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ABSTRACT OF THE DISSERTATION
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Kexin Li

Doctor of Philosophy in Statistics
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Professor Jingyi Li, Chair

Since the advent of single-cell RNA sequencing (scRNA-seq) technologies around 15 years

ago, they have become a powerful tool to characterize cell-to-cell heterogeneity within a cell

population in various biological systems, and have revolutionized transcriptomic studies. A

typical scRNA-seq dataset contains thousands to tens of thousands of genes; however, a

subset of genes are usually sufficient for representing the underlying biological variations of

cells that are aligned with researchers’ various interest. The sufficiency can be explained

by three reasons: (1) highlighting and enhancing biological signals, (2) improving the inter-

pretability of analysis results, and (3) reducing the number of genes to save computational

or human resources. Hence, a number of gene selection methods have been performed in

various tasks, for instance, informative gene selection for cell clustering and post-clustering

differentially expressed gene identification for cell type annotation. However, existing efforts

have not fully addressed the problems: among the genes selected by the existing methods,

many are irrelevant, redundant, or insignificant. Gene selection for certain single-cell analy-

sis tasks with biological meaningful interpretation and statistical rigor remains challenging.

This dissertation aims to address them in two projects.

My first project focuses on the informative gene selection in general scRNA-seq data

analysis, and extends an application to guide targeted gene profiling design. Unlike scRNA-

seq, targeted gene profiling has a strong requirement for a limited number (often no more

than hundreds) of genes to be specified before sequencing. In Chapter 2, we propose the
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single-cell Projective Non-negative Matrix Factorization (scPNMF) method, which leverages

the PNMF algorithm and adds a unique feature of basis selection. scPNMF outperforms

existing informative gene selection methods in that its selected, limited number of genes

better distinguish cell types, and it enables the alignment of new targeted gene profiling

data with reference data in a low-dimensional space to facilitate the prediction of cell types

in the new data.

My second project discusses post-clustering differentially expressed (DE) gene identifi-

cation for cell-type annotation tasks. Here the selected genes serve as potential cell-type

marker genes, by matching with the canonical ones, they are crucial in determining the cell

types in single-cell sequencing data. Despite the popularity of the typical two-step analysis

workflow: first, clustering; second, finding DE genes between cell clusters, an issue known as

”double dipping”–the same data is used twice to define cell clusters and find DE genes–exists

here and leads to false-positive cell-type marker genes when the cell clusters are spurious. To

overcome this challenge, in Chapter 3, we propose ClusterDE, a post-clustering DE method

for controlling the false discovery rate (FDR) of identified DE genes regardless of clustering

quality, which can work as an add-on to popular pipelines such as Seurat. The core idea of

ClusterDE is to generate real-data-based synthetic null data containing only one cluster, as

contrast to the real data, for evaluating the whole procedure of clustering followed by a DE

test. ClusterDE is fast, transparent, and adaptive to a wide range of clustering algorithms

and DE tests. Besides scRNA-seq data, ClusterDE is generally applicable to post-clustering

DE analysis, including single-cell multi-omics data analysis.
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CHAPTER 1

Introduction

Single-cell RNA sequencing (scRNA-seq) technologies have enabled gene expression mea-

surement at an unprecedented single-cell resolution, and opened a new frontier to studying

cell-to-cell heterogeneity and differentiation trajectories in various biological systems [1],

which has led to important scientific discoveries over the years [2, 3]. Moreover, single-cell

targeted gene profiling technologies, which we define to include all technologies that measure

only a specific set of genes’ expression levels in individual cells, are gaining popularity for

their low costs, high sensitivity, and extra information. Examples of targeted gene profiling

include smFISH [4] and MERFISH [5], which can capture spatial information, BART-Seq

[6] that has a lower cost per cell, and HyPR-seq [7] that exhibits a higher sensitivity for

detecting lowly expressed genes.

Rapid advances in single-cell sequencing technologies have resulted in thousands of com-

putational methods developed for various tasks in the field [8], where major tasks like cell

clustering and cell type annotations are usually performed. The state-of-the-art scRNA-seq

analysis pipelines such as the R package Seurat [9] and the Python module Scanpy [10]

both involve these tasks as essential intermediate steps. Starting from the very beginning, a

typical scRNA-seq dataset can be viewed as an RNA molecule count matrix, in which various

numbers of cells are the observational units, and the thousands to tens of thousands of genes

are the features. As the number of genes/features is large, the gene selection methods are

conventionally adopted with different criteria in different tasks.

In the cell clustering tasks, researchers usually first select a subset of genes, which we call

informative genes, that are sufficient for representing the underlying biological variations

of cells. This procedure can be justified in two ways: first, variations of many genes are
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not related to the biological variations of interest [11, 12]; second, many genes have strongly

correlated expression levels, suggesting that one gene may represent a group of genes without

much loss of information [13]. Practically, gene selection is recognized as aiding downstream

analysis by highlighting the biological signals in scRNA-seq datasets [9, 14]. Besides scRNA-

seq data analysis, informative gene selection is also crucial for designing single-cell targeted

gene profiling experiments, in which a limited number (often no more than hundreds) of genes

are to be specified before sequencing. However, by inspecting existing popular methods, we

found a few key limitations: (1) They are all designed to select a relatively large number of

genes, for example, 2000 in Seurat [9] and 700-900 in SCMarker [15]. Thus, their performance

in selecting a small number of genes in targeted gene profiling remains unclear. (2) Their

selected genes lack functional interpretability.

Another major task in scRNA-seq data analysis is to annotate cell types and understand

their biological differences. In practice, the standard workflow includes two steps: (1) cell

clustering to find potential cell types, and (2) finding differentially expressed (DE) genes

between cell clusters as potential cell-type marker genes. Although this post-clustering dif-

ferential expression (DE) procedure is widely adopted in the single-cell field, researchers have

realized that this procedure is conceptually problematic. For instance, Seurat [9] contains

the warning message that “P values should be interpreted cautiously, as the genes used for

clustering are the same genes tested for differential expression.” This issue is commonly re-

ferred to as “double dipping,” meaning that the same gene expression data are used twice,

once to define cell clusters and once to identify DE genes, thus leading to an inflated false

discovery rate (FDR) in identifying post-clustering DE genes as putative cell-type marker

genes when the cell clusters are spurious.

We find a few instrumental drawbacks or lack of statistical rigor in the current single-

cell sequencing data analysis conventions by diving deep into the gene selection methods

developed for various tasks. Among the genes selected by the existing methods, many

are irrelevant, redundant, or insignificant to the biological variations under investigation.

Therefore, we are aiming to get clear what genes researchers are really interested in, propose

new approaches to fill in the gap, and provide users with biological meaningful interpretation

2



and statistical rigor guarantee.

This dissertation will focus on the selection of the above two types of genes. For selecting

the informative genes, we start with a clear motivation–to facilitate gene selection for targeted

gene profiling design, and proposed scPNMF. For identifying the cell-type marker genes, we

proposed ClusterDE, a post-clustering DE method robust to inflated FDR issues due to

double dipping, even when the cell clusters are spurious.

1.1 scPNMF: sparse gene encoding of single cells to facilitate gene

selection for targeted gene profiling

The first part of my dissertation focuses on informative gene selection. The procedure is

widely performed in scRNA-seq data analysis ahead of common tasks such as clustering. We

summarize the advantages of informative gene selection into three: (1) enhancing biological

signals by removing unwanted technical variations, (2) improving the interpretability of

analysis results by focusing on informative genes, and (3) reducing the number of genes to

save computational resources.

Besides scRNA-seq data analysis, informative gene selection is also crucial for designing

single-cell targeted gene profiling experiments, where only a specific set of genes’ expression

levels in individual cells. Unlike scRNA-seq, targeted gene profiling requires a limited number

(often no more than hundreds) of genes to be specified before sequencing. However, it remains

an open and challenging question to optimize the gene selection for targeted gene profiling

under a gene number limitation.

In Chapter 2, we propose scPNMF, an unsupervised method to select informative genes

from scRNA-seq data, and can possibly guide targeted gene profiling experimental de-

sign. Leveraging the Projective Non-negative Matrix Factorization (PNMF) algorithm [16],

scPNMF outputs a non-negative sparse weight matrix that can project cells in a high-

dimensional scRNA-seq dataset onto a low-dimensional space, which corresponds to bases

that each correspond to a group of co-expressed genes. Compared with the original PNMF,

3



a unique feature of scPNMF is basis selection: scPNMF uses correlation screening and

multimodality testing to remove the bases that cannot reveal potential cell clusters in the

scRNA-seq dataset. Two major advantages of scPNMF over the existing gene selection

methods are: First, its selected, limited number of informative genes can better distinguish

cell types. Second, it enables the alignment of new targeted gene profiling data with ref-

erence data in a low-dimensional space to facilitate the prediction of cell types in the new

data. Comprehensive benchmark studies demonstrate that scPNMF outperforms existing

gene selection methods in cell clustering and cell type prediction accuracy for targeted gene

profiling data.

1.2 ClusterDE: a post-clustering differential expression method

robust to false-positive inflation caused by double dipping

The second part of my dissertation focuses on the identification of post-clustering differen-

tially expressed (DE) genes as potential cell-type markers. This is a key step in a major

task in scRNA-seq data analysis–cell type annotation. Typically, a clustering algorithm is

applied to find putative cell types as clusters, and then a statistical differential expression

(DE) test is employed to identify the differentially expressed (DE) genes between the cell

clusters.

Although this procedure is popular, more and more researchers have realized that this

procedure is conceptually problematic, and referred to this issue as “double dipping”, mean-

ing that the same gene expression data are used twice to define cell clusters and DE genes.

An extreme scenario to demonstrate the invalidity of “double dipping” is where only a single

cell type exists, and no genes should be identified as between-cell-type DE genes. However,

as clustering is based on gene expression data, certain genes would be correlated with the

resulting cell clusters if their expression patterns drive the clustering. Hence, these genes

would have different conditional distributions in the two cell clusters and subsequently be

identified as between-cell-cluster DE genes, but they are false-positive between-cell-type DE

genes and further false putative cell-type marker genes. Therefore, this double dipping is-
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sue would inflate the false discovery rate (FDR), the expected proportion of false-positive

between-cell-type DE genes among all identified DE genes.

Two attempts to solve the double-dipping issue include the truncated normal (TN) test

[17] and the Countsplit method [18]. Despite their claims to achieve the well-calibrated

P values, our findings indicate that their P values are anti-conservative in the presence of

gene-gene correlations, a real scRNA-seq data feature these methods have not considered.

As a result, the P value calibration issue would lead to inflated FDRs when the TN test and

Countsplit are applied to real scRNA-seq data. Another category of methods developed to

circumvent the double-dipping issue is the cluster-free DE tests that try to bypass the cell

clustering step [19–24]. However, it is important to note that these methods do not aim to

identify potential cell types, and the identified DE genes cannot be interpreted as marker

genes for specific cell types. Thus, the cluster-free DE tests are not comparable with the DE

genes identified post-clustering. Another stream of methods has been developed to assess the

quality of clustering results, e.g., the ”purity” of a cluster or if two clusters should be merged

[25–29]. However, these methods do not provide a direct statistical test for identifying DE

genes, and it remains difficult to determine the threshold for clustering quality above which

double dipping is not a concern.

Motivated by this, we focus on addressing the original inflated FDR issue when using

post-clustering DE genes as cell-type marker genes. In Chapter 3, we propose ClusterDE,

a post-clustering DE method for controlling the false discovery rate (FDR) of identified

DE genes regardless of clustering quality, which can work as an add-on to popular pipelines

such as Seurat. The core idea of ClusterDE is to generate real-data-based synthetic null data

containing only one cluster, as contrast to the real data, for evaluating the whole procedure of

clustering followed by a DE test. Using comprehensive simulation and real data analysis, we

show that ClusterDE has not only solid FDR control but also the ability to identify cell-type

marker genes as top DE genes and distinguish them from housekeeping genes. ClusterDE is

fast, transparent, and adaptive to a wide range of clustering algorithms and DE tests.
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1.3 Summary

During my doctoral study, I developed the aforementioned two statistical methods that

aim to select certain genes aligned with researchers’ interests in single-cell sequencing data

analysis. The details of these projects will be described in Chapter 2–3 of this dissertation.

In single-cell sequencing data analysis, gene selection problem with different focuses has

always been a fun topic; moreover, the correlation and the comparison between the different

definitions of ”interesting genes”, conceptually and practically, are a future direction to

research into. Hopefully, it will provide researchers in this field with a more accurate and

interpretable tool to decipher gene functions and find proper interesting genes.
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CHAPTER 2

scPNMF: sparse gene encoding of single cells to

facilitate gene selection for targeted gene profiling

2.1 Introduction

The recent development of single-cell RNA sequencing (scRNA-seq) technologies provides

unprecedented opportunities to decipher transcriptome heterogeneity among individual cells

[2, 30, 31]. A typical scRNA-seq dataset contains thousands to tens of thousands of genes;

however, a subset of genes, which we call informative genes, are usually sufficient for

representing the underlying biological variations of cells in the dataset for two reasons. First,

variations of many genes are not related to the biological variations of interest. For instance,

fluctuations in the expression levels of housekeeping genes are irrelevant to cell types [11,

12]. Second, many genes have strongly correlated expression levels, suggesting that one gene

may represent a group of genes without much loss of information [13]. Therefore, for scRNA-

seq data analysis, informative gene selection has three advantages: (1) enhancing biological

signals by removing unwanted technical variations, (2) improving the interpretability of

analysis results by focusing on informative genes, and (3) reducing the number of genes to

save computational resources.

Besides scRNA-seq data analysis, informative gene selection is also crucial for designing

single-cell targeted gene profiling experiments, which we define to include all technologies

that measure only a specific set of genes’ expression levels in individual cells. Unlike scRNA-

seq, targeted gene profiling requires a limited number (often no more than hundreds) of genes

to be specified before sequencing. Examples of targeted gene profiling include spatial tech-

nologies (e.g., smFISH [4] and MERFISH [5]) and non-spatial technologies (e.g., BART-Seq
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[6], HyPR-seq [7] and 10x-Genomics Targeted Gene Expression). Compared with scRNA-seq,

targeted gene profiling technologies have advantages such as capturing spatial information

(by smFISH and MERFISH), having a lower cost per cell (by BART-Seq), and exhibiting a

higher sensitivity for detecting lowly expressed genes (by HyPR-seq). However, it remains

an open and challenging question to optimize the gene selection for targeted gene profiling

under a gene number limitation.

Given the importance of informative gene selection, researchers have developed many

gene selection methods for scRNA-seq data. Most existing methods select genes based on

the relationship between per-gene expression means and per-gene expression variances (with

the mean and the variance of each gene calculated across cells). Popular example methods

include variance stabilization transformation (vst) [32] and mean-variance plot (mvp) in

the R package Seurat [33], as well as modelGeneVar in the R package scran [34]. These

methods select highly variable genes (HVG) that have large expression variances in relation

to their expression means. Other methods use various metrics of gene importance instead

of the per-gene expression variance. For example, M3Drop selects the genes that have

zero expression levels in many cells [35]; GiniClust selects the genes with large Gini indices

of expression levels [36]; SCMarker selects the genes that have expression levels bi/multi-

modally distributed and are co-expressed or mutually-exclusively expressed with some other

genes [15]. A common limitation of these existing methods is that they are all designed

to select a relatively large number of genes; thus, their performance in selecting a small

number of genes remains unclear. For instance, in Seurat, the default gene number is 2000;

SCMarker selects 700-900 genes in its exemplar applications [15]. All these gene numbers

are much greater than 200, the maximum gene number allowed by multiple targeted gene

profiling technologies. Therefore, existing gene selection methods may not be suitable for

selecting genes for targeted gene profiling. Another drawback of these methods is that their

selected genes lack functional interpretability; that is, their selected genes are not categorized

as functional gene groups.

In addition to these gene selection methods, linear dimensionality reduction methods,

such as principal component analysis (PCA) and non-negative matrix factorization (NMF),
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can also be used for gene selection. Specifically, genes can be selected based on their con-

tributions to the projected low dimensions found by PCA or NMF [37–39]. Although many

variants of PCA and NMF algorithms have been developed for scRNA-seq data analysis,

they are not designed for gene selection [40–46].

Here we propose an unsupervised method, scPNMF, to simultaneously select informative

genes and project scRNA-seq data onto an interpretable low-dimensional space. Leveraging

the Projective Non-negative Matrix Factorization (PNMF) algorithm [16], scPNMF combines

the advantages of PCA and NMF by outputting a non-negative sparse weight matrix that

can project cells in a high-dimensional scRNA-seq dataset onto a low-dimensional space.

Unlike the weight matrix (a.k.a., loading matrix) found by PCA, the non-negative sparse

weight matrix output by scPNMF involves bases that each correspond to a group of co-

expressed genes. Compared with the original PNMF, a unique feature of scPNMF is basis

selection: scPNMF uses correlation screening and multimodality testing to remove the bases

that cannot reveal potential cell clusters in the input scRNA-seq dataset. There are two

functionalities of scPNMF: (1) given a pre-specified gene number and a scRNA-seq dataset,

scPNMF selects informative genes based on its weight matrix; (2) given a targeted gene

profiling dataset containing the informative genes, scPNMF projects this dataset onto the

same low-dimensional space of a reference scRNA-seq dataset containing cell type labels,

thus enabling cell type annotation on the targeted gene profiling dataset. Comprehensive

benchmark shows that scPNMF outperforms existing gene selection methods in two aspects.

First, the informative genes selected by scPNMF lead to the most accurate cell clustering.

Second, the informative genes and weight matrix of scPNMF lead to the best cell type

prediction accuracy for targeted gene profiling data. Therefore, scPNMF is a powerful gene

selection method that can guide the experimental design and data analysis of single-cell

targeted gene profiling.
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Figure 2.1: An overview of scPNMF.

Taking a log-transformed gene-by-cell count matrix as the input, scPNMF first learns a low-dimensional sparse weight matrix
W and a low-dimensional cell embedding matrix S. Second, it removes the bases irrelevant to cell type variations by examining
bases’ functional annotations (optional), Pearson correlations with cell library sizes, and multimodality. Given a user-defined
gene number M , scPNMF performs M -truncation to facilitate two main applications: (1) selecting the desired number of
informative genes; (2) projecting new targeted gene profiling data onto the low-dimensional space defined by reference scRNA-
seq data. The details are in the ”scPNMF methodology” section.

2.2 scPNMF methodology

The core of scPNMF is to learn a low-dimensional embedding of cells so that the bases of

the low-dimensional space correspond to sparse and mutually exclusive gene groups, and

that genes in each group are co-expressed and thus functionally related. Fig. 2.1 illustrates

the overall workflow of scPNMF. The input of scPNMF is a log-transformed gene-by-cell
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count matrix measured by scRNA-seq. There are two main steps in scPNMF: (I) it learns

a low-dimensional sparse weight matrix by PNMF; (II) it selects bases in the weight matrix

based on functional annotations (optional), correlation screening, and multimodality testing

to remove uninformative bases that cannot distinguish cell types. The output of scPNMF

includes (1) the selected weight matrix, a sparse and mutually exclusive encoding of genes

as new, low dimensions, and (2) the score matrix containing embeddings of input cells in

the low dimensions. The selected weight matrix has two main applications: (1) extracting

informative gene for downstream analyses, such as cell clustering and new marker gene

identification, and (2) projecting new targeted gene profiling data for data integration and

cell type annotation.

2.2.1 scPNMF step I: PNMF

In this section, we review the PNMF algorithm [16, 47] as the foundation of scPNMF. We

first compare the formulation of PNMF with that of principal component analysis (PCA)

and non-negative matrix factorization (NMF), and we show that PNMF has the advantages

of both PCA and NMF so that it can be a useful tool for scRNA-seq data analysis. Next,

we introduce our PNMF implementation.

