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Abstract

Background—Many epithelial ovarian cancer (EOC) risk factors relate to hormone exposure, 

and elevated estrogen levels are associated with obesity in post-menopausal women. Therefore, we 

hypothesized that gene-environment interactions related to hormone-related risk factors could 

differ between obese and non-obese women.

Methods—We considered interactions between 11,441 single nucleotide polymorphisms (SNPs) 

within 80 candidate genes related to hormone biosynthesis & metabolism and insulin-like growth 

factors with six hormone-related factors: oral contraceptive use; parity; endometriosis; tubal 

ligation; hormone replacement therapy; and estrogen use; and assessed whether these interactions 

differed between obese and non-obese women. Interactions were assessed using logistic regression 

models and data from 14 case-control studies (6,247 cases; 10,379 controls). Histotype specific 

analyses were also completed.
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Results—SNPs in the following candidate genes showed notable interaction: IGF1R 
(rs41497346, estrogen plus progesterone hormone therapy, histology = all, p = 4.9×10−6) and 

ESR1 (rs12661437, endometriosis, histology = all, p = 1.5×10−5). The most notable obesity - gene 

- hormone risk factor interaction was within INSR (rs113759408, parity, histology = endometrioid, 

p = 8.8×10−6).

Conclusions—We have demonstrated the feasibility of assessing multi-factor interactions in 

large genetic epidemiology studies. Follow-up studies are necessary to assess the robustness of our 

findings for ESR1, CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2. Future work is needed to 

develop powerful statistical methods able to detect these complex interactions.

Impact—Assessment of multifactor interaction is feasible, and, here, suggest that the relationship 

between genetic variants within candidate genes and hormone-related risk factors may vary EOC 

susceptibility.

Keywords

body mass index; obesity; hormone related factors; SNP; gene-environment interaction; ovarian 
cancer

INTRODUCTION

Little research has been conducted to determine multifactor gene-environment interaction at 

the candidate gene or genome-wide level despite the emerging evidence to show that these 

types of complex relationships do exist (1–3). In addition to the lack of studies assessing 

complex interactions in cancer risk, only a limited number of studies have assessed gene-

environment (GE) interactions by histological subtype, as genetic and environmental risk 

factors have been found to differ by the histology. Recently, consortia have been established 

to give the large sample size needed to detect SNPs with small effects, providing the ability 

to study GE interactions. In April 2005, the Ovarian Cancer Association Consortium 

(OCAC) was formed; the largest international consortium conducting genetic epidemiology 

studies for epithelial ovarian cancer (EOC) (4). This international effort comprises more than 

40 different genetic epidemiological studies, with the focus on assessing single SNP 

associations with EOC.

To date, OCAC has identified 18 confirmed novel susceptibility loci that are associated with 

EOC risk (5–12). In addition to finding new risk loci, GWAS also confirm the biological 

distinction of the various EOC histologies. For example, risk alleles in 8q24 and 19p13 

associate almost exclusively with serous EOC (8, 13), yet those in 2q31 and 17q12 are also 

associated with other subtypes (8, 14). However, it is hypothesized that the known risk loci 

are likely to represent only a fraction of the common risk alleles for EOC and that numerous 

undetected common variant loci still remain to be discovered (15).

In addition to genetic susceptibility loci, there are several confirmed EOC environmental risk 

factors. Similar to other hormone-related cancers in women, many of these risk factors 

related to hormone exposure, including: obesity (risk) (16–19); history of endometriosis 

(risk) (20); estrogen use menopausal hormonal therapy (MHT) (risk) (21); estrogen plus 

progesterone MHT (risk) (21); oral contraceptive use (protective effect that increases with 
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time of use) (22); parity (protective effect increases with number of live births) (23, 24); 

tubal ligation (protective) (25); and breast feeding (protective) (26, 27). Similar to genetic 

risk factors, environmental risk factors also differ by histology (28); for example, 

endometriosis is associated with risk of only clear cell, low-grade serous, and endometrioid 

EOC (20, 29). The vast majority of epidemiological studies of EOC risk have focused on 

marginal effects of genetic and environmental factors. A recent study by OCAC investigators 

assessed GE interactions across six known genetic risk loci (30). While this study looked at 

GE by histotype, this study did not investigate a three-way interaction involving obesity.

