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Abstract

All sexually reproducing animals exhibit gender differences in behavior. Such sexual dimorphisms 

in behavior are most obvious in stereotyped displays that enhance reproductive success such as 

mating, aggression, and parental care. Sexually dimorphic behaviors are a consequence of a 

sexually differentiated nervous system, and recent studies in fruit flies and mice reveal novel 

insights into the neural mechanisms that control these behaviors. In the main, these include a 

diverse array of novel sex differences in the nervous system, surprisingly modular control of 

various stereotyped dimorphic behavioral routines, and unanticipated sensory and central 

modulation of mating. We start with a brief overview to provide the appropriate conceptual 

framework so that the advances made by the newer studies discussed subsequently can be fully 

appreciated. We restrict our review to reporting progress in understanding the basis of mating and 

aggression in fruit flies and mice.

Introduction

Sexually dimorphic behaviors such as mating and aggression are instinctual in the sense that 

they can be displayed without prior training or social experience. Thus, the development and 

function of the underlying neural circuits is hard-wired into the genome. Such hard-wiring 

affords the use of molecular and genetic approaches to identify and experimentally 

manipulate the neuronal ensembles that influence sexually dimorphic social behaviors. The 

stereotyped nature of these mating and aggression routines also enables quantitative and, if 

desired, even automated analysis of these complex social behaviors. Such analyses can 

routinely detect even subtle changes in the behavior of experimentally manipulated animals.
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Despite developmental programming of the underlying neural circuits, the display of mating 

and aggression is tightly regulated by sensory cues and internal physiological regulators. In 

both fruit flies (Drosophila melanogaster) and mice (Mus musculus), displays of mating and 

aggression are controlled by specific chemosensory cues emanating from conspecifics 

(Figure 1). These chemosensory cues, or pheromones, are species-specific odorants that 

signal social and reproductive status to conspecifics [1,2]. Recent studies have revealed the 

chemical nature of many of these cues [3–10,11•,12,13], the identities of the putative 

cognate receptors [5,11•,14••,15••,16•,17•,18••], and in some cases, the neural pathways that 

relay pheromone-evoked sensory neuron activation to the brain [19–22,23••,24].

In contrast to the commonalities in the sensory control of sexually dimorphic displays 

between fruit flies and mice, there are clear differences between these animals in the internal 

physiological regulators that influence these behaviors (Figure 2) [25]. In fruit flies, the sex 

determination pathway ensures cell autonomous sexual differentiation of the nervous system 

via the expression of sex-specific splice-forms of two putative transcription factors, fruitless 

(fru) and doublesex (dsx). The expression of the sex-specific forms of Fru and Dsx marks 

the neuronal populations thought to underlie courtship and aggression [26–29]. The male-

specific forms of Fru (FruM) are necessary and sufficient for male-pattern courtship 

behavior and aggression [30–32]. Strikingly, the activity of FruM neurons only appears to 

mediate male-typical behaviors because silencing synaptic transmission in these cells results 

in significant deficits in dimorphic behaviors but not in behaviors common to both sexes 

such as walking and flying. Fruit flies mutant for male-specific Dsx (DsxM) appear to have a 

subtle but reproducible deficit in courtship whereas the behavioral role of the female-

specific Dsx (DsxF) is unclear at present [33].

The primary role of the sex determination pathway in mice is to drive sexual differentiation 

of the bipotential gonads at mid-gestation. Sex steroid hormones secreted by the testes and 

ovaries subsequently control sexual differentiation of the nervous system. These hormones 

bind to cognate nuclear hormone receptors that regulate gene expression, either by directly 

binding to DNA or as part of transcriptional complexes. Testosterone produced by the testes 

binds to the androgen receptor (AR), whereas the ovarian hormones estrogen and 

progesterone bind to estrogen receptors (ERα, ERβ) and progesterone receptor (PR), 

respectively [34]. These sex hormones and their receptors are essential for the sexually 

dimorphic patterns of mating and aggression. The role of other receptors of these sex 

hormones in these behaviors is unclear. In the male brain, testosterone also functions as a 

prohormone for estrogen, which is synthesized by discrete neuronal populations that express 

the converting enzyme aromatase [35–37]. Genetic studies from many groups show that the 