Given a log-transformed count matrix X P Rpˆn
ě0 , whose p rows correspond to genes

and whose n columns represent cells, and a positive integer K ď p, PNMF aims to find a

K-dimensional space, whose dimensions correspond to non-negative, sparse and mutually

exclusive linear combinations of the p genes, so that projecting the n cells onto the K-

dimensional space does not cause much information loss (i.e., projecting the K-dimensional

embeddings of the n cells back to the original p-dimensional space can largely restore the

original n cells). PNMF tackles this task by solving the optimization problem:

min
WPRpˆK

ě0

}X ´ WWTX} , (2.1)

where } ¨ } denotes the Frobenius matrix norm. The solution W is referred to as a weight

matrix. Each column of W is a basis, whose p entries are the weights of the p genes.
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PNMF requires all weights to be non-negative, leading to a sparse W with most weights as

zeros.

PCA is similar to PNMF but does not require all weights to be non-negative. We can

write the optimization problem of PCA as

min
WPRpˆK ,WTW“I

}X ´ WWTX} , (2.2)

whose solution W is also a weight matrix but not sparse, and W is often referred to as the

loading matrix.

A common property of PNMF and PCA is that the transpose of their weight matrix,

WT P RKˆp, can be used to project a new cell with p gene measurements, x P Rp, onto the

K-dimensional space as WTx.

In contrast to PMNF and PCA, NMF finds two non-negative matrices W and H so that

their product approximates the original matrix X. NMF solves the optimization problem:

min
WPRpˆK

ě0 ,HPRKˆn
ě0

}X ´ WH} , (2.3)

whose solution W still has K columns representing bases, and H has n columns as K-

dimensional embeddings of the n cells. Due to the non-negative constraint on W and H,

W is a sparse matrix [48]. However, the transpose WT cannot be used as a projection

matrix from the original p-dimensional space to a K-dimensional space. The reason is that,

if WT is a projection matrix, then by the definition of H we have WTX “ H, which would

convert the objective function (2.3) of NMF to the objective function (2.1) of PNMF. In

other words, PNMF is a constrained version of NMF by requiring WT to be a projection

matrix. Hence, PNMF inherits the property of NMF by having non-negative, sparse bases

that are mostly mutually exclusive (i.e., different bases correspond to different gene groups).

Moreover, based on the similarities of the objective functions of PNMF (2.1) and PCA (2.2),

we can see that PNMF also resembles PCA by finding a weight matrix whose transpose can

serve as a projection matrix and whose bases are largely orthogonal to each other. Table 2.1
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summarizes the properties of PNMF, PCA, and NMF.

Table 2.1: Comparison of the properties of PNMF, PCA and NMF

PNMF PCA NMF

Optimization Problem min
W

}X ´ WWTX} min
W

}X ´ WWTX} min
W,H

}X ´ WH}

s.t. W ě 0 s.t. WTW “ I s.t. W,H ě 0
Non-negativity Yes No Yes
Sparsity Very high Low High
Mutually Exclusiveness Very high Low High
New Data Projection Yes Yes No

In the context of scRNA-seq data analysis, the above advantages of PNMF lead to an

interpretable and useful weight matrix W. First, the high sparsity of W makes each basis

(column) depend on only a small set of genes, which has been defined as a meta-gene

for NMF [49]. Second, the mutual exclusiveness of W makes different bases correspond

to different gene sets, easing the interpretation of bases as meta-genes or functional units.

Third, the projection matrix WT allows the alignment of new data to reference data, thus

facilitating cell type annotation on the new data.

Algorithm 1 Pseudocode of PNMF implementation in scPNMF

Initialize: W “ abspWPCAq P RpˆK
ě0

while not converge do
for i “ 1, ¨ ¨ ¨ , p; k “ 1, ¨ ¨ ¨ , K do

Wik Ð Wik

2
`

XXTW
˘

ik

pWWTXXTWqik ` pXXTWWTWqik

W Ð
1

}W}2
W

Output: W P RpˆK
ě0 , S “ WTX P RKˆn

ě0

Algorithm 1 summarizes the key steps of PNMF implementation in scPNMF. Our imple-

mentation mainly follows the two papers that proposed the PNMF algorithm [16, 47], and we

change the initialization of W to the weight matrix found by PCA, WPCA, with the absolute

value taken on every entry. Our initialization is motivated by the desired orthogonality of

bases (i.e., columns of W).

With the weight matrix W P RpˆK
ě0 learned by PNMF, we obtain the score matrix

S “ WTX P RKˆn
ě0 , whose K rows correspond to the bases and whose n columns represent
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the cells. Specifically, the j-th column of S is the K-dimensional embedding of the j-th cell;

the k-th row of S, denoted by sTk , contains the scores (i.e., coordinates) of all n cells in the

k-th basis:

sk “ wT
kX , (2.4)

where wk is the k-th column of W, k “ 1, . . . , K.

The low rank K needs to be pre-specified in PNMF, same as in PCA and NMF, A larger

K preserves more information in X but also removes less noise (technical variation of cells

that is not of biological interest), impedes the interpretation of W (more bases are more

difficult to interpret), and increases the computational burden. To choose K in a data-

driven way, we propose an orthogonality measure, which shows that K “ 20 is a reasonable

choice for multiple scRNA-seq datasets (section S2.7.1.1).

2.2.2 scPNMF step II: basis selection

The second key step of scPNMF is to select informative bases among the K bases found

by PNMF (i.e., columns of W and rows of S) to remove unwanted variations of cells (e.g.,

variations irrelevant to cell types). The columns of W enjoy high sparsity and mutual

exclusiveness; that is, each column contains positive weights corresponding to a unique

small set of genes, so it is expected to reflect a certain biological function. However, some

biological functions may not be relevant to the cell heterogeneity of interest, e.g., cell type

composition. Motivated by this, we propose three strategies for selecting informative bases

(columns of W and rows of S): functional annotations (optional), correlations with cell

library sizes, and tests of multimodality.

2.2.2.1 Strategy 1: examine bases by functional annotations (optional)

The first, optional strategy is to annotate the biological function(s) of each basis in the

weight matrix. For example, scPNMF may apply gene ontology (GO) analysis to the top

10% genes with the highest weights in each basis (column of W) and record the enriched GO

terms as the basis’ functional annotation. Then, users with prior knowledge can interpret
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the functional annotation on each basis and decide whether or not to remove the basis. For

example, if the goal is to delineate cell types in scRNA-seq data, a basis corresponding to

cell-cycle genes should be removed because they would obscure the distinction of cell types.

However, it is worth noting that filtering bases by biological annotations is optional in

scPNMF. Conservative users can keep all K bases output by PNMF and directly use data-

driven basis selection (section 2.2.2.2). For our results in this paper, scPNMF removes the

bases corresponding to well-known housekeeping genes (section S2.7.2).

2.2.2.2 Data-driven strategies

2.2.2.2.1 Strategy 2: examine bases by correlations with cell library sizes

Note that the input of scPNMF is a log-transformed unnormalized count matrix for users’

convenience. Hence, scPNMF does not adjust for cell library sizes in the computation of W

and S in step I. (For a detailed discussion on why scPNMF uses unnormalized data as input,

see section S2.7.6.) Given that the variance of cell library sizes contributes to unwanted

variations of cells [32], it is necessary to remove the bases whose corresponding rows in S are

strongly correlated with cell library sizes.

We use the total log-transformed counts to approximate the library size of each cell, and

we calculate the Pearson correlation between each sk and the library sizes of n cells. The

strategy is to retain the bases whose Pearson correlations are under a pre-defined threshold,

which we set to 0.7 based on empirical observations (section S2.7.1.2).

2.2.2.2.2 Strategy 3: examine bases by multimodality tests

Another data-driven strategy is to retain the bases whose corresponding scores are multi-

modally distributed. If a basis’ score vector (row in S) contains n scores with a multimodality

pattern, then it is likely to distinguish cell types and should be retained. To implement this

strategy, we use the ACR test [50] to check the multimodality of each basis’ score vector.

The null hypothesis is that the score vector contains n scores sampled from a unimodal
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distribution, and the alternative hypothesis is that the distribution has more than one mode.

After performing multiple multimodality tests, one per basis, we use the Benjamini-Hochberg

procedure to set a P value threshold by controlling the false discovery rate under 1%. The

bases whose P values are under this threshold will be retained.

In summary, scPNMF step II allows users to use strategy 1 to filter out uninformative

bases based on functional annotations if available; then it implements data-driven strategies

2 and 3 to further remove bases that have strong correlations with cell library sizes and

exhibit unimodality patterns. The retained bases will have their corresponding columns in

W selected and stacked into the selected weight matrix WS P RpˆK0

ě0 , whereK0 is the number

of selected bases.

2.2.3 Applications of scPNMF output: informative gene selection and new data

projection

The selected weight matrix WS output by scPNMF has two main applications: selection of a

desired number of informative genes and projection of new targeted gene profiling data onto

the low-dimensional space defined by WS. Given a gene number M (e.g., 200), scPNMF

uses M -truncation, a step to select M rows in WS, resulting in M informative genes and a

truncated, selected weight matrix WS,pMq P RMˆK0
ě0 for new data projection.

2.2.3.1 M-truncation and informative gene selection

We denote the desired number of informative genes byM P N, withM ď # of non-zero rows in WS.

M -truncation has three steps.

1. For each gene i, calculate its largest weight wi across bases in WS:

wi “ max
k“1,...,K0

pWSqik, i “ 1, 2, . . . , p . (2.5)

2. Order genes by their maximum weights wp1q ě wp2q ě ¨ ¨ ¨ ě wppq and set the truncation

threshold as wpMq. Identify the first M genes as informative genes.
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3. Construct the truncated, selected weight matrix WS,pMq:

(1) Truncate the selected weight matrix WS by setting all pWSqik ă wpMq to be 0;

(2) Keep the M rows with non-zero entries; stack them by row into WS,pMq based on

the order of the informative genes.

In short, scPNMF selects informative genes based on their maximum weights in the

selected bases. The rationale is that a gene’s maximum weight reflects the gene’s contribution

to the establishment of the K0-dimensional space, which preserves the n cells’ biological

variations of interest. Hence, genes with larger maximum weights are more informative in

the sense of encoding cells’ biological variations. An important application of informative

gene selection is to guide the design of targeted gene profiling experiments.

2.2.3.2 New data projection

Given the selected M informative genes, once new cells are measured by targeted gene

profiling on these genes, WS,pMq can be used to project the new cells onto theK0-dimensional

space where the cells in the input scRNA-seq data are embedded in. If the input data has

cell type annotations, we refer to the input data as reference data, then we can predict

the new cells’ types from the types of the cells in the reference data. In detail, new data

projection has the following steps:

1. Apply scPNMF with M -truncation to input, reference data X P Rpˆn
ě0 with n cells to

obtain the truncated, selected weight matrix WS,pMq. Construct XpMq P RMˆn
ě0 as a

submatrix ofX, with rows corresponding to the rows ofWS,pMq, i.e., theM informative

genes. Hence, the K0-dimensional embeddings of the n cells in the reference data are

the columns of

SRef
pMq “ WT

S,pMq ˆ XpMq P RK0ˆn . (2.6)

2. Denote the targeted gene profiling data of n1 new cells with M informative genes

measured by XNew
pMq

P RMˆn1

ě0 . Note that XNew
pMq

contains log-transformed counts and
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has rows (genes) corresponding to the rows of XpMq. Project the n1 cells to the K0-

dimensional space by

SNew
pMq “ WT

S,pMq ˆ XNew
pMq P RK0ˆn1

. (2.7)

3. (Optional) Normalize SNew
pMq

and SRef
pMq

to remove batch effects, if existent, by using a

single-cell integration method such as Harmony [51].

Now the n reference cells and the n1 new cells are in the same K0-dimensional space with

biological variations preserved. Then a classifier can be trained on the n reference cells’ types

and SRef
pMq

for cell type prediction, and it can be used to predict the new n1 cells’ types from

SNew
pMq

.

2.3 Results

2.3.1 scPNMF outputs a sparse and functionally interpretable representation

of scRNA-seq data

We first demonstrate that scPNMF step I, PNMF, outputs a sparse and functionally inter-

pretable gene encoding of cells. We use the FregGold dataset [52], which consists of three

cell types (three human lung adenocarcinoma cell lines), and set the basis number K “ 5 for

demonstration purposes. Both PCA and PNMF learn a weight matrix that can project the

original scRNA-seq data onto a 5-dimensional space. Unlike the weight matrix of PCA that

has no zero entries, the weight matrix of PNMF is non-negative, highly sparse, containing

42.6% of entries as zeros, and has bases that are largely mutually exclusive (i.e., non-zero

entries in different columns correspond to different rows/genes) (Fig. 2.2a). Compared with

NMF, PNMF also has greater sparsity and mutual exclusiveness in bases (section S2.7.7).

GO enrichment analysis shows that high weight genes in each PNMF basis are enriched

with conceptually-similar GO terms, and high weight genes in different PNMF bases are

enriched with conceptually-different GO terms (Fig. 2.2b). This result indicates that PNMF

bases correspond to gene groups with distinct functions. On the contrary, the PCA bases

do not have good functional interpretations: the high weight genes in each PCA basis are
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Figure 2.2: Illustration of the sparse and interpretable projection found by scPNMF.

We use the FregGold dataset as an example. (a) Comparison of the weight matrices of PCA and PNMF. Heatmaps visualize
the learned weight matrices of PCA (top) and PNMF (bottom), where rows are genes and columns are bases. Red represents
positive weights while blue represents negative weights. The rows are ordered by gene-wise hierarchical clustering. Compared
to PCA, the weight matrix of PNMF is strictly non-negative, much more sparse and mutually exclusive between bases. (b)
GO analysis result of each basis in the weight matrix of PNMF. Texts in black boxes summarize the functions of genes in each
basis. The enriched GO terms are almost mutually exclusive, implying that each basis represents a unique gene functional
cluster. (c) Statistical tests on each basis in the score matrix of PNMF. Top row: scatter plots of scores and total log-counts
(cell library sizes). Each dot represents a cell. Cell scores in bases 1 and 4 are highly correlated with cell library sizes. Bottom
row: histograms of cell scores in each basis. Scores in bases 2 and 3 show strong multimodality patterns (adjusted P value
ď 0.05). (d) UMAP visualizations of cells based on high weight genes in the unselected bases 1 and 4 and those in the selected
bases 2, 3, and 5. Genes in the unselected bases completely fail to distinguish the three cell types, while genes in the selected
bases lead to a clear separation of the three cell types.
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not enriched with conceptually-similar GO terms, and different PCA bases share many high

weight genes (Fig. 2.11).

To further analyze the PNMF bases, we list the top 10 high weight genes in each basis

(Table S2.4), from which we identify many well-known genes with important functions. For

instance, basis 1 contains classic housekeeping genes, such as GAPDH [53] and ribosomal

protein genes (RP-) [54]; basis 3 contains well-known tumor-related genes, including EGFR

[55] and CDK4 [56]. In particular, the cells of the HCC827 cell line (one of the three cell

types) have overall high scores in basis 3 (Fig. 2.12), a reasonable result because the HCC827

cell line contains an EGFR activating mutation [57]. In summary, scPNMF step I outputs

bases representing sparse and functionally interpretable gene sets.

2.3.2 Basis selection is an essential step in scPNMF

Here we explain why basis selection is an essential step in scPNMF. In the last section, we

show that each PNMF basis of the FregGold dataset approximately represents one functional

gene group. It is well known that housekeeping genes (basis 1) and cell-cycle genes (basis

4) are usually irrelevant to cell type distinctions. However, such biological knowledge is

not always available or certain. Therefore, scPNMF mainly relies on the two data-driven

strategies: correlations with cell library sizes and multimodality tests (section 2.2.2.2) for

selecting informative bases.

Fig. 2.2c visualizes the two strategies: cell scores in bases 1 and 4 are highly correlated

with cell library sizes (Pearson correlations ą 0.9); cell scores in bases 2 and 3 show strong

evidence as multi-modally distributed (adjustedPvalue ă 0.05). Hence, strategy 1 will not

retain bases 1 and 4, and strategy 2 will not retain bases 1, 4, and 5; together, bases 1

and 4 will be removed, and bases 2, 3, and 5 will be selected. To verify the effectiveness

of basis selection, we use UMAP to visualize cells based on the top 50 high weight genes

in the unselected bases 1 and 4 vs. those in the selected bases 2, 3, and 5 (Fig. 2.2d). We

observe that the top genes in the unselected bases completely fail to separate the three cell

types, while the top genes in the selected bases perfectly distinguish the three cell types.
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This result strongly supports that basis selection is a necessary step of scPNMF. If cell type

labels are provided, users may use a strategy alternative to “correlations with cell library

sizes” by regressing out the cell library sizes in a cell-type-specific manner from every basis

(section S2.7.6).
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Figure 2.3: Benchmarking scPNMF against 11 informative gene selection methods on seven scRNA-seq datasets.

(a) Clustering accuracies (ARI values) of three clustering methods based on the informative genes selected. Gene selection
methods are ordered from left to right by their average ARI across the three clustering methods and the seven datasets. (b)
UMAP visualization of cells in the Zheng4 dataset based on 100 informative genes selected by each method. Genes selected by
scPNMF lead to a clear separation between naive cytotoxic T cells and regulatory T cells, while the genes selected by other
methods do not.

2.3.3 scPNMF outperforms state-of-the-art gene-selection methods on diverse

scRNA-seq datasets

In this section, we demonstrate scPNMF’s capacity for informative gene selection. We com-

prehensively benchmark scPNMF against 11 other single-cell informative selection methods

(Table S2.5) on seven scRNA-seq datasets (Table S2.3) using three clustering methods (Lou-

vain clustering, K-means clustering, and hierarchical clustering). For fair benchmarking, the

seven scRNA-seq datasets cover both unique molecule identifier (UMI) and non-UMI pro-

tocols and include various biological samples. Using the adjusted Rank index (ARI) as the

metric of clustering accuracy, we calculate the ARI values of the three clustering methods
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on each dataset using 100 informative genes selected by each gene selection method, as 100

genes are commonly used in targeted gene profiling.

Fig. 2.3a shows that scPNMF has overall the highest ARI values across datasets and

clustering methods. In particular, scPNMF has the highest average ARI value with each

clustering method (Louvain: 0.83; K-means: 0.74; hierarchical clustering: 0.69) and the

highest overall average ARI (0.75) across datasets and clustering methods. Note that the

mean of the overall average ARI values of all methods except scPNMF is only 0.66.

We further show the UMAP visualization of cells in the Zheng4 dataset based on the

informative genes selected by each of the 12 gene selection methods (Fig. 2.3b). Only scP-

NMF leads to a clear separation of naive cytotoxic T cells and regulatory T cells, while the

informative genes selected by other methods except corFS and irlbaPcaFS cannot distinguish

the two cell types at all.

We also compare the 12 methods under a varying number of informative genes: 20, 50,

200, and 500, the commonly used gene numbers in targeted gene profiling. We observe

that the overall average ARI values of scPNMF are consistently higher than those of other

methods, across all informative gene numbers (Fig. 2.13 and Fig. 2.14). We apply the same

benchmarking framework to scPNMF and its variant, where PNMF is replaced by NMF,

and find that scPNMF performs consistently better (section S2.7.7). Moreover, compared

with other methods, scPNMF leads to more stable overall average ARI values under varying

numbers of informative genes, indicating its stronger robustness to the gene number con-

straint of targeted gene profiling. These results strongly support the superior performance

of scPNMF as an informative gene selection method.

2.3.4 scPNMF guides targeted gene profiling experimental design and cell-type

prediction

In this section, we demonstrate how scPNMF can guide the selection of genes to be measured

in a targeted gene profiling experiment, and how scPNMF enables subsequent cell type anno-

tation on the targeted gene profiling data. We design two case studies with paired scRNA-seq
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reference data and “pseudo” targeted gene profiling data, whose per-cell sequencing depth

is higher than that of the corresponding scRNA-seq data.

In the first case study, we use the Zheng8 dataset (measured by the 10x protocol) as the

reference dataset. To generate the pseudo targeted gene profiling data, we use a new single-

cell gene expression simulator that captures gene correlations, scDesign2 [58], to generate

data with a 100-time higher per-cell sequencing depth. In the second case study, we use the

PBMC10x dataset (measured by 10x protocol) as the reference dataset, and we use PBM-

CSmartseq (measured by Smart-Seq2) as the pseudo targeted gene profiling data because

Smart-Seq2 has a higher per-gene sequencing depth than 10x does. In both case studies, for

each gene selection method, the corresponding pseudo targeted gene profiling datasets only

contain the M informative genes selected by the method.

