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Adaptive variational simulation for open quantum system
dynamics
Huo Chen, Niladri Gomes, Siyuan Niu, and Wibe Albert de Jong

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Emerging quantum hardware provides
new possibilities for quantum simulation.
While much of the research has focused
on simulating closed quantum systems, the
real-world quantum systems are mostly
open. Therefore, it is essential to develop
quantum algorithms that can effectively
simulate open quantum systems. Here
we present an adaptive variational quan-
tum algorithm for simulating open quan-
tum system dynamics described by the
Lindblad equation. The algorithm is de-
signed to build resource-efficient ansätze
through the dynamical addition of oper-
ators by maintaining the simulation ac-
curacy. We validate the effectiveness of
our algorithm on both noiseless simula-
tors and IBM Q quantum processors and
observe good quantitative and qualitative
agreement with the exact solution. We
also investigate the scaling of the required
resources with system size and accuracy
and find polynomial behavior. Our re-
sults demonstrate that near-future quan-
tum processors are capable of simulating
open quantum systems.

1 Introduction
The theory of open quantum system investigates
the behavior of small quantum systems in con-
tact with a large environment [1–3]. Recently
there has been a surge of interest in develop-
ing efficient simulation algorithms for open quan-
tum systems [4–8]. On one hand, the emer-
gence of quantum technologies for building artifi-
Huo Chen: huochen@lbl.gov
Niladri Gomes: niladri@lbl.gov,
H.C. and N.G. contributed equally.
Siyuan Niu: siyuanniu@lbl.gov
Wibe Albert de Jong: WAdeJong@lbl.gov

cial quantum systems for computing [9, 10], sens-
ing [11, 12], light harvesting [13, 14], and other
applications promises an abundant scientific and
societal benefits. These artificial quantum sys-
tems must be treated and designed as open be-
cause perfect isolation of a quantum system is
extremely challenging, if not impossible. On the
other hand, the theory of open quantum sys-
tems plays a crucial role in the fundamental sci-
ence because it describes many non-equilibrium
processes, including quarkonium suppression in
heavy-ion collisions [15], relaxation dynamics of
many-body quantum system [4], charge and en-
ergy transfer dynamics in molecular systems [16],
and others. All of these applications will bene-
fit from improved simulation algorithms for open
quantum systems.

Similar to the case of closed system, the com-
plexity of classical algorithms for simulating open
system scales exponentially with the system size.
As the quantum computers hold the promise of
being able to efficiently simulate quantum sys-
tems, it is worth exploring the new opportuni-
ties offered by the rapid advancement of cloud-
accessible quantum computers [17–26] for open-
system simulations. Current research mostly
is focused on solving the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation (or sim-
ply Lindblad equation) due to its broad applica-
tions in various subfields of quantum systems en-
gineering [1, 3, 27–29]. Based on the underlying
techniques, existing quantum algorithms for sim-
ulating the Lindblad dynamics fall into five cate-
gories: unitary dilation [6, 18, 30, 31], variational
simulation [5], quantum imaginary-time evolu-
tion (QITE) [32], Monte Carlo [33] and qubit-
bath engineering [19, 34, 35]. Among them the
variational simulation and QITE require less cir-
cuit depth and are considered more NISQ (noisy
intermediate-scale quantum) [36] friendly.

Variational algorithms have been shown to be
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capable of solving real and imaginary time evolu-
tions [37–39], excited states [40], thermal states
[41], non-Hermitian quantum mechanics for non-
equilibrium systems [42], open quantum systems
and general first-order differential equations [5].
In this paper, we present a compact approach
for solving the Lindblad equation using a time-
dependent adaptive variational method. Our
strategy to generate NISQ-friendly ansätze is
built upon adaptive variational quantum dynam-
ics simulations (AVQDS) [43] and its imaginary-
time counterpart (AVQITE) [39]. Distinct from
previous works, our focus is on the dynamics of
open quantum systems, rather than the closed
system dynamics or ground state solutions typ-
ically explored. The main idea is to reformu-
late the Lindblad equation as a Schrödinger equa-
tion with an effective non-Hermitian Hamilto-
nian, and utilizing a quantum computer to simu-
late the evolution of the normalized state vector
while employing a classical computer to record
its norm. The presence of both unitary and dis-
sipative elements in the equation complicates the
adaptive process, as it lacks a pre-defined lower
bound, rendering the establishment of a practi-
cal threshold impractical. To address this chal-
lenge, we have developed an unrestricted adap-
tive protocol, specifically tailored to circumvent
the difficulties in setting a feasible threshold for
the McLachlan distance.

To showcase the efficacy of our algorithm,
we simulate the open quantum system dynam-
ics of a quantum annealing (QA) process, focus-
ing on the alternating-sector-chain (ASC) prob-
lem as described in [44, 45]. QA is a quantum
meta-heuristic algorithm that is commonly imple-
mented on analog quantum hardware. Although
our algorithm is specifically designed for gate-
based quantum computers, simulating QA hard-
ware highlights its applicability to a wider range
of use cases, such as analyzing artificial quan-
tum systems. Furthermore, the ASC problem
stands out as an effective toy problem to bench-
mark open-system algorithms. On one hand, the
system is integrable in the closed-system case be-
cause its Hamiltonian can be transformed into
a free-fermion model by Jordan-Wigner transfor-
mation. On the other hand, the introduction
of local dephasing and amplitude damping noise
perturb the free-fermion model and make it a
non-trivial task to simulate the quantum dynam-

ics. Given that dephasing and amplitude damp-
ing represent two of the most prevalent quantum
noise models, holding significant relevance in real-
world applications [30, 32, 33], the open-system
ASC problem serves as a ideal test platform for
open-system algorithms.

We demonstrate our algorithm on both the
noiseless simulator and IBM quantum hardware.
Our results show good quantitative and quali-
tative agreement with the exact solution. Fur-
thermore, we perform numerical analysis of the
resource requirement to simulate small systems,
and find polynomial scaling with respect to either
the system size or the desired accuracy. These
results provide compelling evidence that open
quantum system simulation is within the capa-
bility of near-term quantum devices.

In summary, we propose a new adaptive vari-
ational quantum algorithm tailored for simulat-
ing the Lindblad master equation, where prior
adaptive approaches encounter the challenge of
establishing a feasible threshold for the McLach-
lan distance due to the coexistence of unitary and
dissipative components. We validate the effec-
tiveness of our algorithm on both simulators and
IBM quantum hardware. Our results show that
open quantum system simulation is within the
capability of near-term quantum devices. The
structure of this paper is as follows. In Sec. 2, we
introduce the Lindblad equation and describe our
quantum algorithm, unrestricted adaptive varia-
tional quantum dynamics (UAVQDS), for solv-
ing it. In Sec. 3.1 we report the performance
and resource requirement of our algorithm based
on the results from the noiseless simulator. In
Sec. 3.2, we report the performance of our algo-
rithm on IBM quantum computers. We conclude
in Sec. 4, and present additional technical details
and derivations in the Appendices.

2 Method

For ease of reference, a table summarizing fre-
quently used symbols can be found in Ap-
pendix A.

2.1 The Lindblad master equation

When a quantum system interacts with its envi-
ronment, we can use the Lindblad master equa-
tion (ME) to model its behavior. Unlike closed
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quantum systems where a single quantum state
(pure state) can describe the system’s complete
information, open quantum systems require a
density matrix, which is a statistical ensemble of
multiple quantum states (mixed state) to fully
describe the system’s behavior. Here, we focus
on the Lindblad equation in the diagonal form

d

dt
ρ(t) = −i[H(t), ρ(t)] + L[ρ(t)] , (1)

where ρ(t) is the density matrix and H is the
Hamiltonian describing the system of interest.
The environment density matrix is traced out
while deriving the Lindblad equation and its in-
teraction with the system (in the weak coupling
regime) is taken care of by a dissipative term
L[ρ(t)] which is given by the form,

L[ρ(t)] =
K∑
k=1

γk

(
Lkρ(t)L†

k −
1
2
{
L†
kLk, ρ(t)

})
.

(2)
The operators Lk are known as the Lindblad op-
erators, and are taken to be dimensionless. γk are
the dissipation rates, which are non-negative and
possess a dimension of inverse time. Usually it is
convenient to absorb γk into the definition of Lk,

√
γkLk 7→ Lk . (3)

Throughout our discussions, we have adopted the
convention of setting ℏ = 1.

Because a quantum computer only evolves a
pure state under unitaries, the density matrix
equation (Eq. (1)) cannot be directly solved by
a gate-based quantum computer. This challenge
can be addressed by two different approaches: 1)
vectorizing [46] or 2) stochastic unravelling of the
Lindblad ME [1, 47–49]. We briefly review here
how these two methods work.

Vectorization – The core idea of vectorization
is to convert the density matrix to a vector by
stacking the columns of ρ on top of one another:

vec(ρ) ≡ [ρ11, ρ12 · · · ρ21, ρ22 · · · ρDD]T , (4)

where D× D is the dimension of ρ. We will also
use the symbol |ρ⟫ interchangeably with vec(ρ).
The map vec is a linear isometry between the
D × D Liouville space (Hilbert space under the
Hilbert-Schmidt inner product) of ρ and the D2

Hilbert space of |ρ⟫, with the preserved norms
being the trace norm and L2 norm√

Tr (ρ†ρ) =
√
⟪ρ|ρ⟫ . (5)

Using the identity vec(ABC) =(
CT ⊗A

)
vec(B), Eq. (1) can be rewritten

as
d

dt
|ρ(t)⟫ = −iHvec(t)|ρ(t)⟫ , (6)

where Hvec is an effective non-Hermitian Hamil-
tonian given by (see Appendix B for the deriva-
tion)

Hvec = I ⊗H −HT ⊗ I

+ i
∑
k

[
L̄k ⊗ Lk −

1
2
(
I ⊗ L†

kLk + LTk L̄k ⊗ I
)]

,

(7)

where L̄k denotes the conjugate of Lk and I is
the identity matrix matching the dimension of H.
We will refer to this approach as the vectorization
method for the remainder of the paper.

