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Abstract

The reinforcing and motivational aspects of food are tied to the release of the dopamine in the 

mesolimbic system (ML). Free fatty acids from triglyceride (TG)-rich particles are released upon 

action of TG-lipases found at high levels in peripheral oxidative tissue (muscle, heart), but also in 

the ML. This suggests that local TG-hydrolysis in the ML might regulate food seeking and reward. 

Indeed, evidence now suggests that dietary TG directly target the ML to regulate amphetamine-

induced locomotion and reward seeking behavior. Though the cellular mechanisms of TG action 

are unresolved, TG act in part through ML lipoprotein lipase, upstream of dopamine 2 receptor 

(D2R), and show desensitization in conditions of chronically elevated plasma TG as occur in 

obesity. TG sensing in the ML therefore represents a new mechanism by which chronic 

consumption of dietary fat might lead to adaptations in the ML and dysregulated feeding 

behaviors.

INTRODUCTION

The modern food environment is characterized by a radical increase in calorie-rich food as 

well as ubiquitous reminders of food palatability and accessibility. Hence, environmental 

variables that influence the energy balance equation have undergone a drastic change in 
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recent human history, in which the energy cost required for survival is often far exceeded by 

energy intake. This statement of fact is instrumental in the worldwide spreading of 

pathologies related to overfeeding including diabetes, obesity, cardiovascular disease and 

dyslipidemia - a constellation of pathophysiologies referred to as metabolic syndrome [1].

Appropriate energy homeostasis is reached when energy intake and demands equilibrate 

around a defined metabolic set-point. Millennia of evolution have shaped a highly 

responsive system that integrates the various signals of hunger and satiety through a 

complex and redundant interplay of neural circuitry dedicated to long-term energy 

homeostasis. In the central nervous system (CNS) the hypothalamic-brainstem axis has been 

identified as a critical regulator of energy balance. Circulating energy-related signals such as 

leptin, ghrelin, insulin, as well as nutrients are detected by and alter the activity of discrete 

neuronal populations that in turn engage neuroendocrine, peripheral nervous, and ultimately 

behavioural systems to adapt nutrient intake to energy demands (Figure 1). This 

hypothalamus-brainstem system to regulate feeding and metabolism around a set point is 

therefore referred to as “homeostatic” [2,3]. The complex behavioural sequence that leads to 

food intake rely on hierarchical integrative processes encoding motivation, reward, habit, 

emotionality, and memory that are influenced by nutritional status and diverse hypothalamic 

and extrahypothalamic brain networks. Key among these are mesolimbic (ML) circuits, 

where the release of dopamine (DA) has been extensively shown to encode the reinforcing 

and motivational properties of high-fat and high-sugar (HFHS) foods [4,5]. In particular, 

midbrain projections from DA neurons of the ventral tegmental area (VTA) to the nucleus 

accumbens (NAc) represent a principal neural substrate upon which drugs of abuse exert 

their actions; and thus the ML is often referred to as the brain ‘reward circuit’. It is now well 

established that the ML is also a target for energy-related signals such as leptin, ghrelin, and 

insulin [6-8] **[9].

Both the homeostatic and reward circuitries represent redundant yet complementary and 

interacting neural substrates participating in the control of energy balance under 

physiological conditions; but maladaptations in these circuits can be both a consequence of 

and contribute to nutrient overload [10-13]. Indeed, numerous lines of evidence have 

promoted the concept that compulsive/dysregulated food intake, as can occur in obesity, 

might be the result of adaptive responses of homeostatic and reward circuits in response to 

chronically increased exposure to calorie-dense food in susceptible individuals [10,14]. This 

review will focus particularly on recent developments in the field that point toward a direct 

connection between neural sensing of circulating lipids from nutritional origin and the 

function of the ML in the regulation of reward seeking.