We benchmark scPNMF against the 11 gene selection methods in terms of cell type

prediction on the pseudo targeted gene profiling data. To avoid the bias for a specific

classification algorithm, we apply three popular algorithms for cell type prediction: random

forest [59], k-nearest neighbors (KNN) [60], and support vector machine (SVM) [60]. In each

case study, we first train each classification algorithm on the low-dimensional embeddings

of the reference cells SRef
pMq

given the M “ 100 informative genes selected by each gene

selection method. Then we apply the trained classifier to the low-dimensional embeddings

of the cells in the pseudo targeted gene profiling data SNew
pMq

. Table 2.2 shows that scPNMF

leads to the highest average prediction accuracy (0.81) across six combinations (two case

studies ˆ three classification algorithms). Moreover, scPNMF achieves the highest accuracy

in each combination except Zheng8 + random forest where it is the second best. These

results confirm that scPNMF effectively guides the selection of genes to measure in targeted

gene profiling experiments, and it enables accurate cell type annotation on newly generated

targeted gene profiling datasets.
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Table 2.2: Prediction accuracy of cell types based on 100 informative genes selected by 12 gene selection methods in the two
case studies with paired reference scRNA-seq data and targeted gene profiling data

Method
Zheng8 PBMC

Average

RandomForestKNN SVM RandomForestKNN SVM Accuracy

scPNMF 0.85
(0.83,0.87)

0.80
(0.78,0.83)

0.87
(0.85,0.89)

0.84
(0.79,0.88)

0.84
(0.79,0.88)

0.67
(0.61,0.73)

0.81

M3Drop 0.85
(0.83,0.87)

0.80
(0.77,0.83)

0.87
(0.84,0.89)

0.84
(0.79,0.88)

0.77
(0.71,0.82)

0.63
(0.57,0.69)

0.79

SeuratDISP 0.84
(0.81,0.86)

0.78
(0.75,0.81)

0.86
(0.84,0.88)

0.80
(0.75,0.84)

0.75
(0.70,0.80)

0.64
(0.58,0.70)

0.78

corFS 0.80
(0.77,0.82)

0.75
(0.73,0.78)

0.82
(0.80,0.85)

0.82
(0.77,0.86)

0.81
(0.76,0.86)

0.62
(0.56,0.68)

0.77

GiniClust 0.86
(0.83,0.88)

0.79
(0.76,0.81)

0.86
(0.83,0.88)

0.80
(0.75,0.84)

0.76
(0.71,0.81)

0.53
(0.47,0.60)

0.75

scran 0.79
(0.76,0.81)

0.72
(0.69,0.75)

0.82
(0.80,0.85)

0.78
(0.72,0.82)

0.73
(0.67,0.78)

0.67
(0.61,0.72)

0.75

SeuratMVP 0.83
(0.81,0.85)

0.77
(0.74,0.80)

0.85
(0.82,0.87)

0.82
(0.77,0.86)

0.74
(0.69,0.79)

0.47
(0.40,0.53)

0.74

Scanpy 0.79
(0.77,0.82)

0.71
(0.68,0.74)

0.80
(0.78,0.83)

0.80
(0.75,0.84)

0.76
(0.71,0.81)

0.52
(0.46,0.58)

0.73

SCMarker 0.77
(0.74,0.79)

0.68
(0.65,0.71)

0.74
(0.71,0.77)

0.77
(0.71,0.81)

0.71
(0.65,0.76)

0.45
(0.39,0.52)

0.69

SeuratVST 0.73
(0.70,0.76)

0.68
(0.65,0.71)

0.75
(0.73,0.78)

0.74
(0.68,0.79)

0.68
(0.63,0.74)

0.40
(0.34,0.46)

0.67

DANB 0.71
(0.68,0.73)

0.69
(0.66,0.71)

0.75
(0.73,0.78)

0.73
(0.67,0.78)

0.74
(0.68,0.79)

0.28
(0.23,0.34)

0.65

irlbaPcaFS 0.68
(0.65,0.71)

0.61
(0.58,0.64)

0.71
(0.68,0.74)

0.71
(0.65,0.76)

0.77
(0.71,0.82)

0.16
(0.12,0.21)

0.61

Parentheses are 95% confidence intervals. Highest number within each column is labeled by underline.

2.4 Discussion

We propose scPNMF, an unsupervised gene selection and data projection method for scRNA-

seq data. The major goal of scPNMF is to select a fixed number of informative genes

to distinguish cell types and guide gene selection for targeted gene profiling experiments.

Moreover, scPNMF can project a new targeted gene profiling dataset with the selected genes

to the low-dimensional space that embeds a reference scRNA-seq dataset. We perform a

comprehensive benchmark to evaluate scPNMF in terms of informative gene selection against

the state-of-the-art gene selection methods. Our results show that scPNMF consistently

outperforms 11 existing methods for a wide range of informative gene numbers (from 20

to 500) on diverse scRNA-seq datasets. We also demonstrate that the informative genes

selected by scPNMF can effectively guide gene selection for targeted gene profiling and lead

to accurate cell type annotation on targeted gene profiling data based on reference scRNA-seq

data. In addition to the 11 methods, we compare scPNMF to the factorial single-cell latent

variable model (f-scLVM) [61], both conceptually and empirically, to clarify their differences
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and further illustrate the unique strength of scPNMF (see section S2.7.8).

Besides gene selection and data projection, scPNMF also works as a dimensionality re-

duction method with good interpretability. Each dimension in the low-dimensional space

found by scPNMF can be considered as a new functional “feature” (as a linear combination

of correlated and thus functionally related genes). Moreover, the mutual exclusiveness makes

the PNMF bases used in scPNMF advantageous over the PCA bases in terms of removing

confounding effects. For example, cell-cycle genes obscure the identification of cell types and

should be removed from low-dimensional embeddings of cells. For PCA, cell-cycle genes af-

fect many PCA bases, so the popular scRNA-seq pipeline Seurat implements a complicated

approach that first calculates “cell-cycle scores” and then regresses each basis (principal

component) on these scores to remove the effects of cell-cycle genes [33]. In contrast, cell-

cycle genes are concentrated in only one PNMF basis, so it is easy to remove that basis to

clear the effects of cell-cycle genes. Therefore, scPNMF has great potential in deciphering

cell heterogeneity in single-cell data by working as an interpretable dimensionality reduction

method.

The current implementation of scPNMF focuses on single-cell gene expression data. Con-

sidering the rapid development of single-cell multi-omics technologies, we plan to extend

scPNMF to accommodate other technologies that measure other genomics features such

chromatin accessibility landscapes measured by single-cell ATAC-seq [62], or even to inte-

grate data across multi-omics datasets. Another note is that the multimodality test for basis

selection in scPNMF only accounts for discrete cell types but not continuous cell trajecto-

ries. Therefore, other tests or strategies are needed to select informative bases to capture

biological variations along continuous cell trajectories.

An important question for gene selection is: how many genes should be selected as

informative genes to fully capture the biological variations of interest? In our studies, we

observe that, after the informative gene number reaches 200, the clustering accuracies based

on the selected informative genes plateau for most gene selection methods including scPNMF.

Therefore, 200 genes may be sufficient for capturing biological variations in scRNA-seq data.

However, it remains challenging to decide the minimum number of informative genes, given
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that the underlying cell sub-population structure is data-specific and might be complex. We

plan to explore this problem in the future with the possible use of information theory.

2.5 Code and data availability

The R package and the tutorials of scPNMF are available at https://github.com/JSB-UCLA/

scPNMF. The source code and data for reproducing the results are available at: https:

//doi.org/10.5281/zenodo.4797997 [63].
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2.7 Supplementary materials

S2.7.1 Choice of parameters and robustness analysis

S2.7.1.1 Low rank K

In the development of scPNMF, motivated by the objective function of the PNMF method,

min
WPRpˆK

ě0

}X ´ WWTX} , (S2.8)

PNMF aims to inherit the advantages of PCA such as the basis orthogonality and the ability

to project new data. However, a key constraint in PCA, WTW “ I, is relaxed to satisfy the
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constraint W ě 0 in PNMF. To make PNMF closer to PCA and thus approximately achieve

these two nice properties, we propose to use the normalized difference between WTW and I

to measure the orthogonality of W:

dev.ortho “ }I ´ WTW}{K2 . (S2.9)

It naturally gives rise to a method to determine the number of bases, K: first perform

PNMF for a sequence of K’s; second, for each K, we calculate the dev.ortho measure for

the corresponding W P RpˆK
ě0 ; third, we plot dev.ortho against K. Users can decide K when

dev.ortho reaches stability or there is a clear elbow in the graph.
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Figure 2.4: Comparison of dev.ortho and K-means ARI against low rank K on Zheng4 [1] dataset.

In Fig. 2.4, using the Zheng4 [1] dataset, we demonstrate that (1) the dev.ortho measure

is highly correlated with the performance of W in the downstream analysis; (2) in real

data application, the dev.ortho measure shows a clear elbow pattern, which can help users

determine K.

Empirically, we see that dev.ortho reaches stability at K “ 20 for most scRNA-seq data.
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For the purpose of guiding users and saving computational time, we set the default number

of bases in scPNMF to be K “ 20.

S2.7.1.2 R0: threshold for correlations between score vectors and cell library

sizes in “scPNMF step II: basis selection”

In real data applications, the threshold for correlations between score vectors and cell li-

brary sizes in “scPNMF step II: basis selection,” R0, needs to be pre-defined. We consider

thresholds with one decimal digit resolution t0.5, 0.6, 0.7, 0.8, 0.9u because of the convention

in the field. By running the K-means clustering on the seven datasets (see Table S2.3) and

applying these thresholds, as shown in Fig. 2.5, we suggest setting R0 “ 0.7 for K ě 10, and

more conservatively, R0 “ 0.8 when the basis number K is small (K ă 10).

Table S2.3: Overview of datasets used in this study

Dataset Sequencing pro-
tocol

Gene # Cell # Cell type # True label Description Ref

Darmanis Smart-Seq2 13256 420 8 No Human adult
cortical samples

[2]

FreytagGold 10xGenomics
Chromium

15410 925 3 Yes Mixture of
human lung
adenocarci-
noma cell lines

[3]

Tirosh Smart-Seq2 11934 2887 6 No Human
melanoma
tumors

[4]

PBMC10x 10xGenomics
Chromium

11714 3308 9 No Human pe-
ripheral blood
mononuclear
cells. 10x-v2 for
sample 1 in the
original paper.

[5]

PBMCSmartSeq Smart-Seq2 17479 273 6 No Human pe-
ripheral blood
mononuclear
cells. Smart-
Seq2 for sample
1 in the original
paper.

[5]

Zheng4 10xGenomics
GemCode

2192 3994 4 Yes Mixture of hu-
man peripheral
blood mononu-
clear cells

[1, 6]

Zheng8 10xGenomics
GemCode

2390 3994 8 Yes Mixture of hu-
man peripheral
blood mononu-
clear cells

[1, 6]
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Figure 2.5: Comparison of K-means ARI against R0, the threshold for correlations between score vectors and cell library sizes
in scPNMF step II: basis selection. The mean ARI and the error bars are calculated across seven datasets (See Table S2.3).

S2.7.2 Functional annotation

We use the R package clusterProfiler [7] to perform the GO analysis. We set the gene

ontology as “biological processes (BP)” and the adjusted P value cutoff as 0.1. The output

GO terms are simplified by clusterProfiler.

In this paper, we only perform a very conservative filtering based on functionality. We

define the common housekeeping gene list to include ACTB, ACTG1, B2M, GAPDH, and

MALAT1. If a basis’ top 10 highly weighted genes contain any of these five genes, this basis

will be filtered out.

S2.7.3 Data preprocessing

scPNMF only performs minimum data preprocessing to avoid information loss. Denote

a scRNA-seq count matrix as XC P Npˆn, with rows representing p genes and columns

representing n cells. scPNMF creates the log count matrix X P Rpˆn
ě0 by taking the log
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transformation of XC with a pseudo count of 1:

Xij “ log
`

XC
ij ` 1

˘

, i “ 1, . . . , p; j “ 1, . . . , n. (S2.10)

scPNMF takes the log count matrix X P Rpˆn
ě0 as the input. With the log transformation,

the effect of a few extremely large counts will be alleviated, and the transformed values will

have more Gaussian-like distributions, a common assumption assumed by many methods.

We introduce the pseudo count of 1 to avoid negative infinite values in the later PNMF

optimization step.

For the scRNA-seq data used in this chapter (Table S2.4), we filter out the genes that are

expressed in fewer than 5% of the cells, and then we filter out the cells that are expressed

in fewer than 5% of the remaining genes. Additionally, MALAT1, mitochondrial genes, and

ribosomal genes are removed from two datasets, PBMC10x and PBMCSmartSeq, according

to the reference paper [5]. Users may customize the filtering process before they input the

log count matrix X into scPNMF.

Table S2.4: Top 10 high weight genes in each PNMF basis of the FretagGold dataset

Basis Gene symbol Description

1 RPS2, TMSB4X, GAPDH, RPL41, RPL13,
FTH1, MALAT1, COX2, RPL10, RPS18

Highly expressed housekeeping genes

2 CD74, PTGR1, HLA-B, ALDH3A1, C15orf48,
LCN2, IGFBP3, SAA1, CXCL1, HLA-DRA

Immune-related genes

3 SEC61G, CDK4, CCN1, G0S2, ELOC, VOPP1,
EGFR, F3, CDKN2A, EPCAM

Tumor-related genes (oncogenes, tumor suppres-
sor genes)

4 H4C3, CKS1B, HMGB2, SMC4, PTTG1,
KPNA2, CCNB1, CDKN3, CKS2, CDC20

Genes related to mitotic cell cycle

5 HSPB1, UBE2S, CALD1, TMEM256, FIS1,
ISOC2, ZNHIT1, C20orf27, NDUFA3,
PPP2R1A

Genes related to mitochondrion

S2.7.4 Details about informative gene selection and cell clustering

In this paper, we compare scPNMF with 11 other informative gene selection methods (Ta-

ble S2.5). Some gene selection methods cannot let users pre-define an arbitrary gene number;

for such methods (e.g., SCMarker [8]), we adjust their tuning parameters until their output

gene numbers approximately equal the desired gene number.
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Table S2.5: Overview of informative gene selection methods used in this study

Method User-defined gene # Language Package Reference

corFS Yes R M3Drop (version 1.14.0) [9]
DANB Yes R M3Drop (version 1.14.0) [9]
GiniClust Yes R M3Drop (version 1.14.0) [9]
irlbaPcaFS Yes R M3Drop (version 1.14.0) [9]
M3Drop Yes R M3Drop (version 1.14.0) [9, 10]
Scanpy Yes Python Scanpy (version 1.6.0) [11]
SCMarker No R SCMarker1 [8]
scran Yes R scran (version 1.18.3) [12]
SeuratDISP Yes R Seurat (version 3.2.2) [13, 14]
SeuratMVP No R Seurat (version 3.2.2) [13]
SeuratVST Yes R Seurat (version 3.2.2) [13]
f-scLVM No R slalom (version 1.10.0) [15]

1: Due to failure in SCMarker R package installation, we run the R script downloaded from https://github.com/KChen-
lab/SCMarker on September 17, 2020.

We apply three clustering algorithms, Louvain clustering (by Seurat), K-means clus-

tering (by R function kmeans), and hierarchical clustering (by R function hclust). We

perform PCA on informative genes and use the top 20 PCs for cell clustering. We use

U “ tu1, . . . , uP u to denote the true partition of P classes and V “ tv1, . . . , vKu to denote

the partition given by clustering results. Let ni and nj be the numbers of observations in

class ui and cluster vj respectively, and nij denotes the number of observations in both class

ui and cluster vj. The adjusted Rand index (ARI) is calculated as
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(S2.11)

where n “
řP

i“1 ni¨ “
řK

j“1 n¨j. An ARI value close to 1 means more accurately inferred

clusters. Regarding the choice of tuning parameter values (the resolution parameter r in

Louvain clustering and the number of clusters k in K-means and hierarchical clustering), we

consider the following parameter values:

r P t0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0u , k P t2, 3, 4, ¨ ¨ ¨ , 15u ,

(S2.12)

and we use the average of the top three high ARI values (across the parameter combinations)
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as the final output.

S2.7.5 Details about new data projection and cell type prediction

We use two datasets, Zheng8 and PBMC10x, as the reference scRNA-seq datasets. For

the Zheng8 dataset, we first use scDesign2 [16] to learn the underlying parameters, and

then we simulate a new dataset with the same genes and cell types but a 100-time larger

sequencing depth compared to the Zheng8 dataset. For the PBMC10x dataset, we use

the PBMCSmartSeq dataset, which measures the exact same example by Smart-seq2 and

contains all genes measured in PBMC10x. Given M selected genes, the simulated Zheng8

and PBMC10x are pruned to contain only those genes, and the pruned datasets serve as the

“pseudo” targeted gene profiling datasets that only have the M genes measured.

For cell type prediction, we project every targeted gene profiling dataset and its scRNA-

seq reference onto the same low-dimensional space, which mainly follows the idea of scPred

[17]. When applying scPNMF, we use the weight matrixWS,pMq to project both the reference

dataset and the targeted gene profiling dataset. For other gene selection methods, we first

subset the reference dataset with only M selected genes, run PCA to obtain a weight matrix

WPCA, and then use it to project both the reference dataset and targeted gene profiling

dataset, both containing only M genes. After obtaining the two sets of low-dimensional

embeddings of reference and targeted gene profiling datasets, we run the Harmony algorithm

[18] to remove the technical variations between these two sets of low-dimensional embeddings.

Then we apply three classification algorithms, random forest (rf), k-nearest neighbors (knn),

and support vector machine with radial kernel (svmRadial) in the R package caret [19],

for cell type prediction. The tuning parameters are selected by 5-fold cross-validation with

three repeats.
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S2.7.6 Data normalization by cell library size

S2.7.6.1 Why scPNMF does not use normalized data as input

By default, scPNMF takes the raw data without normalization (e.g., regressing out the cell

library size [14]). In practice, scPNMF can be applied to such pre-processed scRNA-seq

data, and then it does not need to remove the factors correlated with cell library size in its

basis selection step. However, we have two reasons to prefer the default procedure:

1. Normalizing by cell library size is inappropriate for targeted gene profiling. In scRNA-

seq, the cell library size is the total count in a cell. However, in targeted gene profiling,

the cell sequencing depth can not be accurately estimated since only a small subset

of genes is captured. For instance, Seurat claims that in the analysis of spatial data

(a type of targeted gene profiling data), “force each data point to have the same

underlying ‘size’ after normalization, can be problematic” [20]. To make sure that the

genes selected based on scRNA-seq are informative for designing targeted gene profiling

experiments, we prefer to use raw data without normalizing cell library sizes.

2. Cell library size can be informative for distinguishing cell types. Some studies have

observed that cell library sizes are significantly different between some cell types and

thus serve as a useful feature for distinguishing them [21, 22], a phenomenon we have

also encountered in our data analysis. Therefore, normalization by cell library size

is not always desirable. scPNMF avoids this issue by using unnormalized data, and

if a factor is correlated with cell library size but also shows a significant multimodal

pattern, the factor will be preserved for downstream analysis.

Besides, there are a few data-driven procedures in the scPNMF workflow. As the following

steps do not require the common Gaussian assumptions, explicitly or implicitly, then applying

the method to the raw count data without any variance-stabilizing transformations does not

violate certain assumptions. Besides, empirical results show that using the raw count data

as input for scPNMF has better performance.
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S2.7.6.2 Normalization on the score matrix output by scPNMF

If users want to directly remove the effects of cell library size, they may choose the option of

“regressing out cell library size by cell type” in the scPNMF package. The reason why we do

not set it as the default is that scPNMF is designed as an unsupervised method without cell

type information. Therefore, if cell type labels are not provided, it is impossible to regress

out cell library size in a cell-type-specific manner. To overcome this no-cell-type-label issue,

scPNMF applies a new clustering algorithm, “K-lines clustering” [23], to identify more than

one linear relationship, if existent, between a basis and cell library size. Below we describe

our algorithm.

