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While associations between short-term exposure to fine particulate matter (PM2.5) and risk of 

hospitalization are well documented and evidence suggests that such associations change over 

time, it is unclear whether these temporal changes exist in understudied less-urban areas or 

differ by sub-population. We analysed daily time-series data of 968 continental U.S. counties for 

2000-2016, with cause-specific hospitalization from Medicare claims and population-weighted 

PM2.5 concentrations originally estimated at 1km×1km from a hybrid model. Circulatory and 

respiratory hospitalizations were categorized based on primary diagnosis codes at discharge. Using 

modified Bayesian hierarchical modelling, we evaluated the temporal trend in association between 

PM2.5 and hospitalizations and whether disparities in this trend exist across individual-level 

characteristics (e.g., sex, age, race, and Medicaid eligibility as a proxy for socio-economic status) 

and urbanicity. Urbanicity was categorized into three levels by county-specific percentage of 

urban population based on urban rural delineation from the U.S. Census. In this cohort with 

understudied less-urban areas without regulatory monitors, we still found positive association 

between circulatory and respiratory hospitalization and short-term exposure to PM2.5, with higher 

effect estimates towards the end of study period. Consistent with current literature, we identified 

significant disparity in associations by race, socioeconomic status and urbanicity. We found that 

the percentage change in circulatory hospitalization rate per 10 μg/m3 increase in PM2.5 was 

higher in the 2008-2016 time period compared to the 2000-2007 period by 0.33% (95% posterior 

credible interval 0.22, 0.44%), 0.52% (0.33, 0.69%), and 0.67% (0.53, 0.83%) for low, medium 

and high tertiles of urban areas, respectively. We also observed significant differences in temporal 

trends of associations across socioeconomic status, sex, and age, indicating a possible widening 

in disparity of PM2.5-related health burden. This study raises the importance of considering 

environmental justice issues in PM2.5-related health impacts with respect to how associations may 

change over time.

Keywords

fine particulate matter; hospitalization; vulnerable sub-population; urbanicity; temporal trend

INTRODUCTION

Deleterious associations between short-term exposure to fine particulate matter (PM2.5) and 

risk of hospitalizations were identified in many national studies (Dominici et al., 2006; Tian 

et al., 2019; Wei et al., 2019; Zhao et al., 2020). Changes to the complex mixture of varying 

chemicals that comprise particles due to variation in emissions sources as well as changes 

in population characteristics that relate to susceptibility to PM2.5 could affect PM2.5-related 

health impact (Atkinson et al., 2015; Bell et al., 2014; Krall et al., 2013). Many factors 

that affect the source and composition of PM2.5 change over time, such as promulgation 

of air pollution control policy, technology improvement in vehicle engines, trends in fuel 

sources, and climate change, potentially leading to temporal changes in association between 

PM2.5 and risk of hospitalizations. While suggestive evidence on temporal changes in this 

association has been observed in various regions and time periods, evidence of temporal 

changes in U.S. rural areas and on their effect modifiers is lacking (Breitner et al., 2009; 

Carugno et al., 2017; Chen et al., 2021; Choi et al., 2018; Dominici et al., 2007; Kim et al., 

2015).
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Understanding the health impact of PM2.5 and its temporal trend in both urban and rural 

areas is particularly important as the sources of PM2.5 changed over time in the U.S. 

and such scientific evidence could lead to better understanding of the relative harm of 

different emissions. Analyses on U.S. industrial contribution to air pollution from 2008 to 

2014 identified a consistent high contribution from agricultural emissions, which became 

the largest contributors to air pollution damages from PM2.5-related emissions when 

contributions from other industries like electricity generation and transportation steadily 

decreased (Tschofen et al., 2019). Agricultural emissions mostly impacted areas with 

lower urban population, and the pattern described above highlights the need for better 

understanding of PM2.5-health association in these areas. Further, assuming a constant 

PM2.5-related health impact over time, or even assuming that such a trend exists but is 

the same across populations, levels of urbanicity, etc., might lead to incorrect estimation 

of health burden of PM2.5. Estimates of the public health impacts of air pollution and 

associated air quality regulations and policies routinely incorporate evidence from the 

scientific literature based on timeframes in the past, such as studies based on air pollution 

from decades ago. The degree to which these prior studies apply to current and future 

conditions could be impacted by temporal changes in these associations and how they differ 

across region or population.

Further, most national level epidemiological studies of PM2.5-related health impact, 

including the limited studies of the temporal changes, focused on urbanized areas due to 

data limitations. Most studies utilized measured exposure data from monitors established 

for regulatory purposes, such as those from U.S. Environmental Protection Agency Air 

Quality System (US EPA, 2013). These monitoring sites are largely located in densely 

populated areas with higher urban population, socioeconomic status, and education level 

(Bell and Ebisu, 2012; Bravo et al., 2012). PM2.5-health associations in less populated and 

less urbanized areas are understudied, although some research suggests different impacts 

from PM2.5 on health by urbanicity (Bravo et al., 2017). Recent studies attempted to fill 

this gap by using modelled PM2.5 concentrations (Bravo et al., 2017; Di et al., 2017; Kloog 

et al., 2014; Wei et al., 2019), but to the best of our knowledge none have explored the 

temporal trend of the association between PM2.5 and risk of hospitalizations.

Previous studies found evidence on effect modification of PM2.5-related health impact 

by community-level characteristics and individual-level characteristics, with higher risk 

found in more urbanized areas, women, older populations, racial/ethnic minorities, and 

populations with lower socioeconomic status, although evidence was inconsistent across 

studies (Bell et al., 2015, 2013; Bravo et al., 2017; Deguen and Zmirou-Navier, 2010; Di et 

al., 2017). We hypothesize that the temporal trend could also vary by sub-population. The 

association between PM2.5 and risk of hospitalization and its temporal changes could vary 

across community-level and individual-level characteristics due to difference in composition 

of PM2.5 exposed (Bell and Ebisu, 2012; Krall et al., 2013), different baseline health 

status (e.g., greater barriers to health care access in rural areas or among those financially 

deprived), and differential measurement error (e.g., variation in time spent outdoors during 

high PM2.5 episodes). Exploration of disparities across community-level and individual-level 

characteristics could highlight disparities in the health burden of PM2.5 over time and 
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thereby facilitates better understanding of environmental justice in the U.S. and supports 

evidence-based mitigation policy design.

In this study, we explored whether the association between PM2.5 and risk of hospitalization 

changed over time, using analysis that included understudied, less densely populated 

areas. We also evaluated whether disparity in associations and temporal trends of 

associations existed across levels of urbanicity and individual-level characteristics related 

to environmental justice concerns.