Obesity is associated with an increase in insulin levels, resulting in an increase in insulin-

like growth factor 1 (IGF1) activity (31, 32). Increased levels of adiposity also lead to 

increased aromatase activity, and thus to an increase in estrogen levels (31, 33–35). After 

menopause, adipose tissue is the major source of estrogen in women. In breast cancer, 

evidence suggests that increased estrogen levels might underlie the association between 

BMI, breast cancer risk and MHT (31). It has been found that in post-menopausal women, 

the association between breast cancer and BMI is stronger in women who have never 

received MHT, compared with women who have used MHT (36). Similarly, a recent meta-

analysis (2012) found that use of MHT attenuated the effect of BMI on EOC risk (17). A 

recent OCAC study found that high BMI was associated with increased risk of EOC in 15 

case-control studies (16). In addition to finding an association between BMI and EOC risk, 

they found that this association was more pronounced in borderline serous, invasive 

endometrioid, and invasive mucinous histotypes. However, they found that MHT did not 

attenuate the effect of BMI on EOC risk when the analyses were restricted to post-

menopausal women. Additionally, they also found no association of BMI with risk of 

ovarian cancer in the most common serous histotype (16). Based on these data, we 

hypothesize that GE effects could differ between obese and non-obese women.

Based on the complex relationship between hormone exposure, obesity, growth factors / 

insulin levels, and genetic factors we hypothesize that GE effects could be histology 

dependent and differ between obese and non-obese women. This hypothesis is illustrated in 

Supplemental Figure 1. In this candidate gene study, we sought to detect both two-way and 

multifactor obesity-gene-environment interactions for EOC risk. Overall, we assessed 

11,441 SNPs located within 80 candidate genes related to hormone biosynthesis and 

metabolism in addition to those in insulin-like growth factors. The case-control analyses 

were run separately for case groups that involve: (1) all EOC invasive cases; (2) high-grade 

serous (HGS) invasive cases; and (3) endometrioid (ENDO) invasive cases. Candidate gene 

analyses specific to the less common histotypes were excluded due to the difficulty of 

assessing three-way interactions.

MATERIALS AND METHODS

Study Participants

Supplemental Tables 1 and 2 summarize the characteristics of the 14 OCAC studies used to 

assess GE interactions (37–49). The 14 studies included in this analysis were part of the 

Collaborative Oncological Gene Environment Consortium (COGS) study in which 

approximately 200,000 SNPs were genotyped in breast, ovarian and prostate cancers. Each 
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OCAC study included in the analyses had to contribute at least 50 ovarian cancer cases and 

50 controls, with controls further required to be sampled from the same population as the 

cases. Thus, 6,247 invasive cases and 10,379 controls of European descent were included in 

this analysis. GE interactions have been explored in these studies previously (28) and are 

described in further detail therein. Each study provided information on age at diagnosis or 

enrollment, BMI and other reproductive and lifestyle factors as well as information 

regarding tumor histology (serous, endometrioid, clear cell, mixed, other), tumor behavior 

(invasive or borderline), and tumor grade (well differentiated, moderately differentiated, 

poorly differentiated, undifferentiated). All patients provided informed consent, including 

for passive and active follow-up, using protocols approved by the appropriate Institutional 

Review Board. Table 1 describes the clinical features of EOC cases (6247 all EOC, 3019 

HGS, 961 ENDO) and controls (N = 10379).

Environmental and Genetic Risk Factors

Young Adult BMI—To quantify obesity we used BMI calculated in early adulthood (18–

29 years of age) as opposed to BMI at diagnosis as early adulthood BMI would better 

approximate subjects obesity levels integrated over a lifetime (18, 50), and thus exposure to 

estrogen derived from adipose tissue. Measurement of weight in early adulthood was 

conducted in 9 of the 14 studies used for the GE analyses (16); and therefore the three-way 

BMI-GE interaction analyses were limited to these 9 studies. Five studies reported weight at 

age 18 (DOV, HAW, HOP, POL, UCI), two studies reported weight ‘in your 20s’ (MAL, 

USC), and two studies reported weight at age 20 (AUS, GER). The calculated BMIs were 

classified according World Health Organization (WHO) standards: (<18.5 ‘underweight’; 

18.5–24.9 ‘normal weight’; 25–29.9 ‘overweight’; 30–34.9 ‘class I obesity’; 35–39.9 ‘class 

II obesity’; and ≥40 ‘class III obesity’) (51). From these WHO standards the subjects BMI 

were further categorized into two groups for GE analyses: (1) underweight or normal weight 

individuals with BMI less than 25 and (2) overweight or obese individuals BMI greater than 

25.

