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Climate and biodiversity change constrain the flow of cultural ecosystem 
services to people: A case study modeling birding across Africa under future 
climate scenarios 

Kyle Manley *, Benis N. Egoh 
Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• ML and crowdsourced data help model 
non-linearities of CES in understudied 
regions. 

• Interactions of climate, biodiversity, 
environmental, and social factors lead to 
CES flows. 

• Climate and biodiversity changes 
constrain future CES flows in Africa. 

• Regions of high CES use currently tend 
to be the most vulnerable in the future. 

• Our approach can be used in regions 
across the world to better understand 
CES.  
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A B S T R A C T   

Global change is currently impacting ecosystems and their contributions to people (i.e. ecosystem services). 
These impacts have consequences for societies and human well-being, especially in Africa. Historically, efforts 
have focused on assessing global change from a social or biophysical perspective, treating them as separate 
entities. Yet, our understanding of impacts to social-ecological systems remains limited, particularly in the Global 
South, due to a lack of data, tools, and approaches accounting for social and ecological aspects of ecosystem 
services. This is especially relevant for cultural ecosystem services as they are less tangible. We use a simple 
indicator and important provider of a multitude of cultural ecosystem services, birding, to understand how 
climate, biodiversity, and land use change will impact cultural ecosystem services across Africa. We explore how 
emerging tools and data can overcome limitations in mapping and modeling cultural ecosystem services, 
particularly in analyzing human preferences and behavior at large spatiotemporal scales and in data-poor re-
gions. Leveraging crowdsourced data from eBird and using machine learning techniques we map and model 
recreational birding to assess the underlying social-ecological relationships and the impact of future climate and 
environmental change. We show that bird species richness, protected areas, accessibility, and max temperature 
contribute most to birding suitability across the continent. Further, we show spatial shifts in the suitability of 
birding under three future climate scenarios (SSP126, 370, and 585). Models suggest climate and biodiversity 
change will increasingly constrain the flow of birding related cultural ecosystem services across Africa. This has 
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implications for human-nature interactions, development of countries, management of protected areas, and 
overall human well-being in the future. More generally, we highlight opportunities for crowdsourced datasets 
and machine learning to integrate non-material ecosystem services in models and thus, enhance the under-
standing of future impacts to ecosystem services and human well-being.   

1. Introduction 

Climate change, land use change, and the compounding impacts on 
biodiversity pose major threats to ecosystems, their contributions to 
people, and social-ecological systems as a whole (Pörtner et al., 2021). 
Traditionally, ecological and social systems have been treated as sepa-
rate entities (Biggs et al., 2021; Hossain et al., 2023). This has caused a 
lack of assessment regarding the coupled social-ecological system, 
including through the mediating role of ecosystem services and how 
future impacts on services affect human well-being (Mastrángelo et al., 
2019; van der Geest et al., 2019; Pörtner et al., 2021). Insufficient study 
of social-ecological systems in under-researched regions like Africa 
poses concerns for conservation, sustainable development, and policy 
(de Vos et al., 2019). This risk grows as these increasingly populated 
regions have more reliance on ecosystem services along with significant 
social, ecological, and economic vulnerability to global change (Pörtner 
et al., 2021; Tol, 2021). Yet, future impacts of climate, biodiversity, and 
land use change on ecosystem services are not well understood (Runting 
et al., 2017). 

The lack of attention on global change impacts to ecosystem services 
is especially pertinent with non-material ecosystem services, or cultural 
ecosystem services (Millennium Ecosystem Assessment, 2005; Kosanic 
and Petzold, 2020). Although increasing, the mapping and modeling of 
cultural ecosystem services is still in its infancy (Manley et al., 2022). 
Furthermore, lack of data has resulted in a failure to fully account for 
and safeguard important ecosystem services around the world, espe-
cially in Africa (Hoogendoorn and Fitchett, 2016; Snyman et al., 2021; 
McElwee et al., 2022). Cultural ecosystem services are important as they 
contribute both directly and indirectly to physical and mental health, as 
well as to nature conservation, economies, sustainable development, 
and poverty reduction, particularly in developing countries (Snyman 
et al., 2021). This is true of avitourism (birdwatching tourism), which is 
known to garner conservation sentiment and simultaneously aid in 
human development in low and middle-income countries (Biggs et al., 
2011; Steven et al., 2021). Africa's tourism industry currently accounts 
for ~8.5 % of the continent's GDP and generates over 24 million jobs 
(Steven et al., 2021), growing faster than the overall economy with 
projections of doubling by 2030 (Conservation Capital, 2019; Snyman 
et al., 2021). Many tourists visit sites across Africa to view the unique 
and rich biodiversity (Hoogendoorn and Fitchett, 2016). Such 
ecotourism greatly contributes to the livelihoods of local communities in 
Africa (Arbieu et al., 2017) and to the economies of developing coun-
tries, oftentimes relied upon as a source of foreign exchange earnings 
(Rasool et al., 2021). 

Of the nature-based activities that lure tourists and recreationists to 
sites across Africa, birding is the second most popular (UNWTO, 2014) 
and is considered one of the fastest growing nature-based recreation 
activities globally (Schwoerer and Dawson, 2022). Avitourism is a huge 
untapped market in Africa consisting mainly of wealthier individuals 
that take long trips and spend significant amounts of money (Biggs et al., 
2011; Carver, 2019; World Bank, 2021). For reference, birders in an 
established birding economy like the US are estimated to spend ~$39 
billion USD annually on birding related expenses, generating ~$16 
billion USD in tax revenue and ~$96 billion USD in total industry output 
(Carver, 2019). Due to birding's high popularity, it is one of the most 
effective ways of crowdsourcing data and contributes greatly to biodi-
versity and conservation research (Sullivan et al., 2014). If effectively 
considered by land managers and decisionmakers, birding can be a 
significant tool for sustainable development within Africa enhancing 

human well-being and conserving biodiversity and ecosystem services. 
Furthermore, sustainable management of tourism ecosystem services 
can benefit some of the most vulnerable rural communities by providing 
jobs, equitable revenue-sharing arrangements, and co-management of 
natural resources in a sustainable fashion (Twining-Ward et al., 2018). 
While recognizing the significance of the indirect economic benefits of 
ecosystem services to local communities, it is crucial to emphasize that a 
substantial portion of the direct benefits derived from tourism, partic-
ularly in the context of cultural ecosystem services in Africa, accrues 
primarily to the tourists themselves. Notably, these visitors often 
comprise of affluent individuals from wealthy countries outside of Af-
rica. Ultimately, developing plans to sustainably and equitably manage 
cultural ecosystem services, including those related to birding, requires 
a more holistic integration of social- and ecological aspects of ecosystem 
services (Steven et al., 2015; Monz et al., 2021). 

