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ABSTRACT OF THE DISSERTATION  

 

Functional genomics study of  

neuropsychiatric disorders through integration of  

chromatin regulation, transcriptomics, and metabolomics  

 

 

by 

 

 

Toni Ann Boltz 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2023 

Professor Roel A. Ophoff, Chair 

 

 

This dissertation examines significant risk loci identified through GWAS for neuropsychiatric 

illness to prioritize causal variants and genes for future validation in functional assays. This 

investigation focuses on the impact of risk loci on molecular traits, and whether these 

functionally relevant variants are associated with GWAS-SNPs for neuropsychiatric phenotypes. 

Chapter 1 explores the integration of three complementary next-generation sequencing 

approaches, including genotyping, gene expression, and chromatin accessibility in hundreds of 

fibroblast cell lines of a multi-ancestry cohort of bipolar disorder patients and controls. Chapter 2 

investigates the blood transcriptomes of a larger cohort, including a broader spectrum of bipolar 

disorder and schizophrenia diagnoses, and how application of computational cell type 
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deconvolution methods can further highlight potentially relevant genes. Chapter 3 delves into 

metabolomics of cerebrospinal fluid in Alzheimer’s patients and healthy controls, allowing for the 

investigation of neurobiological mechanisms in vivo. We find that the integration of multiple 

omics levels significantly enhances our understanding of GWAS risk loci by uncovering the 

functional consequences and molecular mechanisms of disease-associated loci.  
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Introduction 

 

Genome-wide association studies (GWAS) have successfully discovered genetic loci associated 

with the risk of developing complex brain-related disorders and diseases. Hundreds of 

independent loci with small effects have been reported for psychiatric conditions like bipolar 

disorder (BD)1,2 and schizophrenia (SCZ).2 Fewer loci have been reported for 

neurodegenerative disease such as Alzheimer’s disease (AD),3 including the particularly large 

effect of the APOE risk locus; the remaining loci tend to have similar magnitude of effects as 

their psychiatric disorder-associated counterparts. The vast majority of GWAS-significant loci 

are in non-coding regions of the genome and as such, the causal mechanism between the 

genetic variation and risk for these phenotypes remains unknown. These phenotypes are highly 

heritable, meaning that within a given population, there is a high proportion of phenotypic 

variance that is due to genetic factors.4 Heritability estimates based on family studies range from 

60-80% for BD and SCZ, yet, the SNP-based heritability is currently estimated to be about 25% 

for both disorders.12 Similarly, AD is also estimated to be highly heritable at 60-80%,3 though 

SNP-based heritability is estimated at 25-50% with about a quarter of the heritability attributable 

to the APOE locus.5 The gap in heritability estimates suggests that while genetic contributions 

are playing a role, there is “missing heritability” that is unaccounted for in each of these 

phenotypes.  

 

Neuropsychiatric conditions can be severely debilitating to those afflicted, and current treatment 

options are often variable at best in their efficacy, since relevant molecular mechanisms remain 

elusive. The symptoms of patients with BD include periods of mania and depression and 

irrational thoughts or decision-making; though given the overlap in symptomatology it is not 

uncommon for misdiagnosis to occur across severe mental illnesses like SCZ or major 

depressive disorder. Such misdiagnoses contribute to lower power to detect associations in 
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case-control studies. Globally, about 1-3% of the population suffers from bipolar disorder (about 

2.8% in the United States),6 and while schizophrenia is slightly less prevalent at around 1%,7 

other mental illnesses like depression and anxiety are becoming much more common, 

especially after the COVID19 pandemic.8 Within the United States alone, there is a huge 

economic and humanistic burden attributed to bipolar disorder.9 Direct costs including 

hospitalizations, clinic visits, and trying out various (often ineffective) pharmaceuticals are 

estimated around $46 billion annually, almost double the direct costs for the general 

population.10 Indirect costs, including loss of productivity, unemployment, and caregiver burden 

are the main driver of economic burden, estimated to be about $156 billion annually.9 Studies 

have also shown that there is a substantial decrease in the health-related quality of life for 

bipolar disorder patients, especially during depressive episodes.9,11 These burdens emphasize 

the pressing need for better treatment options and outcomes for individuals suffering from 

bipolar disorder and related mental health conditions.   

 

Similarly, while neurological diseases like Alzheimer’s or frontotemporal dementia (FTD) have 

useful biomarkers, the manifestation of symptoms and specific underlying pathways remain 

unclear. Early symptoms of Alzheimer’s and other forms of dementia include changes to 

personality, cognitive decline, and inability to create new memories or recognize people or 

objects, and eventually the buildup of amyloid-beta plaques and tau tangles in the brain lead to 

impaired communication, confusion, poor judgment, as well as difficulty with basic motor skills 

like speaking, swallowing, and walking.12 AD is the most common form of dementia, accounting 

for 60-80% of cases, with the prevalence estimated at about 10% for individuals 65 and older, 

and this number is expected to rise assuming no major breakthroughs in treatment options.12 

Caring for AD patients, either at home through family members (usually unpaid) or in assisted 

living facilities / hospitals, incurs a massive economic burden, with both settings each estimated 

at around $340 billion in costs annually, again underscoring the urgent need for therapeutics.12    
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The application of genome-wide association studies to molecular quantitative traits has provided 

mechanistic insights into complex disease architectures.13,14 However, these insights lag behind 

particularly for brain-related traits due to the inaccessibility of living brain tissue. Post-mortem 

tissue gene expression has been shown to be very different from living brain tissue gene 

expression,15 thus there is a need for accessible tissue or biofluid samples from living donors. 

While gene expression is not highly correlated between different tissue types,16 the cis-genetic 

effects - defined here as effects of variants on genes located within one megabase - are highly 

correlated,16,17 suggesting the potential to still gain useful information from more accessible 

procedures such as skin biopsies or blood draw. Relatedly, cerebrospinal fluid (CSF) is not 

nearly as simple to obtain as skin or blood samples, though the relative safety of lumbar 

puncture makes it more readily accessible than brain tissue sampling from living donors. Given 

that CSF circulates around the brain and central nervous system, samples of this fluid can serve 

as a proxy for studying neurobiological mechanisms in vivo.18   

 

My dissertation investigates significant risk loci identified through GWAS for neuropsychiatric 

illness to prioritize causal variants and genes for future validation in functional assays. This 

study focuses on the impact of risk loci on molecular traits, and whether these functionally 

relevant variants are associated with GWAS-SNPs for neuropsychiatric phenotypes. Though the 

causal effects of risk alleles on gene expression are most likely to be neuronal, we hypothesize 

that the genetic regulation is shared across tissues and will have the power to reveal relevant 

pathways. Numerous previous studies16,17 have demonstrated the substantial concordance 

between blood and brain gene expression quantitative trait loci (QTL), and emphasize the 

significant gains in power to detect effects when large sample sizes of blood are used, 

especially when considering the difficulties with obtaining large sample sizes of brain tissue or 

limitations of post-mortem samples. Furthermore, while fibroblasts are not the preferred cell type 
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for studying psychiatric disease susceptibility, cis-genetic effects are generally shared across 

cell types.17,19 The goal of this project is to integrate data from genetic variation, gene 

expression, chromatin accessibility, and metabolomics with known GWAS loci to provide 

molecular insights of the mechanisms that contribute to genetic risk of neuropsychiatric 

phenotypes.  

 

Chapter 1 explores the integration of three complementary next-generation sequencing 

approaches, including SNP-genotyping, ATAC-seq, and RNA-seq in hundreds of fibroblast cell 

lines of a multi-ancestry cohort of BD patients and controls. QTL analysis of molecular data has 

identified genetic variants associated with traits such as gene expression, and colocalization of 

these functional QTL with GWAS risk loci has offered insights into the genetic basis of complex 

diseases. In this study, we employed gene expression (RNA-seq) and chromatin accessibility 

(ATAC-seq) datasets obtained from human primary fibroblasts to investigate QTLs in cohorts 

ascertained for bipolar disorder of European (n=150) and admixed American (n=96) ancestry. 

Our findings revealed a concordance of QTL effect sizes between European and American 

ancestry populations, indicating shared genetic architecture underlying gene expression and 

chromatin accessibility in primary fibroblasts. The integration of chromatin data with expression 

and genotypes allowed for finemapping of the eQTL pathways and importantly, we found that 

most SNPs and open regions of chromatin do not regulate its most proximal gene, highlighting 

the importance of including multi-omics levels. We then used this data to perform transcriptome-

wide association (TWAS) and chromatin-wide association studies (CWAS) with brain-related 

and skin-related GWAS, identifying potentially causal gene-trait and chromatin-trait 

associations. The observed concordance of QTL effect sizes supports the notion of shared 

genetic regulatory mechanisms across ancestries in these cells. However, our results also 

emphasize the importance of having ancestry-specific reference panels for TWAS and CWAS, 

enhancing the reliability of genotype-phenotype associations. This study demonstrates the utility 
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of integrating RNA-seq and ATAC-seq data from human primary fibroblasts to uncover and fine-

map QTLs in populations of European and American ancestry and contributes to a better 

understanding of the genetic basis of complex traits and diseases in diverse populations. 

 

Chapter 2 investigates the blood transcriptomes of a larger cohort, including a broader spectrum 

of BD and SCZ diagnoses, and how application of computational cell type deconvolution 

methods can further highlight potentially relevant genes. While expression QTL analysis of bulk 

tissue is a common approach to decipher underlying mechanisms, this can obscure cell-type 

specific signals and mask trait-relevant mechanisms. While single-cell sequencing can be 

prohibitively expensive in large cohorts, computationally inferred cell type proportions and cell 

type gene expression estimates have the potential to overcome these problems and advance 

mechanistic studies. Using bulk RNA-Seq from 1,730 samples derived from whole blood in a 

cohort ascertained for individuals with BP and SCZ, this study estimates cell type proportions 

and their relation with disease status and medication. We found between 2,875 and 4,629 

eQTL-associated genes (eGenes) for each cell type, including 1,211 eGenes that are not found 

using bulk expression alone. We performed a colocalization test between cell type eQTLs and 

various traits and identified hundreds of associations between cell type eQTLs and GWAS loci 

that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use, one of 

the main medications prescribed to treat the symptoms of bipolar disorder, on cell type 

expression regulation and found examples of genes that are differentially regulated dependent 

on lithium use. This study suggests that computational methods can be applied to large bulk 

RNA-Seq datasets of non-brain tissue to identify disease-relevant, cell type specific biology of 

psychiatric disorders and psychiatric medication. A version of this study is under revision at the 

American Journal of Human Genetics.  
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Chapter 3 delves into metabolomics of cerebrospinal fluid in Alzheimer’s patients and healthy 

controls, which allows for the investigation of neurobiological mechanisms in vivo. In this study, 

we use metabolomics to measure the levels of 5,543 CSF metabolite levels, the largest panel in 

CSF to date, in nearly a thousand European individuals with genetic data. Individuals originated 

from two separate cohorts including a cognitively healthy cohort (n=490 subjects) and a well-

characterized memory clinic cohort (n=487 subjects). We performed genome-wide metabolite 

quantitative trait loci (mQTL) mapping on CSF metabolomics and found 126 significant mQTLs, 

representing 65 unique CSF metabolite levels across 51 independent loci. We performed a 

metabolome-wide association study and colocalization analysis and identified 40 significant 

associations between CSF and brain traits, and similarly, we found colocalized gene-metabolite 

associations for over 90% of our genome-wide significant mQTL. These findings highlight 

metabolic pathways that may be involved in the dysregulation of neurodegenerative and 

psychiatric disorders.  

 

Finally, in the Conclusion, I reflect on the progress of the field of neuropsychiatric genomics, 

summarize the findings and future directions from the three chapters, and discuss how the 

inclusion of samples from diverse ancestral populations is a necessary next step in human 

genomics research studies.  
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Chapter 1: Multi-omics study of primary fibroblast cell lines reveals shared allelic effects 

between ancestries 

 

Authors: Toni Boltz1, Merel Bot2, Tommer Schwarz3, Sandra Lapinska, Kangcheng Hou, 

Kristina Garske, Malika K. Freund, Nelson Friemer2, Marco P. Boks5, Rene S. Kahn5,6, Bogdan 

Pasaniuc1,3,4, Roel A. Ophoff1,2 

1. Department of Human Genetics, David Geffen School of Medicine, UCLA 

2. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, UCLA 

3. Department of Bioinformatics, David Geffen School of Medicine, UCLA 

4. Department of Pathology and Laboratory Medicine, David Geffen Authors: Toni Boltz1, Merel Bot2, 

Tommer Schwarz3, Sandra Lapinska, Kangcheng Hou, Kristina Garske, Malika K. Freund, 

Nelson Friemer2, Marco P. Boks5, Rene S. Kahn5,6, Bogdan Pasaniuc1,3,4, Roel A. 

Ophoff1,2School of Medicine, UCLA 

5. Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, 

the Netherlands 

6. Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA 

 

INTRODUCTION 

In recent years, genome-wide association studies (GWAS) have reached sample sizes in the 

millions of individuals, yet nearly 80% of individuals included in these studies are of European 

descent.20 Similarly, databases which provide omics-level data, such as GTEx, generally consist 

mostly of European participants.21 Previous studies22,23,24 have shown that differences in linkage 

disequillibrium (LD) and allele frequencies can distinguish between populations of different 

ancestral backgrounds. Such differences have been shown to lead to false positives when 

European-based reference panels are used for studying non-European cohorts in genetic 

association studies,25,26 thus there is a need for genetic and genomic datasets from diverse 
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populations. Incorporating data from diverse ancestries allows for the identification of both 

shared and population-specific genetic contributors to various traits, leading to a more 

comprehensive understanding of the underlying molecular mechanisms. 

 

Furthermore, GWAS have successfully discovered loci associated with the risk of developing 

various complex diseases, including 64 independent loci currently reported for bipolar disorder.1 

However, the majority of these loci are in non-coding regions of the genome and as such, the 

causal mechanism between the genetic variation and disease risk often is unclear. Quantitative 

trait loci (QTL) studies27 have identified non-coding SNPs that impact both gene expression and 

complex phenotypes, revealing mechanistic insights into disease architecture.14,28 While 

fibroblasts are not the preferred cell type for studying psychiatric disease susceptibility, previous 

QTL studies have shown that cis-genetic effects are generally shared across cell types, with the 

caveat that brain tissue types are more highly correlated with each other than non-brain tissue 

types.16,17 Relatedly, previous studies have shown that cis-effects on chromatin accessibility 

tend to be less context-dependent than on gene expression,29 thus we expect better power to 

detect associations despite the tissue type. Given the ease of accessibility of a skin sample 

relative to a brain tissue sample, fibroblasts provide a unique opportunity to study biological 

samples from cohorts of hundreds of individuals.  

In this study, we present a multi-ancestry cohort of bipolar disorder patients and controls with 

multi-omics data. Specifically, we investigate human primary fibroblasts derived from skin 

biopsies, originating from participants from the Netherlands (n=150), Colombia (n=50), and 

Costa Rica (n=46), with SNP-genotypes, gene expression via RNA-seq, and chromatin 

accessibility via ATAC-seq30 (Assay for Transposon-Accessible Chromatin sequencing) data 

measured for all individuals, resulting in an extensive and unique dataset. 
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RESULTS 

Population stratification apparent in SNP-genotypes but not in gene expression or 

chromatin accessibility 

Given the three countries of origin within our cohort, we initially characterized the differences 

amongst these individuals at the SNP, gene, and accessible-chromatin levels, which were used 

to compute ancestry-specific expression (e)QTLs and chromatin-acccessibility (ca)QTLs. 

Principal component analysis (PCA) of the imputed genotypes depicted clear and significantly 

different ancestry-specific clusters (PC1 PANOVA = 5.6e-16, PC2 PANOVA = 5.7e-14 after correcting 

for batch year) (Figure 1.1A) (Table S1.1), as expected.31 However, principal component 

analysis of the gene expression and peak matrices revealed stronger correlations with batch 

year than with ancestry (Table S1.1) (Figures 1.1B and 1.1C). This suggests that while 

population stratification is clearly detectable in the SNP-genotype data, it is not as impacted at 

the transcriptomic or accessible chromatin levels, which are more strongly impacted by batch 

effects. We present the QTL mapping analyses in both ancestry-specific and pooled-ancestry 

contexts. See Figure S1.1 for the PCA on genotypes overlayed with 1000 Genomes reference 

populations. 

 

eQTL are concordant between ancestries 

We first identified eQTLs within each ancestry group. Within the Dutch cohort (N=150) we 

identified 3,133 eGenes at an FDR of 5% (Table S1,2), versus 1,394 eGenes in the Costa Rican 

cohort (N=46) (Table S1.3) and 1,492 eGenes in the Colombian cohort (N=50) (Table S1.4). 

Subsetting to matching SNP-gene pairs, we found an R2 of 0.93 between the Dutch and Costa 

Rican eQTLs effects, an R2 of 0.96 between the Dutch and Colombian eQTLs effects, and an 

R2 of 0.95 between the Colombian and Costa Rican eQTLs effects (Figure 2A). 

Combining genotype and expression data from the ancestry groups into one cohort (N=246) 

allowed us to perform a meta-analysis with greater power to detect associations, and minimal 
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population stratification (lambdaGC = 1.08). This resulted in the identification of 5,258 eGenes 

at 5% FDR (Table S1.5).  

