Wisconsin
where unique2 < [end] order by unique1) first;

/* Q2. Sort - three-fields (string) */
select count(first.unique1 + len(first.stringu1) + len(first.stringu2)) from (
select unique1, stringu1, stringu2 from Wisconsin
where unique2 < [end] order by unique1) first;

/* Q3. Hash Group-by - three-fields (int) */
select value count(first.unique1 + first.unique2 + first.unique3) from (
select t.unique1, t.unique2, t.unique3, count(t.unique3) from Wisconsin t
where t.unique2 < [end] /* +hash */ group by t.unique1, t.unique2, t.unique3) first;

/* Q4. Hash Group-by - three-fields (string) */
select value count(first.unique1 + length(first.stringu1) + length(first.stringu2)) from (
select t.unique1, t.stringu1, t.stringu2, count(t.stringu2) from Wisconsin t
where t.unique2 < [end] /* +hash */ group by t.unique1, t.stringu1, t.stringu2
) first;

/* Q5. Hash Join - three-fields (int) */
select value count(first.unique2 + first.unique1 + first.unique3) from (
select r.unique2, r.unique1, r.unique3 from
(select unique3, unique2, unique1 from Wisconsin
where unique2 >= 1000 and unique2 < 2000) r,

(select unique3, unique2, unique1 from Wisconsin
where unique2 >= 0 and unique2 < [end]) s

where r.unique3 = s.unique3 and r.unique2 = s.unique2 and r.unique1 = s.unique1) first;

/* Q6. Hash Join - three-fields (string) */
select value count(first.unique2 + length(first.stringu1) + length(first.stringu2)) from (
select r.unique2, r.stringu1, r.stringu2 from
(select unique2, stringu1, stringu2 from Wisconsin
where unique2 >= 1000 and unique2 < 2000) r,

(select unique2, stringu1, stringu2 from Wisconsin
where unique2 >= 0 and unique2 < [end]) s

where r.unique2 = s.unique2 and r.stringu1 = s.stringu1 and r.stringu2 = s.stringu2) first;

Figure 3.34: Query templates to measure the size of data structures during memory-intensive
operations.

transitioning from in-memory to disk-based operation should work seamlessly. To measure

both in-memory and disk-based operations, we varied the number of input records fed to

these operations and measured the average execution time of a query. We used the basic

(unmodified) Wisconsin dataset to avoid any effects from large string fields. (We will explore

those effects separately later.) For each selectivity, we executed 100 random queries where

each query picked a random contiguous input record range. For example, if the number of

desired input records was 1 million, each query picked 1 million contiguous records from the

dataset. However, the first record’s starting position was randomly chosen.

65

3.7.3.1 Sort Operator

We first measured the average execution time of the current sort implementation using query

template Q7 in Figure 3.38. We sent 100 random queries where each query had a randomly

chosen unique2 range.

Figure 3.35 shows the average execution time of the sort operation as the input size is varied.

Based on the operator’s budget size of 128 MB, only the 1-million-record case was able to

stay within in-memory based operation. The other four cases included varying degrees of

disk-based operation. The figure shows that the average execution time of the sort operation

scaled linearly with the data size. Note that the linearity is because all of the intermediate

temporary runs can be merged in one merge step for the other four cases. For example, since

the page size was 32 KB, up to 4,096 runs can be merged in one step given a 128 MB budget.

Thus, up to 512 GB of data could potentially be merged in one step, while the input dataset

size was only 24 GB.

 0

 50

 100

 150

 200

 250

 1 3 5 7 9A
v
e
ra
g
e

E
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (million)

Figure 3.35: The average execution time of sort queries.

3.7.3.2 Hash Group-by Operator

Next, we checked how well the hash group-by operation scales using query template Q8 in

Figure 3.38. We used 100 random queries where each query had a randomly chosen unique2

range. We used two fields to perform the hash group-by operation.

66

Figure 3.36(a) shows the average execution time for the hash group-by queries. The average

execution time of the hash group-by query is not linear in the input size because inserting

aggregate record pointers into groups in the hash table from some spilled data partitions can

occur multiple times. As described in Section 3.4.1.1, some data partitions may be spilled

to disk in each iteration of the hash group-by operation. After processing all records, the

in-memory partitions are passed to the next operator and the next iteration of the hash

group-by operation then starts by processing the records from the spilled partitions again.

Thus, spilled records will be inserted into the hash table at least two times. (That is, if a

record is spilled k times, this record is inserted into the hash table k + 1 times.)

The first case in Figure 3.36(a), where the number of records was 1 million, finished without

spilling any data partitions to disk. That is, the group-by operation finished in the first

iteration. When the number of records was 3 million, some partitions were spilled to disk

and the operation finished in the second iteration. When the number of records was 5, 7,

and 9 million, the operation finished only after the third iteration. Notice that we can see a

linear trend within the same number of iterations (cases 5, 7, and 9).

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1 3 5 7 9A
v
e
ra
g
e

E
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (million)

(a) Hash Group-by.

 0

 50

 100

 150

 200

 250

 1 3 5 7 9A
v
e
ra
g
e

E
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (million)

(b) Hash Join.

Figure 3.36: The average execution time of hash group-by and hash join queries.

67

3.7.3.3 Hash Join Operator

Next, we checked how the hash join operator scales using query template Q9 in Figure 3.38 to

measure the average execution time. From the outer branch (denoted by r), which was used

as the probe branch, we randomly selected 1,000 records. For the inner branch (denoted by

s) and used as the build branch), we used five selectivities, namely 1, 3, 5, 7, and 9 million

records. For example, if 9 million records were selected from the build branch, 9 million

records are inserted into the corresponding partitions using the hash value of the join field

during the build phase. The hash table was built after processing all records. In the probe

phase, the randomly chosen 1,000 records from the probe branch were processed. With the

datasets, during the build phase, only the first case (1 million records) did not spill any data

partitions to disk. The other four cases spilled increasing more of the partitions to disk.

The average execution time trend for this experiment, shown in Figure 3.36(b), is different

from Figure 3.36(a) (which showed the average execution time of hash group-by queries.).

Although the hash join and hash group-by both utilize a hash table and data partition table,

the trend for the same number of records is different because the pointer to an actual record

is inserted into the hash table only once for all records in the hash join case. That is, when

a data partition from the build side is spilled to disk, the operator spills the corresponding

partition from the probe side to disk, too. The operator chooses the smaller spilled file as

the build side in the next phase and recursively repeats the build and probe phase for each

spilled partition pair. Recall that the hash-based join operator builds the hash table for the

in-memory partitions. Thus, if records are spilled to disk, the operator does not insert those

records into the hash table until they are among the in-memory records for a phase. (In

contrast, in the hash group-by operation, when a record is being processed, it is always first

aggregated in the data partition table and the pointer for its group is inserted into the hash

table. Therefore, the hash table in each phase of the hash group-by processes all incoming

records.) This is a significant difference between the hash join and hash group-by.

68

3.7.3.4 Inverted-index Search Operator

The next experiment explored the scalability of the inverted-index search operator. We used

the Reddit-comment dataset and built a full-text index on the body field. When measuring

the average execution time, we measured the average execution time of the inverted-index

search operator, not the overall query execution time. We did this because we wanted

to measure the average execution of both in-memory and disk-based operation, and the

experiment required accessing a large number of primary keys on an inverted list to switch

from in-memory operation to the disk-based operation. For text searches, AsterixDB needs

to access the primary index to fetch each actual record to verify the predicate since it does

not do locking during a secondary-index search as we will describe shortly in Section 4.2.1.

As a result, a large cardinality from an inverted-index search would cause the primary-index

lookup to dominate the execution time of the overall query, shifting attention away from the

operator of interest.

We first used query template Q10 in Figure 3.38 with two keywords in the predicate and

using a conjunctive (AND) search to measure whether the inverted-index search operator

indeed reads the inverted lists within its budget M . When the assigned budget is greater

than the size of an inverted list, the list can be loaded into the execution memory all at once.

When the inverted list size is greater than the budget, the operator must divide the inverted

list into chunks and read a chunk at a time. For this experiment, we first created a sorted

keyword list containing all keywords based on their inverted list size (MB). To generate each

query, we used this list to randomly choose the first keyword where the frequency range

was between 100,000 and 120,000 (about 2 MB). The purpose of the first keyword was to

generate the search result that would then serve as the previous search result so that each

primary key in this result will be used to traverse the inverted list for the second keyword.

We then randomly picked the second keyword based on its average inverted list size. We

used three distinct ranges where the average sizes of the inverted list for the keyword were 75

69

MB, 150 MB, and 340 MB respectively. Based on an operator budget of 128 MB, inverted

lists whose average size was 75 MB could be read as one chunk. For the 150 MB and 340

MB cases, the lists had to be divided into multiple chunks. Figure 3.37(a) shows the average

execution time of an inverted-index search operator for query Q10 in Figure 3.38. We can

see that the execution time was proportional to the average size of the inverted list and that

the trend was linear.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300

Budget

A
v
e
ra
g
e

E
x
e
c
u
tio
n

tim

e

(s
e
c
)

Average inverted list size (MB)

(a) Two keywords.

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300 350

Budget

A
v
e
ra
g
e

E
x
e
c
u
tio
n

tim

e

(s
e
c
)

Average inverted list size (MB)

(b) Three keywords.

Figure 3.37: The average execution time of inverted-index search queries.

The case above focused on reading an inverted list. Next, we increased the number of

keywords to three and performed a disjunctive search (OR) to union all three inverted lists

so that spilling of an intermediate result to disk would be needed for large inverted lists.

Figure 3.37(b) shows the average execution time for the three-keyword query. We varied the

inverted list size of each keyword so that, except for the first case (total inverted list size

= 42 MB), the other three sizes generated intermediate results on disk. Here, we set the

budget to 64 MB to cause the switch from in-memory operation to disk-based operation to

occur sooner. Also, one additional reason to adjust the budget size was that the number of

the inverted lists whose size were similar or greater than the original budget (128 MB) was

small in the Reddit data. In the figure, we can see that the inverted-index search indeed

handled the data linearly regardless of the size of the inverted list. Switching from in-memory

operation mode to disk-based operation occurred seamlessly.

70

/* Q7. Sort */
select value count(first.unique1) from (
select unique1, unique2
from Wisconsin
where unique2 >= [start] and unique2 < [end]
order by unique1
) first;

/* Q8. Hash Group-by */
select value count(first.unique1) from (
select unique1, unique2, count(unique2)
from Wisconsin
where unique2 >= [start] and unique2 < [end]
/* +hash */ group by unique1, unique2
) first;

/* Q9. Hash Join */
select count(first.unique1) from (
select r.unique2, s.unique1 from
(select unique2 from Wisconsin
where unique2 >= [start1] and unique2 < [end1]) r,
(select unique2, unique1 from Wisconsin
where unique2 >= [start2] and unique2 < [end2]) s
where r.unique2 = s.unique2
) first;

/* Q10. Inverted-index search */
select count(*) from reddit r
where ftcontains(["keyword1", "keyword2", "keyword3"], {"mode":"all"});

Figure 3.38: Query templates to measure the average execution time of memory-intensive
operations.

3.7.4 When Objects Get Large

So far, we have not included large string fields in our experiments. Next, we investigate the

average execution time of the different memory-intensive operators when we include a large

string field in each record (a somewhat extreme case). We focus on the sort and hash join

operations since grouping based on a large string field would be a rare case. In addition, an

inverted-index search is not normally related to large string fields (since an inverted index

only contains information about secondary and primary index keys). Even if we issued a

query that returned a large string field, the inverted-index search process would not see these

fields. In contrast, for the sort and hash join cases, if a query wants to return a large string

field, this field instance is included as a field in a record that will flow through the operation.

For these experiments, we used the five Wisconsin variant datasets in Table 4.2 to measure

71

the effect of having large string fields that result in different record size distributions.

3.7.4.1 Sort Operator

We used query template Q11 in Figure 3.41 to measure the average execution time of sort

queries with large fields. For each dataset, we varied the cardinality and issued 100 random

queries as we did before. For the large-field case, when the number of records was greater

than 2,000 on the dataset Wisconsin-Norm-0, the sort process had to generate runs on disk.

Figure 3.39 shows the average execution time of sort queries with the different large field

size distributions. The average execution time of dataset Wisconsin-Gamma2 was the highest,

and that of Wisconsin-Norm-0 was the lowest. The reason is that the sort operator has to

access the disk twice to read a record with a large field if it does not fit into a regular page.

Recall that it first reads a single disk page and checks the page multiplier to see whether

it is a logically large page; if so, it needs to read the accompanying supplemental block

separately. Therefore, as the percentage of large pages increases, as shown in Table 3.3, it

takes more time to read all the records. In addition, as the percentage of large pages grows,

we can see that the effective space utilization in the storage layer also drops (the second row

of the table). Thus, in order to read the same number of records, the number of physical

pages that need to be read is larger when the space utilization drops. For these reasons, the

average execution time for the dataset Wisconsin-Norm-0 was the lowest since its effective

space utilization ratio was the highest and its percentage of large pages was lowest.

3.7.4.2 Hash Join Operator

The next experiment measured the effect of having large fields with different size distributions

in the case of a hash join. We used query template Q12 in Figure 3.41 to measure the average

execution time of hash join queries with large fields. We again varied the cardinality and

72

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 6 10 14 18 22A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (thousand)

Gamma2

Gamma1

Norm-L

Norm-M

Norm-0

Figure 3.39: The average execution time of sort queries with large fields.

Table 3.3: Space utilization in the storage and during the runtime (22 K records).

Dataset Norm-0 Norm-M Norm-L Gamma1 Gamma2
The total volume of all
pages read (MB)

575.19 580.92 571.34 491.35 393.56

Used space percentage 89% 69% 56% 56% 54%
The total volume of all large
pages read (MB)

0.00 118.67 197.44 193.25 167.27

Large page percentage 0% 20% 35% 39% 43%

datasets as was done in the sort experiment. For the large field case, once the number of

records was greater than 2,000 on dataset Wisconsin-Norm-0, the hash join process needed to

spill some data partitions to disk. As in the previous hash join experiment, we selected 1,000

random records from the outer branch (probe side) and selected another random number of

records from the inner branch (build side). Figure 3.40 shows the average execution time of

the above query on the five datasets as a function of the build side cardinality. The trend is

similar to that of the sort queries in Figure 3.39, and for similar reasons.

3.7.5 Query Access Control

We now explore the effect of the query admission policy in AsterixDB using the TPC-H

dataset with a scale factor of 10 and a representative TPC-H query. The explored policies

are no admission control, the system’s initial conservative admission control, and the system’s

73

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 3 5 7 9A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (thousand)

Gamma2

Gamma1

Norm-L

Norm-M

Norm-0

Figure 3.40: The average execution time of hash join queries with large fields.

/* Q11. Sort - large fields */
select value count(largeString) from (
select unique1, largeString from [dataset]
where unique2 >= [start] and unique2 < [end]
order by unique1
) first;

/* Q12. Hash Join - large fields */
select count(first.largeString) from (
select r.unique2, s.largeString from
(select unique2
from [dataset]
where unique2 >= [start1] and unique2 < [end1]) r,

(select unique2, largeString
from [dataset]
where unique2 >= [start2] and unique2 < [end2]) s

where r.unique2 = s.unique2
) first;

Figure 3.41: Query templates to measure the average execution time of memory-intensive
operations with large fields.

current stage-based admission control.

We used a variation of TPC-H query 3 for this experiment, shown later in Figure 3.47, since

this query included various memory-intensive operations, including two joins, one group-by

with three fields, and one sort (order by) with two fields. We changed the query slightly to

also include an inverted-index search. Specifically, we changed the query’s string equality

comparison predicate to be a full-text search condition predicate. Thus, this query was able

to utilize all of the memory-intensive operations that we have discussed here. To expedite the

query’s execution, we created two B-tree indexes on the TPC-H o orderdate and l shipdate

fields. We also created a full-text index on the c comment field.

74

Figure 3.42 shows the actual activity execution graph of the modified TPC-H query. Each

task cluster in the execution graph consists of multiple activities that can be pipelined and

executed together. For instance, in task cluster 1, an inverted-index search is executed and

its result will be pipelined to the build phase of an external sort operator. A dashed arrow

in the graph means that the cluster at the end of the arrow is blocked by the cluster at

the beginning of the arrow. (That is, the cluster at the end of the arrow cannot start until

the cluster at the beginning of the arrow finishes.) For instance, task cluster 5 cannot start

until task clusters 1,2,3, and 4 finish. If there are no dashed arrows (including transitive

arrows) between two clusters, such as for the task clusters 1 and 2, they can be executed in

parallel. Therefore, the overall activity graph indicates the possible execution order for the

query’s activities. It also determines that the maximum amount of working memory that

the AsterixDB instance may need to use for this query at any given moment. For example,

task cluster 7 is the only cluster that can be executed after task cluster 6 is finished, and it

has a sort operator and a hash group-by operator. Thus, task cluster 7 can use up to 256

MB of working memory if the budget of each operator is set to 128 MB. Task cluster 5 will

use the largest amount of working memory in this query since it has a sort operator, two

hash join operators, and a hash group-by operator.

To observe the memory usage of the AsterixDB instance, we used the jstat Linux command

to sample the heap size of the AsterixDB JVM instance every two seconds. Since we allocate

6 GB to the AsterixDB JVM instance and we set the size of the buffer cache to 2 GB and the

size of the in-memory components region to 1 GB, the working memory space is about 3 GB.

Since this is a read-only query and the data is on disk, in-memory component region is not

used. Thus, the maximum heap usage observed for each experiment should be lower than 5

GB (5,120 MB) if the system is behaving properly. We ran six workload-generator processes

and each process sequentially issued five queries with a random predicate. Thus, thirty

queries were sent to the instance in total. We also set a five-minute interval between the

start of each process to avoid a convoy effect by staggering their starts. In each experiment,

75

Task Cluster 1 Task Cluster 2

Task Cluster 3 Task Cluster 4

Task Cluster 5

Task Cluster 6

Task Cluster 7

Task Cluster 8

BA
B is blocked by A.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
Stage 6

Inverted-index search -
ftcontains(c.c_comment, keyword)

External sort (build)

B-tree search -
l.shipdate > datetime1

External sort (build)
B-tree search -

o.orderdate < datetime2

External sort (build)

Select - o.orderdate < datetime2

External sort (merge)

Hybrid hash join (build)

B-tree search

Select - l.shipdate > datetime1

External sort (merge)

Hybrid hash join (build)

B-tree search

External group (merge)

External group (aggregate)
External group (aggregate)

External group (aggregate)

Hybrid hash join (probe)

Hybrid hash join (probe)

ftcontains(c.c_comment, keyword)

External sort (merge)

B-tree search

External sort (build)

External group (merge)

Result write

Record constructor

External sort (merge)

External group (aggregate)

Figure 3.42: The runtime execution activity graph of the TPCH query 3.

we initially restarted the AsterixDB instance so that its memory usage always started from

zero.

Before discussing the effect of the three query admission control policies, let us first examine

the execution of a single query since this is the basic workload component. The memory

usage of one query over time is shown in Figure 3.43. This query took about 1,000 seconds.

(Thus, if we were to execute 30 such queries sequentially, it would take about 30,000 seconds

to finish them in total.) When the query starts, an inverted-index search and two B-Tree

search operators are executed in stage 1 to fetch the primary keys that satisfy the conditions.

Also, three sort operators are initialized and receive the primary keys pipelined from these

secondary-index search operators. During this time, the buffer cache is being filled in and

76

the three sort operators are fully utilized. This explains the first sharp increase in the

heap usage in Figure 3.43. After this increase, we see a few zigzag patterns. These occur

because when the execution of a task cluster finishes, an operator will release its resources

if all activities of the operator are finished. For instance, a hash join operator releases the

pages from its execution memory back to the working memory pool after the probe phase is

finished (not the build phase). When a new task cluster starts, all of the memory-intensive

operators in the task cluster are initialized and start their operations. Note that the memory

usage of a memory-intensive operator will increase gradually since it does not pre-allocate

its maximum number of pages when it is initialized. The resulting behavior is thus a series

of gradual increases and sharp drops in the query’s heap size graph.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

H
e
a
p

s
iz
e

(M
B
)

Elapsed time (s)

Max Heap Size

Current Heap Size

Figure 3.43: The heap size during an execution of one query.

3.7.5.1 Policy 1: No Query Admission Control

The first implementation of AsterixDB did not have any query admission control. Figure 3.44

shows the heap usage of six processes when there is no admission control in place. Thus,

the first six queries were competing for getting the system resources. After 12,000 seconds

of competing for getting resources, the system reached an OOM state and the AsterixDB

instance became unstable. No query was able to finish its execution before the AsterixDB

instance reached the OOM state. In fact, during this “competition”, the system’s CPU

utilization was high but its disk utilization was low since each query execution thread was

77

struggling to get more memory from the JVM instance.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 2000 4000 6000 8000 10000 12000
H
e
a
p

s
iz
e

(M
B
)

Elapsed time (s)

Max Heap Size

Current Heap Size

Figure 3.44: The heap size during an execution of multiple concurrent queries using no query
admission control.

3.7.5.2 Policy 2: Conservative Query Admission Control

The first AsterixDB query admission control implementation assumed conservatively that

all operators in the plan might execute at the same time. As we saw in Figure 3.42, there are

many memory-intensive operators in the plan. As a result, this implementation estimated

the potential memory requirement of the plan for our version of TPC-H query 3 to be

1,154 MB. Since about 2,400 MB was available as working memory, only two queries were

allowed to execute at any given time. We can again see a zigzag pattern of memory usage

in Figure 3.42. However, the pattern is less clear than the pattern in Figure 3.43 since the

execution of two concurrent queries whose starting times were different are overlapped. The

heap usage was kept under 4,500 MB and it took about 25,000 seconds to finish the entire

concurrent execution.

3.7.5.3 Policy 3: Stage Aware Query Admission Control

The current implementation of admission control in AsterixDB considers the execution stages

of the plan and estimates the maximum memory usage per stage. Thus, each query requests

78

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 5000 10000 15000 20000 25000

H
e
a
p

s
iz
e

(M
B
)

Elapsed time (s)

Max Heap Size

Current Heap Size

Figure 3.45: The heap size during an execution of multiple concurrent queries using the
conservative query admission control.

at most 512MB of working memory at any given time since task cluster 5 had four memory-

intensive operators and the budget of each of memory-intensive operator was set to 128 MB.

The available working memory was again about 2,400 MB. Here, four queries were allowed

to execute at a given time. We can see in Figure 3.46 that the memory usage is controlled

below 5 GB. Interestingly, it took slightly longer to execute the 30 queries in this case than it

did with the more conservative initial admission control implementation. One major reason

for this is that with more execution worker threads, only two of the system’s resources

(memory and CPU cores) were enough to accommodate these threads. However, there was

only one physical storage partition, so accessing disk was actually contentious among all

worker threads. If we could increase the number of physical storage partitions by creating

several of them on separate disks, we could reduce this disk contention. This suggests that

while AsterixDB’s current admission control policy does a good job with respect to CPU and

memory management, I/O resources should also be considered at admission time to limit

I/O contention.