The multidimensional aspects of social-ecological systems requires 
social data and approaches that are yet to be developed, hampering our 
understanding and documentation of these systems globally (IPBES, 
2018). This limits our ability to know the role that individual features of 
biodiversity like species richness or species abundance in protected 
areas play in the delivery of cultural ecosystem services, as well as the 
role of social aspects like development (GDP) or infrastructure in facil-
itating the flow of services. Africa's lack of consistent and comprehensive 
data is especially pertinent and notoriously limits researchers' and 
stakeholders' ability to fully carry out research throughout much of the 
continent (UNWTO, 2014; IPBES, 2018; Mwampamba et al., 2022). 
Further, although recreation/tourism is one of the most mapped cultural 
services, proxies are mostly simplistic, error-prone, and biased towards 
biophysical aspects (Manley et al., 2022). Fortunately, crowdsourced big 
datasets are increasingly being used throughout the field of ecology to 
address major limitations in data availability (Havinga et al., 2020; 
Manley et al., 2022). For example, eBird, an online citizen science 
platform, has been used for a wealth of information on avian biodiver-
sity (Sullivan et al., 2014), but rarely for the insights it contains on 
birders themselves. Birders commonly use eBird for contributions to 
citizen science and as a useful and entertaining tool to keep track of 
sightings, view bird lists, and to compare, compete, and interact with 
other birders (Wood et al., 2011). This approach has been so successful 
that as of 2022, eBird has logged over 1.3 billion observations and has a 
user base of over 820,000 birders from every country in the world. Along 
with the emergence of social-ecologically relevant crowdsourced big 
data, machine learning (ML) has emerged as an effective tool for 
handling large amounts of complex multidimensional data and 
analyzing the underlying nonlinear social-ecological dynamics (Will-
cock et al., 2018; Manley and Egoh, 2022). This large amount of newly 
relevant data, along with the multitude of useful ML algorithms, creates 
opportunities to gain novel insights on cultural ecosystem services and 
future impacts to them, especially in data-poor regions such as Africa. 

Novel tools and data, or unconventional use of conventional tools 
and data are crucial for addressing gaps in the understanding of long- 
term sustainability of cultural ecosystem services in a rapidly chang-
ing world (Espiner et al., 2017). The United Nations has identified 
climate change as the foremost challenge to global tourism sustain-
ability in the 21st century (UNWTO, 2008). Additionally, land use 
change significantly drives biodiversity declines and subsequent impacts 
on ecosystem services (Pörtner et al., 2021). This vulnerability is 
heightened in nature-based tourism and recreation due to compounding 
impacts of climate and land use change on biodiversity (Gosling, 2013; 
Rogerson, 2016; IPBES, 2018). While impacts on biodiversity are well 
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documented, the compounding impacts on cultural ecosystem services 
are absent, especially in Africa (Hambira and Mbaiwa, 2020; Pörtner 
et al., 2021). The plausible effects of global change on tourism and 
recreational ecosystem services include shifts in seasonal visitation 
patterns, changes in the willingness and ability for visitation, alterations 
in the availability and quality of ecosystem services, and modifications 
in the interactions between wildlife and recreationists (Chan and 
Wichman, 2018; Jamaliah and Powell, 2018; Monz et al., 2021). This 
theoretical understanding of recreationist behavior has been shown to 
apply to shorter temporal scales, for example daily and annually due to 
changes in weather and other site characteristics (Wood et al., 2020; 
Jaung and Carrasco, 2021) or impacts from disturbance (White et al., 
2023) and depend on factors like demographics (Martinez-Harms et al., 
2018), recreation activity (Rice et al., 2020), and place connection 
(Hammitt et al., 2004). However, understanding impacts on longer 
timescales and across large spatial scales, particularly in the Global 
South, remains underdeveloped. 

The objective of this study is multifaceted and uses birding cultural 
ecosystem services and Africa as a case study to: 1) develop an approach 
that can more holistically map and model cultural ecosystem services, 
particularly at large spatiotemporal scales and in data-poor regions, 2) 
analyze the underlying biophysical and social drivers of cultural 
ecosystem services provided by birds in Africa, and 3) assess large-scale 
spatial and temporal shifts of cultural ecosystem service suitability 
caused by climate, land use, and biodiversity change. 

2. Methods 

2.1. eBird data 

To assess and map birding across natural areas of Africa we queried 
billions of crowdsourced datapoints from the platform eBird (Sullivan 
et al., 2014). Data from eBird was retrieved from the Global Biodiversity 
Information Facility eBird Observation Dataset for the timeframe of 
2010–2019 (GBIF, 2022). This timeframe represents large growth in the 
use of eBird giving us an abundance of data but does not include any 
influence from the global COVID pandemic and associated changes in 
birding. Uploads to eBird are individually verified in a two-stage system, 
with automated filters and subsequently local experts, leading to the 
data being widely considered as highly accurate (Sullivan et al., 2014; 
Koylu et al., 2019). The initial data contained 10,472,514 records from 
13,689 unique users who recorded 2535 unique species. We use a 
database of urban areas across Africa that cross-references satellite and 
demographic data (Heinrigs, 2020) to delete entries within urban areas, 
keeping only data relevant to non-urban nature-based birding. The 
urban data identifies agglomerations that exceed a population of 10,000 
and contain a continuous built environment, accounting for ~140,000 
km2 of total area across Africa. This allows us to minimize noise from 
heavily populated developed regions where most eBird uploads are 
likely from backyard birders that are more likely to be residents of the 
area. These backyard residential birders aren't necessarily influenced by 
environmental and climatic factors like birders visiting non-urban areas. 
This is because urban areas possess significant infrastructure and other 
non-natural elements that aid individuals in adapting to and mitigating 
environmental influences while engaging in recreational activities. 
While this cuts some of the available data (~19 %), it allows the model 
to better determine the relationship between birders and the social and 
biophysical factors that influence birders outside of built urban 
environments. 

From this dataset, we calculated birding-user-days (BUD). Similar to 
calculating photo-user-days (Wood et al., 2013; Nyelele et al., 2023b), 
our BUD calculations sum the number of unique eBird users who 
uploaded at least one eBird checklist per day within each cell of a 25km2 

grid across Africa. We then calculate an annual average BUD for each 
cell across Africa, giving us the average amount of birders uploading to 
eBird within each grid cell. This allows us to estimate the spatial patterns 

of birding with eBird data while avoiding biases from users who upload 
many checklists per day in the same area. Our final BUD filtered dataset 
consisted of~151,000 unique geolocated BUD points from over 9000 
eBird users who recorded 168 unique species on average (std = 204), the 
largest list recording 1845 unique species. 

