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Abstract
Two-point time-series data, characterized by baseline and follow-up observations, 
are frequently encountered in health research. We study a novel two-point time-
series structure without a control group, which is driven by an observational routine 
clinical dataset collected to monitor key risk markers of type-2 diabetes (T2D) and 
cardiovascular disease (CVD). We propose a resampling approach called “I-Rand” 
for independently sampling one of the two-time points for each individual and mak-
ing inferences on the estimated causal effects based on matching methods. The pro-
posed method is illustrated with data from a service-based dietary intervention to 
promote a low-carbohydrate diet (LCD), designed to impact risk of T2D and CVD. 
Baseline data contain a pre-intervention health record of study participants, and 
health data after LCD intervention are recorded at the follow-up visit, providing a 
two-point time-series pattern without a parallel control group. Using this approach 
we find that obesity is a significant risk factor of T2D and CVD, and an LCD 
approach can significantly mitigate the risks of T2D and CVD. We provide code that 
implements our method.

Keywords Resampling · Matching method · Causal inference · Two-point time-
series · Synthetic control · Type-2 diabetes · Cardiovascular disease

1 Introduction

Cardiovascular disease (CVD), including stroke and coronary heart diseases, has 
become the most common non-communicable disease in the United States, and is 
also a severe problem globally [1, 2]. Type-2 diabetes (T2D) doubles the risk of 
CVD, which is the principal cause of death in T2D patients [3]. CVD and T2D 
produce an immense economic burden on health care systems globally. Targeted 
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intervention for individuals at increased risk of CVD and T2D plays a crucial role 
in reducing the global burden of these diseases [4]. Consequently, the identification 
of dietary and lifestyle risk factors for T2D and CVD has become a health priority 
[5]. Since obesity is a substantial contributor to T2D, and consequently to the risk of 
CVD [6], lowering obesity through diet control may help to alleviate the T2D and 
CVD epidemics.

In this work, we pursue two scientific goals. First, we seek to determine whether 
or not obesity is a significant risk factor for T2D and CVD. Second, we ask if a 
low-carbohydrate diet (LCD) improves on standard care for T2D and CVD risk in 
patients with prediabetes or diabetes. We use causal inference tools, including the 
potential outcome model and mediation analysis, to quantify the impact of obesity 
and diet on T2D and CVD risk. To explore the link between obesity and T2D, we 
ask: what would the effect on T2D be if an individual were to change from a nor-
mal weight to an obese weight? Motivated by the impact of T2D in CVD risk, we 
seek to understand the role of T2D in mediating the effect of obesity on CVD risk. 
This mediation analysis is relevant to an individual with limited control over his 
or her T2D status and who wishes to identify factors that can be controlled. We 
perform mediation analysis to identify obesity as a significant risk factor for T2D 
and CVD and to disentangle cause-and-effect relationships in individuals with both 
conditions. Building on these questions, we are also interested in quantifying the 
effects of an LCD, which restricts the consumption of carbohydrates relative to the 
average diet [7], on both T2D and CVD risk. Several systematic reviews and meta-
analyses of randomized control trials suggest beneficial effects of LCD in T2D and 
CVD [8–10]. However, the impact of LCD in a primary care setting with observa-
tional data and its cause-and-effect inferences has not been thoroughly evaluated [2, 
11, 12]. As we discuss in detail later in this article, our results indicate that obesity 
is a significant risk factor for T2D and CVD, and that LCD can significantly lower 
the risks of T2D and CVD risk.

We explore our scientific questions by analyzing clinical data from patients who 
visited a health clinic in the UK on two occasions. These patients began a low-
carbohydrate diet subsequent to the first visit, and standard measurements of their 
health were taken at both visits. Data on these patients naturally comprise a panel 
dataset with two time points. In this two-point time-series dataset, there is no control 
group, which poses a challenge for causal inference. We propose a novel approach 
to dealing with this challenge, “I-Rand," which estimates average treatment effect 
and its significance on a collection of sub-samples of our dataset. Each subsample 
contains exactly one of the two observations corresponding to each individual. The 
average treatment effect within each subsample relies on propensity score match-
ing, and statistical significance is estimated with a permutation test. Such subsam-
pling has been used previously by Hahn [13] in the analysis of spatial point patterns. 
We benchmark I-Rand against two alternative estimation methods. The I-Rand 
algorithm meets the Stable Unit Treatment Value Assumption (SUTVA) of “no-
interference” for valid causal inference, unlike the pooled approach [14, 15]. On the 
other hand, I-Rand permits a nonparametric estimation of treatment effect and hence 
is robust to the model specification as compared with difference-in-differences 
method [16, 17]. Moreover, I-Rand enables us to draw inference on the significance 
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of the estimated average treatment effect. We demonstrate through simulations that 
the I-Rand algorithm reduces error in estimates of the treatment effect compared to 
the pooled approach and difference-in-differences.

We compare I-Rand with the synthetic control method [18]. Both methods aim 
to estimate causal effects from observational data when randomized control trials 
are not feasible or ethical. However, there are also significant differences between 
our approach and the synthetic control method. The synthetic control method builds 
a composite unit from a pool of control units that resemble the characteristics of 
the treated unit prior to treatment [19]. It serves as a counterfactual to estimate 
what would have happened to the treated unit in the absence of the intervention. 
This method is particularly useful when the treatment is applied to a single unit, 
and is often used in macro-level data where the number of units is typically lim-
ited [20]. On the other hand, our “I-Rand" method is designed for a distinct type of 
observational study where we have a two-point time-series structure without a con-
trol group. Rather than creating a synthetic control group from a set of non-treated 
units, we independently sample one of the two time points for each individual. We 
then make inferences on the estimated causal effects based on matching methods 
[21]. Our approach offers a unique advantage when analyzing individual-level 
data obtained from a larger sample size, making it particularly applicable in health 
research where baseline and follow-up data are frequently available [22].

The article is organized as follows. Section  2 introduces basic concepts from 
the potential outcomes model and matching methods, and propose the new I-Rand 
algorithm that we use to analyze the two-point time-series data. Section 3 compares 
the proposed I-Rand with benchmark methods such as the pooled approach and the 
difference-in-differences. Section  4 explains the use of I-Rand to understand the 
role of the LCD in reducing the risks of T2D and CVD risk. Section 5 investigates 
the relationship between obesity, T2D, and CVD risk. We discuss the limitations of 
our methods and indicate directions for future research in Sect. 6, and conclude the 
paper in Sect. 7.

2  Motivation, Dataset, and Methodology

2.1  A Motivating Example

Cause-and-effect questions arise naturally in the context of nutrition or health, mak-
ing causal analysis especially relevant. Consider the counterfactual question: If an 
individual changes from a regular diet to an LCD, would he / she be less likely to 
develop T2D? We can attempt to estimate the effect of diet on T2D from observa-
tional data. Any cause-and-effect inferences from observational data rely on restric-
tive assumptions and a specification of the underlying causal structure. In particular, 
we make the following assumptions. First, the treatment is a binary variable that 
indicates whether or not an individual follows an LCD. The binary treatment LCD 
abstracts away the degree of LCD as this data there is clinical consultation Second, 
body mass index (BMI) is a surrogate for obesity and mediates the effect of LCD 
on T2D [23]. Gender is a binary variable and age is an ordinal variable. Finally, the 
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medical outcome T2D is an ordinal variable indicating status at time of reporting: 
non-diabetics, pre-diabetics, and diabetics. T2D categories rely on glycated haemo-
globin (HbA1c) value. We also note that the BMI, age and gender variables reflect 
only the case demographics, i.e., the BMI, age and gender distributions among the 
tested individuals, and not the general demographics. We assume the coarse-grained 
causal graph in Fig.  1, and motivate it by thinking of the following data-generat-
ing process: (1) LCD affects both BMI and the risk of T2D based on established 
knowledge of causal effects in nutrition studies [7, 24, 25]; (2) Gender and age affect 
BMI and the risk of T2D, but not the treatment LCD; (3) Conditional on the status 
of LCD, BMI, gender and age, T2D status is sampled as the medical outcome; (4) 
There are no hidden confounders (i.e., causal sufficiency). We discuss the role of 
unobserved variables in Sect. 6. We use arrows from one variable to another in the 
causal graph in Fig. 1 (and all other causal graphs) to indicate causal relationships. 
Under these assumptions, we can estimate the effect of LCD on T2D by adjusting 
for the confounders using the model of potential outcomes.

We will analyze the effect of LCD on the likelihood of developing T2D using 
Fig. 1 after describing the structure of our dataset and reviewing causal inference 
basics.

2.2  Data

Our work is based on routine clinical data concerning 256 patients collected 
between 2013 and 2019 at the Norwood General Practice Surgery in the north of 
England [2]. As background, Norwood serves a stable population of approximately 
9,800 patients, and an eight-fold increase in T2D cases was recorded over the last 
three decades.

Each patient visited the Norwood General Practice Surgery twice. The average 
time between visits was 23 months with a standard deviation of 17 months. Each 
patient is offered to start an LCD subsequent to the first visit.1 Measurements of 

Fig. 1  Assumed coarse-grained causal graph for the relationship between LCD, BMI, and the outcome 
T2D

1 Conventional one-to-one general practice consultations were used for LCD advice, supplemented by 
group consultation, to help patients better understand the scientific principles and consequences of LCD; 
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standard indicators such as age, gender, weight, HbA1c, lipid profiles, and blood 
pressure were taken at both visits. Since CVD includes a range of clinical conditions 
such as stroke, coronary heart disease, heart failure, and atrial fibrillation [26], sev-
eral different risk factors are recorded for CVD during individuals’ visits. We study 
four risk factors that indicate CVD risk. These are systolic blood pressure, serum 
cholesterol level, high-density lipoprotein, and a widely used measure of CVD risk 
called the Reynolds risk score, which is designed to predict the risk of a future heart 
attack, stroke, or other major heart disease. The Reynolds risk score is a linear com-
bination of different risk factors such as age, blood pressure, cholesterol levels and 
smoking habits [27].2 A complete list of variables along with definitions and sum-
mary statistics is in Appendix C.

2.3  Model of Potential Outcomes

We use concepts and notations from the Neyman (or Neyman-Rubin) model of 
potential outcomes [28, 29]. The treatment assignment for individual i is denoted by 
Ti , where Ti = 0 and Ti = 1 represent control and treatment. Let Yi be the observed 
outcome and Xi be the observed confounders. For example, Xi represents gender and 
age in the motivating example. The causal effect for individual i is defined as the 
difference between the outcome if i receives the treatment, Yi(1) , and the outcome if 
i receives the control, Yi(0) . Since, in practice, an individual cannot be both treated 
and untreated, we work with two populations: a group of individuals exposed to the 
treatment and a group of individuals exposed to the control. It is important to distin-
guish between the observed outcome Yi and the counterfactual outcomes Yi(1) and 
Yi(0) . The latter are hypothetical and may never be observed simultaneously; how-
ever, they allow a precise characterization of questions of interest. For example, the 
causal effect for individual i can be written as the difference in potential outcomes:

Since the outcome surface �(X) depends on confounders, we focus on the “average 
treatment effect" (ATE), �X[�(X)] , which is defined as the average causal effect for 
all individuals including both treatment and control.

