
UCLA
UCLA Previously Published Works

Title
Multi-ancestry genome-wide gene–sleep interactions identify novel loci for blood pressure

Permalink
https://escholarship.org/uc/item/1ph9k2z5

Journal
Molecular Psychiatry, 26(11)

ISSN
1359-4184

Authors
Wang, Heming
Noordam, Raymond
Cade, Brian E
et al.

Publication Date
2021-11-01

DOI
10.1038/s41380-021-01087-0
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1ph9k2z5
https://escholarship.org/uc/item/1ph9k2z5#author
https://escholarship.org
http://www.cdlib.org/


Multi-ancestry genome-wide gene-sleep interactions identify 
novel loci for blood pressure
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Abstract

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through 

effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new 

insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene 

by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, 

mean arterial pressure, and pulse pressure) across five ancestry groups using 1 degree of freedom 

(1df) interaction and 2df joint tests. Primary multi-ancestry analyses in 62,969 individuals in 

stage 1 identified 3 novel loci that were replicated in an additional 59,296 individuals in stage 2, 

including rs7955964 (FIGNL2/ANKRD33) showing significant 1df interactions with long sleep 

duration and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) showing 

significant 1df interactions with short sleep duration (Pint < 5×10−8). Secondary ancestry-specific 

two-stage analyses and combined stage 1 and 2 analyses additionally identified 23 novel loci that 

need external replication, including 3 and 5 loci showing significant 1df interactions with long 

and short sleep duration, respectively. Multiple genes mapped to our 26 novel loci have known 

functions in sleep-wake regulation, nervous and cardiometabolic systems. We also identified new 

gene by long sleep interactions near five known BP loci (≤1Mb) including NME7, FAM208A, 

MKLN1, CEP164, and RGL3/ELAVL3 (Pint < 5×10−8). This study indicates that sleep and 

primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into 

sleep-related BP regulation.

Introduction

Hypertension (HTN), including elevations in systolic blood pressure (SBP) and/or diastolic 

blood pressure (DBP), is a major risk factor for cardiovascular diseases, stroke, renal failure 

and heart failure1. The heritability of HTN is estimated to be 30–60% in family studies2, 3. 

Recent well-powered large genome-wide association studies (GWAS) of blood pressure 
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(BP) have identified over 1,000 loci; however, in total these explain less than 3.5% of BP 

variation4–16. Gene-environment (G×E) interaction analyses have been proposed to explain 

additional heritability and identified novel loci for traits associated with cardiometabolic 

diseases17–19.

Long and short sleep durations are associated with elevated BP, possibly through effects 

on molecular pathways that influence neuroendocrine and vascular systems20, 21. Recent 

multi-ancestry interaction analyses between genetic variants and sleep duration (gene-sleep 

for short) on blood lipid traits have identified novel loci and potentially distinct mechanisms 

for short- and long-sleep associated dyslipidemia, and suggest a modification effect of 

sleep-wake exposures on lipid biology19. We hypothesize that differences in sleep duration 

may also modify the effect of genetic factors on BP. Assessment of genetic association 

studies accounting for potential gene-sleep interactions may help identify novel BP loci and 

reveal new biological mechanisms that can be explored for treatment or prevention of HTN.

Within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

Gene-Lifestyle Interactions Working Group22, we investigate gene-sleep interactions on BP 

traits in 122,265 individuals from five ancestry groups. We utilize both the 1 degree of 

freedom (df) test of interaction effect and the 2df joint test of main and interaction effects23, 

and identify novel loci for BP.

Materials and methods

We performed genome-wide meta-analysis of gene-sleep interactions on four BP traits (SBP, 

DBP, mean arterial pressure [MAP], and pulse pressure [PP]) in 30 cohorts of five ancestry 

groups in two stages (Supplementary Notes). Stage 1 discovery analyses included 62,969 

individuals of European (EUR), African (AFR), Asian (ASN), Hispanic (HIS), and Brazilian 

(BRZ) ancestries from 16 studies (Supplementary Tables 1–3). Stage 2 replication analyses 

included 59,296 individuals of EUR, AFR, ASN and HIS ancestries from 14 additional 

studies (Supplementary Tables 4–6). We examined long total sleep time (LTST) and short 

total sleep time (STST) separately as lifestyle exposures. Given the heterogeneity of age, 

sleep duration and BP levels across cohorts and ancestry groups, as well as differences in 

how sleep duration was assessed (Supplementary Tables 2 and 5), we followed procedures 

used in prior research19 to categorize 20% of each sample as long sleepers and 20% as short 

sleepers based on responses to questionnaires, accounting for age and sex variability within 

each cohort (Supplementary Methods).