METHODS

Study population

We studied Medicare beneficiaries residing in 968 U.S. counties from 2000 to 2016. Under 

consideration of statistical power, we selected counties with a population larger or equal to 

50,000 in U.S. Census Bureau 2010 Decennial Census. To categorize these counties into 

different levels of urbanicity, we utilized the county-level percentage of urban population 

from the U.S. Census Bureau 2010 Census (US Census Bureau, n.d.). The U.S. Census first 

categorizes tracts and blocks as urban or rural based on a combination of characteristics 

including population density, land use, and other measures of dense development, and then 

calculates county-specific percentages, ranging between 0 to 100%, of urban population 

as the proportion of total population residing in urban census tracts and blocks within the 

county (Ratcliffe et al., 2016). To alleviate the concern over different statistical power across 

categories, we divided counties into three urbanicity categories by setting cut points for 

percentage of urban population to achieve similar size of population in each category: high 

(97.9% to 100% urban population), medium (87.7% to 97.5% urban population), and low 

urbanicity (9.9% to 87.7% urban population). Although we did not include counties that 

are completely rural (0% urban population), we included many counties that are mostly 

rural (less than 50% urban population) based on U.S. Census Bureau definition (Ratcliffe et 

al., 2016). This study was approved by Yale and Harvard Universities’ Institutional Review 

Boards. Health data were previously collected administrative data, thus informed consent 

requirements did not apply.

Health outcomes

We analyzed county-level daily counts of circulatory and respiratory hospitalization 

aggregated from Medicare fee-for-service patient claims (age ≥ 65 years) from January 

1, 2000 to December 31, 2016. We categorized hospitalization counts into different causes 

based on primary diagnosis at discharge and the International Classification of Diseases, 

Ninth Revision, Clinical Modification through September 30, 2015 and the International 

Classification of Diseases, Tenth Revision, Clinical Modification for the remaining years 

(Appendix A). We also obtained county-level number of persons at risk. These aggregated 

data were stratified by individual-level characteristics including sex (men and women), race 

(White, Black, and other), age groups (65 to 74 years and ≥ 75 years), and eligibility for 

Medicaid (eligible and non-eligible). The “other” race category included individuals with 

self-reported racial group other than White or Black or with unknown race. Individuals’ 

eligibility for Medicaid could be interpreted as a surrogate for lower socioeconomic status.
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Air pollution exposure and meteorological data

We utilized estimated daily PM2.5 concentration from a hybrid model using convolutional 

neural network technique to incorporate data from sources such as monitor measurements 

from U.S. Environmental Protection Agency Air Quality System, satellite-based 

measurements, simulation outputs from a chemical transport model, land-use terms, 

meteorological data, etc. (Di et al., 2016). This modelled daily PM2.5 dataset was 

extensively validated with a R2 value of 0.84 between fitted and measured values among 

left out monitors in 10-fold cross-validation (Di et al., 2016), and was utilized in 

previous epidemiological studies (Di et al., 2017; Wei et al., 2019). This dataset allows 

estimation of exposure in locations without regulatory monitors. We spatially allocated 

PM2.5 concentrations estimated at 1 × 1 km grid across the continental U.S. to county-level 

averages by population weighting. For daily average temperature and dew point temperature, 

we obtained daily estimates from Parameter-elevation Relationships on Independent Slopes 

Model AN81D dataset and processed them with population weighing to achieve county-

level averages (Daly et al., 2008). Details of county-level exposure and meteorological data 

calculation are in Appendix B.

Statistical approach

We utilized a modified two-stage Bayesian hierarchical model to evaluate whether 

the temporal trend in association between short-term exposure to PM2.5 and risk of 

hospitalizations varies across individual- and community-level characteristics. The base 

model was previously applied in studies evaluating the association between adverse health 

outcomes and short-term exposure to air pollutants, which consists of a quasi-Poisson model 

to estimate county-specific association between PM2.5 and risk of hospitalizations, and a 

Bayesian hierarchical model to pool normal-approximated county-level estimates to generate 

a national average estimate that accounts for variabilities within and across counties (Bell 

et al., 2004a; Dominici et al., 2006; Samet et al., 2000). Details of the epidemiological 

modelling structure are described in Appendix C.

There are several features in our analysis that build and extend upon previous methods. 

We chose PM2.5 concentration for the moving average of the same day and previous two 

days (L02) a priori as the main exposure of interest because previous studies reported 

positive associations between exposure to PM2.5 and hospitalization in this lag interval 

(Dominici et al., 2006; Qiu et al., 2020; Shah et al., 2013, 2015), and L02 PM2.5 will 

likely capture the health impact of PM2.5 more fully than single-day lag model while 

remaining parsimonious. Similar approach was utilized in previous studies (Di et al., 2017; 

Zanobetti and Schwartz, 2009). Similar to a previous study, we evaluated the temporal 

trend in the PM2.5-hospitalization association separately for each county in two ways with 

increasing flexibility: 1) time-stratification model calculating associations separately for two 

time periods of similar length (2000-2007 and 2008-2016), and comparing associations 

between periods; and 2) nonlinear temporal model by replacing the term for PM2.5 with both 

a PM2.5 term and an interaction term between daily PM2.5 and natural cubic spline function 

of year with 4 internal knots at quantiles (Chen et al., 2021). The nonlinear method accounts 

for the possibility that the stratification model may not fully capture the temporal trend. In 

the quasi-Poisson model, we included variables to account for factors that could confound 

Chen et al. Page 5

Environ Res. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the relationship between PM2.5 and risk of hospitalization, such as changing meteorological 

conditions and long-term trends in risk of hospitalizations (Equation C.1 in Appendix C). In 

this way, we disentangled the temporal trends in health effect estimates for PM2.5 from other 

factors that influence risk of the hospitalization over time.

We evaluated whether PM2.5-hospitalization associations vary by individual- and 

community-level characteristics with different methods. For individual-level characteristics 

(sex, race, age group, and eligibility for Medicaid), we added interaction terms with the 

indicator variable of the characteristic in the first stage (county-specific model as shown in 

Equation C.2 in Appendix C). This interaction method investigates whether persons who 

are from the same county but in different sub-populations could be affected differently 

by PM2.5 as well as other model covariates (e.g., temperature). For community-level 

characteristics (e.g., urbanicity), we conducted first-stage modelling without consideration 

of effect modification and assessed the effect modification of the characteristics using its 

spatial disparity across counties, making no assumption about other covariates in the first-

stage model. Using urbanicity as an example, we combined county-specific estimates by 

categories of urbanicity separately in the second-stage model to evaluate effect modification 

by urbanicity (subset method).

Analyses were performed with R3.5.1 software with “zoo”, “splines”, “tsModel” and 

“tlnise” packages (Everson and Morris, 2000; R Core Team, 2018; Roger D. Peng 

and with contributions from Aidan McDermott, 2013; RStudio Team, 2018; Zeileis and 

Grothendieck, 2005).

Sensitivity analysis

Since previous studies provided evidence that PM2.5 did not advance adverse health 

outcomes by only a few days (Bell et al., 2004b; Qiu et al., 2020), we conducted sensitivity 

analysis with different lag structures for the base model to evaluate whether the exposure 

metric chosen fully captured the health impacts of PM2.5, using moving averages of same 

day and previous day (L01), and single day lags of same day (L0), previous day (L1), and 2 

days previous (L2).