3.8 Conclusion

In this Chapter, we have described the budget-driven approach to memory management in

Apache AsterixDB, a parallel open source Big Data management system. We described how

79

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000

H
e
a
p

s
iz
e

(M
B
)

Elapsed time (s)

Max Heap Size

Current Heap Size

Figure 3.46: The heap size during an execution of multiple concurrent queries using the
current query admission control.

/* Q13. TPC-H Query */
select value count(*) from (

select
l.l_orderkey, sum(l.l_extendedprice*(1-l.l_discount)) revenue, o.o_orderdate, o.o_shippriority

from
customer as c, orders as o, lineitem as l

where
ftcontains(c.c_comment, [keyword])
and c.c_custkey = o.o_custkey
and l.l_orderkey = o.o_orderkey
and o.o_orderdate < [date]
and l.l_shipdate > [date]

/* +hash */ group by
l.l_orderkey, o.o_orderdate, o.o_shippriority

order by
revenue desc, o.o_orderdate

) first;

Figure 3.47: A variation of TPC-H query no.3.

it divides memory into a few regions – in-memory components, the disk buffer cache, and

working memory – and how it controls the memory usage of each region carefully. We then

discussed how the system maintains a very carefully tracked budget in the context of its

algorithms in order to keep the memory usage of its memory-intensive operators within a

budget. Each memory-intensive operator’s implementation requires careful attention regard-

ing memory usage since a memory-intensive operator needs to perform both in-memory and

disk-based operation to cope with any volume of data and each operator has a different al-

gorithm to allocate/deallocate memory pages. We described the original implementation of

AsterixDB’s memory-intensive operators and the memory details that they had overlooked.

We then described how we modified these operators to truly operate within a budget. We

80

also discussed issues related to the global memory management in AsterixDB. Specifically,

we discussed how it sizes in-memory components, implements query admission control, and

incorporates large fields. We also presented experiments to empirically explore the effect of

not considering the size of the data structures used in memory-intensive operators. We used

both synthetic and real datasets and showed that the current implementations of memory-

intensive operators are well-controlled and scalable. We also showed that these operators

worked as expected both in a single query environment and in multiple concurrent query

environments. Since the existing literature largely ignores these important details, we hope

that future Big Data management system builders can benefit from our experiences.

81

Chapter 4

Index-only Query Plans in AsterixDB

4.1 Introduction

Most data management systems support various types of indexes to expedite their query

execution. These systems utilize two types of indexes. A primary index either keeps a map-

ping between primary keys and records or stores the records themselves in it. A secondary

index is an auxiliary structure built on a non-primary field. It maps from secondary keys

to primary keys (or to record locations). If a search predicate is on the field, the system

can utilize the secondary index to answer the query without performing a full scan of the

records. This method can be efficient when the selectivity of the predicate is low. Its main

limitation is that after performing the secondary-index search, the system needs to access

the records to get the additional fields to generate the final results. For instance, the query

in Figure 4.1 asks for three fields from a dataset called ds tweet that contains a number

of tweets. Suppose that userid is the primary key and that there is a secondary index on

the username field. A secondary-index search on the username field can generate primary

keys that satisfy the predicate. The system then needs to access the records to fetch the

82

additional fields needed to generate the final results. If the corresponding records are not

physically contiguous, generating the final results may take more time than performing a

full scan since each record lookup needs a random disk I/O. Sorting the primary keys first

can help to reduce this cost [44], but there is still a full scan crossover at some point.

select t.user.userid, t.user.username, t.user.createat
from ds_tweet t where t.user.username like "Jerry%";

Figure 4.1: A query that can utilize a secondary index on the username field.

To solve this performance problem, most data management systems support index-only query

plans that can generate the final results for some queries by only accessing a secondary

index. For instance, if the query in Figure 4.1 asked to return only userid and username, the

secondary index on the username field contains all the necessary data to answer this query.

In this case, the system would not need to access the records to answer the query.

AsterixDB supports various types of secondary indexes including B+-tree, R-tree, and in-

verted indexes. In this chapter, we discuss how to support index-only plans in AsterixDB

given the nature of its storage and transaction subsystems.

4.1.1 Related Work

Fetching declaratively-guided data using indexes was used in DBMS as early as System-R [27]

and Ingres [51]. Since then, various types of indexes have been proposed. Most existing data

management systems, such as DB2, Postgres, MySQL, and Oracle, support index-only plans.

For example, DB2 implements a transactionally correct index-only plan by locking a data

page or a record (or records) to guarantee the consistency between an index entry and the

actual record in a data page [2]. In PostgreSQL, each heap page contains a visibility map

bit to keep information about which of the records in a given page are visible to all active

transactions [10]. If the visibility map bit is set, entries fetched from a secondary-index

83

search can be returned. Otherwise, the search process must check the heap page for each

entry. After finding entries from a secondary-index search, a PostgreSQL search thus checks

the visibility map bit for the corresponding data heap page(s) to verify whether the records

in the data heap page are visible to the current search process [9]. MySQL reads a snapshot

of the database and uses it in an index-only plan [7]. Oracle uses a multi-version consistency

model to provide a snapshot of the database to an index-only plan [8].

4.2 Background

In this section, we discuss the current implementation of the relevant AsterixDB related to

index-only query plans.

4.2.1 Index Search

A secondary-index search first traverses a secondary index to generate 〈secondary key, pri-

mary key〉 pairs that satisfy the predicate. AsterixDB then sorts these primary keys and

looks in the primary index to fetch the actual records, retrieving all relevant fields including

the secondary key field. It then verifies the search condition again using a select operator to

generate the final results.

There are two reasons behind this process in AsterixDB. First, some types of secondary

index searches may generate false positive results. For instance, a range-search condition on

multiple fields on a composite B+-tree index may generate false positive results as we will

explain shortly. Since an R-tree index stores a minimum bound rectangle (MBR) of a field

value, not the field value itself, searching an R-tree may also generate false positive results.

An inverted-index search may similarly generate false positive results when performing a

similarity search. The second reason is to maintain concise (simplified) locking functionality.

84

AsterixDB only performs locking on the primary index. It does this in order to support a

variety of secondary index structures in terms of concurrency control, since index-structure-

specific aspects can then be ignored for locking [84]. However, with this scheme, there may

be brief inconsistencies between the secondary index and the primary index, so the result

of a secondary-index search is not “authoritative”. Thus, AsterixDB needs to look up the

primary index to generate a trustworthy result to be returned to the user.

If the selectivity of a query predicate is low, a secondary-index search outperforms a scan-

based approach. As the number of results from the secondary index increases, however,

the execution time also increases, and more primary keys are generated from the secondary

index. To help mitigate this expense, once the secondary-index search generates 〈secondary

key, primary key〉 pairs, AsterixDB sorts these primary keys and feeds them into the primary

index to increase the buffer cache (I/O) cache performance. Since the resulting primary keys

may not be on contiguous pages, AsterixDB performs a point lookup per primary key rather

than performing a full scan.

4.2.2 Locking

During an index search, a lock is needed to ensure the consistency of a record as described in

Section 4.1.1. Like most data management systems, AsterixDB supports two kinds of locks

– shared (S) lock and exclusive (X) lock. An S lock is used when reading a record, and an

X lock is used when inserting/updating/deleting a record. Regarding the duration of a lock,

AsterixDB provides two lock types. The first one is an instant lock. As the name suggests,

an instant lock holds a record for a very short amount of time. AsterixDB acquires a lock on

a record and releases it instantly after fetching the record. The purpose of an instant lock is

to see if locking a record in a given mode is currently possible and to hold a short-duration

lock until it is being fetched. The second type is a non-instant lock. A transaction initially

85

holds and then releases such a lock only after its commit. AsterixDB also supports a third

type, try lock, which is useful when a transaction wants to try to acquire a lock without

being blocked if the request cannot currently be granted by the lock manager. Normally,

when a transaction sends a lock request to the lock manager, the request is either granted

by the lock manager or queued. A “try” lock first attempts to get a lock. If the request is

granted, it holds the lock and returns true to the caller. If the request is queued, the locking

request is disregarded and returns false without blocking the caller.

Figure 4.2 shows the possible combinations of locking methods in AsterixDB. For instance,

if a transaction wants to request a shared lock for the normal duration, a non-instant-S-lock

is created. If a transaction wants to request a shared lock instantly and does not want to

wait if the request cannot be granted, an instant-try-S-lock can be created.

Lock type

Exclusive (X) lock
Shared (S) lock

Duration

Non-instant

Instant

Request type

Try-and-return

Try-and-waitX X

Figure 4.2: Combinations of locking methods.

A transaction that performs a primary index search without any modification requests an

instant-S-lock for each primary key since it needs to get a shared lock before returning the

current record. A transaction that performs insert/upsert/delete operations requests a non-

instant-X-lock for each primary key since the lock should protect the record from being

modified by other modification requests until the transaction commits. As described earlier,

no lock will be placed for secondary indexes during modification/search operations.

4.3 Implementing Index-only Query Plans

In this section, we first discuss the required conditions of a scan-based query plan that can be

correctly transformed into an index-only query plan. We then discuss two issues related to

86

the current secondary-index search that need to be addressed. We next present an index-only

query plan and discuss how to perform the transformation.

4.3.1 Necessary Conditions

Not every secondary-index search plan can become an index-only plan since some plans may

logically generate false positive results. Figure 4.3 shows how we can check if a query plan

can be transformed into an index-only plan. AsterixDB first checks whether the plan can

utilize a secondary index. If there is no secondary index on those fields in the predicates,

AsterixDB simply performs a scan-based plan. If there are secondary indexes on the fields

used in the predicates, AsterixDB checks the applicability of a corresponding index based

on its type.

Is the secondary index
a B-Tree or an R-Tree on a
point or a rectangle field?

Can utilize a
secondary index?

Conduct a scan-based
plan.

Can final results be
generated using the results

of a secondary-index
search?

Conduct a non-index-
only plan (ordinary
secondary-index
search plan).

Conduct an index-
only plan.

No

Yes

No

Yes Yes

No

Logical plan

Figure 4.3: Index-only plan check.

1) B+-tree: If the index is a B+-tree, AsterixDB can apply the index-only plan optimization

since a B+-tree search does not generate false positive results in general. However, there is

one exception. A composite B+-tree can generate false positive results if both predicates

contain range conditions. These false positive results can be removed by applying a SELECT

operator after performing a secondary-index search in an index-only plan, as the composite

B+-tree index contains the original values of both fields. For instance, the query in Figure 4.4

has two range predicates. Suppose there is a composite B+-tree on the user.create at and

user.posting count fields. A secondary-index search in AsterixDB is currently done as a range

87

search that identifies the first 〈secondary key(s), primary key〉 entry and the last 〈secondary

key(s), primary key〉 that satisfy the predicate range, and it returns all entries between

them. As a result, the results from a secondary-index search can contain 〈user.create at,

user.posting count, id〉 triples that may have false positives. For instance, in the query in

Figure 4.4, if one of the user.create at field values in the data is date(”2017-03-31”), all values

of user.posting count associated with that value will be returned by the range scan.

select t.id, t.user.create_at, t.user.posting_count from ds_tweet t
where t.user.create_at >= date("2017-01-01") and t.user.create_at <= date("2017-12-31")
and t.user.posting_count >= 10000 and t.user.posting_count < 99999;

Figure 4.4: A query that can utilize a composite B+-tree index on the user create at and
user posting count fields.

2) R-tree: If the index is an R-tree, the plan can be transformed into an index-only plan

only if the original field value can be reconstructed from the MBR in the index; otherwise,

false positive results can be generated. For instance, the query in Figure 4.5 asks for all

rectangles that overlap with a circle. When performing an R-tree search, the MBR of the

circle will be used to search the R-tree on the field place.bounding box. Since the circle’s

MBR can generate false positive results, they should be verified using the original circle.

Since R-tree search results contain MBRs, if the original field cannot be generated, this

verification cannot be done without looking at the original data. The only possible type

of field that qualifies for an index-only plan is thus a point or a rectangle, since the R-tree

index keeps the original point value and the MBR of a rectangle is equal to its shape.

select t.place.bounding_box from ds_tweet t
where spatial_intersect(t.place.bounding_box, circle(-126.76,54.44 7));

Figure 4.5: A query utilizing an R-tree index on the place bounding box field.

3) Inverted index: If the index is an inverted index, an index-only plan is not possible since

an inverted index can have multiple secondary key entries per primary key. For example,

suppose there is a full-text index on a field named reviewText and a user wants to execute

88

the full-text query in Figure 4.6. The query executes a full-text search that checks whether

each instance of the reviewText field contains both “expected” and “more”. If an instance of

the field reviewText includes both keywords, two entries will be fetched for this field instance

during the inverted-index search, namely 〈expected, PK〉 and 〈more, PK〉. Since an inverted-

index search deals with one token plus its inverted list (primary keys) at a time, two entries

from different tokens cannot be fetched at the same time. Thus, a secondary-index search

will first fetch 〈expected, PK〉. When fetching the second pair 〈more, PK〉, the inverted-index

search cannot transactionally guarantee that this entry refers to the same record version

that was referred to the first primary key since the record may have changed during the gap

between those two fetches.

select t.review_id, t.reviewText from ds_tweet t
where ftcontains(t.reviewText, ["expected","more"]);

Figure 4.6: A query utilizing an inverted (full-text) index on the reviewText field.

If the index type is potentially applicable, AsterixDB checks whether the index is a “covering

index”, i.e., whether it includes all of the fields in the predicate and all of the query’s returned

fields. If the index is not covering, AsterixDB still needs to access the primary index to fetch

the relevant fields, so it cannot utilize an index-only query plan. Otherwise, an index-only

plan can be generated.

4.3.2 Authoritative Secondary-index Search

As described above, the results from a secondary-index search need to be verified since the

search is not transactionally authoritative. To make its search results trustworthy without

re-verification, AsterixDB needs to ensure the consistency between the primary index and

the secondary index during a secondary-index search. To ensure consistency, we can use a

locking strategy similar to the primary-index search as explained below. Let us consider the

simple query in Figure 4.7 that utilizes the primary index of the dataset ds tweet. Here, id

89

is the primary key field. Since the predicate condition contains the id field, a primary-index

search will be performed.

select t.id, t.user from ds_tweet t
where t.id > 1000;

Figure 4.7: A query that performs a range search on the primary index.

During the primary-index search, when AsterixDB fetches a primary key, it places an instant-

S-lock on the key value as shown in Figure 4.8. Since it is not a try lock, the transaction waits

until it gets a lock on the primary key. Once it gets the lock, there can be no concurrent

modification access being made to this record. Thus, we can guarantee that the returned

record is the latest as of the time when the lock request is granted.

ASSIGN (CONSTANT)

PRIMARY-INDEX SEARCH

EMPTY TUPLE SOURCE

instant-S-lock

ASSIGN (Fields)

Figure 4.8: Primary-index search.

A similar locking strategy can be applied to a secondary-index search. During a secondary-

index search, the transaction can also perform an instant-try-S-lock on the primary keys

when seeing a 〈secondary key, primary key〉 pair from the secondary index. If this lock

request is successful, then there was no ongoing concurrent modification being made on the

record at the time of fetching the pair. In this case, the query can return the 〈secondary

key, primary key〉 pair as part of the query result. If this instant-try-S-lock request fails, an

ongoing concurrent modification was being made to the primary index. That is, the record

90

referred to by the primary key could have been deleted or the indexed field value could have

been updated. In either case, the transaction can simply fetch the record from the primary

index to verify the condition for the entry 〈secondary key, primary key〉 whose lock request

was not granted. We have chosen this fallback approach for the following reasons. Suppose

we want to resolve the instant-try-S-lock request failure case using the secondary index alone.

A new secondary-index search with the same secondary key and primary key would need

to be performed to make sure that the entry pair still exists. In addition, after seeing this

pair again, a new lock request would need to be sent to the lock manager to ensure that

there was no ongoing concurrent modification request and the current transaction would be

unable to progress until this entry pair is processed. Instead, falling back to verification in

this (hopefully rare) case seems simpler.

4.3.3 Implementing an Index-only Plan

As was just described, the secondary-index search can generate a trustworthy result by

performing an instant-try-S-lock on each primary key. The result of this instant-try-S-lock is

either false or true. If this lock request fails, the transaction still needs to perform a primary-

index lookup on the primary key. If this lock request succeeds, however, the transaction can

simply return the 〈secondary key, primary key〉 pair as the final result. Therefore, we need

to create a logical query plan that has two paths after the secondary-index search based on

the instant-try-S-lock result.

SPLIT operator: AsterixDB has a REPLICATE operator that can replicate the results of

an operator to more than one output. Although the REPLICATE operator can propagate

each result along multiple paths, each output receives the same sequence of 〈secondary key,

primary key〉 pairs. In our case, however, AsterixDB also needs to filter the 〈secondary key,

primary key〉 pairs in each search output path. One of the plan’s output paths is for the

91

instant-try-S-lock failed case. In this path, AsterixDB needs to remove primary keys whose

instant-try-S-lock request was successful, as it is not necessary to perform the primary-index

lookup on these primary keys. In the other path, AsterixDB needs to remove the primary

keys whose instant-try-S-lock request was not successful, as these primary keys still need to

be checked in the primary index. Figure 4.9(a) illustrates this idea.

ASSIGN (CONSTANT)

SECONDARY-INDEX SEARCH

REPLICATE

SELECT (filters success cases)

EMPTY TUPLE SOURCE

SELECT (filters fail cases)

instant-try-S-lock
on each PK

Returns the resultsConducts the
primary-index lookup

(a) Using REPLICATE operator.

ASSIGN (CONSTANT)

SECONDARY-INDEX SEARCH

SPLIT

EMPTY TUPLE SOURCE

instant-try-S-lock
on each PK

Instant trylock
success path

Instant trylock
fail path

Returns the resultsConducts the
primary-index lookup

(b) Using SPLIT operator.

Figure 4.9: Comparison between REPLICATE and SPLIT operators.

Using the REPLICATE operator is not as efficient as possible. Thus, we developed a new

operator called SPLIT that can have multiple outputs with the additional functionality of

sending a record to only one output. The SPLIT operator checks the value of an expression

on each record and guides it to only one output. Figure 4.9(b) shows the revised plan using

the SPLIT operator. We can see that the SELECT operators in the two paths are no longer

needed.

Combining two output paths: The SPLIT operator makes it possible to propagate the

primary keys from the secondary-index search to the appropriate paths. For the instant-

try-S-lock success path, AsterixDB passes the 〈secondary key, primary key〉 pairs to the

next operator directly. For the instant-try-S-lock failed path, it performs the primary-index

lookup on each primary key and retrieves the latest record. It then fetches the secondary

92

key field and verifies the condition again. If the condition holds, that record can be passed

to the next operator.

One issue with this approach, if done naively, is that the original path after the introduction

of the SELECT operator should be copied to both paths because of the SPLIT operator. If

this secondary-index search is the starting point of a complex query plan, then almost every

operator in the plan would need to be duplicated. This approach is clearly not efficient.

Instead, re-combining the two paths after the verification in the instant-try-S-lock fail path

will be more efficient than creating two separate (largely duplicated) paths. AsterixDB has

an operator called UNIONALL that can integrate two input paths into one output, as shown

in Figure 4.10, and we can exploit that operator here for index-only plans.

UNIONALL

First input Second input

Output

Figure 4.10: UNIONALL operator.

Using the SPLIT operator as the dividing point and the UNIONALL operator as the merg-

ing point, an index-only query plan now has a diamond shape as shown in Figure 4.11.

The resulting plan can generate trustworthy results from a secondary-index search. The

transactional consistency issue between the secondary-index search and the primary index

is now resolved. Notice the PROJECT operators before the plan’s UNIONALL operator;

these are placed there to keep the field order of the 〈secondary key, primary key〉 pairs in

the plan consistent. For instance, the order of the pairs in the left path will be 〈primary key,

secondary key〉, as a primary-index search generates the primary key first and a secondary

key field will be assigned. The order of the two keys in the right path will be 〈secondary

key, primary key〉, as each pair from a secondary-index search generates them in this order.

93

ASSIGN

SECONDARY-INDEX SEARCH

SPLIT

UNIONALL

PRIMARY-INDEX SEARCH

ASSIGN

SELECT

PROJECT PROJECT

SK

SK, PK

SK, PK

PK

PK, Record

SK, PK

SK, PK SK, PK

SK, PK

Figure 4.11: Index-only plan.

4.3.4 Rewriting Scan-based Plans into Index-only Plans

AsterixDB uses an extensive rule-based approach to query optimization [22]. An initial

logical plan is constructed from a given query, and each optimization rule is tried on this

plan. If a rule is applicable, the plan is transformed. A logical plan involving a dataset access

always starts with a PRIMARY-INDEX-SCAN operator, followed by a SELECT operator

if there are selection conditions. For queries that can utilize a secondary index, a non-index

scan-based query plan is constructed first, and an index-based transformation then occurs

during the optimization phase.

Figure 4.12 shows how a scan-based query is optimized to use an index. Figure 4.12(a)

shows the original scan-based plan, and Figure 4.12(b) shows an index-utilization plan.

Figure 4.12(c) shows an index-only plan. The index-utilization plan and index-only plan are

94

chosen based on the conditions described in Section 4.3.1.

ASSIGN V (Secondary key)

SELECT (V, C)
Local

…

PRIMARY-INDEX-SEARCH

SELECT (V, C)

Local

…

SECONDARY-INDEX-SEARCH
Local

C

PRIMARY-INDEX-SCAN
Local

ASSIGN V (Secondary key)
Local

ORDER(SORT) Primary keys
Local

Broadcast to
all nodes

Non-Index-Based Plan
(a)

Index-Based Plan
(b)

C
Broadcast to

all nodes

SECONDARY-INDEX-SEARCH

SPLIT

UNIONALL

PRIMARY-INDEX-SEARCH

ASSIGN V (Secondary key)

SELECT (V, C)

PROJECT PROJECT

C
Broadcast to

all nodes

Index-Only Plan
(c)

Local

Local

Local

Local

Local

Local Local

Local

Figure 4.12: Rewriting a scan-based plan to an index-only plan.

Based on a SELECT operator with a condition, the optimizer tries to replace PRIMARY-

INDEX-SCAN with a secondary-index-based search plan. To rewrite a query, the optimizer

first matches an operator pattern consisting of a pipeline with a SELECT operator and a

PRIMARY-INDEX-SCAN operator. Next, it analyzes the condition of the SELECT op-

erator to determine whether the non-constant argument originates from the PRIMARY-

INDEX-SCAN operator and whether the corresponding dataset has a secondary index on a

field variable V . For each secondary index on V , the optimizer checks whether it is applica-

ble based on the predicate. For example, an R-tree can be utilized for spatial queries that

use the spatial intersect function. The optimizer then checks whether the given index is a

covering index and the necessary conditions described in Section 4.3.1 for index-only plans

can be satisfied. If so, the plan can be transformed into an index-only query plan. If not,

the plan can be transformed into a secondary-index utilization plan.