In the score matrix S “ WTX P RKˆn
ě0 , whose K rows correspond to bases and whose

n columns represent cells, the k-th row of S, denoted by sTk , contains the scores (i.e.,

coordinates) of n cells in the k-th basis. For sTk , we assume that it is composed of cell groups

C1, . . . , CNk
, which correspond to either pre-defined cell types or clusters obtained by K-lines

clustering. That is, C1 Y ¨ ¨ ¨ Y CNk
“ t1, . . . , nu. Therefore, for group Cr, r “ 1, . . . , Nk, we

fit a linear model:

sik “ β
prq

0k ` β
prq

1k di ` ϵi, i P Cr ,

where di is cell i’s library size, and obtains estimates β̂
prq

0k and β̂
prq

1k , as well as residuals ei,

i P Cr. Then, we define the “corrected” score of cell i in group Cr as

uik “ β̂
prq

0k ` β̂
prq

1k d̄
prq

` ei, i P Cr ,

where d̄prq is the mean cell library size in group Cr. The corrected score matrix U is used for

downstream analysis such as dimensionality reduction. We observe that, using the corrected

scores, the “stretching” shape within each cell type is removed, and cell types are better

distinguished in UMAP visualization (Fig. 2.6).

Although this correction is useful, we argue that it should be used with caution since the

results depend on cell type/cluster labels. In an unsupervised setting, we recommend users

follow the basis selection criteria we described in our paper.
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Figure 2.6: UMAP visualization of the cell score matrice S before correction and its corrected versions after regressing out
cell library size in the PBMC10x dataset.

Cell types are marked with colors. Original: the original score matrix S without correction; Simple regress: simply regressing
out cell library size with all cells in one group, i.e., Nk “ 1; Cell-type regress: regressing out cell library size within each cell
type, i.e., C1, . . . , CNk

are cell types; K-lines regress: regressing out the library size within each K-lines cluster, i.e., C1, . . . , CNk

are cell clusters.

S2.7.7 Comparison between PNMF and NMF

PNMF, the first step of scPNMF, outputs a much more sparse representation of a scRNA-seq

dataset than NMF does. Using the FregGold dataset [3] and K “ 5 bases, we demonstrate
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that the weight matrix of PNMF is highly sparse (42.6% zeros) and has largely mutually

exclusive bases, while the zero proportion in the weight matrix of NMF is only 1.1%, and

the bases are much less mutually exclusive (Fig. 2.7). These results suggest that PNMF

bases are concentrated on a small set of genes and correspond to gene groups with distinct

functions. Moreover, we demonstrate that, when applied to the seven scRNA-seq datasets

(Table S2.3), scPNMF outperforms its variant that replaces PNMF by NMF in the first step

(Fig. 2.8)
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Figure 2.7: Weight matrices of PNMF and NMF. Rows are genes ordered by hierarchical clustering, and columns are bases.

scPNMF also has the functionality of outputting a projection matrix W that can project

new cells onto the latent space, which scPNMF learns from reference cells. This functionality

enables the alignment of new data with the reference data in the same low-dimensional space

and facilitates cell type prediction in the new data. In contrast, NMF does not output a

projection matrix, and the basis-by-cell matrix it outputs does not satisfy the requirement

of a projection matrix.

The reason why we cannot simply select genes from the NMF weight matrix and use

these genes to align new data with reference data is that the selected gene number (usually

in hundreds) would be much greater than the number of bases in scPNMF’s projection matrix.

Otherwise, if the selected gene number is too small, we would lose biological information for
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Figure 2.8: Benchmarking scPNMF and its variant, where PNMF is replaced by NMF, in selecting 20, 50, 100, 200, and 500
genes for cell clustering.

aligning cells, not to mention that it is not straightforward to select a small number of genes

from a not-so-sparse NMF weight matrix. Due to the well-known curse of dimensionality,

we deem it reasonable to use a low-dimensional space, instead of hundreds of genes, to

align cells. scPNMF essentially combines gene selection and dimensionality reduction into one

step by directly providing the projection matrix, and we demonstrate that scPNMF has good

performance in applications.

S2.7.8 Comparison with f-scLVM

The factorial single-cell latent variable model (f-scLVM) is a Bayesian method based on factor

analysis that can jointly refine gene set annotations and infer factors without annotation.

Similar to our scPNMF, f-scLVM indeed can also learn sparse and interpretable factors [15].

However, scPNMF differs from f-scLVM in its required input data, main goal, and model

construction. As a result, scPNMF performs better in informative gene selection for targeted

gene profiling, which is its major goal. Moreover, we find scPNMF more computationally

efficient than f-scLVM.
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S2.7.8.1 Differences in input data

While scPNMF only requires a gene-by-cell count matrix as input, f-scLVM additionally

requires pre-defined gene sets for its model fitting.

S2.7.8.2 Differences in main goal and model

scPNMF aims to select a limited number of informative genes for targeted gene profiling

based on existing scRNA-seq data. It finds the set of informative genes by learning a low-

dimensional embedding of cells so that the bases correspond to sparse and mutually exclu-

sive gene groups, and further selecting bases based on functional annotations (optional),

correlation screening, and multimodality testing to remove uninformative bases that cannot

distinguish cell types.

In contrast, f-scLVM focuses more on decomposing scRNA-seq datasets into interpretable

components. It jointly infers both annotated and unannotated factors, including confounders,

and refines the pre-defined gene sets in a data driven manner. The model can be written as:

Y “

C
ÿ

c“1

ucV
T
c

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cell covariates

`

A
ÿ

a“1

paR
T
a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
annotated factors

`

H
ÿ

h“1

shQ
T
h

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unannotated factors

`Ψ (S2.13)

“ XWT
` Ψ. (S2.14)

Here, Y denotes the cell-by-gene gene expression matrix; the vectors uc, pa, sh cor-

respond to known cell covariates, as well as cell states for annotated and unannotated

factors; and Vc, Ra, Qh are the corresponding regulatory weights of a given factor on

all genes; the matrix Ψ denotes residual noise. We then collapse the vectors of factors

and weights into activation matrices X “ ru1, . . . ,uC ,p1, . . . ,pA, s1, . . . , sHs and W “

rV1, . . . ,VC ,R1, . . . ,RA,Q1, . . . ,QHs.

f-scLVM is not originally designed for selecting informative genes from the gene expression
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matrix alone. Although the f-scLVM authors have discussed about identifying an augmented

gene set specific to each factor, the identified genes are for interpreting the factors but not

for capturing the overall biological variations of cells or distinguishing cell types.

S2.7.8.3 Results for informative gene selection

Although there is no description of informative gene selection in the f-scLVM paper, inspired

by the bilinear model structure (eq. (S2.14)), we have used f-scLVM in two ways to select n

informative genes from its estimated weight matrix W, whose columns are factors’ loading

vectors and rows are genes. Note that W is not a direct output of the f-scLVM software

package.

‚ Across-factor: select informative genes based on their maximum loadings across factors

(i.e., take the maximum of each row of W; then pick the n genes with the largest row

maxima).

‚ Per-factor: select top „ rn{Ks informative genes for each factor, whereK is the number

of factors (i.e., pick the „ rn{Ks genes with the largest loadings in each column of W);

then take union of the K informative gene sets. Note that the union may contain fewer

than n genes due to the possible overlaps of gene sets.

The f-scLVM results are based on R package slalom (version 1.10.0) and default pa-

rameter values (Gene set annotations: the MSigDB core processes database (hallmark gene

sets H) v7.2; number of hidden factors: 5; minimum number of genes to retain a gene set:

10). Similar as in section 2.3.3, we comprehensively benchmark scPNMF and f-scLVM on

seven scRNA-seq datasets (Table S2.3) using three clustering methods (Louvain clustering,

K-means clustering, and hierarchical clustering). Using the adjusted Rank index (ARI) as

the metric of clustering accuracy, we calculate the ARI values of the three clustering methods

on each dataset using 20, 50, 100, 200, and 500 selected informative genes, which are the

commonly used gene numbers in targeted gene profiling.

Fig. 2.9 shows that scPNMF consistently has the highest overall ARI values across

39



datasets and clustering methods. scPNMF leads to more stable overall average ARI val-

ues under varying numbers of informative genes, indicating its stronger robustness to the

gene number constraint of targeted gene profiling. It is worth noting that scPNMF works

well even when the number of informative genes is as small as 20.

Similar as in section 2.3.3, Fig. 2.10 shows the UMAP visualization of cells in the Zheng4

dataset based on the 100 informative genes selected by scPNMF and f-scLVM. scPNMF

leads to a clear separation of naive cytotoxic T cells and regulatory T cells, while f-scLVM-

Across-factor and f-scLVM-Per-factor cannot, even though f-scLVM-Per-factor incorporates

slightly more (123) informative genes.

S2.7.8.4 Computational time

scPNMF is more time-efficient than f-scLVM across diverse scRNA-seq datasets. We have

run both software packages on a PC with 3.4 GHz Quad-Core Intel Core i5 and 8GB RAM.

The f-scLVM results are based on R package slalom (version 1.10.0) and default parameter

values. In Table S2.6, we see that scPNMF runs 2.2X „ 100X faster than f-scLVM.

Table S2.6: Running time of scPNMF and f-scLVM in minutes

Dataset scPNMF Running Time (mins) f-scLVM Running Time (mins)
Darmanis 27.95 178.57

FreytagGold 38.87 474.61
Tirosh 23.47 1172.91

PBMC10x 22.87 733.36
PBMCSmartSeq 48.88 107.92

Zheng4 0.90 53.89
Zheng8 1.12 111.89
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Figure 2.9: Benchmarking scPNMF and f-scLVM using 20, 50, 100, 200, 500 genes.
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Figure 2.11: GO annotation on weight matrix of PCA. The enriched GO terms between bases are largely overlapped.
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Figure 2.13: Benchmarking scPNMF and other informative gene selection methods using 20, 50, 200, 500 genes.
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CHAPTER 3

ClusterDE: a post-clustering differential expression

method robust to false-positive inflation caused by

double dipping

3.1 Introduction

The recent development of single-cell RNA-seq (scRNA-seq) technologies has revolution-

ized transcriptomic studies by providing unprecedented pictures of gene expression within

individual cells. A major task of scRNA-seq data analysis is to annotate cell types and

understand their biological differences. Hence, the standard workflow of analyzing scRNA-

seq data includes two steps: (1) clustering cells to find potential cell types, and (2) finding

differentially expressed (DE) genes between cell clusters as potential cell-type marker genes

[64, 65].

Although this post-clustering differential expression (DE) procedure is used in the state-

of-the-art scRNA-seq analysis pipelines such as the R package Seurat [66] and the Python

module Scanpy [10], researchers have realized that this procedure is conceptually problem-

atic. For instance, Seurat contains the warning message that “P values should be interpreted

cautiously, as the genes used for clustering are the same genes tested for differential expres-

sion.” This issue is commonly referred to as “double dipping,” meaning that the same gene

expression data are used twice to define cell clusters and DE genes, thus leading to an in-

flated false discovery rate (FDR) in identifying post-clustering DE genes as putative cell-type

marker genes when the cell clusters are spurious.

We illustrate the double-dipping issue in Fig. 3.1a, a scenario where only a single cell
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type exists, and no genes should be identified as between-cell-type DE genes. However,

as clustering is based on gene expression data, certain genes would be correlated with the

resulting cell clusters if their expression patterns drive the clustering. Hence, these genes

would have different conditional distributions in the two cell clusters and subsequently be

identified as between-cell-cluster DE genes, but they are false-positive between-cell-type DE

genes. Therefore, this double-dipping issue would inflate the false discovery rate (FDR), the

expected proportion of false-positive between-cell-type DE genes among all identified DE

genes.

Two attempts to solve the double-dipping issue include the truncated normal (TN) test

[17] and the Countsplit method [18]. The first method TN test has five steps: (1) splitting

cells into two sets: training cells and test cells; (2) applying a clustering algorithm to the

training cells to find two clusters; (3) training a support vector machine classifier on the train-

ing cells to predict a cell’s cluster label from the cell’s gene expression vector; (4) using the

trained classifier to predict the test cells’ cluster labels; (5) finding DE genes between the two

test cell clusters using the TN test. Instead of splitting cells, the second method Countsplit

splits the scRNA-seq count matrix into two count matrices of the same dimensions (cells and

genes)—a training matrix and a test matrix—by a procedure called data thinning [67]. Since

the two matrices have exactly one-to-one matched cells, Countsplit finds cell clusters by ap-

plying a clustering algorithm to the training matrix, and it subsequently identifies DE genes

by applying a DE test to the test matrix given the cell clusters. Despite the claims made

by the TN test and Countsplit that they can provide well-calibrated P values, uniformly

distributed between 0 and 1 under the null hypotheses, our findings indicate that their P

values are anti-conservative in the presence of gene-gene correlations (section Results). The

reason behind this issue is that the validity check of P values in the TN test and Countsplit

papers relied on simulation studies that implicitly assumed genes to be independent [17,

18], an assumption that does not hold in real scRNA-seq data. As a result, the P value

calibration issue would lead to inflated FDRs when the TN test and Countsplit are applied

to real scRNA-seq data.

In addition to the TN test and Countsplit, several cluster-free DE tests have been devel-
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oped to circumvent the double-dipping issue by bypassing the cell clustering step [19–24].

However, it is important to note that these cluster-free methods do not aim to identify poten-

tial cell types. Consequently, the DE genes identified by these methods cannot be interpreted

as marker genes for specific cell types, unlike the DE genes identified after clustering. For

instance, for the genes that demonstrate a multimodality pattern, it is difficult to match the

modes with the potential cell types identified in the previous clustering step. In other words,

the cluster-free DE genes and the post-clustering DE genes serve different purposes and are

not conceptually comparable. Another stream of methods has been developed to assess the

quality of clustering results, e.g., the “purity” of a cluster or if two clusters should be merged

[25–29]. However, these methods do not provide a direct statistical test for identifying DE

genes, and it remains difficult to determine the threshold for clustering quality above which

double dipping is not a concern. In this study, we focus on addressing the inflated FDR issue

when using post-clustering DE genes as cell-type marker genes. Hence, we do not consider

cluster-free DE tests and clustering assessment methods as competing alternatives in our

investigation.

Here we introduce ClusterDE, a post-clustering DE method for identifying potential cell-

type marker genes by avoiding the inflated FDR issue due to double dipping. It is worth

noting that ClusterDE is not designed to replace any existing pipelines for clustering followed

by DE analysis (e.g., Seurat); instead, ClusterDE works simply as an add-on to an existing

pipeline for achieving more reliable discoveries. In particular, ClusterDE controls the FDR

for identifying cell-type marker genes even when the cell clusters are spurious. As an efficient

and interpretable method, ClusterDE adapts to the most widely used pipelines Seurat [66]

and Scanpy [10], which include a wide range of clustering algorithms and DE tests. We

benchmarked ClusterDE against the default Seurat (which includes double dipping), the TN

test, and Countsplit, each of which includes a cell clustering step and a DE analysis step.

Specifically, to align with the prevailing practices in single-cell data analysis, we employed

the default Seurat clustering algorithm (which involves data processing steps followed by the

Louvain algorithm) for cell clustering; for DE analysis, we evaluated five widely used DE

tests (e.g., the Wilcoxon rank-sum test and the two-sample t test) included in the Seurat
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package, with the exception of the TN test, which utilizes its own DE test. Our bench-

marking results demonstrate that ClusterDE is the only method that effectively controls the

FDR across varying thresholds. Moreover, ClusterDE achieves comparable or superior sta-

tistical power compared to the other three methods. When applied to the scRNA-seq data

of five homogeneous cell lines, ClusterDE successfully avoids finding false-positive DE genes.

In contrast, Seurat, the TN test, and Countsplit yield thousands of DE genes due to dou-

ble dipping. Moreover, when applied to a well-studied peripheral blood mononuclear cells

(PBMC) scRNA-seq dataset with two biological replicates and four protocols, ClusterDE

excels at discovering the cell-type marker genes of CD14` monocytes and CD16` monocytes

as its top DE genes, while Seurat’s top DE genes contain many housekeeping genes. Besides

the ability to control the FDR and identify cell-type marker genes, ClusterDE has a notable

practical advantage for allowing users to dissect an abstract statistical null hypothesis as

concrete synthetic null data, so users can decide whether the synthetic null data accurately

reflects the negative control scenario they have in mind, and if not, how the synthetic null

generation should be adjusted.
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Figure 3.1: ClusterDE is a solution to the double-dipping issue in post-clustering DE analysis.
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a, An illustration of the double-dipping issue. Each gene’s expression follows an unimodal distribution when cells come from
a homogeneous cell type. However, if clustering divides the cells into two clusters, certain genes are “forced” to have different
distributions between the two clusters. b, An overview of the ClusterDE test. Given the “target data” (real data), ClusterDE
employs the simulator scDesign3 [68] to generate the corresponding “synthetic null data,” which contains synthetic cells from
one “hypothetical” cell type (the null hypothesis) to mimic the real cells but fill any gap between real cell types if existent. Then
ClusterDE applies a clustering algorithm followed by a DE test to both the target data and the synthetic null data in parallel,
yielding two DE scores for each gene (a “target DE score” and a “null DE score”). Finally, ClusterDE uses the FDR-control
method Clipper [69] to calculate a contrast score based on the two DE scores for each gene. ClusterDE identifies DE genes as
those whose contrast scores exceed the threshold, which is determined by finding a contrast score threshold (represented by the
vertical dashed line) based on the contrast score distribution and the desired target FDR (e.g., 0.05). c, When the target data
contained cells from a single type (simulation; see ClusterDE methodology “Simulation setting with one cell type and zero true
DE genes”), the synthetic null data generated by ClusterDE resembled the target data well in terms of UMAP cell embeddings
(left), per-gene expression mean and variance statistics (middle), and gene-gene correlations (right). d, On the target data in
c, ClusterDE (with five DE tests) outperformed existing methods—including Seurat (which does not consider double dipping),
Countsplit (which aims to address double dipping and works with any DE test), and TN test (which aims to address double
dipping and has its own DE test)—in FDR control. The horizontal dashed line indicates the target FDR of 0.05. The five
DE tests are the Wilcoxon rank sum test (Wilcoxon), t-test, negative binomial generalized linear model (NB-GLM), logistic
regression model predicting cluster membership with likelihood-ratio test (LR), and likelihood-ratio test for single cell gene
expression (bimod). e, The FDRs and power of ClusterDE and the existing methods under various severity levels of double
dipping. The log fold change (logFC) summarizes the average gene expression difference between two cell types in simulation
(see ClusterDE methodology “Simulation setting with two cell types and 200 true DE genes”). Corresponding to a small logFC,
a small adjusted Rand index (ARI) represents a bad agreement between cell clusters and cell types, representing a more severe
double-dipping issue. Across various severity levels of double dipping, ClusterDE controlled the FDRs under the target FDR
thresholds (diagonal dashed line) and achieved comparable or higher power compared to the existing methods at the same
actual FDRs.
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3.2 ClusterDE methodology

3.2.1 Notations for the double-dipping problem in post-clustering DE analysis

The target data is denoted by Y “ rYijs P Nnˆm
ě0 , a cell-by-gene Unique Molecular Identifier

(UMI) count matrix with n cells as rows, m genes as columns, and Yij as the UMI count of

gene j “ 1, . . . ,m in cell i “ 1, . . . , n. We treat each cell i as an observation, which is an

m-dimensional vector Yi “ pYi1, ¨ ¨ ¨ , YimqT.

In our formulation of the post-clustering DE problem, the n cells belong to two latent

cell types and are partitioned into two clusters by a clustering algorithm. Accordingly, we

use Zi P t0, 1u to denote cell i’s latent cell type.

We define the “ideal DE test” as the one that decides whether a gene has equal mean

expression in two cell types. For gene j, we assume that tpYij|Zi “ 0quni“1 share the same

mean denoted by µ0j “ ErYij|Zi “ 0s, and tpYij|Zi “ 1quni“1 share the same mean denoted

by µ1j “ ErYij|Zi “ 1s. Then the ideal DE test has the following null hypothesis H0j and

alternative hypothesis H1j:

H0j : µ0j “ µ1j vs. H1j : µ0j ‰ µ1j .