The vectorization method is a well-established
technique for the classical simulation of open
quantum systems. However, its application
within quantum algorithms remains largely un-
derexplored. To the best of our knowledge, refer-
ence [32] stands as the sole work discussing this
methodology in the context of simulating open
system dynamics on quantum computers. In this
cited work, the authors employ QITE to solve
the vectorization Lindblad equation and chose
ansätze based on numerical experiments. Con-
trarily, our study presents a systematic approach
to construct resource-efficient ansätze, enabling
us to execute larger simulations on IBM quan-
tum computers.

An alternative way to vectorize the ME is to
expressing the density matrix in the basis of
Pauli matrices and representing the superopera-
tors through the Pauli transfer matrices (PTMs).
However, a straightforward application of this
technique could significantly increase the circuit
complexity, making it less suitable for demonstra-
tions on NISQ hardware. We provide an discus-
sion of this approach in Appendix C.

Stochastic unravelling – The Lindblad master
equation can be unravelled using quantum trajec-
tory method [1, 47–49]. For each trajectory, the
evolution is governed by a deterministic evolution
and a jump process. The deterministic evolution
is described by the Schrödinger equation associ-
ated with a non-Hermitian Hamiltonian

d

dt

∣∣∣ψ̃(t)
〉

= −iHurv
∣∣∣ψ̃(t)

〉
, (8)
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where
∣∣∣ψ̃(t)

〉
is the unnormalized state vector and

the effective Hamiltonian is given by

Hurv = H(t)− i

2

K∑
k=1

L†
kLk . (9)

For an infinitesimal time step from t to t+ dt,
there are two possible evolutions for

∣∣∣ψ̃(t)
〉
: ei-

ther the deterministic evolution subject to Eq. (8)
(with probability 1 − dp) or a jump occurring
(with probability dp). The probability of a jump
is given by

dp =
K∑
k=1

〈
ψ̃(t)

∣∣∣L†
kLk

∣∣∣ψ̃(t)
〉
/
〈
ψ̃(t)

∣∣∣ψ̃(t)
〉
dt .

(10)
Furthermore, if a jump happens, the unnormal-

ized state is updated as∣∣∣ψ̃(t+ dt)
〉

= Li
∣∣∣ψ̃(t)

〉
/

√〈
ψ̃(t)

∣∣∣L†
iLi
∣∣∣ψ̃(t)

〉
(11)

where Li is randomly picked from {Lk}Kk=1 with
probability

pi =
〈
ψ̃(t)

∣∣∣L†
iLi
∣∣∣ψ̃(t)

〉
/

K∑
k=1

〈
ψ̃(t)

∣∣∣L†
kLk

∣∣∣ψ̃(t)
〉
.

(12)
Let us denote the normalized state vector by

|ψj(t)⟩ =
∣∣∣ψ̃j(t)〉 /√〈ψ̃j(t)∣∣∣ψ̃j(t)〉 where the in-

dex j represent the jth trajectory. The density
matrix solution to Eq. (1) can be constructed by
ρ(t) = 1

n

∑n
j=1 |ψj(t)⟩⟨ψj(t)| for large enough n.

We will refer to this approach as the trajectory
method henceforth.

2.2 Solving the effective Schrödinger equation
The key step in both the aforementioned meth-
ods is to solve an effective Schrödinger equation
with a non-Hermitian Hamiltonian, which can
be accomplished using variational quantum algo-
rithms [50, 51]. Without loss of generality, we
use Heff to represent the effective Hamiltonian in
both methods, and

∣∣∣ψ̃(t)
〉
, |ψ(t)⟩ to represent the

unnormalized and normalized state vector solu-
tions. Furthermore, we split Heff into its Hermi-
tian and anti-Hermitian parts and denotes them
by He and Ha respectively

Heff = Heff +H†
eff

2 −i
(
i
Heff −H†

eff
2

)
≡ He−iHa .

(13)

Inspired by AVQDS [43], we propose a similar
adaptive protocol for the open quantum system
simulation. We briefly describe the non-adaptive
algorithm here and leave the adaptive protocol
to next section. The core idea of an variational
algorithm is to encode quantum states with a se-
quence of parameterized circuits

|ϕ(t)⟩ =
k∏

µ=1
e−iθµ(t)Aµ |ψR⟩ , (14)

where e−iθµ(t)Aµ is the µth layer of circuit con-
trolled by the real parameter θµ(t), and |ψR⟩ is
a fixed reference state. Then the evolution of
the state can be mapped to the evolution of the
parameters controlling the circuit, i.e., θµ(t) in
Eq. (14). For adaptive protocols, the ansatz op-
erators Aµ are adaptively added from an ansatz
pool at runtime.

Our algorithm is based on McLachlan varia-
tional principle [52]

δ

∥∥∥∥d |ϕ(θ(t))⟩
dt

+ iHeff |ϕ(θ(t))⟩
∥∥∥∥2

= 0 , (15)

where θ(t) denotes [θ1(t), θ2(t), · · · θk(t)]. The
norm in Eq. (15) is known as the McLachlan dis-
tance and we denote its square by D. The cor-
responding evolution equation of the variational
parameters is given by

Mθ̇ = V , (16)

where M is a matrix with elements

Mµν = 2Re
(
∂ ⟨ϕ|
∂θµ

∂ |ϕ⟩
∂θν

+ ⟨ϕ| ∂ |ϕ⟩
∂θµ

⟨ϕ| ∂ |ϕ⟩
∂θν

)
,

(17)
and V is a vector with elements

Vµ = 2Im
(
⟨Heff⟩ ⟨ϕ|

∂ |ϕ⟩
∂θµ

+ ∂ ⟨ϕ|
∂θµ

Heff |ϕ⟩
)
,

(18)
where ⟨Heff⟩ = ⟨ϕ|Heff |ϕ⟩. Detailed derivation
of the evolution equation can be found in the
Appendix D. Assuming every ansatz operator
is a single Pauli string, each term in Eqs. (17)
and (18) involving the derivatives can be eval-
uated using a quantum computer by either di-
rect or indirect measurements [43, 53] (See Ap-
pendix E for a description of the relevant quan-
tum circuits).

Before we proceed, it is important to note that
our algorithm effectively utilizes only the ansatz
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Figure 1: An illustration of how a non-unitary evo-
lution is simulated using an unitary. Assume at
time t the state is a pure state |ϕ(t)⟩ on the Bloch
sphere (blue arrow). After an infinitesimal step dt, an
evolution subject to a non-Hermitian effective Hamilto-
nian will bring the state inside the Bloch sphere (red
arrow) by shrinking its norm

〈
ψ̃
∣∣ψ̃〉 < 1. The goal

of the variational algorithm is to evolve |ϕ(t)⟩ to the
closest state to

∣∣ψ̃(t+ dt)
〉

on the Bloch sphere (red
cross), i.e., |ϕ(t+ dt)⟩ = |ψ(t+ dt)⟩, while recording∥∥∣∣ψ̃(t+ dt)

〉∥∥ as classical information.

state (Eq. (14)) to track the evolution of the nor-
malized state vector. We record the evolution of
the state vector norm using classical memory. As
detailed in Appendix F, for an infinitesimal time
step dt, the norm of

∣∣∣ψ̃(t)
〉

shrinks according to

〈
ψ̃(t+ dt)

∣∣∣ψ̃(t+ dt)
〉
≈ e−dΓ

〈
ψ̃(t)

∣∣∣ψ̃(t)
〉
,

(19)
where dΓ = 2 ⟨ψ(t)|Ha|ψ(t)⟩ dt, which is equiv-
alent to ⟨ϕ|Ha|ϕ⟩, can be measured using the
same circuit that is used to measure the effec-
tive Hamiltonian. In Fig. 1, we provided a single
qubit example using Bloch sphere to demonstrate
of how our algorithm works.

2.3 Restricted and unrestricted adaptive pro-
tocol

Unlike existing variational methods [5] that use a
fixed set of ansatz operators, our approach uses
an adaptive procedure that selects ansatz opera-
tors from a predefined pool during the time evo-
lution. The purpose of the adaptive protocol is
to define a systematic way of preparing a com-
pact ansatz. This is achieved by minimizing the
McLachlan distance [52] during each time step
such that there are always enough operators in
the ansatz to keep the distance below a threshold.
However, a unique challenge for adaptive proto-
cols is the lack of a known attainable lower bound

for the McLachlan distance a priori, making it dif-
ficult to set a threshold value. This is an issue for
both closed and open system adaptive algorithms.
For the closed system case, if there are infinite
operators in the pool, the lower bound should, in
principle, be 0. However, the same is not true
for the open system case, which we will explain
later. To address this issue, we propose the unre-
stricted adaptive variational quantum dynamics
(UAVQDS) protocol, where instead of setting a
fixed threshold for the McLachlan distance, we
adopt a greedy approach which selects every op-
erator that lowers the McLachlan distance.

We formulate two versions of the adaptive pro-
tocol, the restricted version and unrestricted ver-
sion. In the restricted version, the McLachlan’s
distance is set at a fixed threshold. While evolv-
ing, at every time step we measure the McLach-
lan’s distance and a number bigger than the
threshold triggers the adaptive procedure. We
will call this the restricted adaptive variational
quantum dynamics (RAVQDS). On the other
hand, an adaptive process can still be executed
at every time step provided an operator in the
operator pool lowers the McLachlan’s distance.
In other words, no matter what time step we are
at, an operator will be added if it can lower the
distance (by a relative threshold). Such a pro-
tocol ensures that the McLachlan’s distance will
reach the lowest possible value possible and not
be restricted at a fixed threshold. We therefor call
this the unrestricted adaptive variational quan-
tum dynamics or UAVQDS.