For a secondary-index utilization plan transformation, the optimizer builds a SECONDARY-

INDEX-SEARCH operator whose parameter is the predicate used in the original SELECT

operator. It then adds a SORT operator to sort the primary keys that are fetched from the

95

secondary-index search, and it adds a PRIMARY-INDEX-SEARCH operator to fetch the

records. An ASSIGN operator is then placed to access the original secondary key field and

the SELECT operator is placed to verify the original predicate.

For an index-only plan transformation, the optimizer builds a SECONDARY-INDEX-SEARCH

operator as before. In addition, it instructs the operator to perform an instant-try-S-lock for

each primary key that it fetches. It then places a SPLIT operator and builds the primary-

index search path for the instant-try-S-lock failure case. For the instant-try-S-lock success

case, if filtering false positive results are required, such as range searches in a composite index,

it places a SELECT operator after the SPLIT operator. Once both paths are constructed,

the optimizer creates a UNIONALL operator to merge the two paths.

4.4 Experiments

To quantify the impact of our approach to index-only plans, we performed an experimental

evaluation of our implementation using a real dataset. The experimental setup was the

same as Section 3.7. We used a single-node cluster to host an AsterixDB (0.9.4) instance.

This instance had one physical storage partition since we wanted to observe and analyze

the behavior of the system in a simple and fine-tuned cluster environment. This node ran

CentOS 6.9 with a Quadcore AMD Opteron CPU 2212 HE (2.0GHz), 8GB RAM, 1 GB

Ethernet NIC, and had two 7,200 RPM SATA hard drives. We used one hard drive with

one physical storage partition. Table 5.3 shows the AsterixDB configuration parameters.

4.4.1 Dataset

We used a real dataset collected from Twitter [93] utilizing their public streaming API. It

had 1% of US tweets for 19 days in January 2017. It had spatial and temporal fields suitable

96

Table 4.1: AsterixDB parameters for the experiments.

Parameter Value Parameter Value
Total memory allocated 6 GB Sort memory 128 MB
In-memory-component size 1 GB Join memory 128 MB
Disk buffer cache 2 GB Group-by memory 128 MB
Working memory 3 GB Inverted-index search memory 128 MB
Run-time page size 32 KB Storage page size 32 KB

for B+-tree and R-tree indexes. We used the DDL in Figure 4.13 to create the AsterixDB

dataset. Table 4.2 shows its characteristics. (Its size was smaller than the original JSON file

since the field name did not have to be included in each stored record. In contrast, for each

record in the JSON file, the field name is repeated.)

Table 4.2: AsterixDB Dataset.

Name Cardinality
Raw data
size (MB)

Dataset size
in DB (MB)

Notes

ds tweet 29,430,000 31,756 20,472 20 days of tweets

4.4.2 Index

We used the DDL in Figure 4.14 to create three B+-tree indexes for the B+-tree index-only

plan experiments and two R-tree indexes for the spatial experiments. Table 5.6 shows the

information about each index.

We can see that the index sizes of a B+-tree were around 4% of the original Twitter dataset.

Thus, reading a B+-tree secondary index required fewer disk I/Os. The sizes of the R-tree

indexes were about 7% of the original dataset size. The order of this field was the same

as the primary key field id. Thus, the B+-tree index on the create at field was used for a

clustered single-field experiment. The B+-tree index on the user.screen name field was used

for an experiment with an unclustered single field since the order of this field and the order

97

create dataverse twitter;
use twitter;

create type typeUser if not exists as open {
id: int64, name: string,
screen_name: string, profile_image_url: string,
lang: string, location: string,
create_at: date, description: string,
followers_count: int32, friends_count: int32,
status_count: int64

};

create type typePlace if not exists as open{
country: string, country_code: string,
full_name: string, id: string,
name: string, place_type: string,
bounding_box: rectangle

};

create type typeGeoTag if not exists as open {
stateID: int32, stateName: string,
countyID: int32, countyName: string,
cityID: int32?, cityName: string?

};

create type typeTweet if not exists as open {
create_at: datetime, id: int64,
text: string, in_reply_to_status: int64,
in_reply_to_user: int64, favorite_count: int64,
coordinate: point?, retweet_count: int64,
lang: string, is_retweet: boolean,
hashtags: {{ string }} ?, user_mentions: {{ int64 }} ? ,
user: typeUser, place: typePlace?,
geo_tag: typeGeoTag

};

create dataset ds_tweet(typeTweet) primary key id;

Figure 4.13: The DDL statements for the ds tweet dataset.

use twitter;

create index create_at_idx on ds_tweet(create_at) type btree;
create index screen_name_idx on ds_tweet(user.screen_name) type btree;
create index user_composite_idx on ds_tweet(user.create_at,user.status_count) type btree;
create index coordinate_idx on ds_tweet(coordinate) type rtree;
create index place_bounding_box_idx on ds_tweet(place.bounding_box) type rtree;

Figure 4.14: The DDL statements for creating indexes on the ds tweet dataset.

of the primary key field were unrelated. For an experiment with a composite B+-tree index,

we built a composite index on the user.create at and user.status count fields. The order of

these fields was also not related to the primary key field. For the spatial experiments, we

built two R-tree indexes. One was on the coordinate field of type point, and its size was

98

small because only 14.6% of the records actually contained coordinate field values. We also

built an R-tree index on place.bounding box of type rectangle. All of the records had this

field value, so this R-tree index was larger.

Table 4.3: Index size.

Field Index Type Size (MB)
Dataset itself B+ tree (primary) 20,472

create at B+ tree (secondary) 648
user.screen name B+ tree (secondary) 793

user.create at, user.status count B+ tree (secondary) 788
coordinate R tree (point, secondary) 133

place.bounding box R tree (rectangle, secondary) 1,409

4.4.3 B+-tree: Single Field

Clustered field: We used a B+-tree on a single field create at for this experiment. As

described above, the order of this field and the order of the primary key field were corre-

lated, making this index clustered relative to the data record’s order. We used query Q1 in

Figure 4.22 at the end of this chapter. This query returns the count of fields, which contains

the secondary key field. We varied the number of returned records using a range condition

and measured the average execution time of 30 queries with four selectivities, namely 10,000,

50,000, 250,000, and 1,250,000 records. We compared the average execution time of three

types of access methods – index-only plan, non-index-only plan, and scan-based plan. As

Figure 4.15 shows, the average execution time of an index-only plan was lowest, as expected.

Furthermore, we can see that its average execution time did not vary much, as the secondary-

index search alone generated the final results, and since searching the secondary index was

a range search, not a point lookup. The average execution time of a non-index-only plan

was greater than that of the index-only plan. The reason is that the system had to sort

the primary keys, fetch the records from the primary index, assign the secondary key field,

and verify the condition again. As the number of output records increased, we can see a

99

clear increase in the average execution time because of this reason. The average execution

time of the scan-based plan was by far the largest. Each time, AsterixDB had to scan the

entire dataset of about 20 GB and apply the predicate for each record. However, the average

execution time did not vary much.

 0

 50

 100

 150

 200

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(a) Y-axis in linear scale.

 1

 10

 100

 1000

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(b) Y-axis in log scale.

Figure 4.15: Average execution time of a clustered-single-field query.

Unclustered field: We used a B-tree on a single field user.screen name for this next ex-

periment. As described above, the order of this field and the order of the primary key field

were not correlated, making this index unclustered. Again, we used the same selectivities

and measured the average execution time of 30 queries. We used query Q2 in Figure 4.22; it

returns the count of fields, which contained the secondary key field. In Figure 4.16, we can

see that the average execution times of the index-only plan and the scan-based query were

similar to the average execution times of Q1. However, the average execution time of the

non-index-only plan is different here. The average execution time of an unclustered-index

query for 10,000 records was already 60 seconds due to point lookups on the primary index.

Also, between 10,000 and 50,000 records, we can see a sharp increase in the average execu-

tion time; this is because the number of primary pages needing to be read increased sharply.

However, after this point, the average execution time gradually increases as the selectivity

increases. The reason is that the number of pages needing to be read cannot increase sharply

after this point since the number of pages in the primary index was fixed.

100

 0

 50

 100

 150

 200

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(a) Y-axis in linear scale.

 1

 10

 100

 1000

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(b) Y-axis in log scale.

Figure 4.16: Average execution time of an unclustered-single-field query.

4.4.4 B+-tree: Multiple Fields

We used a B-tree on two fields user.create at and user.status count for this experiment. As

described above, the order of these fields and the order of the primary key field were not

correlated, making this index an unclustered composite index. Again, we used the same

selectivities and measured the average execution time of 30 queries. We used query Q3

in Figure 4.22, which returns the count of fields containing the secondary key fields. In

Figure 4.17, we can see that the average execution time of the index-only plan and the

scan-based query were similar to that of Q2. The difference is that we can see a slight

increase in the average execution time of the index-only plan, as the potential logical false

positive results are also being filtered on the instant-try-S-lock success path. Also, the average

execution time of the non-index-only and the scan-based plan were greater than that of the

single-field cases since the application of a predicate that contains two fields takes more

time. For instance, the average execution time of the non-index-only composite plan for

10,000 records was 100 seconds. In contrast, the execution time for the unclustered-index

single-field case was lower, at 60 seconds.

101

 0

 50

 100

 150

 200

 250

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(a) Y-axis in linear scale.

 1

 10

 100

 1000

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(b) Y-axis in log scale.

Figure 4.17: Average execution time of a query using an unclustered two-field index.

4.4.5 R-tree: Point Field

For this experiment, we used an R-tree index on the coordinate point field. Like the B+-tree

experiment, we varied the selectivity and measured the average execution time of 30 queries.

We created 1,000 random rectangles that satisfied the condition. The size and location of

each rectangle were different. Each query randomly chose one rectangle as its predicate.

We used the same selectivities and measured the average execution time of 30 queries. We

used query Q4 in Figure 4.22 that returned the count of the secondary key field. Note that

since the query shape was a rectangle, the index-search operator did not need to remove

false positive results on the right path (instant-try-lock success path). The result is shown

in Figure 4.18.

As the number of instances that had the coordinate field value was only 4.3 million, which

was 14.6% of the entire collection of records, the average execution time of the scan-based

method was the lowest among all scan-based queries in the experiments. This is because

about 85% of records were skipped without checking the predicate. Also, after 250,000

records, the average execution time of the non-index-only plan became greater than that of

the scan-based approach. The reason is that after this point, scanning entire primary pages

took noticeably less time than randomly accessing the primary pages one by one.

102

Next, we created 1,000 random circles whose area was the same as the corresponding rect-

angle in our 1,000 random rectangles. The center of each circle was the centroid of the

corresponding rectangle and the radius was chosen to generate the same area as the rectan-

gle. (Due to the different shapes and the data, the resulting selectivity was slightly different.)

Figure 4.21 shows these results. As in the rectangle query case, the average execution time

of the non-index-only plan became greater than that of the scan-based plan after 270,000

records, and for the same reason. Although false positive results were filtered on the right

path (instant-try-lock success path) of the index-only plan, the average execution time of

the index-only plan did not increase by much. In addition, we can see that the overall trends

of two queries in Figures 4.18 and 4.19 were very similar.

 0

 50

 100

 150

 200

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(a) Y-axis in linear scale.

 1

 10

 100

 1000

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(b) Y-axis in log scale.

Figure 4.18: Average execution time of spatial queries (query shape: rectangle) on a point
field.

 0

 50

 100

 150

 200

 1 6 27 115A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(a) Y-axis in linear scale.

 1

 10

 100

 1000

 1 6 27 115A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(b) Y-axis in log scale.

Figure 4.19: Average execution time of spatial queries (query shape: circle) on a point field.

103

4.4.6 R-tree: Rectangle Field

For this last experiment, we used an R-tree index on the place.bounding box rectangle field.

We created 1,000 random rectangles that satisfied the same selectivity as the B+-tree ex-

periments. The size and location of each rectangle were different. Since the distribution of

rectangles and points were different, these random rectangles were different from the rect-

angles used for the point-field experiment. Each query randomly chose one rectangle as its

predicate. We varied the selectivity and measured the average execution time of 30 queries.

Note that since the query shape was a rectangle, the index-search operator did not need

to remove any false positive results on the right path (instant-try-lock success path). The

result is shown in Figure 4.20. We can see that the average execution time of the index-

only plan was slightly higher than that of the B+-tree experiments since the rectangle field

value needed to be generated again from its MBR in the instant-try-S-lock success path. The

pattern of the average execution time of the non-index-only plan case was similar to that of

the B+-tree experiments for the same reason. Next, we created 1,000 random circles whose

area was the same as the corresponding rectangle in 1,000 random rectangles. The center

of each circle was the centroid of the corresponding rectangle, and the radius was chosen to

generate the same area as the rectangle. Thus, the resulting selectivity was different; the

results of this experiment are shown in Figure 4.21. Because of the logical false positive

records now being filtered on the instant-try-S-lock success path, we can see that the average

execution time for the circle’s index-only plan was greater than that of the index-only plan

on the query that used a rectangle as the predicate. We can see that the overall trends of

two queries in Figure 4.20 and 4.21 were similar, however.

104

 0

 50

 100

 150

 200

 250

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(a) Y-axis in linear scale.

 1

 10

 100

 1000

 1 5 25 125A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(b) Y-axis in log scale.

Figure 4.20: Average execution time of spatial queries (query shape: rectangle) on a rectangle
field.

 0

 50

 100

 150

 200

 250

 2 7 62 128A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(a) Y-axis in linear scale.

 1

 10

 100

 1000

 2 7 62 128A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of records (x 10,000)

Scan-based

Non-index-only

Index-only

(b) Y-axis in log scale.

Figure 4.21: Average execution time of spatial queries (query shape: circle) on a rectangle
field.

4.5 Conclusions

In this chapter, we have described the index-only query plan implementation in AsterixDB.

We discussed a few key transactional challenges that needed to be addressed in this context.

We then described the required conditions for an index-only plan and we described how

to create an index-only plan. We also showed how to transform a scan-based plan into an

index-based plan and into an index-only plan during the query optimization process. We

concluded with an experimental study on a real dataset using both spatial and temporal

indexes. The study showed that the average execution performance of index-only queries

105

/* Q1. B+-tree: single field (clustered) */
select value count(first.create_at) from (
select t.create_at, t.id from ds_tweet t
where t.create_at >= [datetime1] and t.create_at < [datetime2]

) first;

/* Q2. B+-tree: single field (unclustered) */
select value count(first.screen_name) from (
select t.user.screen_name, t.id from ds_tweet t
where t.user.screen_name >= [screen_name1] and t.user.screen_name < [screen_name2]

) first;

/* Q3. B+-tree: multiples fields (unclustered) */
select value count(first.create_at) from (
select t.user.create_at, t.user.status_count, t.id from ds_tweet t
where t.user.create_at >= [datetime1] and t.user.create_at < [datetime2]

and t.user.statues_count >= 0 and t.user.status_count < 1000000
) first;

/* Q4. R-tree: point field - query shape: rectangle */
select value count(first.coordinate) from (
select t.coordinate, t.id from ds_tweet t
where spatial_intersect(t.coordinate,

create_rectangle(create_point(X1,Y1),create_point(X2,Y2)))
) first;

/* Q5. R-tree: point field - query shape: circle */
select value count(first.coordinate) from (
select t.coordinate, t.id from ds_tweet t
where spatial_intersect(t.coordinate,

create_circle(create_point(X,Y), [radius])
) first;

/* Q6. R-tree: rectangle field - query shape: rectangle */
select value count(first.bounding_box) from (
select t.place.bounding_box, t.id from ds_tweet2 t
where spatial_intersect(t.place.bounding_box,

create_rectangle(create_point(X1,Y1),create_point(X2,Y2)))
) first;

/* Q7. R-tree: rectangle field - query shape: circle */
select value count(first.bounding_box) from (
select t.place.bounding_box, t.id from ds_tweet2 t
where spatial_intersect(t.place.bounding_box,

create_circle(create_point(X,Y), [radius])
) first;

Figure 4.22: Query templates used for the experiments.

was several orders of magnitude faster than scan-based and index-based queries.

106

Chapter 5

Performance Evaluation of Similarity

Query Processing in AsterixDB

5.1 Introduction

Similarity queries compute answers satisfying matching conditions that are not exact but

approximate. The problem of supporting similarity queries has become increasingly impor-

tant in many applications, including search, record linkage [29], data cleaning [78], and social

media analysis [21]. For instance, during a live phone conversation with a client, a call center

representative might wish to immediately identify a product purchased by the customer by

typing in a serial number. The system should locate the product even in the presence of

typos in the search number. A social media analyst might want to find user accounts that

share common hobbies or social friends. A medical researcher may want to search for papers

with a title similar to a particular article. In each of these examples, the query includes a

matching condition with a similarity function that is domain specific, such as edit distance

for a keyword or Jaccard for sets of hobbies.

107

There are two basic types of similarity queries. One is search, or selection, which finds

records similar to a given record. The other is join, which computes pairs of records that are

similar to each other. There have been many studies on these two types of queries, both with

and without indexes. A plethora of data structures, partitioning schemes, and algorithms

have been developed to support similarity queries efficiently on large datasets. When the

computation is beyond the limit of a single computer, there are also parallel solutions that

support queries across multiple nodes in a cluster. (See Section 5.1.1 for an overview.) The

techniques developed in the last two decades have significantly improved the performance of

similarity queries and have enabled applications to support such queries on millions or even

billions of records.

Most existing work has taken an algorithmic approach, focusing on the development of index

structures and/or algorithmic optimizations. Our approach is different and systems-oriented

– tackling the problem of supporting similarity queries end-to-end in a full, declarative paral-

lel data management system setting. Here we explain how Apache AsterixDB, an open-source

parallel data management system for semi-structured (NoSQL) data, supports such queries.

By “end-to-end”, we mean the whole lifecycle of a query, including the language support for

similarity conditions, internal index structures, execution plans with or without an index,

plan rewriting to optimize execution, and so on.

Achieving the end-to-end goal has involved several challenges. First, as similarity in queries

can be domain specific, we need to support commonly used similarity functions and let users

provide their own customized functions. Second, due to the complex logic of existing algo-

rithms, we need to consider how to support them using existing parallel database operators

without “reinventing the wheel” (i.e., without introducing new, ad hoc operators). Third,

we need to consider how to leverage an existing query optimization framework to rewrite

similarity queries to achieve high performance.

In earlier work, we extended the existing query language of AsterixDB to allow users to

108

specify a similarity query, either by using a system-provided function or specifying their own

logic as a user-defined function. We also implemented state-of-the-art techniques using the

existing operators in AsterixDB, both for index-based and non-index-based plans and for

both search and join queries. Our solution not only allows query plans to benefit from the

built-in optimizations in those operators but also to automatically enjoy future improvements

in these operators. We revised the existing rule-based optimization framework to rewrite

similarity queries. A plan for an ad hoc similarity join can be very complex. As an example,

a three-stage-join plan based on the technique in [94] can involve up to 77 operators. To

enable the optimizer to more easily transform such complex plans, we developed a novel

framework called “AQL+” that takes a two-step approach to rewrite a plan. A major

advantage of the framework is that it allows AsterixDB to support queries with more than

one similarity join condition, making it the first parallel data management system (to our

knowledge) to support similarity queries with multiple similarity joins.

This new optimization framework contains the AQL+ language, a super set of the AQL

language with a few key extensions. As a result, any changes made over time to AQL

should be also reflected in AQL+. As time progressed and AsterixDB evolved, we found

that changes and improvements in the AQL language were often not properly reflected in

AQL+ since they used two different language definition files, two different parsers, and

two different translators. In short, AQL+ had a divergence issue. In addition, the AQL+

framework transforms a similarity join plan into a new three-stage-join plan by incorporating

information from the incoming logical plan and an AQL+ similarity query template and

compiling the resulting AQL query. As this transformation does not happen right at the

beginning of the optimization phase, some of the query optimizations must be done again

for this new logical plan since it is compiled again during the optimization. Note that this

re-application process is not necessary for non-similarity queries since the plan generated

for a non-similarity query has not been touched by the AQL+ framework. Therefore, for

efficiency, the optimizer needs to ensure that the similarity-join rule set is only applied to

109

similarity-join queries. To apply some optimizations only to a new plan that is transformed

using the AQL+ framework, we need to create a new rule set controller since the application

of a rule set on a plan is controlled by a rule set controller and AQL+ framework is applied

in a rule.

In this chapter, in addition to presenting the details of earlier work, we discuss how we

addressed the AQL+ divergence issue and how we implemented a new rule set controller for

the similarity queries that are transformed by the AQL+ framework. Also, we present an

empirical study using several large, real data sets on a parallel cluster to evaluate the effects

of these techniques. We also present results from comparative experiments with two other

systems to explore the relative efficacy of AsterixDB’s support for parallel similarity queries

on large data sets. (Section 5.6).

5.1.1 Related Work

There are various kinds of similarity queries on strings and sets. Many algorithms (e.g., [61,

83, 19]) use a gram-based approach for for string similarity search. VGRAM [62] extends the

approach by introducing variable-length grams. To optimize string similarity joins, filtering

techniques are widely used. Length filtering uses the length of a string to reduce the number

of candidates. An example algorithm is gram-count [45]. Prefix filtering [18, 99, 24, 82, 65,

98, 95, 77, 96, 34] utilizes the fact that two strings can be similar only if they share some

commonality in their prefixes. Based on this fact, many algorithms have been proposed, such

as AllPair [18], PPJoin/PPJoin+ [99], ED-Join [98], MPJoin [82], QChunk [77], VChunk [96],

and Pivotal prefix [34]. Other related algorithms have been proposed such as M-Tree [30]

and trie-Join [39].

There have been several evaluation studies of string/similarity [56] and set-similarity joins [66].

There is also a recent survey about string similarity queries [69]. The authors of [56] found

110

that AdaptJoin [95] and PPJoin+ [99] were best for Jaccard similarity. Meanwhile, the au-

thors of [66] concluded that AllPair [18] was still competitive. The authors of [69] discussed

prefix-filtering techniques. Many of these algorithms assume that the data to be searched or

joined fits into main memory.

For parallel similarity joins, a number of studies have used the MapReduce framework [94,

88, 68, 97, 35]. There is one survey that discussed parallel similarity joins [37]. Vernica

et al. [94] proposed a three-stage algorithm in such a setting. There are also studies on

integrating similarity joins into database management systems [45, 46, 28, 86, 87]. Some of

these adopted the similarity join as a UDF or expressed a similarity join in a SQL expression;

others have introduced a relational operator to support similarity joins.

