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Abstract: Inertial attitude estimation is a crucial component of many modern systems and appli-
cations. Attitude estimation from commercial-grade inertial sensors has been the subject of an
abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs)
in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-
state estimation; however, these approaches do not generalise well over changing motion dynamics
and environmental conditions, as they require context-specific parameter tuning. In this work, we
explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-
based neural network, the Attformer. This paper proposes to part ways from the traditional cycle
of continuous integration algorithms, and formulate it as an optimisation problem. This approach
separates itself by leveraging attention operations to learn the complex patterns and dynamics associ-
ated with inertial data, allowing for the linear complexity in the dimension of the feature vector to
account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches
with our self-attention method. These models were evaluated on entirely unseen sequences, over a
range of different activities, users and devices, and compared with a recent alternate deep learning
approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean
angular distance from the true attitude of 117.31◦, the GRU 21.90◦, the UKF 16.38◦, the Attformer
16.28◦ and, finally, the UKF–Attformer had mean angular distance of 10.86◦. We show that this
plug-and-play solution outperforms previous approaches and generalises well across different users,
devices and activities.

Keywords: attitude estimation; deep learning; inertial measurement unit; self-attention; smartphone

1. Introduction

Advancements in micro-electromechanical systems have eventuated in miniaturised
Inertial Measurement Units (IMUs) that have increasingly low cost and power require-
ments. This has facilitated their ubiquity in modern electronics, such as smartphones. As
such, the processing and evaluation of IMU signals as a means of motion tracking is a
crucial component for many applications; most notably in inertial navigation [1], satellite
control [2], space junk estimation [3], augmented reality and human body motions [4]. In
order to estimate the motion of a rigid body from raw IMU measurements, one needs to
first determine the attitude of said body with respect to some inertial reference frame—most
commonly the Earth’s local frame.

In this paper, we focus on approaches that use triaxial measurements from three
inertial sensors, commonly found in smartphones, and leverage the continuously provided
information to estimate the attitude of the rigid sensor body with respect to the Earth’s local
frame. These IMUs typically consist of a triaxis accelerometer, gyroscope and magnetome-
ter. Directional vector observations can be taken from accelerometers and magnetometers,
whereas gyroscopes provide angular velocities. Integration of the angular velocity mea-
surements unfortunately leads to increasingly large errors in attitude estimation due to the

Sensors 2022, 22, 9011. https://doi.org/10.3390/s22229011 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22229011
https://doi.org/10.3390/s22229011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7912-8741
https://orcid.org/0000-0001-8926-5539
https://doi.org/10.3390/s22229011
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22229011?type=check_update&version=1


Sensors 2022, 22, 9011 2 of 13

sensor bias. An in-depth look into a wide range of IMUs and their deficiencies can be found
in [5]. As the integration of gyroscope measurements yields poor estimations, traditional
estimation techniques use accelerometer and magnetometer measurements to update error
calculations and compensate for the drift. The generalised problem for attitude estimation
from IMUs is in the combination of these sensors to provide an optimal solution in the form
of an optimal-state estimator.

Most of the complexity in attitude estimation stems from its nonlinearity, and therefor
its estimation solution must account for the nonlinear dynamics in the system. Early
applications relied on the extended Kalman filter (EKF) to linearise the dynamic system
about the current best-state estimate; however, this process can yield poor performance
particularly in highly dynamic situations due to divergence and constant reinitialisation [6].
These difficulties led to the development of alternative filters, several of which retain the
basic structure of the EKF; most notably the Unscented Kalman Filter (UKF) which, at
the time of writing, is the industry standard. A survey of nonlinear attitude estimators
is found in [7]. Despite all the iterative improvement to Kalman-filter-based estimators
over the years, they are still dependent upon system model assumptions, and a deviation
from defined assumptions may lead to divergence or failure of the system [6,7]. The shared
reliance on a set of parameters that need to be predetermined or situationally adjusted
in order to achieve satisfactory results have such a profound influence over performance
that entire bodies of work have been built around calculating these values optimally [8].
Initial formulations had these tuned manually by trial and error methods. This is primarily
due to the hardware complexity of consumer-grade IMUs, as it becomes almost infeasible
for researchers and engineers to formulate the exact mathematical equations to describe
the sensor noise and intrinsic models. Generalisability across the array of variables in
applications that rely on attitude estimation is of great importance. Therefore, using
data-driven methods instead of the model-based ones in this domain could improve
our solutions.