High fat diet, obesity and the consequences on dopamine signaling

Hypothalamic structures lie close to circumventricular organs (CVO) and are regarded as a 

primary neural structure affected by nutrient overload [2]. Molecular underpinnings linking 

nutrient overconsumption and altered neural function involve hypothalamic FFA metabolism 

[15], nutrient-induced endoplasmic reticulum (ER) stress [16-19], inflammatory processes 

[20], or resistance to energy-related signals [18,21-23].
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Besides the hypothalamus, there is now clear evidence that the DA signaling is also directly 

affected by high-fat feeding and obesity in both human and rodent. For instance, the 

abundance of dopamine D2 receptor (D2R) in the striatum is inversely correlated to body 

weight [11,24,25] and obese rats were shown to display compulsive eating as measured by 

palatable food consumption despite aversive conditioned stimulus [26].Genetic silencing of 

D2R in the dorsal striatum accelerates the development of a reward-deficit state and 

compulsive eating in rats exposed to high fat food [26]. In rats, individual variation in 

motivational response to food-related cues were also shown to predict body-weight gain and 

willingness to work for food rewards **[27]. Interestingly increased craving was associated 

with a rapid change in dorsal striatum DA signaling but not opioid signaling in the NAc 

**[27].

In human, striatal D2R availability was initially found to be significantly lower in obese 

individuals and negatively correlated with body-mass index (BMI) [24,28]. BOLD signal 

assessed by brain functional Magnetic Resonance Imaging (fMRI) in striatal structures was 

decreased in obese versus lean subject [29], suggesting a defect in striatal neuron activity 

[29]. On the other hand obesity was associated with a greater BOLD response to food-

related cues in brain regions associated with reward and motivation [12,28-30]. These data 

suggest that striatal neurons are underactive at baseline in obese individuals but show 

sensitized responses to food signals. A recent study implicates DA signalling in this process; 

using positron emission tomography (PET) to quantify striatal D2R-like binding potential 

(D2BP) identified an association between striatal DA binding in obesity. Body mass index 

(BMI) was negatively correlated with D2BP in the ventral striatum (i.e., NAc) whereas in the 

dorsal striatum, both BMI and habitual/opportunistic eating behaviour positively correlated 

with D2BP **[31]. It remains unclear whether altered DA signaling is a cause or a 

consequence of body weight gain, these studies draw a complex picture of DA signaling 

defects in obesity, where regionally distinct changes might create a state of both reward 

deficit and heightened habitual responding **[31].

Importantly, several studies highlight the fact that intrinsic defects in ML function developed 

independently of body weight gain and - although magnified by obesity states - might 

primarily be the result of dietary fat exposure. Although magnitude and direction of these 

changes sometimes vary according to diet, strain or anatomical region; exposure to high fat 

diet, independent of body weight gain, can promote change in D2R abundance, DA turn-over 

rate, DA transporter (DAT) function, response to amphetamines, and operant responding for 

food reward [32,33]. Animals exposed to a restricted amount of calories from high-fat but 

not high-sugar diet exhibit decreased attention and increased impulsivity as assessed by 5-

choice serial reaction task (5CSRT) **[34]. Limited exposure to a fat source also triggers 

binge-like eating behavior and increased sensitivity of ML activity, interestingly mice 

lacking ghrelin-receptor failed to escalate palatable food intake suggesting that energy-

related signal such as ghrelin play also a role in ML response to energy-dense food **[35]. 

y. A recent study demonstrated that not all fat source are equivalent in their ability to temper 

with ML activity. Indeed exposure to amount of saturated but not unsaturated fat leads to 

change in D1R and DAT abundance in the ML **[36]
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Among the different consequence of high fat feeding, special attention was recently drawn 

to circulating TG metabolism as strong predictor of compulsive overeating propensy. 