Hence, gene j is a true DE gene if and only if H0j does not hold. When all n cells belong to

one cell type only, all m null hypotheses, H01, . . . , H0m, hold simultaneously.

However, since Zi’s are unobserved, standard single-cell data analysis partitions cells into

two clusters using a clustering algorithm g (e.g., the Louvain algorithm in Seurat) applied

to Y. We use pZi “ gYpYiq P t0, 1u to denote cell i’s cluster membership, where gY :

tY1, . . . ,Ynu Ñ t0, 1u is the clustering function, constructed from the clustering algorithm

g and the data Y, that maps a cell’s gene expression vector to a cluster membership.

After cell clustering, standard single-cell analysis performs a DE test for each gene based

on Y1, . . . ,Yn and pZ1, . . . , pZn. In other words, the data Y is used twice (in clustering and

DE analysis), referred to as the “double-dipping (DD) issue.” The standard post-clustering

DE analysis used in the Seurat pipeline has the DD issue, and it tackles a statistical test
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different from the ideal DE test. Specifically, for gene j, we denote µDD
0j “ ErYij| pZi “ 0s

and µDD
1j “ ErYij| pZi “ 1s, two parameters that are the same for all i “ 1, . . . , n. Then, the

post-clustering DE method in Seurat corresponds to the following null hypothesis HDD
0j and

alternative hypothesis HDD
1j :

HDD
0j : µDD

0j “ µDD
1j vs. HDD

1j : µDD
0j ‰ µDD

1j .

Hence, gene j would be detected as a false-positive cell-type marker gene if HDD
0j is rejected

but H0j holds, leading to an inflated FDR in identifying cell-type marker genes. Fig. 3.7

provides a toy example illustration of this issue.

3.2.2 ClusterDE step 1: synthetic null generation

Previous findings indicate that, in a single cell type, each gene’s UMI counts can be fitted

well by a negative binomial (NB) distribution [70–72], and all genes’ UMI counts can be well

approximated by a multivariate NB (MVNB) distribution specified by the Gaussian copula

[68]. Based on these findings, in ClusterDE, the null model that indicates a single “hypothet-

ical” cell type is an MVNB distribution specified by the Gaussian copula. In ClusterDE step

1, the null model would be fitted on the real data Y by scDesign3 [68], and subsequently,

synthetic null data would be sampled from the fitted null model. The intuition behind this

null model is that cells of a single cell type constitute a sample from a homogenous popula-

tion, in which every gene’s marginal count distribution is NB, and the gene-gene correlation

structure is specified by the Gaussian copula. In addition, since scDesign3 supports many

other choices of marginal distributions, ClusterDE can also generate synthetic null data

from multivariate Gaussian, multivariate Poisson, multivariate Zero-Inflated Poisson, and

multivariate Zero-Inflated Negative Binomial distribution.

Note that the idea of fitting a null model on real data, regardless of whether the real data

was generated from the null model, is the core idea of the commonly used likelihood-ratio

test in statistics [73], in which the maximum likelihood under the null hypothesis is estimated

from the real data. Then the null maximum likelihood is compared with the alternative max-
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imum likelihood, which is also estimated from the real data under a more flexible alternative

hypothesis. Finally, the null hypothesis is only rejected if the null maximum likelihood is

significantly smaller than the alternative maximum likelihood. ClusterDE generalizes this

idea by sampling synthetic null data from the null model fitted by maximum likelihood es-

timation on the real data, so any clustering-followed-by-DE pipeline, however complicated,

can be applied to the synthetic null data in parallel to the real data. Then a contrastive

strategy can identify trustworthy DE genes as those whose DE scores are significantly higher

from the real data than the synthetic null data.

Fig. 3.2 illustrates the synthetic null generation process detailed below. In the R package

ClusterDE, this step 1 is implemented by the R package scDesign3 (version 0.99.0) [68].

Figure 3.2: The generation process of synthetic null data from target data (top left) by scDesign3.

We show the bivariate case (with two genes) for illustration purposes, and the real case is high-dimensional with thousands of
genes. The null model consists of two parts: for marginal gene modeling, each gene’s counts follow a negative binomial (NB)
distribution; for joint gene modeling, the genes’ dependence structure is specified by the Gaussian copula. For the marginal
gene modeling part (top), a negative binomial (NB) distribution is fitted to each gene’s counts in the target data, obtaining
the two NB parameters (mean and dispersion) for each gene. For the joint gene modeling part (bottom), there are three steps.
First, each gene’s counts in the target data are transformed into cumulative distribution function (CDF) values, via the fitted
NB distribution or the counts’ empirical distribution (if the target cell number is large), so the gene’s CDF values are uniform
between 0 and 1. Second, each gene’s CDF values are transformed into quantiles of the standard Gaussian Np0, 1q distribution.
Third, a multivariate Gaussian distribution (a bivariate Gaussian distribution for illustration) is fitted to the transformed
Gaussian values of the many genes whose correlations are to be modeled. The correlation matrix of the fitted multivariate
Gaussian distribution specifies the Gaussian copula. After the marginal and joint modeling, the generation of the same genes’
synthetic counts takes three steps. First, the genes’ standard Gaussian values are jointly sampled from the fitted multivariate
Gaussian distribution. Second, each gene’s standard Gaussian values are transformed into the CDF values of the standard
Gaussian distribution. Third, each gene’s CDF values are transformed into quantiles of the gene’s fitted NB distribution and
thus become counts, which constitute the synthetic null data (top right).

1. The null model: MVNB specified by the Gaussian copula

Under the null model, we assume that Yij, gene j’s UMI count in cell i, independently
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follows the NBpµj, σjq distribution with the probability mass function:

PpY “ y;µj, σjq “

Γ
´

y ` 1
σj

¯

Γ
´

1
σj

¯

Γpy ` 1q

ˆ

1

1 ` σjµj

˙
1
σj

ˆ

σjµj

1 ` σjµj

˙y

; y P t0, 1, 2, ¨ ¨ ¨ u ,

where µj and σj are the mean and dispersion parameters of the NB distribution. That

is,

Y1j, ¨ ¨ ¨ , Ynj
i.i.d.
„ NBpµj, σjq ,

with “i.i.d.” short for “independent and identically distributed,” meaning that the n

cells’ counts for gene j represent a random sample from NBpµj, σjq.

Denoting Fj as the cumulative distribution function (CDF) of NBpµj, σjq, j “ 1, . . . ,m,

the MVNB distribution specified by the Gaussian copula is

`

Φ´1
pF1pY11qq, ¨ ¨ ¨ ,Φ´1

pFmpY1mqq
˘T

,

...
i.i.d.
„ Nm p0,Rq ,

`

Φ´1
pF1pYn1qq, ¨ ¨ ¨ ,Φ´1

pFmpYnmqq
˘T

,

where Φ is the CDF of the standard Gaussian distribution Np0, 1q, and Nm p0,Rq is

an m-dimensional Gaussian distribution with an m-dimensional 0 mean vector and

an m-by-m correlation matrix R (which is also the covariance matrix because all m

Gaussian variables have unit variances). This null model assumes that, after each gene

is transformed to a standard Gaussian random variable, the n cells represent a random

sample from an m-dimensional Gaussian distribution with zero means, unit variances,

and a correlation matrix R.

In summary, the null model parameters include tµj, σju
m
j“1 and R.

2. Fitting the null model to real data (parameter estimation)

First, the parameters tµj, σju
m
j“1 are estimated by employing the maximum likelihood

estimation for the m NB distributions: using Y1j, . . . , Ynj to estimate µj and σj as pµj

and pσj, respectively, j “ 1, . . . ,m. Based on tpµj, pσju
m
j“1, the corresponding CDFs are
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denoted as pF1, . . . , pFm.

Second, to estimate R, each Yij is first transformed as Uij “ Vij ¨ pFjpYijq ` p1 ´ Vijq ¨

pFjpYij ` 1q, where Vij
i.i.d.
„ Uniformr0, 1s, so that Uij „ Uniformr0, 1s. This procedure is

referred to as the “distribution transform” to convert a discrete random variable Yij to

a continuous Uniformr0, 1s random variable [74]. Then, R is estimated as the sample

correlation matrix of

`

Φ´1
pU11q, ¨ ¨ ¨ ,Φ´1

pU1mq
˘T

, ¨ ¨ ¨ ,
`

Φ´1
pUn1q, ¨ ¨ ¨ ,Φ´1

pUnmq
˘T

and denoted as pR.

In summary, the fitted null model parameters include tpµj, pσju
m
j“1 and pR.

3. Sampling from the fitted null model (synthetic null data generation)

First, n Gaussian vectors of m dimensions are independently sampled Nmp0, pRq as

p rZ11, ¨ ¨ ¨ , rZ1mq
T, ¨ ¨ ¨ , p rZn1, ¨ ¨ ¨ , rZnmq

T .

Second, The n Gaussian vectors are converted to NB count vectors as

rY1 :“
´

pF´1
1 pΦp rZ11qq, ¨ ¨ ¨ , pF´1

m pΦp rZ1mqq

¯T

,

...

rYn :“
´

pF´1
1 pΦp rZn1qq, ¨ ¨ ¨ , pF´1

m pΦp rZnmqq

¯T

,

which represent the n synthetic null cells, each of which contains m genes’ synthetic

null counts sampled from the null model.

In summary, the real data is an n-by-m count matrixY with the n real cellsY1, . . . ,Yn

as the rows, while the synthetic null data is also an n-by-m count matrix rY with

the n synthetic null cells rY1, . . . , rYn as the rows. Note that there is no one-to-one

correspondence between the real cells and the synthetic null cells because the synthetic

null cells are independently sampled from the null model.
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3.2.3 ClusterDE step 2: cell clustering

While ClusterDE allows any clustering algorithm, to align with the most common practice,

we used the R package Seurat (version 4.2.0) for cell clustering in the results. That is,

we applied the default Seruat clustering to the target data and the synthetic null data in

parallel, obtaining two cell clusters in each dataset respectively.

Specifically, the default Seurat clustering includes the following steps applied to both

the target data and the synthetic null data, each of which is stored as a Seurat object. We

denote each Seurat object as Seurat.obj.

1. Normalize each cell to have a total count of 10,000; then perform logpnormalized count`

1q transformation.

NormalizeData(Seurat.obj, normalization.method = "LogNormalize",

scale.factor = 10000)

2. Select 2,000 highly variable genes.

FindVariableFeatures(Seurat.obj, selection.method = "vst",

nfeatures = 2000)

3. Scale the data.

ScaleData(Seurat.obj)

4. Run PCA on the data.

RunPCA(Seurat.obj, features = VariableFeatures())

5. Compute cells’ k-nearest neighbors.

FindNeighbors(Seurat.obj, dims = 1:30, nn.method = "rann", k.param = 20)

6. Perform Louvain clustering on the cells.

FindClusters(Seurat.obj, resolution)

Since the Louvain clustering cannot pre-specify the cluster number, we tried resolutions

starting from the default resolution of 0.5 and adjusted the resolution until two clusters

were found.
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After applying the above clustering procedure, we obtained the cluster labels pZ1, . . . , pZn

from the target data Y, and rZ1, . . . , rZn from the synthetic null data rY, respectively, where

pZi, rZi P t0, 1u, i “ 1, . . . , n. Again, there exists no one-to-one correspondence between

pZ1, . . . , pZn and rZ1, . . . , rZn.

3.2.4 ClusterDE step 3: DE analysis

ClusterDE allows any DE test. In the results, we used five DE tests included in the Seu-

rat function FindMarkers, including the Wilcoxon rank-sum test (Wilcoxon, the default

test), t-test, negative binomial generalized linear model (NB-GLM), logistic regression model

predicting cluster membership with likelihood-ratio test (LR), and likelihood-ratio test for

single-cell gene expression (bimod, [75]).

Given a DE test (e.g., the Wilcoxon rank-sum test), on the target data, ClusterDE

computes a P value Pj for each gene j for testing the null hypothesis HDD
0j : µDD

0j “ µDD
1j ,

where µDD
0j “ ErYij| pZi “ 0s and µDD

1j “ ErYij| pZi “ 1s. Then the target DE score of gene j is

defined as Sj :“ ´ log10 Pj.

In parallel, on the synthetic null data, ClusterDE calculates a P value rPj for each gene

j for testing the null hypothesis rHDD
0j : rµDD

0j “ rµDD
1j , where rµDD

0j “ ErrYij| rZi “ 0s and

rµDD
1j “ ErrYij| rZi “ 1s. Then the null DE score of gene j is defined as rSj :“ ´ log10 rPj.

In summary, the m genes have the target DE scores S1, . . . , Sm and the null DE scores

rS1, . . . , rSm.

3.2.5 ClusterDE step 4: FDR control

Given the target DE scores S1, . . . , Sm and the null DE scores rS1, . . . , rSm, we use the FDR-

control method Clipper to identify DE genes given a target FDR threshold q P p0, 1q [69].

Given a set of identified DE genes, the FDR is defined as

FDR :“ E
„

# false discoveries

# discoveries _ 1

ȷ

,
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where a _ b is defined as the maximum of two numbers a and b.

To ensure a valid FDR control, Clipper requires each gene to have a contrast score such

that the true non-DE genes have contrast scores symmetric about zero. In ClusterDE, gene

j’s contrast score Cj is defined as

Cj :“ Sj ´ rSj .

Then ClusterDE uses Clipper to find a contrast score cutoff T within C (i.e., the set of

non-zero contrast score values) given the target FDR threshold q:

T :“ min

"

t P C :
|tj : Cj ď ´tu| ` 1

|tj : Cj ě tu| _ 1
ď q

*

and outputs tj P t1, ¨ ¨ ¨ ,mu : Cj ě T u as discoveries. Here |A| defines the size of a set A. The

FDR control of this contrast-score thresholding procedure was from the knockoffs method

[76].

Under the assumption that the majority of genes are non-DE genes, we would expect

that the distribution of all genes’ contrast scores has a mode at zero, so the symmetry

requirement of Clipper is satisfied. That is, in the ideal scenario, slightly less than 50%

of all genes’ contrast scores should be negative. However, in some real data scenarios, this

symmetry requirement might not hold. For example, the contrast score distribution might

have a positive mode such that too few contrast scores are negative, leading to inflated

false discoveries made by Clipper. Or it could be that the contrast score distribution has a

negative mode such that too many contrast scores are negative, leading to a loss of statistical

power. Hence, in practice, ClusterDE verifies the symmetry assumption by employing Yuen’s

trimmed mean test (using the function yuen.t.test() from the R package PariedData

(version 1.1.1)). This test examines the symmetry of the contrast score distribution after

excluding the smallest 10% and largest 10% of the contrast scores.

If symmetry is rejected by Yuen’s trimmed mean test, ClusterDE applies an adjustment

to the contrast score distribution so that the symmetry requirement can approximately hold.
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In detail, ClusterDE applies the “robust fitting of linear models” (using the function rlm()

from the R package MASS (version 7.3-60)) to adjust the null DE scores; that is, a linear

model is fitted between the target DE scores (the response variable y) and the null DE

scores (the explanatory variable x), and the fitted values (the predicted response variable

ŷ) are taken as the adjusted null DE scores. Then the adjusted contrast scores, defined as

the differences between the target DE scores and the adjusted null DE scores, would better

satisfy the symmetry requirement.

Since we would like to be conservative regarding the adjustment of contrast scores, Clus-

terDE uses the one-sided (“greater than”) Yuen’s trimmed mean test at the significance level

of 0.001. Hence, adjustment is performed only when too few contrast scores are negative, a

scenario that would lead to inflated false discoveries made by Clipper.

3.3 Results

3.3.1 ClusterDE uses a contrastive strategy to identify reliable DE genes robust

to double dipping

The ClusterDE test consists of four major steps (Fig. 3.1b), with its core idea being to

establish a negative control for the entire computational pipeline that includes cell clustering

followed by DE analysis. This contrastive strategy enables the identification of trustworthy

DE genes by comparing the result from real-data analysis with that from the negative-control

analysis. To implement this strategy, we introduce a null model that assumes the cells of

interest (i.e., the cells divided into two clusters and subject to DE analysis, referred to as

the “target data”) are from a homogeneous cell type, where no between-cell-type DE genes

should be detected.

In step 1 of ClusterDE, we use the model-based simulator scDesign3 [68] to generate “syn-

thetic null data” that mimic the target data but represent a homogeneous cell type, with

the same number of cells and the same genes as in the target data. Fig. 3.2 illustrates the

synthetic null generation process, with the mathematical details described in section Clus-

61



terDE methodology. Fig. 3.1c and Fig. 3.4 show that the synthetic null data preserve the

per-gene mean and variance statistics, as well as the gene-gene correlations in the target

data. Meanwhile, irrespective of the clustering pattern in the target data, the synthetic null

data exhibit a homogeneous cell cluster, which is specified as the “null model” for a single

cell type in scDesign3.

In steps 2 and 3 of ClusterDE, users have the flexibility to specify a clustering algorithm

and a DE test, respectively, to analyze the target data and the synthetic null data in parallel.

For example, users may use the Seurat pipeline for clustering and DE analysis. These two

steps yield a “target DE score” and a “null DE score” for each gene. Specifically, we define

a gene’s DE score as a summary statistic measuring the difference of the gene’s expression

values in two clusters; a higher DE score indicates that the gene is more likely DE. For

example, the DE score is by default defined as the negative logarithm of the P value obtained

from a statistical DE test (e.g., the Wilcoxon rank-sum test).

Finally, in step 4 of ClusterDE, a “contrast core” is computed for each gene by subtracting

the gene’s null DE score from its target DE score. True non-DE genes are expected to have

contrast scores symmetrically distributed around 0. Then ClusterDE uses the FDR control

method Clipper [69] to determine a contrast score cutoff corresponding to a target FDR

(e.g., 0.05). Genes with contrast scores greater than or equal to the cutoff are identified as

DE genes.

3.3.2 ClusterDE achieves reliable FDR control and good statistical power under

double dipping

We conducted extensive simulation studies to validate ClusterDE as a post-clustering DE

method with reliable FDR control under double dipping. We also compared ClusterDE

with Seurat, the most widely used analysis pipeline that involves double dipping, and two

existing methods that attempted to address the double-dipping issue—the TN test [17] and

Countsplit [18]. In the cell clustering step of all four methods, we used the default Seurat

clustering as in most scRNA-seq data analyses. In the DE analysis step of ClusterDE, Seurat,
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and Countsplit, we considered five DE tests in the Seurat package: the Wilcoxon rank-sum

test (Wilcoxon; the default option in the Seurat package), the two-sample t test (t-test),

the negative binomial generalized linear model (NB-GLM), the logistic regression (LR), and

the likelihood-ratio test (bimod). The TN test is an exception because it uses its own TN

test in the DE analysis step. As Seurat, Countsplit, and the TN test all output a P value

for each gene, we applied the Benjamini-Hochberg (BH) procedure to all genes’ P values to

find a P value cutoff given a target FDR (e.g., 0.05). Genes with P values less than or equal

to the cutoff are identified as DE genes.

In the first simulation setting, which represents the most severe double-dipping scenario,

we simulated the target data from a single cell type by mimicking the näıve cytotoxic T

cells in a real dataset [77] (Fig. 3.1c top left; see section “Simulation designs”), where any

identified DE genes should be considered false discoveries. At the target FDR of 0.05, all three

existing methods—Seurat, Countsplit, and the TN test—were unable to control the actual

FDR under 0.05 (Fig. 3.1d). As expected, the double-dipping approach employed by Seurat

exhibited the worst performance, with all five DE tests yielding actual FDRs of 1. Although

Countsplit and the TN test were designed to overcome the FDR inflation issue caused by

double dipping, their actual FDRs still far exceeded 0.05. The reason is that their P values

are anti-conservative in the presence of gene-gene correlations (Fig. 3.5 right), although their

own simulation studies verified their P value validity under unrealistic settings where genes

are assumed to be independent [17, 18]. In contrast, ClusterDE successfully controlled the

FDRs under 0.05 for three out of the five DE tests: Wilcoxon, t-test, and LR (Fig. 3.1d).