To explore whether the categorization of urbanicity affects the results, we also categorized 

counties into five levels by setting cut points for percentage of urban population at 90%, 

80%, 60% and 40%, and conducted similar analyses as the three-level categorization in 

the main analysis. This five-level categorization prioritized similar range for percentage of 

urban population in each level over balance in population size across levels and was used 

in previous study of health disparity by urbanicity (Bravo et al., 2017). Further, we included 

percentage of urban population as a covariate in the second stage model for the base model 

(covariate method), which avoided categorization of urbanicity as in the subset method 

and was applied in previous studies of effect modification (Bell and Dominici, 2008). This 

also tested whether a linear relationship exists between county-level percentage of urban 

population and PM2.5-hospitalization association.
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RESULTS

This study included an average of 23.1 million Medicare beneficiaries residing in 968 

U.S. counties with 32.9 million circulatory and 9.8 million respiratory hospitalizations for 

2000-2016 (Figure D.1). The number of beneficiaries were balanced across most individual-

level characteristics except for race and Medicaid eligibility, with more Whites (85.1%) 

and persons non-eligible for Medicaid (87.3%) (Table 1). Hospitalization rates were higher 

in men, those ≥ 75 years, Blacks, and persons eligible for Medicaid than corresponding 

comparison groups, and decreased over the study period for all sub-populations (Table 1). 

Medians of county-level daily hospitalization rates and average PM2.5 concentrations were 

highest in the low urban category in comparison to the medium and high urban categories 

and decreased over time for all levels of urbanicity (Table 2).

Entire study population

In the base model of the entire study population, a 10 μg/m3 increase in L02 PM2.5 was 

associated with a 0.56% (95% posterior credible intervals (PI): 0.45, 0.68%) change in risk 

of circulatory hospitalization and a 0.17% (95% PI: −0.03, 0.37%) increase in respiratory 

hospitalization (Table 3). Central estimates for associations between PM2.5 and circulatory 

hospitalization were positive in all lags tested and were most significant and highest for 

L0 exposure (Table D.1). Central estimates for associations with respiratory hospitalization 

were positive in all lags tested and most significant and highest for L1 exposure (Table D.1).

Results from the time-stratified model, with separate results for 2000-2007 and 2008-2016, 

indicate changes over time in PM2.5 risk. We observed a 0.49% (95% PI: 0.40, 0.58%) 

increase in association (expressed as percentage change in hospitalization per L02 PM2.5 10 

μg/m3 increase) for circulatory hospitalization and 0.67% (95% PI: 0.53, 0.82%) decrease 

for respiratory hospitalization comparing association in the first period (2000-2007) to 

second period (2008-2016) (Table 4). The nonlinear model also demonstrated changes in 

the PM2.5 risk over time. Results from nonlinear model indicate a fluctuating but overall 

increasing trend in PM2.5 risk for circulatory hospitalization consistent with the stratification 

model, whereas results for respiratory hospitalization showed a hook shape with risk that 

was lowest around 2010 and increased to its highest level in 2016 (Figure 1). The decrease 

in association between PM2.5 and respiratory hospitalizations over time in the stratification 

model was likely driven by the dip around 2010 although the association increased to its 

highest level in the last years of study. The association between PM2.5 and circulatory 

hospitalization increased 2.59% (95% PI: 2.03, 3.17%) from the lowest estimate in 2007 

to the highest estimate in 2016, whereas the association for respiratory hospitalization 

increased 3.13% (95% PI: 2.12, 4.14%) from the lowest estimate in 2010 to the highest 

estimate in 2016.

Effect modification by urbanicity

Across levels of urbanicity, associations were lowest in low urban (lowest third of urban 

population) counties. High urban (highest third) counties demonstrated a 0.80% (95% 

PI: 0.54, 1.05%) increase in risk of circulatory hospitalization per 10 μg/m3 L02 PM2.5 

increase, which was significantly higher than the 0.43% (95% PI: 0.27, 0.59%) increase in 
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low urban counties, and 0.60% (95% PI: 0.37, 0.82%) increase in medium urban (middle 

third) counties (Table 3). Medium urban counties demonstrated the highest association for 

respiratory hospitalization while associations were not statistically significant in the other 

two urban categories (Table 3). Results from the covariate model also indicated increase in 

PM2.5-hospitalization association with increase in percentage of urban population, but these 

trends were not statistically significant and suggested the lack of a linear relationship (Figure 

D.2).

Using the stratification model, we observed similar temporal patterns in three levels 

of urbanicity as in the entire study population: increase in associations for circulatory 

hospitalization and decrease in associations for respiratory hospitalizations. The temporal 

change in associations (expressed as percentage change in hospitalization per L02 PM2.5 

10 μg/m3 in 2008-2016 minus the value in 2000-2007) for circulatory hospitalizations 

was 0.35% (95% PI: 0.29, 0.43%) lower in low urban counties than high urban counties 

(Table 4). The nonlinear temporal model revealed that the association for circulatory 

hospitalizations in medium and high urban counties steadily increased over time, while the 

association in low urban counties dipped around 2009 then increased in later years (Figure 

2). For temporal changes of respiratory hospitalizations, we observed a similar dip in 2010 

across all levels of urbanicity but the increase in recent years were more prominent in high 

and medium urban counties (Figure 2).

When using the five-level categorization of urbanicity that ensures similar range for 

percentage of urban population in each level, we obtained five urbanicity categories 

accounting for 62.8%, 13.8%, 15.3%, 5.6% and 2.5% of the total study population. The 

above 90% level strata included almost all counties in the high and medium urban levels 

in the main analysis of three-level categorization. We found similar patterns as the three-

level categorization, where the above 90% level demonstrated the highest association and 

most increase in association over time (Table D.2 and Table D.3). Additionally, two levels 

with the lowest urban population, below 40% and 40% to 60%, showed higher PM2.5-

hospitalization association for circulatory conditions than the two levels in the middle, with 

60% to 90% urban population (Table D.2). The 40% to 60% level also demonstrated large 

increase in the association for both circulatory and respiratory hospitalizations during recent 

years (Figure D.3).

Effect modification by individual-level characteristics

Among sub-populations, associations between PM2.5 and hospitalization (percentage change 

in hospitalization per 10 μg/m3 L02 PM2.5 increase) were 0.26% (95% PI: 0.00, 0.53%) and 

0.54% (95% PI: 0.12, 0.95%) higher among persons eligible for Medicaid compared to those 

not eligible, for circulatory and respiratory hospitalizations, respectively (Table 3). Whites 

had lower associations than the other racial groups (Blacks, other), but the difference was 

only statistically significant when compared to Blacks for respiratory hospitalization (Table 

3). Due to imbalance in population size by racial groups, not all counties had sufficient 

sample size for quasi-Poison model in base and stratification models, thus this analysis 

excluded ~79% of counties from pooling at second stage. Therefore, this finding was 

more based on urban areas. We also observed slightly higher associations between PM2.5 
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and circulatory and respiratory hospitalizations in women compared to men, and in those 

age 65-74 years compared to those ≥ 75 years, although differences were not statistically 

significant (Table 3).