Sprague-Dawley rats can be subdivided into obesity prone (OP) and resistant (OR) based on 

metabolic features and body weight gain during a short 5-day high fat challenge; among 

which altered circulating TG, fat partitioning characterized by increased Lipoprotein lipase 

(LPL) activity in the adipose tissue, and decreased muscle lipid transport were identified as 

signatures of OP rats [37]. Plasma TG levels after a meal were a strong predictor of future 

body weight gain in OP rats, that is larger TG excursion after a meal (high-TG responders) 

correlated with a propensity to overeat [38]. In OP high-TG responders, extracellular DA 

levels assessed by microdialysis in the NAc was reduced at both basal condition and in 

response to high fat feeding or peripheral injection of a fat emulsion (intralipid). Moreover, 

when orosensory reward was bypassed through systemic administration, TG emulsion but 

not sucrose led to increased DA release in the NAc as measured by microdialysis [39]. 

Along the same line, cognitive impairment in obese mice was improved by 

pharmacologically lowering plasma TG, while central injection of TG impaired cognition in 

lean mice [40].

Finally, a recent study in humans using fMRI demonstrated that plasma TG and ghrelin 

correlated with the magnitude of whole brain BOLD response to food reward. The larger 

post-prandial decrease in ghrelin or increase in TG were associated with a reduced BOLD 

response to palatable milkshake in limbic circuitry including the midbrain, pallidum, 

amygdala medial orbitofrontal cortex and hippocampus **[41]. Importantly, circulating 

albumin-bound FFA, glucose, or insulin did not correlate with brain responses to food 

reward.

Altogether these results suggest that among the nutrients that could affect brain function, 

dietary TG, independently of other energy-related signals such as insulin, glucose or 

FFA),could act on neural substrates regulating cognition and reward. This specificity might 

originate from both the physiology and biochemistry of meal-related TG-particle appearance 

and metabolism both at peripheral and central level.

Triglycerides or free-fatty-acids: a question of timing?

Lipids are the major component of the brain [42] and originate from both endogenous 

production and dietary inputs [43]. Plasma lipids can be found as free-fatty acids (FFA) 

bound to albumin and triglycerides (TG)-rich lipoproteins [44]. Lipoproteins are complex 

associations of apolipoproteins and phospholipids that create a polar environment for lipid 

transport. LPL expressed in peripheral tissues catalyze the hydrolysis of TG from TG-rich 

particles such as very-low-density lipoprotein (VLDL) and gut-borne chylomicron (CM) to 

give rise to particles with reduced lipid content such as high density lipoprotein (HDL) 

(Figure 1).

But how do lipids get into the brain? Tracing studies using positron emission tomography 

(PET) coupled with radiolabelled fatty acids injected peripherally have shown dynamic 

incorporation of arachidonic or palmitic acids in the brain [43,45,46]. Importantly, metabolic 

syndrome was shown to be associated with an increase in whole brain FFA uptake-and 

especially an 88% increase in hypothalamic FFA uptake [47]. Among FFA, essential 
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polyunsaturated fatty acids (PUFA) can cross the blood-brain barrier (BBB) through 

mechanisms that were poorly defined until the very recent discovery of Mfsd2a (major 

facilitator superfamily domain-containing 2a) as the main carrier for absorption of the 

essential fatty acids docosahexaenoic acid (DHA)in the brain *[48]. While free DHA was 

initially believed to be the major source of brain DHA [49], this recent study shows that 

DHA, together with long chain fatty acids (LCFA) are transported through Mfsd2a in the 

form of lysophosphatidylcholine (LPC) but not FFA. This result highlights the complex and 

redundant mechanisms for brain LCFA and DHA homeostasis *[48].

Circulating apolipoproteins range in size from less than 10 nm for HDL, 20-30 nm for LDL, 

30-40 nm for IDL, and 5-80 nm for VLDL and CM. It is known that some small HDL can 

cross the BBB [44,50,51], but the question of brain-accessibility to larger TG-rich particles 

such as VLDL or CM is still debated based on previous tracer studies [44] and on the 

assumption that the brain is devoid of a lymphatic system. After a meal lipids are packaged 

in CM, secreted into the lymphatic system, and then to the general circulation where large 

particles would have to cross the BBB at the level of fenestrated capillaries in order to access 

the CNS. However the recent discovery of a lymphatic system in the mouse brain suggests a 

new route by which TG-rich particles may be available for cerebrospinal-fluid (CSF) 

exchange [52].