Our focus is different, as it is about supporting similarity queries in a general-purpose paral-

lel database system. We need to address various systems-oriented challenges when adopting

existing techniques in this context. A parallel similarity query processing system called

Dima [89] was proposed recently. Dima is an in-memory-based system, unlike AsterixDB.

There are some search systems and DBMSs that support similarity queries, including Elas-

ticsearch, Oracle, and Couchbase. Unlike AsterixDB, Elasticsearch is middleware and it

focuses on search, not join. Oracle supports edit distance via an extension package if a

specific type of index is created. Couchbase supports edit distance searches on NoSQL data

in its new full-text search service, but only via a separate full-text API (not its N1QL query

language). In contrast, AsterixDB provides a general class of similarity functions for strings

that work for both select and join operations, and a similarity predicate can be part of a

general declarative query along with non-similarity predicates.

111

5.2 Preliminaries

5.2.1 Similarity Functions

A similarity measure is used to represent the degree of similarity between two objects. An

object can be a string or a bag of elements. There are various types of similarity measures

available depending on the objects that are being compared. In this chapter, we focus on

two widely used classes of measures, namely string-similarity functions and set-similarity

functions.

String-Similarity Functions: One widely used string similarity function is edit distance,

also known as Levenshtein distance. The edit distance between two strings r and s is

the minimum number of single-character operations (insertion, deletion, and substitution)

required to transform r to s. For instance, the edit distance between “james” and “jamie” is

2, because the former can be transformed to the latter by inserting “i” after “m” and deleting

“s”. There are other string-similarity functions such as Hamming distance and Jaro-winkler

distance.

Set-Similarity Functions: These are used to represent the similarity between two sets.

There are many such functions, such as Jaccard, dice, and cosine. In this chapter, we focus

on Jaccard similarity, which is one of the most common set-similarity measures. For two sets

r and s, their Jaccard similarity is Jaccard(r, s) = |r∩s|
|r∪s| . For example, the Jaccard similarity

between r = {“Good”, “Product”, “Value”} and s = {“Nice”, “Product”} is 1
4
. Such set-

similarity functions can also be utilized to measure the similarity between two strings by

tokenizing them (i.e., into n-grams or words) and measuring the set similarity of their token

multisets. Dice and cosine values can be calculated similarly.

Similarity Search: Similarity search finds all objects in a collection that are similar to

a given object based on a given similarity metric. Let sim be a similarity function, and δ

112

be a similarity threshold. An object r from a collection R is similar to a query object q if

sim(r, q) ≥ δ.

Similarity Join: Joins find similar 〈r, s〉 pairs of objects from two collections R and S,

where r ∈ R, s ∈ S, and sim(r, s) ≥ δ.

5.2.2 Answering Similarity Queries

For similarity queries, using a brute-force, scan-based algorithm is computationally expen-

sive, so there have been many studies in the literature on how to support similarity queries

more efficiently. One widely used method is the gram-based approach, which utilizes the

n-grams of a string. An n-gram of a string r is a substring of r with length n. For instance,

the 2-grams of string “james” are {“ja”, “am”, “me”, “es”}.

5 Better ever than I expectedmaria
 Great Product - Fantastic Gift4 jamie
 Different than my usual but goodmario3

mary The best car charger I ever
bought

2
 This movie touched my heart!1 james

review_summaryreview_id username

Figure 5.1: Example data of Amazon Review dataset (simplified).

String-similarity queries can be answered by utilizing an n-gram inverted index. For each

gram g of the strings in a collection R, there is an inverted list lg of the ids of the strings that

include this gram g. Figure 5.2 shows the inverted lists for the 2-grams of the username

field of the little sample Amazon Review dataset in Figure 5.1.

gram am ar es ia ie io ja ma me mi ri ry

inverted
list

1
4

2
3
5

1 5 4 3 1
4

2
3
5

1 4 3
5

2

Figure 5.2: Inverted lists for 2-grams of the username field.

We can answer a string-similarity query by computing the n-grams of the query string and

retrieving the inverted lists of these grams. We then process the inverted lists to find all

113

string ids that occur at least T times, since a string r within edit distance k of another

string s must share at least T = |G(r)| − k × n grams with s [57]. This problem is called

the T -occurrence problem. Solving the T -occurrence problem yields a set of candidate string

ids. The false positives are then removed in a final verification step by fetching the strings of

the candidate string ids and computing their real similarities to the query. As an example,

given a gram length n = 2, an edit distance threshold k = 1, and a query string q = “marla”,

Figure 5.3 illustrates how to find the similar usernames from the data in Figure 5.1. We first

compute the 2-grams of q as {“ma”, “ar”, “rl”, “la”} and retrieve the inverted lists of these

2-grams. We consider the records that appear at least T = 4− 2× 1 = 2 times on these lists

as candidates, which have review ids 2, 3, and 5. Last, we compute the real similarity for

these candidates, and the review id 5 is the final answer. Note that if the threshold T ≤ 0,

then the entire data collection needs to be scanned to compute the results; this is called a

corner case. In the above example, if the threshold is 3, then T = 4− 2× 3 = −2, causing

a corner case.

2
3
5

2
3
5

- -
ma ar rl la

5 ✔
3 ✘
2 ✘

VerificationCandidate

Figure 5.3: Answering an edit-distance query for “q”=marla and T=2.

5.3 Using Similarity Queries

In this section, we discuss the similarity measures supported in AsterixDB and show how

users can express similarity queries in SQL++. We also show how users can specify indexes

to expedite query processing. Please note that this is earlier work.

114

5.3.1 Supported Similarity Measures

AsterixDB currently supports two built-in similarity measures, Jaccard and edit distance,

to solve set-similarity and string queries. Both measures can be processed with or without

indexes. Let us focus on edit distance first. This measure can be calculated on two strings.

As an extension in AsterixDB, edit distance can also be computed between two arrays of

scalar values. For example, the edit distance between [“Better”, “than”, “I”, “expected”] and

[“Better”, “than”, “expected”] is 1. This generalization is possible since a character in a text

string can be viewed as an element in an array if we think of the string as a collection of

ordered characters.

The other supported measure, the Jaccard value, can be computed on two arrays or multisets

of elements. If a field type is string, a user can use a tokenization function to first make

an array of elements from the string. For example, it is possible to calculate the Jaccard

similarity between two strings by tokenizing each string into an array of words.

If a user wishes to use their own similarity measure, they can create a user-defined function

(UDF). A UDF can be expressed in SQL++ or AQL (the two query languages supported by

AsterixDB) or implemented as an external Java class. If the desired UDF can be expressed

in SQL++ or AQL, the user can create such a function using the following syntax and use

it like a native function.

create function similarity-cosine(x, y) {

......

}

115

5.3.2 Expressing Similarity Queries

AsterixDB provides two ways to express a similarity query in a SQL++ or AQL query,

both illustrated by the example SQL++ queries in Figure 5.4. These equivalent queries

find the record pairs from the Amazon review dataset that have similar summaries. In

Figure 5.4(a) before the actual query, the similarity function and threshold are defined with

set statements. The query then uses a similarity operator ∼=, which is syntactic sugar

defined for similarity functions. This similarity operator computes the similarity between

its two operands according to the simfunction and simthreshold and returns the records that

are similar. The same query can also be written without using the similarity operator. The

similarity query in Figure 5.4(b) uses a Jaccard function named similarity jaccard(), and this

query is equivalent to that in Figure 5.4(a). The first syntax can be easier to use because

the simfunction and simthreshold also have the default settings and a user is not required to

provide the two set statements. In addition, the user does not need to remember the exact

function name with that syntax. Also, if the user wants to change the similarity function,

they only need to change the set statements without changing the query itself. During query

parsing and compilation, it is easy for the optimizer to replace this syntactic sugar and

generate a desired optimized plan. On the other hand, the second form gives the user more

direct control. There are a few variations of similarity functions in AsterixDB, e.g., one that

can do early termination during the evaluation. A user can freely choose any of them.

5.3.3 Using Indexes

Without an index, AsterixDB scans the whole dataset in the query to compute the result

for the given query. To expedite query execution, AsterixDB supports two kinds of inverted

indexes to support the two similarity measures efficiently.

The first index type, called keyword index, uses the elements of a given multiset as keys and

116

use TextStore;
set simfunction ’jaccard’;
set simthreshold ’0.5’;
select element {"summary1":t1, "summary2": t2}
from AmazonReview t1, AmazonReview t2
where word_tokens(t1.summary)∼= word_tokens(t2.summary);

(a) ∼= Notation

use TextStore;
select element {"summary1":t1, "summary2": t2}
from AmazonReview t1, AmazonReview t2
where similarity_jaccard(word_tokens(t1.summary),

word_tokens(t2.summary)) >= 0.5;

(b) Function Notation

Figure 5.4: SQL++ join on the summary field of the Amazon review dataset using Jaccard
similarity.

maps those keys to their corresponding primary ids. For example, it is possible to tokenize

a string and use each token as a key. This index is suitable for Jaccard similarity. The two

queries in Figure 5.4 could utilize a keyword index on the summary field. A keyword index

can be created using the following DDL statement, where summaryidx is the index name:

create index summaryidx on AmazonReview(summary) type keyword;

The second index type is called the n-gram index and is suitable for edit distance. An n-

gram index uses the extracted n-grams of a string as the keys and maps those keys to their

corresponding primary ids. For example, we can use the following DDL statement to create

a 2-gram index on the reviewerName field:

create index reviewernameidx on AmazonReview(reviewerName) type ngram(2);

5.4 Executing Similarity Queries

In this section, we explain how similarity queries are internally executed in AsterixDB. We

first describe the execution flow for a similarity query in the presence of an index and then

117

describe the execution flow in the case where no index is available. Please note that this is

earlier work.

5.4.1 Inverted Index

An inverted index in AsterixDB is an LSM-based secondary index that consists of a mutable

in-memory component and multiple immutable on-disk components, as illustrated in Fig-

ure 5.5. This design choice was made to support high-frequency insertions, as LSM-based

indexes amortize the cost of writes by consolidating updates in memory before writing them

to disk [14]. The in-memory component consists of two B+-trees, one for the in-memory

inverted index and one to store the primary keys of deleted records. On-disk components

are immutable, so AsterixDB denotes the deleted records of the on-disk components using

this B+-tree instead of deleting them from the inverted index itself. This design choice also

implies that primary keys obtained from the inverted index may have already been deleted,

so they need to be verified by checking their existence in the deleted-key B+-tree. An in-

memory index component grows with inserted/deleted records until the memory budget

allocated for the component is exhausted. It is then flushed to disk as a new immutable

on-disk component. The multiple index components on disk must be searched besides the

in-memory component during a given index-search operation. To mitigate this, AsterixDB

periodically merges on-disk components based on a configurable merge policy.

To improve its search performance, AsterixDB employs a length-based technique to partition

the inverted index. This technique is useful since it allows the use of length filtering prior to

a search, which eliminates records that are not similar based on the length required for the

similarity threshold of a query. We use the number of tokens in the given field as the length.

Figure 5.6(a) shows the details of an in-memory inverted index. The secondary key field is

first tokenized based on the type of the index (n-gram or keyword), and each token is inserted

118

…

…

…
…

In-Memory Component On-Disk Components

In-Memory B+ Tree

Deleted Keys B+ Tree Inverted List File

Dictionary B+ Tree File

Flush when Full

Periodically Merge

…
…

Figure 5.5: The structure of an inverted index.

into the in-memory inverted index along with the length of the secondary key field and the

primary key of the record. The in-memory index component is a B+-tree with keys consisting

of triples. Each triple contains 〈token, length, primary key〉. For example, in Figure 5.6(a),

the leftmost entry is 〈ai, 5, 104〉. Its secondary key token is ai and the number of tokens

for the given field is 5. The triple also tells us that this entry comes from the record whose

primary key is 104. Once the in-memory index is flushed to disk, it becomes immutable, and

it is finalized by merging the primary keys with the same token and length into a sorted list

in the inverted list file and using the resulting 〈token, length, inverted list pointer〉 triples

as B+-tree keys as shown in Figure 5.6(b). The pointer there indicates the starting offset of

the associated list of primary keys for the given token and length pair.

(ai, 5, 104)

Each leaf: (gram, length, id)

The root of B+ tree
…

(ar, 3, 102) (ar, 4, 103) (ar, 4, 105) (es, 4, 101) …

(a) In-memory inverted index.

(ai, 5, 0)

The root of B+ tree

…

(ar, 3, 1) (ar, 4, 2) (es, 4, 4) (es, 7, 5) …
Each leaf: (gram, length, inverted-list pointer)

104
0

102 103,105 101 105 103 …

…

1 2 4 5 6 n

Inverted list

(b) On-disk inverted index.

Figure 5.6: An example instance of an n-gram inverted LSM index.

119

5.4.2 Executing Similarity Selections

We first present the execution strategy that AsterixDB uses for selection queries. We use

the example query in Figure 5.7 to explain the execution flow; this SQL++ query computes

the edit distance between a field title of a dataset called Reddit and a constant search key

good competitions where the edit-distance-threshold is 2.

select r.id, r.title
from Reddit as r
where edit_distance(r.title, "good competitions") < 2;

Figure 5.7: A similarity-selection query.

5.4.2.1 Index-Based Search Execution

When running the above query on a cluster with multiple nodes, the query coordinator

(a.k.a. cluster controller) sends a request containing the constant search key (C) to each

participating node (a.k.a. node controller). Figure 5.8 illustrates how such a similarity-

selection query is executed using a secondary inverted index on a 3-node cluster. In the

figure, C is good competitions and V refers to the title field in Figure 5.7. Each cluster node

contains a partitioned primary index and a local inverted index. That is, the contents of

each inverted index are generated from the local primary index. Thus, the nodes do not

need to communicate with each other to execute a selection query.

Node Controller A

Cluster
Controller

Step 1

Step 2

Step 3 3
3

Inverted Index

Primary Index

1 1

S P SEL
ECT

S

P

SEL
ECT

Verification

Node Controller B

2
S P SEL

ECT

Node Controller C

2
S P SEL

ECT

Figure 5.8: Parallel execution of a similarity-selection query.

120

If an index is available, AsterixDB runs an index-based selection plan at each node. It

first gives the constant value (C) to the secondary inverted index. The secondary-inverted-

index search generates 〈Secondary Key, Primary Key〉 pairs that satisfy the T -occurrence

condition, which may include false positives. It then looks up these primary keys in the

primary index to fetch their corresponding records. The primary keys are sorted prior to

this lookup to increase the chance of page cache hits in the buffer. After fetching the

actual field value from the primary index, a SELECT operator is applied to remove false

positives and generate the final results. If the similarity condition is selective enough, such

an index-based search plan can be much more efficient than the non-index-based plan that

uses DATASET-SCAN and SELECT operators in the absence of an index. Once the local

results are generated at each node, they are sent to the coordinator to be combined into the

final query result.

ASSIGN V (Secondary key)

SELECT V ~= C
Local

…

PRIMARY-INDEX-SEARCH

SELECT V ~= C

Local

…

SECONDARY-INDEX-SEARCH
Local

C

RewritePRIMARY-INDEX-SCAN
Local

ASSIGN V (Secondary key)
Local

ORDER(SORT) Primary keys
Local

Broadcast to
all nodes

Non-Index-Based Plan Index-Based Plan

C
Broadcast to

all nodes

Figure 5.9: Similarity-selection query plans

To process a similarity-selection query, the SQL++ compiler first generates a simple non-

index-based selection plan (the left part of Figure 5.9) from a user query. The optimizer

then transforms the initial plan into an index-based selection plan if there is an applicable

index during the logical optimization process. We will discuss this rewriting process further

in Section 5.5.1.

121

5.4.2.2 Non-Index-Based Search Execution

Similar to index-based execution, when there are multiple nodes, the coordinator sends a

request containing the search key C to all the nodes. At each node, as there is no index on

the field in the given similarity condition, AsterixDB scans the primary index, fetches all

records, and verifies the similarity condition on the given field for each record. The left part

of Figure 5.9 depicts this process. Finally, the results will be returned to the coordinator.

5.4.3 Executing Similarity Joins

A similarity join operator has two branches as its input. We call the first one the outer

branch and the second one the inner branch. For example, in Figure 5.10, the SQL++ alias

ar refers to the outer branch and r refers to the inner branch. This query fetches three fields

from each dataset based on a Jaccard join condition with a threshold of 0.5.

select ar.reviewer_id, ar.id, ar.summary,
r.author_id , r.id, r.title

from AmazonReview ar, Reddit r
where similarity_jaccard(ar.summary, r.title) > 0.5;

Figure 5.10: A similarity-join query.

5.4.3.1 Index-Based Join Execution

Similar to the similarity-selection case, where the search predicate value was broadcast to

all nodes, in the similarity-join case, the records coming from the outer join branch of each

node are broadcast to all nodes. Figure 5.11 depicts how a similarity-join query is executed

using a secondary inverted index on a 3-node cluster.

The coordinator first sends the query execution request to each participating node. Each

node of an outer-branch partition scans its portion of the outer-branch data. While doing

122

Cluster
Controller

Step 1 Step 4 1 4 1 4

Step 2 2

2
Node Controller A

S POuter
Step 3

Node Controller C

S POuter
3

Node Controller B

S POuter
3

Inverted Index

Primary Index

S

P

Verification

Outer Outer side
tuples

SEL
ECT

SEL
ECT

SEL
ECT

SEL
ECT

Figure 5.11: Parallel execution of a similarity-join query.

so, it broadcasts the resulting records to all nodes with a partition of the inner branch’s

dataset. This replicates all records of the outer-branch on each node, which then perform

a secondary-index search. Each node with an index-side partition uses the incoming outer-

branch records (as well as its local ones) to search its local inverted index. Once each

secondary-index partition has processed all the records from the outer branch, the resulting

primary keys from the search will be fed into the inner dataset’s primary index and a primary-

index search will be conducted. As discussed before, these primary search keys are sorted

before the primary-index search to increase the chance of page cache hits. As before, we

need to remove false positives from the index-based subplan using a SELECT operator based

on the original similarity condition, which is taken from the JOIN operator. The right side

of Figure 5.12 depicts this process. Finally, the results are sent to the coordinator to be

combined.

5.4.3.2 Non-Index-Based Join Execution

When there is no index, a simple nested-loop join could be performed for a similarity join

query. The outer branch would feed the predicate from each record to the inner branch.

The complexity of this solution would be quadratic. To avoid such a costly nested-loop join,

we instead adopt a three-stage-similarity-join algorithm [94] that we review here for ad hoc

similarity join processing in AsterixDB.

123

Subtree
(outer dataset)

JOIN
A ~= B

…

Rewrite
PRIMARY-INDEX-SCAN

(inner dataset)

PRIMARY-INDEX-SEARCH

SELECT A ~= B

Local

SECONDARY-INDEX-SEARCH
(inner dataset)

Local

ASSIGN B (Secondary key)
Local

ORDER(SORT) Primary keys
Local

Subtree
(outer dataset)

Broadcast to all nodes

…

ASSIGN B
(Secondary key)

Non-Index-Based (Logical) Plan Index-Based Plan

Broadcast
to all nodes

Local

Local

Figure 5.12: A similarity-join query plan.

The three-stage algorithm uses a prefix-filtering method, so a global token order needs to be

computed to generate a prefix for each field value. This global token order can be arbitrary;

we choose the increasing token-frequency order, which tends to generate fewer candidate

pairs [94]. The first stage computes this global token order by counting the frequency of

each token in the tokenized data and sorting the tokens based on their frequencies. In the

second stage, the algorithm computes a short prefix subset for each set based on the global

token order produced in the first stage. The record id and (only) the join attribute of each

record are then replicated and repartitioned by hashing on these prefix tokens. After the

repartitioning step, candidate pairs are generated by grouping the pairs by their ids, and the

similarity is computed for each pair to filter out the dissimilar ones. This stage produces

only similar record id pairs. Finally, the third stage of the algorithm rescans the inputs to

fetch the rest of the query’s desired record fields for these id pairs.

To apply this three-stage algorithm in AsterixDB, rather than implementing new query

operators and complex query plans, we chose to describe the algorithm by using existing AQL

constructs such as for, let, group by, and order by since this approach would be potentially

more extendable in the future. In addition, if/as we improve AsterixDB’s existing operators,

we would not need to modify the AQL description to utilize the improved operators. For

124

example, if a new sort algorithm becomes available for the sort that generates a global token

order, its benefit will be applied without any alteration of the AQL. Figure 5.13 shows an

AQL query that captures the three stages for a self-similarity join on the summary field of

the Amazon Review dataset using Jaccard similarity with a threshold. Note how each step

is implemented using basic AQL constructs and functions. We now discuss the details of

these three stages.

Stage 1: Token Ordering is expressed in lines 11-18 of Figure 5.13. In this subquery, we

iterate over the records in the dataset. For each record, we retrieve the tokens in the summary

field and count the number of occurrences of each token using a group-by clause. To expedite

this calculation, we use a compiler hint in line 15 that suggests using hash-based aggregation

instead of the default sort-based aggregation for the group-by statement since the order of

tokens at this particular step is not meaningful. Finally, we order the tokens based on their

count using an order-by clause. The same subquery is repeated later, in lines 30-37, in the

context of the second dataset. During optimization, the optimizer will detect this common

subquery and execute the subquery only once by using a replicate operator to send the

results to both outer plans.