Hormone-Related Environmental Factors—The GE analyses included seven 

hormone-related environmental factors: oral contraceptive use, parity, breast feeding, tubal 

ligation status, endometriosis, estrogen MHT, and estrogen plus progesterone MHT. To 

facilitate testing for multifactor interactions each environmental factor was dichotomized to 

ensure reasonable sample sizes in the various groups. Oral contraceptive use (years) was 

divided into (< 1 year; >= 1 year), parity (0 full births; >= 1 full birth), breast feeding was 

separated into (ever/never), estrogen MHT and estrogen plus progesterone MHT were 

categorized as (never/ever), while endometriosis and tubal ligation were included in terms of 

yes/no status.

Genetic Markers—We searched the literature to determine a set of candidate genes related 

to steroid biosynthesis, estrogen signaling and insulin-like growth factors (IGFs), as we 

hypothesize that genetic variants within these candidate genes modify EOC risk and that 

these effects are modified by hormone-related risk factors and obesity (52–54), and 

identified a list of 80 candidate genes (Supplemental Table 3). Using the National Center for 

Biotechnology Information (NCBI) website, SNPs were selected within 20 Kb of the first or 
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last exon, as this was expected to sufficiently cover the promoter regions of most genes, as 

well as SNPs in LD with variation in the gene region (55). Due to power limitations for 

testing multifactor gene-environment interactions, SNPs were excluded from the analysis if 

the minor allele frequency (MAF) was less than 10%. This approach extracted 11,441 

candidate gene SNPs. The candidate gene SNPs were imputed using the 1000 Genomes 

project (56), from an original set of > 200,000 genotyped SNPs from the COGS custom 

Illumina SNP array (57, 58). Details on the number of imputed SNPs for each candidate 

gene are included in (Supplemental Table 3).

Statistical Analysis

The study population was restricted to individuals of European descent based on LAMP 

analyses (59) with complete covariate information; and only invasive EOC cases were 

considered. For analyses involving the MHTs, either estrogen use or estrogen plus 

progesterone (EPP) use, the cases and controls were further restricted to post-menopausal 

women. For both the GE and BMI-GE (or GEE) analyses, the presence or absence of the 

environmental factors were coded as either 0 or 1. Separate analyses were conducted for 

case groups that included: (1) all invasive EOC cases, (2) HGS cases, and (3) ENDO cases. 

Analyses were adjusted for age of diagnosis (enrollment), study site and the first 5 principal 

component scores from a principal component analysis to adjust for population substructure. 

With the goal to determine gene-environmental effects and not general genetic association, 

assessment of significance was restricted to the higher level interaction effects (as opposed 

to “omnibus” tests for both genetic main and interaction effects (60)).

The following logistic regression model was used to assess gene-environment interaction for 

each SNP. For i = 1, …, n let

where Di represents that disease status (case =1, control = 0) for subject i, Gij represents the 

number of minor alleles observed for subject i for SNP j, Eik represents the absence or 

presence of environmental factor k for subject i, and Zi represents a vector of covariates for 

subject i to account for potential confounding, and each βGE represents a corresponding 

interaction regression coefficient. For each SNP j and environmental factor k we tested the 

null hypothesis of no GE interaction versus an alternative hypothesis that a GE interaction is 

present (i.e., null hypothsis: βGE = 0 vs. alternative hypothesis: βGE ≠ 0). The hypothesis was 

tested with the likelihood ratio test statistic 

.