 

caQTL are concordant between ancestries 

For chromatin-accessibility QTLs (caQTLs), we identified 2,001 peaks with FDR-significant 

association to genetics in the Dutch cohort (Table S1.6), 1,292 peaks in the Costa Rican cohort 

(Table S1.7), and 1,625 in the Colombian cohort (Table S1.8). Subsetting to matching SNP-

peak pairs, we find an R2 of 0.95 between the Dutch and Costa Rican caQTLs effects, an R2 of 

0.96 between the Dutch and Colombian caQTLs effects, and an R2 of 0.96 between the 

Colombian and Costa Rican caQTLs effects (Figure 1.2B).  

Similar to the meta-analysis eQTL mapping, combining the genotype and chromatin data from 

the ancestry groups into one cohort (N=246) gave better power to detect associations  

(lambdaGC = 1.00), resulting in 3,557 ePeaks at an FDR threshold of 5% (Table S1.9).  

 

Very few opposite-effect eQTLs or caQTLs were found amongst these pairwise comparisons, 

though these few instances are likely due to differences in LD blocks and allele frequencies 

between these populations.  

 

Causal effect correlations using local ancestry 

To determine the degree of concordance between causal variant effect sizes across haplotype 

blocks, we used admix-kit32 to compute a genetic correlation estimate, radmix, for both caQTLs 

and eQTLs. Prior to estimation of radmix, we utilized ADMIXTURE33 to determine ancestries of 

interest for our admixed individuals, which showed that the average admixture proportions of the 

Costa Rican and Colombian individuals were approximately 62% European, 33% American, 5% 

West African, and 1% East Asian (Figure 1.3). Given that European and American haplotypes 

made up the vast majority (>95%) of the ancestry admixture for these individuals, a two-way 
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admixture was performed on 97 admixed individuals selected based on joint PCA with 

populations from the 1000 Genomes reference panel.  

 

Then, given our assumption that cis-SNPs are more likely to affect expression than trans-SNPs, 

we obtained radmix estimates for 39,850 caQTLs and 11,523 eQTLs. After exclusion of genes or 

peaks with low standardized heritability (<2.0) and low confidence interval (CI) widths (<0.5), 

results for 1,000 eQTLs (Table S1.10) and 987 caQTLs (Table S1.11) were meta-analyzed to 

obtain radmix = 0.983 (C.I: [0.97, 0.996], p-value = 0.019) for caQTLs and radmix = 0.956 (C.I: 

[0.943, 0.968], p-value = 1e-12) for eQTLs. This suggests that the causal allelic effect sizes are 

the same across ancestries for these QTL. The results are robust when restricting to genes with 

significant heritability and reasonable CI widths. 

 

Fine-mapping of causal pathways 

In order to identify potential causal paths starting from SNPs impacting the accessibility of a 

chromatin region which in turn leads to changes in expression of a proximal gene, we used the 

pathfinder34 framework. Briefly, pathfinder uses a hierarchical statistical framework to fine-map 

SNPs with chromatin marks and chromatin marks with gene expression in order to predict 

causal paths from SNP to mark to gene expression.  

 

Given the paired-sample design of this analysis, we decided to continue only with the pooled 

analysis, rather than limit power by subsetting each ancestry group. We defined 100kb regions 

centered around the transcriptional start sites (TSS) of the 5,258 eGenes identified in the meta-

analysis eQTL analysis, though we filtered these down to regions with prior evidence of gene-

chromatin and chromatin-SNP associations (see Methods), resulting in a total of 934 regions. 

This low retention of regions is consistent with the empirical data analysis performed in the 

original pathfinder study (17.7% here and 8.9% in Roytman et. al34). Of these 934 tested gene 
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regions, we identified almost half (n=428) with a posterior probability (PP) over 50% contained 

within the top ten paths in the region, and of these, 28 genes with PP>=90% in a single SNP-

peak pair, suggesting high confidence that the expression of these genes is causally impacted 

by the fine-mapped SNP and chromatin mark (Supplementary File S1.1).  

 

Notably, we found that most of the chromatin peaks and SNPs selected in top paths were not 

regulating the gene in closest proximity. Of the 428 genes with PP >= 50% contained in the top 

paths, we found only 94 to be regulated by its closest peak (21.9%), and 21 (4.9%) by its 

closest SNP (Table S1.12). Similarly, of the 28 genes with PP>=90% from a single SNP-peak 

pair, only 5 genes were regulated by its closest peak, and only one gene was regulated by its 

closest SNP (Table 1.1). This highlights the importance of including chromatin information in 

fine-mapping eQTL, given that a SNP or an open region of chromatin does not necessarily 

regulate the gene most proximal. 

 

Transcriptome-wide associations to brain and skin-related traits 

We performed a transcriptome-wide association study (TWAS) via the FUSION35 framework. 

Given the differences in ancestral background within the cohort, we split the analysis into 

European (Dutch) and American (Colombian and Costa Rican together) subsets. The ancestry-

specific analysis resulted in 412 heritable eGenes from the European analysis, and 508 

heritable eGenes from the American analysis, with 67 genes overlapping between the two, a 

significant overlap with Fisher’s exact test P = 6.2e-13.  

 

For association to GWAS risk loci, we tested summary statistics for bipolar disorder1 (European 

ancestry) and SCZ (both European2 and Latino36 ancestry) as well as fibroblast-related traits 

including UK BioBank37 dermatological disease traits eczema and psoriasis. The association 

testing was performed separately per ancestry, then resulting Z scores were meta-analyzed via 
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inverse variance weighting (IVW), as pooling data across analyzing has been shown to lead to 

false positives.38 

 

For bipolar disorder, we identified four significant genes with PIVW <= 1e-4 (Bonferroni-corrected 

for 500 heritable genes), including LDL-receptor related protein LRP11 (PIVW = 2e-5) and TNF-

receptor associated factor 7 TRAF7, PIVW = 1e-81). We found the expression of the genes 

TCHP (trichoplein keratin filament binding) and GABARAP (GABA type A receptor-associated 

protein) to be significantly associated not only with BD (TCHP PIVW = 1e-6; GABARAP PIVW = 1e-

5), but the European-ancestry SCZ GWAS (TCHP PIVW = 8e-10; GABARAP PIVW < 1e-300) as 

well. In addition, we identified the expression of the PIGH gene (phosphatidylinositol N-

acetylglucosaminyltransferase subunit H, PIVW = 4e-16) as significantly associated with the 

European-ancestry SCZ GWAS, and the gene NCAM1 (neural cell adhesion molecule 1) as 

significantly associated with both the European-ancestry (PIVW = 1e-4) and Latino-ancestry SCZ 

GWAS (PIVW = 7e-4). The Latino-ancestry SCZ GWAS also revealed the genes HS6ST1 

(Heparan-Sulfate 6-O-Sulfotransferase 1, PIVW = 9e-71) and MICA (MHC class I polypeptide-

related sequence A, PIVW = 5e-11) as significantly associated. 

 

For the skin-related traits, we found that expression of the genes PLD2 (phospholipase D2, PIVW 

= 5e-9) and RMND5B (Required for Meiotic Nuclear Division 5 Homolog B, PIVW = 1e-5) were 

significantly associated with psoriasis; GINS1 (encodes for subunit 1 of GINS DNA-replication 

complex, PIVW = 3e-94), URGCP (UpReGulator of Cell Proliferation, PIVW = 1e-118), JUND 

(JunD transcription factor, PIVW = 1e-4), and ILF2 (InterLeukin enhancer binding Factor 2, PIVW = 

1e-300) significantly associated with eczema. See Figure 41.A for TWAS results with all tested 

traits after IVW meta analysis.  
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Interestingly, in comparing ancestry-specific eQTL genes (eGenes), we found overlapping 

significant eGenes between EUR and AMR-specific analyses for each of the tested traits, 

suggesting high confidence in the reliability of these eGenes. However, when comparing the 

ancestry-specific results or the IVW-meta analysis results with the pooled-analysis TWAS, we 

found almost no significant eGenes in common for any traits (only one gene-trait association, 

NCAM1 with European-based SCZ GWAS, was significant in both the pooled and IVW-meta 

analyses), providing further evidence that pooled-ancestry analysis may be unreliable in the 

context of TWAS. See Supplementary File S1.2 for all versions of TWAS results, including SNP-

based heritability for each gene. 

 

Chromatin-wide associations to brain and skin-related traits 

We performed a chromatin-wide association study (CWAS,28 also called cis-trome wide) by 

again leveraging the FUSION-TWAS framework to associate regulatory elements with GWAS 

summary statistics. For association to GWAS risk loci, we used summary statistics for the same 

brain-related traits and dermatological traits as the TWAS analysis. Also paralleling the TWAS 

analysis, the association testing was performed separately per ancestry then meta-analyzed via 

inverse variance weighting (IVW).  

 

We identified 11 PIVW-significant open chromatin regions with association to bipolar disorder; 18 

associated open chromatin regions for European-ancestry schizophrenia; and three associated 

open chromatin regions for Latino-ancestry schizophrenia. For the skin-related traits, we found 

four open chromatin regions significantly associated with psoriasis, and eight chromatin regions 

significantly associated with eczema. See Figure 1.4B for CWAS results after IVW meta 

analysis. See Supplementary File S1.3 for all CWAS results, including peak heritability. 
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DISCUSSION 

In this study, we performed QTL analysis on gene expression and chromatin accessibility data 

from fibroblast cells of a multi-ancestry bipolar cohort. QTL effect sizes were found to be 

concordant between the European and admixed American populations, suggesting that the 

genetic variants that affect either gene expression or chromatin accessibility tend to have similar 

effects across these populations. However, while the effect sizes may be consistent, the 

underlying genetic architecture and linkage disequilibrium (LD) patterns can vary significantly 

between ancestries,39 contributing to the clustering of ancestral groups in principal component 

analysis of genetic data. For more reliable integration of molecular data into GWAS, it is 

necessary to match the genetic ancestral background to functional omics datasets and LD 

reference panels. This approach not only improves the accuracy of genomic studies39,20 but also 

fosters inclusivity and furthers genomic research efforts on a global scale. 

 

Multi-omics datasets have advanced the field of molecular biology by providing a 

comprehensive and integrated view of biological systems at various levels. By collecting 

genomics, transcriptomics, and chromatin data across hundreds of individuals, we and others 

have shown that such datasets can unravel molecular mechanisms underlying biological 

processes. Such comprehensive analyses facilitate in deciphering complex biological patterns 

and predicting interactions at the molecular level. Regarding our TWAS and CWAS analyses, 

we find over double the number of chromatin peaks (45) than genes (20) associated with the 

tested traits. This is consistent with the prostate cancer findings in the original CWAS method 

paper,28 providing further evidence to the idea that gene expression tends to be more context-

dependent than chromatin accessibility.29 However, none of the CWAS-significant peaks 

overlapped with peaks found in the top pathways (PP>=50%), thus we were unable to further 

map these to potential genes aside from using the gene most proximal to the peak locus. 
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Relatedly, the closest genes to the CWAS-significant peaks have not been previously 

associated with brain-related or skin-related GWAS loci. 

 

As an illustrative example, the MICA gene (major histocompatibility complex (MHC) class I 

polypeptide-related sequence A) was significantly associated with the Latino GWAS for 

schizophrenia in our TWAS analysis. MICA has been previously found to be associated with 

schizophrenia,40,41 and integrating the expression measures for this gene region with chromatin 

data suggested a causal pathway with posterior probability >0.98 from rs2442724 to a locus of 

open chromatin in the MHC region (chr6:31,367,110-31,369,941), upstream of the MICA gene 

(chr6:31,368,488-31,383,092). While the MHC region is known to be difficult to parse given 

extensive LD,42 the large cohort of paired transcriptome/cistrome data allowed for fine-mapping 

of the regulation of this particular gene. Several MHC genes have been previously reported as 

associated with psychiatric disorders,43,44–46 implicating this region as a probable risk locus.  

Another gene, Long Intergenic Non-Protein Coding RNA 933 (ID: ENSG00000259728, genomic 

location chr15:85,114,155-85,121,355), for which we identified a highly probable (PP=0.99) 

pathway has been previously associated with BD1 and SCZ2 via the PsychENCODE TWAS.47 

The causal path included SNP rs12900391 with a chromatin peak at chr15:84,542,517- 

84,544,020. While the exact function of this gene is not well understood, the genetic 

associations with BD found by the latest wave of the Psychiatric Genomics Consortium have 

suggested the involvement of pathways regulating insulin secretion, calcium channel activitiy, 

and signaling of endocannabinoids and glutamate receptors.1 We also found a probable 

pathway for the gene Gamma-Aminobutyric Acid (GABA) Receptor Subunit Rho-2 (GABRR2). 

GABA is the major inhibitory neurotransmitter in all mammalian brains, and while direct 

association between BD or SCZ and this gene has not yet been detected, the locus of this gene 

on chromosome 6q has had associations to psychiatric illness.48–50 Similarly, we identified a 
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probable pathway for the GATAD2A gene, previously found to be associated with SCZ in the 

latest GWAS.2 We identified probable pathways for other interesting brain-relevant genes 

including CRCP, which encodes a membrane protein that functions as part of a receptor 

complex for a small neuropeptide that increases intracellular cAMP levels in the brain.51  

While we identify novel molecular mechanisms for genes potentially relevant to disease biology, 

there are several limitations to our study. Although fibroblasts can offer valuable insights into 

certain biological processes due to shared cis-genetic effects, their relevance to complex brain-

specific pathways remains limited. However, fibroblasts have previously been used in studying 

circadian rhythms, a phenotype which is known to be dysregulated in bipolar disorder, 

suggesting that relevant molecular mechanisms are at least partially preserved.52,53  

Secondly, this investigation focused solely on cis-QTLs, while trans-QTLS, though more difficult 

to ascertain, could potentially unveil additional regulatory elements involved in the brain and 

skin-related traits studied here. Furthermore, while our study is an important step forward in the 

inclusion of Latin American individuals in genomic studies, the lack of samples from individuals 

of African and Asian countries and other diverse ancestries represents a limitation, as genetic 

variants that are common to these populations may be missing or very rare in the European and 

American samples included here. Lastly, the scarcity of Latino-based GWAS datasets on which 

to perform ancestry-matched TWAS underscores the urgent need for more extensive efforts to 

incorporate diverse ancestral backgrounds in genetic studies. Utilizing GWAS and functional 

data from diverse ancestries is crucial for understanding the genetic basis of complex traits in a 

globally inclusive manner. 

METHODS 

Sequencing data collection 
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Skin biopsies were collected in 2010-2012 from individuals of Colombian ancestry and Costa 

Rican ancestry, and collected in 2013-2014 from individuals of Dutch ancestry to generate 

human primary fibroblasts. Fibroblasts were isolated by taking skin biopsies. Primary fibroblast 

cultures were established following standard procedures54 and stored as frozen aliquots in liquid 

nitrogen. Fibroblasts were thawed out in batches of 8 lines at the time and grown to confluence 

in T75 culture flasks in standard culture media (DMEM containing 10% fetal bovine serum (FBS) 

and 1x Penicillin-Streptomycin). Upon reaching confluence, cells were passaged to 12 well 

plates at a density of 1x105 for ATAC and 2x105 for RNA. The next day cells were collected for 

further processing. 

This cohort includes BD patients and unrelated healthy controls. DNA and RNA extractions from 

these cells were performed simultaneously from the same batch of cells in order to minimize 

technical artifacts that may confound the mediation analysis. Relatedly, nine of the Dutch 

samples were sequenced for RNA-seq and ATAC-seq in both batches and correlation of the 

gene expression and peak intensities was high, particularly for gene expression (Table S13). 

For duplicated sample pairs with high correlation (R2>0.85) for both gene expression and 

chromatin peak intensity, we randomly selected one in the pair of IDs to include in downstream 

analyses. For the two pairs with low correlation in chromatin peak intensities, quality control 

revealed that the second batch had significantly lower read depth for these individuals, thus we 

included the samples originating from the first batch in these instances.  

 

RNA-seq data generation and processing 

RNA was extracted from fibroblasts in order to assess the levels of gene expression across the 

genome. Cells were lysed using 350uL RLT lysis buffer from the Qiagen RNeasy mini kit. Lysed 

cells were then scraped off the plate, transferred to a Qiaschredder (Qiagen 79656) and 

centrifuged for 2 min at max speed to further homogenize. Cell lysates were kept in -80 until 

extraction. RNA from cell lysates was extracted using the Qiagen RNeasy mini kit (Qiagen 
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74106). Cell lysates were extracted in a randomized order to prevent batch effects in 

downstream analysis. In order to collect total RNA including small RNAs, the standard 

extraction protocol (Purification of Total RNA from Animal Cells using Spin Technology) was 

adjusted by making the following changes: 

-   adding 1.5 volumes of 100% ethanol, instead of 70%, after the lysis step (step 4 in handbook 

protocol) 

-   adding 700 mL of buffer RWT (Qiagen 1067933) instead of the provided RW1 (step 6 in 

handbook protocol) 

TruSeq Stranded polyA selected library preps were generated  and samples were sequenced 

on the Illumina HiSeq 4000 sequencer with 75-base paired end reads, at an average of 50 

million mapped reads per sample. The resulting FASTQ files were pseudo-aligned to hg19 

using kallisto,55 resulting in a matrix of transcripts per million (TPMs) which were aggregated to 

the gene level. The expression matrix was filtered for protein-coding genes and outliers based 

on technical variation (n genes = 18,886 remain after filters). Principal component analysis was 

performed on the log-transformed counts matrix to identify and remove outlier samples. Here we 

include covariates for sex, first two genotype PCs, and the year of the sequencing batch. 