�(Xi) = �[Yi(1)|Xi] − �[Yi(0)|Xi].

2 Some of the variables used in calculating the Reynolds risk score are missing from data. We make the 
simple choice of excluding them from the formula.

including how glucose and insulin levels change in response to different foods [2]. The role of group ses-
sions was to reinforce diet and lifestyle change. LCD intervention encourages a reduction in the intake 
of sugary and starchy foods, for example, sugary breakfast cereals and rice, by replacing them with, for 
example, green leafy vegetables, eggs, meat and fish, with sensitivity of each individual’s socio-cultural 
dietary restrictions and preferences.

Footnote 1 (continued)
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Matching methods attempt to eliminate bias in estimating the treatment effect 
from observational data by balancing observed confounders across treatment and 
control groups; see, e.g., Rubin and Thomas [30] and Imbens [31]. These works 
identify two assumptions on data that are required in order to apply matching meth-
ods in an observational study.

• The strong ignorability condition (Rosenbaum and Rubin [32]) is referred to as 
the combination of exchangeability and positivity, which we discuss later that 
they are satisfied in our experiments.

– Treatment assignment is independent of the potential outcomes given the 
confounders.

– There is a non-zero probability of receiving treatment for all values of X: 
0 < ℙ(T = 1|X) < 1.

   Weaker versions of the ignorability assumption exist; see, e.g., Imbens [31].
• The stable unit treatment value assumption (SUTVA; Rubin [33]), which states 

that the outcomes of one individual are not affected by treatment assignment of 
any other individuals. There are two parts of the SUTVA assumption, which we 
rely on later in this paper.

– No-interference: The outcome for individual i cannot depend on which treat-
ment is given to individual i′ ≠ i . (Rubin [33] attributes this to Cox [34].)

– No-multiple-versions-of-treatment: There can be only one version of any 
treatment, as multiple versions might give rise to different outcomes. (Rubin 
[33] attributes this to Neyman [35].)

“Version" refers to detailed information that is ignored as we coarsen a refined indi-
cator to be used as a (typically binary) treatment. The assumptions mentioned above 
are complementary to the assumptions that determine causal models such as the 
one shown in Fig. 1. To determine if treatment T is ignorable relative to outcome 
Y, conditional on a set of matching variables, we require only that matching vari-
ables block all the back-door paths between T and Y, and that no matching variable 
is a descendent of T [36]. For example, LCD in Fig. 23 is ignorable since match-
ing the confounders (i.e., gender and age) blocks all the back-door paths and the 
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confounders are not descendants of LCD. The algorithm for propensity score match-
ing is summarized in Algorithm 1. Detailed discussions of each step are deferred to 
Appendix A.

2.4  I‑Rand Algorithm

Two-point time-series datasets that are structurally similar to the nutrition dataset 
introduced in Sect. 2.2 arise frequently in medical and health studies. A dataset of 
this type consists of a baseline observation at time t = 0 and a follow-up observation 
at t = 1 , where all individuals receive a treatment between the two time points. How 
do we apply matching methods to estimate the causal effect of a treatment that was 
taken between the two time points from a dataset of this type? To address this ques-
tion, we look at what happens when we attempt to apply statistical methods to esti-
mate the causal effect. Although there are many popular machine learning methods 
for causal estimation [37, 38], we focus on two widely used approaches: pooling and 
difference-in-differences.

Pooling [14, 15] combines the baseline and the follow-up observations into a sin-
gle dataset. This approach treats the measurements from individual i at t = 0 (before 
taking the treatment) and t = 1 (after observing the outcome of the treatment) as 
distinct data points. This amounts to using observations at t = 0 as a control group. 
Difference-in-differences [16, 17], on the other hand, makes use of longitudinal data 
from both treatment and control groups to obtain an appropriate counterfactual to 
estimate causal effects. This approach compares the changes in outcomes over time 
between a population that takes a specific intervention or treatment (the treatment 
group) and a population that does not (the control group).

Consider the motivating example in Sect.  2.1, where every individual embarks 
on the LCD treatment at time 0. At time 1, we look at at how the outcome T2D 
is affected by the LCD between times 0 and 1, under numerous assumptions. Sup-
pose we try to estimate the average treatment effect of the LCD by matching pro-
pensity scores on a dataset obtained by pooling observations at times 0 and 1. Since, 
for every i, the treatment Ti,t determines the treatment Ti,1−t the outcome for indi-
vidual i at time t depends on the treatment of individual i at time 1 − t . In other 
words, the pooled approach violates the no-interference assumption, and propen-
sity score matching is not supported.[14, 15]. As we illustrate with simulation in 
Sect. 3.1.1, the no-interference violation can lead to sub-par performance of causal 
estimates based on pooling. On the other hand, applying difference-in-differences to 
the motivating example would require us to make an assumption about what what 
would happen to individuals not treated between times 0 and 1. We explore this in 
Sect. 3.1.2.

The issues outlined above prompted us to develop I-Rand, a novel approach to 
estimating causal effects from two-point time-series data. As we show in simula-
tion, I-Rand can reduce estimation error introduced by violations of the SUTVA 
assumption incurred by pooling data. There is some conceptional overlap between 
I-Rand and the synthetic control method [18, 39], which provides a systematic way 
to choose comparison units (i.e., “synthetic control”) as a weighted average of all 
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potential comparison units that best resembles the characteristics of the unit of inter-
est (i.e., treatment unit). In I-Rand, both the control and treatments units are chosen 
from the data to form a “synthetic subsample” from which the causal effect is esti-
mated using propensity score matching (i.e., the one control unit with the closest 
propensity score to the treatment unit of interest).

I-Rand samples one of the two visits for each patient, calculates the ATE on this 
selected subsample, and shuffles the treatment of the subsample to estimate the sig-
nificance of the treatment. The estimation relies on the matching method described 
in Sect. 2.3 and applies a permutation test to the statistics estimated from the match-
ing methods on the subsamples to infer the significance. Under the null hypothesis, 
the empirical ATEs are identically distributed. Formally, we construct a subsample 
in which each patient appears exactly once, either at t = 0 or t = 1 with the same 
probability, and then calculate the ATE from this sample. Then we construct addi-
tional (M − 1) subsamples, where each additional subsample should be drawn to 
have as few common observations with existing subsamples as possible. For exam-
ple, one can apply the Latin hypercube sampling [40] to draw the subsamples. We 
calculate the ATEs from the constructed (M − 1) subsamples and take the average 
ATE:

where m indicates the mth generated subsamples. Then the i-Randomization estima-
tor in Equation (1) gives the overall estimated ATE. To assess the significance of the 
treatment, we add another layer of randomization by permuting the treatments in the 
subsample. That is, given a subsample m with corresponding estimand ATE(m) , we 
shuffle the treatment vector of this subsample without changing the confounders or 
the outcome. We then estimate an average treatment effect ATE(m,s) for this shuffled 
treatment, where the superscript (m, s) indicates that we have selected the subsample 
m and the shuffle s. We repeat the experiment S times (for a fixed subsample m), and 
obtain the distribution of average treatment effects., i.e., (ATE(m,s))s∈{1,...,S} . Then, 
we calculate a p-value as the fraction of permuted average treatment effects that 
exceed the estimand ATE(m) . The additional complexity of I-Rand is justified by the 
benefits that it brings relative to the pooled approach and difference-in-differences. 
I-Rand overcomes the SUTVA violation that is inherent in the pooled approach, and 
it creates a synthetic control group, which is absent in difference-in-differences. The 
I-Rand algorithm is summarized in Algorithm 23

(1)1

M

M∑

m=1

ATE(m),

3 In Algorithm 2, each individual is chosen randomly with equal probability during pre- and post-treat-
ment periods.
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We note that the permutation test in I-Rand is valid only if the rearranged data are 
exchangeable under the null hypothesis [41]. In our two-sample test for the nutrition 
dataset, the exchangeability condition holds since the distributions of the two groups 
of data are the same under the null hypotheses that there is no treatment effect. The 
subsampling technique in I-Rand is similar to the one studied by Hahn [13] in the 
analysis of spatial point patterns. The difference, however, is that the normalization 
of test statistics (i.e., ATE) is unnecessary in I-Rand since the matching method has 
balanced the designs.

3  Comparison of I‑Rand with Alternative Methods

We use simulation to compare errors in an I-Rand-based estimation of a treatment 
effect with errors from the pooled approach and difference-in-differences. We look 
at causal effect estimation under two types of treatment assignments inspired by our 
data and the questions considered in this article. First, we study the “LCD-like treat-
ment", as in the motivating example in Sect. 2.1, where T = 0 at t = 0 and T = 1 at 
t > 0 (some arbitrary time for the second visit of the experiment, after the treatment 
was assigned) for all individuals. The LCD-like treatment respects the two-point 
time series structure since the assignment of T depends on time.

Next, we consider a study from Sect. 5.1: does obesity cause T2D? Here, treat-
ment is a binary indicator based on the body-mass index (BMI), where obesity 
is indicated by BMI > 30 . To avoid excess notation, we use the acronym “BMI" 
to indicate both the body mass index and the binary treatment derived from it. In 
this study, there is a control group consisting of individuals with BMI < 30. This 
treatment does not align with time, and we call treatments of this type “BMI-
like."4 Here, it is natural to pool the data at the two time points, with a control 

4 Practical considerations concerning the potential outcomes framework require that a treatment be a 
binary indicator, and that forces us to discard detailed information that may be contained by the continu-
ous indicator BMI [42].
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group of non-obese individuals and a treatment group of obese individuals. To 
apply difference-in-differences, we split the data into two subsets. The first subset 
consists of individuals who are non-obese at time 0. The control group in the sub-
set is individuals who are non-obese at time 1, while the treatment group consists 
of individuals who are obese at time 1. For this subset, the treatment, obesity, 
has a significant effect on T2D if change in T2D is significantly different in the 
treatment group than in the control group. The second subset consists of individu-
als who are obese at time 1. The control group in the subset is individuals who 
are obese at time 1, while the treatment group consists of individuals who are 
non-obese at time 1. Again, the treatment, obesity, causes T2D if the change in 
T2D is significantly different from zero in the treatment group than in the con-
trol group. As usual, the numerous assumptions on which our results rely include 
causal completeness. We note that, while it may be unintuitive, it is certainly pos-
sible that the effect of increased obesity on T2D could turn out to be negative. An 
overview of the comparison of I-Rand with two benchmark methods is given in 
Table 1.