The overall study design is described in Fig. 1. Gene-sleep interaction analyses were 

performed adjusting for age, sex, population structure, and other cohort-specific covariates 

in each ancestry of each cohort. Since BMI is associated with both sleep and BP24, 25, we 

performed additional interaction analyses adjusted for BMI to identify genetic loci through 

biological pathways independent of obesity. Inverse-variance weighted meta-analysis for the 

1 degree of freedom (df) interaction term (Pint), and 2 df joint fixed-effects meta-analysis 

of the combined main and interaction effects (Pjoint) using Manning et al’s method23 

were performed across multi-ancestry in stage 1 and stage 2 separately. Secondary ancestry-

specific meta-analyses were performed restricted to EUR and AFR groups. We performed 
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extensive study-level and meta-level quality controls as described in Supplementary 

Methods.

Genetic variants with Pint or Pjoint <10−6 in stage 1 were followed up in stage 2 

replication analyses and subsequently meta-analyzed with stage 1 summary statistics. The 

replication significance threshold was defined as stage 2 P<0.05 and stage 1 + 2 P<5×10−8, 

with consistent directions of association effects. To maximize the statistical power, we 

also performed genome-wide combined stage 1 and 2 meta-analyses in multi-ancestry 

and EUR groups. Additional novel loci were reported at a stricter significant threshold 

(P<3.125×10−9), accounting for 2 independent BP traits, 2 exposures, 2 tests (joint and 

interaction), with and without BMI adjustment. Novel loci replicated in two-stage analyses 

and additional loci identified in combined analyses were followed up for associations with 

relevant traits and bioinformatics analyses.

This work was approved by the Institutional Review Board of Washington University in 

St. Louis and complies with all relevant ethical regulations. For each of the participating 

cohorts, the appropriate ethics review board approved the data collection and all participants 

provided informed consent.

Results

Genome-wide gene-sleep interaction analyses

The Miami and QQ plots of stage 1 discovery analyses in multi-ancestry, EUR and 

AFR groups are provided in Supplementary Figs 1–6. 1,976 genetic variants with Pint 

or Pjoint<10−6 were followed up for replication analyses. Of these, 1,081 variants were 

available in stage 2 cohorts and passed quality control, of which 268 variants showed Pjoint 

or Pint <0.05.

Our primary two-stage multi-ancestry analyses replicated 3 novel loci (r2<0.1 and >1Mb 

from any previously identified BP locus) using the 1df interaction test. Among these 

loci, rs7955964 (FIGNL2/ANKRD33) showed significant 1df interactions with LTST, 

while rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) revealed 

significant 1df interactions with STST (Pint<5×10−8; Table 1). The regional association 

plots are shown in Supplementary Fig. 7. Consistent directions of main and interaction 

effects were observed across different cohorts (Fig. 2). Note that since rs7955964 and 

rs10406644 are common only in AFR and HIS cohorts (minor allele frequency [MAF] > 

1%), the association effects may be driven by African ancestral alleles. With and without 

adjustment for BMI showed similar association results at those three loci (Table 1). Using 

2df joint test we identified 9 loci that were within 1Mb from previously reported BP 

loci (Pjoint<5×10−8; Supplementary Table 7). However, none of these loci showed nominal 

significant 1df interaction association with LTST or STST (Pint>0.05).

In secondary ancestry-specific two-stage analyses restricted to EUR or AFR individuals, 

the 1df interaction test did not identify any significant locus. The 2df joint test in 

EUR group identified 1 locus near previously reported BP loci (≤1Mb; Supplementary 

Table 7). The 2df joint test in AFR group identified 3 novel loci after incorporating 
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interactions with LTST (stage 1 Pjoint <5×10−8 and stage 2 Pjoint<0.05, with consistent 

directions of main effects), including rs111887471 (TRPC3/KIAA1109), rs114043188 

(ANK), and rs138967672 (RP11–322L20.1/RP11–736P16.1) (Supplementary Table 8 and 

Supplementary Fig. 8). However, these 3 variants did not survive our formal replication 

criteria of stage 1+2 P<5×10−8, possibly reflecting heterogeneity between discovery and 

replication cohorts.