Artificial Intelligence (AI) has demonstrated the advantages in utilising computing
resources and data over traditional human understanding, predominately in computer
vision [9] and natural language processing (NLP) [10]. The ability to employ continuous
activation functions and their inherent understanding of time allows them to accurately
model system complexities and interpolate in high-dimensional spaces [11]. Recent work
employing self-attention-based deep learning (DL) networks in time-series forecasting [12],
image recognition/production [13], text summarisation [14], speech recognition [15] and
music generation [16] has shown state-of-the-art performance in terms of robustness and
accuracy. Self-attention allows for the network inputs to interact with one another and
be scored based on their correlation with their importance to the final estimate. This
formulation has been extensively researched, however, little work has been conducted
using the raw sequential measurements from low-cost noisy inertial sensors to learn deep
attitude estimation. The success seen in other sequence-to-sequence learning tasks suggests
that implementation of self-attention-based DL methodologies could obviate the need for
precise sensor noise models and provide a more robust estimation.

The main contribution of this paper is to present a novel methodology for attitude
estimation from low-cost inertial sensors. We propose leveraging self-attention mechanisms
to learn the noise and bias characteristics of inertial sensors over different activities, users
and devices. Providing a generalisable, end-to-end and out-of-the-box solution for attitude
estimation in smartphones and low-cost IMUs.

The rest of the paper is arranged as follows: the related literature is given in Section 2.
We formulate the problem and present a detailed description of our methodology in
Section 3. Our results and analysis are given in Section 6. Finally, we draw some conclusions
and delineate potential future work in Section 7.
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2. Related Work

The recent literature has shown that DL networks have been utilised to regress at-
titudes from IMU measurements, as well as augment conventional techniques. In [17],
Brossard et al. use a convolutional neural network (CNN) to compensate for the measure-
ment error in the gyroscope. The authors of [18,19] use some formulation of an artificial
neural network to compensate for residual errors in conventional attitude estimation algo-
rithms and, in [20], DL is used to estimate the noise parameters used in said algorithms. A
number of end-to-end solutions have been proposed using Recurrent Neural Networks
(RNNs). The authors of [21,22] use an RNN based on Long Short-Term Memory (LSTM)
to propagate the state. In [23], an LSTM is used in tandem with an EKF to stabilise the
network output. Finally, Weber et al. propose RIANN (Robust IMU-based Attitude Neural
Network) in [24], using a variation on LSTM, the Gated Recurrent Unit (GRU).

The methods that have proposed end-to-end attitude estimation solutions have primar-
ily focused on RNNs using data from only the gyroscope and accelerometer measurements,
or have been supplemented by conventional techniques. These canonical DL approaches
only capture short-term directional information and are unable to retain information and
dependencies over long sequences. In this work, we look at using a self-attention-based
attitude estimation model based on encoder–decoder networks [25], as they are able to pro-
cess long sequences whilst retaining important contextual information. To our knowledge,
our approach is the only end-to-end attitude estimation solution that leverages all available
inertial information.

3. Problem Formulation

This paper considers the problem of attitude estimation from low-cost IMUs, com-
monly found in smartphones. It is implicit that these systems are characterised by high
noise levels and time-varying additive biases. The available measurements from a typical
smartphone IMU are from three-axis rate gyros, three-axis accelerometers and three-axis
magnetometers. The reference frame of the IMU is termed the body frame (B), which is
rotated with respect to some fixed intertial frame (I), e.g., an inertial reference frame. The
rotation R = I

BR denotes the relative attitude of B with respect to I.