2.2. Covariate data 

To create an effective social-ecological model of birding related 
cultural ecosystem services we needed to identify and collect data on 
influential covariates driving BUD patterns. Thus, we needed to account 
for factors related to both the supply of birding cultural ecosystem ser-
vices (i.e. the birds themselves) and the use of the service (i.e. birders). 
Thus, we collected data on variables related to both bird presence and 
tourism/recreation. Climatic covariates within the model include max 
temperature of the warmest month, mean monthly precipitation, mean 
monthly near surface wind speed, and cloud cover. Social covariates 
include GDP and accessibility (i.e. travel time to the closest city, ac-
counting for road networks and urban areas with >50,000 people). 
Biodiversity covariates include bird species richness and the biodiversity 
intactness index (i.e. estimates of native species abundance post- 
anthropogenic impacts compared to pre-anthropogenic impacts). 
Finally, we include other social-ecologically relevant variables including 
distance to protected areas and distance to water bodies, as well as land 
use (i.e. the most dominant land use class for each pixel). 

Historical climate data (Table S1) including mean monthly total 
precipitation (mm) and mean monthly wind speed (m/s), are from the 
ERA5 reanalysis dataset (Hersbach et al., 2019), mean max temperature 
of warmest month (K), and mean annual cloud cover (%) were acquired 
from the global bioclimatic indicators derived from ERA5 dataset 
(Wouters et al., 2021). All were downloaded from the Copernicus 
Climate Change Service (https://climate.copernicus.eu) and averaged 
for the same historical period as the BUD calculations (2010–2019). 
Land use from the Land Use Harmonization Project standardized dataset 
is represented as the land use class with the highest percent cover per 
pixel in 2015 (Chen et al., 2020). Each class is one-hot encoded to 
represent categories within the models and to test multicollinearity 
(Table S2). Water body data is from the Esri World Water Bodies dataset 
and protected area data was acquired from the World Database on 
Protected Areas (UNEP-WCMC, 2022), both were used in the distance 
accumulation tool within ArcGIS Pro, along with GTOPO30 elevation 
data (USGS.gov), to calculate true surface distance. Accessibility data, 
which essentially measures the travel time to the closest city, was ac-
quired from the Global Accessibility dataset (Weiss et al., 2018). Global 
gridded GDP data for the year 2015 was acquired from Kummu et al. 
(2018). Bird species richness data was acquired from the Red List species 
richness dataset (Jenkins et al., 2013) and biodiversity intactness was 
acquired from the Global Trends in Biodiversity and Ecosystem Services 
dataset (Pereira et al., 2020). All data was clipped to the extent of the 
study area and resampled using cubic convolution for continuous data 
and nearest neighbor for categorical data to the same resolution (25km2) 
within ArcGIS Pro to standardize the resolution and optimize the model 
(original resolutions in Table S1). Multicollinearity was assessed 
through bivariate correlation coefficients and showed that of the final 
variables, almost all had weak correlation (0–0.3), ~18 % had moderate 
correlation (0.3–0.7), and none had high correlation (> 0.7) (Fig. S1). 

Projection data for some of the covariates was required for modeling 
BUD into the future. We use data from Titley et al. (2021) for future bird 
species richness, Pereira et al. (2020) for future biodiversity intactness, 
and Chen et al. (2020) for future land use for all three future scenarios. 
We acquired projections for climate variables including mean annual 
temperature, mean precipitation, and max temperature of the warmest 
month from WorldClim (worldclim.org) and wind speed and cloud cover 
from the CMIP6 projection dataset available on Copernicus Climate 
Change Service. For climate projections we use data from IPSL-CM6A-LR 
due to the model's good performance when simulating historical climate 
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attributes throughout multiple regions of Africa (Ayugi et al., 2021; 
Babaousmail et al., 2021; Klutse et al., 2021; Ajibola et al., 2022; 
Babaousmail et al., 2023). We also use data from three different future 
climate scenarios, SSP126, SSP 370, and SSP585 for 2050 (2041–2060), 
to assess impacts under a range of scenarios. These scenarios vary from 
high development focused globalized scenarios to low development 
focused nationalized scenarios (O'Neill et al., 2014). We asses two of the 
high development scenarios, one oriented towards a more sustainable 
development in which greenhouse gas emissions are cut over time (SSP 
1) to a more energy-intensive fossil fuel-based development (SSP 5). We 
also assess a future with low development which results in high 
inequality and high greenhouse gas emissions (SSP 3). These three 
scenarios result in a range of future greenhouse gas atmospheric con-
centrations, climate, land use, and more, allowing us to assess various 
future scenarios (Fig. S2). 

2.3. Models 

To create an optimal model of BUD and get more in-depth insights 
into the social-ecological dynamics driving BUD patterns, we first use 
Random Forest regression via the automated machine learning 
(AutoML) workflow in ArcGIS Pro to tune, train, and validate a Random 
Forest model. AutoML allows us to optimize our random forest model by 
automating the major steps taken when creating ML models, mainly 
feature engineering and selection, model training, and hyperparameter 
tuning, thus making the workflow more efficient, effective, and repro-
ducible as it is more friendly for non-ML experts (Karmaker et al., 2021). 
Random Forest is a decision tree-based algorithm that tests a random 
subset of covariates and a random subset of data within those covariates 
within each decision tree to output the average result of each tree 
(Breiman, 2001). Random Forest is a great tool for exploratory analysis 
as it can quantify importance of predictors, can uncover complex in-
teractions between predictors, and can estimate arbitrary functional 
relationships between predictors and response variables (Jones and 
Linder, 2015). We used the AutoML trained random forest model as an 
initial exploratory analysis step to gain insight into the social-ecological 
drivers of BUD and to select the most relevant covariates for birding in 
Africa. We use variable importance calculations, partial dependence 
plots, and model uncertainty and validation metrics, such as prediction 
intervals, R2, and root mean squared error, to assess the best covariates 
for birding across Africa. Ultimately, the final 11 covariates were chosen 
based on model performance (r2 = 0.299, MAE = 0.465, and RMSE =
3.126) and multicollinearity when testing a total of 28 variables 
(Table S1). The final covariates had the greatest variable importance, 
while trying to minimize collinearity and maximizing the model per-
formance metrics. 