Genome-wide combined stage 1 and stage 2 meta-analyses (Miami and QQ plots in 

Supplementary Figs 9–12) additionally identified 20 loci near previously reported BP 

loci (≤1Mb) and 56 unreported loci (>1Mb from previously reported BP) with Pjoint or 

Pint<5×10−8 (Supplementary Tables 9–11). Loci near known BP genes, including NME7, 
FAM208A, MKLN1, CEP164, and RGL3/ELAVL37–11 showed significant 1df interactions 

with LTST (Pint<5×10−8; Supplementary Table 9). Among the 56 unreported loci, 20 loci 

passed a stricter significance threshold accounting for multiple comparisons (Pjoint or Pint 

<3.125×10−9; Supplementary Table 10 and Supplementary Fig 13). Among these 20 novel 

loci, 3 loci showed significant 1df interaction with LTST and 5 loci showed genome-wide 

significant 1df interactions with STST (Pint<5×10−8; Supplementary Table 10). Replication 

in independent datasets is needed to validate those unreported loci. We also looked up 

the previously validated 362 BP loci4–15 and 113 sleep duration loci26 in the combined 

analyses, but none of these showed significant 1df interactions after accounting for multiple 

comparisons (Pint>10−4; Supplementary Tables 12–15).

We estimated the variance of BP traits explained by 3 replicated and 23 additional novel loci 

(3 in AFR two-stage analyses and 20 in combined analyses) using the R package VarExp27 

(Supplementary Table 16). The 3 replicated novel variants together explained 0.002–0.039% 

and 0.304–0.939% of BP variation in EUR and AFR, respectively. The other 23 variants 

additionally explained 0.230–0.419% and 0.806–2.597% of BP variation in EUR and AFR. 

Given the limited sample sizes in the AFR group, the estimation of BP variation in AFR is 

likely inflated.

Associations with other relevant traits

We looked up the associations between the 3 replicated and 23 additional novel loci with 

cardiovascular diseases, stroke, chronic kidney disease, and self-reported and objective 

(derived from 7-day accelerometry) sleep traits using publicly available genome-wide 

summary statistics from large GWAS26, 28–37 (Supplementary Tables 17–22). One of 

the replicated loci rs73493041 (SNORA26/C9orf170) was associated with self-reported 

chronotype (morningness vs eveningness) (P=9.1×10−6; Supplementary Table 21). Among 

the other novel loci, rs17036094 (PSRC1/MYBPHL) was associated with coronary artery 

disease and myocardial infarction (P≤0.005; Supplementary Table 18), and rs140526840 

(FSTL5) was associated with chronic kidney disease (P=0.006; Supplementary Table 20),

Bioinformatics analyses

All of the 26 novel variants were mapped to intergenic or intronic regions using HaploReg38, 

including 4 in promoter histone marks, 11 in enhancer histone marks, 10 in DNAse, 3 
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altered the binding sites of regulatory proteins and 2 conserved elements (Supplementary 

Table 23).

Among the 3 replicated novel loci, rs73493041 (SNORA26/C9orf170) was an eQTL for 

GAS1 in suprapubic skin using GTEx (v8)39 (Supplementary Table 24). Using PLINK 

pruning and SNPsea40, rs7955964 (SNORA26/C9orf170) was mapped to a region of 

10 genes (Supplementary Table 25), including ANKRD33 and NR4A1, implicated in 

sleep-wake control regulation and the neurovascular system41, 42. Rs10406644 (KCTD15/
LSM14A) was mapped to a region overlapping with 9 genes (Supplementary Table 26), 

including KCTD15 and CHST8, previously associated with adiposity traits and involved in 

neurodevelopmental and neuropsychiatric diseases43–45 (see Discussion).

Among the other 23 novel loci, 4 variants showed strong eQTL evidence across various 

tissues such as blood and adipose tissue (Supplementary Table 24). 14 loci were mapped 

to genes with known functions in cardiac and nervous systems (e.g., TRPC346, RYR247, 

ANK248, GJA449 and SORT150) and associated with other cardiometabolic (e.g., HTR1A51, 

PSRC152, PSKH153), inflammatory (e.g., IL3354), cognition (e.g., FRMD4A55) and 

psychiatric traits (e.g., NFATC356) (Supplementary Tables 25 and 26).