Previous studies have shown that there are likely unmeasured or “hidden” factors that reduce 

the power to detect associations in next-generation sequencing data, therefore we also 

performed PEER56 (Probabilistic Estimation of Expression Residuals) factor analysis to find 

such hidden determinants of variation. PEER factors were computed separately per ancestry 

group, including 5 factors for the Colombian and Costa Rican groups, and 15 for the Dutch 

group, given the difference in sample sizes. The resulting residuals matrix that remained after 

accounting for all factors was then used as input for downstream analyses.  
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ATAC-seq data generation and processing 

ATAC-seq libraries were generated as previously described 

(https://www.nature.com/articles/nmeth.2688). Samples were sequenced on the Illumina HiSeq 

4000 sequencer with 75-base paired end reads, at an average of 39 million mapped reads per 

sample. Trimmed reads were aligned to the hg19 reference genome using bowtie257, and 

filtering steps were taken to remove unmapped reads, non-primary alignment, and low-quality 

reads, as recommended by the ENCODE standards for ATAC-seq data analysis.58 Reads were 

then input into MACS259 in order to call peaks that are significantly enriched against the local 

background using a false-discovery rate (FDR) correction threshold of 0.05 and modeled by the 

Poisson distribution. From this initial set of peaks, blacklisted regions60 as identified by ENCODE 

were removed in order to exclude regions that have anomalous or unusually high signals due to 

repetitive or unstructured sequences. Then, the remaining peaks across all samples were 

combined to form the consensus regions, using the bedtools intersect function to stitch together 

any regions within 147bp into one larger peak region. This resulted in over 418,000 consensus 

peaks, which were limited to only those peaks that are called in at least 30% of individuals, 

reducing the number of peaks to 77,957. These consensus regions, in conjunction with the 

filtered reads (bam files) per individual, were used in the R package featureCounts to determine 

the number of reads each individual had within each peak, with higher counts of reads per peak 

indicating greater accessibility of that region of the genome. This resulted in an N x P peak 

counts matrix where N = number of individuals and P = number of peak regions. This matrix 

was log-transformed to account for skewness and ensure normalization. Principal component 

analysis (PCA) was then performed on the log-transformed counts matrix to identify and remove 

outlier samples. Resulting PCs were correlated via Spearman’s rank correlation against various 

technical factors in order to determine drivers of variation within the data that are unrelated to 

underlying biology. Using a Bonferroni significance level of P < 2e-05, we found that sex, read 

depth, fraction of mitochondrial DNA, TSS enrichment score, median fragment size, and fraction 
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of reads in peaks were correlated with the first two genotyping PCs. The genotyping and 

sequencing batch year was also included in order to account for batch effects.  

Using the log-transformed counts matrix as the input measures and the independent technical 

factors identified from the PC correlations plus age as covariates, we used PEER to find hidden 

confounders. PEER factors were computed separately per ancestry group, including 5 factors 

for the Colombian and Costa Rican groups, and 15 for the Dutch group, given the difference in 

sample sizes. The resulting residuals matrix that remained after accounting for all factors was 

then used as input for the QTL analysis.  

 

Genotyping and imputation 

Samples were genotyped and imputed separately in two batches, the first consisting of 129 

individuals of European ancestry genotyped via the OmniExpressExome platform, with the 

second batch consisting of 21 individuals of Dutch ancestry, 50 individuals of Colombian 

ancestry, and 46 individuals of Costa Rican ancestry genotyped via the Global Screening Array. 

Genotypes were first filtered for Hardy-Weinberg equilibrium p value < 1.0e-6 for controls and p 

value < 1.0e-10 for cases, with minor allele frequency (MAF) > 0.01. Genotypes were then 

imputed into the 1000 Genomes Project phase 361 reference panel by chromosome using 

RICOPILI v.162 separately per genotyping platform, then subsequently merged, applying an 

individual-missingness threshold of 10%, SNP-missingness of 5%, and MAF > 0.05 for post-

merge quality control. Imputation quality was assessed by filtering variants where genotype 

probability > 0.8 and INFO score > 0.1 resulting in 2,747,786 autosomal SNPs that were 

common across both datasets.  

QTL mapping 

QTL analysis was performed with MatrixEQTL63 using a cis-locus distance defined as +/-1Mb 

around the peak midpoint or gene TSS, initially done separately per ancestry group. We 
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included the identity by state (IBS) similarity matrix of the genotypes as an error covariance term 

within the model. Associations that remain after an FDR threshold of 5% were retained for 

downstream analysis. Correlations above R2 of 90% of the resulting SNP-gene or SNP-peak 

effect sizes per ancestry group suggested that the groups could be combined for a gain in 

power, and thus the analysis was repeated with all individuals together and with an added 

covariate term for ancestry.  

 

Assessing ancestry-specific causal effects 

Ancestry specific causal effects were calculated using admix-kit32 on 97 admixed individuals, 

including 45 Costa Ricans, 50 Colombians, and 2 Dutch. These admixed individuals were 

determined by performing a joint PCA with the imputed genotype and 1000 Genomes Project 

reference panel.61 The first 4 PCs, maximum sample distance of 1.5, sample t-range of (0.05, 

0.95), and super populations EUR and AMR were used via the select-admix-indiv function in 

admix to select individuals to include in our analysis. To determine the super populations as well 

as the ancestries to use for the correlation estimates, we utilized ADMIXTURE33 to compare our 

cohort with four reference populations, including Europeans (CEU), West Africans (YRI), 

Americans (PEL), and East Asians (CHB) from 1000 Genomes Project to determine admixture 

proportions with supervised analysis. With these admixed individuals, we inferred local ancestry 

using RFmix.64 

The admix-kit package was used to determine the similarity among the genome-wide causal 

allelic effects across specified local ancestries in admixed individuals.32 To calculate genetic 

correlations for each gene or peak, we built a window-based genetic relationship matrix, GRM, 

using a cis-locus distance defined as +/- 1Mb around each peak or gene rather than a genome-

wide GRM to focus on the contribution of cis-SNPs on expression. The window-based GRM is 

used to estimate log-likelihood at different radmix values to obtain the point estimate, credible 

interval, and p-value for each gene or peak. To obtain the genetic correlation across all genes or 
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peaks, we meta-analyze across the genes/peaks via the meta-analyze-genet-cor() function in 

admix.  

Prior to meta-analysis, due to our low sample size, we exclude genes or peaks whose 

standardized heritability (hsq_est/hsq_stderr) is less than 2, confidence interval widths are 

below 0.5, and genes/peaks who had more than one credible interval.  

 

Fine-mapping of SNP-chromatin-gene pathways 

We used the pathfinder method which accounts for both SNP LD and the correlation structure 

between chromatin marks by using a multivariate normal distribution. This method iterates 

through each possible path to determine its corresponding posterior probability, thus enabling 

us to prioritize SNPs and chromatin peaks that mediate gene expression, which can then be 

prioritized for functional validation. We restricted the regions tested by taking the transcriptional 

start site (TSS) for each eGene and pulling out all SNPs and chromatin peaks within 50kb 

upstream or downstream of the TSS. These regions were then filtered via a two-stage 

regression analysis, wherein the gene expression values were regressed on the proximal 

chromatin marks, and for models with a resulting p-value less than 0.05, we regressed SNP 

genotypes in that region onto the residuals from the initial peak-gene regression. Any regions 

with at least one p-value less than 0.05/(number of SNPs in region) were retained for pathfinder 

analysis. All chromatin peaks within the region were correlated pairwise via the cor() function in 

R, and LD for all SNPs within the region was calculated through plink –r2 square. We then 

inputted these regions into the pathfinder.R script 

(https://github.com/meganroytman/pathfinder/blob/master/pathfinder.R). 

 

TWAS 

To identify eQTL associated with GWAS traits, we performed a TWAS using the FUSION35 

software (http://gusevlab.org/projects/fusion). First, we generated weights for all 5,258 FDR-
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significant eGenes using the FUSION.compute_weights.R script, restricted to loci +/- 1Mb around 

the lead SNPs per each gene. We used the PEER-corrected gene expression thus no additional 

covariates were included in the model. In generating the weights, eGenes were first filtered for 

those with significant SNP-heritability (p-value <= 0.05).  

We used the FUSION.assoc_test.R script to test for association between the gene weights and 

GWAS for bipolar disorder, schizophrenia (EUR and Latino ancestry), and UKBB skin-related 

GWAS for eczema and psoriasis. Gene-trait pairs were selected based on the best performing 

model after five-fold cross validation, including for Best Unbiased Linear Predictor (BLUP), elastic 

net (ENET), Least Absolute Shrinkage and Selection Operator (LASSO), and just using the top 

SNP. To account for LD structure we used an in-sample LD panel. The --coloc flag was included 

to perform colocalization65 on any genes that had an association with the trait of interest with 

TWAS.P < 0.05.  

 

CWAS 

Similarly, to identify caQTL associated with GWAS traits, we performed a CWAS28 using the 

FUSION software. First, we generated weights for all FDR-significant ePeaks using the 

FUSION.compute_weights.R script, restricted to loci +/- 1Mb around the lead SNPs per each 

gene. We used the PEER-corrected peak intensities thus no additional covariates were included 

in the model.  

We used the FUSION.assoc_test.R script to test for association between the peak weights and 

GWAS for bipolar disorder, schizophrenia (EUR and Latino ancestry), and UKBB skin-related 

GWAS for eczema and psoriasis. Peak-trait pairs were selected based on the best performing 

model after five-fold cross validation, including for Best Unbiased Linear Predictor (BLUP), elastic 

net (ENET), Least Absolute Shrinkage and Selection Operator (LASSO), and just using the top 

SNP. To account for LD structure we used an in-sample LD panel. The --coloc flag was included 
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to perform colocalization on any peaks that had an association with the trait of interest with 

TWAS.P < 0.05.  

 

Chapter 1 Figures 

Figure 1.1. Principal component analysis of genotype, expression, and chromatin 

datasets. 

(A) PCA on genotypes, each dot represents an individual. The left plot is colored by country of 

origin and the right plot is colored by sequencing batch year. PC1 explains 4.9% of the variance 

while PC2 explains 2.8%.  

(B) PCA on gene expression. PC1 explains 10.8% of the variance while PC2 explains 6.8%. 

Regarding association to ancestry group, we found that PC1 PANOVA = 0.0027 and PC2 PANOVA = 

0.113 after correcting for batch year. 

(C) PCA on chromatin peaks. PC1 explains 72.7% of the variance while PC2 explains 3.2%. 

Regarding association to ancestry group, we found that PC1 PANOVA = 0.45 and PC2 PANOVA = 

0.6 after correcting for batch year. Note that ATAC-seq read depth was the strongest 

contributing factor to the large variance in PC1.  

 

1.1A Genotype PCA 
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1.1B Expression PCA 

 

 

1.1C Chromatin PCA
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Figure 1.2. Expression and chromatin-accessibility QTLs are largely concordant between 

European and American populations. 

(A) Each point represents a significant SNP-gene pair (note that many genes / peaks are 

associated with multiple SNPs, thus may be represented in multiple points).  

(B) Each point represents a significant SNP-peak pair. 

 

Figure 1.2A 

 

Figure 1.2B  
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Figure 1.3. Proportions of reference populations via ADMIXTURE.  

Population reference panels from 1000 Genomes include PEL (Peruvian from Lima, Peru; AMR 

superpopulation), CEU (Utah residents from Northern and Western Europe; EUR 

superpopulation), YRI (Yoruba in Ibadan, Nigera; AFR superpopulation), and CHB (Han 

Chinese in Bejing, China; EAS superpopulation).  
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Figure 1.4. Significant TWAS and CWAS associations with brain-related and skin-related 

phenotypes. Each cell is colored by the degree of significance (-log10(p)) with white for non-

significant associations.  

(A) TWAS.  
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(B) CWAS. 
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INTRODUCTION 

One limitation of standard eQTL studies is that they generally use expression estimates from 

bulk tissue.13,66 While this is informative, it has been shown that there are many cell type specific 

mechanisms driving biology,19,67 which can be missed when looking at a collection of many cell 
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types. In recent years, single cell RNA-Seq has allowed for the profiling of the gene expression 

of an individual cell, giving us a clearer picture of cell type gene expression. However, single cell 

RNA-Seq experiments are considerably more expensive than bulk RNA-Seq68. To leverage the 

advantages of each of these approaches, we can use methods to estimate cell type gene 

expression from bulk RNA-Seq expression.  

 

There exist many methods69,70 to estimate cell type expression from bulk RNA-Seq. Here, we 

elected to use CIBERSORTx71 and bMIND72 to estimate cell type proportions and cell type 

expression, respectively. Computational methods for analyzing bulk gene expression data have 

the potential for being advantageous in some applications as it is possible to obtain much larger 

sample sizes using bulk RNA-Seq instead of single cell RNA-Seq. While most single cell RNA-

Seq studies have sample sizes in the range of several hundreds of cells from a small number of 

individuals, leveraging low-coverage bulk RNA-Seq allows us to obtain samples from hundreds 

to thousands of subjects.73 We used the low-coverage RNA-seq dataset described in Schwarz, 

et. al.10 as the primary dataset for analysis of cell type deconvolution in this study.   

 

Associations between immune-related traits and neuropsychiatric disorders have been 

previously reported74, and we hypothesized that using blood-based expression can provide 

relevant information regarding the biology of such disorders.16,75,76 In this work we used cell type 

deconvolution methods to derive cell type specific estimates for gene expression from bulk 

blood RNA-seq, specifically within a cohort including psychiatric patients and controls of 

European ancestry. We used these results to conduct cell type cis-eQTL analyses, and 

compared the shared and unique cell type associations. We show that these cell type eQTL 

results derived from deconvoluted bulk RNA-Seq are consistent with eQTLs from scRNA-Seq. 

We performed colocalization analysis to find loci driving GWAS associations in either 

neuropsychiatric or blood-based traits and cell type gene expression. We go on to identify 
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several examples of “opposite-effect” eQTLs, where a cell type eQTL signal demonstrates gene 

expression regulation in the opposite direction from that observed in a bulk eQTL study. Finally, 

we explored the effects of lithium use77 on cell type expression, and identified several cases of 

lithium-SNP interaction dictating presence of an eQTL. 

 

RESULTS 

Computationally-derived cell type estimates are reliable 

Figure 2.1 provides a graphical abstract of the pipeline used in this study to generate putative 

cell-type specific eQTLs. To estimate cell type gene expression in whole blood, we analyzed 

bulk blood RNA-seq of bulk RNA-Seq (N = 1,730) using computational deconvolution tools. 

First, we estimated cell type proportions using the LM22 signature matrix and CIBERSORTx 

(Figure 2.2A). We found that these proportion estimates are consistent with standard white 

blood cell reference ranges,78 for which generally neutrophils have the highest abundance, 

lymphocytes (including T cells, B cells, natural killer (NK) cells combined) the second highest 

abundance, and monocytes the lowest abundance. However we note that blood cell type 

proportions vary across individuals depending on numerous factors such as medication use, 

current illness, and age.79 We confirmed that the proportions estimated via CIBERSORTx are 

consistent with the complete blood count measures taken in the clinic for a subset (N=143) of 

individuals in our dataset (Supplementary Figure 2.1). We observed a pearson correlation (R2) 

of 0.76 for cell type proportions estimated in neutrophils using CIBERSORTx and proportions 

measured in clinic, 0.85 for lymphocytes, and 0.48 for monocytes. These results suggest that 

the computationally estimated proportions are reliable.  

 

Next, we used these proportion estimates and bMIND expression deconvolution (Methods) to 

estimate cell type expression. Consistent with biological expectations, we found that correlation 

of estimated expression between different cell types is high, as all cell types are derived from 
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the same tissue (Figure 2.2B). Next, we investigated whether computationally estimated cell 

type expression could successfully detect differences in expression between different cell types, 

despite there being a high correlation structure between different cell types. Principal 

component analysis confirmed that the major sources of variation in the dataset are attributable 

to differences in cell type expression (Supplementary Figure 2.2). These results suggest that 

using large cohorts of bulk RNA-Seq in blood, paired with computational deconvolution tools, 

can successfully detect differences in expression dependent on cell type composition.  

 

Finally, we contrasted computationally-derived cell-type estimates with single cell RNA-Seq 

(scRNA-Seq) data.80,81 We compared median TPM (transcripts per million) estimates across six 

cell types and find moderate correlation between the reference single-cell expression and 

computationally derived expression, ranging from R2 of 0.11 in naive B cells to R2 of 0.27 in 

CD8 T cells (Supplementary Table 2.1 and Supplementary Figure 2.3). To further check how 

well computationally estimated expression compares to expression derived from scRNA-Seq, 

we correlated expression estimates between the two reference scRNA-Seq datasets in 

monocytes, the one cell type with data available in both reference datasets. We found that the 

median TPM of the 2,836 eGenes (genes with an associated eQTL) in both datasets have an R2 

of 0.22, comparable to the R2 observed when comparing computationally estimated expression 

with scRNA-Seq.  

 

Cell type eQTL analysis reveals more refined biological signal compared to bulk eQTL 

Next, we performed eQTL analyses on the resulting cell type expression estimates to find 

evidence of genetic regulation of cell type expression. We restricted to the eight cell types with 

average proportion > 2% including: naive B Cells, memory B Cells, CD4 naive T Cells, CD4 

memory T cells, natural killer cells, monocytes, and neutrophils. We conducted local-eQTL 

mapping with a 1 Mb window using QTLtools (Methods), to identify between 2,875 and 4,629 
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eQTL-genes (eGenes) with a significant association at FDR correction level of 5%, across the 

eight different cell types (Figure 2.3A). In total, we identified 5,752 eGenes with a significant 

association in at least one of the eight main cell types. We show that there exists a range of 

concordance of effect sizes for eGenes found in both the individual cell type analyses and the 

bulk eQTL analysis (Figure 2.3B and 2.3C). This confirms findings from previous studies 

showing a strong shared genetic effect on gene expression across cell types. We observed that 

most eGenes are detected as significant in either just one, or all eight cell types 

(Supplementary Figure 2.4).  