Similarly, to test whether GE interactions could be modified by BMI we considered the 

following logistic regression model. For i = 1, … n let
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where E1i represents the BMI status (low/high) at young adulthood of subject i, E2i 

represents the presence of absence of the second environmental factor for subject i, and Zi 

represents a vector of covariates for subject i that account for potential confounding, and 

each β represents a corresponding regression coefficient. To test whether GE interactions 

differ between non-obese and obese individuals we test the null hypothesis of no GEE 

interaction versus an alternative hypothesis of GEE interaction is present (i.e., null 

hypothesis βGEE = 0 versus alternative hypothesis: βGEE ≠ 0). This hypothesis was tested 

using a likelihood ratio test statistic 

.

RESULTS

Gene-Environment Interaction

In total, the GE analyses were run across 11,441 candidate gene SNPs, and included 91,528 

GE combinations (11,441 SNPs × (7 Environmental Factors + BMI)), and these analyses 

were run across 3 separate case groups (All, HGS, ENDO). However, the imputed SNPs 

were in high linkage disequilibrium, and the analyses across case groups were also highly 

correlated. The SimpleM method was used to estimate the effective number of independent 

SNPs tested within each gene (61) (Supplemental Table 3); and in total the analyses were 

estimated to involve independent 2336 SNPs. Using the estimated effective number of 

independent tests, the Bonferroni corrections for the number of total candidate gene SNPs 

was 0.05/2,336 = 2.1 × 10−5, while adjusting for the total number of independent GE 

combinations gives 0.05/(2,336 × 8) = 2.7 × 10−6 respectively. Several SNP-environment 

interactions were significant using the former threshold, however using the latter strict 

threshold, no significant GE was detected. SNPs with GE interaction p < 10−4 are presented 

in Table 2.

Figure 1 provides an image map that highlights interaction tests of environmental factors and 

candidate genes with at least one SNP p-value less than pre-defined significance thresholds: 

p = 10−3, p = 10−4, and p = 10−5. Within this plot, the candidate genes are grouped 

alphabetically according to their involvement in the production of hormones hypothesized to 

influence EOC risk (62) (Androgen, Estrogen, Progesterone, Gonadotropins, Insulin-

related). A full list of SNPs with minimum p-values (p < 10−3) in candidate genes for the GE 

interaction analyses are presented in Supplemental Table 4.

The most statistically significant GE-interaction was IGF1R (rs41497346, estrogen plus 

progesterone (EPP) MHT, histology = all, OR = .56, p = 4.9×10−6) (Figures 2a, 2b). The 

marginal odds ratio estimate of rs41497346 was .96 (p = .12). However, within non - EPP 

MHT users the presence of a minor allele increased risk for EOC (OR = 1.29); while within 

EPP MHT users rs41497346 provided a protective effect (OR = 0.72). The rs41497346 – 

EPP MHT interaction estimates were qualitatively similar across each histology included in 

our candidate gene analyses: HGS (OR = .55, p = 1.7×10−4), and ENDO (OR = .77, p = .

38). The next most significant GE interaction result included ESR1 (rs12661437, 

endometriosis, histology = all, OR = 1.71, p = 1.5 × 10−5) (Figures 2c and 2d), where the 

minor allele decreased EOC risk in patients with no endometriosis and increased risk in 
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patients with endometriosis. The marginal odds ratio estimate of rs12661437 was .95 (p = .

17). However, within women with no endometriosis history, the presence of a rs12661437 

minor allele decreased risk for EOC (OR = .92); while within women with a history of 

endometriosis, the rs12661437 minor allele provided increased risk (OR = 1.59). Subtype 

specific analyses for rs12661437 also found qualitatively similar effect sizes across all 

histologies (Supplemental Table 4). Rs12661437 lies in an intron near the 5’ end of ESR1.

When restricting the cases to HGS, the most notable interaction was for CYP11A1 
(rs9944175, endometriosis, histology = HGS, OR = .42, p = 4.1 × 10−5) (Figures 2e and 2f). 

The marginal odds ratio estimate for HGS EOC risk of rs9944175 was 1.06 (p = .26). 

However, for women with no history of endometriosis, the estimated effect of one 

rs9944175 minor allele increased HGS EOC risk (OR = 1.1) but decreased HGS EOC risk in 

women with a history of endometriosis (OR = .47). This SNP showed no statistically 

significant interaction for the ENDO histology (OR = .69, p = .18). rs9944175 lies within 

20Kb of the 3’ end of CYP11A1.