Stage 2: Record ID (RID)-Pair Generation is expressed in lines 5-50. We scan the dataset

in line 6 and then retrieve each token from the summary field. We order the tokens by the

rank computed in the first stage (lines 12-23) by joining the set of tokens in one summary

with the set of ranked tokens. We use a hint in line 19 that advises the compiler to use

a broadcast join operator to broadcast the ranked-tokens. Next, we order the join results

by rank, stored in the variable $i. We then extract the prefix tokens in line 22 and use the

prefix-len-jaccard() built-in function to compute the length of the prefix for Jaccard similarity

with a threshold of 0.5. The built-in subset-collection() function extracts the prefix subset of

the tokens. The same process of tokenizing, ordering the tokens, and extracting the prefix

tokens is done in lines 25-42 for the second dataset. We then join the two streams on their

125

1 // -- - Stage 3 - --
2 for $ARevLeft in dataset AmazonReview
3 for $ARevRight in dataset AmazonReview
4 for $ridpair in
5 // -- - Stage 2 - --
6 for $ARevLeft in dataset AmazonReview
7 let $lenLeft := len($ARevLeft.summary)
8 let $tokensLeft :=
9 for $tokenUnranked in $ARevLeft.summary

10 for $tokenRanked at $i in
11 // -- - Stage 1 - --
12 for $t in dataset AmazonReview
13 let $id := $t.ARev_id
14 for $token in word-tokens($t.summary)
15 /*+ hash */
16 group by $tokenGrouped := $token with $id
17 order by count($id), $tokenGrouped
18 return $tokenGrouped
19 where $tokenUnranked = /*+ bcast */ $tokenRanked
20 order by $i
21 return $i
22 for $prefixTokenLeft in subset-collection($tokensLeft, 0,
23 prefix-len-jaccard($lenLeft, .5f) - $lenLeft + len($tokensLeft))
24
25 for $ARevRight in dataset AmazonReview
26 let $lenRight := len($ARevRight.summary)
27 let $tokensRight :=
28 for $tokenUnranked in $ARevRight.summary
29 for $tokenRanked at $i in
30 // -- - Stage 1 - --
31 for $t in dataset AmazonReview
32 let $id := $t.ARev_id
33 for $token in word-tokens($t.summary)
34 /*+ hash */
35 group by $tokenGrouped := $token with $id
36 order by count($id), $tokenGrouped
37 return $tokenGrouped
38 where $tokenUnranked = /*+ bcast */ $tokenRanked
39 order by $i
40 return $i
41 for $prefixTokenRight in subset-collection(
42 $tokensRight, 0, prefix-len-jaccard($lenRight, .5f))
43
44 where $prefixTokenLeft = $prefixTokenRight
45 let $sim := similarity-jaccard($tokensLeft, $tokensRight, .5f)
46 where $sim >= .5f and $ARevLeft.ARev_id < $ARevRight.ARev_id
47 group by $idLeft := $ARevLeft.ARev_id,
48 $idRight := $ARevRight.ARev_id with $sim
49 return {’idLeft’: $idLeft, ’idRight’: $idRight, ’sim’: $sim[0]}
50
51 where $ridpair.idLeft = $ARevLeft.ARev_id and
52 $ridpair.idRight = $ARevRight.ARev_id
53 order by $ARevLeft.ARev_id, $ARevRight.ARev_id
54 return {’left’: $ARevLeft, ’right’: $ARevRight, ’sim’: $ridpair.sim}

Figure 5.13: Three-stage set-similarity algorithm expressed in AQL for a self join on the
Amazon Review dataset using Jaccard similarity with a threshold of 0.5.

prefix tokens in line 44, and compute and verify the similarity of each joined pair using the

built-in similarity-jaccard() function. Since a pair of records can share more than one token in

126

their prefixes, duplicate pairs can be produced, and they are eliminated by using a group-by

clause in line 47.

Stage 3: Record Join is expressed in lines 1-4 and 51-54, which consist of two joins. The

first join adds the record information for the first RID of each RID pair, while the second

join adds the record information for the second.

The logical query plan resulting from this large AQL query is shown in Figure 5.14. Hash

repartition in the figure means that a tuple will be repartitioned to a corresponding node

based on its hashed value. Sort merge repartitioning on a node merges incoming tuples

based on their sort field values. To transform a logical query plan generated from a user’s

SQL++ or AQL query into a similarity join query to the three-stage-similarity query plan

similar to the explicit AQL in Figure 5.13, we developed a new framework called AQL+,

which will be discussed in Section 5.5.2.

5.5 Optimizing Similarity Queries

In this section, we discuss how the AsterixDB query processor optimizes SQL++ (or AQL)

similarity queries and we describe the AQL+ framework in more detail. Note that rewriting a

similarity query and AQL+ framework earlier works. We then present how we have addressed

the issues in AQL+ framework described in Section 5.1.

5.5.1 Rewriting a Similarity Query

AsterixDB uses rule-based optimization approach [22] as described in Section 2.1.1. An

initial logical plan is constructed from a given query, and each optimization rule is tried on

this plan. If a rule is applicable, the plan is transformed. A logical plan involving a dataset

127

SCAN 1: R

ASSIGN Tokens (Join Column)
Local

HASH_GROUP (Token)
Local

HASH_GROUP (Token)
Hash repartition

SORT (Count)
Local

AGGREGATE (Count)
Broadcast to all nodes

Sort merge

Stage 1

SCAN 2: R REPLICATE SCAN 3: S

ASSIGN Prefix

HASH_JOIN (Prefix)

SELECT RID Pairs

Hash repartition Hash repartition

Local

HASH_GROUP (RID Pairs)
Hash repartition

Hash repartition

ASSIGN Tokens
(Join Column)

HASH_JOIN (Token match)

SORT (RID, Token rank)

GROUP (RID, Token rank)

ASSIGN Prefix

HASH_JOIN (Token match)

SORT (RID, Token rank)

GROUP (RID, Token rank)

ASSIGN Tokens
(Join Column)

Local

Hash repartition

Local

Local

Local

Local

Local

Local

Local

Hash repartition

Stage 2

SCAN 4: R

HASH_JOIN (RID R)

Hash repartition

HASH_JOIN (RID S)

SCAN 5: S

Hash repartition Hash repartition

WRITE_RESULT

LocalStage 3

Verification

Figure 5.14: A plan of a three-stage-similarity join qeury.

always starts with a PRIMARY-INDEX-SCAN operator, followed by a SELECT operator if

there are one or more conditions. For similarity queries, a non-index similarity query plan

is constructed first, and an index-based transformation or a three-stage-similarity join can

128

be introduced during the optimization.

5.5.1.1 Rewriting a Similarity-Selection Query

Figure 5.9 from Section 5.4 shows how a similarity-selection query is optimized to use an

index. The left-hand side shows the original scan-based plan, and the right-hand side shows

the optimized plan. Based on a SELECT operator with a similarity condition, the optimizer

tries to replace the PRIMARY-INDEX-SCAN with a secondary-index-based search plan.

To rewrite a similarity-selection query, the optimizer first matches an operator pattern con-

sisting of a pipeline with a SELECT operator and a PRIMARY-INDEX-SCAN operator.

Next, it analyzes the condition of the given SELECT operator to see if it contains a simi-

larity condition and if one of its arguments is a constant. If so, it determines whether the

non-constant argument originates from the PRIMARY-INDEX-SCAN operator and whether

the corresponding dataset has a secondary index on a field variable V . For each secondary

index on V , the optimizer checks an index-function-compatibility table (Figure 5.15) to de-

termine its applicability. For example, an n-gram index can be utilized for the edit distance()

function. The final SELECT operator in the figure filters out false positives.

Supported FunctionsIndex Type
edit-distance(), contains()n-gram

similarity-jaccard()keyword

Figure 5.15: Index-function compatibility table.

Corner cases: Recall that for queries using edit distance, the lower bound on the number

of common q-grams (or tokens) may become zero or negative. For such a corner case, the

optimizer must revert to a scan-based plan even if an index is available since an index cannot

be used for non-positive T -occurrence values. For selection queries, the optimizer can foresee

such cases at compile time when applying the corresponding index-rewrite rule by analyzing

the constant argument in the similarity condition. When detecting a corner case, it simply

129

stops rewriting the plan. Note that no such corner cases are possible for similarity queries

based on Jaccard, because if two sets have no elements in common, then they can never

reach a Jaccard similarity greater than 0. In contrast, two strings could be within a certain

(large) edit distance even if the n-gram sets of the (short) strings have no common elements.

5.5.1.2 Rewriting a Similarity-Join Query

The basic rewriting of a similarity-join query using an index is shown in Figure 5.12 from

Section 5.4. The optimized query plan on the right-hand side uses an index-nested-loop join

strategy. Similar to the rewrite for selection queries, the optimizer replaces the PRIMARY-

INDEX-SCAN of the inner branch with a secondary-index search followed by a primary-index

search. Thus, it is required that the inner branch of the join is a PRIMARY-INDEX-SCAN,

while the outer branch could be an arbitrary operator subtree (shown simply as Subtree

in the figure). In the optimized plan, the outer branch feeds into the SECONDARY-IN-

DEX-SEARCH operator, i.e., every record from Subtree will be used as a search key to the

secondary index. As in the similarity-selection case, the optimizer needs to remove false

positives from the index-based subplan using a SELECT operator based on the original sim-

ilarity condition, which is taken from the JOIN operator. Notice the broadcast connection

between the outer subtree and the secondary-index search. This connection tells the Sub-

tree to broadcast its output stream’s records to all of the inner dataset’s secondary-index

partitions.

The optimizer first matches the join operator’s required pattern, which is a PRIMARY-

INDEX-SCAN in the inner branch, since this operator fully scans the dataset rather than

using a secondary index on some other condition. Also, the optimizer checks the inner branch

since it considers using a secondary index only from the inner branch, not from the outer

branch. Next, it analyzes the join condition to make sure the similarity function has two

non-constant arguments and checks if an argument of the similarity condition is produced by

130

the PRIMARY-INDEX-SCAN operator in the inner branch, and whether the corresponding

inner dataset has an applicable secondary index to support the required similarity lookups.

The optimizer then consults the index compatibility matrix to decide whether it can rewrite

the query using an index.

Outer Subtree

REPLICATE

SELECT T > 0

SELECT T <= 0

JOIN A ~= B

PRIMARY-INDEX-
SCAN

UNION

Broadcast to all nodes

Edit Distance
Corner-Case Path

…

ASSIGN B
(Secondary key)

PRIMARY-INDEX-
SEARCH

SELECT A ~= B

Local

SECONDARY-INDEX-
SEARCH

Local

ASSIGN B
(Secondary key)

Local

SORT Primary keys
Local

Non-Corner Case

Figure 5.16: An optimized similarity-join query plan with the corner case.

Corner cases: For string-similarity joins using edit distance, we must modify the basic

index-nested-loop join plan in Figure 5.12 to handle corner cases. Unlike selection queries,

where the secondary-index search key is a constant, the secondary-index search keys for an

index-nested-loop join are produced by the outer branch (Subtree). Join corner cases must,

therefore, be dealt with at the query runtime, as opposed to the query compile time as

for selection queries. Figure 5.16 shows the modified index-nested-loop plan for handling

corner cases for edit distance. The main difference lies in separating the records produced

by the outer subtree into two sets, one containing non-corner-case records (T > 0), and one

containing corner-case records (T ≤ 0). We do this by using a REPLICATE operator above

the outer subtree, followed by SELECT operators on each of its two outputs to filter out the

corner-case and non-corner-case records, respectively. As before, the non-corner-case records

are fed into the secondary-to-primary index plan. The corner-case records participate in a

131

non-index nested-loop join plan. The final query answer is the union of the results of those

two joins.

5.5.2 AQL+ Framework

As discussed in Section 5.4.3.2, for non-index-based similarity joins, the optimizer needs to

transform a nested-loop-join plan generated from a user’s query into a three-stage join plan

to accelerate similarity-join-query execution. A challenge is that, unlike the index-nested-

loop-join optimization that adds or replaces a few operators from a nested-loop join plan,

a three-stage-similarity join plan contains a large number of operators as illustrated by the

AQL query in Figure 5.13. Figure 5.17 shows the number of operators in a three-stage-

similarity join.

1

Count

15
JOIN
Total

12ASSIGN
2SCAN

Operator

8
SELECT

77

ORDER 3

Count Count

6

Total

Operator

4

AGGREGATE
44

3 UNNEST

6 JOIN

GROUP

ASSIGN
3

Operator

SCAN

Nested-loop join plan Three-stage-similarity join plan

Figure 5.17: Number of operators for a nested-loop join and three-stage-similarity join plan
for the same query.

Due to the complexity of the tree-stage-join query plan, it would be rather difficult to build

and maintain an optimization rule that manually constructs the DAG of operators that

transform a simple nested-loop join plan into a three-stage join plan. Instead, we developed

a novel rewrite framework called AQL+ that converts a simple logical plan generated from a

user’s similarity-join query into a three-stage join plan. The flow of the AQL+ framework is

depicted in Figure 5.18. The essential part of the AQL+ framework is the use of an AQL+

query template to express sophisticated query expressions, integrate the information from the

incoming logical plan into it, and finally transform the plan during the optimization process.

This way the optimizer does not need to have a complex rule that manually translates a

132

simple nested-loop-join plan into a three-stage-similarity-join plan. What we need instead

is an AQL+ query template that expresses the three-stage-similarity join and for the AQL+

framework to combine the incoming plan with the query template.

When the SQL++ (or AQL) optimizer receives a logical similarity-join plan in AQL+, it

extracts the information from the plan and integrates it with an AQL+ query template that

expresses the three-stage-similarity join. The generated AQL+ query is then parsed and

compiled again using the AQL+ parser and translator since the generated query itself is also

a query. The result of this process is a transformed logical plan. The resulting plan is then

processed by the rest of the query plan optimization process.

To combine the information from an incoming logical plan and the three-stage-similarity-join

AQL query template, we need ways to refer to relevant portions of the surrounding logical

plan from within the AQL+ query template. Therefore, the AQL+ framework consists of

a few AQL language extensions and the compilation of these language extensions during

the optimization process. As a result, the AQL+ language is a superset of AQL, the first

AsterixDB query language. (Note that we developed AQL+ when AQL was the primary

language of AsterixDB, so AQL+ was based on AQL. We later adopted SQL++ in AsterixDB

and SQL++ is now mainly used. However, the differences between SQL++ and AQL do

not affect the AQL+ framework since the AQL+ framework works on the logical plan level.)

The AQL+ language has three AQL extensions: Meta Variable (denoted as $$), Meta Clause

(##), and Explicit Join (join). We use these extensions to refer to the logical variables

and operators in the incoming logical plan during the optimization process, as the AQL+

transformation of a given plan happens during the optimization process. Note that the

optimizer sees only the logical plan and physical plan, not the original query. Since AQL

itself does not have an explicit join clause, AQL+ adds one in order to express a join of two

branches. We use meta-variables to refer to the primary keys of the input records or variables

in the similarity predicate. The usage of meta-clauses is to refer to the inputs of the AQL

133

Rule Sets after
Similarity Join Rule Set

AQL+ Parser and Translator

AQL+ Query Template

Rule-based Logical Optimizer

Similarity Join
Rule

Variables in the current plan
will be fed into the template

SQL++ (or AQL) Parser

SQL++ (or AQL) Translator

Rule-based Logical Optimizer

Rule-based Logical Optimizer

Rule-based Physical Optimizer

Hyracks Job Generator

Abstract Syntax Tree

Logical Plan

Hyracks Runtime

Partially optimized Logical Plan

Hyracks Job

Skips this
Rule Set

User Query

Similarity Join Query?
NoYes

New Logical Plan (Some parts Optimized)

AQL+ Query

Partially Optimized Logical Plan

Optimized Logical Plan

Optimized Physical Plan

Similarity Join Rule Set

Rule Sets before
Similarity Join Rule Set

Figure 5.18: Execution of a similarity-join query using AQL+.

query and to refer to logical constructs that cannot be directly specified in AQL, such as

operators in the plan. In this way, any AQL+ template can be combined with any join input

branches, where the inputs can be from any kinds of subplans made up of other algebraic

operators. In addition, to support various types of data, similarity functions, and thresholds,

the similarity-join rule template uses placeholders that are parts of the AQL+ query and

are unknown until runtime. These are used for data types, similarity-specific functions, or

values. For example, a SIMILARITY placeholder is used for built-in AQL functions, and a

134

THRESHOLD placeholder is used for numerical similarity values.

Specifically, for the three-stage-similarity join, the optimizer needs to identify a similarity

JOIN operator that contains a Jaccard similarity join and its threshold. It also needs to get

the information about the two branches of this JOIN operator. Using this information, the

logical plan fed into the AQL+ template can be transformed into the equivalent three-stage-

similarity-join plan. Again, rather than doing this transformation by introducing operators

by hand, we rely on the existing compilation path to generate a revised plan. This process

is depicted in Figure 5.18; the details of this optimization flow will be discussed in the next

subsection.

Table 5.1: AQL+ extensions (to AQL).

Extension Symbol Functionality

Meta Variable $$ Refer to a variable in the plan

Meta Clause ## Refer to an operator in the plan

Join Clause join, loj Express an explicit inner join or left-outer join

The optimizer uses the AQL+ three-stage-similarity-join query template shown in Figure 5.19

to transform the incoming user query during the rule-rewrite phase. In this way, the simple

user-written query of Figure 5.4(a) can be transformed into the query of Figure 5.13 during

the optimization process. The details of this AQL+ template are as follows. (We mostly

focus on the AQL+ constructs here.)

Stage 1: Token Ordering. This stage is expressed in lines 14-21 of Figure 5.19. The first

meta-clause ##RIGHT 3 refers to the left input operator of the given join. Since the same

branch can be used several times in each stage of the three-stage-similarity-join, if there are

dependencies between the reused branches, deep copies of the given branch will be created.

The suffix 3 here denotes that this is the third copy of the given branch. In the next line,

$id is assigned to the primary key of the left branch, which is denoted by a meta-variable,

$$RIGHTPK 3. The suffix 3 means the third copy of the branch as described. TOKENIZER

is a template placeholder that will be replaced by an actual tokenizer function. For example,

135

1 // --- Stage3 ---
2 join(
3 (##LEFT_0),
4 (join(
5 (##RIGHT_0),
6 // --- Stage 2 ---
7 (join(
8 (##RIGHT_1
9 let $tokensUnrankedRight := TOKENIZER($$RIGHT_1)

10 let $lenRight := len($tokensUnrankedRight)
11 let $tokensRight :=
12 for $token in $tokensUnrankedRight
13 for $tokenRanked at $i in
14 // --- Stage1 ---
15 ##RIGHT_3
16 let $id := $$RIGHTPK_3
17 for $token in TOKENIZER($$RIGHT_3)
18 /*+ hash */
19 group by $tokenGrouped := $token with $id
20 order by count($id), $tokenGrouped
21 return $tokenGrouped
22 where $token = /*+ bcast */ $tokenRanked
23 order by $i
24 return $i
25 for $prefixTokenRight in subset-collection($tokensRight, 0,
26 PREFIX_LEN(len($tokensRight), THRESHOLD))
27),
28
29 (##LEFT_1
30 let $tokensUnrankedLeft := TOKENIZER($$LEFT_1)
31 let $lenLeft := len($tokensUnrankedLeft)
32 let $tokensLeft :=
33 for $token in $tokensUnrankedLeft
34 for $tokenRanked at $i in
35 // --- Stage1---
36 ##RIGHT_2
37 let $id := $$RIGHTPK_2
38 for $token in TOKENIZER($$RIGHT_2)
39 /*+ hash */
40 group by $tokenGrouped := $token with $id
41 order by count($id), $tokenGrouped
42 return $tokenGrouped
43 where $token = /*+ bcast */ $tokenRanked
44 order by $i
45 return $i
46 let $actualPreLen:=PREFIX_LEN(len($tokensUnrankedLeft), THRESHOLD)
47 - $lenLeft + len($tokenLeft)
48 for $prefixTokenLeft in subset-collection(
49 $tokensLeft, 0, $actualPreLen)
50),
51 $prefixTokenLeft = $prefixTokenRight)
52 let $sim := SIMILARITY($tokensRight, $tokensLeft)
53 where $sim >= THRESHOLD
54 /*+ hash */
55 group by $idLeft:=$$LEFTPK_1, $idRight:=$$RIGHTPK_1 with $sim),
56 $$LEFTPK_0 = $idLeft)),
57 $$RIGHTPK_0 = $idRgiht)

Figure 5.19: Three-stage-similarity join algorithm expressed in AQL+.

the string tokenizer will be used for a string field. Note that if $$RIGHT 3 is an array or a

multiset, no tokenizer will be added.

136

Stage 2: Record ID (RID)-Pair Generation. This stage is expressed in lines 6-51. This stage

starts with a join meta-clause. This meta-clause has three arguments, and each argument

is separated by a comma. The first argument is the left input branch of the join. The

second argument is the right input branch of the join. The third argument describes the join

condition. Since AQL does not have an explicit join clause, the join meta-clause in AQL+

provides a join expression that can be directly translated into a logical JOIN operator. In

this join, the left branch is expressed in lines 8-27. Lines 29-50 denote the right branch of

the join meta-clause. Line 51 of the template denotes the join condition itself. Specifically,

the left branch starts with ##RIGHT 1, which means the first copy of the branch. In the

next line, tokens will be generated from the right variable of the original JOIN operator. In

line 25, the prefix tokens for the right branch are calculated. Here, PREFIX LEN denotes

the function that calculates the prefix length based on the similarity type and the threshold.

THRESHOLD contains the similarity threshold. In line 46, the prefix length for the left side

is calculated. This calculation is different from that of the right branch, as a token that is

in the right branch may not exist in the left branch. This calculation is needed since the

template will be applied for both R-S joins and self-joins (R-R). The join condition is in

line 51.

Stage 3: Record Join. This stage, which fetches the fields for similar records for the final

result, is expressed in lines 1-5 and 56-57, each of which consists of two join meta-clauses.

The first join meta-clause adds the record information for the right branch and the second

join meta-clause adds the record information for the left branch. The conditions for the two

joins are in lines 56-57.

To apply this AQL+ template to transform a nested-loop-similarity-join plan into the three-

stage-similarity-join plan, some preparation must be done. All meta-variables, meta-clauses,

and placeholders need to be replaced by actual operators, variables, and logical JOIN opera-

tors in the three-stage-similarity-join optimization rule. For example, in the AQL+ template,

137

the primary key of each branch are referred using ##RIGHTPK and ##LEFTPK variables.

These meta-variables are replaced with the actual primary keys in that optimizer rule. Fig-

ure 5.20 shows an example similarity-join query and its logical plan including the AQL+

constructs used in the AQL+ template. We can see that the top-most operators in both join

branches form meta-clauses. Also, the primary keys from the datasets in both branches are

regarded as meta-variables. The variables used in the similarity-join condition are also meta-

variables in the plan. These AQL+ constructs appear in the AQL+ template in Figure 5.19.

For example, the ##LEFT meta-clause is used in line 3.

select element {"rid":o.id, "iid":i.id}
from AmazonReview o, Reddit i
where similarity_jaccard(word_tokens(o.summary),

word_tokens(i.title)) >= 0.8

(a) A simple similarity-join query

Meta-clause
##LEFT (Assign $17)
##RIGHT (Assign $18)
Lines*: 3,5,15,
29, and 36

JOIN similarity-jaccard-check($17, $18, 0.8)

ASSIGN $17 <- word-tokens($19)

ASSIGN $19 <- $o.getField(“summary”)

DATA-SCAN $15, $o <- AmazonReview

The left branch of the join

ASSIGN $18 <- word-tokens($20)

ASSIGN $20 <- $i.getField(“title”)

DATA-SCAN $16, $i <- Reddit

The right branch of the join

Meta-variable
$$LEFTPK ($15)
$$RIGHTPK ($16)
Lines*: 16,37,55,
56, and 57

THRESHOLD

TOKENIZER

TOKENIZER

Meta-variable
$$LEFT ($17)
$$RIGHT ($18)
Lines*: 9,17,30,
and 38

Lines* indicates the lines in the AQL+ template where the given AQL+ constructs are used.

(b) A logical plan for the query and AQL+ constructs.

Figure 5.20: An example query and the corresponding logical plan that AQL+ template
receives.