We verified that the contrast scores calculated in step 4 of ClusterDE satisfied the symmetry

requirement around zero (Fig. 3.5 left). Although ClusterDE did not control the actual

FDRs of the NB-GLM and bimod tests under 0.05 due to possible violations of these two

tests’ parametric modeling assumptions on this dataset, the FDR inflation of ClusterDE for

these two tests was much less severe than that of Countsplit (ClusterDE’s actual FDRs 0.28

and 0.16 vs. Countsplit’s actual FDRs 0.68 and 1 for NB-GLM and bimod, respectively)

(Fig. 3.1d).

In the second simulation setting, we generated datasets with varying degrees of double
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dipping, still by mimicking the näıve cytoxic T cells in a real dataset [77] (Fig. 3.1e top;

see section “Simulation designs”). Each dataset consists of two synthetic cell types with

pre-specified 200 true DE genes with varying expression level differences between the cell

types, and the overall difference is summarized as the log fold change (logFC). A larger

logFC indicates a greater distinction between the two cell types. After the default Seurat

clustering algorithm is applied to each dataset to identify two cell clusters, the agreement

between the cell clusters and the cell types is measured by the adjusted Rand index (ARI). A

smaller ARI represents a more severe degree of double dipping, as illustrated by the UMAP

visualizations (Fig. 3.1e top row). Since Wilcoxon is the default DE test in Seurat and

yielded the best FDR control for both ClusterDE and Countsplit, we used Wilcoxon as the

DE test in ClusterDE, Seurat, and Countsplit, while the TN test uses its own DE test.

The results in Fig. 3.1e show that ClusterDE consistently controlled the actual FDRs across

a range of target FDR thresholds under varying degrees of double dipping. In contrast,

Seurat, Countsplit, and the TN test failed to control the actual FDRs under the target

thresholds, and as expected, exhibited greater FDR inflation when the degree of double

dipping is more severe (Fig. 3.1e middle row). Notably, ClusterDE achieved comparable or

superior statistical power to Seurat, Countsplit, and the TN test at the same actual FDR

levels (Fig. 3.1e bottom). These conclusions remained to hold when ClusterDE, Seurat, and

Countsplit were used with the other four DE tests (t-test, NB-GLM, LR, and bimod) in

the DE analysis step (Fig. 3.8). Moreover, to reflect the fact that cell types mostly have

unbalanced cell numbers in real data, we further simulated target data in which the two

synthetic cell types have size ratios of 1 : 4 and 1 : 9. In these two unbalanced scenarios, we

still found ClusterDE to outperform the other three methods in terms of FDR control across

target FDR thresholds and under varying degrees of double dipping. In particular, ClusterDE

consistently exhibited solid FDR control and comparable or superior statistical power to the

other three methods when used with Wilcoxon as the DE test (Fig. 3.9–Fig. 3.10).

Technically, ClusterDE shares with the knockoffs methods the concept of controlling the

FDR by generating in silico negative control data [76]. The knockoffs methods are a suite of

statistical methods developed for identifying important features in a high-dimensional pre-
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dictive model, a supervised learning setting different from our one-test-per-gene test setting.

Roughly, the knockoffs methods generate knockoff data from real data in such a way that

each feature is no longer correlated with the outcome variable given the other features, while

the feature-feature correlations are preserved in the knockoff data. We applied the default

model-X knockoffs method [78] to the simulated datasets—treating genes as features and

the cell cluster label as the outcome variable; the results indicate that, although this method

controlled the FDR, it always led to zero statistical power, making it impractical for DE

gene identification. Moreover, we used the model-X knockoffs method and permutations

(where each gene is independently permuted across all cells) as two alternative strategies

to scDesign3 for the synthetic null generation in step 1 of ClusterDE, followed by steps 2–4

of ClusterDE. Fig. 3.11 shows a comparison of the target data with the synthetic null data

generated by each of the three strategies. Compared with the target data, the synthetic null

data generated by scDesign3 preserved per-gene mean and variance statistics and gene-gene

correlations. In contrast, the synthetic null data generated by the model-X knockoffs method

did not preserve gene mean and variance statistics, and the synthetic null data generated by

permutations did not preserve gene-gene correlations. Hence, only the synthetic null cells

generated by scDesign3 preserved the 2D UMAP cell embedding topology of the target cells

except for filling the gap, if existent, between the target cell types. Our results on the sim-

ulated datasets demonstrate that scDesign3 led to the most solid FDR control and the best

statistical power among the three strategies for synthetic null generation (Fig. 3.6).

To address the practical concern about the randomness involved in generating synthetic

null data (a random sampling process from the null model fitted on target data), we con-

ducted an analysis to assess the robustness of DE genes identified by ClusterDE. The results

show that the DE genes identified by ClusterDE remain relatively stable and robust to the

randomness (Fig. 3.12).

In summary, the above simulation studies confirm that ClusterDE is a flexible and stable

method that effectively controls the FDR under varying degrees of double dipping while

maintaining good statistical power.

65



3.3.3 ClusterDE identifies cell-type marker genes and excludes housekeeping

genes from its top DE genes

We applied ClusterDE to multiple real scRNA-seq datasets of different types to demonstrate

how it can enhance the statistical rigor and biological relevance of findings from the post-

clustering DE analysis. The following real data applications showcase the effectiveness of

ClusterDE in identifying meaningful DE genes and improving the reliability of DE gene

identification.

In the first application, we collected five datasets of pure cell lines [79, 80], so the cells

in each dataset can be trusted as a homogeneous population that should not be divided

into more than one cluster (Fig. 3.3a left). Hence, any post-clustering DE genes identified

from these datasets should not be interpreted as between-cell-type DE genes. We used these

five datasets as real-data negative examples to demonstrate the inflated FDRs of existing

methods and the effectiveness of ClusterDE in removing the FDR inflation. As a sanity

check of ClusterDE, we first verified that the synthetic null data resembled the target data

(Fig. 3.3a right). Applying ClusterDE, Seurat, Countsplit, and the TN test to the five

datasets, we found that all methods except ClusterDE identified thousands of DE genes, in

many cases even more than 50% of all genes, indicating severely inflated false discoveries at

the target FDR of 5%. In contrast, ClusterDE found zero DE genes in 22 out of 25 cases

when used with the five DE tests (Wilcoxon, t-test, NB-GLM, LR, and bimod) on the five

datasets. In particular, ClusterDE with Wilcoxon consistently found zero DE genes from

the five datasets. Hence, we set Wilcoxon as the default DE test in ClusterDE.
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Figure 3.3: ClusterDE achieves reliable FDR control and good statistical power in identifying DE genes from real scRNA-seq
data.
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a, UMAP visualizations of target data (left) and synthetic null data (right) of five cell lines. b, Numbers of DE genes (at the
target FDR of 0.05) identified by ClusterDE and the existing methods. While all existing methods found numerous “false” DE
genes within a single cell line, ClusterDE made no false discoveries when used with most DE tests. The numbers in black and
white indicate the number of DE genes and the proportions of DE genes among all genes, respectively. The five DE tests are
the Wilcoxon rank sum test (Wilcoxon), t-test, negative binomial generalized linear model (NB-GLM), logistic regression model
predicting cluster membership with likelihood-ratio test (LR), and likelihood-ratio test for single-cell gene expression (bimod).
c, UMAP visualizations of target data (left) and synthetic null data (right) for four datasets containing two monocyte subtypes:
CD14` monocytes and CD16` monocytes. The synthetic null data captured the global topology of the real cells in the target
data while filling the gap between the two cell subtypes. The grey dashed box labels the dataset used in f and g. d, ClusterDE
identified DE genes between the two cell subtypes. The numbers in black and white indicate the number of DE genes and
the proportions of DE genes among all genes, respectively. e, The ranks of two exemplary genes (a monocyte subtype marker
FCGR3A in red and a well-known housekeeping gene B2M in blue) in the DE gene lists of ClusterDE and Seurat across the
five DE tests and the four datasets in c. In each boxplot representing the distribution of 20 ranks, the center horizontal line
represents the median, and the box limits represent the upper and lower quartiles. f, The top DE genes identified by ClusterDE
exhibited distinct expression patterns in the two cell clusters identified by Seurat clustering, a phenomenon not observed for the
top DE genes identified by Seurat. For ClusterDE and Seurat, the top DE genes are defined as the common DE genes found
by the five DE tests in d at the target FDR of 0.05. The UMAP plots show each top DE gene’s normalized expression levels
in the dataset “Rep2 10x(V2)” (marked by the dashed box in c; see section Real data analysis “Dimensionality reduction and
visualization ”). The density plots depict each top DE gene’s normalized expression distributions in the two cell clusters. g,
Gene set enrichment analysis (GSEA) of the ranked DE gene lists identified by ClusterDE and Seurat with five DE tests from
the dataset Rep2 10x(V2). The red lines represent the enrichment of the CD14`/CD16` monocyte marker gene set, and the
blue lines represent the enrichment of the housekeeping gene set. The normalized enrichment score (NES) reflects the direction
and magnitude of enrichment, and the P value indicates the significance of enrichment.
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In the second application, we collected eight PBMC datasets of CD14`/CD16` mono-

cytes [81] to demonstrate that ClusterDE can effectively detect known or potential marker

genes of the two cell subtypes. The eight datasets were generated from two technical repli-

cates by four unique molecular identifier (UMI) based scRNA-seq protocols (10X Genomics

Versions 2 and 3, Drop-seq, and inDrop). After applying the default Seurat clustering to

identify two clusters in each of the eight datasets, we found four datasets to have relatively

accurate clustering results (ARI ą 0.5; Fig. 3.3c left, Fig. 3.13 top), while the other four

datasets had clusters poorly matched with the two monocyte subtypes (ARI ă 0.2; Fig. 3.13

bottom). Hence, we expected that an effective post-clustering DE method would be able

to detect meaningful marker genes for monocyte subtypes in the first four datasets, but we

did not expect the same level of effectiveness for the latter four datasets. Hence, we focused

on the analysis results of the first four datasets. As a sanity check of ClusterDE, we first

verified that the synthetic null data resembled the target data but had the gap filled between

CD14` monocytes and CD16` monocytes, representing a single “hypothetical” cell type in

each dataset (Fig. 3.3c right). Applied to the first four datasets with relatively accurate

clustering results, ClusterDE with Wilcoxon identified 55–173 DE genes (1–4% of all genes)

at the target FDR of 5%, while Seurat and Countsplit identified 1–1,288 DE genes (0–26%

of all genes), and the TN test consistently identified at least 1,187 genes (25% of all genes)

(Fig. 3.3d). Given our knowledge that the two monocyte subtypes are not drastically differ-

ent, we did not expect thousands of genes to be identified as potential subtype marker genes.

Hence, we deemed the number of DE genes identified by ClusterDE to be more reasonable.

Examining the post-clustering DE genes identified by ClusterDE or Seurat across the

five DE tests on the four datasets (so ClusterDE and Seurat each had 20 DE gene lists), we

found that ClusterDE better distinguished known subtype marker genes from housekeeping

genes than Seurat did. This distinction was evident in the ranking of specific genes in the

DE gene lists. For example, we considered the genes FCGR3A (CD16 ), a canonical marker

for distinguishing CD14` monocytes and CD16` monocytes, and B2M, a widely recognized

housekeeping gene expressed across various cell types [82]. Notably, ClusterDE consistently

ranked FCGR3A among its top DE genes (with ranks approximately between 1 and 10) while
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placing B2M consistently low in its DE gene lists (with ranks below 1,000 in most cases)

(Fig. 3.3e top). In contrast, Seurat ranked the two genes similarly (with ranks between 10

and 100) in its DE gene lists (Fig. 3.3e bottom), making it impossible to discern which of

the two genes is more likely a subtype marker without prior knowledge.

Next, using one of the four datasets “Rep2 10x(V2)” as an example, we examined the

five most frequently identified post-clustering DE genes (defined based on the top 50 DE

genes identified by each of the five DE tests) by ClusterDE or Seurat (Fig. 3.3f). Again, the

two clusters were found by the default Seurat clustering, and ClusterDE and Seurat both

used these two clusters for post-clustering DE analysis. Our analysis found that the five

genes identified by ClusterDE all exhibited distinct distributions of normalized expression

levels between the two clusters, while the five genes identified by Seurat all had almost in-

distinguishable distributions between the two clusters (Fig. 3.3f). Further, we examined the

enrichment of two gene sets—known CD14`/CD16` monocyte markers and housekeeping

genes—in the post-clustering DE gene lists outputted by ClusterDE and Seurat. The gene

set enrichment analysis (GSEA) revealed that the known monocyte markers had strong en-

richment in the top-ranked DE genes identified by ClusterDE, exhibiting a clear distinction

from the housekeeping genes (Fig. 3.3g top). In contrast, the monocyte makers exhibited

less enrichment in the top-ranked DE genes identified by Seurat; what is worse, they had a

similar enrichment trend as the housekeeping genes, indicating that Seurat had the mono-

cyte markers and the housekeeping genes hardly distinguishable in its ranked DE gene list

(Fig. 3.3g bottom). The GSEA results on the other three datasets confirmed that Clus-

terDE better distinguished the monocyte markers from the housekeeping genes than Seurat

(Fig. 3.15).

Considering the common analysis practice that only the top k DE genes (e.g., k “ 100)

are used for further investigation, we summarized the numbers of monocyte markers and

housekeeping genes among the top k “ 1 to 100 DE genes identified by ClusterDE or Seurat

across the five DE tests on the four datasets. Fig. 3.16 shows that ClusterDE found more

monocyte markers and fewer housekeeping genes among the top DE genes than Seurat. To

further explain why ClusterDE can better distinguish monocyte markers and housekeeping
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genes, we used the minus-average (MA) plots [83] to demonstrate the effectiveness of using

synthetic null as a contrast to remove housekeeping genes from the top DE genes. From the

MA plots (Fig. 3.17), we observed that four exemplary housekeeping genes (ACTB, ACTG1,

B2M, and GAPDH ; marked in blue in Fig. 3.17) had both large target DE scores and large

null DE scores, resulting in close-to-zero contrast scores, so these genes were not found by

ClusterDE as top DE genes. However, these four genes were found by Seurat as top DE

genes due to their large target DE scores. On the other hand, we examined four exemplary

monocyte markers (CD14, FCGR3A, MS4A7, and LYZ ; marked in red in Fig. 3.17) and

found them to have large target DE scores but small null DE scores, so they were identified

as top DE genes by ClusterDE.

3.4 FDR control theory of ClusterDE

In this section, we prove why ClusterDE asymptotically controls the FDR and avoids the

FDR inflation issue due to double dipping. Recall that ClusterDE is based on the single-cell

simulator scDesign3 [68] for generating the in silico negative control data and the P -value-free

FDR control framework Clipper [69] for finding DE genes.

To achieve the FDR control of ClusterDE, the summary statistics from the original

dataset T “ pt1, . . . , tmq, and the summary statistics from the negative control dataset

T1 “ pt1
1, . . . , t1

mq should satisfy the following assumptions:

Assumption 1. For each non-DE gene j, the distribution of Cj is symmetric around 0.

Assumption 2. We use N to denote the set of non-DE genes, and define m0 “ cardpN q.

We assume that the contrast scores tC1, . . . , Cmu are continuous random variables, and there

exist a constant c ą 0, and α P p0, 2q such that

Var

˜

ÿ

jPN
1pCj ą tq

¸

ď cmα
0 , @t P R

Assumption 2 only restricts the correlation among the non-DE genes. We note that if the

contrast scores have constant pairwise correlation, or can be clustered into a fixed number
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of groups so that their within-group correlation is a constant, α has to be 2 and assumption

2 does not hold. Except for these extreme cases, assumption 2 holds in broad settings. For

example, if the features are independent:

Var

˜

ÿ

jPN
1pCj ą tq

¸

“
ÿ

jPN
Var p1pCj ą tqq ď cm0

Here we propose an assumption that is stronger than assumption 2, but enjoys a better

interpretability:

Assumption 3. Let r denote the number of contrast scores which has a non-zero correlation

with at least another contrast score. We assume that lim
mÑ8

r{m0 Ñ 0.

Intuitively we can interpret the assumed correlation structure as a matrix whose most

off-diagonal entries are 0 except for a small block. We can prove that Assumption 2 holds if

Assumption 3 holds:

Let M Ă N denote the genes within the correlated small block, cardpMq “ r.

Var

˜

ÿ

jPN
1pCj ą tq

¸

“ Var

˜

ÿ

jPM
1pCj ą tq

¸

` Var

¨

˝

ÿ

jPN zM

1pCj ą tq

˛

‚

ď c1r
2

` c2pm0 ´ rq

Theorem 1. We define FDP ptq “
cardptjPN :Cjětuq

cardptj:Cjětuq_1
, {FDP ptq “

cardptj:Cjď´tuq

cardptj:Cjětuq_1
, τq “ mintt ą

0 : {FDP ptq ď qu. For any FDR threshold q P p0, 1q, assume that there exist a constant

tq ą 0 such that PpFDP ptqq ď qq Ñ 1 as m Ñ 8. Then under Assumptions 1 and 2’s:

FDP pτqq ď q ` omp1q

lim sup
mÑ8

FDRpτqq ď q

The existence of tq ą 0 such that PpFDP ptqq ď qq Ñ 1 as m Ñ 8 implies that the

data-dependent cutoff τq is bounded with probability approaching 1, thus does not diverge
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to infinity. For the detailed proof of Theorem 1, please see section S3.8.6. We prove that the

contrast score in ClusterDE satisfies the assumptions for mirror statistics in data splitting.

Thus, this FDR control theory also applies to ClusterDE.

3.5 Discussion

In conclusion, ClusterDE is an effective solution to the double-dipping issue in post-clustering

DE analysis. We note that ClusterDE focuses on identifying potential cell-type marker

genes for cell-type annotation, so ClusterDE does not aim to capture the within-cell-type

heterogeneity that reflects continuous cell state changes. Notably, ClusterDE adapts to a

wide range of clustering algorithms and DE tests. Through extensive simulation studies

and real data analysis, we demonstrated that ClusterDE effectively avoids false discoveries

caused by double dipping and identifies biologically meaningful cell-type markers. For post-

clustering DE analysis with more than two clusters, we recommend using ClusterDE in a

stepwise manner, possibly following a cell cluster hierarchy constructed based on cluster

similarities (Fig. 3.18). That is, users compare a pair of ambiguous clusters at each step, so

the post-clustering DE genes can be used to decide whether the two clusters are biologically

meaningful and should be distinct. Finally, while ClusterDE focuses on the double-dipping

problem in the post-clustering DE analysis, the concept of synthetic null data (in silico

negative control) can be readily extended to other analyses also affected by double dipping,

such as post-pseudotime DE analysis [84] and data integration analysis. As double dipping is

almost surely unavoidable in single-cell data analysis due to the lack of external knowledge,

we proposed a general strategy to reduce false discoveries caused by double dipping by setting

up synthetic null data and using a contrastive strategy to find more reliable discoveries.

3.6 Code and data availability

The R package ClusterDE is available at https://github.com/SONGDONGYUAN1994/ClusterDE.

The tutorials of ClusterDE are available at https://songdongyuan1994.github.io/ClusterDE/
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docs/index.html. The source code and data for reproducing the results are available at:

http://doi.org/10.5281/zenodo.8161964 [85]. The pre-processed datasets are available

at https://figshare.com/articles/dataset/ClusterDE_datasets/23596764.
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3.8 Supplementary materials

S3.8.1 Practical guidelines for ClusterDE usage

ClusterDE is designed to find potential cell-type marker genes via pairwise comparisons of

cell clusters that might be ambiguous. In practice, we recommend using ClusterDE in the

following steps.

1. Given a set of cell clusters, find two clusters that may be defined as potential cell types

or subtypes. If users use Seurat, they may use the function BuildClusterTree to

construct a hierarchy of the clusters and examine two leaf clusters whose distinctions

are ambiguous.

2. Given the two chosen cell clusters, construct a data subset that contains only the cells

in these two clusters.

3. Input the data subset as the “target data” into ClusterDE.

4. Examine the DE genes outputted by ClusterDE and decide whether the two cell clusters

are biologically meaningful cell types or subtypes.