We used Maximum Entropy (Maxent) to train a final model and map 
social-ecological suitability of birding across Africa for a baseline sce-
nario (2010–2019) and future scenarios (2050 SSP126, SSP370, and 
SSP585) (Phillips et al., 2006). Maxent is an ML algorithm that predicts 
the probability distribution of a target variable's presence by finding the 
most uniform distribution (i.e. maximizing the entropy) or in other 
words, minimizing the entropy of the probability densities of covariates 
within locations of the target variable relative to covariates across the 
whole study area (Elith et al., 2011). We refer to this prediction as 
“suitability” throughout the manuscript as our model essentially pre-
dicts the probability of similarity of environmental variables at presence 
points as compared to each grid cell across the area of interest. A major 
advantage of Maxent is it only requires presence points and is a robust, 
heavily used, and proven algorithm in ecology (Lissovsky and Dudov, 
2021). We choose to use Maxent over the AutoML Random Forest model 
because Maxent provides a projection of suitability rather than making 
specific predictions of the response variable. This was an important 
detail for us considering we are dealing with qualitative and nuanced 
aspects of cultural ecosystem services that may lack precise quantitative 
measurements, especially in the future. Suitability output can be more 

informative and relevant in the context of cultural ecosystem service 
supply, use, and flows that may not have clear-cut boundaries or 
measurable metrics. Moreover, Maxent has demonstrated comparable, 
and at time greater, accuracy compared to Random Forest, particularly 
in predictive applications (Fitzgibbon et al., 2022). Additionally, Maxent 
excels in identifying suitable areas even in instances where presence is 
not documented in the training data (Fitzgibbon et al., 2022). 

To create the Maxent model, we use the Maxent tool within ArcGIS 
Pro. Individual BUD points were used to represent the presence of 
birding and covariate data was extracted for each presence point. Along 
with the presence points Maxent uses unknown presence points, or 
background points, to contrast the conditions between the areas of 
presence and the rest of the study region. We generate 50,000 random 
points throughout Africa and extract the covariate data for each point to 
use as background points. The Maxent model is then trained on the 
presence and background data with a cutoff value of 0.5 and used to 
predict the suitability of birding for a 25km2 resolution grid across the 
entirety of Africa. The cutoff value of 0.5 is chosen by calculating the 
optimal Youden's Index, which maximizes both the sensitivity (true 
positive rate) and specificity (true negative rate). A Youden's Index of 
0.55 was calculated for our Maxent model (Fig. S4). However, to 
enhance interpretability and for practical considerations, we rounded 
the threshold to 0.5. This decision was driven by the goal of minimizing 
the omission rate while ensuring that the impact on background points 
predicted as possible presence was not significantly affected. Ultimately, 
we use Maxent predictions not as a presence/absence classifier, but as a 
continuous measure of suitability of birding. We use three-fold cross 
validation to validate the model and assess the ROC, the classification 
results, and BUD versus suitability comparisons to assess the trained 
model. 

We use the trained and validated model to predict BUD suitability by 
extracting projection data for the study area under future climate sce-
narios. We model future suitability changes using projections for only 
environmental (bird species richness, biodiversity intactness, and land 
use) and climatic (max temperature of warmest month, mean monthly 
precipitation, mean monthly near surface wind speed, and cloud cover) 
variables and keep all other variables constant (distance to protected 
areas, distance from water bodies, GDP, and accessibility). This allows 
us to isolate and assess the impact of climate and environmental change. 
Future studies could include future projections of variables like pro-
tected area, accessibility, and/or GDP to assess the impact of different 
management, socioeconomic, or political scenarios. To further isolate 
the impact of climate, biodiversity and land use change, we run separate 
future Maxent models holding all variables constant except for factors 
related to each respective model under all three future scenarios (e.g. 
only climate variables change for the climate model). Thus, for each 
future scenario (SSP126, SSP370, and SSP585) we create 4 different 
models (climate change only, biodiversity change only, land use change 
only, and all change) resulting in 12 total future models. Since many 
decisions relevant to tourism and natural resources are made at the 
national level, we aggregated model results by the mean change in 
suitability for each country in Africa. We then calculate the difference 
from the baseline mean suitability and the future suitability for each 
scenario within each country. We leave out small island nations and 
disputed territories due to data availability, resolution, and other issues. 
We also calculate the vulnerability of each country's birding related 
cultural ecosystem services as the amount of area that currently has BUD 
that loses high suitability (0.5) in the future. 

To resolve the smaller scale dynamics within our Maxent model, we 
use random forest (python sklearn package) to train models for the 10 
major biomes of Africa (grasslands, savannas and shrublands; deserts 
and xeric shrublands; moist broadleaf forests; Mediterranean forests, 
woodlands, and scrub; montane grasslands and shrublands; flooded 
grasslands and savannas; dry broadleaf forests; lakes; mangroves; and 
temperate coniferous forests) (Fig. S5). Our modeled Maxent suitability 
across Africa was extracted for each biome and used as the dependent 
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variable for the biome model to assess the relative contribution of each 
of the 11 covariates in explaining the variation in suitability within each 
biome. 

3. Results 

Mapped BUD revealed clustered regions of birding mostly in coun-
tries along the coast of Africa (Fig. 1 and S5). Specifically, South Africa 
stands out with ~31 % of BUD, most of which is in and around Kruger 
National Park (Fig. 1b). Beyond South Africa, regions surrounding Lake 
Victoria were also a hotspot for birders (i.e. Tanzania, Kenya, and 
Uganda) (Fig. 1a). Another major hotspot is the convergent border re-
gion of Angola, Botswana, Namibia, Zambia, and Zimbabwe which 
makeup the Kavango Zambezi Transfrontier Conservation Area, con-
taining the highly visited Okavango Delta (Fig. 1c). 

One of our key questions was to understand what social-ecological 
aspects drive the patterns of birding we see across Africa. Bird species 
richness is the most important variable for predicting BUD, demon-
strating the importance of healthy ecosystems and biodiversity conser-
vation (Fig. 2). Of species related variables tested, bird species richness 
showed higher importance than rarity-weighted richness and threatened 
species richness (which were not included in the final model). The next 
three most important variables, distance from protected areas, accessi-
bility, and max temperature of the warmest month, show considerably 
higher importance than the rest of the variables. 

Social-ecological dynamics leading to cultural ecosystem service use 
vary under different contexts, which can be seen in the biome-level 
variable importance (Fig. 3 and S6). Major drivers of birding, like bird 
species richness, distance from protected areas, accessibility, and max 
temperature, stay high in importance throughout most biomes. 
Conversely, some less important variables at the continental scale 
become highly important within the context of a specific biome. For 

example, biodiversity intactness and wind speed in moist broadleaf 
forests, cloud cover in dry broadleaf and temperate coniferous forests, 
and precipitation in lake biomes become relatively important. 