In addition to two-way similarity joins, the AQL+ framework can be applied to transform

multi-way-similarity join plans as well because the optimizer can transform a logical plan

iteratively. Similar to non-similarity-join cases, multi-way-similarity joins can be transformed

sequentially. For instance, Figure 5.21 shows a similarity-join plan involving four datasets.

138

The join between the first two datasets, R and S, has already been transformed into a

three-stage-similarity join plan. This branch will act as the outer branch when the optimizer

processes the next JOIN operator on the third dataset T .

Scan 3 : T

Scan 4 : U(R ~= S) ~= T
(Similarity Join 2)

R ~= S
(Similarity Join 1)

((R ~= S) ~= T) ~= U
(Similarity Join 3)

Figure 5.21: Rewriting a multi-way-similarity-join plan on four datasets.

It is worth noting that AQL+ is a general extension framework, not only for similarity

queries, that in principle can be used to support other transformations expressed via AQL

during the compilation process. (This was part of the original vision for AQL+.)

5.5.3 The Optimization Rule For Similarity Queries

As discussed in Section 2.1.1, the optimization process in AsterixDB is rule-based. Once

the Algebricks layer receives a compiled plan from a SQL++/AQL query, it optimizes the

plan both logically and physically. It first optimizes the given plan logically using several

rule sets.

To apply the similarity-query optimization framework to the current optimization path, we

created a new rule set for the AQL+ framework and similarity queries, as was shown in

Figure 5.18. The new rule set includes a similarity join rule (SJR) along with a handful

of other rules that need to be applied after SJR is applied. As described earlier, the main

functionality of AQL+ is to perform a transformation using a complex AQL+ template in

order to re-generate a logical plan while maintaining the current surrounding query plan as

139

part of the new plan. SJR first analyzes the conditions of a JOIN operator. If its condition

includes a similarity predicate, it applies the AQL+ template to the plan to generate an

AQL+ query. It then compiles the query into a new logical Algebricks plan. During this

process, all meta-variables, meta-clauses, and placeholders are replaced by actual variables,

operators, and logical JOIN operators.

At this point, some parts of the overall query plan will have already been optimized if they

belonged to the original incoming plan. However, much of the plan will not have been

optimized yet, as the three-phase plan has just been compiled and had not gone through

the optimization process before the application of the SJR rule set. Therefore, the newly

generated plan needs to go through some of the earlier optimization rules again to ensure

that those rules have a chance to process all of the newly added plan fragment’s constructs.

Note that this re-application process is not necessary for non-similarity queries since the plan

generated for a non-similarity query has not been touched by the SJR rule set. Therefore,

for efficiency, the optimizer needs to ensure that the similarity-join rule set is only applied

to similarity-join queries. A benefit of this approach is that the optimization steps for

similarity queries can be executed without interfering with those for non-similarity queries;

this approach also gives the newly generated similarity-query plan a chance to reach the

same level of transformation once the similarity rule set has finished its work.

To apply the similarity-join rule set only to similarity join queries, we needed to create

a new rule set controller since the application of a rule set on a plan is controlled by a

rule set controller as shown in Table 5.2. For instance, the Prioritized rule set controller

executes each rule until that rule does not generate any changes to the plan. After the rule

controller goes through all rules in the rule set, it repeats the process until all rules do not

generate any changes to the plan. Since non-similarity join queries should not be affected

by the similarity join rule, we developed a new rule set controller called Sequential-first-rule-

gatekeeper to ensure this behavior. This new rule set controller executes the first rule in

140

the rule set. If the application of the first rule succeeds, the rule set controller executes the

other rules in the rule set. If the application of the first rule fails, the entire rule set will be

ignored. Therefore, we place SJR as the first rule in the similarity join rule set and use this

new rule controller. If SJR is not fired, none of the rules in the rule set will be executed.

Table 5.2: Rule controllers for a rule set.

Rule Controller Functionality

Prioritized
Executes each rule until it produces no changes. Then the whole
collection of rules is executed again until no change is made.

Sequential-fix-point
Executes rules sequentially in a round-robin fashion until one itera-
tion over all rules produces no change.

Sequential-once Executes all rules sequentially only once.

Sequential-first-rule-
gatekeeper

If the first rule in the rule set is fired during the first iteration, it
executes the other rules sequentially in a round-robin fashion until
one iteration over all rules produces no change. Except to the case
where the first rule in the first iteration fails, all rules will be executed
during each iteration.

5.5.4 Maintaining the AQL+ Framework

Like AQL, AQL+ needs to have its language grammar definition, the parser generated from

this grammar, and the translator to translate the parsed expression into a logical plan. Using

the grammar file, we could generate the parser using JavaCC [55] like we did for AQL. Once

the parser generates a parsed expression tree from the AQL+ query template, the AQL+

compiler translates the expression to a logical plan.

Since the AQL+ language is a superset of AQL, it needs to include all parts of the AQL

language grammar plus three AQL+ extensions in its grammar file. Our original design

choice was keeping a separate grammar file, as shown in Figure 5.22, since we did not want

to expose AQL+ to the user level. Another reason for that choice was that we wanted to

minimize the interference between the two languages by separating them. Thus, the separate

AQL+ grammar file included the entirety of the AQL grammar file and it also contained the

AQL+ extensions. The AQL+ parser was then generated from this AQL+ grammar file.

141

The AQL+ compiler also included the entirety of the AQL compiler plus its three extensions

to AQL+.

AQL
language
grammar

AQL
language
grammar

AQL+
extensions

AQL.jj file AQL+.jj file

AQL
Translator

AQL
Translator

AQL+
translator

AQL+ CompilerAQL Compiler

Duplicated included

Language Compiler

AQL+
Parser

AQL
Parser

Logical
Plan

Logical
Plan

Figure 5.22: The AQL and the original implementation of the AQL+.

One issue with the original fully separated design was that we needed to manually maintain

the AQL+ grammar file and AQL+ translator. That is, whenever an update was made to

the user-level AQL grammar and translator, a corresponding update had to be applied to

the AQL+ grammar file and AQL+ translator as well. Over time, the grammar files and

translator files diverged as there was no enforcement. Since AQL+ was implemented in 2012,

as time passed, we found that not all AQL updates were applied to AQL+. This divergence

issue was the worst in the AQL+ translator; a number of the newer optimizations made to

the AQL translator were not applied to the AQL+ translator.

To address these issues, we developed a method to automatically maintain the AQL+ gram-

mar file and AQL+ translator. For the AQL+ grammar, we extended the grammar’s pattern

match and replacement module to recognize AQL+. (This module was originally imple-

mented as earlier work to extend AQL.) This module reads both the user-level AQL grammar

file and the AQL+ extension grammar file and can integrate them into the needed AQL+

grammar file. Thus, whenever the AQL grammar is changed, the AQL+ grammar file is now

automatically updated by this module, as shown in Figure 5.23.

We have addressed the divergence issue in the compiler by using inheritance. Previously, the

142

AQL
language
grammar

AQL+
extensions

AQL+
language
grammar

Grammar pattern
match - replace

AQL.jj file AQL+.jj file
Language

AQL
Parser

AQL+
Parser

Automated process
AQL

Translator
AQL+

extensions

AQL+ CompilerAQL Compiler
Inheritance

Parent Child

Logical
Plan

Logical
Plan

Compiler

Figure 5.23: The revised relationship between AQL and AQL+.

AQL+ translator and AQL translator were independent classes in the codebase. We have

now designated the AQL translator class as the parent of the AQL+ translator class. Thus,

in the AQL+ translator class, we only need to keep the logic required to deal with the three

AQL+ extensions, as shown in Figure 5.23. Because of this inheritance between the two

compiler classes, we no longer need to manually update the AQL+ translator when AQL is

changed.

5.6 Experiments

We have conducted an experimental evaluation of our approach in AsterixDB using large,

real data sets. We used an 8-node cluster to host an AsterixDB (0.9.3) instance, where each

node ran Ubuntu with a Quadcore AMD Opteron CPU 2212 HE (2.0GHz), 8GB RAM, 1 GB

Ethernet NIC, and had two 7,200 RPM SATA hard drives. Each dataset was horizontally

partitioned into 16 partitions (2 per node) based on their primary keys to provide full I/O

parallelism. Table 5.3 shows the AsterixDB configuration parameters.

5.6.1 Datasets

We used several similarity functions to experiment with different types of data. Edit distance

is more suitable for short string fields, while Jaccard is more suitable for long fields with

143

Table 5.3: AsterixDB parameters for the experiments.

Parameter Value

Global memory budget per node 6 GB

Budget for in-memory components 3 GB

Data page size 128 KB

Disk buffer cache size 2 GB

Sort buffer size 128 MB

Join buffer size 128 MB

Group-by buffer size 128 MB

many elements. To evaluate AsterixDB with different similarity functions, we used the three

datasets with different characteristics shown in Table 5.4. The Amazon Review dataset, dis-

cussed in earlier sections, included Amazon product reviews from [67]. The Reddit Submission

dataset contained about eight years of postings on Reddit from [80]. The Twitter [93] dataset

had 1% of US tweets for three months that we obtained ourselves via Twitter’s public API.

When imported into AsterixDB, each data set had an additional auto-generated primary

key field, as AsterixDB requires that each dataset must have a primary key. Other than this

field, we did not define more fields in the pre-declared test schemas. This gave us a lot of

flexibility to import any datasets into AsterixDB. The dataset size in AsterixDB was greater

than the raw data size since each stored record contained additional information about each

non-pre-declared field such as the field name, field type, and value. For example, for a string

field named summary, each instance of the field summary will contain the field name summary,

its type as string, and its value. (In contrast, if the field was explicitly defined in the schema,

the field name and its type would not be required to be stored in each record.)

Table 5.5 shows the characteristics of the search fields of the three datasets. The minimum

character length and minimum word count of the fields were 0. The first three fields in the

table were used for edit distance, while the latter three fields were used for Jaccard.

144

Table 5.4: Dataset characteristics.

Dataset
Amazon

Review [67]
Reddit [80] Twitter [93]

Content
Amazon product

reviews
Reddit postings Tweets

Number of Records 83.68M 196M 155M

Data Period 1996 - 2014
01/2006 -
08/2015

06/2016 -
08/2016

Raw Data Format JSON JSON JSON

Raw Data Size 55 GB 252 GB 465 GB

Dataset Size in AsterixDB 60.6 GB 305 GB 582 GB

Fields used
summary,

reviewerName
title, author text, user.name

Table 5.5: Characteristics of the search fields.

Field
Avg

char count
Max

char count
Avg

word count
Max

word count

AmazonReview.reviewerName 10.3 49 1.7 14

Reddit.author 24.3 275 4.1 32

Twitter.user.name 10.6 20 1.7 10

AmazonReview.summary 22.8 361 4.0 44

Reddit.title 1,056.2 400K 1,173 20K

Twitter.text 62.5 140 9.7 70

145

5.6.2 Index Size

We built a keyword index for Jaccard similarity queries and a 2-gram index for edit distance

queries. To measure the execution time for basic exact-match queries on the same fields to

serve as a baseline, we also built a B+ tree index on each of the search fields. Table 5.6

shows the index sizes for the Amazon Review dataset and the time to create each index.

An n-gram index took much more space than a B+ tree index or a keyword index, as it

had more secondary keys per record. For instance, a 2-gram index on the reviewerName

field needed 15.6GB of disk space, which was about 25% of the original dataset size. The

size of a keyword index was also greater than a B+ tree index on the same field since it

had multiple secondary keys per record. For each type of index, the construction time was

roughly proportional to the size of the index. In each case, the dataset itself was also stored

in a primary B+ tree index.

Table 5.6: Index size and build time for Amazon Review dataset.

Field Index Type Size (GB) Build Time (sec)

Dataset itself B+ tree (primary) 60.6 1,563

reviewerName B+ tree (secondary) 2.7 223

reviewerName 2-gram (secondary) 15.6 1,441

summary B+ tree (secondary) 3.5 275

summary keyword (secondary) 5.4 573

5.6.3 Selection Queries

To measure the performance of similarity-selection queries, we first created a search value

set that contained 10,000 random unique values that we extracted from the search field. For

Jaccard queries, we ensured that the minimum number of words in each value in the search

set was 3. For edit distance queries, the minimum length of characters in each value was

3. For each similarity threshold, we randomly chose search values from the set for a query

and sent 100 such queries to the cluster, and measured their average execution time. The

146

performance baseline for comparison purposes was an equality-condition query that used

the same values for the given field. Figure 5.24 shows an example query that we used to

measure the average execution time of the Jaccard similarity queries. In this example, we

used similarity jaccard as the similarity function on the summary field with the threshold of

0.5. The second parameter of the function was a random value from the above search value

set.

select value count(*) from (
select ar.id
from AmazonReview as ar
where similarity_jaccard(ar.summary,

"should have tried them at the store") >= 0.5
) as first_select;

Figure 5.24: An example SQL++ similarity-selection query.

5.6.3.1 Jaccard Similarity

For each of the three datasets, we ran similarity queries using Jaccard similarity on suitable

fields using different thresholds: 0.2, 0.5, and 0.8. Figure 5.25 shows the results. We see

that the average execution time for similarity selection queries decreased as the threshold

increased in the case of index-based plans. For example, it took the index-based method

67.6 seconds to conduct a Jaccard query with a threshold of 0.2, while it took only 25.5

seconds to execute a query with a threshold of 0.5 on the Amazon Review dataset. If there

was no applicable index, both similarity and exact-match queries showed a high execution

time as each record had to be read from the primary index and the data scan time was a

dominant factor in the overall execution time. We can also see the overhead of the similarity

query versus the exact-match query for all the thresholds since it took more time to calculate

a Jaccard value than to get the result of an exact match. This overhead decreased as the

threshold increased because we applied optimizations such as early termination and pruning

based on string lengths, which significantly reduced the cost of computing the similarity.

The trend is similar in the other two datasets.

147

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0.2 0.5 0.8 Exact matchAv
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Jaccard threshold

Without-Index With-Index

(a) Amazon Review

 0
 100
 200
 300
 400
 500
 600

0.2 0.5 0.8 Exact matchAv
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Jaccard threshold

Without-Index With-Index

(b) Reddit

 0

 200

 400

 600

 800

 1000

0.2 0.5 0.8 Exact matchAv
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Jaccard threshold

Without-Index With-Index

(c) Twitter

Figure 5.25: Execution time of Jaccard selection queries on the three datasets.

When the threshold was low, the execution times were similar for both index-based and

non-index-based queries. This is because the candidate set size using T -occurrence for index-

based queries was large when the threshold was low, as shown in Table 5.7. As the number of

candidates increased, the search time increased due to the need for a primary-index lookup

and a verification for each candidate.

Table 5.7: Candidate size and the final result size for the indexed-Jaccard-selection query
for Amazon Review dataset in Figure 5.25.

Jaccard
Threshold

Actual Result
Record Count (B)

Candidate Set
Record Count (C)

Ratio (B/C)

0.2 559,167 8,298,473 6.7%

0.5 12,260 660,016 1.9%

0.8 36 12,420 0.3%

5.6.3.2 Edit Distance

We measured the average execution time of an edit distance selection query using different

thresholds, namely 1, 2, and 3. Figure 5.26 shows the results. As the threshold increased, the

execution time increased. The reason is similar to the case of Jaccard queries; the candidate

set size using T -occurrence increased as the threshold increased, as can be seen in Table 5.8.

It took the index-based method 2 seconds to run a selection query with a threshold of 2; it

took 8.9 seconds to run a query with a threshold of 3. We can also see that the execution

time of non-index-based edit distance queries increased as the threshold increased for the

148

same reason as described above.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Exact match 1 2 3Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Edit distance threshold

Without-Index With-Index

(a) Amazon Review

 0

 100

 200

 300

 400

 500

 600

Exact match 1 2 3Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Edit distance threshold

Without-Index With-Index

(b) Reddit

 0

 200

 400

 600

 800

 1000

Exact match 1 2 3Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Edit distance threshold

Without-Index With-Index

(c) Twitter

Figure 5.26: Execution time of edit-distance selection queries on the three datasets.

Table 5.8: Candidate size and the final result size for the indexed-edit-distance-selection
query for Amazon Review dataset in Figure 5.26.

Edit
Distance

Threshold

Actual Result
Record Count (B)

Candidate Set
Record Count (C)

Ratio (B/C)

1 52 64 81.25%

2 297 3,477 8.54%

3 4,185 239,166 1.75%

5.6.4 Join Queries

To measure the performance of similarity join queries, we first ran similarity-self-join queries

on the three datasets. Figure 5.27 shows an example query that was used to measure the

average execution time as in the similarity-selection query case. Here, summary is the field on

which we applied a similarity function and id is the primary key field. After conducting the

self-join experiments, we conducted an additional multi-way join experiment that included

both similarity and non-similarity joins. Finally, we conducted a multi-way similarity join

experiment that had two similarity joins involving all three datasets in one query.

149

select value count(*) from (
select element {"oid":o.id, "iid":i.id}
from AmazonReview as o, AmazonReview as i
where similarity_jaccard(o.summary, i.summary)

>= 0.8
and o.product_id = "B00103DCIZ" and o.id < i.id

) as first_join;

Figure 5.27: An example SQL++ similarity-join query.

5.6.4.1 Varying Threshold

We first extracted a certain number of records from the outer branch of the join to limit the

size of its input. For each query, we chose 10 random records from the outer branch. In the

example query in Figure 5.27, the field named product id was used to impose this limit. For

Jaccard join queries, we used three similarity thresholds, namely 0.2, 0.5, and 0.8. For edit

distance, we used distance thresholds of 1, 2, and 3.

When there was no applicable index, AsterixDB used the three-stage-similarity-join plan for

the Jaccard queries. The results are shown in Figures 5.28 and A.1. The trends were similar

to those of selection queries except for the exact-match join, which significantly outperformed

both the Jaccard and edit distance joins since it used a hash join in which the join keys were

broadcast to multiple nodes. For the index-nested-loop join case, all three datasets showed

a similar trend on both the Jaccard and edit distance joins. For instance, for the Jaccard

queries, as the threshold increased, the average execution time decreased as well.

Regarding the compilation overhead of AQL+, we observed that the average overhead of

generating a new logical three-stage-similarity-join plan using AQL+ for the queries of Fig-

ure 5.28 was around 50 ms, and it took around 500 ms to optimize that plan. The overall

compilation time of the three-stage-similarity-join query was around 900 ms, which was small

relative to the time required to actually execute the resulting query plan.

150

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.2 0.5 0.8 Exact matchAv
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Jaccard threshold

Without-Index With-Index

(a) Amazon Review

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.2 0.5 0.8 Exact matchAv
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Jaccard threshold

Without-Index With-Index

(b) Reddit

 0

 2000

 4000

 6000

 8000

 10000

0.2 0.5 0.8Exact matchAv
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Jaccard threshold

Without-Index With-Index

(c) Twitter

Figure 5.28: Execution time of Jaccard join queries on the three datasets.

 0

 50

 100

 150

 200

 250

Exact match 1 2 3Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Edit distance threshold

Without-Index With-Index

(a) Amazon Review

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Exact match 1 2 3Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Edit distance threshold

Without-Index With-Index

(b) Reddit

 0

 500

 1000

 1500

 2000

Exact match 1 2 3Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Edit distance threshold

Without-Index With-Index

(c) Twitter

Figure 5.29: Execution time of edit distance join queries on the three datasets.

5.6.4.2 Varying Input Size

To further explore the relative performance of the join methods, we conducted a Jaccard join

with a fixed threshold and varied the number of records to be joined. For a Jaccard join query,

its execution time was smallest when the threshold was 0.8. In this experiment, we varied the

number of records coming from the outer branch and fixed the threshold at 0.8. The times

for the non-index-nested-loop self-join, index-nested-loop self-join, and three-stage-similarity

self-join on the Amazon Review dataset are shown in Figure 5.30. We increased the number

of output records from the outer branch and measured the resulting execution time of each

join. First, we see that the execution time of non-index-nested-loop self-join was already the

highest by far at 200 records and that it increased drastically compared to the other two

types of joins. Once the number of output records from the outer branch reached around

400, the three-stage-similarity join began to outperform the index-nested-loop join. This is

because the time for the index-nested-loop join is proportional to the number of records fed

151

to its secondary-index search, as it deals with each record one at a time. For the three-stage-

similarity join, the time spent on global-token-order generation in the first stage was the

same for all cases, since the order was generated from the inner branch and we only varied

the number of records from the outer branch. The hash joins utilized in stage 2 and 3 can

deal with the incoming records efficiently since each join key (a token) is sent to only one

node. In fact, the average execution time increased slightly for the three-stage-similarity-join

case as the number of records that need to be processed in stage 2 and 3 was increased as

well. This slight increase of the average execution time of the three-stage-similarity join

can be verified in the figure. For instance, the time for the three-stage-similarity join for

800 records was 619 seconds, while it was 674 seconds for 1,000 records. This result shows

only 55 seconds of increase, whereas the execution-time difference for index-nested-loop joins

when going from 800 to 1,000 input records was 384 seconds.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

200 400 600 800 1000 1200 1400Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Number of records from the outer branch

Non-Index-Nested-Loop-Join
Three-Stage-Similarity-Join

Index-Nested-Loop-Join

Figure 5.30: Similarity joins on the Amazon Review dataset.

5.6.4.3 Multi-Way Join Queries

So far we have used only one similarity condition per query. Next, we added one more

similarity condition to the query and varied the order of the conditions. A similarity join is

conducted with the first condition and then a SELECT operator with the other predicate is

applied after the join. These similarity conditions were a Jaccard condition with a threshold

of 0.8 and an edit distance condition with a threshold of 1. We also added an initial equijoin

152

to control the number of records being fed into the similarity join. This join is applied first

to generate a fixed number of records. Figure 5.31 shows an example query that we used to

measure the average execution time. As we see in this query, there is one similarity join and

one equijoin. The dataset ProductID and the field product id were what we used to limit the

number of initial records from the outer branch.

select value count(*) from (
select element {"oid":o.id, "iid":i.id} from
from ProductID as pr, AmazonReview as o,

AmazonReview as i
where pr.product_id = "B00103DCIZ"
and pr.product_id = o.product_id
and similarity_jaccard(o.summary, i.summary) >= 0.8
and edit_distance(o.reviewerName, i.reviewerName)

<= 1 and o.id < i.id
) as first_join;

Figure 5.31: An example SQL++ multi-way-join query.

For the first equijoin, we used an index-nested-loop join to fetch the initial records quickly

to avoid a full-scan of the dataset. The Jaccard similarity and edit distance conditions were

then applied. In the cases where we applied the Jaccard condition first, the Jaccard join was

followed by the edit distance condition in a SELECT operator. For both conditions, we used

an index-based method for the first and a non-index-based method for the second. That is,

we tried three types of queries in total. The first query initially used the indexed Jaccard

similarity join. The second query used the indexed-edit distance join first. The last query

used the non-indexed Jaccard join first. Figure 5.32 shows that the performance was the

best when the index-based-Jaccard join was conducted first, as then there were no corner

cases for Jaccard similarity. This similarity predicate order also generated fewer candidates

than applying the index-based edit distance predicate first. In contrast, for the edit distance

case, the optimizer needed to augment the corner-case path in the logical plan, and thus it

generated more candidates.