IMU Model

The rate gyro measures the angular velocity of B relative to I, expressed in the bodies’
frame of reference, B. The error model is commonly given by [26]

g = g̃ + β + ηv ∈ R3

β̇ = ηu
(1)

where g denotes the measured angular rate, β is the gyro drift rate and ηv and ηu denote
the independent zero-mean Gaussian white noise processes

E
{

ηv(t)ηT
v (τ)

}
= σ2

v δ(t− τ)I3×3

E
{

ηu(t)ηT
u (τ)

}
= σ2

uδ(t− τ)I3×3

(2)

where E{·} denotes expectation and δ(·) is the Dirac delta function, where σ2
v and σ2

u are
scalars that satisfy R = E

[
n2

i+1

]
= σ2

n .
The accelerometer measures the linear acceleration of B relative to I, expressed in B.

As with the rate gyro, the output from a MEMS component accelerometer has added noise
and bias,

a = RT(v̇−G0) + βa + ηa (3)

where βa is the bias term, ηa denotes additive measurement noise and G0 represents the
gravitational acceleration field.
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Finally, the magnetometer provides measurements of the magnetic field

m = RT Am + βm + ηm (4)

where Am denotes the Earth’s magnetic field, βm is a body-fixed representation of the local
magnetic disturbance and ηm is the measurement noise.

If we consider the accelerometer and magnetometer measurement vectors, we can
construct an instantaneous algebraic measurement, Ry, of the rotation I

BR [27]

Ry = arg min
R∈SO(3)

(
λ1

∥∥∥∥e3 −R
a
‖a‖

∥∥∥∥2
+ (5)

λ2

∥∥∥∥m∗ −R
m
‖m‖

∥∥∥∥2
)

≈ I
BR (6)

where ‖ · ‖ is the 2-norm, m∗ is the localised inertial direction of the magnetic field, e3 is the
normalised gravity vector and λ1 and λ2 are weights chosen based on sensor output confi-
dence. SO(3) is the special orthogonal group defined by {R ∈ R3|RRT = I3, det(R) = ±1}.

For the algebraic measurement given in Equation (5), two degrees of freedom in the
rotation are resolved using the accelerometer readings (Equation (3)), and the final degree of
freedom is resolved by the magnetometer (Equation (5)). This results in the error properties
of the reconstructed attitude, Ry, being difficult to characterise, and if at any point either of
the readings are unavailable, then the algebraic attitude measurement becomes impossible
to resolve [27]. To overcome this, many statistical models have been introduced where
the state estimate is formed by propagating the IMU readings through measurement and
kinematic models [28]; we formulate the Unscented Kalman filter used in this work in
Section 4.3.2. However, the reality for these traditional estimation approaches is that the
hand curation and rigidity severely limit their performance and generalisability. Addition-
ally, measurement imperfections, inaccurate system modelling, unrealistic requirements
and complex dynamics impair the accuracy and reliability. An AI approach requires no
prior information.

4. Proposed Solutions

Modern learning methods allow machine intelligence systems to learn from past
experience and actively exploit new information without having to explicitly specify the
complex mathematical and physical constructs. This has potential for the discovery of novel
computational solutions to the optimisation problem. This work parts from the commonly
used eschew recurrence in neural networks, used by related work (Section 2), and instead
relies entirely on a self-attention mechanism to draw global dependencies between inputs
and outputs. A disadvantage in this approach over traditional algorithms is the lack of prior
estimate in the determination of the current, which could lead to large outlier estimates
for periods where large spikes of noise are found in the measurements. To avoid this, we
also evaluated the combination of UKF priors in the self-attention NN learning process. In
addition to self-attention-based NNs, this section details the mathematical and baseline
estimation solutions.

4.1. Parameterisation

It can be shown that all attitude representations in R3 suffer from nonuniqueness,
discontinuity in the representation space and singularities (commonly referred to as gimbal
lock). Quaternions are a possible representation of attitudes—which lie in R4—and are free
of discontinuities and singularities, in addition to being more computationally efficient
and numerically stable. To represent valid attitudes, they must be unit quaternions. Unit
quaternions double cover the SO(3), as q and −q represent the same attitude. However,
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by enforcing that q0 ≥ 0, we can ensure there is a one-to-one correspondence between
rotation matrices and quaternions [29].