When incorporating temporal trend in the stratification model, we observed similar temporal 

patterns in most sub-populations as in the entire study population with some exceptions: 

Black and “other” race groups and persons eligible for Medicaid demonstrated increases 

in PM2.5-respiratory hospitalization risk, while all other sub-populations demonstrated 

decreases in this association over time (Table 4). Results from the stratification model 

indicate significant disparities across some sub-populations in the temporal change in 

associations (percentage change in hospitalization per L01 PM2.5 10 μg/m3 increase in 

2008-2016 minus the value in 2000-2007): 1) the temporal change was 0.25% (95% PI: 

0.01, 0.51%) and 0.41% (95% PI: 0.09, 0.73%) higher for men than women for circulatory 

hospitalizations and respiratory hospitalizations, respectively; 2) the temporal change was 

0.21% (95% PI: 0.07, 0.36%) higher for those ≥ 75 years than those 65-74 years for 

circulatory hospitalizations; and 3) the temporal change was 0.29% (95% PI: 0.03, 0.50%) 

and 1.00% (95% PI: 0.67, 1.32%) higher for persons eligible for Medicaid than those 

who were not eligible for circulatory hospitalizations and respiratory hospitalizations, 

respectively (Table 4). Results from the non-linear model for most sub-populations 

demonstrated similar trends, with the largest differences in risk among groups in recent 

years (Figure 3, Figure 4 and Figure D.4). Most sub-populations also showed a dip around 

2010 in PM2.5 associations for respiratory hospitalizations and increases for later years in 

associations for both hospitalizations, except for persons eligible for Medicaid, who only 

experienced sharp increases in PM2.5 associations for both hospitalizations towards the end 

of study period (Figure 3). We did not conduct non-linear temporal trend analysis for race 

subpopulations given sample size restriction.

DISCUSSION

In this study, we created a daily time-series dataset of >23 million Medicare beneficiaries in 

968 U.S. counties, including understudied less-urban areas without regulatory monitors, and 

observed: 1) positive associations between L02 PM2.5 and risk of circulatory and respiratory 

hospitalizations; 2) temporal changes in these associations with higher risk towards the end 

of study period; 3) significant effect modification on associations by levels of urbanicity, 

socioeconomic status and race; and 4) significant effect modification on the temporal trends 

of associations by levels of urbanicity, socioeconomic status, sex and age.

Specifically, we found that: 1) high urban counties had higher risk of respiratory and 

circulatory hospitalization associated with PM2.5 compared to the low urban counties, while 

the highest PM2.5-respiratory hospitalization association was in the middle counties for 

urbanicity; 2) Medicare participants who are eligible for Medicaid, as a proxy for lower 

socioeconomic status, had higher associations of PM2.5 with respiratory and circulatory 

hospitalizations than those not eligible for Medicaid; and 3) Blacks had higher PM2.5 risk of 

respiratory hospitalization than Whites. These results were consistent with previous studies 

for the direction of modification (Bell et al., 2013; Bravo et al., 2017; Di et al., 2017). 

With respect to temporal trends in PM2.5-hospitalization associations, we found that: 1) both 
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circulatory and respiratory hospitalizations associated with PM2.5 increased faster in recent 

years for the high urban counties compared to the low urban counties; 2) PM2.5 risk for 

both circulatory and respiratory hospitalizations increased faster in recent years for persons 

eligible for Medicaid compared to those not eligible; and 3) PM2.5 risk of both circulatory 

and respiratory hospitalizations increased faster in recent years for men than women. These 

results suggest growing disparities over time in the health response to PM2.5.

To our knowledge, this study is the largest multi-city time-series study on temporal trends 

of association between PM2.5 and hospitalization and the first study to explore disparity 

in temporal trends of PM2.5-health impacts. Our overall PM2.5-hospitalization estimates 

were consistent with previous studies on U.S. urban counties using measured exposure data 

from regulatory monitors (Bell et al., 2008; Dominici et al., 2006). Temporal changes in 

PM2.5-hospitalization associations estimated by this study were more significant than those 

observed in a previous study with exposure data from monitors, especially the increases 

in recent years, which may relate to the larger sample size in this study; the current study 

considers a much larger study area, notably the understudied less-urban areas, with a focus 

on disparity by urbanicity and sub-population (Chen et al., 2021). This study accounted for 

confounding from seasonal and long-term trends in risk of hospitalization and PM2.5 due to 

concavity when estimating the temporal changes of PM2.5-hospitalization association.

A likely contributor to differences in the health impacts of PM2.5 over time is the change 

in the chemical composition of particles as sources and emissions vary over time. Earlier 

studies on PM2.5 indicate that the associated health burden differs by chemical component, 

chemical structure, and emission sources (Atkinson et al., 2015; Bell et al., 2014; Krall et 

al., 2013; Levy et al., 2012). This likely explains why the health impacts of PM2.5 total 

mass vary by spatially and regionally (Bell et al., 2008; Hsu et al., 2017). Further potential 

explanations and issues needing future research for the observed overall temporal trend, 

specifically the hook shape around 2010, the increase in recent years and the disparity 

between cardiovascular and respiratory hospitalizations were discussed elsewhere (Chen et 

al., 2021). For example, the economic recession from December 2007 to June 2009 could be 

a driver behind the hook shape around 2010, since both behavior-related exposure patterns 

and composition of PM2.5 changed with economic activities (Davis et al., 2010; National 

Bureau of Economic, n.d.; Russell et al., 2012).

As more evidence emerges supporting temporal variation in the association between PM2.5 

and health, likely due to combined effect of multiple time-variant factors, characterization 

of these temporal changes and further research on these issues is necessary to understand 

the associated health burden. The increase in PM2.5-hospitalization association in recent 

years suggests that the PM2.5-related health burden in the U.S. might persist even when the 

absolute level of PM2.5 decreased in recent years. Future studies might consider temporal 

variation in their analysis of PM2.5-related health impact to provide more insights from 

different populations and time periods if data are available. Temporal trend could also 

be considered in meta-analysis of previously conducted studies. Also, efforts are needed 

to disentangle the various potential contributors of temporal trends in the association, 

which involve complex, interconnected systems that may be operating at different time 

scales or even directions. This includes economic drivers, shifts in demographics, changes 
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in exposure patterns such as indoor/outdoor activity patterns, occupational exposures, 

technology, emissions sources, shifts in fuel sources, and more.

Evidence of disparity across categories of urbanicity and identification of vulnerable 

subpopulations raise the importance of considering environmental justice issues in PM2.5-

related health impact, including how associations may change over time. Further, the 

overall risk from PM2.5 is a function not only of the health response (i.e., effect estimate), 

but also the level of exposure and baseline health status, among other factors. Although 

PM2.5-hospitalization risks were lowest in the least urbanized areas (9.9% to 87.7% 

urban population), average PM2.5 concentrations were highest in these areas, contributing 

to the overall health impact from PM2.5. Areas with the highest association were in 

the medium urbanization category (87.7% to 97.5% urban population) for respiratory 

hospitalization and high urbanization category (97.8% to 100% urban population) for 

circulatory hospitalization, both of which also exhibited increases in associations during 

recent years, suggesting that focused interventions for areas with different urbanicity could 

be particularly effective. As shown in Figure D.1, most medium urban counties belong 

to metropolitan areas centered around high urban counties. The higher association for 

respiratory hospitalization among medium urbanized than high urbanized counties is likely 

the result of many combined factors, potentially a more toxic composition of PM2.5 and 

a population that overall is more susceptible to PM2.5. Besides, in sensitivity analysis 

with finer categorization of urbanicity among counties with smaller urban population, we 

found counties with 40% to 60% urban population experienced an increase in associations 

during recent years, similar to the increase for counties with above 90% urban population, 

emphasizing the importance of further studying PM2.5-related health impacts in rural areas. 