153

 0
 200
 400
 600
 800

 1000
 1200
 1400

AmazonReview Reddit Twitter

4704 8774

 I:with index
NI:without index

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Dataset

Jac-I,ED-NI
ED-I,Jac-NI

Jac-NI,ED-NI

Figure 5.32: Multi-way-join queries on the three datasets.

5.6.4.4 Multi-Way Three-Stage-Similarity Join Queries

The previous join experiment used a non-similarity-index-nested-loop join and a similarity

join. After two joins, a second similarity predicate was applied via a SELECT operator. To

test the performance of a query with multiple three-stage-similarity-joins, next we used all

three datasets in one query as shown in Figure 5.33. First, we fetched ten random records

from the Amazon Review dataset and conducted a three-stage-similarity-join between the

summary field of the dataset and the title field of the Reddit dataset. The result was used to

conduct a join with the text field of the Twitter dataset. We ran this multi-way join query

three times with ten different records each time. The resulting average execution time was

6,908 seconds and the average result count was 737,406. Note that we used the Reddit and

Twitter datasets as the outer branches of two three-stage-similarity-joins since the global

token order was generated from the inner branch that fetched ten records from the Amazon

Review dataset. An example record that this query found was “So Comfy”, “So comfy....”,

and “So comfy” from the Amazon Review, Reddit, and Twitter datasets respectively.

5.6.5 Cluster Scalability Tests

We used both speed-up and scale-out metrics to evaluate similarity-query processing in a

parallel environment.

154

select value count(*) from (
select element {"tid":tw.id, "sid":second.sid,

"fid":second.fid}
from Twitter tw, (
select element {"sid":re.id, "fid":first.oid,

"title": re.title}
from Reddit re,
(select element {"oid":o.id, "summary":o.summary}
from ProductID as pr, AmazonReview as o
where pr.product_id /* +indexnl */ = o.product_id
and pr.id = "B00103DCIZ"
) as first

where similarity_jaccard(re.title, first.summary)
>= 0.8

) as second
where similarity_jaccard(tw.text, second.title)

>= 0.8
) as third;

Figure 5.33: An example SQL++ multi-way three-similarity-join query.

5.6.5.1 Speed-up

First, for our speed-up experiment, we used five cluster sizes (1, 2, 4, 8, and 16 nodes), with

each cluster size being given the entire (100%) dataset to spread out across its partitions.

Figures 5.34 and Figure 5.35 show the speed-up and average execution time of the previous

Jaccard selection and join queries with the threshold set to be 0.8. For each type of query,

we measured the average execution time of 100 indexed and 100 non-indexed queries. The

speed-up of the selection queries was proportional to the number of nodes. However, both

of the join queries showed non-linear behaviors here that we did not observe earlier in [58],

where the maximum number of nodes was 8. With 16 nodes, the graph here showed a clear

distinction among these queries. (Another difference here is that we increased the number

of queries from 10 to 100.)

One observation is that the speed-up of the three-stage-similarity-join query in Figures 5.34-

5.35 appears to be sub-linear. This is mainly due to the communication cost among all

nodes, as the three-stage-similarity-join involves a number of tuple exchanges (as was shown

in Figure 5.14). In particular, before each hash join, every tuple from both join branches is

hash-partitioned to a potentially different node based on the join key’s hash value. Except

155

 0

 5

 10

 15

 20

 25

 1 2 4 8 16

S
p
e
e
d
-u
p

Number of nodes in a cluster

Jac-Join-0.8-Index

Jac-Sel-0.8-Index

Jac-Sel-0.8-NoIndex

Jac-Join-0.8-NoIndex

Figure 5.34: Speed-up on Jaccard on Amazon Review dataset.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 4 8 16A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of nodes in a cluster

Jac-0.8-Join-NoIndex

Jac-0.8-Sel-NoIndex

Jac-0.8-Join-Index

Jac-0.8-Sel-Index

Figure 5.35: Times for Jaccard speed-up on Amazon Review dataset.

for the joins in stage 3, where extra fields from two branches of the original similarity join

are being fetched, all hash joins are conducted on a token or a prefix (based on the global

token order). That is, each field in the original query generates more join keys that are

joined in stage 2 since each field value is tokenized. The tokens from both branches in these

joins need to be hash-partitioned. Also, in stage 1, after the sorting on the token frequency

on each node is done, the partial results from each node need to be merged on one node to

create the global token order. This merge operation is conducted in a serial fashion; thus, it

became a bottleneck for the global sort operation. Based on these characteristics, the three-

stage-similarity-join can be regarded as a communication-bound process and the “sub-linear”

behavior of the three-stage-similarity-join stems from the fact that the speed-up of a heavily

communication-bound process is about k
2
, where k is the number of nodes, as explained in

Appendix A.1. If there is only a small number of nodes in a cluster, the speed-up is less than

k
2
. As we increase the number of nodes, we see the eventual linear nature of the speed-up in

156

the graphs, which indeed goes as approximately k
2
. Although k

2
is a linear speed-up trend,

still, the ratio is less than k.

Figure 5.36 shows the per-stage-execution-time of the three-stage-similarity-join query on

each cluster setting. We can see that the most time was spent on stage 2. Most of the

communication cost in stage 2 is due to the fact that we need to tokenize the given field

from the dataset and conduct a hash join to match each token against each token in the

global token order chosen in stage 1. In fact, we observed that on the 16-node cluster, it

took 255 seconds to exchange the tokens and the primary keys among all the nodes in one

of the hash-joins of stage 2. Since the query took 423 seconds in total, 60% of the query

execution time was spent just on the hash-partition exchange involved in stage 2.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of nodes

Stage 1

Stage 2

Stage 3

Figure 5.36: Per-stage execution time of the three-stage-similarity-join query on Amazon
Review dataset.

In contrast, the speed-up of the indexed-nested-Jaccard-join query in Figure 5.34 is seen to

be super-linear. To explain this behavior, we can decompose the indexed-nested-Jaccard-

join query into three steps. In step 1, AsterixDB extracts 10 random tuples from the outer

branch and broadcasts them to all nodes. It then extracts the given field, tokenizes the field

value, and conducts keyword-index searches using the tokens. The keyword-index search

yields candidate primary keys. In step 2, these primary keys are sorted and fed into the

primary-index lookup. AsterixDB extracts the field from the record to again verify the

Jaccard condition and other predicates. In step 3, AsterixDB employs a surrogate hash-join

at the top level to merge any other fields that are not the secondary key or the primary

157

key fields since this is an inverted-index-join. After this join, the count of primary keys will

be gathered and returned to the user. Since the surrogate-hash-join is for primary keys on

the same dataset, there is little communication required since records are partitioned on the

primary key. Figure 5.37 shows the execution time of this join query per stage. Most of the

time was spent in step 2, as shown in the figure. Note that the speed-up of each operation in

each step is linear except for the sorting operation. That is, when we reduce the size of the

dataset partition on each node, the amount of work is reduced linearly. For example, if it

takes 1 second to conduct 1,000 primary key lookups on a 1-node cluster, it takes about 0.5

seconds to conduct 500 primary key lookups on each node of a 2-node cluster. Unlike other

operations in the query plan, The speed-up of the sorting operation is k · logN
k
N , where N

is the number of tuples and k is the number of nodes, as explained in Appendix A.2. This

ratio is super-linear because of its second term, which explains the super-linear behavior of

the query. For instance, on a 16-node cluster, the speed-up was 20.02 (>16) when N was 1

million.

One more observation was that the speed-up on the 8-node cluster was lower than expected

in general because there was skewness of the data distribution among the nodes in the cluster.

In our experiment, when loading the data, each record received a randomly generated UUID

value as its primary key. Therefore, in each cluster setting, the actual data distribution was

different. Note that our search was conducted on a secondary key field, not the primary key.

We observed that on the 8-node cluster, it took about 27 seconds to conduct step 2, and

there was a 17-second difference between the time when the first node finished and the time

when the last node finished this step. This showed the skewness of the data distribution.

5.6.5.2 Scale-out

To explore scale-out, we again used five clusters of different sizes, namely 1, 2, 4, 8, and 16

nodes. In this case, however, when we doubled the number of nodes in the cluster, we also

158

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16A
v
e
ra
g
e

e
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of nodes

Step 1

Step 2

Step 3

Figure 5.37: Detailed execution time of index-nested-loop-Jaccard-join queries on Amazon
Review dataset.

doubled the data size to yield the same amount of data per node. The 1-node cluster had

just 6.25% of the original total data set size, the 2-node cluster had 12.5% of the data, the

4-node cluster had 25% of the data, and the 8-node cluster had 50% of the data. The 16-

node cluster had the entire original dataset. Ideally, for linear scale-out, the response-time

graph would show a flat line per query. In fact, the response times for each cluster size were

similar, as shown in Figure 5.38, except in the case of the ad hoc Jaccard-similarity join

without an index. As we described in the speed-up section, this was due to the fact that

the three-stage-similarity-join is a communication-bound join method, so its communication

cost increases as the number of the nodes increases in a cluster based on the fact that the

volume of data on each node remains the same.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 4 8 16A
v
e
ra
g
e

E
x
e
c
u
tio
n

tim

e

(s
e
c
)

Number of nodes in a cluster

Jaccard-Join-NoIndex-0.8

Jaccard-Select-NoIndex-0.8

Jaccard-Join-Index-0.8

Jaccard-Select-Index-0.8

Figure 5.38: Scale-out for Jaccard on Amazon Review dataset

159

5.6.6 Comparison with Other Systems

In addition to evaluating the performance characteristics of AsterixDB’s algorithms, we

evaluated the performance of similarity queries on two other systems that also support

certain types of similarity queries. One is basic Apache Hadoop and the other is Couchbase.

We selected these two systems because we had previously implemented the three-stage-

similarity-join as a map/reduce job in Apache Hadoop and because Couchbase supports

scalable edit distance queries.

5.6.6.1 Apache Hadoop

The three-stage-similarity join [94] was originally implemented by hand using Apache Hadoop.

Based on the original code [11], we replicated the three-stage-join experiment on Apache

Hadoop Map/Reduce 1.2.1, the most recent version compatible with that three-stage-sim-

ilarity-join code. To make the execution environment similar to that of AsterixDB, we

designated one node to host master daemons to run the Hadoop jobs and to control the

Hadoop Distributed File System (HDFS). Including this node, eight nodes were utilized to

run map and reduce tasks. Each node had two directories since there were two AsterixDB

partitions. We set the HDFS block size to 128MB and allocated 1GB of virtual memory to

each HDFS daemon. Since AsterixDB used 2 GB as buffer space, we allocated 2GB of virtual

memory to each map/reduce task. We ran two map tasks and two reduce tasks on each node

so that the degree of parallelism was also the same for both systems. The replication factor

was set to 1, and Hadoop’s speculative task execution feature was disabled. Figure 5.39

shows the execution times for the same three-stage-similarity-join query that used Jaccard

with a threshold of 0.8 for several different cases (explained below).

One difference between the Apache Hadoop implementation and AsterixDB is their global

token order generation in stage 1. When calculating the global token order of an R and S

160

 0

 2000

 4000

 6000

 8000

 10000

Case1 Case2 Case3 Case4Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Dataset Volume Variation

AsterixDB Hadoop

1: R(12.5%), S(2,000)
2: R(2,000), S(12.5%)
3: R(100%), S(2,000)
4: R(2,000), S(100%)

Figure 5.39: Three-stage-similarity-join queries on AsterixDB and Hadoop Map/Reduce.

join, Hadoop uses R to build the global token order. AsterixDB instead uses S to build

the global token order. Thus, we experimented with four variations for the dataset size in

Figure 5.39. In the first case, the left branch (R) used 12.5% of the tuple of the Amazon

Review dataset while the right branch (S) used 2, 000 tuples of the same dataset. We then

switched the left and the right branches in the second case. By checking these two cases in

Figure 5.39, we can see that the execution time was smaller when the size of the dataset

used to generate the global token order was smaller. We also see that the execution time for

AsterixDB was about ten times faster than that of Hadoop. This was because the execution

of AsterixDB is pipelined whenever possible. In contrast, the result of each map-reduce task

is written to disk and then read again in Hadoop.

5.6.6.2 Couchbase

As described in Section 5.1.1, Couchbase is unique in providing support for edit distance

search queries on NoSQL data with its new full-text search service. It does so via a separate

full-text API (not its N1QL query language). A full-text index must be built before sending

full-text queries involving edit distance. Given the provided support, only an indexed-edit-

distance query comparison between AsterixDB and Couchbase is appropriate. In our ex-

periments, AsterixDB had two physical partitions on two separate hard disks on each node

to increase its degree of parallelism. Since Couchbase can only support multiple physical

161

partitions using a redundant array of independent disks (RAID), we also ended up using

only one partition on each node of the AsterixDB cluster for this comparison experiment.

For Couchbase, we used version 5.0, and we set up the full-text service on the same nodes

and allocated 2GB of the memory to the full-text service on each node. After loading the

Amazon Review dataset into both systems, we sent ten random indexed-edit-distance queries

to AserixDB and Couchbase and measured their average execution times. The results are

shown in Figure 5.40.

 0
 2
 4
 6
 8

 10
 12

1 2 3Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

Edit distance threshold

AsterixDB Couchbase

Figure 5.40: Edit-distance queries on AsterixDB and Couchbase.

When the edit distance threshold was 1 or 2, AsterixDB performed better than Couch-

base. When the threshold was 3, however, AsterixDB became about five times slower than

Couchbase. A careful investigation revealed that the main reason is that the inverted-index

search in AsterixDB generated many candidates as the threshold increased. These candi-

dates needed to be verified via a primary-index search and applying the edit distance function

on the fetched field. That is, an inverted-index search alone in AsterixDB cannot generate

the final result, as described earlier. In contrast, the full-text index in Couchbase alone

can generate the final answer without having to check the original data because their index

contains all the data needed to generate the final answer. That is, a tentative result from

an edit distance query is then verified within the full-text index to generate the final result.

Note that this design implies that there may be inconsistencies between the full-text index

and the actual data in a bucket until the synchronization between a bucket and the full-text

index is done. In contrast, AsterixDB always generates an answer consistent with the most

162

current data.

5.7 Conclusions

In this chapter, we have described the support for similarity queries in Apache AsterixDB,

a parallel open source Big Data management system. We described the entire life cycle of

a similarity query in the system, including the query language, indexing, execution plans,

and plan rewriting to optimize query execution. Our similarity search solution leverages the

existing infrastructure of AsterixDB, including its operators, query engine, and rule-based

optimizer. We presented an experimental study based on several large, real-world data

sets on a parallel computing cluster to evaluate the proposed techniques and showed their

efficacy and performance for supporting similarity queries on large data sets using parallel

computing. Also, we presented a performance comparison with two other systems.

163

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have presented how we enhanced the support for both search and analytics

in AsterixDB to deal with large amounts of data.

In Chapter 3, we described a budget-driven approach to memory management in AsterixDB

since proper memory management is a crucial part of search and analytics. We discussed

how the system maintains a carefully tracked budget in the context of its algorithms in

order to keep the memory usage of its memory-intensive operators within a budget. Each

memory-intensive operator’s implementation requires careful attention regarding memory

usage since memory-intensive operators need to support both in-memory and disk-based

operation to cope with any volume of data and each operator has a different algorithm to

allocate/deallocate memory pages. We described the original implementation of AsterixDB’s

memory-intensive operators and the memory details that they had overlooked. We then de-

scribed how we modified these operators to truly run within a budget. We also discussed

issues related to the global memory management in AsterixDB. Lastly, we presented exper-

164

iments to empirically explore the effect of not carefully accounting for the size of the data

structures used in memory-intensive operators. We used both synthetic and real datasets

and showed that the current AsterixDB implementations of memory-intensive operators are

well-controlled and scalable.

In Chapter 4, we described the index-only query plan implementation in AsterixDB. We

discussed a few challenges that needed to be addressed to implement an index-only plan

in our context. We then described the required conditions for use of index-only plans and

we explained how to create a correct index-only plan. We also showed how to transform a

scan-based plan into an index-only plan during the optimization process. We presented an

experimental study on a real dataset, using both spatial and temporal indexes, and showed

that the average execution performance of index-only plan queries was several orders of

magnitude faster than scan-based and index-based queries.

In Chapter 5, we described a performance evaluation of similarity queries in AsterixDB as

well as two other systems. We first described the entire life cycle of a similarity query in

AsterixDB, including the query language, indexing, execution plans, and plan rewriting to

optimize query execution. Our similarity search solution leverages the existing infrastruc-

ture of AsterixDB, including its operators, query engine, and rule-based optimizer. We then

presented an experimental study based on several large, real-world datasets on a parallel

computing cluster to evaluate the proposed techniques and showed their efficacy and per-

formance for supporting similarity queries on large data sets using parallel computing. We

presented a performance comparison with two related systems.

165

6.2 Future Work

In Chapter 3, we discussed how AsterixDB manages its memory. AsterixDB assigns a budget

to each memory-intensive operator and makes the operator conform to the budget to ensure

the stability of the system. Currently, almost every budget has a simplistic default or is

manually set by a user; AsterixDB does not tune the budget by itself during runtime. A

few other systems such as DB2 [3] have a feature called “self tuning” to automatically set

the values for their memory configuration parameters. The AsterixDB system’s performance

can be potentially improved if the system had the ability to adjust the parameters based on

information that it collected during runtime.

Regarding query admission control, we showed that AsterixDB puts a query into the exe-

cution queue if the available CPU and memory resources are not enough but the cluster’s

maximum resources can host the query. Since this queue works in a first-in-first-out fashion,

each query may need to wait a long time in the queue. Now consider a high priority query

that a user just issued, and suppose the user wants to see the result right away. Since Aster-

ixDB does not differentiate priority among queries, every query currently needs to wait until

resources become available. In the future, we can add a priority to each query and let the

query admission control consider this priority. Moreover, we can then also explore another

topic regarding query workload management. That is, is it possible to make AsterixDB

dynamically adjust its memory allocation up or down for the current query plan? If this

became possible, a high-priority query could be admitted sooner and/or get more resources

during execution so that it may finish its execution earlier than expected.

In Chapter 4, we presented the index-only query plan implementation in AsterixDB. We

showed that the performance of an index-only plan was orders of magnitude faster than

that of a scan-based execution plan and a non-index-only plan. Although the performance

improvement of the current implementation of the index-only plan is significant, there are

166

currently some limitations. First of all, AsterixDB does not yet support an index-only plan

on an inverted index since multiple secondary keys may exist per primary key. Because

these multiple 〈secondary key, primary key〉 pairs cannot be fetched from an inverted index

at the same time, AsterixDB cannot guarantee that these pairs come from the same version

of a record. That is, a record could be updated during an inverted-index search on a given

primary key. This issue can be solved if the system can present a consistent view of multiple

secondary keys. One possible solution is employing a multi-version concurrency control

scheme. Another possibility would be to add a timestamp value to the primary key, based

on the creation time of a record, to secondary keys in the inverted index so that the system

can decide whether multiple secondary keys belong to the same record version.

In Chapter 5, we evaluated the performance of similarity queries. We explained the AQL+

framework and how we addressed the divergence issue between AQL+ and AQL languages.

Recall that the AQL+ framework transforms a scan-based similarity join plan into a three-

stage-similarity join plan during the optimization process. In a three-stage-similarity-join

plan, stage 1 generates a global token order and stage 2 conducts several hash joins using the

token order generated in stage 1 and generates the actual primary key pairs whose similarity

satisfies the predicate. Stage 3 re-fetches any extra fields that need to be returned in a query.

In summary, stage 1 calculates statistics and stage 2 utilizes these statistics. In the future,

we could seek to design a general join framework that consists of two phases. In phase 1,

it would collect some statistics about the input datasets. Then, in phase 2, the framework

would use the generated statistics to conduct the actual join and generate the result. A

three-stage-similarity join could then also be implemented using such a join framework since

similarity join stages 1 and 2 correspond to phases 1 and 2 respectively. The benefit of such

a join framework would be that would then have a general framework that makes each join

method more modular and easier to maintain.

167

Bibliography

[1] Apache solr. http://lucene.apache.org/solr/.

[2] DB2 - objects that are subject to locks. https://www.ibm.com/
support/knowledgecenter/en/SSEPEK_11.0.0/perf/src/tpc/db2z_
objectoflock.html.

[3] Db2 - self-tuning memory overview. https://www.ibm.com/support/
knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.
doc/doc/c0024366.html.

[4] DOMO - data never sleeps 6.0. https://www.domo.com/learn/
data-never-sleeps-6.

[5] Elastic search. https://www.elastic.co/guide/en/elasticsearch/reference/current/query-
dsl-fuzzy-query.html.

[6] Facebook - second quarter 2018 operational and other financial highlights. https:
//investor.fb.com/investor-news/press-release-details/2018/
Facebook-Reports-Second-Quarter-2018-Results/default.aspx.

[7] MySQL - locks set by different sql statements in innodb. https://dev.mysql.
com/doc/refman/8.0/en/innodb-locks-set.html.

[8] Oracle - data concurrency and consistency. https://docs.oracle.com/cd/
E25054_01/server.1111/e25789/consist.htm.

[9] PostgreSQL - index-only scans. https://www.postgresql.org/docs/10/
static/indexes-index-only-scans.html.

[10] PostgreSQL - visibility map. https://www.postgresql.org/docs/9.5/
static/storage-vm.html.

[11] Source code - Apache Hadoop Map/Reduce version of the three-stage-similarity join.
http://asterix.ics.uci.edu/fuzzyjoin/.

[12] Twitter - second quarter 2018 - selected company metrics and financials. https:
//investor.twitterinc.com/results.cfm.

168

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/perf/src/tpc/db2z_objectoflock.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/perf/src/tpc/db2z_objectoflock.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/perf/src/tpc/db2z_objectoflock.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024366.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024366.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0024366.html
https://www.domo.com/learn/data-never-sleeps-6
https://www.domo.com/learn/data-never-sleeps-6
https://investor.fb.com/investor-news/press-release-details/2018/Facebook-Reports-Second-Quarter-2018-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2018/Facebook-Reports-Second-Quarter-2018-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2018/Facebook-Reports-Second-Quarter-2018-Results/default.aspx
https://dev.mysql.com/doc/refman/8.0/en/innodb-locks-set.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locks-set.html
https://docs.oracle.com/cd/E25054_01/server.1111/e25789/consist.htm
https://docs.oracle.com/cd/E25054_01/server.1111/e25789/consist.htm
https://www.postgresql.org/docs/10/static/indexes-index-only-scans.html
https://www.postgresql.org/docs/10/static/indexes-index-only-scans.html
https://www.postgresql.org/docs/9.5/static/storage-vm.html
https://www.postgresql.org/docs/9.5/static/storage-vm.html
http://asterix.ics.uci.edu/fuzzyjoin/
https://investor.twitterinc.com/results.cfm
https://investor.twitterinc.com/results.cfm

[13] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y. Kim,
C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and
T. Westmann. AsterixDB: A scalable, open source BDMS. PVLDB, 7(14):1905–1916,
2014.