It is worth noting that ClusterDE does not provide an automatic decision about whether

two clusters should be merged, unlike the methods that directly assess the quality of clusters

[1–5]. Instead, ClusterDE focuses on identifying trustworthy post-clustering DE genes as

potential cell-type marker genes, enabling researchers to gain biological insights into clus-

ters by investigating the specific genes that distinguish the clusters. Hence, in contrast to

the clustering quality assessment methods, ClusterDE empowers researchers to explore the

functional and molecular characteristics of clusters.

Specifically, in step 3 of the above procedure, users have the option to input the cell cluster

labels in the target data (the default option in ClusterDE), or they can allow the target data

to be re-clustered by ClusterDE. If the default option is used, then ClusterDE performs

clustering on the synthetic null data only, and the target DE scores will be calculated based
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on the input cell clusters. Otherwise, ClusterDE performs clustering on the target data and

the synthetic null data in parallel, but the downside of this approach is that the target cell

clusters might not be identical to the input cell clusters of users’ interest.

S3.8.2 Simulation designs

To benchmark post-clustering DE methods in terms of the FDR and statistical power, we

needed ground truths of DE genes and non-DE genes. Hence, we used the R package

scDesign3 (version 0.99.0) [6] to generate realistic synthetic scRNA-seq data containing

true DE genes and non-DE genes, based on the model parameters learned from real scRNA-

seq data. Under each simulation setting, we generated 200 synthetic replicates.

For each replicate, we simulated a dataset with n “ 998 cells and m “ 9239 genes, the

same dimensions as those of the näıve cytotoxic T cells in the Zhengmix4eq dataset [7] after

the default Seurat preprocessing step that removed the genes expressed at very low levels. In

the following, we let i and j denote the indices of cells and genes, respectively, i “ 1, . . . , n;

j “ 1, . . . ,m.

The first step was to estimate the following model parameters from the näıve cytotoxic

T cells in the Zhengmix4eq dataset by scDesign3 [6]. For details of the model formulation,

please refer to the previous section ClusterDE step 1: synthetic null generation.

‚ Per-gene NB mean parameter µj P R`, j “ 1, ¨ ¨ ¨ ,m;

‚ Per-gene NB dispersion parameter σj P R`, j “ 1, ¨ ¨ ¨ ,m;

‚ Gene-gene Gaussian copula correlation matrix R P r0, 1smˆm.

Given the mode model parameters include tpµj, pσju
m
j“1 and

pR, the next steps belonged to

two settings: (1) one cell type with zero true DE genes; (2) two cell types with 200 true DE

genes.
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Simulation setting with one cell type and zero true DE genes

All of the n “ 998 cells were simulated from one cell type with an MVNB distribution

specified by the Gaussian copula, whose correlation matrix was pR, so gene j’s counts followed

the NB distribution with mean pµj and dispersion pσj, j “ 1, ¨ ¨ ¨ ,m. For the simulation

details, please refer to the previous section ClusterDE step 1: synthetic null generation. The

R package scDesign3 [6] was used to simulate a cell-by-gene count matrix Y P Nnˆm
ě0 , which

was used as the one-cell-type target data (Fig. 3.1c) in simulation studies.

Simulation setting with two cell types and 200 true DE genes

All of the n “ 998 cells were designed to belong to two cell types, with each cell type

having its own MVNB distribution specified by the Gaussian copula. For each replicate, we

randomly specified 200 true DE genes to have different mean parameters µ0
j and µ1

j based

on the estimate pµj.

For the two cell types, we simulated three cell-type size ratios r P t1, 4, 9u such that

cells i “ 1, . . . ,
“

n
r`1

‰

were designed to be of cell type 0, and cells i “
“

n
r`1

‰

` 1, . . . , n were

designed to be of cell type 1. For each replicate, the set 200 true DE genes were specified

with the index set JDE Ă t1, ¨ ¨ ¨ ,mu.

For each specified true DE gene j P JDE, we set its mean parameter in cell type 0 as

the estimate, i.e., µ0
j “ pµj. Then we modified its mean parameter in cell type 1, µ1

j , using

a pre-specified log fold change logFC with a 50% probability of up-regulation and a 50%

probability of down-regulation:

µ1
j “

$

&

%

pµj ˆ 2logFC, if Zj “ 1

pµj ˆ 2´logFC, if Zj “ 0
, with Zj „ Berp0.5q, j P JDE .

For the remaining true non-DE genes, we set

µ0
j “ µ1

j “ pµj, j P t1, ¨ ¨ ¨ ,muzJDE .

77



The parameter logFC determines the differences between the two cell types, and it is

expected to have an inverse relationship with the severity level of double dipping (that is,

the more different the two cell types, the less severe the double dipping). Hence, we simulated

two cell types with a sequence of logFC values

logFC “ 1.05, 1.1, ¨ ¨ ¨ , 1.95, 2, 2.1, ¨ ¨ ¨ , 2.9, 3.

For each logFC value, we simulated cells from cells 0 and 1, each with an MVNB distri-

bution specified by the Gaussian copula, whose correlation matrix was pR. That is, gene j’s

counts in cell types 0 and 1 followed NB distributions with different mean parameters µ0
j and

µ1
j , respectively, and the same dispersion parameter pσj, j “ 1, ¨ ¨ ¨ ,m. For the simulation

details, please refer to the previous section ClusterDE step 1: synthetic null generation. The

R package scDesign3 [6])was used to simulate a cell-by-gene count matrix Y P Nnˆm
ě0 , which

was used as the two-cell-type target data (Fig. 3.4) in simulation studies.

Figure 3.4: When the target data contains cells from two cell types (simulation; see ClusterDE methodology “Simulation
setting with one cell type and zero true DE genes”), the synthetic null data generated by ClusterDE fills the gap between the
two cell types but resembles the target data in other visual aspects of UMAP cell embeddings (left), per-gene expression mean
and variance statistics (middle), and gene-gene correlations.
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S3.8.3 Real data analysis

Collection of real data

We collected five scRNA-seq datasets of cell lines, including the three datasets of A549,

H2228, and HCC827 from the study [8] and downloaded from the link https://github.com/

LuyiTian/sc_mixology/tree/master/data, and the two datasets HEK293T and JUKART

from the study [9] and downloaded from https://cf.10xgenomics.com/samples/cell-exp/

1.1.0/jurkat/jurkat_filtered_gene_bc_matrices.tar.gz and https://cf.10xgenomics.

com/samples/cell-exp/1.1.0/293t/293t_filtered_gene_bc_matrices.tar.gz.

We also collected eight peripheral blood mononuclear cell (PBMC) datasets from the

study [10], which were downloaded from https://github.com/satijalab/seurat-data.

The datasets were from the same biological sample with two technical replicates (Rep1/Rep2)

measured by four protocols (10X Genomics Versions 2 and 3, Drop-seq, and inDrop). In

each dataset, we selected the cells with cell type labels “CD14` monocytes” and “CD16`

monocytes.”

Data preprocessing

We filtered out lowly expressed genes. For the cell line datasets A549, H2228, and HCC827,

we removed the genes expressed in fewer than 20% cells. For the cell line datasets HEK293T

and JUKART, we removed genes expressed in fewer than 10% cells. For PBMC datasets, we

removed genes expressed in fewer than 10% of the selected monocyte cells. When performing

the default Seurat clustering, Seurat automatically removed the cells with fewer than three

genes expressed and the genes expressed in fewer than 200 cells.

Dimensionality reduction and visualization

To visualize the high-dimensional single-cell data, we first applied the PF-logPF transforma-

tion to a cell-by-gene count matrix [11]. We then used the R package irlba (version 2.3.5.1)

to calculate the top 50 principal components (PCs) of the transformed matrix. Next, we
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used the R package umap (version 0.2.10.0) to project the cells from the 50-dimensional PC

space to the 2-dimensional UMAP space.

When comparing the target data and the synthetic null data, we calculated the PCs and

UMAPs jointly by concatenating the two datasets so the target cells and synthetic null cells

were projected to the same 2-dimensional UMAP space.

We used the R package ggplot2 (version 3.4.2) to make all plots.

For the UMAP visualizations in Fig. 3.3f, we truncated each gene’s normalized expression

levels to be below the 99-th percentile to better visualize the gene expression pattern.

Gene set enrichment analysis

We used the R package clusterProfiler (4.4.4) to perform the gene set enrichment analysis

(GSEA); the test method was fgsea, and the number of permutations was 100,000.

The gene set “CD14`
{CD16` Monocyte Markers” was from the original study [10] and

downloaded from https://bitbucket.org/jerry00/scumi-dev/raw/61f7f001d20b2fc8f

a7c2f4f4147bff1b0d620d8/R/marker_gene/human_pbmc_marker.rda. The gene set “House-

keeping Genes”, HSIAO HOUSEKEEPING GENES, was downloaded from the Molecular Signature

Database (MSigDB); the source study was [12].

Validity checks of the contrast scores of ClusterDE and the P values of Seurat,

Countsplit, and the TN test

For ClusterDE, the major assumption is that the contrast scores of true non-DE genes

are symmetric around zero. In Fig. 3.5 left, we checked the symmetry of the contrast

scores of ClusterDE using the five DE tests (Wilcoxon, t-test, NB-GLM, LR, and bimod;

corresponding to Fig. 3.5a–e left) in a simulated one-cell-type dataset where all genes are

true non-DE genes (see Simulation designs “ Simulation setting with one cell type and zero

true DE genes”; the dataset is one of the 200 synthetic replicates).

For Seurat, Countsplit, and the TN test methods, their FDR control validity requires that
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the P values of true non-DE genes follow the Uniformr0, 1s distribution. First, we divided

the genes in the same simulated dataset into two groups by applying hierarchical clustering

(using the default R function hclust()) to the estimated correlation matrix pR used in the

Gaussian copula. Due to the block pattern of pR (Fig. 3.1c), the two groups include the

genes that are highly correlated and those that are not much correlated, respectively. We

examined the P values of the genes in the two groups separately. Note that all genes in

this simulated dataset are true non-DE genes. In Fig. 3.5 middle and right, we plotted

the histograms of the P values and the quantile-quantile plots (Q-Q plots) of the negative

log-transformed P values of Seurat, Countsplit (both using the five DE tests; corresponding

to Fig. 3.5a–e) and the TN test (using its own test; the same panels plotted five time

in Fig. 3.5a–e). We also used the R function KL.empirical (from the R package entropy

(version 1.3.1)) to calculate the empirical Kullback–Leibler divergence (KL div.) between the

P value distribution and the theoretical Uniformr0, 1s distribution. A larger Kullback–Leibler

divergence value represents a more severe violation of the P value uniformity assumption.

The results show that Countsplit and the TN test had close-to-uniform P values in the

uncorrelated gene group, but their P values exhibited a severe departure from the uniform

distribution in the correlated gene group.
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Figure 3.5: Validity checks of the contrast scores of ClusterDE and P values of Seurat, Countsplit, and the TN test on an
exemplary one-cell-type dataset, which does not contain any true DE genes by the simulation design (see Simulation designs
“ Simulation setting with one cell type and zero true DE genes”).
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The panels (rows) a–e represent the five DE tests in Seurat used in ClusterDE, Seurat, and Countsplit (see ClusterDE method-
ology “ ClusterDE step 3: DE analysis”); since the TN test has its own DE test, its results are the same in the panels a–e.
The first column shows that the ClusterDE contrast scores of all genes (true non-DE genes) are approximately symmetric
around 0, which meets the assumption of ClusterDE for the FDR control. The second column shows the histograms of the P
values of the correlated genes (top) and the uncorrelated genes (bottom) from Seurat, Countsplit, and the TN test. A larger
empirical Kullback-Leibler divergence (KL div.) between the P value distribution and the theoretical Uniformr0, 1s distribution
represents a more severe violation of the P value uniformity assumption. The results show that Countsplit and the TN test
have close-to-uniform P values for the uncorrelated genes, but their P values exhibit a severe departure from the uniform
distribution for the correlated genes. The third column contains the quantile-quantile plots of the negative log-transformed P
values corresponding to the second column.
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S3.8.4 Implementation of the TN test and Countsplit

We compared ClusterDE with two existing methods—the TN test [13] and Countsplit [14]—

that attempted to address the double-dipping issue in post-clustering DE analysis.

For the TN test, we used the Python module truncated-normal (version 0.4). We fol-

lowed the GitHub tutorial for the implementation (https://github.com/jessemzhang/tn_

test/blob/master/experiments/experiments_pbmc3k.ipynb). In the clustering step, we

used the same procedure as in ClusterDE step 2. In the DE analysis step, unlike ClusterDE

and Countsplit, the TN test has its own DE test, so we did not use any DE tests included

in the R package Seurat (version 4.2.0).

For Countsplit [14], we used the R package countsplit (version 1.0) to split the original

count matrix into a training matrix (for clustering) and a test matrix (for DE analysis). In

the clustering step, we used the same procedure as in ClusterDE step 2. In the DE analysis

step, we used the five DE tests included in the R package Seurat (version 4.2.0).

S3.8.5 Alternative strategies for synthetic null generation

Although the model-X knockoffs method was developed for selecting features in a multivari-

ate predictive model (e.g., the Lasso) [15], not for marginal DE tests (where each feature is

examined separately), we compared model-X knockoffs to ClusterDE because both methods

use the real-data-based negative control idea.

For a direct implementation of the model-X knockoffs method on the post-clustering

DE analysis, we used the R package knockoff (version 0.3.6) to construct the knockoff

data (i.e., the negative control) and used the default glmnet method for binary logistic

regression (where the cluster labels are considered as the response variable y, and the genes

are considered as the features) to select features as DE genes. We test this approach on 50

simulated datasets (due to computational time) with logFC “ 2.6 (see Simulation designs

“ Simulation setting with two cell types and 200 true DE genes”) and found that it always

selected 0 DE genes (i.e., the power was always 0).
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Figure 3.6: The FDRs and power of ClusterDE with three approaches for synthetic null generation: scDesign3 (the default
in ClusterDE), the model-X knockoffs, and independent permutations of all genes across cells. Compared with the other two
approaches, scDesign3 controls the FDR and yields higher power.

Moreover, we used the knockoff data constructed above and the permuted data (where

each gene was independently permuted across all cells) as two alternative synthetic null

generation strategies (alternatives to scDesign3) in ClusterDE step 1. Our results on the

simulated datasets indicate that scDesign3 led to more solid FDR control and better statis-

tical power than these two alternative strategies for the synthetic null generation (Fig. 3.6).

S3.8.6 Proof of theorem 1

The proof of Theorem 1 is mainly based on the proof in [16], which has also been included

below.

For ease of presentation, we introduce the following notations. For t P R, denote

pG0
mptq “ 1

m0

ř

jPS0
1 pCj ą tq , G0

mptq “ 1
m0

ř

jPS0
P pCj ą tq ,

pG1
mptq “ 1

m1

ř

jPS1
1 pCj ą tq , pV 0

mptq “ 1
m0

ř

jPS0
1 pCj ă ´tq .
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Let rm “ m1{m0. In addition, denote

FDPmptq “
pG0
mptq

pG0
mptq ` rm pG1

mptq
,

FDP:
mptq “

pV 0
mptq

pG0
mptq ` rm pG1

mptq
,

FDPmptq “
G0

mptq

G0
mptq ` rm pG1

mptq
.

Lemma 1. Under Assumption 2, if m0 Ñ 8 as m Ñ 8, we have in probability,

sup
tPR

ˇ

ˇ

ˇ

pG0
mptq ´ G0

mptq
ˇ

ˇ

ˇ
ÝÑ 0, sup

tPR

ˇ

ˇ

ˇ

pV 0
mptq ´ G0

mptq
ˇ

ˇ

ˇ
ÝÑ 0.

Proof of Lemma 1. For any ϵ P p0, 1q, denote ´8 “ αm
0 ă αm

1 ă ¨ ¨ ¨ ă αm
Nϵ

“ 8 with

Nϵ “ r2{ϵs, such that G0
m

`

αm
k´1

˘

´ G0
m pαm

k q ď ϵ{2 for k “ 1, . . . , Nϵ. By Assumption 2, and

such a sequence tαm
k u exists since G0

mptq is a continuous function for t P R. We have

P
ˆ

sup
tPR

pG0
mptq ´ G0

mptq ą ϵ

˙

ď P

¨

˝

Nϵ
ď

k“1

sup
tPrαm

k´1,α
m
k q

pG0
mptq ´ G0

mptq ą ϵ

˛

‚

ď

Nϵ
ÿ

k“1

P

¨

˝ sup
tPrαm

k´1,α
m
k q

pG0
mptq ´ G0

mptq ą ϵ

˛

‚

(S3.1)

We note that both pG0
mptq and G0

mptq are monotonically decreasing. Therefore, @k P

t1, . . . , Nϵu, we have

sup
tPrαm

k´1,α
m
k q

pG0
mptq ´ G0

mptq ď pG0
m

`

αm
k´1

˘

´ G0
m pαm

k q ď pG0
m

`

αm
k´1

˘

´ G0
m

`

αm
k´1

˘

` ϵ{2.

By Equation S3.1, Assumption 2, and the Chebyshev’s inequality, it follows that as m Ñ 8,

P
ˆ

sup
tPR

pG0
mptq ´ G0

mptq ą ϵ

˙

ď

Nϵ
ÿ

k“1

P
´

pG0
m

`

αm
k´1

˘

´ G0
m

`

αm
k´1

˘

ą
ϵ

2

¯

ď
4cNϵ

m2´α
0 ϵ2

Ñ 0,
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Similarly, we can show that as m Ñ 8,

P
´

inf
tPR

pG0
mptq ´ G0

mptq ă ´ϵ
¯

ď

Nϵ
ÿ

k“1

P
´

pG0
m pαm

k q ´ G0
m pαm

k q ă ´
ϵ

2

¯

ď
4cNϵ

m2´α
0 ϵ2

Ñ 0.

This concludes the proof of the first claim in Lemma 2. The second claim follows similarly

using the symmetric property of the mirror statistics Cj ’s for j P S0.

Proof of Theorem 1. We first show that for any ϵ P p0, qq, we have

P pτq ď tq´ϵq ě 1 ´ ϵ,

in which tq´ϵ ą 0 satisfying P pFDP ptq´ϵq ď q ´ ϵq Ñ 1. Since the variances of the mirror

statistics are upper bounded and also bounded away from 0, by Lemma 1, we have

sup
0ătďc

ˇ

ˇFDP:
mptq ´ FDPmptq

ˇ

ˇ

m
Ñ 0

for any constant c ą 0. By the definition of τq, i.e., τq “ inf
␣

t ą 0 : FDP:
mptq ď q

(

, we have

P pτq ď tq´ϵq ě P
`

FDP:
m ptq´ϵq ď q

˘

ě P
`ˇ

ˇFDP:
m ptq´ϵq ´ FDPm ptq´ϵq

ˇ

ˇ ď ϵ,FDP ptq´ϵq ď q ´ ϵ
˘

ě 1 ´ ϵ
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for m large enough. Conditioning on the event τq ď tq´ϵ, we have

lim sup
mÑ8

E rFDPm pτqqs ď lim sup
mÑ8

E rFDPm pτqq | τq ď tq´ϵsP pτq ď tq´ϵq ` ϵ

ď lim sup
mÑ8

E
“
ˇ

ˇFDPm pτqq ´ FDPm pτqq
ˇ

ˇ | τq ď tq´ϵ

‰

P pτq ď tq´ϵq

` lim sup
mÑ8

E
“
ˇ

ˇFDP:
m pτqq ´ FDPm pτqq

ˇ

ˇ | τq ď tq´ϵ

‰

P pτq ď tq´ϵq

` lim sup
mÑ8

E
“

FDP:
m pτqq | τq ď tq´ϵ

‰

P pτq ď tq´ϵq ` ϵ

ď lim sup
mÑ8

E

«

sup
0ătďtq´ϵ

ˇ

ˇFDPmptq ´ FDPmptq
ˇ

ˇ

ff

` lim sup
mÑ8

E

«

sup
0ătďtq´ϵ

ˇ

ˇFDP:
mptq ´ FDPmptq

ˇ

ˇ

ff

` lim sup
mÑ8

E
“

FDP:
m pτqq

‰

` ϵ.

The first two terms are 0 based on Lemma 2 and the dominated convergence theorem. For

the third term, we have FDP:
m pτqq ď q by the definition of τq. This concludes the proof of

Proof of Theorem 1.