Further study on urbanicity is warranted as there exists no single metric for urbanicity, 

which relates to population density, but also proximity to cities, access to services such 

as health care, etc. More studies are needed to fully understand mechanisms behind these 

disparities.

Since vulnerable sub-populations, such as those who are financially deprived or racial 

minority populations, were exposed to higher PM2.5 exposure (Bell and Ebisu, 2012; 

Hajat et al., 2015), the observed higher PM2.5-hospitalization associations among these 

sub-populations suggest an even higher health burden, through the combined impacts of 

disparities in exposure and in health response to a given level of exposure. The increase 

in the PM2.5-hospitalization during recent years among vulnerable sub-populations also 

suggests a possible widening in disparity of PM2.5-related health burdens. According to the 

Gini index, the U.S. experienced increasing disparity in income (Bureau, n.d.), suggesting a 

growing difference between those who are and are not financially deprived over time, which 

likely contributed to the widening disparity in PM2.5-associated hospitalizations observed 

here. Targeted interventions to reduce PM2.5 levels among these high-risk communities, 

and the various social, cultural, and economic systems that contribute to income disparities, 

would effectively contribute to lowering the health burden.

This study has several limitations. First, we utilized modelled PM2.5 concentrations instead 

of monitor measurements, which allows investigation of understudied areas, but also has 

higher uncertainty. Modelled daily PM2.5 estimates performed well compared with measured 
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concentrations (Di et al., 2016), and application of such modeled data in health analysis 

is growing (Di et al., 2017; Wei et al., 2019). Still, these values are estimates, not 

measurements, and such estimates in rural areas undergo less validation than those in urban 

areas as there are fewer monitors for comparison (Bravo et al., 2012), hence the need 

for such approaches. Although the high R2 values between modelled and measured PM2.5 

among monitors left out of the modelling in cross-validation alleviated our concern over 

differential measurement error between areas with and without monitors (Di et al., 2016), 

measurement error might still attenuate or exaggerate the difference in temporal trends of 

PM2.5-related health estimates across areas with varying levels of urbanicity depending on 

the type of error introduced (Goldman et al., 2011). Besides, current modelling of PM2.5 

does not support estimation of PM2.5 chemical components and hinders our exploration of 

PM2.5 chemical components as effect modifiers for the temporal trends observed. Expansion 

of monitor networks and advance in exposure modelling methods could further mitigate 

these concerns in the future. Second, counties with population ≤ 50,000 were not included 

(~13% of U.S. population). We excluded these counties for statistical power considerations. 

Thus, additional work on the most rural areas is warranted, as the population characteristics, 

pollution mixture, and other factors may differ. Third, categorization of urbanicity and age 

groups were based on the balance of beneficiaries, which might not fully capture potential 

disparity across these sub-populations and future studies could explore aspects of urbanicity 

and race/ethnicity more thoroughly, such as with more detailed categorization of race/

ethnicity. Last, we selected L02 for exposure, which might underestimate the true health 

impact from PM2.5. As shown in Table D.1, we observed highest effect estimates of PM2.5 

in the same day circulatory hospitalization and the next day respiratory hospitalization, 

while estimates for the moving average of the same day and previous two days were 

slightly lower. We kept L02 as our main result for parsimony, although an alternative is 

the distributed lag model, where exposures over a lag interval (up to a week or longer) are 

modelled simultaneously with or without constrain on the shape of the exposure-response 

curve (Gasparrini et al., 2010; Peng et al., 2009). We did not incorporate the distributed lag 

model under the consideration of bias-variance trade-off, where the cost of incurring greater 

variability does not balance with the benefit of considering longer lag intervals with more 

flexibility.

Despite these limitations, this study provides evidence that the risk of hospitalization 

from PM2.5 is changing over time, and that these temporal changes in risk vary across 

subpopulation. The results further indicate a widening of disparities in PM2.5-related health 

burden, with important implications for environmental justice.
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Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENT

This publication was developed under Assistance Agreement No. RD835871 awarded by the U.S. Environmental 
Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this 
document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse 
any products or commercial services mentioned in this publication. Research reported in this publication was 
also supported by the National Institute On Minority Health And Health Disparities of the National Institutes of 

Chen et al. Page 12

Environ Res. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

REFERENCES:

Atkinson RW, Mills IC, Walton HA, Anderson HR, 2015. Fine particle components and health—a 
systematic review and meta-analysis of epidemiological time series studies of daily mortality and 
hospital admissions. J Expo Sci Environ Epidemiol 25, 208–214. 10.1038/jes.2014.63 [PubMed: 
25227730] 

Bell ML, Dominici F, 2008. Effect modification by community characteristics on the short-term 
effects of ozone exposure and mortality in 98 US communities. Am J Epidemiol 167, 986–997. 
10.1093/aje/kwm396 [PubMed: 18303005] 

Bell ML, Ebisu K, 2012. Environmental inequality in exposures to airborne particulate matter 
components in the United States. Environ Health Perspect 120, 1699–1704. 10.1289/ehp.1205201 
[PubMed: 22889745] 

Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ, Koutrakis P, Wang Y, Dominici F, Peng RD, 2014. 
Associations of PM2.5 constituents and sources with hospital admissions: analysis of four counties 
in Connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ Health Perspect 
122, 138–144. 10.1289/ehp.1306656 [PubMed: 24213019] 

Bell ML, Ebisu K, Peng RD, Walker J, Samet JM, Zeger SL, Dominici F, 2008. Seasonal and regional 
short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. Am J 
Epidemiol 168, 1301–1310. 10.1093/aje/kwn252 [PubMed: 18854492] 

Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F, 2004a. Ozone and short-term mortality 
in 95 US urban communities, 1987-2000. JAMA 292, 2372–2378. 10.1001/jama.292.19.2372 
[PubMed: 15547165] 

Bell ML, Samet JM, Dominici F, 2004b. Time-series studies of particulate matter. Annu Rev Public 
Health 25, 247–280. 10.1146/annurev.publhealth.25.102802.124329 [PubMed: 15015920] 

Bell ML, Son J-Y, Peng RD, Wang Y, Dominici F, 2015. Ambient PM2.5 and risk of 
hospital admissions: do risks differ for men and women? Epidemiology 26, 575–579. 10.1097/
EDE.0000000000000310 [PubMed: 25906368] 

Bell ML, Zanobetti A, Dominici F, 2013. Evidence on vulnerability and susceptibility to health risks 
associated with short-term exposure to particulate matter: a systematic review and meta-analysis. 
Am J Epidemiol 178, 865–876. 10.1093/aje/kwt090 [PubMed: 23887042] 

Bravo MA, Ebisu K, Dominici F, Wang Y, Peng RD, Bell ML, 2017. Airborne fine particles and 
risk of hospital admissions for understudied populations: effects by urbanicity and short-term 
cumulative exposures in 708 U.S. counties. Environ Health Perspect 125, 594–601. 10.1289/
EHP257 [PubMed: 27649448] 

Bravo MA, Fuentes M, Zhang Y, Burr MJ, Bell ML, 2012. Comparison of exposure estimation 
methods for air pollutants: Ambient monitoring data and regional air quality simulation. 
Environmental Research 116, 1–10. 10.1016/j.envres.2012.04.008 [PubMed: 22579357] 

Breitner S, Stölzel M, Cyrys J, Pitz M, Wölke G, Kreyling W, Küchenhoff H, Heinrich J, Wichmann 
H-E, Peters A, 2009. Short-term mortality rates during a decade of improved air quality in Erfurt, 
Germany. Environ Health Perspect 117, 448–454. 10.1289/ehp.11711 [PubMed: 19337521] 

Bureau, U.C., n.d. Gini Index of Income: 1967 to 2014 [WWW Document], The United 
States Census Bureau. URL https://www.census.gov/library/visualizations/2015/demo/gini-index-
of-money-income-and-equivalence-adjusted-income--1967.html (accessed 7.10.20).