All our simulations consider a panel dataset with two time points where outcomes 
are specified by the structural equation:

where the confounder vector Xi,t , such as age or gender, takes continuous or cate-
gorical values. The parameter � ∈ ℝ , g(⋅) are unknown functions, and f (⋅) is a linear 
function in the treatment, i.e. f (Ti,t) = �Ti,t . We provide a set of identifiability con-
ditions for model (2) so that we can uniquely estimate the parameters � , � , and the 
unknown function g(⋅) based on the observed outcome Yi,t , treatment Ti,t , and con-
founder vector Xi,t . First, we assume there is no perfect multicollinearity among the 
treatment Ti,t and the confounder vector Xi,t , so their effects on Yi,t can be separately 
identified. Second, we assume the error term, �Y

i,t
 , is independently and identically 

distributed and is uncorrelated with the treatment and the confounders. Lastly, we 
assume g(⋅) satisfies the side condition �X[g(X)] = 0 , which is necessary to uniquely 
estimate g based on the observed data [38, 43].

Assuming the confounder satisfies the back-door criterion [36], we can interpret 
f(.) as the causal mechanism of T affecting Y [44]. The noise term �Y

i,t
 is assumed to 

be i.i.d. for any i and t, and has zero mean and bounded variance. The treatment Ti,t 
is specified differently in different examples that we consider below.

(2)Yi,t = � + f (Ti,t) + g(Xi,t) + �Y
i,t
,

Table 1  Overview of 
comparison of I-Rand with 
alternative methods given two-
point time-series with novel 
structures

Respect time structure Ignore time structure
(LCD-like treatment) (BMI-like treatment)

Pooled approach 
vs. I-Rand

Section 3.1.1 Section 3.2.1

Difference-in-
differences vs. 
I-Rand

Section  3.1.2 Section 3.2.2
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3.1  Time‑Aligned (LCD‑Like) Treatment

To complete the specification of the data generating process (2), we set the treatment 
variable as follows:

where the treatment Ti,t for individual i at time t is binary and depends only on time. 
For example, Ti,t in the nutrition data of Sect. 2.2 indicates whether individual i fol-
lows an LCD at time t. The outcome Yi,t is analogous to the HbA1c measure in the 
nutrition data of Sect. 2.2. We note that the strong ignorability condition in Sect. 2.3 
is satisfied under the LCD-like treatment (3). Specifically, the first condition on 
exchangeability holds since the T = 1 is independent of the potential outcomes given 
the confounders under (3). The second condition on positivity holds because for any 
given confounders X that excludes the time t, the probability of receiving treatment 
satisfies 0 < ℙ(T = 1|X) < 1 . However, the data-generating process under (3) vio-
lates SUTVA in Sect. 2.3.

3.1.1  Comparison to the Pooled Approach

The pooled approach breaches the “no-interference” assumption as Ti,t determines Ti,t′ , 
where t ≠ t� ∈ {0, 1} . Thus, each pair of distinct observations has the same probabil-
ity of being matched, which violates the “no-interference” assumption of the SUTVA 
in Sect. 2.3. We refer readers to Appendix A for an overview of the propensity score 
matching.

We consider a numerical example that illustrates the consequence of breaching the 
“no-interference” assumption on the pooled data. We consider a correlated structure of 
confounders that simulates the age and gender in the nutrition data of Sect. 2.2. Let X(1) 
denote gender and X(2) denote age. Therefore, for t = 0 , our confounders are simulated 
as follows:

where � and � are respectively the average age and its standard deviation. For t = 1 , 
we add a time trend on the variable age and keep the variable gender constant:

ti here is the time elapsed between the first and second visit for individual i (meas-
ured in months, and will generate ti to be uniformly distributed in the time length of 
the experiment (e.g. 24 months)) and � is the correlation between the confounder at 
t = 0 and t = 1 . We set � = 0.9 , � = 40 , � = 10 and ti ∼ Unif{1, 2,… , 24} in this 
simulation. The outcome Yi,t is generated by letting g(⋅) in (2) be a linear function:

(3)Ti,t = 1t=1, ∀i ∈ {1,… , n} and t ∈ {0, 1},

(4)
X
(1)

i,0
= � + ��X

i
, �X

i
∼ N(0, 1)

X
(2)

i,0
∼ Unif{0, 1},

(5)
X
(1)

i,1
= ti + �X

(1)

i,0
+
√
1 − �2�X

i
, �X

i
∼ N(0, 1)

X
(2)

i,1
= X

(2)

i,0
,
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Here, we set � = 0 and � = 1 in (2), and �T = (1, 1) in (6). The noise variable �Y
i,t

 in 
(2) is independently drawn from N(0, �2) . Under the pooled approach, we estimate 
the treatment effect based on the propensity score matching in Algorithm 1. Under 
I-Rand, we estimate the treatment effect by averaging over the estimates using 500 
subsamples using Algorithm 2. Figure 2 reports the mean squared errors (MSEs) for 
� with varied sample sizes and noise levels. In our example, I-Rand outperforms the 
pooled approach, whose ATE estimate has inflated error due to the breach of “no-
interference” assumption.

We also explore the decomposition of the MSE to check the bias and variance sepa-
rately in Figs. 3 and 4. It is seen that the inflated error is related to a larger variance for 
the pooled approach compared I-Rand, while the bias is close to 0 for both methods.

3.1.2  Comparison to Difference‑In‑Differences

The standard set up of difference-in-differences [16, 17] is one where outcomes 
are observed for two groups for two time periods. One of the groups is exposed 

(6)g(X) = X�.

Fig. 2  The MSE for the estimate of treatment effect when varying the sample size and noise level � . Left 
plot: the MSE surface for the I-Rand; Middle plot: the MSE surface for the pooled approach; Right plot: 
MSE(pooled) −MSE(I-Rand)

Fig. 3  The bias2 for the estimate of treatment effect when varying the sample size and noise level � . Left 
plot: the bias2 surface for the I-Rand; Middle plot: the bias2 surface for the pooled approach; Right plot: 
bias2

pooled
− bias2

I-Rand
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to treatment in the second period but not in the first period. The second group is 
not exposed to the treatment during either period. In the case where the same units 
within a group are observed in each time period, the average gain in the control 
group is subtracted from the average gain in the treatment group, which gives an 
estimate of the average treatment effect:

Difference-in-differences removes biases in second-period comparisons between 
the treatment and control group that could be the result of permanent differences 
between those groups, as well as biases from comparisons over time in the treatment 
group that could be the result of trends. We note that this standard difference-in-
differences approach does not require the knowledge of the functions f (⋅) or g(⋅) in 
(2). However, in our application with the LCD-like treatment design (3), the treat-
ment effect (7) cannot be estimated from data using the aforementioned standard 
approach of difference-in-differences. The main reason is that LCD-like treatment 
design lacks the control group {i|Ti(t = 1) = 0, Ti(t = 0) = 0} . We summarize this 
result in the following theorem.

Theorem  1 Under the two-point treatment design (3) and the structural equation 
(2), the treatment effect (7) is not identifiable by difference-in-differences if there is 
no prior knowledge on the parametric family of f (⋅) and g(⋅) in (2).

The proof of Theorem  1 is in Appendix  B, which also illustrates that with-
out prior knowledge of the parametric forms for f (⋅) and g(⋅) , the difference-in-
differences estimate may become biased or even inapplicable under the two-point 
treatment design (3). One remedy for applying difference-in-differences to the 
treatment design (3) is constructing a synthetic control group ( T = 0 ) from the 
base values of the confounders X and outcome Y (their values at t = 0 ). Another 
solution would be to estimate the treatment effect � by regressing over the obser-
vational treatment group data {i|Ti(t = 1) = 1, Ti(t = 0) = 0} under the design (3). 

(7)
ATE ≡ �X[�[Yi(t = 1) − Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0,X]]

− �X[�[Yi(t = 1) − Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0,X]].

Fig. 4  The variance for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the variance surface for the I-Rand; Middle plot: the variance surface for the pooled approach; 
Right plot: variancepooled − varianceI-Rand
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Nonetheless, we demonstrate that even in a parametric structural equation, I-Rand 
can outperform difference-in-differences.

We simulate data using the same setup as in 3.1.1. we take the difference in the 
variables on both sides of the equation (2) and stack the synthetic control group 
to obtain

where the operator D denotes the difference in the variable between t = 1 and 
t = 0 , i.e., DZi,1 = Zi,t=1 − Zi,t=0 for any variable Z. In this example, The differ-
ence-in-differences fails to meet the strong ignorable treatment assignment con-
dition in Sect.  2.3 unless we create this synthetic control group. Specifically, 
0 < P(Treatment = 1|X) < 1 , as P(DT = 1|X) = 1 and P(DT = 0|X) = 0 . Hence we 
cannot directly apply the propensity score matching in Sect. A to estimate the treat-
ment effect in the original setting. For I-Rand, we apply Algorithm  2 and obtain 
the treatment effect by averaging over 500 subsamples. Under the difference-in-
difference approach, we estimate the treatment effect based on the propensity score 
matching in Algorithm 1 applied to the setup of Equation (8).

Figures 5, 6, and 7 report respectively the mean-squared errors, bias2 and vari-
ance of the estimator to the true value � = 1 (left and middle panels), and the 
difference in these quantities between i-Rand and DiD (right panel), when vary-
ing sample sizes and noise levels. From the plots, we see that the estimator with 
I-Rand has smaller MSEs than the estimator with difference-in-difference due to 
a smaller variance. While the poor performance of difference-in-differences can 
be traced to the lack of a control group, adding a synthetic control group still 
provides an estimator with a small bias. Using regression can also be a solution 
and could give good results when the treatment and confounders are uncorrelated. 
But if the treatment and confounders are linearly dependent, the ordinary least 
squares will fail to estimate a causal effect.

(8)

DYi,0 ∶= Yi,0 = Xi,0� + �Y
i,0

at t = 0

DYi,1 = DTi,1
⏟⏟⏟

1

� + DXi,1� + D�Y
i,1
, at t = 1

Fig. 5  The MSE for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the MSE surface for the I-Rand; Middle plot: the MSE surface for the difference-in-differences 
approach; Right plot: MSE(did) −MSE(I-Rand)
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We summarize in Table 2 the advantages of I-Rand compared to two benchmark 
approaches for the LCD-like treatment.

3.2  Time Misaligned (BMI‑Like) Treatment

To complete the specification of the data generating process (2), we set the treatment 
variable as follows:

Here the treatment Ti,t for individual i at time t is a binary function of the confound-
ers Xi,t.

Our treatment is time misaligned because it ignores our two-point time-series 
structure, i.e., two observations for each patient with treatment administrated at t = 0 
and observed at t = 1 . It mimics the experiment in Sect. 2.2, where the treatment is a 
discrete version of BMI: Ti,t is weight category (e.g., normal or overweight) of indi-
vidual i at time t. In this experiment Ti,t depends on the confounders such as LCD, 
age and gender.

(9)Ti,t = h(Xi,t), ∀i ∈ {1,… , n} and t ∈ {0, 1}.