4.2. Self-Attention Network Design

Here, we formulate the Attformer and UKF–Attformer. Our models follow the origi-
nal self-attention-based network, termed Transformer, proposed in [25], with an encoder–
decoder structure, where both the encoder and decoder are composed of identical blocks.
The filter uses a quaternion representation of attitude, allowing accelerometer and magne-
tometer measurements to be leveraged analytically in gradient optimisation to compute
and retain information pertaining to gyroscope error and bias. To adapt the Transformer
for quaternion-parameterised attitude estimation, some modifications were made. The
NLP specific designs, such as the embedding and soft-max layers, are omitted, and the raw
IMU measurements are used as input. The Mean Square Error (MSE) between individual
quaternion components, defined in Equation (21), is applied as the loss function. The
Attformer and UKF–Attformer architecture is shown in Figure 1, where the difference in
each model is only in the encoder input features.

Figure 1. Attformer/UKF–Attformer Structure. The Attformer was trained solely with the in-
put features of the raw three-axis measurements from the accelerometer (Equation (3)), gyroscope
(Equation (1)) and magnetometer (Equation (4)). The UKF–Attformer was trained with the additional
input feature of the prior UKF attitude estimate from Section 4.3.2.

4.2.1. Input and Positional Encoding

The raw information from the IMU embedded in the smartphone is used as the input
state vector, I, for the Attformer:

I(k) = [gk, ak, mk] (7)
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and for the UKF–Attformer, with the addition of the prior UKF estimate:

I(k) =
[
xk−1, gk, ak, mk

]
(8)

Unlike RNNs, self-attention-based networks are not characterised by recurrence or
convolution, and as such, must utilise positional encoding in the input embeddings to
model and maintain the sequential information. Giving the input vector, sequential context
is necessary as the multi-head attention layer is a feed-forward layer and computes each
time-step independently. Positional encoding with sine and cosine functions [30] are used
to encode sequential information. This work follows [25] in using sine and cosine functions
of different frequencies to embed position into the input sequences, following

PE(pos,2i) = sin
(

pos/100002i/Dmodel
)

PE(pos,2i+1) = cos
(

pos/100002i/Dmodel
) (9)

where pos denotes the position, i the dimension and Dmodel is the model dimensionality;
in this work Dmodel = 64.

4.2.2. Encoder

The element-wise addition of the input vector and positional encoding vector is fed
into two identical encoder layers. Each encoding layer is made up of two sub-layers: a
multi-head attention (MHA) sub-layer and a fully connected feed-forward (FF) sub-layer.
Our encoder follows the Query–Key–Value model, proposed in [25], where the scaled
dot-product attention used is given by

Attention(Q, K, V) = softmax

(
QKT
√

Dk

)
V (10)

where queries Q = I(k)WQ ∈ RN×Dk , keys K = I(k)WK ∈ RM×Dk and values
V = I(k)WV ∈ RM×Dv ; each W is the respective weight matrices updated during training,
and N, M denote the lengths of queries and keys (or values) and Dk, Dv denote the dimen-
sions of keys (or queries) and values. The MHA consists of H different sets of learned
projections instead of a single attention function as

MultiHeadAttn(Q, K, V) = Concat(head1, . . . , headH)WO

where headi = Attention
(

QWQ
i , KWK

i , VV
i

)
. The projections are parameter matrices

WQ
i ∈ RDmodel ×Dk , WK

i ∈ RDmodel ×Dk , WV
i ∈ RDmodel ×Dv and WO ∈ RhDv×Dmodel . In

this work, we employ h = 2 parallel attention layers, or heads. For each, we use
Dk = Dv = Dmodel /h = 32.