 

Additionally, we found evidence of cell type “opposite-effect” eQTLs, where a SNP in a given 

cell type shows an association with the same eGene as detected using bulk RNA-Seq, but in 

the opposite direction. One such example is the eQTL for FCGR3B (Fc fragment of IgG receptor 

IIIb); while the bulk eQTL had an effect size of -1.3, the effect size in neutrophils and T cell 

types ranged between 0.49 and 0.86. Similarly, the eQTL for MACF1 (Microtubule actin 

crosslinking factor 1) had effect sizes between -1.1 and -0.15 for the T cell types, versus effect 

sizes ranging between 0.21 and 0.28 for the bulk and remaining immune cell types. MACF1 is 

known to be involved in neurite growth during brain development and has previously been 

linked to schizophrenia.82 These examples are especially interesting as it supports the idea that 

gene expression at the cell type level can uncover nuances of biological mechanisms that go 

undetected when only using bulk-level analyses. Similar effects have been observed in other 

studies using both single cell RNA-Seq83 and deconvoluted bulk RNA-Seq.84  

 

To further validate these cell type eQTLs, we compared the results of this analysis with results 

from eQTL analysis using single cell RNA-Seq from the eQTLCatalogue and BLUEPRINT 

consortiums.81,85,86 We restricted to the protein coding genes identified as eGenes using the 

computational deconvolution approach. Generally, we found that the two approaches to cell type 
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eQTL mapping show strong concordance. For example, in neutrophils, we found that 2,921 out 

of the 4,629 genes (63%) with a significant association using the computational deconvolution 

approach also had a significant association in using single-cell RNA-Seq, correcting at an FDR 

level of 5%. Among these eGenes, comparing the association with the same leading SNP in both 

of these datasets (Figure 2.3D), we observed a correlation (R2) of 0.66 between their effect sizes. 

Similar effect size correlations, for T cells CD4, B cells, and monocytes are shown in 

Supplementary Figure 2.5. This suggests that the computational deconvolution approach to 

large scale bulk RNA-Seq projects can be used to obtain accurate cell type eQTL estimates. 

 

Integration of cell type specific eQTL with brain and blood trait GWAS  

For every gene with a significant eQTL, we used FUSION87 to estimate the gene expression 

heritability across each of the contexts, or the proportion of variance in gene expression 

explained by variance in genetics. Only those genes with significant heritability after five-fold 

cross validation per each context were retained for further analysis. Table 2.2 provides the 

summarized statistics of the significantly heritable genes and the gene with highest estimated 

SNP-heritability per cell type. An advantage of investigating eQTLs at the cell type level is that it 

provides a more precise view of biological mechanisms driving the association between gene 

expression and phenotype. In order to investigate whether there exists variants that drive both 

the expression of genes in a specific cell type and a GWAS trait, we conducted Transcriptome 

Wide Association Study (TWAS)87 and colocalization65 analyses using the significant ct-eQTLs 

from the eight main cell types previously mentioned, and GWAS of several neuropsychiatric and 

blood-based phenotypes. Figure 2.4A provides an overview of the overlap across the contexts, 

both for brain-related and blood-based traits. 

 

GWAS for neuropsychiatric traits tested include: BP,1 SCZ,88 major depressive disorder 

(MDD),89 alcohol dependence,90 cannabis use disorder,91 migraines,92 insomnia,93 attention-
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deficit/hyperactivity disorder (ADHD),94 and Alzheimer’s disease.95 In total there were 710 

eGenes found to be associated only in bulk and no other cell type, and 168 eGenes found to be 

associated in one or more cell types and not in the bulk (Table 2.3). Regarding colocalization, in 

total there were 68 eGenes found to have colocalized SNPs between expression and trait only 

in the bulk and no other cell type, and 50 eGenes found only in one or more cell types and not in 

the bulk (Table 2.3).  

 

Of the 50 eGenes found to have a colocalization posterior probability with the same variant 

impacting both gene expression and the GWAS trait (PP4>0.8) in a cell type but not in the bulk, 

half have a higher median TPM across the GTEx v8 brain tissue types than in GTEx whole 

blood. This suggests that these genes are relevant for brain functions despite being detected in 

immune cell type specific expression estimates. An example of one such gene is HTR6, a 

serotonin receptor targeted by certain antidepressant and antipsychotic medication, found to be 

strongly associated and colocalized with BP in the most recent Psychiatric Genomics 

Consortium (PGC) study on bipolar disorder1 which used brain-derived gene expression weights 

from the PsychENCODE project.96 Conditioning on HTR6 memory B cell-specific expression 

using FUSION completely removed the significant GWAS signal at this locus, suggesting that 

the genetic factor driving gene expression also encompasses the BP association signal (Figure 

2.4B). The same held true for other immune cell types in which HTR6 was colocalized with BP, 

including naive B cells and CD4 T cells. This demonstrates the utility of using cell type 

deconvolution methods in large cohorts of an easily-accessible tissue like blood, since it is able 

to capture gene expression regulation relevant in brain cell types that otherwise are not 

detectable in bulk blood eQTLs.  

  

GWAS for blood-based traits tested include: systemic lupus erythematosus97 (an autoimmune 

disorder), mean corpuscular volume, mean corpuscular hemoglobin,98 red blood cell width 
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distribution, monocyte count, eosinophil count, lymphocyte count, platelet count, white blood cell 

count, and red blood cell count.99 In total there were 1,765 eGenes found to have associations 

only in bulk and no other cell type, and 493 eGenes found only in one or more cell types and not 

in the bulk (Table 2.4). Regarding colocalization, in total there were 488 eGenes found only in 

the bulk and no other cell type, and 229 eGenes found only in one or more cell types and not in 

the bulk (Table 2.4).  

 

Within the blood-based traits we again found examples of opposite-sign effects in certain cell 

types when compared to the bulk. For example, when considering systemic lupus 

erythematosus (SLE) as a trait, we found for the IRF5 gene, natural killer cells have a TWAS Z-

score of -10.7 whereas the bulk has a score of +3.91, suggesting distinct mechanisms that are 

dependent on the cell type context. IRF5 (interferon regulatory factor 5) is known to be 

implicated in SLE,100,101 though the exact mechanism by which it is dysregulated in the context 

of disease remains unknown. See the TWAS Supplementary Tables to view all FUSION TWAS 

and colocalization results. 

 

Lithium-dependent genetic regulation of gene expression 

Given the large number of BP probands in our study sample, we were interested to see whether 

there were BP-specific effects that could be observed using cell type deconvoluted expression. 

Since lithium is the most commonly used drug to treat these patients and it has also been 

established that lithium use has an effect on the blood transcriptome,102,103 we hypothesized that 

lithium-dependent genetic regulation of the blood transcriptome may exist. Among the 1,045 

bipolar disorder patients in this cohort, 709 were taking lithium at the time of blood draw (“Lithium-

User”) and 336 were not (“Lithium Non-User”).  
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When stratifying by cases versus controls (with all BP and SCZ individuals included as cases), 

we found significant differences in cell type proportion for CD4 T cells (p=1.8e-7, higher in 

controls), natural killer resting cells (p=1.2e-7, higher in controls), and neutrophils (p=2.3e-8, 

higher in cases). Next, considering only the cases of BP, we stratified those who use lithium 

versus those who do not, and found significant differences in cell type proportion for CD4 naive 

T cells (p=8e-4, higher in non-users), CD4 memory T cells (p=4e-4, higher in non-users), natural 

killer resting cells (p=3e-4, higher in non-users), and neutrophils (p=1.5e-9, higher in users). 

However, when we only include lithium non-users within the BP cases, and compare those 

against the controls, we found no significant differences in proportion for any of the cell types. 

See Supplementary Figure 2.6 for example plots of all three tests using neutrophils. This 

suggests that the use of lithium within the BP cases drives these differences in cell type 

proportion, rather than disease status itself, consistent with previous findings.103 

 

We validated the effect of lithium use on blood cell types in a separate cohort of individuals who 

had electronic health data from the University of California, Los Angeles ATLAS Community 

Health Initiative.104,105 Specifically, we included self-reported European patients with a PheCode 

for bipolar disorder who also had laboratory test orders for complete blood counts and noted 

whether they had a prescription order for lithium (n=1302 with lithium, n=6208 without). In 

comparing the neutrophil count between BP patients who had never been prescribed lithium (or 

before they were prescribed lithium) and those who had a prescription order for lithium, we 

found that there was a significant (logistic regression p=2.09e-07) elevation of neutrophils in 

patients with a prescription for lithium (Supplementary Figure 2.7). Furthermore, for a subset 

of BP patients within the ATLAS dataset, we also have records for neutrophil counts both before 

and after the patient was prescribed lithium. Using a Wilcoxon-signed rank test with continuity 

correction, we found a significant difference between the neutrophil counts between the two 

groups (p=0.0228) when including individuals of any ancestry (n=376), though when restricting 
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to only European individuals (n=229), the significant difference is lost (p=0.2) (Supplementary 

Figure 2.7). The replication of this finding in this large external dataset provides further 

evidence to suggest that cell type proportion is impacted by lithium usage, though the 

implications of this are yet to be understood.  

 

Next, we investigated whether estimated cell type expression is a significant predictor for 

case/control status or lithium use. Restricting to the genes with the highest variance in each cell 

type, we built logistic regression models to separately predict case/control status and lithium use, 

including the same covariates as the previous proportion-based models. However, we find that 

gene expression does not provide additional predictive value over the cell type proportions for 

either case/control status or lithium use.  

 

To investigate lithium-dependent genetic regulation, we performed an interaction model eQTL 

scan between lithium users and nonusers, testing whether there exist SNPs whose cell type or 

cell type specific expression regulation is dependent on the presence of lithium. To do this, we 

included an interaction term for the genotypes and lithium status in the regression model 

(Methods). Using bulk expression, we only identified one gene with such an association (FDR 

p-value < 0.10). With cell type expression derived from bMIND, we identified as many as 34 

such eGenes (in monocytes), and a total of 110 examples of genes (Li-eGenes) that show 

differential regulation of cell type expression, compared to just one gene that shows differential 

regulation of bulk expression (Supplementary Table 2.3). We found that 97 of the eGenes that 

have significant differential lithium regulation exhibit opposite effect sizes between the lithium 

user and nonuser groups, at the cell type level. The remaining 13 Li-eGenes show same 

direction effect sizes between the lithium user and nonuser groups, with significantly different 

magnitudes. For example, in naïve B cells, KITLG (ENSG00000049130) shows opposite effect 

eQTLs based on rs11104703 (Figure 2.5A). While in monocytes we see that TNFRSF11A 
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(ENSG00000105641) shows differential effect size, in the same direction, based on rs79143095 

(Figure 2.5B). Due to the large number of samples used in this analysis, we are powered to 

detect small differences, like these. 

 

In order to directly measure expression differences between lithium users and nonusers, we 

conducted a differential expression analysis test using limma106 initially in the bulk dataset 

(Methods). Comparing the two groups, we tested 17,194 genes from bulk expression 

measures. We found 100 genes with evidence of differential expression in bulk (FDR < 0.05), 

with log fold changes of the significant genes ranging from -0.191 to 0.177, suggesting low 

impact of lithium on differential expression (Figure 2.5C). Out of the 100 differentially expressed 

genes found here, 33 were previously reported in Krebs, et. al,103 a significant overlap according 

to Fisher’s exact test (OR = 6.43, p = 4.74e-14). Overlapping genes include FBXL2 - a gene 

highly expressed in the brain and involved in neuronal signaling, and CNTNAP3 - which 

mediates interactions between neurons and glial cells. See Differential Expression 

Supplementary Tables for full lithium differential expression results.   

 

Though previous studies have not found substantial evidence of differential expression in the 

blood transcriptome between cases of BP or SCZ and controls,103,107 we were interested in 

investigating this within our own cohort given the uniquely large sample size. Using the bulk 

RNA-seq and the same 17,194 genes selected in the lithium-user differential expression 

analysis, we found 64 genes with FDR < 0.05, of which nine genes overlapped with the 

significant genes found in the lithium analysis. Log fold changes of the significant genes ranged 

only from -0.126 to 0.104, suggesting that if these genes are truly a result of disease status, the 

differences are minimal (Supplementary Figure 2.8). See Differential Expression 

Supplementary Tables file for full case/control differential expression results.   
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For the cell-type specific differential expression analyses, we leveraged the differential 

expression function available through the bMIND software. In the case-control analysis, we 

found four differentially expressed genes in Neutrophils (FDR<0.05), including TSPAN2 and 

CFAP45 both of which were reported in the Krebs et. al. lithium differential expression study.103 

We found 24 differentially expressed genes in memory B cells, and 21 in naive B cells (with 18 

differentially expressed genes in common between the two B cell types). Interestingly, when 

conducting the lithium user versus non-user analysis, we did not find any differentially 

expressed genes in any cell type. While this may be a result of the smaller sample set used in 

the lithium analysis as compared to the case-control analysis, it also may reflect that the effects 

of lithium are only found at the bulk level due to its impact on cell type composition, rather than 

changes in gene expression within individual cell types. See Differential Expression 

Supplementary Tables file for q-values of all cell type specific differential expression results.   

 

DISCUSSION 

We show that cell type deconvolution of bulk blood RNA-seq provides novel insights not only for 

immune-relevant biology, but also neuropsychiatric disease biology. While bulk eQTLs tend to 

provide a greater number of associations overall, we find that cell type specific eQTLs provide 

unique associations not otherwise detectable in bulk. Many of these unique cell type 

associations have high expression in brain tissue types, and harbor several example genes that 

have been previously implicated in BP TWAS1 studies using brain tissue. This demonstrates 

that large cohorts of an easily accessible tissue like blood is useful for deciphering biology for 

brain-related phenotypes when cell type deconvolution is applied. An important caveat, 

however, is that the associations with brain-related traits found in this study are most likely to be 

shared genetic mechanisms between blood cell types and brain cell types, rather than blood cell 

type-specific biology.  
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Considering the BP TWAS results alone, there were 82 total eGenes with an opposite direction 

of effect in a cell type than in the bulk eQTL analysis (defined as having an opposite-sign TWAS 

Z-score for the same gene and the same trait). For example, we found 63 eGenes, significantly 

associated with BP, that have an opposite direction of effect in CD8-T cells when compared to 

bulk expression. ARID5A, a gene implicated in the most recent PGC bipolar disorder TWAS1 is 

one example of these genes. In the bulk expression the TWAS Z-score of ARID5A and bipolar 

disorder is -4.99 (TWAS Z-score -5.32 in PGC BP study), whereas in CD8-T cells it is +6.02. 

This gene was also found to be colocalized with PP4>0.8 in the CD8 T Cell test, though it does 

not pass the colocalization threshold in the bulk test or PGC3 BP test. The same is true for 

ARID5A in CD4 memory resting T cells (TWAS Z-score +6.56). Similarly, the methyltransferase 

gene WDR82 in CD4 Naive T cells has a positive (TWAS Z-score +3.72) association with BP, 

whereas the bulk expression has a negative (TWAS Z-score -3.98) association at the same 

locus (TWAS Z-score -6.75 in PGC BP study). There are many such examples of these genes 

across each of the cell types and the various traits that we examined.  

 

Examples of novel BP-associated genes were also discovered, including RILPL2, found to be 

colocalized in the context of memory B cells, monocytes, natural killer resting cells, and CD8 T 

cells, but not in the bulk. This gene is highly expressed in whole blood in adults (median TPM 

27.42 in GTEx), but is also crucial for dendritic-spine morphogenesis in developing neurons108 

Similarly, CAMKK2 (calcium/calmodulin dependent protein kinase kinase 2), a gene found to be 

colocalized in the context of monocytes, neutrophils, and CD4 T cells is highly expressed both 

in whole blood and in brain tissues (particularly cerebellar hemisphere and cerebellum 

according to GTEx). While CAMKK2 has not been implicated in a BP TWAS, the large PGC 

GWAS points toward calcium channel signaling as a potential therapeutic target for BP,1 and 

indeed a loss-of-function mutation in this gene has been previously linked to BP status.109 We 
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consider these to be potential BP-relevant genes that are interesting candidates for 

experimental validation.  

 

We replicated previous findings that immune cell type composition is impacted by lithium use 

rather than BP status. We also replicated several previously reported genes that are 

differentially expressed in whole blood in response to lithium, in addition to reporting novel 

lithium-response genes. Although lithium has been prescribed as a mood stabilizer for decades, 

its precise mechanism of action is still unclear.110 Lithium has been shown to increase the 

activity of the transcription factor CREB (cAMP response element-binding protein),111 a protein 

involved in neuronal plasticity.112 Here, we found that ATF4, an eGene in all cell types and the 

bulk, which encodes for CREB-2, has opposite directions of effect in T cell types than in the 

other immune cell types or bulk. We found a similar pattern for the AKT1 (Rho-family-alpha 

serine/threonine-protein kinase) eGene. AKT1 protein levels in brain tissue have been 

previously associated with both schizophrenia and bipolar disorder, and although genetic 

associations exist,113 they do not pass genome-wide multiple testing correction.  