Fig. 6  The bias2 for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the bias2 surface for the I-Rand; Middle plot: the bias2 surface for the difference-in-differences 
approach; Right plot: bias2

did
− bias2

I-Rand

Fig. 7  The variance for the estimate of treatment effect when varying the sample size and noise level 
� . Left plot: the variance surface for the I-Rand; Middle plot: the variance surface for the difference-in-
differences approach; Right plot: variancedid − varianceI-Rand
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3.2.1  Comparison to the Pooled Approach

Unlike the LCD-like assignment in Sect. 3.1.1, the pooled approach [14, 15] meets 
the SUTVA assumption of “no-interference” under design (9). Moreover, the pooled 
approach provides an estimate to ATE∗ in (B3) by treating the observations from an 
individual at t = 0, 1 as two distinct data points. We demonstrate through numerical 
examples that the pooled approach is a comparable alternative to I-Rand in the BMI-
like treatment assignment (9). We specify the confounder X = (X(1),X(2)) by Eq. 4, 
where X(1) denotes an individual’s age and X(2) indicates whether or not an individ-
ual has followed an LCD. The parameters and simulated data are analogous to Sec-
tion  3.1 except for the the treatment T which is assigned according to 
Ti,t ∼ Ber

(
p = (1 + e

Xi,t�T+�
T
i,t )−1

)
 where �i,t ∼ N(0, 1) and �T = (

1

40
,−1) . We con-

sider the linear model (6) for outcome Yi,t , where �Y
i,t
∼ N(0, �2) , and � = 0 , 

� = (1, 1) , and � = 1.
The results are displayed in Figs. 8, 9, 10, where the MSE (resp. bias, variance) 

surface for I-Rand is shown with varying sample size and noise level � . Also dis-
played is the difference between the MSE (resp. bias, variance) of I-Rand and the 
pooled approach. It is clear that I-Rand outperforms the pooled approach for the 
BMI-like treatment (9) due to a smaller variance.

3.2.2  Comparison to Difference‑In‑Differences

In the time misaligned BMI-like treatment, difference-in-differences [16, 17] 
encounters the problem of having four different types of individuals; always-treated 

Table 2  Comparison of three 
approaches in the case of the 
LCD-like treatment in Sect. 3.1

Pooled approach Difference-in-
differences

I-Rand

SUTVA assumption Fail Hold Hold
Control group Yes No Yes

Fig. 8  The MSE for the estimate of treatment effect when varying the sample size and noise level � . Left 
plot: the MSE surface for the I-Rand; Middle plot: the MSE surface for the pooled approach; Right plot: 
MSE(pooled) −MSE(I-Rand)
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( {i|Ti(t = 1) = 1, Ti(t = 0) = 1} ), never-treated ( {i|Ti(t = 1) = 0, Ti(t = 0) = 0} ), 
treated-to-untreated {i|Ti(t = 1) = 0, Ti(t = 0) = 1} , and untreated-to-treated 
{i|Ti(t = 1) = 1, Ti(t = 0) = 0} . To obtain an estimate of the treatment effect in this 
case, it is necessary to compare the outcomes of the group of never-treated to untreated-
to-treated or the outcomes of the group of always-treated to treated-to-untreated. The 
idea is that the treatment state should be the same in both groups at t = 0 and different 
at t = 1 . We illustrate our ideas on the former; the latter follows the same line of reason-
ing. Difference-in-differences gives an estimate of the causal effect in (7), which is the 
same as the target effect ATE∗ in (B3) only if

However, both (10) and (11) are strict and likely to fail in practice. Take the nutrition 
data in Sect. 2.2 as an example. Condition (10) requires that the expected outcome at 

(10)
�X[�[Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0,X]]

= �X[�[Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0,X]],

(11)
or �X[�[Yi(t = 1)|Ti(t = 1) = 0, Ti(t = 0) = 0,X]]

= �X[�[Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0,X]].

Fig. 9  The bias2 for the estimate of treatment effect when varying the sample size and noise level � . Left 
plot: the bias2 surface for the I-Rand; Middle plot: the bias2 surface for the pooled approach; Right plot: 
bias2

pooled
− bias2

I-Rand

Fig. 10  The variance for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the variance surface for the I-Rand; Middle plot: the variance surface for the pooled approach; 
Right plot: variancepooled − varianceI-Rand
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the baseline is the same between two different groups: {i|Ti(t = 1) = 1,Ti(t = 0) = 0} 
and {i|Ti(t = 1) = 0,Ti(t = 0) = 0} . However, the unobserved confounders such as 
lifestyle and genetic information in the two groups {i|Ti(t = 1) = 1,Ti(t = 0) = 0} 
and {i|Ti(t = 1) = 0,Ti(t = 0) = 0} are different (otherwise the treatment at t = 1 
should be the same in two groups), so that condition (10) is likely to fail. Moreover, 
condition (11) requires the expected outcomes be the same at the two time points, 
t = 0, 1 , for the group {i|Ti(t = 1) = 0,Ti(t = 0) = 0} . However, since an individual 
does not take an LCD at t = 0 and does take an LCD at t = 1 , the confounder LCD 
assignment differs between t = 0 and t = 1 . Hence, the condition (11) would fail for 
the nutrition data in Sect. 2.2.

Consequently, difference-in-differences (7) cannot be applied to the BMI-
like treatment assignment (9). An alternative approach is to eliminate treated-
to-untreated (i.e. DTi,1 = −1 ) and focus only on untreated-to-treated and never-
treated since we have no guarantee the effect is symmetric. By following this 
approach, we can apply the propensity score matching in Algorithm 1 again. The 
results are shown in Figs.  11,  12, and 13, where the MSE, bias, and variance 
surfaces for I-Rand are shown with varying sample size and noise level � . Also 
shown is the difference between these quantities (i.e. MSE, bias, and variance) 
between the estimate using I-Rand and the benchmark, difference-in-differences. 
We notice that for our setup, difference-in-difference is unable to estimate the � , 
while I-Rand performs similarly in other setups.

To conclude this section, we stress that the first argument in favor of the 
application of I-Rand is its verification of the SUTVA assumption in both the 
time-aligned and time-misaligned treatments we considered. The estimation of 
the causal effect is data dependent, but we find that I-Rand performs at least as 
well as the benchmark methods in the examples considered. Naturally, I-Rand is 
also subject to some limitations. One of those limitations is the dependence of 
the estimates across subsamples which delays the convergence of the variance 
of the estimator to 0. We note that it does not affect the bias much since hav-
ing one subsample already gives an unbiased estimator, and averaging unbiased 
estimator yields an unbiased estimator. However, as we increase the number of 

Fig. 11  The MSE for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the MSE surface for the I-Rand; Middle plot: the MSE surface for the difference-in-differences 
approach; Right plot: MSE(did) −MSE(I-Rand)
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subsamples, the variance seems to decrease toward 0. We will explore this ques-
tion in Sect. 3.4.

3.3  Estimating the Average Treatment Effect in the Presence of Hidden 
Confounders

I-Rand averages the ATE of multiple subsamples of the data. However, since the 
“ignorability” assumption is one that is generally required to obtain an unbiased 
estimator of the causal effect for each of these subsamples, if the ATE of the 
subsamples is biased in the presence of hidden confounders, so would the I-Rand 
estimate. Stuart [45] argues that using a weaker version of ignorability is often 
sufficiently for some quantities of interest like the population-average treatment 
effect (PATE), since controlling for observed covariates can mitigate the effect 
of unobserved ones, assuming those are correlated. In this section, we want to 
explore the sensitivity of I-Rand to hidden confounders. To do this, we consider 

Fig. 12  The bias2 for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the bias2 surface for the I-Rand; Middle plot: the bias2 surface for the difference-in-differences 
approach; Right plot: bias2

did
− bias2

I-Rand

Fig. 13  The variance for the estimate of treatment effect when varying the sample size and noise level 
� . Left plot: the variance surface for the I-Rand; Middle plot: the variance surface for the difference-in-
differences approach; Right plot: variancedid − varianceI-Rand
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the BMI-like treatment and the setting of Sect. 3.2 except that we add a hidden 
confounder Z that affects both the treatment T and outcome Y and which we don’t 
control for. For example, the hidden confounder Z could be the physical activity. 
Therefore, at time t = 0 we have:

At time t = 1 , we have:

And finally T and Y are given by:

where �T = (
1

40
,−1) , �T = −0.5 , � = (1, 1) , � = 1 , � = 1.

We then estimate the causal effect without observing the hidden confounder Z. 
We compare the I-Rand method to the pooled approach. Figs. 14, 15, 16 show that 
the variance of the I-Rand estimator converges to 0 with the sample size, and the 
bias of the I-Rand is smaller than that of the pooled approach. Despite this, the bias 
of I-Rand does not tend towards zero with increased sample size, implying that the 
“no-hidden confounders” assumption is necessary to obtain an unbiased confounder 
under I-Rand estimation.

(12)

X
(1)

i,0
= � + ��X

i
, �X

i
∼ N(0, 1),

X
(2)

i,0
∼ Unif{0, 1},

Zi,0 ∼ Ber(p).

(13)

X
(1)

i,1
= ti + �X

(1)

i,0
+
√
1 − �2�X

i
, �X

i
∼ N(0, 1),

X
(2)

i,1
= X

(2)

i,0
,

Zi,1 ∼ Ber(p).

(14)
Ti,t ∼ Ber

(
p =

1

1+e
Xi,t�T+Zi,t�T+�

T
i,t

)
,

Yi,t = Xi,t� + Zi,t� + Ti,t� + �Y
i,t
, �Y

i,t
∼ N(0, 1),

Fig. 14  The MSE for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the MSE surface for the I-Rand; Middle plot: the MSE surface for the pooled approach; Right 
plot: MSE(pooled) −MSE(I-Rand)
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3.4  I‑Rand and the Number of Subsamples

I-Rand estimate is the mean of the average treatment effect obtained from M sub-
samples of the original data, therefore its expectation is the expectation of the sub-
samples ATE. If the ATE from subsamples were independent, we would expect 
the variance of the estimator to decrease with a factor that is inversely proportional 
to M. However, because subsamples have overlaps, the convergence of the vari-
ance toward 0 is slower. We explore the question by fixing the size of the sample 
to N = 500 under the setup of Sect. 3.2 when increasing the number of subsamples 
M of the I-Rand algorithm from 100 to 2000. Fig. 17 shows that MSE and variance 
decrease as the number of subsamples increase; however, the bias changes monoto-
nicity after reaching some value. The value of minimal bias seems to be close to the 
sample size.