In addition to the attention sub-layers, each encoder/decoder layer consists of a fully
connected FF network, consisting of linear transformation and activation functions. In place
of the Rectified Linear Unit (ReLU) activation function, commonly used in Transformer FF
networks, we use a LeakyReLU [31] activation as follows

LeakyReLU(x) =

x, if x ≥ 0
1× 10−3 · x, otherwise

The point-wise FF network is a fully connected module

FFN
(

H′
)
= LeakyReLU

(
H′W1 + b1

)
W2 + b2 (11)
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where H′ is the output of the previous layer, W1 ∈ RDm×D f , W2 ∈ RD f×Dm , b1 ∈ RD f and
b2 ∈ RDm are trainable parameters, and D f denotes the inner-layer dimensionality. Each
sub-layer has a Layer Normalisation Module inserted around each module. That is,

H′ = LayerNorm
(
SelfAttn(X) + X

)
(12)

where SelfAttn(·) denotes self-attention module and LayerNorm(·) the layer normal oper-
ation. The 9-dimensional (Attformer) or 13-dimensional (UKF–Attformer) resultant vector
is then fed into the decoder.

4.2.3. Decoder

The decoder is composed of 2 identical layers. The decoder contains the sub-layers
found in the encoder, with the addition of a third sub-layer that performs multi-head
attention over the output vector from the encoder. Similarly, a residual connection is
employed around each sub-layer, followed by a normalisation layer. The self-attention
mechanism in the decoder stacks prevents positions from influencing subsequent positions
to ensure that predictions for qk can depend only on the known outputs at or before qk−1.
The output maps the final layer into the estimated quaternion through a hyperbolic tangent.

4.3. Baselines

In this section, we formulate the baselines used in this work. A GRU was built, as
previous work has shown that it outperforms Temporal Convolutions Networks and other
RNN variants [32]. Additionally, we use a UKF, proven effective in attitude estimation in
previous work [6].

4.3.1. Gated Recurrent Unit

A stacked 2-layer GRU structure, based on [24], shown in Figure 2, which transforms
the 9-dimensional IMU input, I(k), to an Nn-dimensional feature vector, where Nn = 200,
is the number of neurons per layer.

Figure 2. Structure of the 2-Layer GRU with 200 neurons per layer.

Note that this model differs from the GRU used in [24], as we consider magnetometer
input, and the output of the network is not strictly forced to have magnitude 1. We found
that using unit quaternions as the ground truth, the regressed quaternion estimate does not
diverge too much from the unit norm.

4.3.2. Unscented Kalman Filter

Here, we formulate the UKF based on the work in [33], where the quaternion-based
UKF can be found. In this application, the dynamic model represents a physically based
parametric model, and the initial attitude ( at k = 0) is assumed to be known.
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At time k, the UKF is, i = 1, . . . , d.

χ0,k−1|k−1 = xk−1|k−1 (13)

∆χi,k−1|k−1 = d1/2pi (14)

χi,k−1|k−1 = xk−1|k−1 + ∆χi,k−1|k−1 (15)

χi+d,k−1|k−1 = xk−1|k−1 − ∆χi,k−1|k−1 (16)

where pi is the i-th column of
(

Pxx,k−1|k−1 + Qk

)1/2
and Pxx,·|· is the covariance matrix of

x·|·.
Then, the weights are

w0 =
1
d

, wi = wi+d =
1

2d
(17)

The prediction step and measurement update step are given as follows:

xk|k−1 =
2d

∑
i=0

wig
(

χi,k−1|k−1

)
Pxx,k|k−1 =

2d

∑
i=0

wi

(
χi,k|k−1 − xk|k−1

)(
χi,k|k−1 − xk|k−1

)T

yk|k−1 =
2d

∑
i=0

wih
(

χ
k−1|k
i

)
(18)

Pk|k−1
yy =

2d

∑
i=0

wi

(
h
(

χ
k−1|k
i

)
− yk|k−1

)(
h
(

χ
k−1|k
i

)
− yk|k−1

)T
+ Ck

Pk|k−1
xy =

2d

∑
i=0

wi

(
χ

k|k−1
i − xk|k−1

)(
h
(

χ
k−1|k
i

)
− yk|k−1

)T

where Pxy,·|· is the covariance matrix of x·|· and y·|·.
Finally, the correction step is

Sk = Pk|k−1
xy

(
Pk|k−1

yy

)−1

xk|k = xk|k−1 + Sk

(
zk − yk|k−1

)
Pk|k

xx = Pk|k−1
xx − SkPk|k−1

yy ST
k .