Three-fold cross validation resulted in correct classification of 92.5 
%, 92.9 %, and 92.6 % for each testing fold. Overlay of Maxent response 
curves onto the Random Forest partial dependence plots, reveals notable 
agreement between the models of the marginal effect of the covariates 
on birding (Fig. 2). The observed consistency instills greater confidence 
in the validity of the identified relationships between predictor and 
response variables, reassuring us that these associations are not merely 
internal artifacts specific to a single model but likely reflect genuine 
patterns in the underlying data. Our Maxent model exhibited good 
performance with an omission rate of 0.07, an AUC of 0.92 (Fig. 4a) and 
correct classification of ~92 % of the ~151,000 presence points (with a 
defined cutoff value of presence at 0.5) (Fig. 4a). When comparing grid 
level Maxent suitability scores and BUD we see successful identification 
of high suitability areas in areas with high BUD. Approximately 93 % of 
birding occurs in pixels with a Maxent suitability score of 0.5 or higher 
and ~79 % at 0.6 or higher (Fig. 4b). Most of that highly suitable 
(suitability ≥0.5) land area lies within South Africa, Tanzania, Zambia, 
Namibia, Madagascar, and Mozambique, accounting for ~52 % (~4.8 
million km2) of the highly suitable land area throughout Africa (Fig. 4c). 
Although suitability matches relatively well with current BUD patterns, 
it also shows areas of mismatch in which there is high suitability but 
little or no BUD. For example, the Democratic Republic of Congo (DRC), 
Algeria, Cote d'Ivoire, Nigeria, and Angola all have significant amounts 
of highly suitable area, but relatively lower BUD. 

Under the three future SSP scenarios, birding cultural ecosystem 
service suitability patterns show high suitability remaining mainly 
across the East African Rift and throughout Southern Africa (Fig. 5). Yet, 
most negative changes to suitability under the three SSP scenarios occur 
in these same regions, as well as within portions of coastal Northern and 

Fig. 1. Left: Spatial BUD patterns across Africa (2010–2019). Right: eBird points filtered for user-days across Africa, highlighting high BUD areas around Lake 
Victoria (a), Kruger National Park (b), and the Kavango-Zambezi Transfrontier Conservation Area (c). 
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Western Africa, increasing in magnitude under higher end warming 
scenarios. There is an especially pronounced decrease in future suit-
ability in the previously mentioned Kavango-Zambezi Transfrontier 
Conservation Area and surrounding regions. Overall, suitability is 
increasingly impacted throughout the continent with higher warming 
scenarios, suggesting greater constraints to cultural ecosystem services 
as global temperatures increase (Fig. S6). 

Most positive changes in suitability occur in Central Africa, as well as 
portions of central-eastern and northwestern Africa. Under higher end 
warming scenarios, suitability increases are negatively impacted as less 
suitable conditions encroach further into areas that would otherwise see 
positive impacts under lower end warming scenarios. For instance, there 
is a loss of ~2.1 million km2 of highly suitable area throughout Africa 
under SSP126, whereas under SSP585 there is a loss of ~3.6 million km2 

(Fig. S7). Negative impacts to birding related cultural ecosystem services 
are compounded under higher end warming scenarios as there is a near 

doubling in lost highly suitable land area under SSP585 compared to 
SSP126. 

The decline in future suitability across African countries is primarily 
attributed to climate change (Figs. 6 and S8). Biodiversity change also 
contributes significantly to the projected shifts in suitability, albeit to a 
lesser degree compared to the impact of climate change. Conversely, 
land use has a minimal influence on the observed changes in suitability. 

In general, model results reveal a decline in the extent of suitable 
area in most countries across all projections, (Figs. 7 and S5). Most 
countries with high birding will see decreases in countrywide mean 
suitability, mainly driven by the changing climate. For example, South 
Africa is estimated to have by far the highest birding levels at ~45,000 
BUD but countrywide suitability is projected to decrease (~− 0.03 – 
− 0.05) under future scenarios and lose up to ~171,000 km2 of highly 
suitable area (Fig. 7). Despite these negative impacts, South Africa is still 
slated to be one of the most suitable for birding cultural ecosystem 

Fig. 2. Importance of each variable for birding (top left). Random Forest partial dependence (black) and Maxent response curves (green) for each variable (land use 
classes defined in Table S2). 
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services in the future. Conversely, Kenya is estimated to have the second 
highest birding levels currently at ~14,000 BUD but is projected to see 
little impact to countrywide suitability (~ − 0.01 – +0.003). 

Vulnerability, or the total area with birding that loses high suitability 
in the future (decreases below 0.5 Maxent suitability), differs from total 
impact to suitability. Because BUD mainly occurs in regions of high 
suitability, vulnerability shows where current birding could be most 
impacted (Fig. 7). Although countries such as Uganda, Ghana, and 
Rwanda are projected to have overall reduced mean nationwide suit-
ability, their vulnerability is comparatively lower as climate and 
biodiversity change mainly impact areas without any current BUD. The 
highest vulnerability is projected in the Zambia, Tanzania, Mozambique, 
Botswana, Egypt, and Madagascar. 

4. Discussion 

4.1. BUD and social-ecological drivers 

Our BUD estimates per country tend to correlate with high nature- 
based tourism and associated tourism spending. For example, South 
Africa, which had the highest BUD, has emerged as a preferred tourist 
destination in part due to its high biodiversity, mostly in national parks, 
along with a plethora of other more difficult to measure factors like the 
abundance of human and physical infrastructure for tourism. In 2015, 
South African tourism related to biodiversity generated ~$2.4 billion 
USD of direct spending (Joubert and Poole, 2018), of which in 2010 it 
was estimated avitourism contributed up to ~$200 million USD and has 

Fig. 3. Heatmap showing the normalized variable importance (0–1 scale), representing the contribution of each independent variable from the Maxent model in 
explaining the variation in the suitability within each biome, biomes are organized from highest to lowest total BUD. 
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only grown since (Department of Trade and Industry, 2010; Joubert and 
Poole, 2018). The large economic contribution of birding in these re-
gions is indicative of the significant value people place on nature, 
including birds, across Africa and their potential to contribute to peo-
ple's well-being. Other countries with high BUD, including Kenya, 
Uganda, and Tanzania, tend to be among the highest in total leisure 
tourism spending associated with natural resources (Snyman et al., 
2021). Such economic activity from and investment in the wildlife 
economy can help reduce inequalities (SDG 10) through income gen-
eration and sustainable development (Snyman et al., 2021). This sug-
gests that birding related cultural ecosystem services can attract large 
amounts of tourists, play a role in development, and further build peo-
ple's connection with the globally less visited natural areas of Africa for 
years to come. The Kavango-Zambezi Transfrontier Conservation Area, 
which was established with ecological functioning and tourism in mind 
(Cumming, 2008), is shown by our analysis as another example of the 
synergies between ecosystem health and tourism. This is demonstrative 
of managers and decisionmakers ability to develop people's relational 
values with nature through protection and improved accessibility of 
suitable regions along with the effectiveness of crowdsourced data in 
monitoring these efforts. 