3.5  Statistical Inference of I‑Rand

To test the significance of the causal effect of our treatment T on the outcome Y using 
I-Rand, it becomes necessary to perform a hypothesis test. In this process, our null 

Fig. 15  The bias2 for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the bias2 surface for the I-Rand; Middle plot: the bias2 surface for the pooled approach; Right 
plot: bias2

pooled
− bias2

I-Rand

Fig. 16  The variance for the estimate of treatment effect when varying the sample size and noise level � . 
Left plot: the variance surface for the I-Rand; Middle plot: the variance surface for the pooled approach; 
Right plot: variancepooled − varianceI-Rand
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hypothesis posits that the treatment, T, has no effect on the outcome Y. That is, we 
are testing for H0 ∶ ATEI-Rand = 0 against the alternative H1 ∶ ATEI-Rand ≠ 0 . In this 
paper we address this question by looking at the distribution of the subsamples p-val-
ues. A concentration of these p-values close to 0 allows us to reject the null hypothesis 
of no causal effect again the alternative of nonzero causal effect. For the calculation of 
the p-values, we perform a permutation test for each subsample to evaluate the signifi-
cance level of each subsample ATE.

We study one simulated sample from Sect. 3.2 to illustrate our method, which we 
will use later in our empirical analysis of Sect. 4. In Fig. 18 we report the distribution of 
the ATE for each subsample as well as the I-Rand estimate (average of the subsample 
ATE). The p-values distribution of the subsamples is given in Fig. 19. In this case, the 
estimate of � = 1 is 𝛿 = 0.89 . The distribution of the p-value shows a range between 
0.005 and 0.035, suggesting the rejection of the null hypothesis at level 0.05.

Fig. 17  The MSE (left), bias2 (middle) and variance (right) for the estimate of treatment effect using 
I-Rand when varying the number of subsamples

Fig. 18  Distribution of the ATE and the I-Rand estimate (Average ATE) for a given simulated sample of 
size N = 500 . Here the number of subsamples M = 500
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4  Case Study I: Can Diet Lower the Risk for T2D and CVD?

4.1  Treatment Effect of LCD on T2D

We can now analyze the motivating example introduced in Sect. 2.1 and give an 
answer to the counterfactual question: If an individual changes from a regular 
diet to an LCD diet, would he / she be less likely to develop T2D? The LCD 
restricts consumption of carbohydrates relative to the average diet [7]. Several 
systematic reviews and meta-analyses of randomized control trials suggest benefi-
cial effects of LCD in T2D and CVD, including improving glycaemic control, tri-
glyceride and HDL cholesterol profiles [8–10]. However, the impact of LCD in a 
“real world" primary care setting with observational data and its cause-and-effect 
inferences has not been fully evaluated [2]. The challenges of analyzing routine 
clinical data include the irregular treatment assignments. For example, our analy-
sis relies on the two-point time-series data without control group described in 
Sect. 2.2, where all patients participated in the program are suggested to change 
from their regular diets to LCD after their initial visit to the clinic. The irreg-
ular design of treatments limit the applications of benchmark methods such as 
pooled approach and difference-in-differences as discussed Sect.  3. In this sec-
tion, we apply the proposed I-Rand algorithm to analyze the real data described 
in Sect. 2.2.

The analysis using observation data utilizes the model of potential outcomes in 
Sect. 2.3. According to the causal graph in Fig. 1, LCD takes the role of a treatment 
that affects the mediator BMI and outcome T2D. Gender and age affect BMI and 
T2D, but not the treatment LCD. To quantify the expected change in T2D if BMI 
were changed, we need to calculate the total causal effect of LCD on T2D, which 
can be characterized by the ATE:

Fig. 19  Distribution of the the p-value for hypothesis test for each subsample ( M = 500 ) for a given sim-
ulated sample of size N = 500
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where the potential outcome �1 (with “1" indexing that this is the first of a series of 
nutrition questions) is defined as

We control for the confounders (i.e., gender and age) [36] to estimate the ATE and 
assess the significance by the proposed I-Rand algorithm. We implement I-Rand by 
drawing 500 subsamples and calculate the ATE of each subsample. Then, we per-
form the permutation test for each subsample to evaluate the significance level of the 
ATE. The result provided in Table 3 indicates that LCD would significantly decrease 
in the risk of T2D, which is also supported by the box plot of p-values in the first 
row of Fig. 21, and the distributions of ATEs and p-values in Appendix D.1, where 
the results show the consistency of the significant causal effects across random sub-
samples. We make four remarks on the application of I-Rand and the experimental 
results of this example.

First, there is no control group with individuals on a regular diet at two visits. 
This is because all individuals were at risk of developing T2D or with T2D and 
thus suggested to begin the LCD after their first visit. The application of the I-Rand 
algorithm in this example not only avoids a violation of the SUTVA assumption, 
but more importantly, to artificially construct synthetic control group. The way that 
I-Rand constructs synthetic control group is different from the existing synthetic 
control method [18]. In particular, existing synthetic control method requires the 
available control individuals and constructs a synthetic control as a weighted aver-
age of these available control individuals. However, I-Rand does not require that 
there exists available control individuals. Instead, I-Rand constructs a synthetic con-
trol by subsampling one of the two time points of each individual.

Second, we note that under the null hypothesis of no causal effect, the p-values 
follow a uniform distribution on (0,  1) given sufficiently many subsamples. How-
ever, the box plot of p-values in the first row of Fig. 21, corresponding to the causal 
graph in Fig.  1, shows p-values are concentrated at the origin, which indicates a 
strong evidence for the alternative hypothesis. We note that the hypothesis testing 
is performed for each subsample independently, but the p-values are not independ-
ent across subsamples. This is because the subsamples are correlated although the 

�[�1(Genderi, Agei)],

�1(Genderi, Agei) =�[T2Di(LCD = 1) | Genderi, Agei]
− �[T2Di(LCD = 0) | Genderi, Agei].

Table 3  Causal analysis for the effect of LCD on T2D and Reynolds risk score for CVD

LCD on T2D 
( �[�

1
])

LCD on Reynolds risk 
score for CVD

Total effect ( �[�
2
]) Direct effect ( �[�

3
]) Indirect 

effect 
( �[�

4
])

ATE −0.593 −0.015 −0.009 −0.005
p-value 0.001 0.024 0.107 0.003
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correlation is weak given each subsample is randomly chosen from the pool of 2256 
subsamples. If the concentration of the p-values is around 0, we can say with con-
fidence that a small p-value is not a coincidence of the subsample, if most p-values 
are large, we conclude that the significance of the treatment effect is questionable.

Third, for better appreciating the results in Table 3 we compare them with T2D 
risks from routine care without LCD suggestion. Some idea of the results that one 
might expect from routine care can be drawn from the data of control group in the 
DiRECT study [11], which recently investigated a very low-calorie diet of less than 
800 calories and subsequent drug-free improvement in T2D, including T2D remis-
sion without anti-diabetic medication. At 12 months, DiRECT study gives 46% of 
T2D remission, which is close the 45% rate given in Table 3 from our dataset with 
LCD over an average of 23 months duration. As a comparison, DiRECT quotes a 
remission rate at 24 months of just 2% for routine T2D care without dietary sugges-
tion. This result emphasizes how rare remission is in usual care and the potential 
value of LCD to lower the T2D risk.

Finally, we note that our approach relies on individuals’ assertions of compliance 
to the LCD. For several years an LCD has generally been accepted as one containing 
less than 130 gs of carbohydrate per day [46]. However, it may not be realistic for 
individuals to count grams of carbohydrate in a regular basis. Our dataset collected 
from Norwood general practice surgery instead only give clear and simplified expla-
nations of how sugar and carbohydrate affect glucose levels and how to recognize 
foods with high glycaemic loads [2]. The promising result in Table  3 shows that 
this simple and practical approach to lowering dietary carbohydrate leads to signifi-
cant improvement in T2D without the need for precise daily carbohydrate or calorie 
counting.

4.2  Mediation Analysis for the Effect of LCD on CVD

Motivated by the fact that T2D was crucial in explaining CVD risk (Benjamin et al. 
[5]), we seek to understand the role of T2D as a mediator of the effect of dietary on 
CVD risk. This is relevant from the perspective of clinical practice for an individual 
who is afflicted with both T2D and CVD, since he / she may be able to control fac-
tors besides T2D that contribute to CVD risk.

4.2.1  Causal Graph of T2D as a Mediator

We assume the causal graph in Fig.  20. Note that the outcome CVD has many risk 
factors, including systolic blood pressure, serum cholesterol level, high-density lipo-
protein (which is inversely correlated with CVD risk); see, e.g., Ridker et al. [27]. 
We study these three well-known risk factors as well as the Reynolds risk score. We 
motivate Fig. 20 with the following data-generating process: (1) Similar to Fig. 1, 
choose the treatment LCD at random; Given a selected LCD, sample an individual 
with a corresponding BMI level; Conditional on the choice of LCD and BMI level, 
sample the T2D status as the medical outcome; (2) In addition to Fig. 1: Conditional 
on the choice of LCD and T2D status, sample the medical outcome within a given 
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CVD risk factor. The details are as follows. First, the arrows LCD → T2D and LCD 
→ BMI encode that the distributions of T2D and BMI depend on LCD status. This 
dependence was quantified in Sect. 4.1. Second, the arrow T2D → CVD reflects the 
established knowledge in nutrition science that T2D influences CVD risk (Benjamin 
et  al. [5], Martín-Timón et  al. [47]). Likewise, the arrow BMI → CVD translates 
the fact that obesity is a cardiovascular risk factor (Sowers [48]). Finally, since our 
model assumes causal sufficiency, the arrow LCD → CVD represents dietary-spe-
cific influences on CVD risk. In reality, there may be other mediators, such as socio-
economic status, culture occupation, and stress level.

In addition to the causal graph in Fig.  25, we assume there are no hidden 
confounders.

Fig. 20  Assumed coarse-grained causal graph for the relationship between LCD, BMI, T2D, and the out-
come CVD risk. Within this view, T2D acts as a mediator of the effect of LCD on CVD risk

Fig. 21  Mean ATE bar plot (left) and p-values box plot (right) for LCD as the treatment. Each row cor-
responds to a causal diagram:“Outcome | Treatment; Confounders”. For example, “SBP | LCD; Gender, 
Age” represents the causal diagram with the systolic blood pressure as the outcome, and gender and age 
as the confounders, and the LCD as the treatment
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Given these assumptions, we see that LCD causally influences CVD risk along 
two different paths: a path LCD → CVD, giving rise to a direct effect, and two paths 
LCD → BMI → T2D → CVD and LCD → T2D → CVD, which are mediated by T2D 
and give rise to an indirect effect. Note that the direct effect of LCD on CVD risk is 
likely mediated by additional variables that are subsumed in LCD → CVD. We dis-
cuss this point further in Sect. 6. In mediation analysis, the goal is to quantify direct 
and indirect effects. We start with the total effect and then formulate the direct and 
indirect effects by allowing the treatment to propagate along one path while control-
ling the other path.

4.2.2  Total Effect of LCD on CVD

Given the causal assumptions in the previous section, the first measure of interest 
is the total causal effect of LCD on CVD, i.e., the answer to the following question:

“What would be the effect on CVD if an individual changes from regular diet 
to LCD?"