Indeed, brain cells express high levels of several lipoprotein receptors such as the VLDLR, 

LDLR, oxidized HDL receptors, and accessory proteins such as LDL receptor-related 

protein (LRP) [44]. These receptors bind selective apolipoprotein components and genetic 

and pharmacological approaches have highlighted the role for apolipoprotein signalling in 

brain development and function including learning and memory [53] and synaptic plasticity 

[54]. For instance apolipoprotein E, present in circulating chylomicrons and IDL, binds to 

LDLR and is recognized as a major genetic risk factor for common forms of late-onset 

Alzheimer disease (AD) [55], while brain-specific overexpression of LDLR enhances β-

amyloid clearance and may be protective in AD [56]. Moreover the brain also produces 

apolipoproteins [44], primarily synthesized by astrocytes, and particles approximating the 

size and density of HDL can be measured in CSF [51].

Altogether these observations suggest that both endogenously (astrocyte produced) and 

peripherally generated (postprandial) lipoprotein particles can affect brain function. The 

precise mechanisms by which lipoprotein signalling is initiated in the brain is unclear and 

could potentially involve canonical cascades, local lipid delivery, or/and changes in cell 

metabolism which in turn might modulate neuron activity.

TG-lipases which catalyse the hydrolysis of TG into free fatty acids and mono- or diacyl-

glycerol are abundantly expressed in the brain and particularly enriched in the ML [44] 

[57-59]. Accumulating evidence suggests that brain lipases act upon TG to mediate lipid 

delivery within discrete brain nuclei with important functional consequences *[60] 

[61]**[62]. Among these the LPL has been best studied with regard to its role in energy 

balance [59]. Pan neuronal LPL knock out animals (NEXLPL−/−) display altered brain FFA 

and PUFA levels, develop late onset obesity [63], and show age-related declines in cognitive 

function and increases in anxiety *[60]. More restricted gain or loss of function approaches 
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have allowed for more precise determinations of the role of LPL in sub-structures of the 

brain. For example, hippocampal LPL regulates energy expenditure and autonomic tone 

through synthesis along the ceramide-based signalling pathway **[64].

While a role for lipases during brain development could potentially account for the deficits 

observed in LPL knock out models, their continued expression in discrete nuclei in 

adulthood makes it tempting to speculate that brain TG-lipases regulate local TG breakdown 

and LCFA availability. In that regard, although TG and LCFAs are both circulating lipid 

species, their appearance in the blood stream occur at opposite time points with respect to 

feeding. TG-rich particles accumulate after a meal; whereas LCFA are released by fasting-

induced adipose lipolysis and are thus elevated during periods of food abstinence [65]. In 

addition, while LCFA can readily be transported through fatty-acid transporters abundant in 

most brain structures, TG must first be broken-down by TG-lipases severely limiting central 

availability. Hence, brain structures equipped with TG-lipases might be uniquely disposed to 

detect post-prandial changes in dietary lipids. Indeed, the presence of LPL in the ML 

strongly suggests a role for TG sensing in post-prandial TG-mediated changes in reward 

valence. In that view TG breakdown in the ML and downstream adaptive changes occurring 

once FFA are released could directly affect DA or other ML signaling pathways to regulate 

reward-seeking behaviour.

Triglycerides sensing in the reward ML system: bridging dietary inputs and reward

We have developed a model in which TG emulsion (intralipid™) is perfused through the 

carotid artery in the direction of the brain at a rate and concentration that mimics the post-

prandial increase in TG and that does not affect systemic lipids. Using this model we found 

that TG can act directly in the brain to regulate locomotor activity, food preference, and food 

seeking behaviors. Brain TG delivery dampened operant responding for rewards on a 

progressive ratio schedule, and preference for a palatable HFHS food in a food choice 

paradigm. Direct brain TG delivery decreased by ~50% nocturnal locomotor activity and 

amphetamine-induced locomotion. TG delivery also opposed D2R agonist-induced 

locomotion, suggesting a TG-evoked modulation of the dopaminergic circuitry. Selective 

knock-down of LPL in the NAc had the opposite consequences - leading to increased 

motivation to work for food rewards and increased consumption of palatable diet **[62].