developmental or organizational effects of testosterone on masculinizing the brain are 

largely mediated by estrogen and the later, activational effects of testosterone on the 

expression of male behaviors require both testosterone and estrogen [37–40]. Females are 

protected from the early masculinizing effects of estrogen by multiple mechanisms, 

including the fact that the ovaries are quiescent perinatally, a critical window for 

masculinization in which a male-specific surge of circulating testosterone is converted into 

estrogen in the brain [41,42]. In contrast to the sex-specific functions of Fru and Dsx in 

controlling behavior exclusively in one or the other sex, estrogen and its nuclear hormone 
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receptors control gender-typical behaviors in both sexes in mice. Moreover, sexual 

differentiation of the mouse brain is controlled non-autonomously by gonadal hormones, 

and sensory input as well as internal states such as stress can act on the brain to control 

secretion of these sex hormones. Common to both fruit flies and mice however is the notion 

that Dsx, FruM, AR, ERα, ERβ, and PR regulate the transcription of target genes to drive 

sexual differentiation of the brain and behavior. Although such transcriptional targets remain 

to be identified in the fly brain, recent studies in mice have identified many potential target 

genes that are also required for male or female-typical behaviors [43••].

Sensory control of sexually dimorphic behaviors

As mentioned earlier, sexually dimorphic behaviors such as mating and aggression are 

primarily triggered by pheromonal cues, and our discussion correspondingly focuses on 

advances in our understanding of the chemosensory control of these behaviors.

Insights from fruit flies

A great deal is already known about the chemosensory control of courtship and aggression 

in fruit flies. Previous work had identified specific olfactory or gustatory (contact-based) 

chemoreceptors that were required for observing the high, wild-type levels of male courtship 

toward females and female receptivity to male mating attempts [44–46]. One surprising 

finding from such studies was that some chemoreceptors function in assays of social 

behavior specifically to inhibit intermale courtship, suggesting the presence of evolutionary 

pressures to select against courtship of reproductively futile targets [47,48]. Such 

chemoreceptors are presumably essential in restricting courtship to female targets on food 

sources where flies of both sexes aggregate. These chemoreceptors also detect bitter 

chemorepellents such as quinine, indicating that aversive social cues may engage neural 

circuits generally used for avoidance. Recent studies provide evidence for a more complex 

role for individual pheromones or their cognate receptors in controlling courtship and 

aggression in flies.

The fly cuticle is coated with chemically diverse hydrocarbons that not only prevent 

dessication but also serve as contact-dependent pheromones [9]. These hydrocarbons and 

their cognate chemoreceptors regulate courtship and aggression in a complex manner. 

Several groups have identified chemosensory neurons expressing a Degenerin/Epithelial 

sodium channel class of ion channels, Pickpocket 23 (Ppk23), that is required to trigger male 

courtship of females and to inhibit intermale courtship [15••,16•,17•]. Strikingly, Ppk23 is 

required in non-overlapping male sensory neurons for their activation by specific female and 

male-enriched hydrocarbons and other pheromones [15••], suggesting that Ppk23 may 

transduce pheromone recognition by distinct chemoreceptors. It is also possible that Ppk23 

functions as a co-receptor with other chemoreceptors to recognize these chemically diverse 

pheromones. Although there is a significant FruM-dependent sex difference in the central 

projections of ppk23 sensory neurons [15••,49], the role of these neurons in female flies is 

unclear.

The gustatory chemoreceptor Gr32a was previously shown to suppress intermale courtship, 

although the pheromone recognized by Gr32a was not identified [48]. A recent study 
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showed that Gr32a was also essential for the normal, high levels of intermale aggression 

[11•]. In addition, this work identified a cuticular hydrocarbon, z-7-tricosene, that elicited 

Gr32a-dependent intermale aggression and suppressed intermale courtship. However, 

electrical activation of Gr32a sensory neurons only weakly elicits intermale aggression, 

indicating that additional chemosensory pathways that remain to be identified also promote 

this behavior.