The higher importance of overall species richness over rarity within 
our model is consistent with past literature (Cumming and Maciejewski, 
2017), but over threatened species richness differs from previous results 
(Echeverri et al., 2022). This is likely due to recreation and ecotourism 
being context and scale dependent. Thus, birding at a continental scale 
in Africa is driven mainly by species richness in general, rather than by 
rarity or threatened status as it may be in specific regions of Africa and 
the world. Species richness is often used as a proxy for the supply of 
biodiversity-based ecosystem services, but the supply must connect to a 
beneficiary for it to be identified as an actual ecosystem service (Landers 
et al., 2016). Bird species richness and BUD across Africa are positively 
correlated (Spearman's ρ = 0.21) but also have areas of mismatch mainly 
along the central western coast of Africa, spanning from Angola up to 
Sierra Leone (Fig. S9). This modest correlation underscores the 

limitation of relying on simplistic supply-based indicators to gain 
meaningful insights into human-nature relations of cultural ecosystem 
services. Thus, ML emerges as a valuable tool, enabling us to encompass 
the complex nonlinear dynamics inherent in the multitude of influential 
factors, and interactions among factors, that drive cultural ecosystem 
service flows to people. While richness of biodiversity is important for 
birding, other factors, especially protected areas, accessibility, and 
climate, impact human behavior leading to service use (Fig. 2). This 
finding is consistent with past work showing conservation of species is 
important for recreation and tourism but is also paired with investment 
in infrastructure (Echeverri et al., 2022). Our results further this un-
derstanding and demonstrate that climatic factors also play a significant 
role in driving recreation and tourism ecosystem service use across large 
spatial scales. Importantly, our results show that cultural ecosystem 
service supply alone is insufficient for explaining ecosystem service 
flows to people (Fig. 2). 

The positive impact of the three most important variables in the 
system (bird species richness, distance from protected area, and acces-
sibility) demonstrates the need for rich and intact biodiversity, conser-
vation of ecologically important regions, and increasing all people's 
access to cultural ecosystem services. Protected areas often serve as 
social-ecological hubs for not only biodiversity, but also cultural in-
teractions and values (Palomo et al., 2014), which is demonstrated by 
~84 % of all BUD being within protected areas (~70 % with the total 
dataset prior to urban masking). Beyond protected area's contributions 
to ecological health, they also contribute to local economic develop-
ment, especially in poorer regions (Ferraro et al., 2011), and preserva-
tion of important relational values that underpin cultural ecosystem 
services (Mulongoy and Babu Gidda, 2008). Furthermore, cultural 
ecosystem services are catalysts for conservation support among the 
public and thus create a social-ecological feedback loop of conservation 
providing cultural services, which then increases protected area support 
(Daniel et al., 2012). In contrast, one of the major climatic influences, 
max temperature of the warmest month, is negatively correlated with 
BUD. This suggests that areas tending to reach extreme temperatures 

Fig. 4. a) ROC curve for Maxent model. b) Scatter plot of Maxent suitability and BUD with bars showing total BUD per 0.1 suitability bin (with percentages). c) 
Maxent modeled birding suitability across Africa (2010–2019). 
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have less visitation and consequently, that increasing global tempera-
tures will likely directly impact recreation and tourism and constrain 
cultural ecosystem service flows across the landscape. 

The biome-level analysis of our model results not only illustrates the 
robustness of the most significant variables influencing cultural 
ecosystem service use across the landscape but also reveals drivers of 
cultural service use within the specific context of distinct biomes 
(Fig. S10). One interesting example of this is biodiversity intactness 
showing exceptionally high importance in moist broadleaf forests. This 
is a great example of the decision relevant social-ecological dynamics 
that can be revealed through differing cultural service contexts, as 
current and future land use changes linked to intensified agriculture are 
impacting biodiversity intactness in moist broadleaf forests throughout 
Africa (Tyukavina et al., 2023). Most of Africa's moist broadleaf forests 

are located within the Congo Basin, where little birding occurs. This 
region has significant unrealized potential for the provision of cultural 
ecosystem services, but a multitude of barriers remain, including, but 
not limited to, the lack of investment in physical and human infra-
structure (Telfer and Reed, 2021), corruption and governance issues, 
and safety and security issues (Snyman et al., 2021). This is evident 
through low observed BUD and the high importance, but low values, of 
accessibility and area protected (~17 %), both of which positively affect 
birding. This inherent contextual variability in cultural ecosystem ser-
vices underscores the need for sophisticated tools, such as ML, capable of 
discerning and modeling these nuanced and subjective relationships 
leading to ecosystem service flows. This becomes especially crucial in 
modeling human-nature relationships, where a universally applicable 
theoretical framework is lacking (de Vos et al., 2021). 

Fig. 5. Maps of Maxent suitability predictions under all three scenarios throughout Africa (left) and suitability change from baseline (right).  