(19)

By leveraging the true attitude representations using the genetic algorithm [34], we
were able to calculate optimal covariance parameters for the UKF in this work.

5. Dataset and Training

The dataset used in training was made publicly available by Chen et al. [35]. The
dataset contains 158 sequences, totalling more than 42 km in total distance and incorporates
a variety of attachments, activities and users to best reflect the broad use cases seen in real
life. The data were captured via five different users and four different types of off-the-shelf
consumer smartphones. The IMU data were collected and synchronised with a frequency
of 100 Hz, which is generally accepted in various applications and research [36–38]. The
ground truth in these collections was taken with a Motion Capture system. The dataset
was randomly divided into training, validation and test sets, following [39]. A single
sequence was left out for each of the variables as a means of unseen comparison with other
techniques. The neural network is optimised and trained on the training set. After an entire
epoch, the network is evaluated on the validation set as a measure of improvement. The test
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set provides an unbiased evaluation on the resultant network. To avoid overfitting and to
improve compute efficiency, we used a sliding window to capture 100 measurements every
50 to feed into the encoder. This gave us 63,614 training samples, 18,175 validation samples
and 9089 test samples. Random search algorithm was used to optimise the parameter
tuning during the training process. The implementation of all adaptations was carried out
with PyTorch. The training was conducted for 300 epochs, with a learning rate of 0.001, an
ADAM optimiser and a dropout of 0.2. The training was conducted in parallel on 4×Nvidia
V100 GPUs, made possible with the assistance of resources and services from the National
Computational Infrastructure (NCI), which is supported by the Australian Government.

5.1. Loss Function

The loss function that is minimised during the training process in each of the models in
this work is the Mean Square Error (MSE) loss function, as defined in Equation (21), where
q̂i − qi is the element-wise subtraction of the true and estimated quaternions, respectively,
and the inner product is defined as

〈q0, q1〉 = w0w1 + x0x1 + y0y1 + z0z1, (20)

`(q̂i, qi) =
1
N

N

∑
i=1

li, ln = 〈q̂n − qn, q̂n − qn〉 (21)

and N is the batch size.

5.2. Evaluation Metrics

We evaluate the above approaches using the following metrics:

(1) Inner Product (IP) of Unit Quaternion:

To give an approximate measure of dissimilarity between pairs, we need to define
a distance metric. Defining the quaternion pairs as q0 and q1, it is possible to derive a
geodesic metric for unit quaternion representation in SO(3). A simple measure used for
pose estimation in [40] is defined using the angle formed by a pair of 4D unit quaternions,
related to the inner product by its cosine:

α = cos−1(〈q0, q1〉) (22)

where the length of the geodesic path on the 4D unit sphere is proportional to α. How-
ever, using Equation (22) results in numerical issues, as there is a discontinuous gradient
in the interval (−1, 1) at point 0, which results in extreme values at the points where
cos−1(〈q0, q1〉)→ 0. We follow [41] in eliminating the inverse cosine function and define
the error metric function:

IP =
1
N

N

∑
i=1

1− |〈q̂i, qi〉| (23)

for a sequence of N samples, where the quaternion estimate and truth at sequence i are
given by qi and q̂i, respectively. Equation (23) computes the approximated distance metric
between two unit quaternions.

(2) Root Mean Square Error (RMSE):

The RMSE metric used in this work is calculated using the following equation:

RMSE =

√√√√ 1
N

N

∑
i=1

(q̂i − qi)2 (24)

and N is the number of samples. This metric is given as the Mean Square Error (MSE)
and served as our heuristic for training all of the models in this work. RMSE is widely
considered a staple for evaluating the usefulness and accuracy of a model.
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(3) Angular Distance Between Two Quaternions:

A quaternion can be defined by an axis in three dimensions (ua, ub, uc) and an angle
of rotation, θq, as

q = cos

(
θq

2

)
+ sin

(
θq

2

)(
uai + ub j + uck

)
(25)

Given our network estimates, each quaternion is in the form q = w + xi + yj + zk,
where w is the real part, and the angle of q can be solved through θq = 2 cos−1(w). Consider
again our true and estimated quaternions to be q̂i and qi, respectively, and the product
p = q̂iq̄i. As our estimate q approaches the truth attitude q̂i, the angle of p 7→ 0. We can
then define the angular distance between two unit quaternions as

θp = 2 cos−1 p(R) (26)

Given how we parameterised our network output, and to conceptually aid the reader,
this is the primary metric used in our evaluation.