In total, 11 novel loci harbored genes implicated in Mendelian syndromes such as 

ventricular tachycardia and cryptogenic cirrhosis. 13 loci harbored one or more genes with 

potential drug targets (Supplementary Tables 25 and 26).

We performed tissue and pathway enrichment analyses using annotated genes under novel 

association regions using FUMA57 (Supplementary Tables 27 and 28). Genes under the 

association regions in gene-LTST interaction analyses were enriched in multiple artery and 

cardiac muscle related pathways (Supplementary Table 29).

Discussion

We performed gene-sleep interaction analyses on BP using 122,265 individuals from 5 

ancestry groups in 30 studies, using both a 1df test of interaction effect and a 2df joint test 

of main and interaction effects. Following a two-stage design, we identified 3 novel loci that 

were replicated in additional samples, including rs7955964 (FIGNL2/ANKRD33) showing 

significant interactions with LTST, and rs73493041 (SNORA26/C9orf170) and rs10406644 

(KCTD15/LSM14A) showing significant interactions with STST (Pint<5×10−8). Secondary 

analyses additionally identified 3 novel loci with weak replication evidence in AFR groups 

using 2df joint test. Combined stage 1 and 2 analyses identified another 20 novel loci 

after accounting for multiple comparisons (Pjoint or Pint<3.125×10−9), which require external 

replication. The associations were largely unchanged after additionally adjusting for BMI. 

Collectively, these 26 loci explained 0.23–0.43% of BP variation in EUR and 1.33–2.96% 

BP variation in AFR groups.

The emergence of novel loci after considering gene-sleep interactions suggests an important 

modifying role of sleep on BP regulation, which involves both central and peripheral 

regulation (including the brain, adrenal glands, kidneys, and vasculature). Insufficient or 

short sleep can increase BP through effects on elevating sympathetic nervous system activity 
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and altering hypothalamic-pituitary-adrenal (HPA) axis activities, leading to hormonal 

changes, endothelial dysfunction, insulin resistance, and systemic inflammation20, 58. The 

mechanisms underlying the association between long sleep duration and BP are less 

well understood, and may reflect circadian misalignment in a 24-hour period, including 

disrupted sleep-wake cycle, a misalignment of internal biological clocks with the external 

environment, and desynchronized central and peripheral clocks in tissues relevant for BP 

control59. The importance of circadian control of BP is evident by the normal nocturnal 

decline (“dipping”) in BP. Non-dipping of BP, associated with increased mortality, is 

observed with both sleep disturbances and abnormalities of sodium transport in the 

kidney60, 61. Our data suggest that sleep and renal and neuro-endocrine control of BP 

may interact to influence susceptibility to HTN. The novel loci found by gene-LTST and 

gene-STST interaction analyses were distinct, supporting the different mechanisms of short 

and long sleep modifying BP. Similarly, in prior gene-sleep interaction analyses for blood 

lipids, LTST and STST each also modified gene effects in a non-overlapping pattern19.

Primary two-stage multi-ancestry analyses identified 3 novel loci. At rs7955964 (FIGNL2/
ANKRD33), ANKRD33 is expressed in retinal photoreceptors and the pineal gland and 

acts as a transcriptional repressor for CRX-activated photoreceptor gene regulation41. 

Given the importance of light in the central regulation of circadian rhythms, long 

sleep- a circadian disruptor- may interact with this gene to influence BP60. Additionally, 

NR4A1 (also at rs7955964) is a member of the nuclear hormone receptors, which 

regulate neurohormonal systems including dopamine and norepinephrine and cardiac stress 

responses42. At rs10406644 (KCTD15/LSM14A), CHST8 and KCTD15 are associated 

with adiposity traits43, 44 and GPI functions in glucose metabolism and immune system 

pathways62, 63. Short sleep may exacerbate weight gain and metabolic dysfunction64, 

thus amplifying effects of this locus on BP. KCTD15 belongs to a gene family 

involved in neurodevelopmental and neuropsychiatric diseases45. Rs73493041 (SNORA26/
C9orf170) was an eQTL for GAS1, a pleiotropic regulator of cellular homeostasis and 

widely expressed in the central nervous system65, 66. This variant was also significantly 

associated with self-reported chronotype, an indicator of circadian preference (P=9.1×10−6; 

Supplementary Table 20).