Carugno M, Consonni D, Bertazzi PA, Biggeri A, Baccini M, 2017. Temporal trends of PM10 
and its impact on mortality in Lombardy, Italy. Environ Pollut 227, 280–286. 10.1016/
j.envpol.2017.04.077 [PubMed: 28477552] 

Chen C, Warrington JA, Dominici F, Peng RD, Esty DC, Bobb JF, Bell ML, 2021. Temporal variation 
in association between short-term exposure to fine particulate matter and hospitalisations in older 
adults in the USA: a long-term time-series analysis of the US Medicare dataset. The Lancet 
Planetary Health 5, e534–e541. 10.1016/S2542-5196(21)00168-6 [PubMed: 34390671] 

Chen et al. Page 13

Environ Res. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.census.gov/library/visualizations/2015/demo/gini-index-of-money-income-and-equivalence-adjusted-income--1967.html
https://www.census.gov/library/visualizations/2015/demo/gini-index-of-money-income-and-equivalence-adjusted-income--1967.html


Choi Y, Kim H, Lee J-T, 2018. Temporal variability of short term effects of PM10 on mortality 
in Seoul, Korea. Sci Total Environ 644, 122–128. 10.1016/j.scitotenv.2018.06.275 [PubMed: 
29981511] 

Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP, 2008. 
Physiographically sensitive mapping of climatological temperature and precipitation across the 
conterminous United States. Int J Climatol 28, 2031–2064. 10.1002/joc.1688

Davis ME, Laden F, Hart JE, Garshick E, Smith TJ, 2010. Economic activity and trends in ambient air 
pollution. Environ Health Perspect 118, 614–619. 10.1289/ehp.0901145 [PubMed: 20056563] 

Deguen S, Zmirou-Navier D, 2010. Social inequalities resulting from health risks related to ambient 
air quality—A European review. Eur J Public Health 20, 27–35. 10.1093/eurpub/ckp220 [PubMed: 
20081212] 

Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD, Dominici F, 2017. Association of short-
term exposure to air pollution with mortality in older adults. JAMA 318, 2446–2456. 10.1001/
jama.2017.17923 [PubMed: 29279932] 

Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J, 2016. Assessing PM2.5 exposures 
with high spatiotemporal resolution across the continental United States. Environ. Sci. Technol 50, 
4712–4721. 10.1021/acs.est.5b06121 [PubMed: 27023334] 

Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM, 2006. Fine particulate 
air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127–
1134. 10.1001/jama.295.10.1127 [PubMed: 16522832] 

Dominici F, Peng RD, Zeger SL, White RH, Samet JM, 2007. Particulate air pollution and mortality 
in the United States: did the risks change from 1987 to 2000? Am J Epidemiol 166, 880–888. 
10.1093/aje/kwm222 [PubMed: 17728271] 

Everson PJ, Morris CN, 2000. Inference for multivariate normal hierarchical models. J R Stat Soc 
Series B Stat Methodol 62, 399–412. 10.1111/1467-9868.00239

Gasparrini A, Armstrong B, Kenward MG, 2010. Distributed lag non-linear models. Stat Med 29, 
2224–2234. 10.1002/sim.3940 [PubMed: 20812303] 

Goldman GT, Mulholland JA, Russell AG, Strickland MJ, Klein M, Waller LA, Tolbert PE, 2011. 
Impact of exposure measurement error in air pollution epidemiology: effect of error type in 
time-series studies. Environmental Health 10, 61. 10.1186/1476-069X-10-61 [PubMed: 21696612] 

Hajat A, Hsia C, O’Neill MS, 2015. Socioeconomic disparities and air pollution exposure: a global 
review. Curr Environ Health Rep 2, 440–450. 10.1007/s40572-015-0069-5 [PubMed: 26381684] 

Hsu W-H, Hwang S-A, Kinney PL, Lin S, 2017. Seasonal and temperature modifications of the 
association between fine particulate air pollution and cardiovascular hospitalization in New York 
state. Sci Total Environ 578, 626–632. 10.1016/j.scitotenv.2016.11.008 [PubMed: 27863872] 

Kim Honghyok, Kim Hyomi, Lee J-T, 2015. Effects of ambient air particles on mortality in Seoul: 
Have the effects changed over time? Environ Res 140, 684–690. 10.1016/j.envres.2015.05.029 
[PubMed: 26079317] 

Kloog I, Nordio F, Zanobetti A, Coull BA, Koutrakis P, Schwartz JD, 2014. Short term effects of 
particle exposure on hospital admissions in the Mid-Atlantic states: a population estimate. PLoS 
ONE 9, e88578. 10.1371/journal.pone.0088578 [PubMed: 24516670] 

Krall JR, Anderson GB, Dominici F, Bell ML, Peng RD, 2013. Short-term exposure to particulate 
matter constituents and mortality in a national study of U.S. urban communities. Environ Health 
Perspect 121, 1148–1153. 10.1289/ehp.1206185 [PubMed: 23912641] 

Levy JI, Diez D, Dou Y, Barr CD, Dominici F, 2012. A meta-analysis and multisite time-series 
analysis of the differential toxicity of major fine particulate matter constituents. Am J Epidemiol 
175, 1091–1099. 10.1093/aje/kwr457 [PubMed: 22510275] 

National Bureau of Economic, n.d. US business cycle expansions and contractions [WWW 
Document]. URL http://www.nber.org/cycles/cyclesmain.html (accessed 1.3.20).

Peng RD, Dominici F, Welty LJ, 2009. A Bayesian hierarchical distributed lag model for estimating 
the time course of risk of hospitalization associated with particulate matter air pollution. 
Journal of the Royal Statistical Society: Series C (Applied Statistics) 58, 3–24. 10.1111/
j.1467-9876.2008.00640.X

Chen et al. Page 14

Environ Res. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nber.org/cycles/cyclesmain.html


Qiu X, Wei Y, Wang Y, Di Q, Sofer T, Awad YA, Schwartz J, 2020. Inverse probability weighted 
distributed lag effects of short-term exposure to PM2.5 and ozone on CVD hospitalizations in 
New England Medicare participants - Exploring the causal effects. Environ Res 182, 109095. 
10.1016/j.envres.2019.109095 [PubMed: 31927244] 

R Core Team, 2018. R: A language and enviromment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria.

Ratcliffe M, Burd C, Holder K, Fields A, 2016. Defining Rural at the U.S. Census Bureau.

Peng Roger D. and with contributions from McDermott Aidan, 2013. tsModel: Time Series Modeling 
for Air Pollution and Health.

RStudio Team, 2018. RStudio: Integrated Development for R. RStudio. PBC., Boston MA.