Plasma TG transiently increases after a meal [65]. However, plasma TG is chronically 

elevated in obesity and is obviously not associated with decreased tropism for calorie-dense 

food, suggesting adaptive mechanisms occur. In order to mimic the brains response to 

chronic hypertriglyceridemia we used sustained TG perfusion in lean animals and compared 

with a model of diet-induced obesity.

We modeled hypertriglyceridemia using a model of diet-induced obesity or with chronic (7-

days) TG perfusion toward the brain that increases brain TG sensing without effect on 

plasma TG levels. Both these treatments led to behavior-specific desensitization, in which 

central TG sensing was no longer able to modulate tropism for palatable food but still led to 

a decrease in locomotor activity. This adaptive mechanism, induced by chronic elevations in 

circulating TG or brain TG sensing, may explain how sustained consumption of high-fat 

foods overwhelm regulatory systems to promote weight gain. Central TG sensing could 
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directly operate the acute decrease in locomotor activity that precedes metabolic changes 

when animals are presented with a western diet [66]. When brain TG sensing occurs acutely 

it might have a beneficial (or homeostatic) effect to reduce the desire for food reward. But 

when chronically elevated, TG-sensing mechanisms may desensitize or lead to 

compensatory adaptations such that reductions in physical activity persist, but motivation for 

high fat food becomes resistant to TG-mediated homeostatic control. The combination of 

both reduced physical activity and sustained motivation for high fat foods will inevitably 

lead to body weight gain.

These data support the concept that local TG hydrolysis in brain structures equipped with 

TG processing enzymes might have differential impacts. Circulating albumin-bound LCFAs 

may principally act in the hypothalamus and function to regulate feeding and glucose 

production [15]-specifically in time of scarcity when adipose lipolysis release of FFA is 

high-whereas LPL-mediated hydrolysis of TG-particles accumulated after a meal in ML 

structures might participate in the encoding of incentive and motivational properties of food. 

Acute exposure to TG-in the general framework of a meal-will decrease both rewarding and 

motivational aspect of food while chronic exposure would lead to desensitization and 

uncontrolled feeding behavior **[62].

Molecular basis for ML lipid sensing and source of vulnerability?

In the hypothalamus the existence of lipid sensing was pioneered by Oomura and colleagues. 

[67] and extensively studied during the last decade [22]. LCFA metabolisms was shown to 

regulate neuronal activity, autonomic control of insulin release, food intake, and liver 

glucose production [15,22,68]. Hypothalamic sensing of LCFA encompasses several cellular 

mechanisms including direct entry into the tricarboxylic acid cycle (TCA cycle), amino-acid 

mediated activation of mTOR [69], autophagy, inflammation through nuclear enhancer of 

kappa-light-chain-enhancer of activated B cells (IKK/NF-κΒ)-dependent pathways [18,70] 

[3] [71], increased mitochondrial lipid beta-oxidation [68,72], adaptations in mitochondrial 

respiration and radical oxygen species (ROS) scavenging [73], accumulation of lipid 

metabolites such as acetyl-CoA and malonyl-CoA [15], direct modulation of protein-kinase 

C activity [74] [75], lipid-mediated activation of membrane receptors, eicosanoids-

dependent signaling [46], and lipid-activated transcriptional adaptations [76,77].