In the generic case, the RAVQDS algorithm is
not applicable to the open system case due to the
lack of a reasonable threshold, even when there
are infinite operators in the pool. We present
a sufficient condition under which the RAVQDS
could be applied, assuming the operators in the
pool are expressive enough, and defer the proof
to Appendix G. A lower bound of the McLachlan
distance square exists

D ≥ 2
〈
H2

a

〉
+ 2 ⟨Ha⟩2 (20)

if

[He, Ha] = 0 (21a)
[Aµ, Ha] = 0 , ∀µ ∈ [1, k] . (21b)

Eq. (21) seems to be a very strong condition.
However, it is trivially satisfied when solving a
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quantum trajectory equation Eq. (8) with Lind-
blad operators as Pauli operators.

2.4 Algorithms
In this section we present the pseudocode of
our algorithms. Algorithm 1 and Algorithm 2
show the vectorization method and the trajectory
method respectively. The adaptive procedure in
both these algorithms can be either restricted or
unrestricted, depending on whether Eqs. (21) are
satisfied. The pseudocode for the unrestricted
procedure in presented in Algorithm 3. In all the
Algorithms, we use notations θ and A to denote
the vector of the ansatz parameters (see Eq. (15))
and the corresponding ansatz operators. Addi-
tionally, Γ is the integrated norm shrinking factor
given by Γ ≈

∑
i dΓi where where dΓi is the norm

shrinking factor of the ith step (Eq. (19)).

Algorithm 1: Vectorization
Data: dt; /* Step size */
Data: |ψ(0)⟩ ; /* Initial state */
Result: θ, A, Γ
t← 0;
Γ← 0 ; /* Γ record the norm of∣∣∣ψ̃(t)

〉
*/

θ,A← []T ; /* Start with empty
ansatz */
|ψR⟩ ← |ψ(0)⟩;
while t < tf do

update θ, A, θ̇ with the adaptive
procedure;

θ ← θ + θ̇dt ;
Γ← Γ + 2 ⟨Ha⟩ dt;
t← t+ dt

end

Before presenting the simulation results, we
would like to make a few comments on the al-
gorithms used. In the vectorization method, we
need to update θ and A at each time step and
keep track of the norm e−Γ. The final vectorized
state is e−Γ/2 |ϕ(tf )⟩. However, to measure any
observable O in the unvectorized setting, we will
need to evaluate

⟨O⟩ = e− Γ
2 ∥O∥1

〈
O†
∣∣∣ϕ(tf )

〉
(22)

where
∣∣∣O†

〉
is the normalized and vectorized op-

erator O† and ∥·∥1 denotes the trace norm. This

Algorithm 2: Trajectory
Data: dt ; /* Step size */
Data: |ψ(0)⟩ ; /* Initial state */
Result: θ, A, |ψR⟩
t← 0;
Γ← 0 ; /* Γ record the norm of∣∣∣ψ̃(t)

〉
*/

θ,A← []T ; /* Start with empty
ansatz */
|ψR⟩ ← |ψ(0)⟩;
Generate a random number q ∈ [0, 1) ;
while t < tf do

if e−Γ ≥ q then
update θ, A, θ̇ with the adaptive
procedure;

θ ← θ + θ̇dt ;
Γ← Γ + 2 ⟨Ha⟩ dt

else
Randomly pick a jump operator Li
according to the probability mass
function given by Eq. (12);
|ψR⟩ ← Li |ϕ⟩ /∥Li |ϕ⟩∥;
θ,A← []T ; /* Reset the ansatz
*/

Γ← 0;
Generate a random number
q ∈ [0, 1);

end
t← t+ dt

end

quantity can be measured either directly or indi-
rectly with the help of a synthesized unitary V

which prepares
∣∣∣O†

〉
, i.e.

∣∣∣O†
〉

= V |0⟩⊗2N [32]
(See Appendix H for details).

In the trajectory method, the total evolution
is divided into intervals of a parameterized cir-
cuit followed by a jump operator. Each interval
can be regarded as the state preparation circuit
for the next one. As a consequence, the circuit
depth of this approach increases with the num-
ber of jumps. Because we only need to measure
the normalized state vector in this case, any mea-
surement circuit described in Appendix E can be
used.

Lastly, a threshold r which specifies the min-
imum amount reduction in the McLachlan dis-
tance needed to keep the adaptive procedure run-
ning is still necessary in the unrestricted algo-
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Algorithm 3: Unrestricted adaptive pro-
cedure
Data: |ϕ⟩ ; /* Parameterized state */
Data: r ; /* Relative threshold */
Result: θ, A, θ̇
Measure M and V in Eq. 16;
θ̇ ←M\V ; /* We use Tikhonov
regularization for the
pseudoinverse */

D′ ← θ̇
TMθ̇ − 2VT θ̇;

repeat
D ← D′;
M′ ←M, V′ ← V, θ′ ← θ;
foreach Ak in the operator pool do

update M′′ and V′′ ; /* Add Ak
and θk ≡ 0 to the ansätze */

θ̇
′′ ←M′′\V′′;
D′′ ← θ̇′′TM′′θ̇′′ − 2V′T θ̇′′;
if D′′ < D′ then
D′ ← D′′;
M′ ←M′′, V′ ← V′′, θ′ ←
θ′′, θ̇

′ ← θ̇
′′

end
end

until D′ ≥ D − r;
θ ← θ′, A← A′, θ̇ ← θ̇

′;

rithm. It can be either a additive threshold or a
multiplicative threshold. In this paper, we will
use the additive threshold as described in Al-
gorithm 3, and refer it as the adaptive thresh-
old. In addition, the algorithms (restricted or
unrestricted ) require us to solve the linear equa-
tions given by Eq. (16), which can become ill-
conditioned as the size of ansätze increases. To
address this challenge, Tikhonov (L2) regulariza-
tion

θ̇ =
(
M†M + λI

)−1
M†V , (23)

is applied when inverting M. Here λ is a small
parameter to shift the diagonals of the M†M ma-
trix.

3 Result

3.1 Noiseless simulation

The QA simulation is carried out by evolving
a system from t = 0 to t = tf under a time-

dependent Hamiltonian of the form

H(t) = A(t)HD +B(t)HP , (24)

where A(t) and B(t) (known as the anneal-
ing schedule) are scalar functions which satisfy
A(0)≫ B(0) ≈ 0 and B(tf )≫ A(tf ) ≈ 0. Here,
we will only consider the linear schedule

A(t) = 1− t/tf , B(t) = t/tf . (25)

HD and HP are constant terms given by

HD = −
N∑
i=1

Xi , HP = −
N−1∑
i=1

jiZiZi+1 , (26)

where N is the total number of qubits and Zi
(Xi) is the Pauli Z (X) matrix on the ith qubit.
The couplings strength jis are given by

ji =
{
w1 if ⌈i/n⌉ is odd
w2 otherwise

, (27)

where n is the sector size. In this study, we fix
the model parameters as w1 = 1, w2 = 0.5 and
n = 1.

We focus on two types of Lindblad models,
with the first one consisting of only Zi Lindblad
operators applied to each qubit, given by:

Li = Zi , i ∈ [1, N ] (28)

with rate γi. It describes a continuous dephasing
channel on each qubit. It is worth noting that
the conditions outlined in Eqs. (21) are satisfied
for the corresponding unravelled equation in this
case. Therefore, the RAVQDS method can be ap-
plied for the trajectory method. We will refer to
this model as the dephasing model going forward,
and we will fix the values of dephasing rates as
γi = 0.01 in our simulations. The second model
consists of two Lindblad operators on each qubit

L+
i = (Xi + iYi) /2 , L−

i = (Xi − iYi) /2 (29)

with different rate γ+
i and γ−

i . This model is often
referred to as an empirical model for an incoher-
ent energy transfer process and can also be rigor-
ously derived from first principles. We will refer
to this model as the amplitude damping model,
and fix the values of the rates as γ+

i = 0.04 and
γ−
i = 0.004 henceforth. It is worth noting that we

choose the γ values based on two considerations:
First, they should be small enough to ensure the
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weak coupling limit still holds; Second, they need
to be large enough to make the open system ef-
fects non-negligible at the time scale of our sim-
ulation. An additional challenge arises when im-
plementing the trajectory simulation of the am-
plitude damping model, because the jump oper-
ators L+

i and L−
i are non-unitary. Either mid-

circuit measurement or block encoding (unitary
dilation) [54–56] based methods can be adopted
to implement those non-unitary jumps (See Ap-
pendix I for details).

We conducted numerical experiments to com-
pare different operator pools. The choice of our
operator pool is a combination of the Hamiltonian
pool [43] and the qubit-adapt pool [57]. Initially,
we utilize the smallest pool, namely the Hamil-
tonian pool, and incrementally enlarge it if the
algorithm does not achieve the desired level of ac-
curacy. While there can be multiple choices of op-
erator pools, variational ansätze generated with
qubit-adapt pools are much shallower [39, 57].
Starting from a pool consisting of all single qubit
Pauli operators Ps = {Xi}N

′
i=1∪{Yi}N

′
i=1∪{Zi}N

′
i=1,

we constructed three distinct operator pools by
adding three different types of two-qubit Pauli
operators to Ps, defined as follows:

P1 = Ps ∪ {ZiZi+1}N
′−1

i=1 (30a)
P2 = Ps ∪ {PiPi+1}N

′−1
i=1 (30b)

P3 = Ps ∪ {PiPj}N
′

i,j=1 , (30c)

where Pi ∈ {Xi, Yi, Zi}N
′

i=1 and N ′ denotes the
number of physical qubits. We use the individ-
ual terms from Eqs. (30) as the operators in our
pool. P1 draws its inspiration from the Hamil-
tonian pool (the terms in the Hamiltonian ap-
pear in the pool only). We found the P1 fails
to recover the desired dynamics, which could be
because a Hamiltonian pool is effective only for
simulating unitary dynamics. Since the problem
of open quantum system deals with non-unitary
components as well, a Hamiltonian pool is insuf-
ficient in this case. While P2 generates the de-
sired results for the trajectory method, it fails
in the vectorization method case, which could be
attributed to the non-local term L̄k ⊗ Lk in the
vectorized effective Hamiltonian (Eq. (7)). Only
P3 proves effective in producing the desired re-
sults for both methods. We summarize the pool
dependence of our method in Table 1.