[14] S. Alsubaiee, A. Behm, V. R. Borkar, Z. Heilbron, Y. Kim, M. J. Carey, M. Dreseler,
and C. Li. Storage management in AsterixDB. PVLDB, 7(10):841–852, June 2014.

[15] Apache AsterixDB, http://asterixdb.apache.org.

[16] Apache Spark, https://spark.apache.org/docs/latest/tuning.html#
memory-management-overview.

[17] Basic Memory Structures, https://docs.oracle.com/cd/B28359_01/
server.111/b28318/memory.htm#CNCPT1221.

[18] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In
Proceedings of the 2007 WWW Conference, 2007.

[19] A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained gram-based indexing for efficient
approximate string search. In Proceedings of the 2009 ICDE Conference, 2009.

[20] M. W. Blasgen, R. G. Casey, and K. P. Eswaran. An encoding method for multifield
sorting and indexing. Communications of the ACM, 20(11):874–878, 1977.

[21] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network analysis in the social
sciences. Science, 2009.

[22] V. R. Borkar, Y. Bu, E. P. C. Jr., N. Onose, T. Westmann, P. Pirzadeh, M. J. Carey,
and V. J. Tsotras. Algebricks: A Data Model-Agnostic Compiler Backend for Big Data
Languages. In Proc. SCC, pages 422–433, Kohala, HI, USA, 2015.

[23] V. R. Borkar, M. J. Carey, R. Grover, et al. Hyracks: A flexible and extensible
foundation for data-intensive computing. Proc. 27th ICDE, pages 1151–1162, 2011.

[24] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. Proceedings of the
VLDB Endowment, 2012.

[25] Y. Bu, V. R. Borkar, G. H. Xu, and M. J. Carey. A bloat-aware design for big data
applications. Int’l Symp. on Memory Management, ISMM ’13, Seattle, WA, USA -
June 20 - 20, 2013, pages 119–130, 2013.

[26] D. Chamberlin. SQL++ for SQL Users: A Tutorial. September 2018. (Available via
Amazon.com.).

[27] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. Gray, W. F. K. III, B. G. Lind-
say, R. A. Lorie, J. W. Mehl, T. G. Price, G. R. Putzolu, P. G. Selinger, M. Schkolnick,
D. R. Slutz, I. L. Traiger, B. W. Wade, and R. A. Yost. A history and evaluation of
system R. Commun. ACM, 24(10):632–646, 1981.

169

https://spark.apache.org/docs/latest/tuning.html#memory-management-overview
https://spark.apache.org/docs/latest/tuning.html#memory-management-overview
https://docs.oracle.com/cd/B28359_01/server.111/b28318/memory.htm#CNCPT1221
https://docs.oracle.com/cd/B28359_01/server.111/b28318/memory.htm#CNCPT1221

[28] S. Chaudhuri, V. Ganti, and R. Kaushik. Data debugger: An operator-centric approach
for data quality solutions. IEEE Data Eng. Bull., 2006.

[29] P. Christen. Data matching: concepts and techniques for record linkage, entity resolu-
tion, and duplicate detection. SSBM, 2012.

[30] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An e cient access method for similarity
search in metric spaces. In Proceedings of the 1997 VLDB Conference, 1997.

[31] D. L. Davison and G. Graefe. Memory-contention responsive hash joins. In Proceedings
of the 20th International Conference on Very Large Data Bases, Proc. 20th Int’l Conf.
on VLDB, pages 379–390, San Francisco, CA, USA, 1994.

[32] DB2 - Memory sets overview, https://www.ibm.com/support/
knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.
doc/doc/c0059501.html.

[33] DB2 memory allocation,https://www.ibm.com/support/
knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.
config.doc/doc/r0000259.html.

[34] D. Deng, G. Li, and J. Feng. A pivotal prefix based filtering algorithm for string
similarity search. In Proceedings of the 2014 SIGMOD Conference, 2014.

[35] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. Massjoin: A mapreduce-based method
for scalable string similarity joins. In Proceedings of the 2014 ICDE Conference, 2014.

[36] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A.
Wood. Implementation techniques for main memory database systems. ACM, 1984.

[37] C. Doulkeridis and K. Nørv̊ag. A survey of large-scale analytical query processing in
mapreduce. Proceedings of the VLDB Endowment, 2014.

[38] W. Effelsberg and T. Härder. Principles of database buffer management. ACM Trans.
Database Syst., 9(4):560–595, 1984.

[39] J. Feng, J. Wang, and G. Li. Trie-join: a trie-based method for efficient string similarity
joins. Proceedings of the VLDB Endowment, 2012.

[40] G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,
25(2):73–170, 1993.

[41] G. Graefe. Sorting and indexing with partitioned b-trees. CIDR 2003, First Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 5-8,
2003, Online Proceedings, 2003.

[42] G. Graefe. Implementing sorting in database systems. ACM Computing Surveys
(CSUR), 38(3):10, 2006.

170

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0059501.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0059501.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0059501.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.config.doc/doc/r0000259.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.config.doc/doc/r0000259.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.config.doc/doc/r0000259.html

[43] G. Graefe. The five-minute rule twenty years later, and how flash memory changes
the rules. In Proc. the 3rd Int’l Workshop on Data Management on New Hardware,
DaMoN ’07, pages 6:1–6:9, Beijing, China, 2007.

[44] G. Graefe. Modern b-tree techniques. Foundations and Trends in Databases, 3(4):203–
402, 2011.

[45] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Sri-
vastava. Approximate string joins in a database (almost) for free. In Proceedings of
the 2001 VLDB Conference, pages 491–500, 2001.

[46] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an rdbms for
web data integration. In Proceedings of the 2003 WWW Conference, 2003.

[47] J. Gray, editor. The Wisconsin Benchmark: Past, Present, and Future. Morgan
Kaufmann, 1993.

[48] J. Gray and G. Graefe. The five-minute rule ten years later, and other computer
storage rules of thumb. ACM SIGMOD Record, 26(4):63–68, Dec. 1997.

[49] J. Gray and F. Putzolu. The 5 minute rule for trading memory for disc accesses and
the 10 byte rule for trading memory for cpu time. Proc. 1987 ACM SIGMOD, pages
395–398, San Francisco, California, USA, 1987.

[50] T. Härder. A scan-driven sort facility for a relational database system. Proc. 3rd Int’l
Conf. on VLDB, pages 236–244, Tokyo, Japan, 1977.

[51] G. Held, M. Stonebraker, and E. Wong. INGRES: A relational data base system. In
American Federation of Information Processing Societies: 1975 National Computer
Conference, 19-22 May 1975, Anaheim, CA, USA, pages 409–416, 1975.

[52] How MySQL Uses Memory, https://dev.mysql.com/doc/refman/8.0/en/
memory-use.html.

[53] How to Configure Resource Management for Impala, https://www.cloudera.
com/documentation/enterprise/5-9-x/topics/impala_howto_rm.
html.

[54] Lucene - IndexWriterConfig class documentation, https://lucene.apache.org/
core/7_4_0/core/org/apache/lucene/index/IndexWriterConfig.
html#setRAMBufferSizeMB-double-.

[55] JavaCC,https://javacc.org.

[56] Y. Jiang, G. Li, J. Feng, and W.-S. Li. String similarity joins: An experimental
evaluation. Proceedings of the VLDB Endowment, 2014.

[57] P. Jokinen and E. Ukkonen. Two algorithms for approxmate string matching in static
texts. Proc. 16th Int’l Symp. on MFCS, pages 240–248, Kazimierz Dolny, Poland,
1991.

171

https://dev.mysql.com/doc/refman/8.0/en/memory-use.html
https://dev.mysql.com/doc/refman/8.0/en/memory-use.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/impala_howto_rm.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/impala_howto_rm.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/impala_howto_rm.html
https://lucene.apache.org/core/7_4_0/core/org/apache/lucene/index/IndexWriterConfig.html#setRAMBufferSizeMB-double-
https://lucene.apache.org/core/7_4_0/core/org/apache/lucene/index/IndexWriterConfig.html#setRAMBufferSizeMB-double-
https://lucene.apache.org/core/7_4_0/core/org/apache/lucene/index/IndexWriterConfig.html#setRAMBufferSizeMB-double-
https://javacc.org

[58] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. Borkar, M. J. Carey, and C. Li.
Supporting similarity queries in apache asterixdb. In EDBT, 2018.

[59] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of hash to data base
machine and its architecture. New Generation Computing, 1(1):63–74, 1983.

[60] D. E. Knuth. The art of computer programming, volume. 3: Sorting and searching”.
1973.

[61] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for approximate
string searches. In Proceedings of the 2008 ICDE Conference, 2008.

[62] C. Li, B. Wang, and X. Yang. VGRAM: improving performance of approximate queries
on string collections using variable-length grams. In Proceedings of the 2012 VLDB
Conference, 2007.

[63] B. Lindsay. Hash joins in db2 udb the inside story, 1999.
https://pdfs.semanticscholar.org/presentation/38c4/
bcd4fe05787c1c8af74981a4e182ff3411c2.pdf.

[64] Apache Lucene, https://lucene.apache.org.

[65] W. Mann and N. Augsten. Pel: Position-enhanced length filter for set similarity joins.
In Grundlagen von Datenbanken, 2014.

[66] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set similarity join
techniques. Proceedings of the VLDB Endowment, 2016.

[67] J. McAuley, R. Pandey, and J. Leskovec. Inferring networks of substitutable and
complementary products. In Proceedings of the 2015 SIGKDD Conference, 2015.

[68] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework for all-
pair similarity joins of multisets and vectors. Proceedings of the VLDB Endowment,
2012.

[69] Y. Minghe, L. Guoliang, D. Dong, and F. Jianhua. String similarity search and join:
a survey. Frontiers of Computer Science, 2016.

[70] MySQL memory allocation,https://dev.mysql.com/doc/refman/8.0/en/
memory-use.html.

[71] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ Semi-structured Data
Model and Query Language: A Capabilities Survey of SQL-on-Hadoop, NoSQL and
NewSQL Databases. CoRR, abs/1405.3631, 2014.

[72] Oracle memory allocation,https://docs.oracle.com/cd/B28359_01/
server.111/b28318/memory.htm#CNCPT1221.

[73] H. Pang, M. J. Carey, and M. Livny. Memory-adaptive external sorting. Proc. the
19th Int’l Conf. on VLDB, pages 618–629, San Francisco, CA, USA, 1993.

172

https://pdfs.semanticscholar.org/presentation/38c4/bcd4fe05787c1c8af74981a4e182ff3411c2.pdf
https://pdfs.semanticscholar.org/presentation/38c4/bcd4fe05787c1c8af74981a4e182ff3411c2.pdf
https://dev.mysql.com/doc/refman/8.0/en/memory-use.html
https://dev.mysql.com/doc/refman/8.0/en/memory-use.html
https://docs.oracle.com/cd/B28359_01/server.111/b28318/memory.htm#CNCPT1221
https://docs.oracle.com/cd/B28359_01/server.111/b28318/memory.htm#CNCPT1221

[74] H. H. Pang, M. J. Carey, and M. Livny. Partially preemptible hash joins. In Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data, Proc.
1993 ACM SIGMOD, pages 59–68, Washington, D.C., USA, 1993.

[75] P. Pirzadeh, M. J. Carey, and T. Westmann. BigFUN: A performance study of big data
management system functionality. In Proceedings of the IEEE International Conference
on Big Data, Santa Clara, CA, October 29 - November 1, 2015., 2015.

[76] Postgres memory allocation,https://www.postgresql.org/docs/9.4/
static/runtime-config-resource.html.

[77] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact edit similarity query
processing with the asymmetric signature scheme. In Proceeding of the 2011 SIGMOD
Conference, 2011.

[78] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE Data
Eng. Bull., 2000.

[79] Reddit comment dataset,https://files.pushshift.io/reddit/
comments/.

[80] Reddit Dataset, https://reddit.com/r/datasets/comments/3mg812/.

[81] Resource Consumption, https://www.postgresql.org/docs/9.4/static/
runtime-config-resource.html.

[82] L. A. Ribeiro and T. Härder. Generalizing prefix filtering to improve set similarity
joins. Information Systems, 2011.

[83] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In Proceedings
of the 2004 SIGMOD Conference, 2004.

[84] Y. seok Kim. Transactional and Spatial Query Processing in the Big Data Era. PhD
thesis, UNIVERSITY OF CALIFORNIA, IRVINE, 2016.

[85] L. D. Shapiro. Join processing in database systems with large main memories. ACM
Transactions on Database Systems (TODS), 11(3):239–264, 1986.

[86] Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity join database operator. In
Proceedings of the 2010 ICDE Conference, 2010.

[87] Y. N. Silva, S. S. Pearson, J. Chon, and R. Roberts. Similarity joins: Their implemen-
tation and interactions with other database operators. Information Systems, 2015.

[88] Y. N. Silva and J. M. Reed. Exploiting mapreduce-based similarity joins. In Proceedings
of the 2012 SIGMOD Conference, 2012.

[89] J. Sun, Z. Shang, G. Li, D. Deng, and Z. Bao. Dima: A distributed in-memory
similarity-based query processing system. Proceedings of the VLDB Endowment, 2017.

173

https://www.postgresql.org/docs/9.4/static/runtime-config-resource.html
https://www.postgresql.org/docs/9.4/static/runtime-config-resource.html
https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/
https://www.postgresql.org/docs/9.4/static/runtime-config-resource.html
https://www.postgresql.org/docs/9.4/static/runtime-config-resource.html

[90] Tez Configuration, https://tez.apache.org/releases/0.8.2/
tez-api-javadocs/configs/TezConfiguration.html.

[91] TPC-H Benchmark,http://www.tpc.org/tpch/.

[92] Tuning Hive, https://www.cloudera.com/documentation/enterprise/
5-9-x/topics/admin_hive_tuning.html.

[93] Twitter Streaming API, https://developer.twitter.com.

[94] R. Vernica, M. Carey, and C. Li. Efficient parallel set-similarity joins using MapReduce.
In Proceedings of the 2010 SIGMOD Conference, 2010.

[95] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive framework
for similarity join and search. In Proceedings of the 2012 SIGMOD Conference, 2012.

[96] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen. Vchunkjoin: An efficient algorithm
for edit similarity joins. KDE, IEEE Transactions on, 2013.

[97] Y. Wang, A. Metwally, and S. Parthasarathy. Scalable all-pairs similarity search in
metric spaces. In Proceedings of the 2013 ACM SIGKDD Conference, 2013.

[98] C. Xiao, W. Wang, and X. Lin. Ed-join: An efficient algorithm for similarity joins
with edit distance constraints. In Proceedings of the 2008 VLDB Conference, 2008.

[99] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate
detection. In Proceedings of the 2008 WWW Conference, 2008.

[100] H. Zeller and J. Gray. An adaptive hash join algorithm for multiuser environments.
Proc. 16th Int’l Conf. on VLDB, pages 186–197, San Francisco, CA, USA, 1990.

[101] W. Zhang and P.-Å. Larson. A memory-adaptive sort (masort) for database systems.
Proc. 1996 CASCON, pages 41–, Toronto, Ontario, Canada, 1996.

[102] W. Zhang and P.-Å. Larson. Dynamic memory adjustment for external mergesort.
Proc. 23rd Int’l Conf. on VLDB, pages 376–385, San Francisco, CA, USA, 1997.

174

https://tez.apache.org/releases/0.8.2/tez-api-javadocs/configs/TezConfiguration.html
https://tez.apache.org/releases/0.8.2/tez-api-javadocs/configs/TezConfiguration.html
http://www.tpc.org/tpch/
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/admin_hive_tuning.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/admin_hive_tuning.html

Appendix A

Analyses Of Parallel Jobs

In this Appendix, we present detailed analyses of the speed-ups of an idealized communication-

bound parallel job and of idealized parallel sort job to explain the super-linear and sub-linear

speed-up behaviors of the two queries seen in Section 5.6.5.1.

A.1 Communication-bound Parallel Job

If a perfectly parallel data analysis job is totally communication-bound, how much speed-up

can be expected? Table A.1 shows the fraction of the original data that must be transferred

from each node in a single data-exchange operation, where k is the number of nodes. In this

simple analysis, we assume that a data-exchange function evenly hashes the data among all

the nodes and all communications are conducted in a fully parallel fashion, that is, there is

no network congestion. If N is the number of tuples of original data, the communication

cost per node is N
k
· (k−1)

k
. The first term of the formula is derived from the fact that each

node in a k-node parallel cluster contains 1
k

of the original data N . When a data-exchange

operation executes, k−1
k

of the data on each node needs to be transferred to other nodes,

175

and only 1
k

of the data remains on the same node. Combining these facts yields N
k
· (k−1)

k
.

For example, consider a four-node cluster (k=4). Each node contains 1
4

of the total data N .

From each node, 3
4

of the data on that node needs be transferred to other nodes. Therefore,

overall, each of the four nodes transfers 3
16

of N .

Table A.1: Communication cost per node on a hash exchange operation

Number of
nodes

Communication cost per node
in terms of the original data

Speed-up

2 1 / 22 2
4 3 / 42 2.67
8 7 / 82 4.57
16 15 / 162 8.53
32 31 / 322 16.52
64 63 / 642 32.51
128 127 / 1282 64.5

...
k (k − 1)/k2 ≈ k/2

The last column of Table A.1 shows the speed-up of such a communication-bound parallel

job. We omit the 1-node cluster case here since there is no communication on one node. We

denote the speed-up of the 2-node cluster as 2 as the base in order to have the speed-up

metric be normalized based on a number of nodes that starts at 1 (as usual for speed-up).

To get the speed-up of the k-node cluster, we first divide the communication cost per node

of the 2-node cluster by the communication cost of the k-node cluster. We then multiply the

base speed-up of the 2-node cluster, which is 2, by this calculated ratio to get the speed-up of

the k-node cluster. For instance, the speed-up of 4-node cluster can be calculated as 1
4
/ 3
16
·2,

which is 2.67.

Figures A.1(a) and A.1(b) show the comparison between the speed-up of our computation-

bound parallel job and ideal linear speed-up. Figure A.1(a) shows the number of nodes up

to 64. We can see there that the trend of the speed-up of a communication-bound parallel

job does not saturate. In fact, as we increase the number of nodes, the speed-up becomes

k
2
. In fact, after 12 nodes, the speed-up is always close to k

2
. When we zoom in to a smaller

number of nodes, in Figure A.1(b), we can see that the speed-up is less than k
2
, though the

176

speed-up increases gradually as the number of nodes increases.

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32

S
p
e
e
d
-u
p

Number of nodes in a cluster

Linear speed-up

Communication-bound

(a) speed-up of a parallel
communication-bound job (up to 64

nodes).

 0

 1

 2

 3

 4

 5

 2 3 4 5

S
p
e
e
d
-u
p

Number of nodes in a cluster

Linear speed-up

Communication-bound

(b) speed-up of a parallel
communication-bound job (up to 5

nodes).

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 2 4 8 16 32

S
p
e
e
d
-u
p

Number of nodes in a cluster

k log(N/k) N (N=1,000,000)

Linear speed-up

(c) speed-up of a parallel sort job

Figure A.1: speed-up of communication-bound parallel job and parallel sort job.

A.2 Parallel Sort Job

A sort operation takes O(N · logN) time where N is the amount of data. If there are k

nodes in a parallel cluster, a parallel sort job takes O(N
k
· log N

k
) time on each node since the

amount of the data on each node is N
k

. Thus, we can compute the speed-up of a parallel sort

job on the k-node cluster as being k · logN
k
N by simplifying the formula N · logN / N

k
· log N

k
.

As shown in Table A.2 and illustrated in Figure A.1(c), this speed-up is super-linear since

the second term (logN
k
N) in the formula is always greater than 1 when k is greater than 1.

For instance, on a 16-node cluster, the speed-up is 20.02 (>16) when N is 1,000,000.

Table A.2: Per node cost of a parallel sort (1 million tuples).

Number of nodes Sorting cost on a node Speed-up
1 1, 000, 000 · log 1, 000, 000 1
2 500, 000 · log 500, 000 2.11
4 250, 000 · log 250, 000 4.45
8 125, 000 · log 125, 000 9.42
16 62, 500 · log 62, 500 20.02

...

k N
k · log N

k k · logN
k
N

177

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Preliminaries
	Apache AsterixDB
	Software Architecture
	Data Model

	Robust Memory Management in AsterixDB
	Introduction
	Related Work

	Preliminaries - Memory Management in AsterixDB
	Memory-Intensive Operator: Sort
	Sort: Original Implementation
	Sort: Current Implementation

	Memory-Intensive Operators: Hash-based
	Hash Group-by Operator
	Hash Join Operator

	Memory-Intensive Operator: Inverted-index Search
	Inverted-index Search: Original Implementation
	Inverted-index Search: Current Implementation

	Global Memory Management
	In-memory LSM Components
	Query Admission Control
	Handling Big Objects

	Experiments
	Test Datasets
	Accounting For Everything
	Living within The Budget
	When Objects Get Large
	Query Access Control

	Conclusion

	Index-only Query Plans in AsterixDB
	Introduction
	Related Work

	Background
	Index Search
	Locking

	Implementing Index-only Query Plans
	Necessary Conditions
	Authoritative Secondary-index Search
	Implementing an Index-only Plan
	Rewriting Scan-based Plans into Index-only Plans

	Experiments
	Dataset
	Index
	B+-tree: Single Field
	B+-tree: Multiple Fields
	R-tree: Point Field
	R-tree: Rectangle Field

	Conclusions

	Performance Evaluation of Similarity Query Processing in AsterixDB
	Introduction
	Related Work

	Preliminaries
	Similarity Functions
	Answering Similarity Queries

	Using Similarity Queries
	Supported Similarity Measures
	Expressing Similarity Queries
	Using Indexes

	Executing Similarity Queries
	Inverted Index
	Executing Similarity Selections
	Executing Similarity Joins

	Optimizing Similarity Queries
	Rewriting a Similarity Query
	AQL+ Framework
	The Optimization Rule For Similarity Queries
	Maintaining the AQL+ Framework

	Experiments
	Datasets
	Index Size
	Selection Queries
	Join Queries
	Cluster Scalability Tests
	Comparison with Other Systems

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Analyses Of Parallel Jobs
	Communication-bound Parallel Job
	Parallel Sort Job