 

While we find promising lines of evidence that immune cell type specific expression is useful for 

discovering candidate brain-relevant genes, there are several limitations to our study. Firstly, 

while our cohort had an ample number of BP patients, the number of SCZ samples was much 

lower, and thus underpowered for a diagnosis-specific analysis. Furthermore, we only test SNP-

gene pairs in cis, whereas trans eQTLs are known to be more context-specific,17 so we miss 

distal associations that are potentially biologically relevant to the phenotypes of interest. By 

using computationally-derived expression estimates, there is a greater possibility for spurious 

associations that are not related to biology, dependent on the specific method of 

decomposition/deconvolution chosen. Also by using low-coverage RNA-seq, we may be missing 

important eGenes that are not as highly expressed in blood. Finally, our study consists of all 
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European-ancestry individuals, but to gain a more comprehensive and inclusive understanding 

of the biology between immune cell types and psychiatric conditions, in addition to better fine-

mapping these eQTL, many more samples of diverse ancestries need to be analyzed in future 

work.  

Collectively, this suggests that while the bulk whole blood gene expression provides a greater 

number of significant findings overall, cell type specific expression allows us to observe 

additional biological mechanisms that are not possible to capture when only using gene 

expression measures from bulk alone.  

 

METHODS 

Cohort description 

The samples included are from a study with individuals ascertained for bipolar disorder (BP) or 

schizophrenia (SCZ). The cohort consists of 1,045 individuals with BP, 84 individuals with SCZ, 

and 601 controls with whole blood RNA-seq and corresponding genotypes (N=1,730 after 

excluding first degree relatives) included for all individuals.  

 

Bulk RNA-Sequencing 

Bulk RNA-sequencing was performed at the UCLA Neurogenomics Core, using the TruSeq 

Stranded plus rRNA and GlobinZero library preparation method, as described previously.73 We 

used FASTQC to visually inspect the read quality from the lower-coverage whole blood RNA-

Seq (5.9M reads/sample). We then used kallisto55 to pseudoalign reads to the GRCh37 

gencode transcriptome (v33) and quantify estimates for transcript expression. We aggregated 

transcript counts to obtain gene level read counts using scripts from the GTEx consortium 

(https://github.com/broadinstitute/gtex-pipeline). 

 

Genotyping pipeline  
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Genotypes for the individuals included in the cohort were obtained from the following platforms: 

OmniExpressExome (N = 816), Psych Chip (N = 522), COEX (N = 162), Illumina550 (N=19), and 

Global Screening Array  (N=211). Given that the SNP-genotype data came from numerous 

studies, the number of overlapping SNPs across all platforms was < 80k, prompting us to perform 

imputation separately for each genotyping platform, as previously described in Schwarz, et. al. 

2022. Briefly, genotypes were first filtered for Hardy-Weinberg equilibrium p value < 1.0e-6 for 

controls and p value < 1.0e-10 for cases, with minor allele frequency (MAF) > 0.01, then were 

imputed using the 1000 Genomes Project phase 3 reference panel61 by chromosome using 

RICOPILI v.162 separately per genotyping platform, then subsequently merged. Imputation quality 

was assessed by filtering variants where genotype probability > 0.8 and INFO score > 0.1. We 

restricted it to only autosomal chromosomes due to sex chromosome dosage, as commonly 

done.114 

 

Cell type proportion estimation 

We estimated the proportion of cell types of the bulk whole blood RNA-seq datasets using 

CIBERSORTx, with batch correction applied and LM22 signature matrix as the reference gene 

expression profile. The LM22 signature matrix uses 547 genes to distinguish between 22 human 

hematopoietic cell phenotypes, though here we restrict to 8 cell types with proportions > 0.02. 

 

Complete blood counts (CBC) lab tests from the clinic were provided for a subset of the cohort 

(N=143), providing us ground truth measures (in units of 109 cells per liter) for neutrophils, 

lymphocytes, monocytes, basophils, and eosinophils. To make the counts comparable to the 

proportions outputted by CIBERSORTx, we divided the counts of the cell type of interest by the 

sum of counts across all cell types in an individual, providing the count ratio shown in 

Supplementary Figure 2.1.  
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Cell type expression estimation 

We log2-transformed the matrix of bulk TPM measures before inputting into bMIND since the 

largest expression measure was greater than 50 TPM. Using the cell type proportions derived 

from CIBERSORTx in conjunction with these log-transformed bulk expression measures, we used 

bMIND in order to derive cell type expression estimates, with flag np=TRUE.   

 

bMIND derived estimates and cis-eQTL mapping 

Using output from bMIND, we transformed expression estimates from log2(TPM) to counts using 

sequencing library sizes, restricting to sufficiently expressed genes (estimated count > 1.0 in 40% 

of individuals). Expression estimates were then standardized (mean = 0) then performed cis-

eQTL analysis mapping using QTLTools, using a defined window of 1 Mb both up and 

downstream of every gene’s TSS, for sufficiently expressed genes (TPM > 0.1 in 20% of 

individuals). We run the eQTL analysis in permutation pass mode (1000 permutations, and 

perform multiple testing corrections using the q value FDR procedure, correcting at 5% unless 

otherwise specified. We then restrict associations to the top (or leading) SNP per eGene. 

 

TWAS and colocalization 

We used the FUSION pipeline to perform TWAS on the normalized cell type specific expression 

estimates and normalized bulk expression measures, residualizing each expression matrix by 

its first 50 principal components to account for variation due to technical (non-biological) factors. 

Imputed genotypes were restricted to those that overlap with the 1000 Genomes LD reference 

panel, providing 272,652 SNPs on which to perform the analysis. A window of 500kb upstream 

and 500kb downstream of the lead SNP for each eQTL was used as the cis-region to be tested. 

Gene-trait pairs were selected based on the best performing model after five-fold cross 

validation, including for Best Unbiased Linear Predictor (BLUP), elastic net (ENET), Least 

Absolute Shrinkage and Selection Operator (LASSO), and just using the top SNP.   



 

 
48 

We tested for colocalization of GWAS and eQTLs using the –coloc flag within the 

FUSION/TWAS pipeline. Colocalization is only performed in those gene-trait associations with p 

< 0.05. In each cell type, we tested eGenes with a significant association between expression 

and SNP (Tables 2.4 and 2.5). We report SNPs with a colocalization probability (PP4) > 0.80 .  

 

Cell type specific regressions using estimated cell type proportions and gene expression 

We built logistic regression models to evaluate the effect of cell type proportion on case/control 

status, and lithium use status within only the BP cases. These models included the proportion of 

one cell type at a time, along with covariates including age, sex, RNA concentration, and RNA 

integrity number (RIN) as predictors. In testing the differences in cell type proportions between 

different binary outcomes, we used the glm() function in R with family=binomial.  

 

We also used logistic regression to predict either case control status or lithium use (only in BP 

cases) from cell type expression estimates after residualizing for 50 expression PCs. Variable 

numbers of genes were included based on genes with most variance per cell type, using a 

range of 100 to 1000 genes with an interval of 100. Covariates include age, sex, RNA RIN, RNA 

concentration, and cell type proportion estimates. A random 70% of individuals were sampled to 

use for training, and 30% for testing the prediction. 

Electronic Medical Record Validation Cohort  

ATLAS is an opt-in biobank that enrolls patients when they visit UCLA for a blood draw. ATLAS 

is a diverse biobank that includes patients from a variety of genetic ancestries that live across 

the greater Los Angeles region.115 Registered ATLAS researchers can access deidentified 

electronic health record data for patients, consisting of outpatient and inpatient encounters, 

including information on diagnoses, procedure orders, laboratory orders, and prescription 

orders. As of 2022, there were approximately 50,000 participants enrolled in ATLAS. A 



 

 
49 

complete description of the ATLAS project and data is available in 104.  

Bipolar patients were identified in ATLAS using the diagnosis table. The bipolar phenotype was 

defined as any patient who had at least one diagnosis of any of the ICD 10 codes included in 

the bipolar Phecode Map 1.2.116 Neutrophil counts (measured as 103 counts/µL) were 

determined using test results for complete blood count laboratory orders. We restricted this 

analysis to those individuals with self-reported European ancestry. To prevent severe outliers 

from biasing results, test results with a neutrophil count greater than 2 standard deviations from 

the median count value in all bipolar patients were removed. Lithium prescription orders were 

found by querying the prescription order table for medications of any dose or format that were 

classified as psychiatric medication and had the generic name lithium.  

 

Neutrophil count data for patients with a bipolar Phecode were separated into three categories: 

tests administered before the patient was prescribed lithium, tests administered after the first 

lithium prescription order, and tests for patients without a lithium prescription order. Since many 

patients had multiple complete blood count orders, the median neutrophil count per patient per 

category was calculated. Median neutrophil counts were compared between bipolar patients 

after their first lithium prescription and bipolar patients without a lithium prescription using a 

logistic regression (implemented in R). Max age and sex were used as covariates. For the 

subset of patients who had complete blood count tests taken before and after a lithium 

prescription order, we used a paired Wilcoxon rank test to increase power, implemented in R 

using the wilcox.test(paired=TRUE) command.    

 

Interaction model 
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To test whether there exists an interaction between SNP-lithium usage, we included an 

interaction component in the regression model, as such: 𝑦	 = 	𝛽 ∗ 𝑋	 + 	𝛽 ∗ 𝑙	 + 𝛽 ∗ (𝑋 + 𝑙) +

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠	  

where X refers to the genotype at a particular SNP, and l refers to lithium use.  

 

Differential expression analysis 

We used the limma eBayes function with trend=true to conduct differential expression tests in 

the bulk dataset. We include only those genes with at least 1 TPM in at least 436 individuals 

(about 25% of the total 1,730 individuals included in the analysis), leaving 17,194 genes to be 

tested. We then log2-transform this matrix and compute the first 50 expression principal 

components to be included as covariates. In the lithium user vs non-user analysis, only cases 

were included to avoid confounding effects caused by disease status, while in the case-control 

analysis, all individuals diagnosed with BP or SCZ were included as cases and non-affected 

individuals included as controls.  

For the cell-type specific differential expression analysis, we use the bmind_de() function as 

included in the bMIND software package. To keep the methods comparable to the bulk analysis, 

we also use the log2-transformed expression measures as input along with the first 50 

expression PCs as covariates.  

 

Data Availability 

The lower-coverage RNA-seq and the corresponding genotypes generated and analyzed during 

this study have been deposited in dbGAP (accession number phs002856.v1). 

 

Chapter 2 Tables 

Table 2.1: Cell type proportion estimates from CIBERSORTx and number of eQTLs per 

cell type.  



 

 
51 

Cell type Mean cell type proportion 

estimate (s.d.) 

Number of eGenes 

(FDR < 0.05) 

Naive B cells 0.025 (0.020) 4,009 

Memory B cells 0.020 (0.014) 3,571 

CD8 T cells 0.025 (0.025) 2,875 

Naive CD4 T cells 0.15 (0.042) 3,082 

Memory Resting CD4 T cells 0.066 (0.034) 3,284 

Resting NK Cells 0.066 (0.029) 3,858 

Monocytes 0.050 (0.039) 3,483 

Neutrophils 0.51 (0.094) 4,629 

Bulk (directly from RNA-Seq) 1.0 7,302 

 

 

Table 2.2:  FUSION heritability results. Number of Sig. Genes refers to the number of genes 

that remain significantly (P<0.05) heritable after five-fold cross validation. Q1 = first interquartile, 

Q3 = third interquartile. Overall, the bulk data shows higher heritability estimates across each of 

the statistics. Of note is that every gene listed is distinct for each context, including genes that 

are relevant to neuronal function, such as NSG1 (neuronal vesicle trafficking associated), 

CAMKK2 (calcium dependent kinase, involved in neuronal differentiation and synapse 
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formation) and BTG1 (B-cell translocation gene 1, found to be involved in neural stem cell 

renewal).117 

 

Panel 

Number of 

Sig. Genes Min Q1 Median Mean Q3 Max 

Gene 

with Max 

h2 

Bulk 5,113 0.0041 0.026 0.055 0.096 0.12 0.728 TRBV28 

B Cells Memory 2,541 0.0035 0.024 0.044 0.075 0.093 0.68 BTG1 

B Cells Naive 1,552 0.0056 0.024 0.045 0.078 0.095 0.579 PI16 

Monocytes 2,431 0.0052 0.025 0.045 0.077 0.095 0.584 NSG1 

NK Cells Resting 2,763 0.0042 0.024 0.045 0.078 0.098 0.61 BCAT1 

Neutrophils 1,605 0.0056 0.025 0.048 0.083 0.10 0.69 CAMKK2 

T Cells CD4 

Memory Resting 1,989 0.0057 0.026 0.047 0.080 0.099 0.63 SBF2 

T Cells CD8 2,033 0.0057 0.024 0.042 0.069 0.081 0.63 FGFBP2 

T Cells CD4 Naive 2,147 0.0053 0.024 0.044 0.075 0.092 0.56 CROT 

 

 

Table 2.3: TWAS & Colocalization neuropsychiatric trait results. Shared refers to the 

number of significant (FDR < 0.05) genes that are in common with the bulk TWAS-significant 

gene set, whereas unique refers to those that are not present in the bulk TWAS-significant gene 

set.  
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Cell Type 

Significant 

eGenes 

Num Significant 

TWAS Genes, 

Shared 

Num Significant 

TWAS Genes, 

Unique 

Num Genes 

with Coloc 

PP4>0.8, 

 Shared 

Num Genes 

with Coloc 

PP4>0.8, 

Unique 

B Cells Naïve 4,009 90 43 43 13 

B Cells Memory 3,571 142 58 62 25 

T Cells CD8 2,875 108 50 50 15 

T Cells CD4 Naïve 3,082 120 46 56 19 

T Cells CD4 

Memory Resting 3,082 115 43 55 22 

NK Cells Resting 3,858 156 72 73 21 

Monocytes 3,483 126 52 62 24 

Neutrophils 4,629 76 35 35 9 

Bulk 7,302 906 / 155 / 

 

 

Table 2.4: TWAS & Colocalization blood-based trait results. Shared refers to the number of 

significant (FDR < 0.05) genes that are in common with the bulk TWAS-significant gene set, 

whereas unique refers to those that are not present in the bulk TWAS-significant gene set.  
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Cell Type 

Significant 

eGenes 

Num 

Significant 

TWAS 

Genes, 

Shared 

Num 

Significant 

TWAS 

Genes, 

Unique 

Num Genes 

with Coloc 

PP4>0.8, 

 Shared 

Num Genes 

with Coloc 

PP4>0.8, 

Unique 

B Cells Naïve 4,009 922 164 289 78 

B Cells Memory 3,571 1,582 207 511 106 

T Cells CD8 2,875 1,276 168 414 93 

T Cells CD4 Naïve 3,082 1,349 183 445 88 

T Cells CD4 

Memory Resting 3,082 1,257 150 419 80 

NK Cells Resting 3,858 1,712 254 557 119 

Monocytes 3,483 1,484 212 484 113 

Neutrophils 4,629 969 159 331 60 

Bulk 7,302 3,893 / 1,175 / 
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Chapter 2 Figures 

Figure 2.1: Graphical overview of pipeline. Figure created in BioRender. 
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Figure 2.2: Cell type expression from computational deconvolution methods 

 

 

Figure 2.2A: Cell type proportion predictions from CIBERSORTx - A violin plot showing the 

range of estimated cell type proportions for all 1730 individuals in each of the eight major cell 

types.  

 

Figure 2.2B: R2 of expression between each cell type - A heatmap of correlations (measured 

by R2 of mean expression across samples) between the eight main cell types captured by 

CIBERSORTx. 
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Figure 2.3: eQTLs per cell type, effect size correlation with reference dataset and bulk 

dataset.   

 

 

Figure 2.3A: Number of associations identified per cell type - Number of eGenes with a 

significant association identified for the eight major cell types detected by CIBERSORTx, using 

a FDR cutoff of 0.05 . 

 

Figure 2.3B: Comparison of effect size between shared cis-associations with Neutrophils 

- Restricting to the eGenes with a significant association in both the bulk eQTL analysis and 

neutrophil eQTL analysis, we compare the estimated effect sizes of the most significant eQTL 

associations. 
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Figure 2.3C: Comparison of effect size between shared cis-associations with Monocytes - 

Restricting to the eGenes with a significant association in both the bulk eQTL analysis and 

monocyte eQTL analysis, we compare the estimated effect sizes of the most significant eQTL 

associations. 

 

Figure 2.3D: Comparison of effect sizes between shared cis-associations using reference 

single cell RNA-seq. Restricting to the eGenes with a significant association in both the 

BLUEPRINT reference neutrophil eQTL analysis and our neutrophil eQTL analysis, we compare 

the estimated effect sizes of the most significant eQTL associations. 

 

Figure 2.4: Colocalization and enrichment analyses of cell type specific eQTLs.  
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Figure 2.4A: (top) Number of genes with coloc PP4>0.8 across contexts in 

neuropsychiatric traits. (bottom) Number of genes with coloc PP4>0.8 across contexts in 

blood-based traits. 
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Figure 2.4B: Conditional analysis of HTR6 expression in memory B cells. 

All genes in the locus are included in the top panel, with marginally TWAS associated genes 

highlighted in blue, and those jointly significant (HTR6) in green. The bottom panel includes a 

Manhattan plot of the GWAS data before (gray) and after (blue) conditioning on the imputed 

expression of HTR6 in memory B cells. Figure generated by FUSION.post_process.R script.  

 

Figure 2.5: Lithium user vs non-user analyses.  