When designing an operator pool, an impor-
tant consideration is identifying the minimal com-

Method
Pool P1 P2 P3

Trajectory × Yes Yes
Vectorization × × Yes

Table 1: Dependence of our method on operator
pools.

plete pool (MCP), which minimizes the extra
measurements needed for the adaptive process.
MCP has been extensively studied in the case
when the state vector is real [57, 58], where an ex-
plicit MCP is suggested. However, for the prob-
lem we study in this paper (Eq. (26)), the state
vector is not limited to real vectors. As a re-
sult, the MCP proposed in the aforementioned
references is are not directly applicable to our
case. Although we can reformulate the problem
such that the existing MCP results would apply,
i.e., the state vector is always real, by express-
ing Eq. (1) in the Pauli basis, we have opted not
to pursue this route in our current study. This
is because such a representation would lead to
an effective Hamiltonian comprising 4-body Pauli
terms, potentially increasing circuit complexity
(see Appendix C for a detailed discussion). In-
stead we provide an upper bound on the number
of operators necessary for an MCP applicable to
any state vector by selecting the operator pool
such that it can generate a universal gate set.
One such pool comprises every single Pauli op-
erator and the ZX operator on adjacent qubits,
leading to an MCP size upper bound of 4n − 1.
On the other hand, as indicated by [58] and by
our numerical findings presented in Table 1 (P2 is
already a complete pool), having a complete pool
does not guarantee optimal outcomes. Investigat-
ing strategies that enhance the algorithm’s ability
to converge towards accurate results represents a
promising direction for further research.

In Figs. 2 and 3, we present the results from
noiseless simulations of running UAVQDS with
both the trajectory and vectorization methods
on the dephasing and amplitude damping mod-
els. We compare the evolution of the energy
⟨H(t)⟩ = Tr{ρH(t)} and instantaneous eigen-
state populations Pεi(t) = ⟨εi(t)|H(t)|εi(t)⟩ ob-
tained from UAVQDS with the exact solution ob-
tained from the Hamiltonian open quantum sys-
tem toolkit (HOQST) package [59]. Here, |εi(t)⟩
represents the ith instantaneous eigenstate of the
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(a) (b)

(c) (d)

Figure 2: Noiseless simulation using the trajectory method and UAVQDS for N = 8 (8 physical qubits).
Energy and eigenstate population evolution using the dephasing model ((a) and (b)) and the amplitude damping
model ((c) and (d)) are shown respectively. The UAVQDS results are obtained from 1000 trajectories and the ribbons
represent the 2σ (σ is the standard error of the mean) error bar for the trajectory average. The adaptive threshold
was set to r = 10−4 and the time step size was set to dt = 0.01. We used the operator pool P2.

Hamiltonian, i.e., H(t) |εi(t)⟩ = Ei |εi(t)⟩. The
eigenstate populations are chosen as benchmarks
because they are the quantities of interest in the
original QA setting. The non-vanishing excited-
state populations indicate that the dynamics hap-
pens in the non-adiabatic regime, where quantum
effects are expected to play a non-trivial role [60–
64]. Since the primary focus of our work in not
QA, we direct readers keen on further details to
the references mentioned above.

While it is still unclear whether the eigenstate
populations can be efficiently measured on a real
quantum computer, they can be easily obtained
in the simulation. We will focus only on the en-
ergy evolution when implementing the algorithm
on the hardware. When running the simulations,
we choose a stepsize of dt = 0.01 with a total
evolution time tf = 10. Additionally, we set the
Tikhonov regularization parameter λ in Eq. (23)

to a fixed value of 10−8. Before proceeding, it’s
important to note that the instantaneous eigen-
state populations depicted in Figs. 2 and 3 do not
sum to one as they represent only the lowest 8 en-
ergy states. We have confirmed that the trace of
the density matrix throughout the evolution re-
mains unity.

The figures demonstrate that UAVQDS pro-
duces results in good agreement with the exact
solver, as the dots representing the exact solu-
tions overlap with the UAVQDS lines across all
plots. It is noteworthy that compared to the
trajectory method, the vectorization method re-
quires double the number of qubits and a bigger
operator pool size with non-nearest neighbor cou-
pling. Hence, the ansatz there is more complex
and more expensive to generate. For instance,
r = 10−4 was used to run the (N = 8) trajectory
problem (with 8 physical qubits), whereas for the
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(a) (b)

(c) (d)

Figure 3: Noiseless simulation using the vectorization method and UAVQDS for N = 4 (8 physical qubit).
Energy and eigenstate population evolution using the dephasing model ((a) and (b)) and the amplitude damping
model ((c) and (d)) are shown respectively. For the dephasing model, the adaptive threshold was set to r = 10−6,
and for the amplitude damping model, it was set to r = 10−7. The time step size was fixed at dt = 0.01. The
operator pool P3 was used for these simulations.

(N = 4) vectorized problem (also with 8 physical
qubits), r had to be reduced to 10−6 (10−7 for the
amplitude damping model) to ensure enough op-
erators were included in the simulation (See Ap-
pendix K for more data). This implies that the
effective Schrödinger equation generated by the
vectorization method poses a greater challenge for
the UAVQDS than the one produced by the tra-
jectory method. This introduces an additional
trade-off between the vectorization and trajec-
tory methods, in addition to computational space
(number of qubits) and execution time (number
of trajectories).

We further investigate the error of the vector-
ization UAVQDS in Fig. 4. To quantify the error,
we define an infidelity measure D as the trace-
norm distance between the solution of UAVQDS
and the exact solution at the end of the evolution,

given by

D = Tr
[√

(ρ(tf )− ρt)†(ρ(tf )− ρt)
]
, (31)

where ρ(tf ) and ρt represent the solutions ob-
tained from UAVQDS and the exact solver, re-
spectively. As shown in Fig. 4a, by lowering the
adaptive threshold, we increase the accuracy of
the algorithm at the cost of more ansatz opera-
tors. However, this trend will not continue indef-
initely because there are only a finite number of
operators in the predefined pool. The relation-
ship between the infidelity and total number of
parameters in the ansätze is illustrated in Fig. 4b.
The infidelity decreases approximately polynom-
inally (linearly in log-log plot) as more operators
are included in the ansätze until it hit a flat re-
gion. To further reduce the infidelity, a larger
pool is required.
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(a) (b)

Figure 4: Infidelity of UAVQDS versus adaptive threshold and total number of parameters in the ansatz.
Panel (a) shows the total number of parameter in the ansätze at the end of evolution (blue dots) and the infidelity
(red crosses) versus the adaptive threshold r. The operator pool employed includes all 2-qubit Paulis (P3). Panel
(b) shows the infidelity versus the total number of parameters in the ansätze for pools with either neighboring (blue
dots) or all (orange dots) 2-qubit Paulis (P2 and P3, respectively). The dashed line in (b) represents a fitted line
using all data from the orange dots except the last one. The results were obtained using the setup from Fig. 3a.

Finally, we discuss the resource requirement for
our algorithms. Two key factors to consider are
the total number of operators and the number
of multi-qubit operators in the ansatz, both of
which are positively correlated with the final cir-
cuit depth required to execute the algorithm. To
estimate the maximum number of CNOT gates
needed for each time step, we start by calculating
the number of CNOTs in the ansatz. The ansatz
consists of unitaries that have the form e−iθPl ,
where Pl is a Pauli word of length l. Thus, the
total number of CNOT gates needed is given by∑
l>1 2(Nl − 1) where Nl is the number of Pls in

the ansatz. The scaling of the ansatz and esti-
mated CNOT counts versus the system size N is
shown in Figs. 5a and 5b for both the trajectory
and vectorization methods. Please refer to Ap-
pendix J for a demonstration on how the sizes
of the ansätze grow as operators are adaptively
added. The largest CNOT count in the figure is
around 900 which is still far below the required
CNOT count for any Trotterized algorithm using
the same step size (with dt = 0.01, at least 1000
trotter step is needed).

In order to study scaling of parameters and re-
sources, the operator counts are fitted to either
a polynomial of the form aN b or an exponential
of the form αeβN using least squares algorithm,
and the results are summarized in Table. 2. To
compensate for the non-monotonic behavior of
operator counts in the vectorization method, we

add (0, 0) to the fitting data. Since the opera-
tor count profiles for different trajectories in the
trajectory method vary, we compute fitting data
based on the (a) mean, (b) median and (c) max-
imum value of the operator counts at each time
step of the trajectories. Based on the coefficient
of determination (R2) for both the polynomial
and exponential fittings, it is clear that a low de-
gree polynomial better fits our data. However,
more data points are needed if we want to rule
out the exponential model with high confidence.
The curves for polynomial fitting are displayed in
Figs. 5c and 5d. Based on the scaling data for
the finite system sizes we studied, we do not ob-
serve signs of exponential scaling. AVQDS has
previously shown polynomial scaling in terms of
the number of parameters and CNOTs for other
spin models [43]. Confirming this observation for
larger system in case of open quantum systems
will be a topic for future studies.

3.2 Hardware results

To showcase our algorithm on a quantum com-
puter that is currently available, we save the pa-
rameters of the time evolution that are computed
classically using UAVQDS, and use these param-
eters to measure the energy at each time step
by executing the circuits for Eq. (24) on a real
quantum computer. We run our experiments on
IBM’s 27-qubit processor ibmq_kolkata with the
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Figure 5: Resource requirements for different system sizes. (a) Ansatz and estimated CNOT counts for the
trajectory method. (b) Ansatz and estimated CNOT counts for the vectorization method. (c) Ansatz counts fitted
to a model of aN b for the trajectory method, with box plots of 1000 trajectories. (d) Ansatz counts fitted to a model
of aN b for the vectorization method. In all the panels, Np represents the ansatz count, while CNOTs indicates the
estimated CNOT count. The box plots in panels (a) and (c) are obtained from 1000 trajectories, and panels (b) and
(d) display resource counts for two adaptive threshold choices. The results were obtained using the configuration
described in Fig. 3a.