Russell AR, Valin LC, Cohen RC, 2012. Trends in OMI NO2 observations over the United States: 
effects of emission control technology and the economic recession. Atmos Chem Phys 12, 12197–
12209. 10.5194/acp-12-12197-2012

Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I, Dockery DW, Schwartz J, Zanobetti A, 2000. 
The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and mortality from 
air pollution in the United States. Res Rep Health Eff Inst 94, 5–70; discussion 71-79. [PubMed: 
11354823] 

Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, Newby DE, Mills NL, 2013. 
Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 
382, 1039–1048. 10.1016/S0140-6736(13)60898-3 [PubMed: 23849322] 

Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, Langrish JP, Newby DE, Mills 
NL, 2015. Short term exposure to air pollution and stroke: systematic review and meta-analysis. 
BMJ 350, hl295. 10.1136/bmj.h1295

Tian Y, Liu H, Wu Yiqun, Si Y, Song J, Cao Y, Li M, Wu Yao, Wang X, Chen L, Wei C, Gao P, Hu 
Y, 2019. Association between ambient fine particulate pollution and hospital admissions for cause 
specific cardiovascular disease: time series study in 184 major Chinese cities. BMJ 367,16572. 
10.1136/bmj.16572

Tschofen P, Azevedo IL, Muller NZ, 2019. Fine particulate matter damages and value added in the US 
economy. Proc. Natl. Acad. Sci. U.S.A 116, 19857–19862. 10.1073/pnas.1905030116 [PubMed: 
31501345] 

US Census Bureau, n.d. 2010 Census urban and rural classification and urban area criteria [WWW 
Document]. The United States Census Bureau. URL https://www.census.gov/programs-surveys/
geography/guidance/geo-areas/urban-rural/2010-urban-rural.html (accessed 4.27.20).

US EPA, O., 2013. Air Quality System (AQS) [WWW Document]. US EPA. URL https://
www.epa.gov/aqs (accessed 1.23.20).

Wei Y, Wang Yan, Di Q, Choirat C, Wang Yun, Koutrakis P, Zanobetti A, Dominici F, Schwartz JD, 
2019. Short term exposure to fine particulate matter and hospital admission risks and costs in the 
Medicare population: time stratified, case crossover study. BMJ 367,16258. 10.1136/bmj.16258

Zanobetti A, Schwartz J, 2009. The effect of fine and coarse particulate air pollution on mortality: 
a national analysis. Environ Health Perspect 117, 898–903. 10.1289/ehp.0800108 [PubMed: 
19590680] 

Zeileis A, Grothendieck G, 2005. zoo : S3 Infrastructure for Regular and Irregular Time Series. Journal 
of Statistical Software 14. 10.18637/jss.v014.i06

Zhao B, Johnston FH, Salimi F, Kurabayashi M, Negishi K, 2020. Short-term exposure to ambient fine 
particulate matter and out-of-hospital cardiac arrest: a nationwide case-crossover study in Japan. 
Lancet Planet Health 4, e15–e23. 10.1016/S2542-5196(19)30262-1 [PubMed: 31999950] 

Chen et al. Page 15

Environ Res. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html
https://www.epa.gov/aqs
https://www.epa.gov/aqs


Figure 1. 
Temporal trend of the association between PM2.5 and hospitalizations. Percentage change in 

risk of hospitalization per 10 μg/m3 increase in L02 PM2.5 based on non-linear model.
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Figure 2. 
Temporal trend of the association between PM2.5 and hospital admissions by levels of 

urbanicity. Percentage change in risk of hospitalization per 10 μg/m3 increase in L02 PM2.5 

based on non-linear model.
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Figure 3. 
Temporal trend of the association between PM2.5 and hospital admissions by eligibility for 

Medicaid. Percentage change in risk of hospitalization per 10 μg/m3 increase in L02 PM2.5 

based on non-linear model.

Chen et al. Page 18

Environ Res. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Temporal trend of the association between PM2.5 and cause-specific hospital admissions by 

sex. Percentage change in risk of hospitalization per 10 μg/m3 increase in L02 PM2.5 based 

on non-linear model.
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Table 1.

Summary of study population by individual-level characteristics.

Individual-level 
characteristics

No. of 
beneficiaries* (% 

of total)

Circulatory hospitalization rate 
(admissions per 100,000 person-day)

Respiratory hospitalization rate 
(admissions per 100,000 person-day)

Entire study 
period 

(2000-2016)

Start year 
(2000)

Final year 
(2016)

Entire study 
period 

(2000-2016)

Start year 
(2000)

Final year 
(2016)

Total population 23,071,914 23.0 29.4 15.6 6.8 8.6 4.5

Sex

  Men 9,873,477 (42.8) 25.1 32.7 17.1 6.9 9.1 4.4

  Women 13,198,437 (57.2) 21.4 27.1 14.4 6.7 8.1 4.6

Age

  65 to 74 y 12,279,029 (53.2) 15.8 22.1 10.5 4.5 5.8 3.1

  ≥ 75 y 10,792,886 (46.8) 31.1 37.0 22.9 9.5 11.4 6.6

Race

  White 19,643,757 (85.1) 23.0 29.4 15.7 7.0 8.6 4.6

  Black 1,926,719 (8.4) 28.4 33.9 20.6 6.8 8.7 5.1

  Others 1,501,438 (6.5) 15.3 21.3 10.2 4.7 6.8 2.9

Medicaid eligibility

  Eligible 2,935,891 (12.7) 31.7 38.6 23.4 13.0 16.2 9.3

  Non-eligible 20,136,023 (87.3) 21.7 28.0 14.6 5.9 7.4 3.9

*
The number of beneficiaries changed over time and this value was calculated as the sum of the county specific average number of beneficiaries.
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Table 2.

Summary of county-level average exposure and outcomes by levels of urbanicity.

Total population
Urbanicity

High Medium Low

No. of counties (% of total) 968 (100) 78 (8.0) 177 (18.3) 713 (73.7)

Median % of urban population 
(min, max) 74.6 (9.9, 100) 99.4 (97.8, 100) 93.2 (87.7, 97.5) 66.3 (9.9, 87.7)

Median No. of beneficiaries* (1st 

quartile, 3rd quartile)
12, 464 (8,295, 24,420) 64,105 (32,574, 97,774) 31,631 (20,318, 53,465) 10,120 (7,372, 14,764)

Median study period average PM2.5 concentration (μg/m3) (Q1, Q3)

Entire study period (2000-2016) 10.6 (9.1, 11.8) 10.0 (9.7, 12.1) 10.4 (8.7, 11.7) 10.7 (9.0, 11.8)

Start year (2000) 14.0 (10.6, 15.1) 13.8 (11.7, 15.7) 12.4 (10.4, 14.9) 13.1 (10.6, 15.1)

Final year (2016) 7.6 (6.4, 8.2) 7.8 (7.1, 8.3) 7.5 (6.5, 8.2) 7.6 (6.3. 8.2)

Median circulatory hospitalization rate (admissions per 100,000 person-day) (Q1, Q3)

Entire study period (2000-2016) 23.5 (20.1, 26.6) 22.4 (18.7, 25.0) 22.0 (19.5, 25.2) 24.0 (20.7, 27.1)

Start year (2000) 30.0 (26.1, 34.3) 27.8 (24.0, 31.3) 27.8 (24.6, 31.4) 30.8 (26.5, 35.2)

Final year (2016) 16.4 (13.7, 18.5) 15.5 (12.6, 17.2) 15.8 (12.6, 17.4) 16.7 (14.2, 19.0)

Median respiratory hospitalization rate (admissions per 100,000 person-day) (Q1, Q3)

Entire study period (2000-2016) 7.2 (6.0, 7.4) 6.0 (4.9, 7.1) 6.6 (5.4, 7.6) 7.6 (6.3, 9.2)

Start year (2000) 9.0 (7.5, 10.8) 7.7 (6.6, 9.1) 8.1 (6.8, 9.3) 9.4 (7.8, 11.5)

Final year (2016) 4.7 (3.5, 5.9) 4.0 (3.2, 4.9) 4.3 (3.2, 5.3) 4.9 (3.7, 6.2)

*
The number of beneficiaries changed over time and this column was the summary of county specific average number of beneficiaries over the 

study period.