6. Evaluation

To evaluate our approach, we compare the performance of the Attformer and UKF–
Attformer against a UKF, the iOS CoreMotion API and a GRU trained on the same data.
We consider unseen sequences from four different users, six different activities and three
different smartphones. Each method is evaluated on identical, chronologically synced
data sequences, in their entirety. Each trajectory occurs over a minimum of three minutes,
which allows for accumulated drift and poor solutions to significantly affect the error
metrics—discussed in Section 5.2.

Table 1 demonstrates that each approach outperforms the CoreMotion’s estimates
by a significant margin. The Attformer also comprehensively beats the 2-layer GRU over
every metric and activity. As expected, a major issue we found with the purely end-to-end
approach of the Attformer is that the network had no way of retaining the prior estimate,
which led to large outlier estimates that adversely affected the performance. The combined
approaches (UKF and Attformer), wherein the prior UKF was used an an input feature in
the learning process, not only eliminated the outlier estimates but provided a much better
estimation than either the UKF or Attformer alone.

The GRU and Attformer RMSE results in Table 1 demonstrate that both models are
equally sensitive to measurement fluctuations, commonly found in smartphone inertial
data. This is despite being optimised on minimising MSE. As we mentioned earlier, this is
due to the large error spikes in each model’s estimate inflating these values. The separation
between the GRU and Attformer is very apparent when looking at IP and angular distance,
as the self-attention mechanism is able to better capture the overarching biases and drift.
The Attformer estimate is consistently significantly lower over each user, device and activity
for both of these metrics. GRUs, and RNNs in general, carry the inductive biases of temporal
invariance and locality via their Markovian structure [42], whereas a self-attention-based
design is able to minimise assumptions about the structural information of incoming
data. Additionally, the attention mechanism allows for retention of the measurement
noise characteristics throughout the learning process—allowing for more consistent and
accurate estimates.

The RMSE of the UKF estimate is unsurprisingly lower than the Attformer and GRU
models due to its probabilisitic iterative design, smoothing subsequent measurements.
It also outperforms the GRU over every metric and sequence. We also observe that it
outperformed the Attformer in angular distance for Users 2 and 3, which is most likely
attributed to the filter covariance parameters for those particular sequences being closest
to the ones calculated using the total dataset. Furthermore, we observe that large outlier
noise spikes impact the Attformer far more than the UKF, evidenced by the RMSE of the
UKF and Attformer compared with their respective distance and IP. This is attributed
to the traditional approaches of the aforementioned prior state knowledge. By adding
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this knowledge to the Attformer, as the UKF–Attformer, we solidified this hypothesis, as
we see dramatic improvements in every evaluation metric, particularly RMSE. Each of
our performance metrics indicate that use of priors in the input feature provided a more
precise and robust solution. However, paramount to the success of an attitude estimation
method is not just accuracy but generalisability. We see the Attformer provides a much
more generalisable solution over the GRU and UKF. The standout attitude estimation is
with the UKF–Attformer, where we see that giving the NN prior estimate knowledge in the
learning process eliminated the error spikes we saw in the Attformer estimates.

Table 1. Attitude error metric comparison over each full, unseen activity sequence. The best perform-
ing approach over each sequence and for each metric has been made bold to aid the reader.