Data
Fitting

b R2 (poly) R2 (exp)

Trajectory (median) 2.39 0.986 0.961
Trajectory (mean) 1.98 0.980 0.938
Trajectory (max) 1.72 0.972 0.920

Vectorization (r = 10−5) 1.13 0.821 0.795
Vectorization (r = 10−6) 2.47 0.945 0.943

Table 2: A summary of fitting results. The ansatz
counts shown in Fig. 5 are fitted to either a polynomial
of the form aN b or an exponential of the form αeβN

using a least squares algorithm. The table reports the
coefficient of determination (R2) for both fittings and
the exponent of the resulting polynomial.

Falcon architecture. To ensure the algorithms run
smoothly, it is necessary to carefully compile the
circuit based on the specific quantum device be-

ing used and to apply error suppression and mit-
igation strategies to obtain accurate and depend-
able results.

We note that we only simulate the dephasing
model on the hardware because we want to avoid
the additional complexity of mid-circuit measure-
ment or reset operations required by simulating
the amplitude damping model using the trajec-
tory method (see Appendix I). Additionally, we
compare the vectorization and trajectory method
by selecting their respective Ns such that they
both use 4 physical qubits, meaning N = 2 for
the trajectory method and N = 4 for the vector-
ization method.

Circuit generation– We utilize the Qiskit tran-
spiler to generate multiple circuits with varying
numbers of CNOTs due to the stochastic addition
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of swap gates, and select the circuit with the low-
est number of CNOTs for our study. Direct mea-
surement is used for the vectorization method,
while indirect measurement via the Hadamard
test is used for the trajectory method (see Ap-
pendix H). To synthesize the unitary required
for measurements in the vectorization method,
we use the Berkeley Quantum Synthesis Toolkit
(BQSKit) [65, 66]. We do not perform additional
recompilation besides the optimization supported
by the Qiskit transpiler.

Error mitigation and post processing– We use
the matrix-free measurement mitigation (M3)
package to apply readout error mitigation in our
study. This approach operates within a reduced
subspace that is defined by the noisy input bit-
strings requiring correction, making it scalable.
The M3 package is described in references by [67]
and is accessible through Qiskit. We also incor-
porate dynamical decoupling using Qiskit’s stan-
dard tools, implementing periodic gate sequences
to suppress cross-talk and system-environment
coupling [68–71]. Additionally, we apply an
empirical error mitigation scheme based on the
classical resolution enhancement (RE) technique,
which has shown effectiveness in a different con-
text [72], to the trajectory simulations. In or-
der to avoid the ambiguity of the value of en-
hancement factor, the RE method uses a con-
vergence criteria based on tracing over the mea-
sured probabilities of the non-ancillary qubits in
a Hadamard test setting. Since the vectorization
method uses direct measurement without any an-
cillary qubit, we were unable to apply RE in this
case. It is important to note that all of the error
mitigation strategies we applied are out-of-the-
box solutions and are resource-efficient, making
them suitable for real-world applications.

Results– We show the experimental results on
the hardware in Fig. 6. The figure shows ⟨H⟩ ver-
sus evolution time t for vectorization (a) and tra-
jectory (b) methods, respectively. It includes re-
sults obtained from ideal circuit simulation, quan-
tum computer with and without error suppres-
sion or mitigation techniques, as well as the ex-
act solver. The vectorization result is for a prob-
lem size of N = 2, i.e, 4 physical qubits. The
trajectory method is for a problem size N = 4,
which requires 4 physical qubits plus one addi-
tional ancilla qubit in order to measure ⟨H⟩ with
the Hadamard test.

From Figs. 6a and 6b we observe good quali-
tative agreement between the exact solution and
the results obtained from both the vectorization
and trajectory methods. It is important to note
that the error bars for the vectorization method
and trajectory method represent distinct quanti-
ties. Specifically, the error bars for the vectoriza-
tion method represent two times the standard de-
viation of 3 runs, while the error bars for the tra-
jectory method represent two times the standard
error of the mean over 17 trajectories. The per-
formance of the vectorization method is particu-
larly impressive because one would expect it to
perform worse than the trajectory method, given
that the N = 2 vectorization problem requires
more operators in the ansatz (see Fig. 5) than
the N = 4 trajectory problem and its ansätze
include non-local 2-qubit Pauli operators. In ad-
dition, we expect the results to improve signifi-
cantly with aggressive circuit recompilation since
minimal fine-tuning was done in our hardware
runs. The results from the trajectory method im-
prove considerably after post-processing with the
RE technique. However, it is important to note
that we have only explored the RE method for a
few limited cases and its generalizability as a po-
tential error mitigation technique is still not fully
understood. Summarizing, we see that the results
from the IBM quantum computers are highly en-
couraging and suggest that simulating Lindblad
equations is within the capability of NISQ de-
vices.

4 Conclusion

We have introduced an adaptive variational quan-
tum algorithm to simulate open quantum sys-
tem dynamics described by a Lindblad equation.
The method variationally solves either a vector-
ized or a stochastically unravelled Lindblad equa-
tion , with the ansatz built adaptively at every
time step by minimizing McLachlan’s distance in
a greedy manner. We provide a benchmark of the
algorithm’s performance on both the ideal simu-
lator and IBM’s quantum processor for simulat-
ing the open-system quantum annealing dynam-
ics, achieving good quantitative and qualitative
agreement with the exact solution. Additionally,
we perform a resource analysis on finite systems
and find polynomial scaling, indicating the algo-
rithm’s potential to be extended to larger sys-
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Figure 6: Energy expectation value obtained by executing the parameterized circuits on ibmq_kolkata.
Panels (a) and (b) show the results for the vectorization method (N = 2) and trajectory method (N = 4), respectively.
The noiseless, noisy, and exact curves represent the results from ideal circuit simulation, quantum computer without
any error suppression or mitigation techniques and exact solver, respectively. Other curves show the results obtained
from the quantum computer with corresponding error suppression or mitigation techniques: measurement error
mitigation (M3), dynamical decoupling (DD) and resolution enhancement (RE). The error bars in panel (a) represent
two times the standard deviation from 3 runs, and the error bars in panel (b) represent two times the standard error of
the mean from 17 trajectories. All curves from IBM quantum computers are obtained with 100000 shots. Note that
we do not have a noisy curve for the trajectory method because running trajectories on the real quantum computer
is resource-intensive.

tems. Based on our numerical findings, we con-
jecture that both algorithms will exhibit poly-
nomial scaling in gate complexity, given the ap-
propriate selection of an ansatz pool. Addition-
ally, these algorithms demonstrate a space-time
trade-off (number of trajectories versus number
of qubits) that mirrors what we observed in their
classical counterparts. When considering NISQ-
era quantum devices, the trajectory method is
more favorable because of two reasons. First,
qubits are more valuable as a resource in the
NISQ era. Secondly, the vectorization method
presents an additional challenge due to its non-
local effective Hamiltonian, which requires more
complex ansätze.

Scaling our algorithm to sizes where mean-
ingful simulations [4, 14, 15, 73] can be con-
ducted on NISQ hardware presents several chal-
lenges, with the foremost being the required cir-
cuit depth. Despite considerable advancements
in enhancing the quality of quantum processors,
decoherence still sets a practical limit on the
achievable circuit depth. For instance, the most
advanced experiments on IBM’s 127-qubit chip
have been constrained to circuit depths of less
than 100 [74]. In contrast, our algorithm’s cir-
cuit depth surpasses this threshold even for prob-

lems involving just a few qubits, as illustrated in
Fig. 5, where the circuit depth closely follows the
CNOT count. Besides waiting for better hard-
ware, enhancements in both algorithmic design
and software optimization are essential. For ex-
ample, employing advanced recompilation tech-
niques with heuristic algorithms can substantially
reduce circuit depth [65]; implementing advanced
error mitigation strategies can allow for longer
circuit [22, 75]. Additionally, the training part
of our algorithm, currently performed classically,
will ultimately need to be transitioned to a quan-
tum computer. This transition will benefit from
identifying the MCP to reducing the measure-
ment overhead of the training process and devel-
oping strategies that ensures convergence of the
training [58]. Our algorithm pushes the bound-
ary of NISQ algorithms for open quantum system
simulation, providing a promising avenue for fu-
ture research in this field.
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A Frequently used symbols

For convenience, we provide a table summarizing frequently used symbols in the main text.

Symbol Definition
H(t) Hamiltonian of the system of interest
ρ(t) Density matrix of the system of interest
L Lindblad superoperator of the Lindblad equation
Lk kth Lindblad operator of the Lindblad equation, with the dissipation rate being absorbed
γk Dissipation rate associated with the kth Lindblad operator

|ρ(t)⟫ or vec(ρ(t)) Vectorized density matrix
Hvec Effective Hamiltonian for the vectorized Lindblad equation
Hurv Effective Hamiltonian for the unravelled Lindblad equation
L̄ Complex conjugate of operator L
Heff Generic effective non-Hermitian Hamiltonian
He Hermitian part of the effective Hamiltonian Heff
Ha −iHa is the anti-Hermitian part of the effective Hamiltonian Heff
D Square of the McLachlan distance used in the variational principle∣∣∣ψ̃(t)
〉

Unnormalized state vector solution for the effective Schrödinger equation with Heff

|ψ(t)⟩ Normalized state vector solution for the effective Schrödinger equation Heff∣∣∣ψ̃j(t)〉 Unnormalized state vector solution for the jth trajectory
|ψj(t)⟩ Normalized state vector solution for the jth trajectory
|ϕ(t)⟩ State from parameterized quantum circuits
|ψR⟩ Reference state for the parameterized quantum circuits
θµ(t) µth ansatz parameter for the parameterized circuit
Aµ µth ansatz operator for the parameterized circuit
θ(t) Vector of the ansatz parameters [θ1(t), θ2(t), · · · θk(t)]
A Vector of the ansatz operators [A1, A2, · · ·Ak]

M,V Coefficient matrix and vector of the linear equation generated by the variational principle
Γ A classical register to record the norm of

∣∣∣ψ̃(t)
〉

in the algorithm∣∣∣O†
〉

Normalized and vectorized operator O†

Xi, Yi, Zi Pauli X, Y and Z operators acting on the ith qubit
Pi A Pauli X, Y or Z matrix acting on the ith qubit
Ps Notation for different operator pools

L+
i , L

−
i Plus and minus Lindblad operators acting on the ith qubit

γ+
i , γ

−
i Dissipation rates associated with the plus and minus Lindblad operators

A(t), B(t) Annealing schedules (scalar functions)
HD, HP Driving and problem Hamiltonian in a standard quantum annealing protocol
Np Total number of parameter in the ansätze at the end of evolution
D Trace-norm distance between the solution of variation algorithm and the exact solution

Table A.1: List of symbols and their definitions used in the main text.