Environ Res. Author manuscript; available in PMC 2023 April 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 22

Table 3.

Association between risk of hospitalization and PM2.5 for the entire study period (2000 to 2016) and 

differences across levels of individual-level and community-level characteristics based on base model, among 

968 Counties.*

Association for the entire study period (2000-2016) (%) Difference in association across characteristics 
(%)

Estimate 95% Posterior Confidence Interval Estimate 95% Posterior Confidence Interval

Circulatory hospitalizations

Entire study population 0.56 0.45, 0.68 NA NA

Sex 
+ 

  Men 0.56 0.39, 0.71 Reference Reference

  Women 0.58 0.44, 0.73 0.03 −0.17, 0.23

Age 
+ 

  65 to 74 y 0.56 0.38, 0.74 Reference Reference

  ≥ 75 y 0.58 0.44, 0.71 0.02 −0.19, 0.22

Race 
+ 

  White 0.67 0.49, 0.85 Reference Reference

  Black 1.02 0.61, 1.43 0.34 −0.09, 0.77

  Other 0.76 0.14, 1.38 0.09 −0.53, 0.71

Medicaid eligibility 
+ 

  Eligible 0.80 0.55, 1.05 Reference Reference

  Non-eligible 0.53 0.41, 0.66 −0.26 −0.53, 0.00

Urbanicity

  High 0.80 0.54, 1.05 Reference Reference

  Medium 0.60 0.37, 0.82 −0.20 −0.25, −0.12

  Low 0.43 0.27, 0.59 −0.37 −0.47, −0.27

Respiratory hospitalizations

Entire study population 0.17 −0.03, 0.37 NA NA

Sex

  Men 0.16 −0.12, 0.44 Reference Reference

  Women 0.21 −0.05, 0.47 0.05 −0.31, 0.41

Age 
+ 

  65 to 74 y 0.15 −0.16, 0.46 Reference Reference

  ≥ 75 y 0.21 −0.03, 0.45 0.06 −0.31, 0.44

Race 
+ 

  White 0.25 −0.06, 0.56 Reference Reference

  Black 1.27 0.47, 2.1 1.02 0.15, 1.89

  Other 1.25 0.14, 2.38 1.00 −0.09, 2.09
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Association for the entire study period (2000-2016) (%) Difference in association across characteristics 
(%)

Estimate 95% Posterior Confidence Interval Estimate 95% Posterior Confidence Interval

Medicaid eligibility 
+ 

  Eligible 0.59 0.22, 0.96 Reference Reference

  Non-eligible 0.05 −0.18, 0.28 −0.54 −0.95, −0.12

Urbanicity

  High 0.24 −0.16, 0.62 Reference Reference

  Medium 0.41 0.02, 0.79 0.17 0.10, 0.25

  Low −0.02 −0.31, 0.28 −0.26 −0.34, −0.12

*
Associations are expressed as the percent change in risk of cause-specific hospitalizations per 10 μg/m3 increase in L02 PM2.5. Differences in 

associations are expressed as the difference of those associations in two categories (e.g., women compared to men).

+
The number of counties included in calculation of sub-population estimates were 966 for sex, 967 for age group, 206 for race, 938 for Medicaid 

eligibility.
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Table 4.

Temporal change in association between risk of hospitalization and PM2.5 across two time periods (2008-2016 

vs. 2000-2007), and difference across levels of individual-level and community-level characteristics based on 

time-stratified model, among 968 counties.*

Temporal change (2008-2016 minus 2000-2007) (%) Difference in change across characteristics (%)

Estimate 95% Posterior Confidence Interval Estimate 95% Posterior Confidence Interval

Circulatory hospitalizations

Entire study population 0.49 0.40, 0.58 NA NA

Sex 
+ 

  Men 0.63 0.44, 0.82 Reference Reference

  Women 0.38 0.19, 0.55 −0.25 −0.51, −0.01

Age 
+ 

  65 to 74 y 0.38 0.23, 0.51 Reference Reference

  ≥ 75 y 0.59 0.48, 0.68 0.21 0.07, 0.36

Race 
+ 

  White 0.65 0.41, 0.89 Reference Reference

  Black 0.67 −0.05, 1.53 0.02 −0.66, 0.90

  Other 1.38 −0.22, 2.98 0.73 −0.88, 2.34

Medicaid eligibility 
+ 

  Eligible 0.75 0.50, 0.95 Reference Reference

  Non-eligible 0.46 0.36, 0.55 −0.29 −0.50, −0.03

Urbanicity

  High 0.67 0.53, 0.83 Reference Reference

  Medium 0.52 0.33, 0.69 −0.15 −0.27, 0.01

  Low 0.33 0.22, 0.44 −0.35 −0.43, −0.29

Respiratory hospitalizations

Entire study population −0.67 −0.82, −0.53 NA NA

Sex

  Men −0.41 −0.67, −0.17 Reference Reference

  Women −0.82 −1.04, −0.6 −0.41 −0.73, −0.09

Age 
+ 

  65 to 74 y −0.68 −0.9, −0.47 Reference Reference

  ≥ 75 y −0.6 −0.81, −0.41 0.08 −0.22, 0.37

Race 
+ 

  White −0.62 −0.85, −0.4 Reference Reference

  Black 0.25 −1.31, 1.69 0.86 −0.70, 2.37

  Other 0.82 −1.50, 2.96 1.43 −0.82, 3.56
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Temporal change (2008-2016 minus 2000-2007) (%) Difference in change across characteristics (%)

Estimate 95% Posterior Confidence Interval Estimate 95% Posterior Confidence Interval

Medicaid eligibility 
+ 

  Eligible 0.12 −0.19, 0.41 Reference Reference

  Non-eligible −0.88 −1.04, −0.73 −1.00 −1.32, −0.67

Urbanicity

  High −0.40 −0.83, −0.08 Reference Reference

  Medium −0.53 −0.75, −0.33 −0.13 −0.37, 0.17

  Low −0.90 −1.08, −0.73 −0.50 −0.72, −0.20

*
Temporal change is expressed as the change in associations in the second time period (2008-2016) minus the first time period (2000-2007). 

Difference in temporal change is expressed as the difference of those temporal changes in two categories.

+
The number of counties included in calculation of sub-population estimates were 966 for sex, 967 for age group, 206 for race, 938 for Medicaid 

eligibility.
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