 

 

Figure 2.5A: Boxplots showing the expression of KITLG (ENSG00000049130) in naïve B cells, 

stratified by dosage of SNP rs11104703 in lithium users versus nonusers.  

2.5B: Boxplots showing the expression of TNFRSF11A (ENSG00000105641) in monocytes, 

stratified by dosage of SNP rs79143095 in lithium users versus nonusers. 
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Figure 2.5C: Differential gene expression results for lithium users vs lithium non-users: 

(left) Volcano plot which highlights differentially expressed genes (FDR < 0.05) in red (N=100 

total differentially expressed genes). (right) Average expression of each gene vs the log fold 

change (logFC) of each gene, with differentially expressed genes highlighted in red. 

 

Supplementary Figures 

Supplementary Figure 2.1: Scatterplots of CIBERSORTx-estimated cell type proportions 

vs complete blood count proportions. We find generally high concordance between 

computationally estimated and measured ground truth cell type proportions using a subset of 

our cohort. Pearson’s correlation R2 for neutrophils = 0.76, for lymphocytes = 0.85, for 

monocytes = 0.48.  
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Supplementary Figure 2.2: PCA of cell type expression. 
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Supplementary Figure 2.3: Scatterplots of expression estimated from bulk vs single-cell 

Using two scRNA-Seq datasets as references, we compare the median TPM values for genes 

detected as eQTLs using both scRNA-Seq and computationally deconvoluted bulk RNA-Seq.  
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Supplementary Figure 2.4: Distribution of shared eGenes across cell type contexts.   
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Supplementary Figure 2.5: Effect size correlations between reference single cell eQTL 

and the deconvoluted eQTL. T cells CD4 naive R2 = 0.27; B cells naive R2 = 0.22; Monocytes 

R2 = 0.36. 
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Supplementary Figure 2.6: Neutrophil count elevated for lithium users. 

A. Difference in neutrophil proportion (after accounting for covariates including age, sex, 

RIN, and RNA concentration) between BP/SCZ cases and controls. 

B. Difference in neutrophil proportion between lithium users and non-users (after 

accounting for covariates), only within BP cases. 

C. Difference in neutrophil proportion between lithium non-users and controls (after 

accounting for covariates).  

 

A.  

 

B.       C.  
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Supplementary Figure 2.7: Neutrophil count elevated for lithium users in UCLA ATLAS.  

A. Median neutrophil count across self-reported European patients, with covariate 

correction for age and sex (p=2.09e-7). 

B. Neutrophil count distribution across self-reported European patients before and after 

lithium prescription.  

C. Neutrophil count distribution across patients (n=382, all ancestries) before and after 

lithium prescription.  

A.  

 

B.   
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C.  

 

Supplementary Figure 2.8: Differential gene expression results for BP or SCZ cases vs 

controls: (left) Volcano plot which highlights differentially expressed genes (FDR < 0.05) in red 

(N=64 total differentially expressed genes). (right) Average expression of each gene vs the log 

fold change (logFC) of each gene, with differentially expressed genes highlighted in red. 

 

 

Supplementary Table 2.1: Correlations of median expression between reference single 

cell RNA-Seq datasets and computationally derived expression estimates 

Restricting to the genes identified as eGenes using both the single cell RNA-Seq reference 

dataset and the computationally derived cell type expression, we report R2 values for the 

median TPM for genes across samples. 
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Cell type Reference R2 Number of genes 

Monocytes BLUEPRINT 0.14 2896 

Neutrophils BLUEPRINT 0.16 3239 

CD4 Memory T Cells BLUEPRINT 0.26 2504 

CD4 Naive T Cells BLUEPRINT 0.27 2504 

CD8 T Cells BLUEPRINT 0.24 2504 

B Cell Naive Schmeidel 0.11 624 

Monocytes Schmeidel 0.15 2896 

Monocytes* Schmeidel/BLUEPRINT 0.22 2836 

 

 

Supplementary Table 2.2: Linear models for lithium usage prediction 

Cell type Model R2 Effect size SE p-value 

Monocytes 0.06 -1.28 0.36 <0.001 

Neutrophils 0.09 1.08 0.15 <0.001 
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CD4 Memory T 

Cells 

0.06 -1.68 0.42 <0.001 

CD4 Naive T Cells 0.06 -1.52 0.36 <0.001 

CD8 T Cells 0.06 -2.09 0.55 <0.001 

B Cell Naive 0.06 -3.06 0.79 <0.001 

B Cell Memory 0.05 0.59 1.09 0.59 

Resting NK Cells 0.06 -1.92 0.52 <0.001 

 

Supplementary Table 2.3: Number of eGenes differentially regulated by Lithium. Using an 

FDR cut-off of p < 0.10, we look at the number of eGenes with a significant SNP-lithium 

interaction. “Same-direction” Li-eGenes have the same direction of effect sizes between lithium 

users and nonusers, and “opposite-direction” Li-eGenes have the opposite direction of effect 

sizes between lithium users and nonusers. 

Cell type Number of 

Li-eGenes 

Number of “same-

direction” Li-

eGenes 

Number of “opposite-

direction” Li-eGenes 

Naive B cells 24 4 20 

Memory B cells 15 3 12 

CD8 T cells 2 1 1 
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Naive CD4 T cells 25 1 24 

Memory CD4 T 

cells 

2 0 2 

Resting NK cells 5 0 5 

Monocytes 34 3 31 

Neutrophils 3 1 2 
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Chapter 3: Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid 

to uncover biological mechanisms involved in brain-related phenotypes 
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INTRODUCTION 

Genome-wide association studies (GWAS) have successfully identified many genetic risk loci 

contributing to human diseases and traits. The functional interpretation of these risk loci is 

crucial for treatment development and biomarker identification, but has been challenging in 

practice. Quantitative trait loci (QTL) studies provide valuable mechanistic insights for various 

disease etiologies.118 The study of metabolomics in particular allows the detection of small 

changes in endogenous and exogenous compounds, thereby closely reflecting the current 

physiological state of cells, tissue or organisms.119–123  

 

Due to the relative inaccessibility of in vivo brain tissue and its surroundings, insights into 

biological processes underlying psychiatric and neurodegenerative disorders have been 

limited.14,124 Cerebrospinal fluid (CSF) participates in waste removal of neural metabolism 

through interaction with interstitial fluid surrounding brain cells.18 CSF can be collected in vivo, 

and thus serves as a relevant source for products of ongoing biological mechanisms in the 

brain. CSF studies on neurodegenerative disease have been successful in identifying biological 

processes involved, such as abnormal regulation of lipid metabolism and increased 

inflammation.125–127 So far, CSF QTL mapping studies have shown that the proteome124,128,129 

and metabolome130–132 are (at least partly) under genetic control, which implies that insight in its 

genetic architecture can aid in the biological interpretation of genetic risk loci.  

 

In this study, we performed a genome-wide metabolite-QTL (mQTL) study on the largest mass-

spectrometry (MS)-based CSF metabolomic panel studied so far (5,543 metabolites) using data 

from 977 individuals of European ancestry. The assayed metabolites include those of primary 
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metabolism, biogenic amines, and complex lipids. We identified 82 significant mQTLs for 65 

CSF metabolites and 51 independent loci, of which 58/65 (89.2%) have not been detected 

before in CSF and eight not in blood, saliva or urine. When integrating our CSF mQTLs with 

pre-existing summary statistics data on ten psychiatric and neurodegenerative disorders, we 

identified 23 CSF metabolites  associated with brain-related traits. Many of the CSF metabolites 

with a mQTL (56.9%, 37/65) colocalized with brain-specific eQTLs. This study indicates that the 

multi-omic integration of genetics with CSF metabolomic data helps to identify which molecular 

mechanisms underlie neurobiological mechanisms.  

 

RESULTS 

QTL mapping of CSF metabolites 

CSF samples were assessed for metabolic compounds via three platforms that each measure 

different components of the metabolome: GC-TOF MS/MS (primary metabolism, 393 

metabolites, 273 of which are unannotated), CSH-QTOF MS/MS (complex lipids, 3,532 

metabolites, 3,262 unannotated), and HILIC-QTOF MS/MS (biogenic amines, 1,618 

metabolites, 1,194 unannotated) (Table S3.1). Given a high degree of concordance between 

observed mQTL effects in both the cognitively healthy subjects cohort as the memory clinic 

cohort (Table S3.2), we performed a meta-analysis in the combined dataset of 977 subjects to 

boost power to detect associations (Figure 3.1). We did not observe genomic inflation for any of 

the CSF metabolites (range λ=0.97-1.03) (Table S3.1). Heritability estimates for CSF metabolite 

levels ranged from h2
SNP=3%-49% (mean = 15%, SD = 12%), with the highest reported 

heritability for N-Acetylhistidine (49%), N-epsilon-Dimethyl-L-lysine (42%) and ethylmalonic acid 

(23%).  

 

Detection of independent and novel CSF mQTL signals 
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Our genome-wide mQTL study on 5,543 metabolites and 6,189,630 SNPs identified 4,999 

significant SNP-metabolite pairs after Bonferroni-correction (P<6e10-11). After applying a filter on 

independent LD blocks (based on clumping SNPs within 1Mb and LD R2<0.2) we observed 126 

significant SNP-metabolite pairs, representing 65 unique CSF metabolite levels across 73 loci 

(Figure 3.2A). Following stepwise conditional analyses on the subset of CSF metabolites (n=19) 

with multiple independent loci (n=80), we identified in total 82 mQTLs (for 51 independent risk 

loci and 65 metabolites): 53 metabolites had one independent locus, eight metabolites had two 

loci, and four metabolites had three (or more) independent loci (Table 3.1, Table S3.3, Figure 

3.2C). This is in line with previous studies, demonstrating that most of the heritability of 

metabolite levels is confined to a single locus,130 often uniquely regulated by the gene that 

encodes a protein involved in the specific metabolic pathway. CSF metabolites under a more 

complex regulatory architecture included ribonic acid (ENOSF1/TYMS), ethylmalonic acid 

(UNC119B), and two unannotated metabolites (i.e., PYROXD2 for 9.31_161.13, TYMS for 

9.40_165.04). Similarly, many independent mQTLs (n=33) harbored associations for more than 

one metabolite, involving a total of 39 different metabolites with at most five metabolites at one 

locus (Figure 3.2D) (i.e., FADS2). This suggests pleiotropy at these loci, potentially involving a 

key enzyme in multiple metabolic pathways, or a group of metabolites that are all part of a 

single pathway.  

Most mQTL associations were detected using the HILIC-QTOF MS/MS platform (84.1%, 69/82 

SNP-metabolite associations), followed by GC-TOF (9.8%, 8/82 SNP-metabolite associations) 

and CSH-QTOF, (6.1%, 5/82 SNP-metabolite associations). 

 

Most CSF mQTLs located in intronic regions 

To examine the functional annotation of our identified CSF mQTLs, we queried the Gencode 

V41133 basic gene annotation database for the 51 unique, independent SNPs significantly 

associated with these metabolites (Figure 3.2B). We found that variants within intronic regions 
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of protein coding genes account for 60.7% of loci, variants within promoters (defined as 10kb 

upstream of transcription start site) of genes account for 1.9% of independent loci, variants 

within untranslated regions (UTRs) for 3.9%, and variants within exons for 3.9%. The paucity of 

exonic variants is a known trend among QTL and GWAS studies,134,131,135 whereas the 

abundance of intronic variants suggests potential role of enhancer activity136,137 in the regulation 

of these metabolites. The remaining variants (29.4%) were considered intergenic and thus have 

no currently known functional annotation. 

 

QTL mapping of CSF metabolites identifies novel and validates known biological 

pathways 

Of the mQTL-associated CSF metabolites with annotation that we identified, thirteen (13/20, 

65%) have been previously detected in QTL studies on CSF130 (n=5), blood119–121 (n=10), 

saliva122 (n=3) or urine123 (n=3) metabolite levels (Figure S3.1, matched by metabolite then for 

SNPs in LD R2>0.8). 

 

Eight annotated CSF mQTLs were novel (not previously reported in CSF, blood, saliva or urine), 

including those for hypaphorine, bicalutamide, 3'-O-Methylcytidine, PEP-38:3 or PEO-38:4, 

inosine, ribose-5-phosphate, 3-Aminotyrosine and proline (Table S3.4). One novel mQTL 

consisted of SNPs within the SLC22A5 locus and CSF levels of exogenous metabolite 

hypaphorine (chr5:132389258:T:C, P=1.52e-12, no causal SNPs observed with fine-mapping) 

(Figure S10-S11). Another novel mQTL locus included the SACM1L locus on chromosome 3 

and associated with CSF proline levels (rs73058498, P=1.88e10-12). Statistical and functional 

fine-mapping with SuSiE selected the lead SNP rs73058498 (posterior inclusion probabilities 

(PIPs) range 0.25 - 0.40) as part of the only 95% credible set for proline (see Table S3.9 for 

fine-mapping SNPs within 95% credible sets for which their summed PIPs exceed 50%). 
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The complex lipids platform harbored one mQTL locus, representing both previously identified 

and novel pleiotropic effects of FADS2 (on chromosome 11) with CSF levels of four different 

phosphatidylcholines, PC 36:3 Isomer B (i.e., two isomers with different m/z ratios), PC 38:3 

(two isomers) and and glycerophospholipid PE P-38:3/PE O-38:4 (novel association; rs174556, 

range P=8.52e-15-2.11e-19). Statistical and functional finemapping with FINEMAP highlighted the 

lead SNP rs174556 as part of a 50% credible set (along with eight other SNPs) for three out of 

four of the lipids, and at least two methods selected rs174556 as part of 95% credible sets 

(along with six other SNPs) for two of those three lipids (Table S3.9).  

 

The strongest association was reported for PYROXD2 on chromosome 10 with CSF levels of 

five inter-correlated metabolites (Pearson’s R2 > 0.83): N(epsilon)-Dimethyl-L-lysine and 

unannotated CSF metabolites 7.25_144.10, 9.29_260.20, 9.31_161.13, 9.30_130.09 (top SNP 

rs10883083 and chr10:98392298, range P=5.03e-181-3.58e-214 for all CSF metabolites) 

(Figure S3.2 - S3.6). Fine-mapping prioritized six potentially causal SNPs, including top SNP 

rs10883083 (as well as rs10786415, rs2147896, rs4539242, rs59667296, rs942814) in a 95% 

credible set for N(epsilon)-Dimethyl-L-lysine across all four methods. The top SNP rs10883083 

was also part of the 95% credible sets for the other unannotated CSF metabolites at this locus 

(Table S3.9). The PYROXD2 locus has been shown to associate with CSF levels of a similar 

(but not identical) metabolite called N6-methyl-L-lysine, suggesting that this locus plays a role in 

the regulation of lysine metabolism.130  

 

Another association was observed for NAT16 (N-acetyltransferase 16) on chromosome 7 with 

CSF levels of three inter-correlated CSF metabolites: N-Acetylhistidine, 8.10_220.07 and 

7.40_268.13 (rs740104, P= 8.33e-74, P=4.47e-61, P=4.68e-25, respectively) (Figure S3.7-

S3.9). Fine-mapping identified two 95% credible sets for N-Acetylhistidine and 8.10_220.07, one 

of which (size = 4) included the top SNP rs740104, the other included only two SNPs, 
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rs12540617 (PIPs range 0.72-0.85) and rs2227653 (PIPs range 0.14 - 0.28). For 7.40_268.13 

we found only one 95% credible set (size = 4), including the top SNP (Table S3.9). N-

Acetylhistidine is expressed in the human brain and other organs, but its specific function is 

unknown. This association has been reported before in blood plasma.138  

 

Another previously detected mQTL locus (in human plasma139, saliva122 and urine123) included 

four independent SNPs on ENOSF1 (on chromosome 18) that associated with CSF levels of 

ribonic acid (rs11081229, P=2.36e10-12, rs2790, P=1.49e10-27, rs2847334, P=1.09e-27, 

rs6506537, P=1.27e10-20). Fine-mapping revealed two 95% credible sets for the ribonic acid 

mQTL, though only the SuSiE method prioritized the top SNP rs2847334 as part of a 95% 

credible set. Both SuSiE and PolyFun-SuSiE highlighted rs11081266 (PIPs range 0.19 - 0.41) 

and rs2790 (PIPs range 0.25 - 0.37) as the SNPs with the highest PIPs in a 95% credible set 

(Table S3.9).  

 

CSF metabolite levels associate with risk loci for brain-related disorders 

To identify metabolites with CSF levels associated with brain-related disorders, we performed 

metabolome-wide association (MWAS) analyses using the framework provided by FUSION.35 

Out of the 220 CSF metabolites that had sufficient predictability (i.e., at least one SNP with 

P<5e-8), the R2 between the predicted and actual metabolite levels ranged from 0.005 to 0.67 

(mean = 0.05, SD = 0.09). The HILIC-QTOF platform had the best performance and included 

more CSF metabolites as compared to the other platforms (Figure S3.12-3.13, Table S3.5).  