Although high calorie food is virtually ubiquitous, uncontrolled feeding and obesity does not 

affect every individual suggesting that the modern food environment might directly interact 

with genetic or epigenetic elements of susceptibility. The TaqIA A1 allele is an excellent 

candidate in that regard. Affecting 30-40% of the population, homozygous dosage of the A1 

allele correlates with a 30~40% reduction of striatal D2R abundance [78] [79] **[80] [81,82] 

and is strongly associated with addiction and compulsive behavior, impacting both drugs of 

abuse as well as feeding [13,28]. The A1 allele results from a single-nucleotide 

polymorphism (SNP) located at the gene that encodes Ankyrin repeat and kinase domain 

containing 1 (ANKK1) near the gene encoding D2R [83]. ANKK1 is a receptor-interacting 

protein (RIP) kinase: a structurally related family of factors that integrates various stimuli 

including inflammation, innate immune response downstream of Tumor-necrosis factor 
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alpha (TNFα−R1) receptor and Toll-like receptor (TLR), and converge upon c-jun N-

terminal kinase (JNK), MAPK activity or NF-κΒ [84] signaling pathways.

In silico analysis of human protein-protein interaction reveals that among the ~30 predicted 

partners for human ANKK1 [85] half are found in the NF-κΒ, JNK or MAPK pathway 

(Table I). In the brain ANKK1 is uniquely expressed in astrocytes [83]. Astrocytes integrate 

various metabolic signals to coordinate neuronal activity and are direct targets for lipids; 

especially saturated fat-induced inflammatory responses and ER-stress mediated through 

TLR and IKK/NF-κB signaling ** [86] [87].

How astrocyte ANKK1 activity could ultimately relate to the reduced D2R abundance is still 

an open question but, here again, fatty acid metabolism might provide several potential 

mechanisms. For example the D2R and ANKK1 promoters possess NF-κB cis regulatory 

elements [83,88]; and lipid-derived prostaglandins are powerful inducers of Neural Growth 

Factor (NGF) secretion by astrocytes, NGF in turn has been shown to directly regulate 

neuronal D2R mRNA transcription through the NF-kB signaling pathway [89].

Finally, while increased feeding as a consequence of acute high fat diet exposure was 

recently shown to involve activation of astrocytic NF-kB ** [86], adaptations occurring upon 

long-term exposure to high-fat diet might involve a third partner of the triad: the peroxisome 

proliferated activated receptors delta (PPARs). PPARδ belongs to a family of ligand-

activated transcription factors, involved in a variety of cellular metabolic adaptations, which 

primarily respond to LCFA and prostaglandin. PPARδ has also emerged as an important 

regulator of the ML. For example, activation of PPARδ by LCFA or synthetic agonist 

decreases opioid synthesis in forebrain neurons [90] and protects from methyl-4-

phenyl-1,2,3,6- tetrahydropyridine (MPTP)-induced loss of DA neurons. Striatal PPARδ is 

directly regulated by TLR/NF-kB pathway [91] and a PPAR responsive element exists in the 

ANKK1 promoter [83].

LCFA signaling in the ML could potentially be integrated at the level of the tripartite 

synapse composed of striatal DA neurons and astrocytes engaged in a coordinated activation 

of the ANKK1/NF-kB/PPARs triad to effect the expression or function of D2R (Figure 2). 

While the ML response to short term high fat exposure could be mediated by a NF-kB/NGF 

action on D2R, PPARδ activation by LCFA could lead to long-term transcriptional 

adaptations in striatal structures with chronic high fat consumption. In that view, altered 

lipid sensing in the ML along with heightened exposure to food-related cues – both 

consequences of the modern food environment - would reveal and magnify the consequence 

of the ANKK1 polymorphism on compulsive behavior.

CONCLUSION

How TG enter the brain and affect central function is still unclear, as are the molecular 

underpinnings by which local FFA delivery via TG hydrolysis affects neural responses and 

reward. However both human and rodent studies provide direct and indirect evidence for an 

action of dietary TG on reward and motivation. TG hydrolyzed locally in the striatum could 

inhibit locomotor activity and transiently reduce the incentive properties of calorie-rich 
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HFHS foods. However, in the face of chronic elevation in plasma TG, a hallmark of the 

modern food environment and obesity, the homeostatic mechanisms that normally decrease 

the hedonic impact of HFHS foods fails **[62]. In that view, a positive feedback loop 

whereby chronically high plasma TG, such as occur in obesity, will damage homeostatic 

mechanisms that limit food intake resulting in altered reward encoding, uncontrolled caloric 

consumption, and reduced physical activity. Such a mechanism will inevitably drive body 

weight gain. Further studies will be required to understand the physiology and molecular 

mechanism of central TG sensing and if/how inheritable susceptibility loci such as the 