Multifactor or BMI-Gene-Environment Interactions

For each gene, SNPs with notable BMI-GE interaction results (p < 10−3) and their estimated 

interaction effects are presented (Supplemental Table 5). Figure 3 provides an image map 

that highlights 3-way interaction tests of obesity, lifestyle and reproductive factors, and 

candidate genes with at least on SNP p-value less than: p = 10−3, p = 10−4, and p = 10−5. 

This image map groups the candidate genes alphabetically and according to their 

involvement in the production of hormones hypothesized to influence EOC risk (62) 

(Androgen, Estrogen, Progesterone, Gonadotropins, Insulin-related). No statistically 

significant SNPs were detected after Bonferroni correction for the effective number of 

candidate gene SNPs (p < 2.1 × 10−5). A stricter threshold that adjusts for effective number 

of candidate gene SNPs by 7 environmental factors in the BMI-GE analyses was p < 3.1 × 

10−6.

The most statistically significant SNP for the BMI-GE analyses lies in INSR (rs8102954, 

parity, histology = ENDO, BMI-GE OR = .074, p = 8.83 × 10−6) (Figures 4a and 4b). Within 

the low BMI women group the estimated SNP – Parity interaction of one rs8102954 minor 

allele for the ENDO cases was negligible (OR GElow BMI = 1.4, p = .15); while within high 

BMI women the estimated GE effect is (OR GEhigh BMI = .10, p = .0021). The BMI – GE 

interaction effect was not significant for analyses with case groups that included all 

histology and high-grade serous cases. rs8102954 lies in a exonic region near the 3’ end on 

INSR.

For case-controls analyses including all histologies, the most notable BMI-GE interaction 

was IGFBP2 (rs869564, parity, histology = All, BMI – GE OR = .096, p = 1.43 × 10−5) 

(Figures 4c and 4d). For low BMI women the estimated SNP – parity interaction effect of 

one rs869564 minor allele was negligible (OR GElow BMI, p = .48); however within high-

BMI women the estimated GE interaction effect was (OR GEhigh BMI = .11, p = 4.14 × 

10−5). The three-way BMI-GE interaction effect was significant for the HGS cases (BMI – 

GE OR = .077, p = 1.23 × 10−3), but not the analyses involving the ENDO cases (BMI – GE 

OR = p = .18). rs869564 resides in an exonic region on the 3’ end of IGFBP2.
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For HGS cases, the most statistically significant SNP for the BMI-GE analyses lies in 

CYP11B1 (rs113759408, oral contraceptive use, histology = HGS, BMI-GE OR = .072, p = 

2.2 × 10−5) (Figures 4e and 4f). Within the low BMI women group the estimated SNP-OC 

use interaction effect of one rs113759408 minor allele for HGS cases was negligible (OR 

GElow BMI= −.90, p = .41); while within high BMI women the estimated GE effect is large 

(OR GEhigh BMI= 4.52, p = .0028). The BMI-GE interaction effect was not statistically 

significant for the ENDO histology (BMI-GE OR= 2.11, p=.24). rs113759408 lies in an 

intronic region in the middle of CYP11B1.

DISCUSSION

In this paper, we investigated both gene-environment and multifactor obesity-gene 

environment interactions in epithelial ovarian cancer (EOC) risk. We used 14 case-control 

studies within the Collaborative Oncological Gene Environment Consortium (COGS) and 

Ovarian Cancer Association Consortium (OCAC) that provided more than 6,000 cases and 

10,000 controls. Our main hypothesis was that some EOC risk due to SNPs could be 

explained by interactions with environmental factors. Similar to breast and endometrial 

cancers, many EOC risk factors relate to hormone exposure, and increased levels of estrogen 

has been associated with obesity in post-menopausal women. Therefore, we hypothesized 

that gene-environment interactions dealing with hormone-related risk factors could differ 

between obese and non-obese women. None of the tests of gene-environment interaction and 

multi-factor obesity-gene-environment interaction were significant at genome-wide level (p 

= 5×10−8).