CSF levels of 220 metabolites were tested for association with ten brain-related phenotypes, 

including Alzheimer’s disease3, dementia with Lewy bodies140, stroke141, amyotrophic lateral 

sclerosis142, bipolar disorder1, schizophrenia2, major depressive disorder143, attention deficit 

hyperactivity disorder (ADHD)94, insomnia144, and alcohol abuse disorder.145 We identified 40 
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significant (FDR<0.05) metabolite-phenotype associations, including ten traits and 31 CSF 

metabolite levels (Figure 3.3, Figure S3.14, Table S3.6). The strongest MWAS associations 

(with annotation) included: bipolar disorder with CSF metabolite levels of PC 36:3 Isomer B, PC 

38:3, PE P-38:3/P EO-38:4 (FADS2 on chromosome 11, range P-FDR=5.9e-08-4.6e-09), 

schizophrenia with CSF metabolite levels of 3-Aminotyrosine (EMX1 on chromosome 2, P-

FDR=4.25e-05). Three metabolite-trait associations had supporting evidence from colocalization 

analysis (posterior probability (PP)4>0.8), including bipolar disorder-PC36:3 Isomer B (FADS2), 

bipolar disorder-aspartic acid (intergenic region on chromosome 18 most nearby gene CDH2, 

rs2847408) and schizophrenia-2.06_142.09 (SETD7). Of these metabolome-wide significant 

genes with supporting colocalization evidence, the association of the intergenic region nearby 

CDH2 for bipolar disorder was novel, showing no genome-wide evidence for association in the 

corresponding GWAS (minimal p within ±1 Mb of the gene’s region=2.06e-05)1. 

 

Identified CSF mQTLs colocalize with known brain eQTLs 

To identify whether any CSF mQTL colocalizes with eQTL for brain-specific gene expression, 

we used the PsychENCODE TWAS weights for 13,490 genes in a FUSION association test, 

followed by colocalization analysis. Of the 65 metabolites with a significant mQTL, we found that 

37 (56.9%) have a high probability of colocalization (PP4>0.8) with brain-specific eQTL across 

28 genes (Table S3.7).  

We found that the mQTL on chromosome 14 regulating CSF levels of guanosine and inosine, 

both purine nucleosides, is highly likely to be colocalized (PP4>0.98) with the locus regulating 

expression levels of PNP, or purine nucleoside phosphorylase, in the brain. Within our dataset, 

guanosine and inosine levels are significantly correlated with an R2 of 0.65. Panyard, et. al 

previously reported the guanosine association at the PNP locus using CSF130 metabolomics, as 

well as an association with schizophrenia.130  
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Furthermore, we found a group of complex lipids that have high colocalization probability with a 

few genes at a locus on chromosome 11. Three of these lipids (two annotated as PC 36:3 

Isomer B and PC 38:3) had colocalization PP4>0.9 with the FADS1 (fatty acid desaturase 1) 

gene locus (Figure 4). These three lipids and an additional one (another PC 38:3 isomer) were 

colocalized (PP4>0.8) with the FEN1 (flap endonuclease 1) gene locus. Similarly, these four 

lipids plus an additional one (annotated as “PE P-38:3 or PE O-38:4”) were colocalized 

(PP4>0.9) with the TMEM258 (transmembrane protein 258) gene locus. Each of these lipids 

have a Pearson’s R2 > 0.83 with each other, suggesting that these lipids and their isomers are 

metabolites of a particular pathway. Sall, et. al.146 has previously grouped these genes together 

into a syntenic block of conserved MDD risk genes involved in myelination and lipid metabolism. 

The levels of these metabolites also showed highly significant associations with bipolar disorder 

in our MWAS. 

 

Additionally, we applied the recently developed method isoTWAS147 in order to identify specific 

metabolite-associated isoforms that may otherwise be diluted in the gene-level TWAS 

approach. After adjusting p-values for multiple testing and applying a PIP threshold of 0.8, we 

find that 59 metabolite QTL (90.7%) are significantly associated across 96 different gene 

isoforms (61 unique genes) (Table S3.8). Of the 139 gene-metabolite pairs from isoTWAS, 

seven of these are direct replications of the TWAS findings (a significant overlap, Fisher’s exact 

test p-value = 3.6e-10), including the three of the lipids associated with the FADS1 gene locus 

(as well as four unnamed HILIC metabolites associated with the genes CTNNA1, PKD2L1, 

PYROXD2, SRSF12). Many metabolites that were TWAS-significant were also isoTWAS-

significant for different genes, including inosine and guanosine associated with isoforms of 

EIF2B2 rather than PNP. EIF2B is known to have guanine nucleotide exchange factor 

activity,148 suggesting that isoTWAS is useful in identifying additional potential mechanisms of 

genetic regulation between metabolites and genes. 
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DISCUSSION 

We performed genome-wide QTL mapping on 5,543 circulating CSF metabolite levels in a 

cohort of 977 living individuals. We identified 82 significant mQTLs representing 51 independent 

loci and 65 unique CSF metabolite levels, of which 58/65 (89.2%) have not been detected 

before in CSF and eight not in blood, saliva or urine.  

 

We found both novel and replicated mQTL associations, of which most metabolites seemed to 

be regulated by the gene locus that encodes the protein for which they are substrates or 

products. One novel example found here is hypaphorine, a plant metabolite that can be found in 

the human metabolome after ingestion of legumes (e.g., lentils, chickpeas).149 Hypaphorine was 

found to be regulated by the SLC22A5 locus, a gene for the OCTN2 protein, which transports 

carnitine into the cell. Hypaphorine has been shown to have inhibitory effects on a SLC22 family 

members due to its similarity in structural backbone to carnitine.150 A strongly significant and 

replicated example is the association between ribonic acid and the ENOSF1 locus, the protein 

for which catalyzes the dehydration of sugars, including ribonic acid. 

 

Similarly, we observed that 56.9% (37/65) of the CSF metabolites with a mQTL colocalized with 

brain-specific eQTLs, and 90.7% (59/65) colocalized with brain specific isoform-QTLs 

(isoQTLs). Collectively, these eQTL-CSF mQTL colocalizations provide insights into the shared 

neurobiological mechanisms and possible interactions between these genes and CSF 

metabolite levels. One such eQTL-mQTL colocalization we found is at the PNP locus with CSF 

levels of guanosine and inosine. PNP is involved in the purine nucleotide salvage pathway by 

catalyzing the conversion of guanosine to guanine as well as inosine to hypoxanthine.  
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When integrating our identified CSF mQTLs with pre-existing genome-wide summary statistics 

on ten psychiatric and neurodegenerative disorders, we identified 31 CSF metabolites of which 

predicted levels associated with brain-related traits. The strongest MWAS associations were 

with bipolar disorder and schizophrenia, of which an intergenic region nearby CDH2 for bipolar 

disorder was novel. We also observed metabolite associations for Alzheimer’s disease, stroke, 

and ADHD.  

 

Several studies have previously reported the lipid mQTL hotspot at the FADS1/2 locus,151,130,131 

which we augment with additional lipids here. This locus has also been identified as a GWAS 

risk region for bipolar disorder,1,152 and here we found this locus to be significantly associated 

with phosphatidylcholine lipid levels, glycerophospholipid levels, and bipolar disorder through 

our MWAS analysis. Colocalization with brain eQTLs and isoQTLs suggested a common 

genetic mechanism regulating the levels of these lipids and the levels of the FADS1 gene. 

Heterozygous knockouts of the FADS1/2 genes in mice have shown episodic phenotypes such 

as increases in hyperactivity (marked by increased wheel-running), depression-like episodes, 

and changes in circadian rhythms, suggestive of the symptoms commonly associated with 

bipolar disorder.153 Similarly, lipid dysregulation is known to play a role in AD.154 While we did 

not find significant differences in the levels of these lipids in our ADC cohort (data not shown), 

genetic variants in the FADS1 locus have also been implicated in increased risk for Alzheimer’s 

disease,155 suggesting further pleiotropy at this locus for this neurodegenerative phenotype as 

well. This genetic region has been described previously as both highly polygenic and pleiotropic, 

mostly influencing complex lipids synthesized from arachidonic acid, a product of the rate-

limiting enzymes encoded by FADS2 (and FADS1).151 

 

This study successfully identified many mQTL associations in CSF that were replicated in two 

separately ascertained cohorts; nonetheless, several limitations should be taken into account. 
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First, some metabolites had no annotations, or annotations with low reliability scores (based on 

the Metabolomics Standards Initiative (MSI) scale), which makes these associations difficult to 

interpret biologically. As an example, we observed a novel mQTL association for variants 

located on POU4F2 and CSF levels of a metabolite annotated as a prostate cancer medicine, 

bicalutamide (MSI level=3, i.e., moderate reliability). However, we did not observe sex 

differences for this association despite bicalutamide being prescribed mainly in men for treating 

metastatic prostate cancer (bicalutamide inhibits testosterone by binding to androgen 

receptors). The POU4F2 protein (encoded by POU4F2) expression levels have been implicated 

in promoting tumor growth in various cancer types through the Hedgehog signaling pathway.156 

Altogether this suggests that our newly identified mQTL could represent a true biological 

pathway for prostate cancer, but this could not be verified with the current annotation 

information on this metabolite. Furthermore, our study consisted solely of European-ancestry 

individuals. To gain a better understanding of the biology between CSF metabolites and brain 

related disorders and gene expression, as well as to improve the fine-mapping accuracy of 

these QTL, many more samples of diverse ancestries must be included in future studies.  

 

Since CSF collection can occur in vivo in healthy and diseased individuals, our results highlight 

that the specific integration of genetics with CSF metabolomic data could help understanding 

how genetic factors contribute to ongoing molecular mechanisms underlying neuropsychiatric 

disorders and neurobiological mechanisms. This study indicates that the multi-omic integration 

of genetics with CSF metabolomic data helps to identify which molecular mechanisms underlie 

diseases and disorders of the brain. Large-scale genome-wide studies on the CSF metabolome 

are limited, thus expanding on these studies is imperative for gaining biological insight in 

psychiatric and neurodegenerative disorders. As the summary statistics generated by this study 

can also be useful for studying other diseases and traits, data will be shared with the scientific 

community via the European Bioinformatics Institute GWAS catalog.  
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METHODS 

Study sample(s) 

In total, 977 study samples (age 52.7±16.6 years, 35.9% female) were included from a memory 

clinic cohort and a cohort of cognitively healthy subjects in the Netherlands. 

Memory clinic cohort: Memory clinic samples originated from three cohorts, that are all related 

to Alzheimer center Amsterdam, including the Amsterdam Dementia Cohort (ADC),157 the 90+ 

study158 and the Twin Study.159,160 The ADC started collecting samples in the year 2000 and is 

an ongoing, observational follow-up study of patients who visited the memory clinic of the 

Alzheimer Center at Amsterdam UMC, location VU University medical center (VUmc).157 

Dementia was diagnosed according to diagnostic guidelines for neurodegenerative disease.161–

164 The Innovative Medicine Initiative European Information Framework for AD (EMIF-AD) 90+ 

study includes cognitively healthy elderly above 90 years old, and is aimed to identify factors 

associated with resilience to cognitive impairment in the oldest-old.158 Monozygotic twins (one 

subject per twin pair) were invited from the Netherlands Twin Register159 to participate in the 

PreclinAD study as part of the EMIF-AD project (http://www.emif.eu/).160 A detailed description 

of the cohorts is provided in the supplemental materials.  

 

Cognitively healthy subject cohort: Cognitively healthy volunteers were recruited at outpatient 

pre-operative screening services in four hospitals in Utrecht, the Netherlands (August 2008 until 

March 2010).132 We included patients undergoing spinal anesthesia for minor elective surgical 

procedures, who ranged between 18 and 60 years of age and had all four grandparents born in 

The Netherlands or other Northwestern European countries (Belgium, Germany, UK, France 

and Denmark). Each candidate participant received a telephone interview to exclude subjects 

with self-reported psychotic or major neurological disorders (e.g., stroke, brain tumors, 

neurodegenerative diseases) and to record any use of psychotropic medication.  
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An overview of characteristics from the cognitively healthy subjects cohort (N=490, all cognitive 

healthy controls) and memory clinic cohort (N=487) is presented in Table S10. The Amsterdam 

sample includes n=220 controls (75 normal cognition, 145 subjective cognitive decline), n=87 

subjects with mild cognitive impairment (MCI) and n=180 patients with dementia. Patient groups 

in the Amsterdam sample differed from each other as expected, with the AD-type dementia 

group including more APOE-e4 carriers, less APOE-e2 carriers and having more abnormal AD 

CSF biomarkers compared to the MCI and healthy controls. Cognitively healthy subjects were 

less often female, were younger, had a lower APOE-e4 and a higher APOE-e2 frequency, as 

compared to the memory clinic subjects. 

 

All participating studies were approved by their respective Medical Ethics Committee. Informed 

consent, either from the patient or from the legal representative, was obtained from all 

participants. 

 

CSF data collection 

Memory clinic cohort: CSF samples were collected via lumbar puncture, using a 25-gauge needle 

and syringe. CSF levels of amyloid-beta 42 (Aβ42), total tau (t-tau) and hyperphosphorylated 181 

tau (p-tau) were determined as part of the diagnostic work-up, using enzyme-linked 

immunosorbent assays (ELISA) (Innotest: Fujirebio, Ghent, Belgium).157 For the ADC cohort, CSF 

Aβ42 values were adjusted for drift over time as described previously.165 Biomarker abnormality 

cut-offs for the ADC cohort are CSF Aβ42 < 813 pg/ml, CSF t-tau > 375 pg/ml, ratio t-tau/ Aβ42 

> 0.52.166 

Cognitively healthy subject cohort: A sample of 6 ml of CSF was obtained from each subject via 

lumbar puncture and immediately stored in fractions of 0.5 and 1 ml at −80 °C, as described 

previously. 132 
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CSF metabolite processing 

In total, 5,543 CSF metabolites were measured across three different metabolite assays at the 

West Coast Metabolomics Center at UC Davis, including GC-TOF MS (primary metabolism), 

CSH-QTOF MS/MS (complex lipids), and HILIC-QTOF MS/MS (biogenic amines) 

(https://metabolomics.ucdavis.edu/). 

Metabolite levels were first screened for missingness across each cohort, removing any 

metabolites which had missing data for >20% of individuals. For remaining metabolites, we 

imputed missing values to half the median value for the corresponding metabolite across the 

cohorts, reasoning that these metabolites are likely present in quantities too low to detect within 

these individuals, and as done previously127. Inverse-rank normalization was performed on all 

metabolites to ensure normality for QTL mapping. 

 

Genotyping and imputation 

Memory clinic samples were genotyped with the Illumina Global Screening Array (GSA) and 

cognitively healthy control data was genotyped with the OmniExpress Exome array. Quality 

control prior to imputation has been described in depth elsewhere.167 Autosomal genotypes 

were first filtered for SNPs with <2% SNP-missingness and >5% minor allele frequency (MAF) 

using plink168 separately per cohort. Individuals with call rate <98% were excluded. Genotype 

vcf files were then uploaded into the TopMed server for imputation and liftover to hg38. Post-

imputation quality was assessed by filtering variants with imputation R2<0.3, providing about 8 

million SNPs per cohort for downstream analyses. Imputed genotypes were then merged 

between the two cohorts, and then once more filtered for variants with <2% SNP-missingness 

and >5% MAF.  

 

QTL mapping pipeline 
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Plink v1.90b168 –linear function was used to perform the QTL mapping across each of the 

metabolites separately. Covariates were adjusted via the –covar flag, including age, sex, and first 

3 genotyping PCs. Initially cohorts were analyzed separately  and the resulting effect sizes for 

any metabolite-SNP pairs found to be genome-wide significant in either cohort were then checked 

for replication. For the Amsterdam cohort we performed QTL mapping with additional covariate 

adjustment for diagnostic status, which did not significantly change results (data not shown). The 

effect sizes of each of these loci per metabolite were tested for concordance via Pearson’s 

correlation. Meta analysis was performed after merging individual-level genotype data across both 

cohorts.  

 

Replication across cohorts 

In order to quantify the concordance of the associations between both cohorts, for each 

metabolite, we subsetted the resulting summary statistics to any metabolite-SNP pairs 

associated with p<6e-11 in either cohort. In total, we identified 30 metabolites with significant 

genetic regulation in the cognitively healthy controls, and 29 metabolites in the memory clinic 

samples, of which 16 metabolites were significant after Bonferroni correction in both cohorts 

with the same direction of effect at the same SNPs. Of the remaining 27 mQTL that showed 

Bonferroni-significance in one cohort but not the other, 19 mQTL were nominally significant in 

the other cohort, with a p-value of at least 0.05 and same direction of effect at the same SNP, 

resulting in a direct replication rate of 81%. Out of the eight metabolite-SNP pairs that did not 

directly replicate, six were significant in the Memory clinic cohort but not replicated in the 

Cognitively healthy cohort, and the remaining two were not replicated in the Memory clinic 

cohort. No SNPs with LD R2 > 0.5 replicate with P < 0.05 in the opposing cohort, though when 

we consider the meta-analysis summary statistics, all SNP-metabolite associations are 

replicated with P <= 0.0088 (see Table S3.2). Furthermore, these eight specific instances each 
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have at most two SNPs passing the Bonferroni-corrected threshold, suggesting that they are 

borderline significant associations. 

 

Variant annotation 

We downloaded the GENCODE v.41 basic gene annotation GTF file to interpret potential 

functional consequences of the loci found to be associated with metabolites. We manually define 

promoters as the region 10Kb upstream of the TSS  (using bedtools169 –flank -s -r 10000 -l 0), 

introns as regions within “gene” annotations that are not already covered by “exons” (bedtools –

subtract), and intergenic regions as any region not covered by any annotations (bedtools –

complement). Independent loci were selected per metabolite by subsetting the genotype files to 

only the SNPs that reached at least p<6e10-11 significance, then clumping (using plink –clump 

command) these SNPs into separate regions with LD R2 < 0.2. All remaining SNPs for any 

metabolites were then concatenated, deduplicated, and reformatted into a BED format file for use 

with the bedtools –intersect command.  