K. Manley and B.N. Egoh                                                                                                                                                                                                                     



Science of the Total Environment 919 (2024) 170872

10

4.2. Birding suitability and future impacts 

The disparity between the suitability of an area and its current BUD 
uncovers untapped potential for enhanced cultural ecosystem services 
related to birds. For instance, although Uganda already has the 4th 
highest BUD, suitability shows much of the country's birding cultural 
service potential is still underutilized (Fig. S11). In Uganda's case 
though, the government has taken notice of this opportunity and is 
investing ~$2 million USD in infrastructure to triple avitourism visita-
tion by 2026 (World Bank, 2021). Investments to increase accessibility 
can aid in making sure areas of high cultural ecosystem service supply 
flow to beneficiaries. Importantly, such investments need to be sus-
tainably and equitably implemented, integrating local and indigenous 
people (Sangha et al., 2019). Other similar regions could increase the 

flow of cultural ecosystem services to people by investigating what is 
driving this mismatch, for example conflicts, lack of recognition of 
ecosystem service supply, or poor tourist perception of the region 
(Snyman et al., 2021). By leveraging more holistic modeling studies such 
as this, managers and decisionmakers, like those in Uganda, can effec-
tively pinpoint where infrastructure can be implemented, identify crit-
ical needs based on regionally modeled relationships between people 
and the environment, and anticipate the repercussions of forthcoming 
environmental shifts like climate, biodiversity, and land use change. 
Notably, the integration of a modeling study to enhance the flow of 
cultural ecosystem services to beneficiaries is not always straightfor-
ward, owing to a myriad of political, economic, and other influential 
factors. Our study, while in-depth, does not encompass all the intricate 
interacting elements that hinder tourism. Decision-makers and land 

Fig. 6. Marginal impact of climate change, biodiversity change, land use change, and all on mean suitability of each African country (represented by ISO3 codes) for 
SSP585 (other scenarios shown in Fig. S8). 
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managers must acknowledge and address these complex factors beyond 
the scope of our assessment. 

Many regions in which our model shows high negative impacts to 
suitability, contain some of the most tourism dependent countries and 
areas with the highest current BUD (e.g. Tanzania, Madagascar, and 
Botswana) (Snyman et al., 2021). This indicates that regions that would 
expect to see increases in recreation and other cultural ecosystem ser-
vices, due to increasing global and regional populations and increasing 
African ecotourism, may be hampered in the future, mainly due to 
climate and biodiversity change. Furthermore, high visitation in these 

regions (as measured by BUD) indicates an established connection of 
people to the local environment, thus future impacts have a greater ef-
fect beyond just lost utility. Some of the modeled future increases in 
suitability match with areas already identified as climatic refugia, like 
portions of the equatorial rainforests, mountainous regions in Eastern 
Africa, and regions within the Maghreb, indicating they may also be 
refugia for biodiversity-based cultural ecosystem services (Cooper et al., 
2022). 

Ultimately, our results suggest that climate and biodiversity change 
will influence birding and the substitution behavior of birders. For 

Fig. 7. left) Mean nationwide suitability change for each scenario sorted highest to lowest BUD. top right) Birding vulnerability calculated as the total area with 
current birding losing high suitability in the future (SSP585). bottom right) Birding cultural ecosystem service vulnerability per country under all scenarios. 
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example, the quality of recreation experiences would decrease as 
climatically suitable area and biodiversity decreases. This could also 
increase crowding as suitable land area decreases and the recreation 
season is constrained by climate change (Shelby and Vaske, 1991). Such 
substitution behavior of birders has been observed during the COVID-19 
pandemic, demonstrating the impact global crises have on human- 
nature relations (Randler et al., 2023). Further, future shifts in birding 
suitability, like the modeled increases in the DRC, Equatorial Guinea, 
Cameroon, Senegal, and Kenya, will require resources and infrastructure 
to facilitate flow of cultural services to people in newly suitable regions. 
This requires large amounts of resources for new development which 
most countries may not have or want to implement and may have to 
allocate for other more urgent climate change related challenges like 
food production or increased natural disasters and diseases. 

Countries having a higher vulnerability may indicate a need to 
manage ecosystems and the tourism/recreational services they provide 
more strategically in the future. This is especially concerning as 15 of the 
top 20 most vulnerable countries have high (10–20 %) or medium (5–9 
%) dependence on tourism for GDP (Snyman et al., 2021). If decreasing 
suitability is significant enough within these countries it could result in 
behavioral changes in which recreationists substitute new sites or new 
activities and possibly slow growth of, or decrease, ecotourism and 
recreation. More vulnerable regions can bolster their resilience using 
social-ecological insights on what, where, and why vulnerabilities exist. 
For example, many of the countries projected to have the greatest de-
creases in suitability see these impacts due to decreases in bird species 
richness and increases in temperatures, among other changing envi-
ronmental factors. With such insights countries can make strategic 
adaptive and mitigative decisions, for example protecting and/or 
restoring ecosystems important for birds or implementing recreational 
infrastructure in cooler more resilient regions. To harness these benefits 
of birding, along with other non-market benefits, it is imperative to 
understand the current and future spatial distribution of birding related 
cultural ecosystem service supply and use as well as where and what 
resources will be needed, especially in understudied regions. 

Beyond just the material impacts we model and discuss; it must be 
noted that cultural ecosystem services are tied to our non-material re-
lations with nature. Thus, impacts to cultural ecosystem services will 
inevitably result in compounding impacts to human well-being beyond 
the tangible and market related aspects (Chan et al., 2016). Our results, 
while not directly analyzing these aspects, show that climate change will 
act as a barrier to accessing culturally important ecosystem services. 
This is the case for birding in this study but can be further considered as 
impacts to the cultural significance people place on birds. For example, 
suitability decreases for birding across a large proportion of Africa 
would affect other cultural services like the spiritual importance related 
to birds, sense of place, cultural heritage, and other related relational 
values of nature. Cultural services are known to be synergistic with 
ecosystem resilience and subsequently other ecosystem services, thus 
negative impacts to cultural services could have further downstream 
effects (Daniel et al., 2012). For instance, given that cultural ecosystem 
services often serve as the primary means by which people connect with 
nature (Chan et al., 2016), any hindrance to their flow to people could 
potentially impact public support for environmental conservation and 
the subsequent attainment of sustainable development goals. Further, 
impacts will affect different groups in different ways as cultural services 
are experienced and provided dynamically across groups such as general 
recreationists, birders, tourists, and local and indigenous populations 
(Daniel et al., 2012). 

On the contrary, because of the inflated importance of certain re-
gions for recreationists (due to sense of place, experience use history, or 
site popularity), visitation in some areas may be more resilient to 
climate and biodiversity change impacts as visitors are willing to put up 
with changing conditions or unwilling to substitute other sites or ac-
tivities (De Valck et al., 2016). Future substitution behavior must be 
better understood as the defining attributes of sites for recreation and 

other cultural ecosystem services shift due to climate and biodiversity 
change, as shown in this study. Further, in some regions future shifts in 
suitability will be positive, thus equitable and increased access should be 
prioritized to regions providing cultural services as many regions lose 
suitability and inequalities in cultural ecosystem service access already 
present issues (Martinez-Harms et al., 2018). For all people (indigenous, 
local, and visitors), the well-being benefits from cultural ecosystem 
services are essential for good quality of life and in a future of dimin-
ishing services, managers and decisionmakers must make concerted and 
informed efforts to mitigate and adapt. Thus, it is imperative to bear in 
mind that the beneficiaries of these ecosystem services are not always 
within the local communities providing them. This dynamic introduces 
disparities and underscores the importance of considering nuances in 
such analyses, acknowledging that the distribution of benefits may not 
align seamlessly with the locales supplying these services. 