The most statistically significant gene-environment interaction result was IGF1R 
(rs41497346, estrogen plus progesterone MHT, Histology = All, OR = 0.56, p = 4.9 × 10−6). 

Rs41497346 lies in an intronic region near the 3’ end of IGF1R, and is in the same linkage 

disequilibrium block as several SNPs hypothesized to have marginal risk in breast cancer 

(63). High expression levels of IGF1R were reported by Tang et al (64) in tumor tissue 

samples from 25 of 36 patients with epithelial ovarian cancer. Estrogen use is associated 

with increased IGF1R expression, while progesterone was associated with decreased IGF1R 
expression in breast cancer cells (65). Variation within the gene ESR1 was also found to be 

involved in an interaction involving endometriosis in analyses of all histologies (rs12661437, 

intronic SNP near 5’ end of gene, p = 1.5 × 10−5), where the minor allele decreased EOC 

risk in patients with no endometriosis and increased risk in patients with endometriosis. 

Subtype specific analyses for rs12661437 also found qualitatively similar effect sizes across 

all histologies. Variation near ESR1 (rs2295190) has been reported to be associated with 

EOC risk (66); however the SNPs are in low LD (r2 = 0.001).

For the BMI-GE interaction analyses, the most statistically significant results were INSR 
(rs8102954, parity, histology = ENDO, BMI-GE OR = 0.074, p = 8.83 × 10−6) (Figures 4a 

and 4b) and IGFBP2 (rs869564, parity, histology = All, BMI – GE OR = 0.096, p = 1.43 × 

10−5) (Figures 4c and 4d). No genetic polymorphisms within INSR and IGFBP2 have been 

associated previously with ovarian cancer risk. Nevertheless, considerable research exists on 

the role of insulin receptors and cancer as studies have shown that insulin receptors may be 

involved in the regulation of ovarian cancer cell growth (67) and that increased levels of 
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insulin have been associated with breast and endometrium cancers for which these 

tumorigenic properties can be modified by insulin receptors (31). Similarly, the role of 

insulin-like growth factors (IGFs) have been extensive studied for their role in 

carcinogenesis (68). Specifically, IGFBP2 has been linked ovarian cancer by promoting 

cancer cell invasion (69), while common variants in IGF1, IGFBP1 and IGFBP3 have been 

associated with ovarian (70) and endometrial cancers (71). IGFBP2 has also been linked to 

other hormone-related cancers (72–74).

For the high-grade serous cases, the most statistically significant SNP for the BMI-GE 

analyses lies in CYP11B1 (rs113759408, oral contraceptive use, Histology = HGS, BMI-GE 

estimate = 1.49, p = 2.2 × 10−5) (Figures 4e and 4f). Polymorphism rs113759408 lies in an 

intronic region in the middle of CYP11B1 (between exons 3 and 4), the gene that encodes 

for steroid 11beta-hydroxylase. Mutations in this gene cause congenital adrenal hyperplasia 

(OMIM #202010). No research has been published showing a link between EOC risk and 

variants within this gene. However, genetic variation in CYP11B1 has been reported to be 

associated with breast cancer risk from a prediction model involving SNP rs4541 in exon 7 

of CYP11B1 (75) and the association with serum hormone levels in breast cancer patients 

(76).

We chose to restrict our analyses to SNPs located within 80 candidate gene and 8 established 

ovarian cancer reproductive or lifestyle factors. An earlier study investigated 2-way 

interactions between 6 established SNP risk loci and 5 established environmental risk factors 

(30). Similar to our study results, their 2-way interaction analyses were not strong enough to 

rule out the role of chance. While these initial findings suggest that gene-environment 

interactions play a modest role in EOC risk, genome-wide studies are necessary to fully 

examine the potential interplay between SNPs and environmental factors.

For the obesity-gene-environment analyses, a strength of this study was the use of young 

adult BMI (low, high) as opposed to BMI at diagnosis, since young adult BMI may serve as 

an indicator of obesity integrated over a life-time and adipose-based estrogen exposure (18, 

50). While a biological rationale exists for higher-order interactions, very little literature has 

focused on multi-factor interactions, perhaps due to the challenge of necessary power to 

detect these higher order interactions. Therefore, a limitation of the multi-factor gene-

environment interaction analyses were modest sample sizes: especially for less well 

documented environmental factors and histology specific analyses (Supplemental Table 7).