B Derivation of the vectorized Lindblad equation

In this section we show how to derive the vectorized Lindblad equation from

d

dt
ρ(t) = −i[H(t), ρ(t)] + L[ρ(t)] , (32)

where the dissipative term L[ρ(t)] is

L[ρ(t)] =
K∑
k=1

(
Lkρ(t)L†

k −
1
2
{
L†
kLk, ρ(t)

})
. (33)
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The strategy is to apply the identity vec(ABC) = (CT ⊗ A) vec(B) to each term on the right-hand
side of Eq. (32). The Hamiltonian part [H(t), ρ(t)] can be written in terms of

vec {ρ(t)H(t)} =
(
HT(t)⊗ I

)
vec (ρ(t)), vec {H(t)ρ(t)} = (I ⊗H(t)) vec (ρ(t)) . (34)

The Lindblad part can be written in terms of

vec
(
LkρL

†
k

)
=
(
L̄k ⊗ Lk

)
vec (ρ), vec

(
L†
kLkρ

)
=
(
I ⊗ L†

kLk
)

vec (ρ), (35a)

vec
(
ρL†

kLk
)

=
(
LT
k L̄k ⊗ I

)
vec (ρ) . (35b)

Summing up every term in Eqs.(34) and (35), the effective Hamiltonian can be obtained as

Hvec = I ⊗H −HT ⊗ I + i
∑
k

[
L̄k ⊗ Lk −

1
2
(
I ⊗ L†

kLk + LTk L̄k ⊗ I
)]

. (36)

C Vectorization in the Pauli basis
An alternative approach to vectorizing the ME involves expressing the density matrix in the basis
of Pauli matrices and representing the superoperators through the Pauli transfer matrices (PTMs).
However, this method leads to a notable increase in circuit complexity for two primary reasons.

• Vectorization can transform a single-qubit pure state into a more complex state, such as a 2-qubit
Bell state. For instance, consider the state |0⟩⟨0|. In the Pauli basis arranged in lexicographic
order, this state, when vectorized, would be represented as (|00⟩ + |11⟩)/

√
2 (up to a constant),

necessitating an additional layer of 2-qubit gates for state preparation.

• When employing the column-stacking method for vectorization, if every term in the Hamiltonian is
2-local and each Lindblad operator is 1-local, then each term in the resultant effective Hamiltonian
(as per Eq. (36)) remains at most 2-local. For example, the PTM for the superoperator [ZZ, ·] is
(XXXY +XYXX+Y XY Y +Y Y Y X−XXYX−XY Y Y −Y XXX−Y Y XY )/2. To implement
the Hamiltonian pool [43] would require an arbitrary angle 4-qubit Pauli rotation, substantially
increasing the number of required CNOT gates.

Given these considerations, particularly the worse error rates associated with 2-qubit gates on con-
temporary quantum devices, we opted against this vectorization approach to reduce the circuit depth.
The potential for a more efficient implementation of this approach remains an intriguing area for future
research.

D Derivation of the evolution equation
In this appendix, we derive the evolution equation of the variational parameters for the effective
Schrödinger equation

|ψ̇⟩ = −iHeff |ψ⟩ , (37)

where the dot symbol denotes the time derivative. Before proceeding, it is worth mentioning that the
effective Hamiltonian in Eq. (37) is not necessarily Hermitian. The ansatz state is parameterized by
θ(t) ≡ [θ1(t), θ2(t), · · · θk(t)]T

|ϕ(θ(t))⟩ =
k∏

µ=1
e−iθµ(t)Aµ |ψR⟩ , (38)

where Aµ and |ψR⟩ are the ansatz operators and the reference state, respectively. It is more convenient
to derive the evolution equation of θ(t) using the density matrix representation to avoid the problem
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of a time dependent global phase [50]. Let W (θ) ≡ |ϕ(θ)⟩⟨ϕ(θ)|, the equation of motion is given by

Ẇ = |ϕ̇⟩⟨ϕ|+ |ϕ⟩⟨ϕ̇| (39a)

= −i
(
HeffW −WH†

eff

)
, (39b)

where we make use of Eq. (37) in going from Eq. (39a) to Eq. (39b). Applying the McLachlan’s
variational principle to Eq. (39), we have

δ

∥∥∥∥dW (θ(t))
dt

− L[W (θ(t))]
∥∥∥∥2

= 0 , (40)

where L[W ] ≡ −i
(
HeffW −WH†

eff

)
. Let D ≡

∥∥∥dW (θ(t))
dt − L[W (θ(t))]

∥∥∥2
, the McLachlan distance

(which is actually
√
D) can be simplified as

D = Tr
[(
Ẇ † − L†[W ]

)(
Ẇ − L[W ]

)]
= Tr

[
Ẇ †Ẇ

]
−2Re

{
Tr
{
Ẇ †L[W ]

}}
+Tr

{
L†[W ]L[W ]

}
. (41)

Based on Eq. (39a), Ẇ is Hermitian, i.e., Ẇ = Ẇ †. The first term Tr
[
Ẇ †Ẇ

]
on the RHS of Eq. (41)

can be simplified by the chain rule

Tr
{
Ẇ †Ẇ

}
=
∑
µ,ν

Tr
{
∂W

∂θµ

∂W

∂θν

}
θ̇µθ̇ν = θ̇

TMθ̇ , (42)

where M is a matrix with elements

Mµν = Tr
{
∂W

∂θµ

∂W

∂θν

}
(43a)

= Tr
{(

∂ |ϕ⟩
∂θµ

⟨ϕ|+ |ϕ⟩ ∂ ⟨ϕ|
∂θµ

)(
∂ |ϕ⟩
∂θν

⟨ϕ|+ |ϕ⟩ ∂ ⟨ϕ|
∂θν

)}
(43b)

= 2Re
(
∂ ⟨ϕ|
∂θµ

∂ |ϕ⟩
∂θν

+ ⟨ϕ| ∂ |ϕ⟩
∂θµ

⟨ϕ| ∂ |ϕ⟩
∂θν

)
. (43c)

Because θµ are real parameters, M is a real symmetric matrix.
Similarly, the second term on the RHS of Eq. (41) can be simplified as

2Re
{

Tr
{
Ẇ †L[W ]

}}
= 2Re

{
Tr
{
∂W

∂θµ
L[W ]

}}
θ̇µ (44a)

= 2VT θ̇ , (44b)

where V is a vector with elements

Vµ = Re
{

Tr
{
∂W

∂θµ
L[W ]

}}
(45a)

= Im
{

Tr
{(

∂ |ϕ⟩
∂θµ

⟨ϕ|+ |ϕ⟩ ∂ ⟨ϕ|
∂θµ

)(
Heff |ϕ⟩⟨ϕ| − |ϕ⟩⟨ϕ|H†

eff

)}}
(45b)

= 2Im
(
⟨Heff⟩ ⟨ϕ|

∂ |ϕ⟩
∂θµ

+ ∂ ⟨ϕ|
∂θµ

Heff |ϕ⟩
)
, (45c)

and ⟨Heff⟩ = ⟨ϕ|Heff |ϕ⟩.
Before calculating the last term on the RHS of Eq. (41), we split the effective Hamiltonian into a

Hermitian and an anti-Hermitian parts

Heff = Heff +H†
eff

2 − i
(
i
Heff −H†

eff
2

)
≡ He − iHa . (46)
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Then the last term becomes

Tr
{
L†[W ]L[W ]

}
= Tr

{(
WH†

eff −HeffW
)(
HeffW −WH†

eff

)}
= Tr

[
WH†

effHeffW
]
− Tr

[
WH†

effWH†
eff

]
− Tr [HeffWHeffW ] + Tr

[
HeffWWH†

eff

]
= ⟨(He + iHa)(He − iHa)⟩ − ⟨He + iHa⟩2 − ⟨He − iHa⟩2 + ⟨(He + iHa)(He − iHa)⟩

= 2
〈
H2

e

〉
− 2 ⟨He⟩2 + 2

〈
H2

a

〉
+ 2 ⟨Ha⟩2 + 2i ⟨[Ha, He]⟩ . (47)

The variational principle (Eq. (40)) then yields

δD
(
θ̇
)

= θ̇
T
(
M + MT

)
− 2VT = 2Mθ̇ − 2V = 0 . (48)

Finally, the evolution equation of the variational parameters is given by a linear equation

Mθ̇ = V . (49)

E Measurement circuit for M and V

In this appendix, we will discuss the quantum circuit used to measure the parameter in the variational
equation of motion Mθ̇ = V, where

Mµν = 2Re
(
∂ ⟨ϕ|
∂θµ

∂ |ϕ⟩
∂θν

+ ⟨ϕ| ∂ |ϕ⟩
∂θµ

⟨ϕ| ∂ |ϕ⟩
∂θν

)
, (50)

and

Vµ = 2Im
(
⟨Heff⟩ ⟨ϕ|

∂ |ϕ⟩
∂θµ

+ ∂ ⟨ϕ|
∂θµ

Heff |ϕ⟩
)
. (51)

assuming that each ansatz operator Aµ is a Pauli operator. We only present the resulting circuits
here and encourage interested readers to refer to [53] for further details. First, the term ⟨Heff⟩ can be
evaluated by measuring all the Pauli strings Pi that make up the Hamiltonian. The quantum circuit for
both direct and indirect measurement (Hadamard test) are shown in Fig. E.1, where we use notation
U
(
θ⃗
)

to denote the the unitary generated by the variational circuit and H
(
S†
)

to denote the optional
Hadamard (Hadamard-phase) gate to rotate the basis of Pi to z direction.

|0⟩ H H

|ψR⟩ U(θ⃗) Pi

(a)

MPi

|ψR⟩ U(θ⃗) H(S†)

(b)

Figure E.1: Quantum circuit for evaluating ⟨ϕ|Pi|ϕ⟩ using (a) Hadamard test; (b) direct measurements. U
(
θ⃗
)

denotes the unitary generated by the variational circuit
∏k

µ=1 e
−iθµ(t)Aµ . H

(
S†) denotes the optional Hadamard

(Hadmard-phase) gate to rotate the basis of Pi to z direction. The gates within the blue block implement a projective
measurement onto the eigenbasis of Pi.