We formulate the answer using the ATE:

where the potential outcome �2 is defined as

Using the I-Rand algorithm, we report the results for the effect of LCD on the Reyn-
olds risk score as measure of CVD risk. The total effect and the p-value are given in 
Table 3. Figure 21 summarizes the effects of LCD on all four measures of CVD risk. 
The LCD significantly lowered the Reynolds risk score (RRS), systolic blood pres-
sure (SBP) and serum total cholesterol (TBC) but it did not have a statistically sig-
nificant effect on good cholesterol (HDL). The promising result on the improvement 
of Reynolds risk score, systolic blood pressure and serum total cholesterol suggests 
that it may be a reasonable approach, particularly if an individual hopes to avoid 
medication, to offer LCD with appropriate clinical monitoring.

4.2.3  Direct Effect of LCD on CVD

We now study the natural direct effect (see, Pearl [49]) of LCD on CVD risk in the 
context of the following hypothetical question:

“For an individual of non-LCD taker, how would LCD affect the risk of CVD?"

We are asking what would happen if the treatment, LCD, were to change, but that 
change did not affect the distribution of the mediator, T2D. In that case, the change in 
treatment would be propagated only along the direct path LCD → CVD in Fig. 20. We 
argue that the analysis in this situation should control for gender, age, and T2D, and a 
look at Fig. 20 give an explanation [36]. To disable all but the direct path, we need to 

�[�2(Genderi, Agei)],

�2(Genderi, Agei) =�[CVDi(LCD = 1)|Genderi, Agei]
− �[CVDi(LCD = 0)|Genderi, Agei].
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stratify by T2D. This closes the indirect path LCD → T2D → CVD. But in so doing, 
it opens two paths LCD → T2D ← (Gender, Age) → CVD, and LCD → BMI → T2D 
← (Gender, Age) → CVD. If we control for (Gender, Age) as well, we close these two 
paths, and therefore any correlation remaining must be due to the direct path LCD → 
CVD. We refer readers to Pearl [36] for an introduction to mediation analysis based on 
causal diagram.

To quantify the expected change in CVD if LCD status were changed, we need to 
control for calculate

where the potential outcome �3 is defined as

The symbol T2D(LCD = 0 ) is the counterfactual distributions of BMI and T2D 
given that the status of LCD is 0. The expectations above are taken over the corre-
sponding interventional (i.e., LCD = 0, 1 ) and counterfactual (i.e., T2D(LCD = 0 )) 
distributions. We implement I-Rand, which gives the direct effect for the Reyn-
olds risk score in Table 3. Figure 21 summarizes the direct effects of LCD on all 
four measures of CVD risk. The LCD has a significant direct effect on lowering 
the Reynolds risk score (RRS) and serum total cholesterol (TBC) with the average 
p-value less than 10% . We complement the results shown in Fig. 21 with the distri-
butions of ATEs and p-values of the subsamples in Appendix D.2. The direct effect 
in this example represents a stable causal effect that, different from the total effect, is 
robust to T2D and any cause of CVD risk that is mediated via T2D. This robustness 
makes the natural direct effect a more actionable concept, and in principle, it can be 
transported to populations with different physical conditions such as T2D status.

4.2.4  Indirect Effect of LCD on CVD

To isolate the indirect effect from the direct effect, we need to consider a hypothetical 
change in the mediator while keeping the treatment constant. In our CVD example, we 
may ask:

“How would the CVD risk of an individual without taking LCD be if his / her 
T2D status had instead following the T2D distribution of individuals taking 
LCD?"

The answer to this question is the average natural indirect effect (Pearl [49]). It can be 
written as

where the potential outcome �4 is defined as

�[�3(Genderi, Agei, T2D)],

�3(Genderi, Agei, T2Di) = �[CVDi(LCD = 1)|Genderi, Agei, T2D(LCD = 0)]

− �[CVDi(LCD = 0)|Genderi, Agei].

�[�4(Genderi, Agei, T2D)],
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The symbol T2D(LCD = 1) refers to the counterfactual distribution of T2D had 
LCD been 1, and the expectations are taken over the corresponding interventional 
(i.e., LCD = 0, 1 ) and counterfactual (i.e., T2D(LCD = 1) ) distributions. Under our 
assumptions, any changes that occur in an individual’s CVD risk are attributed to 
treatment-induced T2D and not to the treatment (i.e., LCD) itself.

For a linear model in which there is no interaction between treatment and 
mediator, the total causal effect can be decomposed into a sum of direct and indi-
rect contributions (see, e.g., Pearl [49]):

This decomposition can be applied to each permutation in each subsample. The esti-
mates are averaged, yielding an estimate of the indirect effect and corresponding 
distribution of the p-values. Based on this result, we can assess the indirect effect of 
LCD on the Reynolds risk score, where the result is provided in Table 3. The nega-
tive sign on the indirect effect indicates that, in addition to its direct effect, the LCD 
lowered Reynolds risk score through the mediator T2D. We report the average ATEs 
and box plots for the distributions of p values for other CVD risk factors in Fig. 22. 
It shows that the LCD would also have a significant indirect causal effect on other 
risk factors of CVD, including a reduction in systolic blood pressure (SBP) and an 
improvement in good cholesterol (HDL). We found, however, that the LCD would 
have a significant indirect effect in the form of an increase in serum total cholesterol 
(TBC).

�4(Genderi, Agei) = �[CVDi(LCD = 0)|Genderi, Agei, T2D(LCD = 1)]

− �[CVDi(LCD = 0)|Genderi, Agei].

(15)total effect = direct effect + indirect effect.

Fig. 22  Indirect Effect: Mean ATE bar plot (left) and p-values box plot (right) for the indirect effect of 
LCD on CVD risk factors with age, gender as confounders and diabetes as a mediator. Each row corre-
sponds to a causal diagram:“Outcome | Treatment; Confounders [Mediator]”. For example, “SBP | LCD; 
Gender, Age [T2D]” represents the causal diagram with the systolic blood pressure as the outcome, gen-
der, age, as the confounders, T2D as the mediator, and the LCD as the treatment
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5  Case Study II: Is Obesity A Significant Risk Factor for T2D and CVD?

5.1  Causal Effect of Obesity on T2D

Building on the queries in the previous section, we now want to quantify the causal 
effect of obesity on T2D and CVD [50]. Consider the counterfactual question,

“What would be the effect on T2D if an individual changes from normal weight 
to overweight?"

This question cannot be evaluated with a randomized controlled trial, which would 
require an experimenter to randomly assign individuals to be either obese or of nor-
mal weight. Instead, we can attempt to estimate the effect of obesity on T2D from 
observational data. We make the following assumptions and a specification of the 
underlying causal structure. First, the BMI is modeled as a categorical variable in 
this section: normal weight if BMI < 25 , overweight if BMI ∈ [25, 30) , obese if 
BMI ∈ [30, 35) ), and severely obese if BMI ≥ 35 . In our analysis, we compare con-
secutive ordinal levels of obesity pairwise. At each time, we denote the higher level 
of obesity as 1 (treatment) and the lower level of obesity as 0 (control). Second, 
similar to the motivating example in Sect. 2.1, gender is a binary variable and age is 
an ordinal variable, and the medical outcome T2D is an ordinal variable indicating 
status at time of reporting: non-diabetics, pre-diabetics, and diabetics. Finally, we 
assume the causal graph shown in Fig. 23, and motivate it by thinking of the fol-
lowing data-generating process: (1) BMI affects the risk of T2D; (2) Gender, age 
and LCD are unaffected by the BMI level; (3) Gender, age and LCD affect the risk 
of T2D and the BMI level. Thus, gender, age and LCD are confounders of BMI and 
T2D. (4) Causal sufficiency: there are no hidden confounders. Under these assump-
tions, we can calculate an estimate of the effect of BMI on T2D, by adjusting for the 
confounders using the model of potential outcomes in Sect. 2.3.

According to the causal graph in Fig. 23, BMI takes the role of a treatment that 
affects the outcome T2D. To quantify the expected change in T2D if BMI were 
changed, we need to calculate

�[�5(Genderi, Agei, LCDi)],

Fig. 23  Assumed coarse-grained 
causal graph for the relationship 
between BMI and T2D, with 
gender and age as confounders
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where the potential outcome �5 is defined as

By I-Rand in Algorithm 2, we obtain the mean of ATEs �[�1] over 500 subsamples 
and the mean p-value (from the permutation tests) as follows (see, also Fig. 24) for 
all three pairwise differences: (1) changing from normal weight to overweight; (2) 
changing from overweight to obese; (3) changing from obese to severely obese.

We summarize the results in Table 4, which suggests that the difference of T2D 
constitutes a causal effect, and changing BMI level from a lower level to a higher 
level would lead to an increased risk of T2D, where the results are subject to our 
modelling assumptions. We note that under the null hypothesis of no causal effect, 
the p-values follow a uniform distribution on (0,  1) given sufficiently many sub-
samples. However, the box plot of p-values in Fig. 24, corresponding to the causal 
graph in Fig. 23, shows p-values are concentrated at the origin, which indicates a 
strong evidence for the alternative hypothesis. In particular, the causal effect of the 

�5(Genderi, Agei, LCDi) =�[T2Di(BMI = 1)|Genderi, Agei, LCDi]

− �[T2Di(BMI = 0)|Genderi, Agei, LCDi].

Table 4  Average treatment 
effect of BMI on T2D: �[�

5
]

Normal weight vs. 
overweight

Overweight vs. 
obese

Obese vs. 
severely 
obese

ATE 0.477 0.316 0.14
p-value 0.002 0.011 0.196

Fig. 24  Mean ATE bar plot (left) and p-value box plot (right) for BMI as the treatment. Each row cor-
responds to a causal diagram: “Outcome | Treatment; Confounders". For example, “SBP | BMI; Gender, 
Age, T2D" represents the the causal diagram with the systolic blood pressure as the outcome, and the 
gender, age, T2D as the confounders, and the BMI as the treatment which takes three pairwise compari-
sons: normal weight vs. overweight (green), overweight vs. obesity (orange), obesity vs. severe obesity 
(blue)
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treatment (normal weight vs. overweight) with p-value 0.002 is significant under the 
Bonferroni’s false discovery control at the 0.01 level. The detailed distributions of 
ATEs and p-values are provided in Appendix D, which confirms the consistency of 
these results across subsamples.

5.2  Mediation Analysis for the Effect of Obesity on CVD

We now seek to understand the role of T2D as a mediator of the effect of obesity on 
CVD risk. As discussed in Sect. 4.2, this mediation analysis is particularly relevant 
from the perspective of an individual with both T2D and CVD. We study four well-
known risk factors of CVD: systolic blood pressure, serum cholesterol level, high-
density lipoprotein, and Reynolds risk score; see, Ridker et al. [27].