In conclusion, we have demonstrated the feasibility of assessing multi-factor interactions in 

large genetic epidemiology studies. Future work is needed to develop powerful statistical 

methods able to detect these complex interactions, as they may provide additional 

information regarding the genetic etiology of ovarian and other hormone – related cancers. 

Follow-up studies are necessary to assess the robustness of our notable findings in ESR1, 
CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2. To further follow-up our investigation of 

multi-factor gene-environment interactions, we will explore other potential modifiers of 

gene-environment risk, such as BRCA mutation status, and assess BMI-GE in other 

hormone-related cancers, such as breast, prostate and endometrial.
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Figure 1. 
Image map of top p-values for GE interactions results for 80 candidate gene SNPs and 7 

hormone related environmental factors as well as BMI.
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Figure 2. 
Locus zoom plots and estimated GE interaction effects of top results for IGF1R-

Combination use (a,b), ESR1-Endometriosis (c,d), and CYP11A1-Endometriosis (e,f). The 

vertical black lines represent 95% confidence intervals for estimated odds ratios.
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Figure 3. 
Image map of smallest p-values for multi-factor BMI-GE interactions results for Candidate 

Gene SNPs and 7 non-obesity related environmental factors.
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Figure 4. 
Locus zoom plots and estimated BMI-GE interaction effects of top results for INSR-Parity-

BMI (Histology ENDO) (a,b), IGFBP2-Parity-BMI (Histology All) (c,d), and CYP11B1-OC 

Use-BMI (Histology HGS) (e,f). The vertical black lines represent 95% confidence intervals 

for estimated odds ratios.
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Table 1

Clinical features in EOC cases & controls included in the GE and BMI-GE analyses. Sample sizes vary as not 

all studies collected data on each lifestyle and reproductive factor.

Characteristics Controls: N (%) Cases: N (%) P

Age (years) <.0001

  Mean ± SD 57.5 ± 11.6 58.3 (11.0)

Age (categorical) <.0001

  < 50 years 2604 (25.1) 1366 (21.9)

  50 to 55 years 1424 (13.7) 946 (15.1)

  55 to 60 years 1691 (16.3) 1071 (17.1)

  60 to 65 years 1629 (15.7) 1015 (16.2)   

  > 65 years 3031 (29.2) 1849 (29.6)

Young Adult BMI (kg/m2) <.0001

  Underweight/Normal (< 25) 7607 (91.8) 4427 (89.7)

  Overweight/Obese (> 25) 679 (8.2) 508 (10.3)

Parity <.0001

  (0 full births) 1415 (14.7) 1453 (25.1)

  (> 0 full births) 8234 (85.3) 4328 (74.9)

Breast Feed <.0001

  No 2312 (30.3) 1641 (39.9)

  Yes 5320 (69.7) 2467 (60.1)

Oral contraceptive use <.0001

  (<= 2 years) 4895 (47.4) 3487 (57.1)

  (> 2 years) 5428 (52.6) 2616 (42.9)

Estrogen use .44

  No 3986 (78.9) 2250 (78.1)

  Yes 1068 (21.1) 631 (21.9)

EPP MHT Use <.0001

  No 3420 (67.7) 2105 (73.3)

  Yes 1631 (32.3) 765 (26.7)

Endometriosis <.0001

  No 8738 (93.9) 4802 (90.0)

  Yes 568 (6.1) 533 (10.0)

Tubal Ligation <.0001

  No 6924 (77.8) 4692 (83.5)

  Yes 1976 (22.2) 926 (16.5)

Tumor Grade
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Characteristics Controls: N (%) Cases: N (%) P

  Well-Differentiated 739 (12.1)

  Moderately Differentiated 1358 (22.2)

  Poorly Differentiated 2911 (47.6)

  Undifferentiated 459 (7.5)

  Other 647 (10.6)

Histotypes

  Serous 3589 (57.4)

  Mucinous 403 (6.5)

  Endometrioid 961 (15.4)

  Clear Cell 468 (7.5)

  Others 827 (13.2)
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