The pheromone cis-vaccenyl acetate (cVA), recognized by the chemoreceptors Or67d and 

Or65a as well as ppk23-expressing neurons in the foreleg, is secreted into the male genital 

tract and serves to increase the receptivity of the female to male mating attempts and 

perhaps to decrease intermale courtship [13,15••,46,50]. During copulation, cVA is 

transferred to the female soma where it appears to inhibit subsequent male mating attempts. 

In addition, cVA also promotes intermale aggression acutely, albeit in a Gr32a-dependent 

manner, and it has been proposed that a high density of males increases aggressivity and 

may promote dispersal of males to other locations [10,11•,51]. These disparate and sexually 

dimorphic behavioral responses to cVA pose the question as to how neural pathways 

emanating from cVA-responsive sensory neurons transform cVA recognition into sexually 

dimorphic behavioral output. An elegant series of studies tracing the connectivity of Or67d 

sensory neurons reveals sex differences in at least the first three synaptic relays, starting 

with the synapse between Or67d neurons and their projection targets [23••,24]. Although it 

remains to be demonstrated, these anatomical sexual dimorphisms provide a potential 

substrate for the control of courtship in both males and females by cVA. In addition, these 

neurons, including Or67d sensory neurons, also express FruM, thereby suggesting a possible 

molecular basis for the sexual differentiation of this neural circuit.

Insights from mice

In contrast to the detailed insights offered by recent studies on the sensory control of mating 

and aggression in fruit flies, our understanding of how specific pheromones and their 

cognate receptors control these behaviors in mice is rather limited. However, work in mice 

has elucidated several general principles whereby pheromones control mating and 

aggression. Mice utilize two sensory epithelia in the nose, the main olfactory epithelium 

(MOE) and the vomeronasal organ (VNO), to detect volatile and contact-based pheromones, 

respectively [1,2]. These sensory epithelia express G-protein coupled chemosensory 

receptors encoded by large, distinct families of genes that bear little resemblance to the fruit 

fly chemoreceptors. Studies using mice with genetically disabled odor-evoked signaling by 

the MOE or VNO show that the normal display of aggression requires the coordinate 

function of both epithelia [52–54]. What has emerged from such studies however is the 

surprising finding that male sexual behavior requires a functional MOE [52,55]. Moreover, 

VNO neurons function to suppress atypical displays of male sexual behavior in both sexes. 

Wild-type male mice only rarely attempt to mate with males whereas the vast majority will 

mate with females. By contrast, wild-type female mice rarely, if ever, display male-typical 

sexual behavior toward males although a significant minority of females do show such male-

pattern mating toward females. Strikingly, male or female mice null for Trpc2, a cation 

channel required for odor-evoked activity in the VNO, exhibit male-pattern sexual behaviors 

toward conspecifics of either sex with a high probability [53,54,56]. These studies with 
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Trpc2 mutant females additionally show that the neural circuit for male mating is present in 

females, a conclusion supported by classical endocrinological studies that demonstrated 

activation of male sexual behavior at high frequency in adult females treated with 

testosterone [57]. It appears therefore that male sexual displays are non-redundantly 

inhibited in adult wild-type females by a functional VNO and by the absence of high, male-

typical levels of testosterone.

Various small molecules and proteins found in mouse urine or other exocrine secretions 

have been assigned pheromonal activity [2], but the chemoreceptors that recognize these 

putative pheromones remain unknown for the most part. A recent study showed that 

trimethylamine is enriched in male urine and serves as a chemoattractant at physiological 

concentrations [5]. Trimethylamine is recognized by TAAR5, a member of the trace amine-

associated receptor family that is expressed in a subset of MOE neurons, and mice null for 

TAAR5 are not attracted to trimethylamine in behavioral assays. The ethological 

significance of trimethylamine and TAAR5-mediated chemoattraction is unknown. It is 

possible that such volatile pheromones may bring conspecifics in proximity to each other, 

thereby facilitating social interactions regulated by other pheromones. Darcin is a major 

urinary protein (MUP) highly enriched in male urine that also mediates chemoattraction, 

albeit at shorter ranges [3,58]. The presence of darcin promotes association with volatile 

cues emanating from conspecifics and also elicits a long-lasting conditioned place 

preference in both sexes. Thus, a single pheromone can elicit an innate behavior acutely and 

influence behavior in the longer term by the formation of specific memories. Although the 

molecular identity of the chemoreceptors that recognize darcin is unknown, previous work 

shows that MUPs are recognized by VNO neurons expressing the V2R class of 

chemoreceptors [6]. A related set of MUPs, also enriched in male urine, is necessary and 

sufficient to elicit intermale aggression [6]. Whether female mice recognize and respond to 

these intermale aggression-eliciting MUPs is presently unclear. As is the case with darcin, 

the identity of the V2R receptors that recognize intermale aggression-eliciting MUPs is 

unknown.