S3.8.7 Existing methods do not have FDR control guarantee

In this subsection, we will review and formulate existing methods for clustering + DE analysis

in single-cell sequencing data analysis, which may or may not have accounted for double

dipping. With the help of method formulation, we then show why all existing methods result

in unwanted correlated clustering labels and expression vectors to perform DE analysis on.

Finally, a unified theory summarizes the conceptually false discovery rate inflation in those

methods.

The näıve method with the double-dipping issue

In the näıve method, it directly uses pZ1, . . . , pZn P t0, 1u, where pZi “ gYpYiq, to define two

cell groups and then tests each gene j against HDD
0j instead of H0j. Due to the existence of

gene-gene correlations, it is highly possible that for some non-DE gene j, Yj “ pY1j, . . . , Ynjq
T
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and pZ “ p pZ1, . . . , pZnqT are dependent and correlated.

The Cellsplit method

The Cellsplit method first randomly split the n cells Y1,Y2, ¨ ¨ ¨ ,Yn into two sets Ytrain

and Ytest, such that Ytrain Y Ytest “ tY1, . . . ,Ynu. Then gp¨q “ gtrainp¨q is constructed only

on Ytrain by the user-chosen algorithm, for instance, the Louvain clustering [17]. The cell

cluster membership pZi “ gtrainpYiq P t0, 1u for only gene i’s such that Yi P Ytest. It is worth

noting that pZi takes Yi as the input and thus the dependence between pZi and Yi still exists,

although gtrainp¨qKYtest.

The TN test [13] is an example of the Cellsplit methods.

Note that sample splitting, or here in our case, the Cellsplit method, is a popular solution

to the problems that have the “double dipping issue”. However, an intuitive explanation of

why it fails here is that the cell cluster membership is a crucial component in constructing

our testing hypothesis. Splitting the cells into the training and the testing sets does not

help in generating cluster labels that are independent of gene expressions for the cells in the

testing set.

The Genesplit method

Following the Cellsplit method, the Genesplit method splits the data by the genes (features).

It results in a testing set with only one gene j, which is to be tested, and the original n cells;

the remaining pm´1q genes and the n cells construct the training set. The Genesplit method

actually works under two certain ideal scenarios.

The first ideal scenario requires two conditions: (1) the oracle clustering algorithm, which

is defined below, and (2) the independent gene case where the tested non-DE gene j is

independent with any true DE genes.

Definition 1 (Oracle clustering). The clustering function gp¨q is oracle in that it only
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correlates with the true DE genes, i.e.,

Cov
´

pZ , Yj

¯

“ 0, @j R T

where T Ă t1, . . . ,mu denotes the set of true DE genes, Yj “ pY1j, . . . , Ynjq
T is the j-

th gene’s count vector, and pZ “ p pZ1, . . . , pZnqT denotes the cell cluster membership under

current clustering function.

When the clustering function is oracle, it only uses the true DE genes (while unknown).

Denote the i-th gene count vector Yi restricted to the set of true DE genes T by Yi,T P N|T |

ě0 .

Then g : N|T |

ě0 Ñ t0, 1u, and gpYiq “ gpYi,T q. Since gp¨q is constructed from Y1,T , . . . ,Yn,T ,

it does not use Yij. Hence, if Yi,T is independent of Yij, we have the cell cluster membership

pZi “ gpYiq “ gpYi,´jq independent of Yij.

The second ideal scenario is when all genes are independent, no matter the clustering

function gp¨q is oracle or not. In this scenario, the clustering algorithm may use any genes.

But the overall independence guarantees that the gene j will not be used to construct

gp¨q when it is to be tested. Denote the gene count vector Yi with gene j removed by

Yi,´j P Nm´1
ě0 . Then g : Nm´1

ě0 Ñ t0, 1u, and gpYiq “ gpYi,´jq. Since gp¨q does not use Yij, if

Yi,´j is independent of Yij, we have gpYiq independent of Yij. Hence, under the independent

gene case, gene split will not make non-DE gene j a false positive.

However, the above two ideal scenarios usually do not hold in real single-cell sequencing

data analysis, and the computing efficiency is a great concern.

The Countsplit method

The Countsplit method [14] is a selective inference approach that claims to solve the double

dipping issue in the clustering + DE analysis. In Countsplit, each Yij is independently

splitted as Y 1
ij and Y 2

ij such that Yij “ Y 1
ij ` Y 2

ij and Y 1
ij „ BinomialpYij, 0.5q. The basic idea

is to cluster the cells with the first part of counts rY 1
ijsi,j, and perform DE analysis on the

second part of counts rY 2
ijsi,j.
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Denote Y1
i “ pY 1

i1, . . . , Y
1
imqJ and Y2

i “ pY 2
i1, . . . , Y

2
imqJ. gp¨q “ g1p¨q is constructed only

from Y1
1, . . . ,Y

1
n and does not use Y 2

ij . The cell cluster membership pZi “ gpY1
i q “ g1pY1

i q.

The authors of Countsplit claim that Y 1
ijKY 2

ij , and thus pZi “ gpY1
i q “ g1pY1

i qKY 2
ij .

However, the above justification implicitly makes an assumption that rYijsi,j are all inde-

pendent entries, which means that all n cells and all m genes are independent. This assump-

tion does not hold in real scRNA-seq data. Generally, the correlations between Yij and Yik,

i “ 1, . . . , n, lead to the correlations between Y 2
ij and pZi “ g1pY1

i q “ g1ppY 1
i1, ¨ ¨ ¨ , Y 1

ik, ¨ ¨ ¨ , Y 1
imqTq.

The dependence and correlation still exist.

Correlations leads to FDR control failure

Lemma 2. If

Cov
´

pZ , Yj

¯

ą 0, (S3.2)

then HDD
0 : ErYj| pZ “ 0s “ ErYj| pZ “ 1s may not hold even when H0 : ErYj|Z “ 0s “

ErYj|Z “ 1s holds.

Proof.

ErYjs “ ErErYj|Zss “ PpZ “ 0qErYj|Z “ 0s ` PpZ “ 1qErYj|Z “ 1s (S3.3)

“ ErErYj| pZss “ Pp pZ “ 0qErYj| pZ “ 0s ` Pp pZ “ 1qErYj| pZ “ 1s. (S3.4)

When H0 holds, assume µ :“ µ0 “ ErYj|Z “ 0s “ ErYj|Z “ 1s “ µ1, then

ErYjs “ PpZ “ 0q ¨ µ ` PpZ “ 1q ¨ µ “ µ.
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(S3.2) implies that

0 ă Cov
´

pZ , Yj

¯

“ E
”

pZYj

ı

´ E
”

pZ
ı

E rYjs

“ E
”

E
”

pZYj| pZ
ıı

´

´

Pp pZ “ 0q ¨ 0 ` Pp pZ “ 1q ¨ 1
¯

¨ µ

“

´

Pp pZ “ 0qEr0 ¨ Yj| pZ “ 0s ` Pp pZ “ 1qEr1 ¨ Yj| pZ “ 1s

¯

´ Pp pZ “ 1q ¨ µ

“ Pp pZ “ 1qErYj| pZ “ 1s ´ Pp pZ “ 1q ¨ µ

“ Pp pZ “ 1q ¨

´

ErYj| pZ “ 1s ´ µ
¯

Given Pp pZ “ 1q ą 0, we have

ErYj| pZ “ 1s ą µ (S3.5)

According to (S3.4),

ErYj| pZ “ 0s “
ErYjs ´ Pp pZ “ 1qErYj| pZ “ 1s

Pp pZ “ 0q

ă

µ
´

1 ´ Pp pZ “ 1q

¯

Pp pZ “ 0q
“ µ

ă ErYj| pZ “ 1s.

Therefore, HDD
0 does not hold when H0 actually holds. Hence, by testing HDD

0j , the double-

dipping issue may make gene j a false positive for H0j; that is, at the conceptual level, gene

j may be DEGDD but not a DEGtrue.

All existing methods generally suffer from the correlation between pZ and Yj for some non-

DE gene j. False discoveries are made conceptually, and FDR is thus inflated conceptually.

In section Results, it is confirmed that FDR is inflated for all existing methods in real

single-cell sequencing data analysis.

S3.8.8 Supplementary figures
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Figure 3.7: A toy example to showcase the double-dipping issue.

The two genes’ expressions follow a bivariate Gaussian distribution as the cells come from a homogeneous cell type. However,
if we run the K-means clustering to divide the cells into two clusters, the two genes are forced to exhibit different distributions
in the two clusters.
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Figure 3.8: The FDRs and power of ClusterDE and the existing methods under various severity levels of double dipping when
the two cell types have a size ratio of 1 : 1.

The log fold change (logFC) summarizes the average gene expression difference between the two cell types in simulation
(see ClusterDE methodology “Simulation setting with two cell types and 200 true DE genes”). Corresponding to a small logFC,
a small adjusted Rand index (ARI) represents a bad agreement between cell clusters and cell types, representing a more severe
double-dipping issue. Across various severity levels of double dipping and the five DE tests, ClusterDE controls the FDRs under
the target FDR thresholds (diagonal dashed line) and achieves comparable or higher power compared to the existing methods
at the same actual FDRs.
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Figure 3.9: The FDRs and power of ClusterDE and the existing methods under various severity levels of double dipping when
the two cell types have a size ratio of 1 : 4.

The log fold change (logFC) summarizes the average gene expression difference between the two cell types in simulation
(see ClusterDE methodology “Simulation setting with two cell types and 200 true DE genes”). Corresponding to a small logFC,
a small adjusted Rand index (ARI) represents a bad agreement between cell clusters and cell types, representing a more severe
double-dipping issue. Across various severity levels of double dipping and the five DE tests, ClusterDE controls the FDRs under
the target FDR thresholds (diagonal dashed line) and achieves comparable or higher power compared to the existing methods
at the same actual FDRs.
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Figure 3.10: The FDRs and power of ClusterDE and the existing methods under various severity levels of double dipping
when the two cell types have a size ratio of 1 : 9.

The log fold change (logFC) summarizes the average gene expression difference between the two cell types in simulation
(see ClusterDE methodology “Simulation setting with two cell types and 200 true DE genes”). Corresponding to a small logFC,
a small adjusted Rand index (ARI) represents a bad agreement between cell clusters and cell types, representing a more severe
double-dipping issue. Across various severity levels of double dipping and the five DE tests, ClusterDE controls the FDRs under
the target FDR thresholds (diagonal dashed line) and achieves comparable or higher power compared to the existing methods
at the same actual FDRs.
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Figure 3.11: When the target data contains cells from two cell types (simulation; see ClusterDE methodology “Simulation
setting with one cell type and zero true DE genes”), the synthetic null data generated by ClusterDE (second row) fills the
gap between the two cell types but resembles the target data in other visual aspects of UMAP cell embeddings (left), per-gene
expression mean and variance statistics (middle), and gene-gene correlations.

In contrast, the synthetic null data generated by knockoffs (third row) and permutations (fourth row) do not resemble the
target data. For the synthetic null data generated by knockoffs, it preserves the gene-gene correlations of the target data, but
does not preserve per-gene expression mean and variance statistics. For the synthetic null data generated by permutations, it
preserves per-gene expression mean and variance statistics of the target data, but does not preserve the gene-gene correlations.
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Figure 3.12: Stability of the DE genes identified by Cluster in relation to the randomness of synthetic null generation.

Given one target dataset simulated with two cell types (see ClusterDE methodology “Simulation setting with two cell types and
200 true DE genes”), 50 synthetic null datasets are generated with 50 random seeds, and DE genes are identified by ClusterDE
using each synthetic null dataset. The red curve shows the mean and standard deviation (half of the vertical bar height) of the
numbers of DE genes identified at each target FDR across the 50 random seeds. The cyan curve shows the mean and standard
deviation (half of the vertical bar height) of the numbers of DE genes shared between two random seeds, across

`50
2

˘

pairs of
random seeds, at each target FDR. The results show that the DE genes identified by ClusterDE remain relatively stable and
robust to the randomness.
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Figure 3.13: UMAP visualizations and Seurat clustering accuracies (ARIs) of the eight PBMC monocyte datasets (ordered
by ARIs from high to low).

The first and second columns show the UMAP visualizations of the eight datasets as the target data, with the cells labeled by the
monocyte subtypes (the first column) or the clusters (the second column). The third column shows the UMAP visualizations of
the synthetic null data corresponding to the eight target datasets. The horizontal dashed line between rows 4 and 5 divides the
eight datasets based on the clustering accuracy. It is expected that monocyte-subtype markers are more likely to be identified
as post-clustering DE genes from the top four datasets than the bottom four datasets.
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Figure 3.14: ClusterDE avoids false discoveries under double dipping.

Although the datasets contain two monocyte subtypes, the clustering results poorly match the subtype labels (the bottom four
datasets in Fig. 3.13), and thus no DE genes should be discovered. The numbers in black and white are the number of DE genes
and the proportion of DE genes among all genes, respectively. In most cases, ClusterDE does not find DE genes, as expected.
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Figure 3.15: Gene set enrichment analysis (GSEA) of the ranked DE gene lists identified by ClusterDE and Seurat with five
DE tests from three datasets.

The red lines represent the enrichment of the “CD14`/CD16` Monocyte Marker Genes” set, and the blue lines represent the
enrichment of the “Housekeeping Genes” set. The short vertical lines at the bottom show the rank distributions of the genes in
the two gene sets within each ranked DE gene list. The normalized enrichment score (NES) reflects the direction and magnitude
of enrichment, and the P value indicates the significance of enrichment.
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Figure 3.16: Overlaps between monocyte markers/housekeeping genes and the top k DE genes, with k ranging from 1 to 100.

The horiontal axis represents k (for example, k “ 100 means we select the top 100 DE genes from the DE gene lists). The
vertical axis indicates the number of monocyte markers (the top row in each panel) or housekeeping genes (the bottom row
in each panel) among the top k DE genes found by each of the five DE tests (columns). In most cases, ClusterDE (blue line)
identifies more monocyte subtype markers and fewer housekeeping genes compared to Seurat (red line).
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Figure 3.17: The minus-average (MA) plots of ClusterDE contrast scores (target DE score minus null DE score) vs. averages
of target DE scores and null DE scores.

The red color labels four well-known CD14`{CD16` subtype markers, and the blue color labels four well-known housekeeping
genes. The dashed black line indicates the contrast scores of 0. For housekeeping genes, their DE scores are large in both
target data and synthetic null data, so their contrast scores are centered around 0. Hence, these housekeeping genes would
be ranked top by Seurat (which only examines target DE scores) but not by ClusterDE. On the other hand, the DE scores of
subtype markers are much larger in target data than in synthetic null data, so their contrast scores are large and ranked top
by ClusterDE.
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Figure 3.18: A demonstration of using ClusterDE in the presence of multiple cell clusters.

a, A UMAP visualization of Seurat clusters found in the PBMC dataset Rep1 10x(v3). The blue box labels two neighboring
clusters, which roughly represent the CD14`{CD16` monocytes. b, The cluster tree constructed by Seurat, with clusters 2 and
8 corresponding to the two clusters in the blue box in a. It is recommended that ClusterDE can help annotate two neighboring
cell clusters in UMAP or a cluster tree, based on the more trustworthy post-clustering DE genes identified by ClusterDE. The
reason is that neighboring clusters are more likely to be spurious.
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CHAPTER 4

Summary and future directions

In this dissertation, two gene selection methods, scPNMF and ClusterDE, have been intro-

duced as two solutions to different tasks in single-cell sequencing data analysis. Below I

summarize the two methods and list the future research directions for each one.

4.1 Sparse gene encoding of single cells to facilitate gene selection

for targeted gene profiling

In Chapter 2, we proposed scPNMF, an unsupervised gene selection and data projection

method for scRNA-seq data. Motivated by the nature of targeted gene filing data, the

major goals of scPNMF include selecting a fixed number of informative genes to distinguish

cell types and guiding gene selection for targeted gene profiling experiments. Moreover,

scPNMF can project a new targeted gene profiling dataset with the selected genes to the

low-dimensional space that embeds a reference scRNA-seq dataset. Besides, scPNMF also

works as a dimensionality reduction method with good interpretability. Each dimension in

the low-dimensional space found by scPNMF can be considered as a new functional “feature”

(as a linear combination of correlated and thus functionally related genes). The mutual

exclusiveness makes the PNMF bases used in scPNMF advantageous over the PCA bases in

terms of removing confounding effects. Therefore, scPNMF has great potential in deciphering

cell heterogeneity in single-cell data by working as an interpretable dimensionality reduction

method.

A few related questions remain open. The first key question for gene selection is: how

many genes should be selected as informative genes to fully capture the biological variations of
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interest? In our studies, we observe that the informative gene number being 200 is generally

an elbow point for the clustering accuracies for most gene selection methods, including

scPNMF (Fig. 2.14). Therefore, 200 genes may be an empirical guideline for sufficiently

capturing biological variations in scRNA-seq data. However, it remains challenging to decide

the minimum number of informative genes, given that the underlying cell sub-population

structure is data-specific and might be complex. We plan to explore this problem in the

future with the possible use of information theory.

Second, the idea of selecting the informative genes by leveraging the linear dimension

reduction methods can be extended to accommodate other single-cell multi-omics technolo-

gies, such as chromatin accessibility landscapes measured by single-cell ATAC-seq [62], or

even to integrate data across multi-omics datasets. The extensions can also applied to cases

where the mutually exclusive functional groups are conceptually existent, for instance, in

determining surrogate variables.

Third, it is worth noting that the multimodality test for basis selection in scPNMF only

accounts for discrete cell types but not continuous cell trajectories. Therefore, other strate-

gies are needed to select informative bases to capture biological variations along continuous

cell trajectories.

4.2 Post-clustering differential expression methods robust to false-

positive inflation caused by double dipping

In Chapter 3, we proposed ClusterDE, which is an effective solution to the double dipping

issue in post-clustering DE analysis. Notably, ClusterDE adapts to a wide range of clustering

algorithms and DE tests. For post-clustering DE analysis with more than two clusters, we

recommend using ClusterDE in a stepwise manner.

ClusterDE is our first attempt to solve the double dipping issue with the help of realistic

in silico synthetic null data as a negative control, and identify discoveries by contrasting the

target data and the synthetic null. Therefore, the concept of synthetic null data (in silico
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negative control) can be readily extended to other analyses also affected by double dipping,

such as multi-batch post-clustering DE analysis, post-pseudotime DE analysis [84], post-

spatially variable gene identification, and data integration analysis. As double dipping is

almost surely unavoidable in single-cell sequencing data analysis due to the lack of external

knowledge, we proposed a general strategy to reduce false discoveries caused by double

dipping by setting up synthetic null data and using a contrastive strategy to find more

reliable discoveries. The major obstacles to be overcome are how to make an accurate null

hypothesis in new tasks, and how to generate realistic in silico negative control data. Some

of our group members are already putting effort into these cutting-edge tasks.

Secondly, we will continue to work on the theoretical part of the ClusterDE method.

As we have studied the post-clustering DE analysis for a while, a clear definition has been

made of the analysis task. We will illustrate why ClusterDE succeeds in controlling FDR in

an asymptotic way, and why competing methods conceptually fail to control FDR. We are

currently wrapping up this part into a separate manuscript.

Third, improving the power performance while controlling the FDR control is always an-

other future direction of ClusterDE. This aligns with the update of the Clipper [69] method,

which was developed by Xinzhou Ge, also an author of the ClusterDE method. We would like

to explore alternative formats and combinations of contrast scores. The theoretical evidence

also assists this part.

4.3 Combination of scPNMF and ClusterDE for general single-

cell sequencing data analysis

In cutting-edge single-cell sequencing data analysis pipelines, such as the R package Seurat

[9], performing cell clustering with informative gene selection and identifying cell-type marker

genes are both essential steps. As these two tasks appear in a sequential manner, questions

such as the overlaps between these two types of “interesting” genes, and the influence of

the results of one task on the other have already brought up researchers’ interest [86]. We

are happy to explore these problems with our understanding, knowledge, and experience on
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these tasks. Hopefully, it will provide researchers in this field with a more accurate and

interpretable tool to decipher gene functions and find proper interesting genes.
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