5.2.1  Causal Graph of T2D as a Mediator

We assume the causal graph in Fig. 25, and motivate Fig. 25 with the following data-
generating process: (1) Choose a BMI level at random; (2) Given a selected BMI 
level, sample an individual with a T2D status; (3) Conditional on the choice of BMI 
level and T2D status, sample the medical outcome within a given CVD risk factor. 
The details are as follows. First, the arrow BMI → T2D encodes that the distribution 
of T2D depends on BMI level. This dependence was quantified in Sect. 5.1. Second, 
the arrow T2D → CVD reflects the established knowledge in nutrition science that 
T2D influences CVD risk [5, 47]. Finally, since our model assumes causal suffi-
ciency, and in particular, that T2D is the only mediator in the effect of BMI on CVD 
risk, the arrow BMI → CVD represents obesity-specific influences on CVD risk.

In addition to the causal graph in Fig.  25, we assume there are no hidden 
confounders. Given these assumptions, we see that BMI causally influences 
CVD risk along two different paths: a path BMI → CVD, giving rise to a direct 
effect, and a path BMI → T2D → CVD mediated by T2D, giving rise to an indi-
rect effect. Note that the direct effect of BMI on CVD is likely mediated by 

Fig. 25  Assumed coarse-grained causal graph for the relationship between BMI, T2D, and the outcome 
CVD. Within this view, T2D acts as a mediator of the effect of BMI on CVD, with the gender, age and 
LCD as confounders
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additional variables that are subsumed in BMI → CVD Risk. We discuss this 
point further in Sect. 6. In mediation analysis, the goal is to quantify direct and 
indirect effects. We start with the total effect and then formulate the direct and 
indirect effects by allowing the treatment to propagate along one path while con-
trolling the other path.

5.2.2  Total Effect of BMI on CVD

Given the causal assumptions in the previous section, the first measure of inter-
est is the total causal effect of obesity on CVD, i.e., the answer to the following 
question:

“What would be the effect on CVD if an individual changes from normal 
weight to overweight?"

As we did in Sect. 5.1, we formulate the answer using the ATE:

where the potential outcome �6 is defined as

We now give a detailed result for one of the CVD risk factors, namely the sys-
tolic blood pressure, where the description and the summary statistics are deferred 
to Appendix  C. It is known that increasing systolic blood pressure significantly 
increases the risk of CVD (e.g., Bundy et al. [51]). By the proposed I-Rand with 500 
subsamples and the corresponding permutation test for each subsample, we obtain 
the mean of ATEs �[�6] given in Table 5.

The results show that an individual changing from normal weight to overweight 
would significantly lead to an increase in systolic blood pressure. In contrast, the 
box plot of p-values in Fig.  24 indicates only weak evidence that changing BMI 
would have a causal effect on other risk factors of CVD including serum total cho-
lesterol (TBC), high-density lipoprotein (HDL), and Reynolds risk score (RSS). The 
observation is also supported by distributions of ATEs and p-values in Appendix D. 
The failure to reject the null hypothesis may also be due to unobserved confounders 
such as genetic information, smoking, and stress levels.

�[�6(Genderi, Agei, LCDi)],

�6(Genderi, Agei, LCDi) =�[CVDi(BMI = 1)|Genderi, Agei, LCDi]

− �[CVDi(BMI = 0)|Genderi, Agei, LCDi].

Table 5  Mediation analysis for the effect of BMI on SBP

Normal weight 
vs. overweight

Overweight vs. obese Obese vs. severely obese

Total effect �[�
6
] (p-value) 29.634 (0.001) 15.911 (0.001) 8.929 (0.022)

Direct effect �[�
7
] (p-value) 31.48 (0.001) 16.023 (0.001) 9.359 (0.021)

Indirect effect �[�
8
] (p-value) −1.846 (0.112) −0.112 (0.146) −0.43 (0.231)
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5.2.3  Direct Effect of BMI on CVD

We now study the natural direct effect (see, Pearl [49]) of obesity on CVD risk in 
the context of the following hypothetical question:

“For an individual of normal weight, how would a weight gain affect the 
risk of CVD?"

We are asking what would happen if the treatment, BMI, were to change, but 
that change did not affect the distribution of the mediator, T2D. In that case, the 
change in treatment would be propagated only along the direct path BMI → CVD 
in Fig.  25. To disable all but the direct path, we need to stratify by T2D. This 
closes the indirect path BMI → T2D → CVD. But in so doing, it opens the path 
BMI → T2D ← (Gender, Age, LCD) → CVD since T2D is a collider in Fig. 25. If 
we control for (Gender, Age, LCD) as well, we close the direct path, and there-
fore any correlation remaining must be due to the direct path BMI → CVD.

To quantify the expected change in T2D if BMI were changed, we need to 
calculate

and where the potential outcome �7 is defined as follows:

The symbol T2D(BMI = 0) refers to the counterfactual distribution of T2D given 
that the value of BMI is 0, and the expectations are taken over the corresponding 
interventional (i.e., BMI = 0, 1 ) and counterfactual (i.e., T2D(BMI = 0) ) distribu-
tions. Hence, �7 defines the influence that is not mediated by T2D in the sense that 
it quantifies the sensitivity of the CVD to changes in BMI while T2D is held fixed, 
as illustrated in Fig. 25. By I-Rand algorithm, we obtain mean ATEs �[�7] with 500 
subsamples and the mean p-value of permutation tests for systolic blood pressure 
in Table  5. See, also Fig.  24 for other CVD risk factors. In addition to the sum-
mary statistics shown above, we provide the distributions of ATEs and p-values of 
the subsampling in Appendix D.4. We find, for example, that a change from normal 
weight to overweight would lead to a increase in systolic blood pressure of 31.48 
mmHg on average (see Appendix C for summary statistics of systolic blood pres-
sure). The direct effect in this example represents a stable biological relationship 
that, different from the total effect, is robust to T2D and any cause of high systolic 
blood pressure that is mediated via T2D.

5.2.4  Indirect Effect of BMI on CVD

We conclude this section by studying the indirect effect in the context that

�[�7(Genderi, Agei, LCDi, T2D)],

�7(Genderi, Agei, LCDi, T2Di) = �[CVDi(BMI = 1)|Genderi, Agei, LCDi, T2D(BMI = 0)]

− �[CVDi(BMI = 0)|Genderi, Agei, LCDi].
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“How would the CVD risk of a normal weight individual be if his / her T2D 
status had instead following the T2D distribution of overweight individu-
als?"

The answer is formulated by

where the potential outcome �8 is defined

Under our assumptions, any changes that occur in an individual’s CVD risk are 
attributed to BMI-induced T2D and not to the BMI itself. The indirect effect of the 
treatment is the change of CVD risk obtained by keeping the BMI of each individual 
fixed and setting the distribution of T2D to the level obtained under treatment.

Consider a linear model in which there is no interaction between treatment and 
mediator. This yields the decomposition (15) and the indirect effect of BMI on the 
systolic blood pressure given in Table 5. We report the average ATEs and box plots 
for the distributions of p-values for other CVD risk factors in Fig. 26. We find that 
changing only the distribution of T2D that results from an increase in BMI from 
normal weight to overweight would lead to a decrease in systolic blood pressure of 
about 1.848 mmHg on average. Notably, the sign of this indirect effect is opposite 
to the sign of the corresponding direct effect, which suggests that indirect and direct 
effects tend to offset one another. There are several possible explanations for this. 

�[�8(Genderi, Agei, LCDi, , T2D)],

�8(Genderi, Agei) = �[CVDi(BMI = 0)|Genderi, Agei, , LCDiT2D(BMI = 1)]

− �[CVDi(BMI = 0)|Genderi, Agei, LCDi].

Fig. 26  Indirect Effect: Mean ATE bar plot (left) and p-values box plot (right) for the indirect effect of 
BMI on CVD risk factors with age and gender as confounders and T2D as a mediator. Each row corre-
sponds to a causal diagram: “Outcome | Treatment; Confounders [Mediator]”. For example, “SBP | BMI; 
Gender, Age, [T2D]” represents the causal diagram with the systolic blood pressure as the outcome, gen-
der and age as the confounders, T2D as the mediator, and BMI as the treatment
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For example, the offset may be due to missing BMI data, which results in selection 
bias. Further discussion of selection bias is in Sect. 6. Another possible explanation 
is the obesity paradox given the comorbidity conditions (see, e.g., Uretsky et al. [52] 
and Lavie et al. [23]) that overweight people may have a better prognosis, possibly 
because of the medication or overweight individuals having lower systemic vascular 
resistance compared to leaner hypertensive individuals.

6  Discussion on Assumptions and Models

We assume the causal relationships between variables of demographics, obesity, 
T2D, and CVD to be captured by causal graphs in the previous sections, which 
correspond to different nutrition-related questions. These causal graphs constitute 
a coarse-grained view, which neglects many potentially important risk factors. A 
strength of this coarse-grained approach is that it allows for quantitative reasoning 
about different causal effects including total, direct, and indirect effects in  situa-
tions where the data do not allow a more fine-grained analysis. In the following, 
we discuss assumptions and limitations of our approach and point out some future 
directions.

6.1  Selection Bias

The data we considered concerns only those patients who are from the Norwood 
general practice surgery in England and has opted to follow LCD by 2019 [2]. 
We can introduce an additional variable V with V = 1 meaning that an individual 
who is from the Norwood general practice surgery and follows LCD by 2019 
and V = 0 otherwise. In that case, our analysis is always conditioned on V = 1 . 
If the individual who follows LCD is randomly sampled from the population of 
Norwood general practice surgery with 9,800 patients, the implicit condition-
ing on V = 1 would not introduce bias to an inference for the larger population. 
However, samples are generally not collected randomly. In particular, age and 
health conditions are causal factors on the participation in the LCD program, 
i.e., age → V  and health condition → V  and through self-selection. Moreover, 
due to the possible speciality and reputation of the LCD program, T2D→ V  , 
CVD→ V  . Finally, there may be complex interactions between office visit and 
T2D or CVD, where the process involves the feedback V → T2D and V → CVD. 
The fact that we consider only individuals who participate in the LCD program 
while the visit itself depends on multiple other factors inevitably leads to the 
problem of selection bias. Several approaches have been developed to decrease 
this bias under certain conditions; see, e.g., Bareinboim and Tian [53], Barein-
boim and Pearl [54].
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6.2  Unobserved Confounders

An important assumption upon which relies our estimation of the causal effect, is 
the absence of hidden confounders, i.e., we assume that gender and age are the only 
confounders.5 In particular, it is the basis of our estimates of the direct and indirect 
effects. It may be possible to relax the absence of hidden confounders depending on 
the availability of experimental data. See Pearl [49] for further discussion.

6.3  Additional Mediators

In our coarse-grained view, the arrows possibly subsume many other potentially 
important risk factors within the causal paths. For example, the strength of the effect 
BMI → T2D in Sect. 2.1 is estimated without consideration of mediators.