In addition to urine, lacrimal secretions also provide pheromonal cues. In a series of 

spectacular studies [7,18••], Touhara’s group has identified a family of genes encoding small 

exocrine gland-secreted peptides (ESPs), some of which are found exclusively in male or 

female tears in a sex hormone-dependent manner. One such peptide, ESP1, is secreted by 

males and recognized by VNO neurons expressing the V2Rp5 chemoreceptor. ESP1 

promotes female sexual receptivity, and females null for V2Rp5 show a significant 

reduction in sexual behavior with wild-type males. It is unclear whether male mice 

recognize and respond to ESP1 in a behaviorally meaningful manner.

Although these studies in mice provided insight into the regulation of social behaviors by 

pheromones, it was unclear why there are so many chemoreceptor-encoding genes. For 

example, there are ~250 distinct chemoreceptors expressed in sensory neurons in the VNO. 

A recent tour-de-force study by Dulac’s group addressed this issue by examining in an 

unbiased manner ethologically relevant sources of chemosensory cues that activate specific 

chemoreceptor-expressing VNO neurons [14••]. The authors used in situ hybridization to 

detect transcription of Egr1, an immediate early gene, in VNO neurons expressing one of 88 
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distinct VNO receptors of the V1R and V2R families. Remarkably, 17 of these receptors 

were activated solely by conspecific cues whereas 60 receptors were activated exclusively 

by heterospecific cues emanating from predator or non-predator species. In other words, a 

large majority of VNO neurons may be dedicated to recognizing individuals of other 

species. Of the receptors that recognized conspecific cues, the authors identified 

chemoreceptors that were activated exclusively by male or female-enriched pheromones as 

well as chemoreceptors that recognized sulfated steroids in urine that may signal endocrine 

state [4], but not membership of a species, of the animal. These studies open up 

fundamentally new avenues of investigating the role of specific chemoreceptors in the 

regulation of not only mating and aggression but also interactions with sympatric species, 

including predators. It will be interesting to determine whether a comparable fraction of fly 

chemoreceptors also functions to recognize heterospecific cues.

Central control of sexually dimorphic behaviors

Recent advances in fruit flies and mice provide complementary insights into the neural 

mechanisms that guide the display of mating and aggression. The facility of fruit fly 

molecular genetics has led to the identification of specific neuronal populations that control 

various elements of these behaviors. By contrast, reverse genetic approaches in mice have 

identified specific genes expressed in a sexually dimorphic manner that are essential for 

wild-type patterns of mating and aggression.

Insights from fruit flies

Functional studies in fruit flies have been aided by a pair of extremely informative 

publications that have mapped sexual dimorphisms in neurons marked by fruM [59,60]. 

These studies document virtually all sex differences in neuronal number and arborization for 

these neurons and provide a framework to study the neural circuits that control courtship and 

aggression. In addition, they reveal previously unappreciated, extensive sexual dimorphisms 

in the number and projections of fruM neurons. This map of sexual dimorphism in the fly 

brain has already proved invaluable in identifying the functional role of specific fruM 

neurons in male courtship. Several powerful studies from the groups of Baker, Dickson, and 