 

CSF metabolome-wide association study pipeline 

To identify metabolites whose local-regulated CSF level is associated with brain-related 

phenotypes, we performed MWAS analyses using FUSION software 

(http://gusevlab.org/projects/fusion). First, we generated weights for all CSF metabolites with at 

least one genome-wide significant signal in the cohorts combined (P<5e-8). We restricted to loci 

+/- 500Kb around the lead SNPs per each metabolite, with the note that some metabolites were 

polygenic and had more than one associated genetic loci. For polygenic metabolites, any 

significant SNPs outside of the +/-500Kb range of another genome-wide significant SNP were 

included as a separate model. Age, sex, study site and the first three genotype PCs were included 

as covariates in the –covar flag of the FUSION.compute_weights.R script.  
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We used the FUSION.assoc_test.R script (default settings) to test for association between the 

CSF metabolite weights and GWAS for Alzheimer’s disease3, dementia with Lewy bodies140, 

stroke141, amyotrophic lateral sclerosis142, bipolar disorder1, schizophrenia2, major depressive 

disorder143, ADHD94, insomnia144 and alcohol abuse disorder.145 To account for LD structure we 

used 1000 Genomes data (all ancestries, build 38) data as LD reference panel. The --coloc65 flag 

was included to perform colocalization on any metabolites that had an association with the trait of 

interest with P-TWAS < 0.05. Colocalization analysis further narrowed down the metabolite-trait 

associations to those with a single variant influencing both the CSF metabolite level and trait, and 

associations with a PP4>0.8 were classified as having supporting colocalization evidence.  

Models include between 889 and 7431 SNPs. The top1 model was chosen as the best model 

type for 62.3% of the metabolites, followed by LASSO models (21.4%), elastic net models (10%), 

and blup (6.4%).  

 

Results on gene–tissue associations per phenotype were corrected for multiple comparisons 

using a 5% FDR significance threshold. Significant MWAS loci were identified as novel if the 

strongest associated SNP was not nominally significant (P > 1e-5) in the corresponding GWAS 

within ±1 Mb of the transcriptional start site of the gene’s region. 

 

Fine-mapping of mQTLs 

To predict which SNP(s) within mQTL associations were most likely to be causal, we used 

FINEMAP,170 SuSiE,171 PolyFun-FINEMAP, and PolyFun-SuSiE172 as fine-mapping methods. 

The summary statistics for these metabolites were lifted over to hg19 to match the UKBB LD 

reference panel as well as the UKBB functional annotations172, both of these are composed of 

British ancestry individuals. Top loci to be fine-mapped were defined by selecting the SNP with 

the lowest p-value for each metabolite and including any SNPs within the region 500kb 

upstream and 500kb downstream of the lead SNP. Results were processed for credible sets 



 

 
91 

with summed fine-mapping posterior inclusion probability (PIP) of at least 0.5 across fewer than 

10 SNPs, and SNP-associations that overlapped across multiple methods were prioritized as 

most likely to be the causal.  

 

Integration with brain eQTLs 

To identify mQTL that colocalize with eQTL for brain-specific gene expression, we lifted over the 

PsychENOCDE TWAS weights from hg19 to hg38 and then performed a FUSION TWAS 

analysis. Each of the summary statistics for metabolites with Bonferroni-significant loci were 

included as separate input GWAS for the FUSION.assoc_test.R script with the PyschENCODE 

TWAS weights, using the 1000 Genomes European-specific (EUR) LD panel. The --coloc 0.05 

flag was included to perform colocalization on any metabolites that were associated with gene 

expression with P-TWAS < 0.05. We consider any metabolite-gene pairs with coloc.PP3 > 

coloc.PP4 and coloc.PP4 > 0.8 to be significantly colocalized.  

 

In a similar manner, we also applied the isoform-level TWAS method147 using precomputed 

weights per isoform derived from adult PsychENCODE data, as provided by the isoTWAS 

developers. In total we tested 7,530 genes, each with varying numbers of isoforms, that had 

positive heritability with a p-value < 0.05 within the PsychENCODE data. Similar to the TWAS 

analyses, we used the 1000 Genomes EUR LD reference panel. We then performed 

probabilistic fine-mapping of the significant associations, and filtered the resulting statistics to 

those transcripts in the credible sets with an adjusted screen p-value less than 0.05, 

permutation p-value less than 0.05, and PIP >= 0.8. 

 

Data availability  
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GWAS summary statistics on all CSF metabolite levels that were generated as part of this study 

have been deposited to the European Bioinformatics Institute GWAS Catalog 

(https://www.ebi.ac.uk/gwas/) under accession no. GCSTXXXXX. 

GENCODE v.41 basic gene annotation GTF file from 

https://www.gencodegenes.org/human/stats_41.html  

UKBB LD reference panel available from Amazon S3 bucket s3://broad-alkesgroup-ukbb-

ld/UKBB_LD/ 

UKBB functional annotations available from Amazon S3 bucket https://broad-alkesgroup-ukbb-

ld.s3.amazonaws.com/UKBB_LD/baselineLF_v2.2.UKB.polyfun.tar.gz 

PsychENCODE TWAS weights are available from http://resource.psychencode.org/. 

PsychENCODE isoTWAS weights are available from 

https://zenodo.org/record/6795947#.Y8mi2-zMLBI. 

Summary statistics on Alzheimer’s disease3, dementia with Lewy bodies140 and amyotrophic 

lateral sclerosis142 are publicly available at the European Bioinformatics Institute GWAS Catalog 

under accession no. GCST90027158, GCST90001390 and GCST90027163, respectively. 

Summary statistics on bipolar disorder1, schizophrenia2, major depressive disorder143, attention 

deficit hyperactivity disorder (ADHD)94 and alcohol abuse disorder145 are publicly available on 

the psychiatric genomics consortium (PGC) website (https://www.med.unc.edu/pgc/results-and-

downloads).  

The MEGASTROKE consortium, launched by the International Stroke Genetics Consortium, 

has published the stroke141 summary statistics at https://www.megastroke.org. Full insomnia144 

summary statistics for UKB and the top 10,000 SNPs for 23andMe are available at 

https://ctg.cncr.nl/software/summary_statistics/. 
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Chapter 3 Figures 

Figure 3.1. Overview of samples included in the CSF QTL mapping study.  

 

 

 

Figure 3.2. Manhattan plot and genetic architecture of mQTL associations 

(A) Manhattan plot of the CSF metabolites that had at least one genome-wide significant mQTL 

association (P<6e-11) in the total sample (n=977). Each point depicts a distinct mQTL 

association between genetic variant and CSF metabolite levels. Green represents CSF 

metabolites measured using HILIC-QTOF MS/MS (biogenic amines, 1,618 metabolites), blue 

represents metabolites measured with GC-TOF MS (primary metabolism, 393 metabolites) and 

red represents CSH-QTOF MS/MS (complex lipids, 3,532 metabolites). Only CSF metabolites 

with annotation and  P<6e-11 have a label. Novel CSF mQTL are depicted in bold and with an 

asterisk. The red line depicts the significance threshold of P<6e-11 (Bonferroni correction for 

754 independent CSF signals), the yellow line depicts P<5e-8. Only results with a P<1e-8 and  
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P>1e-40 are plotted. 

(B) Using the GENCODE basic gene annotation, we first subsetted to 19,100 protein-coding 

genes, and we counted exons and UTRs as defined within the file. Promoters were defined as 

the region 10Kb upstream of a gene TSS, introns as regions within gene annotations not 

already covered by exons, and intergenic regions as any region not covered by any previous 

annotations. The y-axis denotes the number of independent SNPs, with some SNPs counted 

more than once for multiple metabolites.  

(C) Histogram of polygenicity depicting number of metabolites associated with each 

independent locus.  

(D) Histogram of pleiotropy depicting the number of independent loci associated with each 

metabolite.  
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Figure 3.3. Heatmap of Z scores of CSF metabolites with at least one significant 

metabolome-wide significant association with one of the brain-related traits. 

This visualization includes metabolite-phenotype associations with at least one significant (P-

FDR<0.05) association. Blank squares indicate that CSF metabolite weights were not 

sufficiently predictive. # depicts P-FDR<0.10, * P-FDR<0.05, ** P-FDR<0.0001*** and P-

FDR<0.00001. 
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Figure 3.4. Phosphatidylcholine QTL colocalization with FADS1 locus. 

Locus zoom plots, top panel shows associations with lipid PC 36:3 isomer B levels at the 

FADS1/FADS2/TMEM258 locus and their LD relative to the top SNP; bottom panel shows eQTL 

SNPs for FADS1. The diamond shape denotes the lead SNP whereas the orientation of the 

triangles denote the direction of the effect. The gray dashed line indicates the significance 

threshold of p=5e-8.  
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Conclusions 

 

The past decade of genomic research has seen significant progress in unraveling the genetic 

basis of psychiatric disorders like bipolar disorder and schizophrenia, and neurodegenerative 

conditions such as Alzheimer’s disease. However, the exact molecular mechanisms by which 

common genetic variation leads to risk of these phenotypes still remains elusive. Research into 

AD has uncovered the large effects of the APOE4 allele on risk of developing the disease, 

though specific causal pathways, explaining how the aggregation of amyloid-beta and 

phosphorylated tau tangles leads to cognitive decline, remain unclear. For psychiatric disorders, 

the added challenge of having no clear biomarkers by which to distinguish diagnoses or 

measure effects of treatment, and relatedly the lack of genetic risk loci with substantial effect, 

has hindered the development of treatment options for patients.  

 

More recently, the integration of omics-data in genome-wide contexts has provided valuable 

insights into the functional consequences of genetic risk loci. GWAS have been the backbone of 

complex trait research (as opposed to their Mendelian173 counterparts) since the first genome-

wide studies were implemented in the early 2000s.174,175 Such studies are hypothesis-

generating, not candidate gene driven, attempting to assay the entire genome in an agnostic 

manner to find potentially novel loci associated with a given trait. Genotyping for GWAS is not 

entirely unbiased, however, since the majority of SNP-arrays used are ascertained for common 

variants in European populations,176 excluding potentially relevant alleles that are common in 

other ancestries. There has been a recent trend in the field toward whole-genome sequencing in 

place of genotyping to better capture all possible variations, and though this is currently much 

more expensive than genotyping, as technology improves such costs decrease. Similarly, 

genome-wide association studies tend to focus on common alleles (with minor allele 

frequencies no less than 1%), though rare genetic variation has also proved insightful for 
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elucidating mechanisms of common disease,177,178 providing another avenue of exploration 

through whole-genome sequencing studies. There is also an ever-present need to increase the 

sample sizes of such studies, especially in the context of psychiatric phenotypes for which the 

genetic effects on the phenotype are very small. Overall, GWAS have been successful in 

identifying numerous genetic variants associated with complex traits, but understanding the 

biological mechanisms of the non-coding variants underlying these associations has proven 

challenging, thus interest in functional molecular data has blossomed.  

 

Transcriptomics attempts to connect non-coding variation back to the gene as the main unit of 

interest, focusing on how common genetic variants influence the expression of specific genes. 

While this has proved insightful in many contexts, studying brain-related phenotypes remains 

challenging due to the difficulty in accessing brain tissue in living donors.15 Gene expression is 

known to vary for different tissues or even cell types within tissues, though here we leverage the 

knowledge that cis-effects of genetic variants on gene expression tend to be correlated.16,17 

Interesting genes like LINC00933 from the fibroblast project and CAMKK2 from the immune cell 

types project were found to be genetically regulated by and colocalized with a locus associated 

with bipolar disorder, thus are potential candidates for potential drug targets and in-vitro follow-

up studies.  

 

The investigation of chromatin accessibility in fibroblasts using ATAC-seq also yielded insights 

into the regulatory landscape of the genome. Notably, the study found twice the number of 

associations between chromatin accessibility and complex diseases compared to gene 

expression, supporting the notion that gene expression is more context-dependent than 

chromatin accessibility.14,29 Moreover, the study demonstrated an improvement in fine-mapping 

of QTL, identifying regulatory variants that were previously overlooked by traditional closest-

gene methods, wherein the gene most proximal to the SNP of interest is considered its 
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regulatory target. We found that not all QTL SNPs and open chromatin regions necessarily 

regulate the nearest gene, emphasizing the importance of considering long-range enhancer-

promoter interactions in gene regulation. These discoveries contribute to our understanding of 

the intricate relationship between chromatin accessibility, gene regulation, and disease, offering 

new avenues for investigating the molecular basis of complex traits and diseases. 

 

Similarly, metabolomics, the study of small molecules involved in cellular processes, has 

emerged as a valuable tool in psychiatric genetics.179 In this study, we found 54 novel mQTL 

associations and we replicated 11 mQTL associations previously reported in CSF and other 

biofluids. Colocalization with brain-eQTL revealed that most metabolites seemed to be regulated 

by the gene locus that encodes the protein for which they are substrates or products, though the 

implementation of isoTWAS also revealed other potential mechanisms not detectable at the 

gene-level. One particularly interesting finding was for several lipid levels associated with the 

FADS locus, which has also been implicated as a risk region for bipolar disorder.1,153 Lipid 

dysregulation has been suspected to play a role not only in psychiatric disorders,180,181 but also 

in neurodegenerative disease as well.154,182  

 

While the work presented in this dissertation has yielded novel insights into the genetic 

architecture of and genes involved in neuropsychiatric phenotypes, there is still much more work 

needed in order to see improvements in clinical outcomes for patients. Regarding future 

directions, a study assessing chromatin interactions via a next-generation sequencing 

technology like chromatin capture Hi-C183 could be applied to validate the SNP-chromatin-gene 

pathways identified in the fibroblast project in vitro. Neuronal iPSCs (induced pluripotent stem 

cells) derived from the fibroblasts184 also could be used to validate that the trait-associated 

genes found in fibroblasts or blood are similarly regulated in neurons. Since psychiatric 

disorders are hypothesized to involve neurodevelopmental dysregulation, neuronal iPSCs from 
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patients and controls is a suitable model for such processes.185 One challenge with studying 

neuropsychiatric disease in vitro, however, is how to capture the manifestation of complex 

symptoms like changes in mood or hallucinations. While these exact endophenotypes cannot be 

studied with cellular models, cells are useful for studying other phenotypes thought to be 

relevant to bipolar disorder and schizophrenia, including electrical changes in synapses due to 

aberrations in calcium signaling.186,187 Cells have also been useful in the context of drug 

screening for psychiatric disorders188 and for Alzhimer’s disease.189 It is also possible to capture 

proxies of complex behavior, like sleep disturbances in bipolar disorder through changes in 

circadian rhythms.52,53 Animal models such as zebrafish14,53 and mice153 have also been used to 

illustrate the impact of genetic or environmental perturbations in the context of psychiatric 

disorders. Future studies focusing on the genes prioritized in this dissertation could involve 

perturbations of these genes, for instance over/underexpression through CRISPR-Cas editing, 

assessing the differences in specific cellular endophenotypes described here. Future studies 

could also involve direct stimulation of iPSCs with the metabolic compound(s) that were found to 

be associated with neuropsychiatric traits, examining whether cells derived from patients or 

controls behave differently in response to such stimulation. 

 

Furthermore, much of the missing heritability problem could lie in variants and QTLs not studied 

here, including rare variants (minor allele frequency < 1%), structural variation (such as short 

tandem repeats, copy number variations, etc), and trans-acting QTL (>1Mb or inter-

chromosomal). As technologies like whole genome sequencing, long-read sequencing, and 

single cell sequencing become cost-effective, large-scale generation of such genetic data is 

becoming increasingly possible. While the small effects of the GWAS risk loci and QTL are 

challenging to interpret, drugs acting on the downstream effects of such loci can have 

substantial impact.190 Given that the development of drugs and other therapeutics is often a 

lengthy process, another use of the information gleaned in these studies involves risk 
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predictions. Neuropsychiatric phenotypes are highly polygenic, and methods to develop risk 

scores based on the additive effects of genetic variation are already underway,1,191 though at 

this time these tools also require much improvement to be clinically applicable.20 

 

One crucial aspect in human genetics as a field is the need for diverse samples. Historically, 

genetic studies have predominantly focused on populations of European ancestry, which has 

limited the generalizability of findings to other populations,192 especially in the context of risk 

scores for polygenic disorders.20,176 This lack of diversity hinders our ability to fully comprehend 

the genetic underpinnings of neuropsychiatric disease and other broad ranges of phenotypes. 

Recognizing this limitation, there is now a growing emphasis on collecting and analyzing data 

from diverse populations.193,194 Some genetic variants may be specific to certain populations, 

while others may have a shared causal impact across different ancestries.195 By incorporating 

data from multiple diverse ancestries, we can identify both shared and population-specific 

genetic contributors to various traits, leading to a more comprehensive understanding of the 

underlying molecular mechanisms. 

 

In conclusion, the field of neuropsychiatric genomics continues to make strides in understanding 

the genetic basis of disorders of the brain. The integration of multiple omics levels has 

significantly enhanced our understanding of GWAS risk loci by uncovering the functional 

consequences and molecular mechanisms of disease-associated loci. We used sources like 

fibroblasts, blood, and CSF rather than brain tissue, showing that relevant cis-genetic effects 

can be detected despite some cell type specificity of QTL. Finally, we emphasize that  the 

inclusion of diverse samples in genetic studies is crucial for capturing the full spectrum of 

genetic variation and improving the generalizability of findings. These advancements bring us 

closer to personalized and targeted approaches for the prevention, diagnosis, and treatment of 

neuropsychiatric disorders.  
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