Second, the term ⟨ϕ| ∂|ϕ⟩
∂θµ

and ⟨ϕ|Heff
∂|ϕ⟩
∂θµ

can be evaluated by using a generalized Hadamard test or
the corresponding direct measurement circuit. The main observation is that, using

∂ |ϕ⟩
∂θµ

= −i
k∏

l=µ+1
e−iθlAlAµ

µ∏
j=1

e−iθjAj |ψR⟩ , (52)
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the term ⟨ϕ|Pi ∂|ϕ⟩
∂θµ

can be simplified as

⟨ϕ|Pi
∂ |ϕ⟩
∂θµ

∝ ⟨ψR|U †
µ:1U

†
k:µ+1PiUk:µ+1AµUµ:1|ψR⟩ , (53)

where Uµ:1 =
∏µ
j=1 e

−iθjAj and Uk:µ+1 =
∏k
l=µ+1 e

−iθlAl . Eq. (53) can be evaluated using the general-
ized Hadamard test (Fig. E.2a) or the corresponding direct measure circuit (Figs. E.2b and E.2c).

|0⟩ H Sb H

|ψR⟩ Uµ:1 Aµ Uk:µ+1 Pi

(a)

MAµ MPi

|ψR⟩ Uµ:1 H(S†) Uk:µ+1 H(S†)

(b)

MPi

|ψR⟩ Uµ:1 e±iπAµ/4 Uk:µ+1 H(S†)

(c)

Figure E.2: Quantum circuits for evaluating ⟨ϕ|Pi
∂|ϕ⟩
∂θµ

using (a) generalized Hadamard test; (b) and (c) direct
measurements. The generalized Hadamard test circuit uses a binary integer b ∈ {0, 1} as an input. If b = 0, the
circuit measures the real part of ⟨ψR|U†

µ:1U
†
k:µ+1PiUk:µ+1AµUµ:1|ψR⟩, and if b = 1, it measures the imaginary part.

For direct measurement, circuit (b) measures the real part of the targeted quantity, while circuit (c) measures the
imaginary part.

Finally, the metric tensor, given by ∂⟨ϕ|
∂θµ

∂|ϕ⟩
∂θν

, can also be evaluated using circuits similar to those
discussed above. We note that this expression can be simplified as

∂ ⟨ϕ|
∂θµ

∂ |ϕ⟩
∂θν

∝ ⟨ψR|U †
µ:1AµUµ+1:ν+1AνUν:1|ψR⟩ , (54)

assuming µ ≥ ν + 1. Quantum circuits for evaluating this quantity are shown in Fig. E.3.

F Evolution of the state-vector norm

In this section, we show how to track the evolution of the state-vector norm by measuring the anti-
Hermitian component of the effective Hamiltonian at every time step. We start with the Schrödinger
equation

d

dt

∣∣∣ψ̃(t)
〉

= −iHeff
∣∣∣ψ̃(t)

〉
, (55)

with
∣∣∣ψ̃(t)

〉
being the unnormalized state vector and |ψ(t)⟩ being the normalized state vector. The

effective Hamiltonian has both the Hermitian He and anti-Hermitian parts −iHa, i.e., Heff = He−iHa.
We also use the notation |ϕ(t)⟩ for the state generated by our variational circuit. The evolution of
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|0⟩ H X X Sb H

|ψR⟩ Uν:1 Aν Uµ:ν+1 Aµ

(a)

MAν MAµ

|ψR⟩ Uν:1 H(S†) Uµ:ν+1 H(S†)

(b)

MAµ

|ψR⟩ Uν:1 e±iπAν/4 Uµ:ν+1 H(S†)

(c)

Figure E.3: Quantum circuits for evaluating ∂⟨ϕ|
∂θµ

∂|ϕ⟩
∂θν

using (a) generalized Hadamard test; (b) and (c) direct
measurements. The generalized Hadamard test circuit uses a binary integer b ∈ {0, 1} as an input. If b = 0,
the circuit measures the real part of ⟨ψR|U†

µ:1AµUµ+1:ν+1AνUν:1|ψR⟩ (for µ ≥ ν), and if b = 1, it measures the
imaginary part. For direct measurement, circuit (b) measures the real part of the targeted quantity, while circuit (c)
measures the imaginary part.

〈
ψ̃(t)

∣∣∣ψ̃(t)
〉

can be calculated as

d
〈
ψ̃(t)

∣∣∣ψ̃(t)
〉

dt
=
d
〈
ψ̃(t)

∣∣∣
dt

∣∣∣ψ̃(t)
〉

+
〈
ψ̃(t)

∣∣∣ d
∣∣∣ψ̃(t)

〉
dt

(56a)

=
〈
ψ̃(t)

∣∣∣(iH†
eff − iHeff

)∣∣∣ψ̃(t)
〉

(56b)

= −2
〈
ψ̃(t)

∣∣∣Ha
∣∣∣ψ̃(t)

〉
(56c)

= −2 ⟨ψ(t)|Ha|ψ(t)⟩
〈
ψ̃(t)

∣∣∣ψ̃(t)
〉
. (56d)

The solution to the above equation is〈
ψ̃(t)

∣∣∣ψ̃(t)
〉

= e−2
∫ t

0 ⟨ψ(τ)|Ha|ψ(τ)⟩dτ
〈
ψ̃(0)

∣∣∣ψ̃(0)
〉
. (57)

In the above equation, e−2
∫ t

0 ⟨ψ(τ)|Ha|ψ(τ)⟩dτ is monotonically decreasing. To see this, we first examine
the case of the unravelled Lindblad equation, where Ha = 1

2
∑
k L

†
kLk is positive semi-definite since

each term in the summation is quadratic. As a result,
∫ t

0 ⟨ψ(τ)|Ha|ψ(τ)⟩ dτ is always a positive value.
We then turn to the case of the vectorized Lindblad equation. Because the evolution operator of the
original Lindblad equation is a contraction map, i.e.,√

Tr [ρ†(t2)ρ(t2)] ≤
√

Tr [ρ†(t1)ρ(t1)] , for t1 ≤ t2 , (58)

and the linear isometry preserves the trace norm and L2 norm, we have〈
ψ̃(t2)

∣∣∣ψ̃(t2)
〉
≤
〈
ψ̃(t1)

∣∣∣ψ̃(t1)
〉
, for t1 ≤ t2 . (59)

For a small time interval dt〈
ψ̃(t+ dt)

∣∣∣ψ̃(t+ dt)
〉
≈ e−2⟨ψ(t)|Ha|ψ(t)⟩dt

〈
ψ̃(t)

∣∣∣ψ̃(t)
〉
, (60)

thus we can keep track of the norm by measuring Ha at each time step.

Accepted in Quantum 2024-02-02, click title to verify. Published under CC-BY 4.0. 25



G Lower bound of the McLachlan’s distance
In this Appendix, we derive a lower bound of the McLachlan’s distance (Eq. (41)). First, we note from
Eq. (38) that the ansatz state is parameterized by a unitary

|ϕ(θ(t))⟩ = U(θ(t)) |ψR⟩ . (61)

A reasonable assumption we make is that dU(θ(t))/dt exists (well-defined and finite). With this
assumption, we can define an effective Hamiltonian parameterized by the derivative of the ansatz
parameter

H̃
(
θ̇
)

= iU̇(θ)U−1(θ) , (62)

where we omit the t-dependence of each quantity in the above equation. It is straightforward to check
the following relation is satisfied

U̇(θ) = −iH̃
(
θ̇
)
U(θ) . (63)

Then the derivative of the ansatz state is subject to the following equation of motion

dW (θ)
dt

= −i
[
H̃
(
θ̇
)
,W (θ)

]
, (64)

and the McLachlan’s distance becomes

D =
∥∥∥∥dW (θ(t))

dt
− L[W (θ(t))]

∥∥∥∥2
(65a)

=
∥∥∥(H̃ −Heff

)
W −W

(
H̃ −H†

eff

)∥∥∥2
(65b)

= ∥(∆H + iHa)W −W (∆H − iHa)∥2 (65c)

= 2
〈
∆H2

〉
− 2 ⟨∆H⟩2 + 2

〈
H2

a

〉
+ 2 ⟨Ha⟩2 − 2i ⟨[Ha,∆H]⟩ , (65d)

where we denote ∆H ≡ H̃ −He in going from Eq. (65b) to Eq. (65c). When [Ha,∆H] = 0, a lower
bound of D is given by

D ≥ 2
〈
H2

a

〉
+ 2 ⟨Ha⟩2 , (66)

where the equality is achieved when ∆H = 0, which means the optimal θ̇ makes H̃
(
θ̇
)

in Eq. (63)
equal the Hermitian part of the effective Hamiltonian Heff .