Yamamoto have focused on the role of a small, bilateral cluster of ~50 FruM-positive 

neurons, identified as P1 neurons, that are activated by female pheromonal cues and found 

exclusively in the male brain (Figure 1) [61•,62••,63•]. Remarkably, genetically targeted, 

electrical activation of P1 neurons elicits robust initiation of the male courtship ritual, 

including courtship song, even in the absence of a conspecific. The arbors of P1 neurons 

reside exclusively in the brain whereas the neurons that drive unilateral wing extension and 

vibration required for courtship song reside in the ventral nerve cord (analogous to the 

mouse spinal cord). Electrical activation of any one of two groups of neurons (P2b and 

pIP10) that reside in the brain but project to the ventral nerve cord also elicits courtship song 

in the absence of conspecific targets, suggesting a possible neural pathway that connects 

central P1 neurons with downstream neurons in the ventral nerve cord [61•,62••]. Strikingly, 

electrical activation of particular FruM-positive ventral nerve cord neurons (dPR1, vPR6, 

and vMS11) elicits specific elements of courtship song such as wing extension [62••]. Taken 

together, these studies nicely deconstruct the neuronal populations controlling courtship 
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rituals and show that individual groups of FruM neurons may control specific components of 

a more complex courtship behavior such as singing. In future studies, it will be important to 

determine whether these neurons are synaptically linked or whether additional neurons that 

remain to be identified are interposed between these FruM neurons.

These studies in fruit flies have begun to elucidate the neural pathways that mediate mating 

and aggression. What is unclear is how FruM and Dsx in flies influence neurons to drive 

sexually dimorphic behaviors. Recent work has begun to reveal some of the transcriptional 

cofactors and regulatory proteins, including chromatin modifying enzymes, that coordinate 

sexual differentiation of the fruit fly brain in conjunction with FruM [64]. Nevertheless, the 

transcriptional targets of FruM (and Dsx) in the brain that regulate courtship or aggression 

remain unknown.

Insights from mice

The precision offered by fruit fly genetics in identifying specific FruM neuronal pools that 

regulate one or the other component of courtship or aggression has yet to be matched by 

studies in mice. Nevertheless recent work by Anderson and colleagues has identified a 

hypothalamic collection of neurons located within or in proximity to the ventrolateral 

compartment of the ventromedial nucleus (VMHvl) that is critical for the display of attack 

behavior in male mice (Figure 1) [65••]. In vivo recordings in freely moving male mice 

reveal a set of neurons whose activity increases during intermale aggression. Interspersed 

among these cells are neurons that are active during the early phases of mating with females 

as well as neurons whose activity is modulated during both mating and aggression. 

Optogenetic stimulation of these neurons elicits attacks toward conspecifics of either sex, 

and strikingly, even to an inflated glove. By contrast, pharmacogenetic silencing of these 

neurons inhibits intermale aggression but not sexual behaviors toward females. By 

rigorously localizing an aggression-eliciting center, these studies in mice very significantly 

extend the findings from experiments spanning almost a century that have ascribed a central 

role to the VMH or adjacent hypothalamic regions in modulating aggression in diverse 

species [66–69]. As is the case in the fruit fly, it will be interesting to delineate the 

connectivity of these neurons and to understand how their activity can override the onset of 

mating and trigger aggression. It will also be important to determine the molecular identity 

of these neurons, especially since the VMHvl also influences feeding and female sexual 

behavior [70,71]. These diverse behaviors may be regulated by molecularly separable 

VMHvl neurons or they may all be regulated by a single pool of neurons whose activity and 

function is context-dependent.

Studies in mice have revealed many sex differences in gene expression, including that of 

neuropeptides and biosynthetic enzymes for neurotransmitters [72], that are regulated by sex 

hormones. A recent study employed genome-wide expression profiling in conjunction with 

in situ hybridization and identified numerous, novel sex differences in gene expression 

patterns in the adult hypothalamus and amygdala (Figure 1) [43••]. These expression patterns 

highlight centers in the hypothalamus (such as the VMHvl) and amygdala previously 

implicated in sexually dimorphic behaviors [73]. Many individual genes are upregulated in 

different brain regions in the two sexes, indicating that the regulation of these dimorphic 
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gene expression patterns is complex. Consistent with this notion, the authors showed that 

many, but not all, sex differences in gene expression were regulated by adult testosterone in 

males. By contrast, the dimorphic expression patterns in the female brain were, with rare 

exceptions, independent of adult ovarian hormones, suggesting developmental pre-

patterning of a dimorphic transcriptional program in females. The authors explored the 

relevance of these genes in sexually dimorphic behaviors using mice bearing constitutively 

null alleles of individual genes. Strikingly, each of four mutant strains (Brs3, Cckar, Irs4, 