TaqA1 allele could exacerbate the adaptive mechanisms associated with brain TG sensing 

and, ultimately, the downward spiral that drives compulsive eating dissociated from 

metabolic needs.
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HIGHLIGHTS

• The mesolimbic system (ML) express triglyceride (TG) lipases

• Dietary TG can be hydrolyzed at the level of the ML

• TG sensing in the ML regulate reward seeking behavior

• Obesity-associated hypertriglyceridemia alters TG sensing
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Figure 1. Peripheral signals regulating feeding
Central integration of peripheral nervous and hormonal inputs that regulate energy balance. 

Gut-derived nervous and circulating factors convey a satiety signal and include vagal inputs 

from stomach or digestive tracts as well as secreted peptides such as cholecystokinin (CCK), 

PYY3-36, or glucagon-like peptide 1 (GLP-1). Ghrelin is secreted primarily by the stomach 

and positively regulates feeding while insulin or leptin act as long-term satiety factors. 

Ghrelin, leptin, and insulin have targets in the hypothalamus as well as the reward circuitry. 

Dietary lipids are esterified into triglycerides (TG) and packaged in nascent chylomicron 

(CM) at the level of the gut, secreted first in to the lymphatic system, and then the 

bloodstream. TG-rich CM gradually lose their lipid content upon action of tissue lipoprotein 

lipase (LPL) and ultimately recaptured as remnant CM by the liver. In the process CM 

exchange their native Apolipoprotein B48 (ApoB48) component for the apolipoprotein E 

(ApoE). Very-low density lipoprotein (VLDL), produced by the liver, represent another 

source of TG-rich particles which, upon action of LPL, give rise to intermediate-density 

(IDL) and low-density (LDL) lipoproteins. LPL is also expressed in the brain in both 

hypothalamic structures and ML structures including the prefrontal cortex (PFC), the 

hippocampus, ventral tegmental area, and throughout dorsal and ventral striatum. TG 

hydrolysis in the NAc regulates the rewarding and motivational aspects of food intake and 

could be an important mechanism linking dietary input with reward.
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Figure 2. Potential mechanism associating central TG sensing and reward
Nutritional lipids lead to increased synthesis of TG-rich particles and export by the gut. At 

the level of the brain, the tripartite synapse composed of neurons and astrocytes will detect 

changes in nutrient availability. Free fatty acids (FFA) enter astrocytes or neurons through 

lipid receptors/transporters or via lipoprotein lipase (LPL) mediated breakdown of 

lipoprotein. Once in the cell FFA can enter the TCA-cycle but can also directly activate 

lipid-activated nuclear receptors (NR) including proliferated activated receptors delta 

(PPARδ) or the nuclear enhancer of kappa-light-chain-enhancer of activated B cells (NF-κΒ) 

signaling pathways, or through indirect pathways involving Toll-like receptor activation, 

inflammatory processes, ER-stress, or prostaglandin (PG) synthesis. In turn, activated NR 

and NF-κB exert a direct regulation at the transcriptional level on dopamine D2 receptor 

(D2R). At the level of the astrocyte, NF-κB activation leads to increased cytokine production 

which promotes the release of the neural-growth factor (NGF). NGF released by astrocyte 

directly regulates neural D2R abundance. The astrocyte-specific Ankyrin repeat and kinase 

domain containing 1 (ANKK1) directly interacts with NF-κB and MAP kinases. In that 

regard, mutation of ANKK1 (TaqIA A1) would directly impact most FFA-induced cellular 

responses. At the level of DA neuron signaling, early D2R response and late β-arrestin 

mediated responses could both be affected by a FFA/ANKK1 initiated pathway.
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