A sufficient condition for [Ha,∆H] = 0 is

[He, Ha] = 0 (67a)
[Aµ, Ha] = 0 ,∀µ ∈ [1, k] , (67b)

where Eq. (67b) guarantees
[
H̃
(
θ̇
)
, Ha

]
= 0 .

H Measure observable O in the vectorization method
In this section we describe the circuit used to measure the observable O for the vectorization method
based on Ref. [32]. The target is to evaluate the quantity

〈
O†
∣∣∣ϕ(t)

〉
where

∣∣∣O†
〉

is the vectorized
operator O† from a smaller Hilbert space. The main observation is that the parameterized state |ϕ(t)⟩
can be generated from |0⟩ (all zero state) with one unitary

|ϕ(t)⟩ =
k∏

µ=1
e−iθµ(t)Aµ |ψR⟩ = U(θ) |ψR⟩ = U(θ)UR |0⟩ , (68)
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where UR prepares the reference state. If we can construct another unitary that prepares
∣∣∣O†

〉
,

i.e.
∣∣∣O†

〉
= V |0⟩, then

〈
O†
∣∣∣ϕ(t)

〉
= ⟨0|V †U(θ)UR|0⟩ can be measured either directly or indirectly

(Hadamard test). Assume the operator O has dimension 2N × 2N , an explicit form of
∣∣∣O†

〉
is given by

∣∣∣O†
〉

=
∑
x1y1

O∗
x1y1√

Tr (O†O)
|x1y1⟩ , (69)

where x1 and y1 are bit strings for 0 to 2N − 1 and Ox1y1 is the x1, y1 element of the operator. V
can be synthesized using quantum state preparation algorithm [66, 76]. Because O is usually a local
observable, Eq. (69) can be further simplified to avoid any exponential cost [32]. In the examples
considered in the main text, the reference state is chosen as |ψR⟩ = |+⟩⊗2N , as a result, UR can be
implemented using Hadamard gates H⊗2N .

In our experiments, we used the Berkeley Quantum Synthesis Toolkit (BQSKit) [65, 66] to synthesize
the unitary V and used the direct measurement protocol shown in Fig. H.1 to evaluate

〈
O†
∣∣∣ϕ(t)

〉
. The

Hadamard test is not currently practical on hardware because it requires implementing V †U
(
θ⃗
)
H⊗2N

as a control unitary. We can obtain the final result by taking the square root of the all-0 string
frequency since

〈
O†
∣∣∣ϕ(t)

〉
= ⟨0|V †U

(
θ⃗
)
H⊗2N |0⟩. When taking the square root, a sign needs to be

assigned; however, we can always shift an observable by the identity matrix such that all its eigenvalues
have the same sign.

|0⟩ H⊗2N U(θ⃗) V †

Figure H.1: Direct measurement scheme to evaluate
〈
O†
∣∣ϕ(t)

〉
. The final result can be obtained by taking the square

root of the all-0 string frequency.

I Implementing L− and L+ jump operators
In this appendix, we describe two methods for applying the L+ and L− jump operators on a quantum
computer. Without loss of generality, we present only the derivation for L+ ≡ (X + iY )/2, and the
procedure is easily extended to L− ≡ (X − iY )/2. The key observation is that the L+ jump only
occurs when its probability p+ ∝ ⟨ϕ|L−L+|ϕ⟩ is greater than zero, meaning |ϕ⟩ ≠ |0⟩. Under this
condition, the action of the jump operator L+ |ϕ⟩ /

√
⟨ϕ|L−L+|ϕ⟩ is equivalent to a quantum eraser

channel E(ρ) = |0⟩⟨0|. There are two ways of implementing such a channel on a quantum computer:
mid-circuit measurement or block encoding (unitary dilation) [54–56]. The former requires us to
perform a mid-circuit measurement on the qubit and apply a X gate conditioned on the result 1. The
latter requires an additional ancilla qubit prepared in |0⟩ state. Then we apply a CNOT gate with the
ancilla as the target qubit, measure the ancilla and post select the runs with measurement result 0.
The circuits for both of these methods are shown in Fig. I.1.

J Growth of ansatz size
In this appendix, we demonstrate how the sizes of ansätze grow as we adaptively add operators to
them. The results are obtained from the examples with N = 8 showcased in Fig. 5a and N = 4 in
Fig. 5b in the main text. In Fig.J.1a, we present examples of three different trajectories where 0, 1,
and 2 jump events occurred during the evolution. As we can see, the adaptive procedure quickly refills
the ansätze after they are reset by the jumps. Consequently, the accumulated ansatz size becomes
larger when more jumps occur. In Fig.J.1b, we showcase examples using the vectorization method
with different error thresholds. We observe larger ansatz sizes when lower threshold values are used.
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|ϕ⟩ |0⟩

(a)

|0⟩ |0⟩

|ϕ⟩
(b)

Figure I.1: Quantum circuit for implementing an eraser channel E(ρ) = |0⟩⟨0| using (a) mid-circuit measurement; (b)
block encoding. The measurement symbol in (a) means a conditional gate based on the measurement result. We
only apply X gate when the result is 1. The arrow pointing to |0⟩ in (b) represents the post-selection. We only keep
the runs where 0 is returned by the measurement.

(a) (b)

Figure J.1: Number of ansatz parameters required for different evolution times in both the trajectory and
vectorization methods. In (a), the numbers of parameters are plotted for three different trajectories, with vertical
lines indicating jump events where the ansätze are reset. In (b), the numbers parameters for the vectorization method
is shown for different error thresholds, with the turquoise dashed line indicating the total number of distinct operators
in the operator pool.

K The vectorization method with different operator pools and error threshold

In this appendix, we display the average energy ⟨H(t)⟩ versus evolution time t for both the dephasing
and amplitude damping models obtained using the vectorized UAVQDS with different choices of oper-
ator pools and error thresholds. The purpose is to provide visualization of how the error behaves with
respect to various operator pools and error thresholds.

L Resolution enhancement technique

Our method for resolution enhancement relies on the assumption that the bitstring data produced
during a noisy experiment somewhat conforms to the expected probability distribution of bitstrings.
In simpler terms, even though noise and measurement errors cause the histogram of bitstrings to
become less distinct, the underlying pattern of the histogram remains intact. To align the bitstring
distribution with the ideal one, we apply resolution enhancement techniques commonly employed in
image processing [77]. The corrected bistring distribution data is then used to compute the expectation
values. While the details of the method have been already described in [72], for the sake of completeness
we briefly discuss the method here as well as provide the specific steps we have undertaken for our
current work.

In our work, we measure a single Pauli term using Hadamard test circuit and later add multiple
expectation values to find the energy expectation value ⟨H(t)⟩. Hadamard test requires one ancilla
qubit and the expectation value can be obtained by just measuring the ancilla qubit. We, however,
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(a) (b)

(c) (d)

Figure K.1: The energy evolution of the vectorization UAVQDS for different Lindblad models, error thresh-
olds and operator pools. Subplots (a) and (b) show the results obtained using a all-to-all 2-qubit Pauli pool (P3 in
the main text) for the dephasing and amplitude damping models, respectively. Subplots (c) and (d) show the results
obtained using a neighboring 2-qubit Pauli pool (P2 in the main text) for the dephasing and amplitude damping
models, respectively.

measure all physical qubits (including the ancilla) and then trace over the rest to obtain the state of
the ancilla. Such additional measurements also help getting rid of certain unphysical states that arise
in quantum experiments, e.g, keeping track of fermion number conservation [78]. In our work such
screening were not necessary. Writing explicitly, if the measured wavefunction of the full system is
given by |ψ⟩ =

∑
j αj |bn..b1⟩ |0⟩a + βj |bn..b1⟩ |1⟩a, where bjs are the measured state of of the qubits,

after applying our RE method, we will obtain a corrected wavefunction |ψc⟩ =
∑
j α

(c)
j |bn..b1⟩ |0⟩a +

β
(c)
j |bn..b1⟩ |1⟩a.

Calling yj = |αj |2 as the frequency of the noisy data of j-th bitstring, resolution enhanced frequency

is obtained using rj = yj − k2y
′′
j , were rj = (

∣∣∣α(c)
j

∣∣∣2) is the reformed frequency and y′′
j is the second

derivative of the noisy data w.r.t the decimal representation of the bitstrings. The parameter k2 can
be modified to tune the resolution of the final data. The weighting factor k2 can be chosen based
on what gives the best trade-off between resolution enhancement, signal-to-noise degradation, and
baseline flatness. The optimum choice depends upon the width, shape, and digitization interval of the
the bitstrings. After obtaining rj we identify the bitstrings nearest to the peaks from the resolution
enhanced data. We then switch back to the binary representation of the bitstrings and replace yjs by
the rjs.

In order to avoid the ambiguity of the optimal value of k2, we iterate over several values of k2
and calculate the probability p0 of the ancilla qubit for each of them. We continue iterating until p0
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Figure L.1: Effects of resolution enhancement on bitstring distribution. Histogram of bitstrings of noisy
simulation (a) before and (b) after applying resolution enhancement

converges with a certain threshold ϵ. In other words, if p0(k(j)
2 ) is the probability at the j−th iteration,

we first calculate the average of p0(k(j)
2 ) over the previous j values of k2. Thus we may define,

p̂0(k(j)
2 ) = 1

j

j∑
l=1

p0(k(l)
2 ) (70)

we stop the loop if
∣∣∣p̂0(k(j+1)

2 )− p̂0(k(j)
2 )
∣∣∣ < ϵ. For our calculation we chose ϵ ∼ 10−4 and varied k2 in

the range [0, 8] in steps of 0.1. To understand the effect of the method, we show the results in Fig. L.1,
where the original noisy data is shown in the left panel and right panel shows after the resolution
enhancement is applied. The plot shows the bitstring data for the N = 4 calculation and, we have
chosen the eleventh trajectory of our experiment as an example. The histogram in the right panel has
the corrected peaks.
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