Sytl4) examined revealed specific deficits in one or more components of mating, aggression, 

or maternal care such that other dimorphic behaviors were unaffected. Thus, unlike castrates 

or animals mutant for sex hormone receptors that exhibit global deficits in dimorphic 

behaviors, mice mutant for genes downstream of sex hormone signaling exhibit restricted 

phenotypes in these behavioral displays. In other words, components or modules of various 

sexually dimorphic behaviors appear to be controlled by genetically separable pathways. In 

future studies, it will be important to determine whether these genes function in the adult 

brain to control these behaviors and to understand how the neuronal populations expressing 

these genes influence dimorphic behavioral displays. It is likely that more sensitive gene 

expression profiling approaches will reveal many additional sex differences in gene 

expression in the mammalian brain that control other components of sexually dimorphic 

behaviors.

Work over the past decade from many groups indicates that sex chromosomes may influence 

sexually dimorphic behaviors independent of sex hormones [74,75], but the underlying 

genetic loci on the sex chromosomes remain to be identified. Recent work shows that many 

genes are imprinted, including in a sexually dimorphic manner, in the mouse brain, although 

the extent of such imprinting is being actively pursued [76–78]. Given that some imprinted 

genes have previously been shown to regulate sexually dimorphic displays [79,80], this new 

set of imprinted genes could provide additional molecular control of these behaviors. Yet 

another axis of control of sexually dimorphic behaviors is the regulation of male mate 

choice by the neuromodulator serotonin. Male mice genetically engineered to lack serotonin 

in the brain attempt to mate with both males and females, with no discernible preference for 

females [81••]. This loss of preference does not reflect a developmental requirement for 

serotonin because it can be rescued by provision of serotonin precursors to adult mutant 

males. Whether serotonin signaling plays a similar role in females is an open question. How 

these sex chromosome, imprinting, and neuromodulation-based mechanisms intersect with 

sensory and hormonal signaling to regulate the genes and circuits underlying mating and 

aggression is an outstanding issue that is likely to be addressed in the near future.

Closing remarks

As the above discussion makes clear, these are exciting times that have yielded rapid 

advances in our understanding of how the brain encodes sexually dimorphic behaviors. We 

anticipate that studies in the near future will delineate synaptically connected neural 

pathways that mediate mating and aggressive behaviors. Although we have primarily 

discussed the sensory and central control of instinctual displays of mating and fighting, it is 

clear that the environmental and social context as well as past experience have a profound 

influence on these behaviors [82–88]. Thus we foresee that it will soon be feasible to 
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address mechanistically at the level of specific neurons and genes how nature and nurture 

interact to influence genetically hard-wired behaviors.
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Figure 1. 
Sensory and central control of sexually dimorphic behaviors. Both flies and mice respond to 

pheromones that trigger or inhibit particular behaviors. In fruit flies, pheromones are sensed 

by olfactory neurons as well as by gustatory neurons. In mice, volatile pheromones are 

sensed by the main olfactory epithelium (MOE) and non-volatile pheromones by the 

vomeronasal organ (VNO). In fruit flies, various components of male courtship are 

controlled by specific populations of FruM neurons. Activation of P1, P2b, or pIP10 neurons 

elicits the initiation of courtship behavior, while FruM ventral nerve cord neurons (dPR1, 

vPR6, vMS11) control specific elements of courtship song. In mice, gonadal sex hormones 

control the sexually dimorphic expression of many genes which regulate specific 

components of sex-typical behaviors. The VMHvl appears to contain neurons that inhibit 

male mating and activate male aggression. All neuronal clusters shown are bilateral but are 

depicted on one side for clarity.
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Figure 2. 
Sex determination and differentiation of the nervous system in fruit flies and mice. Sex 

determination in fruit flies is cell-autonomous, and sexually dimorphic behaviors are 

controlled by neurons expressing sex-specific splice forms of Dsx and Fru. In mice, the sex-

determination pathway directs the differentiation of the bipotential gonad into ovaries or 

testes. Gonadal sex steroids and their cognate receptors control the sexual differentiation of 

nervous system and the expression of sex-typical behaviors in the adult.
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