4.3. ML and crowdsourced data 

As highlighted by multiple IPBES reports, developing innovative 
tools and approaches that enable the integration of social-ecological 
feedbacks and enhance our understanding of the linkages between so-
cial factors and biophysical factors is urgently needed (Mastrángelo 
et al., 2019; Pörtner et al., 2021; Giupponi et al., 2022). Specifically, 
integrating social science data and coupling ecosystem service supply 
with use to better understand service co-production, flows, values, and 
consequences to human well-being will vastly improve our under-
standing of human relations with nature (Pascual et al., 2017; Willcock 
et al., 2019; Manley, 2022). We show that advancements in technology, 
especially ML and the rapid collection of big data, along with the 
adaptation of widely used tools such as Maxent and eBird, provide fresh 
possibilities for modeling ecosystem services and forecasting human- 
nature interactions. Crowdsourced big data is a massive globally avail-
able data source that offers novel opportunities to integrate social- 
ecological aspects of ecosystem services in a novel fashion and address 
historic limitations, especially in understudied regions, but has yet to be 
explored thoroughly (Brown and Rounsevell, 2021; Manley et al., 2022). 
Datasets like eBird provide a consistent measurement of cultural 
ecosystem service use across large spatial extents consisting of a multi-
tude of management actors and varying data standards and availability 
(Nyelele et al., 2023a) (Fig. 1). ML can further help us explore human- 
nature relationships through data driven exploration of social- 
ecological interactions and hypothesis generation and testing (Scowen 
et al., 2021; Nyelele et al., 2023a). 

Together, these tools offer a more realistic, although less detailed, 
way to assess human-nature relations on large spatiotemporal scales 
than traditional methods like surveys, interviews, and participatory 
mapping. We demonstrate how novel tools like ML and crowdsourced 
big data can help with the exploration of process interactions and theory 
development within cultural ecosystem services (Brown and Rounsevell, 
2021; Scowen et al., 2021; Manley et al., 2022). Specifically, we use 
these tools on a large spatiotemporal scale and in an understudied region 
to test and demonstrate their use. Furthermore, we show the possibility 
presented by these tools in revealing previously unknown patterns and 
dynamics in non-material ecosystem service supply, use, and flows, and 
for the integration of the many interacting variables that produce cul-
tural services. This is illustrative of the opportunity to better integrate 
social-ecological dynamics within climate impacts and ecosystem ser-
vice studies, which is essential for the sustainable management of 
ecosystem services and achieving the CBD and Sustainable Development 
Goals (IPBES, 2018; Mastrángelo et al., 2019; Pörtner et al., 2021). 

4.4. Limitations 

Cultural ecosystem services are much more complex than can be 
analyzed through human behavior across a landscape, thus we 
acknowledge the limitations of this study and suggest future related 
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work. Social aspects of this study are mainly focused on assessing human 
behavior that can be derived from social data on birders, data on attri-
butes hypothesized and tested to be relevant to birders, and ML that can 
identify relationships between the two. This leaves out the less tangible 
aspects of these relationships, for example what are the perceptions and 
relational values of these birders or how does this non-monolithic group 
derive benefits from these services differently. Further, our models do 
not account for all factors that likely drive birding, like perception of 
safety of a destination, visitation costs, human and physical infrastruc-
ture, availability of guides/experts, among a plethora of other social, 
economic, and political factors (Dieke, 2020). While it is essential for 
these factors to be accounted for by decisionmakers and land managers, 
it is beyond the scope of this analysis to account for all realistic factors 
affecting cultural ecosystem service use. 

Other limitations related to the data source include an underestimate 
of total birding as not all birders use eBird (although overall patterns are 
likely captured) and an inability to capture relationships related to ca-
sual birders, as most eBird users are serious birders (Koylu et al., 2019). 
Future work should focus more on teasing out the relational value as-
pects that are essential for the sustainability of not just cultural, but all 
ecosystem services and ecosystems in general (Chan et al., 2016). For 
example, this could be done in conjunction with large-scale crowd-
sourced data using text analysis (Lee et al., 2020) or analysis of review- 
based platforms (Wang and Hayashi, 2023) to better integrate 
ecosystem service beneficiary's perceptions and values. In the context of 
climate change, understanding how climate fits into people's perception 
and connection with natural regions is essential to understand how 
human-nature relations will change in the future. 

5. Conclusion 

Addressing critical knowledge gaps will be essential for designing 
effective policies and interventions that promote the future sustain-
ability and management of biodiversity and ecosystem services (Pörtner 
et al., 2021). This is especially the case as benefit flows of ecosystem 
services, particularly to the poorest in society, is not well understood due 
to a lack of integration of both potential supply and realized use of 
services (Cruz-Garcia et al., 2017; Willcock et al., 2019). Interestingly, 
climatic, social, and environmental variables have rarely been used for 
mapping and modeling cultural services in tandem, echoing the poten-
tial pitfalls of past practices using simplistic and/or supply-based proxies 
(Eigenbrod et al., 2010; Jones et al., 2021). Thus, addressing these gaps, 
as we attempted in this study, is crucial for consideration of the dis-
parities of future impacts. This is especially the case in the Global South 
as there is significant reliance upon ecosystem services for human well- 
being, future development, and sustainability transformations (Scott 
et al., 2019; Biggs et al., 2021) and uniquely strong interlinkages and 
convergences between cultural diversity and biodiversity (McElwee 
et al., 2022). 

Because we are amidst a massive data revolution globally, our 
approach can be used in regions across the world to better understand 
cultural ecosystem services, the underlying dynamics that lead to service 
flows, and the future impacts of climate, land use, and biodiversity 
change. Insights from this analysis and similar analyses can help equi-
tably address major global sustainability challenges and those faced by 
land managers and decisionmakers by improving the understanding of 
key dynamics and interactions within social-ecological systems. This can 
be important for identifying areas of vulnerability and resilience, 
assessing future trade-offs from environmental or management changes, 
and designing national development plans, development assistance 
programs, and international adaptation financing negotiations (Cum-
ming and Allen, 2017; Scott et al., 2019; Snyman et al., 2021). Ulti-
mately, identifying the complexities, uncertainties, and non-material 
aspects in social-ecological system and ecosystem service management 
is essential before impacts materialize in the real-world, especially as 
climate change intensifies (Brown and Rounsevell, 2021). 
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