User 2 User 3 User 4

Model RMSE Distance (◦) IP RMSE Distance (◦) IP RMSE Distance (◦) IP

iOS 0.599 129.34 0.612 0.640 130.20 0.482 0.696 127.99 0.580
GRU 0.294 19.98 0.163 0.241 17.56 0.114 0.285 20.39 0.148
UKF 0.109 7.34 0.024 0.160 7.84 0.052 0.259 17.84 0.135

Attformer 0.297 13.20 0.010 0.250 13.30 0.024 0.305 11.28 0.017
UKF-Att 0.124 7.31 0.005 0.138 7.13 0.000 0.184 9.61 0.020

User 5 Pocket Running

RMSE Distance (◦) IP RMSE Distance (◦) IP RMSE Distance (◦) IP

iOS 0.735 129.60 0.607 0.677 128.03 0.720 0.657 91.86 0.533
GRU 0.265 20.12 0.162 0.195 13.76 0.069 0.144 14.04 0.030
UKF 0.145 13.58 0.042 0.145 10.97 0.042 0.150 15.19 0.065

Attformer 0.267 9.04 0.030 0.120 7.71 0.042 0.144 11.29 0.022
UKF-Att 0.135 8.99 0.008 0.085 7.06 0.005 0.114 8.46 0.012

Slow Walking Trolley Handbag

RMSE Distance (◦) IP RMSE Distance (◦) IP RMSE Distance (◦) IP

iOS 0.612 90.60 0.667 0.600 128.99 0.585 0.606 93.81 0.629
GRU 0.136 10.34 0.030 0.298 21.44 0.188 0.155 16.25 0.038
UKF 0.123 14.83 0.048 0.205 10.31 0.084 0.147 17.80 0.058

Attformer 0.171 8.13 0.020 0.359 12.83 0.001 0.145 10.99 0.017
UKF-Att 0.112 6.64 0.014 0.160 7.91 0.020 0.098 10.31 0.011

Handheld iPhone 5 iPhone 6

RMSE Distance (◦) IP RMSE Distance (◦) IP RMSE Distance (◦) IP

iOS 0.596 130.09 0.627 0.602 128.72 0.591 0.602 129.14 0.559
GRU 0.450 75.99 0.421 0.348 24.06 0.193 0.337 23.81 0.204
UKF 0.454 61.90 0.415 0.181 9.51 0.067 0.264 9.47 0.140

Attformer 0.483 65.25 0.234 0.411 20.84 0.035 0.384 21.27 0.036
UKF-Att 0.341 35.09 0.100 0.169 10.27 0.020 0.249 11.55 0.030

As a measure of generalisability for each approach, we take the mean of the angular
distance over each unseen sequence, user and activity. The inbuilt iOS had a mean angular
distance from the true attitude of 117.31◦; the GRU 21.90◦, the UKF 16.38◦, the Attformer
16.28◦ and, finally, the UKF–Attformer had a mean angular distance of 10.86◦. Not only
do the self-attention-based techniques outperform previous DL and parameter-optimised
state-of-the-art mathematical solutions but also provide a more generalisable solution
without the need for context-specific parameter tuning or prior knowledge.

7. Conclusions

This paper proposes a novel approach for end-to-end attitude estimation leveraging
the self-attention mechanism in machine learning. We trained on a publicly available
smartphone dataset, comprising triaxis accelerometer, gyroscope and magnetometer data,
with Motion Capture to obtain the ground truth. We compared the performance of two
self-attention approaches with a 2-layer GRU, UKF and the iOS CoreMotion API. Each
approach was evaluated over a range of unseen sequences from different users, devices
and activities. We showed that the self-attention method outperforms previous data-driven
techniques that rely on RNNs, as they are unable to capture the long-term dependencies
in the data. We showed that the self-attention mechanism’s well-known ability to retain
information and dependencies over long sequences improved our attitude estimation
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solution. Additionally we showed that providing the network with prior state knowledge,
through the use of a UKF, dramatically improves the network’s estimate. Both self-attention
methodologies with and without prior state information proposed in this work provide a
stable, accurate and generalisable solution, with an average angular distance from truth
of 10.86◦ and 16.28◦, respectively. The UKF, GRU and iOS averages were 16.38◦, 21.90◦

and 117.31◦. Future work will focus on the limitations of the algorithm and involve further
developing the framework into an end-to-end inertial odometry solution.
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