Given the high prevalence of HTN in African Americans, there is a critical need to 

identify modifiable risk factors. Notably, African Americans have poorly controlled HTN 

as well as circadian abnormalities in BP regulation67. They also have a higher prevalence 

of short and long sleep duration compared to individuals of European ancestry68, 69, 

likely due to combinations of social-environmental exposures and genetic and epigenetic 

susceptibility70. In AFR specific gene-LTST analyses we identified 3 unreported loci, 

including two loci mapped to TRPC3 and ANK2 with known functions in cardiac ion 

(Na+ and Ca2+) homeostasis46, 48. These associations in AFR may reflect differences in 

BP control with individuals of African ancestry having greater sodium sensitivity71, with 

BP effects amplified by disrupted circadian rhythm regulation due to long sleep61. While 

intriguing, these associations were observed in African Americans (Pjoint<5×10−8) and 

the only available replication sample was individuals of African ancestry from the UK 

(Pjoint<0.05). There may be a systematic difference of the admixture structure between 

the discovery and replication cohorts. Future analyses using larger AFR samples will be 
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needed to validate these findings and further identify the potential for sleep disturbances to 

interact with BP regulatory systems in AFR who are at increased risk for HTN-associated 

morbidities.

Although we did not observe significant 1df interactions with sleep duration on the 362 

previously reported BP or 101 sleep duration variants (Supplementary Tables 12–15), we 

identified 30 loci within 1Mb from previously reported BP regions (Supplementary Tables 

7 and 9). Among those, variants in/near NME7, FAM208A, MKLN1, CEP164, and RGL3/
ELAVL3 showed significant 1df interactions with LTST (Pint<5×10−8; Supplementary Table 

9). Some of these genes have known functions in neuronal systems, including MKLN1 
regulating the internalization and transport of the GABAA receptor72, 73 and ELAVL3 
encoding a neural-specific RNA-binding protein involved in neuronal differentiation and 

maintenance74.

In this study we defined short and long sleep duration using self-reported questionnaires, 

which can result in misclassification75, potentially reducing statistical power. Although we 

used a within cohort approach for harmonizing sleep duration that accounted for age and sex 

differences across cohorts, there may be systematic residual differences in sleep assessments 

that resulted in heterogeneity across our samples. Future work using objective measurements 

(e.g., polysomnography and actigraphy data) may provide further insight into sleep-related 

BP mechanisms.

Some of our most interesting findings - and ones with high potential public health impact 

due to the burden of extreme sleep duration and HTN in AFR group. Unfortunately, limited 

samples of AFR were available for replication. We identified 1,976 variants with significant 

association effect in gene-sleep interaction analyses in stage 1. However, only 1,081 of those 

variants were available in stage 2 analyses. Most of the unavailable variants in stage 2 had 

been identified in non-EUR cohorts and were rare in EUR populations (MAF<1%). Future 

studies following-up these “missing” variants in diverse groups and additional studies of 

minority populations are needed to further understand mechanisms for BP regulation that are 

modulated by sleep. In addition, some of our findings were mapped to large genomic regions 

covering many genes. Further fine-mapping analyses using sequencing data or biochemistry 

experiments may further clarify the causal variants.

In summary, we performed a large-scale gene-sleep interaction meta-analyses in multi-

ancestry groups. In addition to identifying interactions at a genome-wide significant level 

near 5 previously reported BP regions, we identified 3 novel loci with formal replication and 

23 novel loci that need external replication. Multiple genes showing significant interactions 

with long or short sleep duration were functional in tissues relevant for BP control, and 

associated with circadian, metabolic, and neuropsychiatric traits. Prior research indicates 

that extreme sleep durations (short or long) are strongly associated with cardiovascular 

disease and mortality through causal and noncausal pathways20, 21. Our data suggest 

that interactions between sleep and BP-regulating genes may contribute to the increased 

cardiovascular morbidity observed with extreme sleep duration.
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Fig. 1. 
Study overview.
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Fig. 2. 
Forest plots of 3 replicated novel loci identified in genome-wide gene- sleep 1df interaction 

analyses in multi-ancestry population.
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