6.4  Model Selection

In this section, we compare the proposed I-Rand with the method of difference-in-
differences[16, 17]. Then we discuss some generalizations of the models used for 
analysis in the previous sections. The following analysis explores the impact of dif-
ference in treatment on difference in outcome. For a given variable, we calculate 
the difference as the value on the second visit minus the value on the first visit. 
In our analysis, we set confounders (e.g., age and gender) to the values recorded 
at the first visits. We note two main differences between I-Rand and difference-in-
differences. First, when the LCD is the treatment, all individuals are LCD-takers 
and there is no control group. The I-Rand creates a control group by subsampling, 
while difference-in-differences relies on the null hypothesis of “no effect.” Second, 
when BMI is the treatment, I-Rand subsamples one of the two observations for each 
individual to avoid two types of unintended treatments. In difference-in-differences, 
such subsampling is unnecessary since we have one observation for each individual. 
We perform two experiments: a decrease in BMI (i.e., ΔBMI < 0 ), or a change in 
BMI in excess of a threshold (e.g., ΔBMI < median of |ΔBMIi| ). The latter choice 
of treatment splits the data into two equally-sized subgroups of treatment and con-
trol, and it is more robust than the first choice of treatment since the BMI of almost 
all individuals decreased between visits. For BMI with a median threshold, the 
causal effect for individual i has the usual estimation formula, i.e., ATE = �|�(Xi)] , 
where �(Xi) = �[Yi(1)|Xi] − �[Yi(0)|Xi] . In the case of LCD and decrease of BMI, 
the causal effect reduces to �(Xi) = �[Yi(1)|Xi] . Note that the design of the experi-
ment however, breaches the non-zero probability of receiving treatment assump-
tion, i.e., 0 < P(T = 1|X) < 1 , which is required by the causal effect estimation. As 

5 One can argue that gender and age are insufficient confounders for the analysis of CVD risk factors, 
however, the current data at hand only allows for these.
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a matter of fact, all individuals are treatment-takers between the two observation 
dates. Hence, we add a hypothetical control group that does not take the treatment 
and has a 0 valued outcome. To estimate the causal effect for the latter that is appli-
cable to permutation analysis, we implement Algorithm  3 for difference-in-differ-
ences analysis.

We summarize the results in Figs.  27, 28, and 29. For a change in diet (i.e., 
ΔLCD = 1 ), we find that LCD diet significantly impacts the change in T2D status 

Fig. 27  Bar plot of ATE for LCD as the treatment for the difference-in-differences analysis without 
threshold (we omit the p-values as they are all under a 1% significance level). Each row corresponds to a 
causal diagram:“Outcome | Treatment; Confounders”. For example, “SBP|LCD; Gender, Age, BMI” rep-
resents the causal diagram with the systolic blood pressure as the outcome, and gender, age, BMI as the 
confounders, and LCD as the treatment
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Fig. 28  Bar plot of ATE for BMI as the treatment for difference-in-differences analysis without threshold 
(we omit the p-values as they are all under a 1% significance level). Each row corresponds to a causal 
diagram:“Outcome | Treatment; Confounders”. For example, “SBP | BMI; Gender, Age” represents the 
causal diagram with the systolic blood pressure as outcome, gender and age as confounders, and BMI as 
treatment

Fig. 29  Bar plot of ATE (left) and p-value (right) for BMI as the treatment for the difference-in-differ-
ences analysis with threshold (median). Each row corresponds to a causal diagram:“Outcome | Treat-
ment; Confounders”. For example, “SBP | BMI; Gender, Age” represents the causal diagram with the 
systolic blood pressure as the outcome, and gender, age as the confounders, and BMI as the treatment
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and CVD risk factors. The same applies to the first choice of treatment for BMI (i.e., 
Δ BMI < 0 ). For the second choice of treatment for BMI (i.e., Δ BMI < Threshold ), 
we find that a change in BMI has a significant causal effect on a change in T2D even 
when controlling for the BMI categories. Moreover, a decrease in BMI leads to an 
increase in HDL (ATE= 3.983 , p-value< 4.6% without controlling for BMI catego-
ries and ATE= 4.275 , p-value< 2.9% when controlling for BMI categories).

The limitation of the difference-in-differences in our dataset is that we do not 
have enough data for longitudinal analysis. As a result, variance across samples 
(noise) could be much larger than the variance within samples (signal). On the other 
hand, the results based on the difference-in-differences method with only two time 
points are always subject to biases (e.g., Raudenbush [55]).

There are different ways to generalize our linear models to nonlinear models. For 
example, it could be of interest to ask whether or not BMI above a certain threshold 
has a causal effect on CVD or T2D. Moreover, the linear models we used in this 
article cannot represent interactions among variables. It could also be of interest to 
assess the direct and indirect effects allowing for interactions between treatments 
and mediators [49].

7  Conclusion

In conclusion, our work presents the I-Rand method, a novel resampling approach 
for two-point time-series data, in contexts lacking a control group. This strategy 
robustly estimates and facilitates inference of causal effects. We applied the I-Rand 
method to a low-carbohydrate dietary intervention dataset, which targets the reduc-
tion of type-2 diabetes and cardiovascular disease risks. This application further sub-
stantiated the significance of obesity as a risk factor while emphasizing the potential 
efficacy of the dietary intervention. Our approach extends the methodological toolkit 
for statisticians and health researchers working with similar data structures, provid-
ing the means to extract useful insights even when the control groups are absent.

Appendix A: Matching Methods

Distance Measure Based on Propensity Score

We need to determine which confounders to include for matching and to combine 
those variables into one measure. Under the strong ignorability assumption, it is 
necessary to include all variables known to be related to both treatment assignment 
and the outcome in the matching procedure [30, 56]. There is little cost to including 
variables that are not associated with treatment assignment. However, excluding a 
potentially important confounder can yield a large bias. In the other direction, vari-
ables such as colliders and mediators that may have been affected by the treatment 
should be excluding from the matching process, and should be used instead in the 
analysis model for outcomes (see, Greenland [57]).
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The propensity score, a popular measure to combine confounders, is defined for 
each individual i as the probability of receiving the treatment, given the observed 
confounders [32]:

The propensity score has two well-known properties. First, a propensity score is a 
balancing score in the sense that at any level of the propensity score, the distribu-
tions of the confounders defining the propensity score in the treated and control 
groups are the same. Second, the treatment assignment is ignorable given the pro-
pensity score if treatment assignment is ignorable given the confounders. Hence, it 
is reasonable to match individuals on the basis of propensity score rather than the 
vector of multivariate confounders.

These properties imply that the difference in means for the outcomes between 
treated and control individuals with a particular propensity score value is an unbi-
ased estimate of the treatment effect at that propensity score value. The distance 
between individuals i and j through the propensity score is Dij = |ei − ej| . In prac-
tice, propensity scores are unknown and we use logistic regression to estimate ei s for 
the case studies in Sects. 5 and 4.

Propensity Score Matching

We apply the propensity score matching algorithm for our case studies in Sects. 5 
and 4. The simple weighted difference in means estimate for the ATE is given in the 
step 2 of the algorithm in Sect. 2.3.

We use matching with replacement to minimize the propensity score distance 
between the matched control individuals and the treatment individuals. This reduces 
bias, even if an individual in the control group is matched more than once. As a 
comparison, matching without replacement is sensitive to the order in which indi-
viduals are matched. This method may force us to match individuals whose pro-
pensity scores are far apart, leading to an increase in bias. Further, We also use the 
single-nearest-neighbor matching, which selects a single individual in the control 
group whose propensity scores are closest to those of the treated individual. Single-
nearest-neighbor matching can be extended to k ≥ 1 nearest-neighbors.

In addition to the simple weighted difference in means for estimating the treat-
ment effect in the algorithm in Sect. 2.3, one can also use a weighted regression, 
which takes account of the number of times a control is matched (see, e.g., Dehejia 
and Wahba [58].)

Model Diagnosis

The diagnosis of the quality of the resulting matched samples is an important step 
in using matching methods. In particular, we need to assess the covariate balance in 
terms of the similarity of the empirical distributions of the full set of confounders in 
the matched treated and control groups. Ideally, we want the empirical distribution 

ei(Xi) = ℙ(Ti = 1|Xi).
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of XT=1 in the treatment group is the same as the empirical distribution of XT=0 in 
control treatment group. That is, the treatment is unrelated to the confounders.

In our case studies in Sects.  5 and 4, we apply the standardized difference in 
means as a balance measure: (X̄T=1 − X̄T=0)∕𝜎T=1 , where X̄T=1 and X̄T=0 are sample 
means of the treatment and control groups, and �T=1 is the sample standard deviation 
for the treatment group. We calculate the standardized difference in means for each 
covariate and use the (X̄T=1 − X̄T=0)∕𝜎t < 0.25 as a criteria to check that the match-
ing gives balanced samples (see, e.g., Rubin [59]).

Appendix B: Proofs

Proof of Theorem 1

Proof We claim that under the LCD-like treatment design (3), it is not pos-
sible to obtain an accurate estimate of the treatment effect (7) if the paramet-
ric functional forms of f (⋅) and g(⋅) in (2) are unknown. This claim is explained 
as follows. Under the null hypothesis that there is no trend in the control group 
{i|Ti(t = 1) = 0, Ti(t = 0) = 0} , i.e.,

then the difference-in-differences leads to an estimate to the following effect:

Here f (1) − f (0) corresponds to the treatment effect in (7) and �[g(Xi,1)] − �[g(Xi,0)] 
is the nuisance effect from the confounder. If the parametric functional forms of 
f (⋅) or g(⋅) is unknown, it is easy to show that for g�(⋅) ≡ 2g(⋅) , the treatment effect 
f �(1) − f �(0) defined as follows satisfies (B2):

However, f �(1) − f �(0) ≠ f (1) − f (0) . Hence, the treatment effect f (1) − f (0) is uni-
dentiable using difference-in-differences under the two-point structure (3).   ◻

Multiple Treatment Versions

Theorem 2 Suppose that for each individual, there is a fixed version that would have 
been received, had the individual been given T ∈ {0, 1} . Then if Fig. 30 is a causal 
graph, the average treatment effect is equivalent to

(B1)
�X[�[Yi(t = 1)|Ti(t = 1) = 0, Ti(t = 0) = 0,X]]

= �X[�[Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0,X]],

(B2)
�X[�[Yi(t = 1) − Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0,X]]

= f (1) − f (0) + �[g(Xi(t = 1))] − �[g(Xi(t = 0))].

f �(1) − f �(0) ≡ �X[�[Yi(t = 1) − Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0,X]]

− {�[g�(Xi(t = 1))] − �[g�(Xi(t = 0))]}.
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The I-Rand Algorithm 2 gives an unbiased estimate of ATE∗ in (B3) if the estimator 
ATE(m) in (1) is unbiased for ATE.

Proof Since there is a fixed version of treatment that an individual would have been 
received if the individual has been given T ∈ {0, 1} , we have

where the last step is due to the fact that given Fig. 30, T is ignorable relative to 
outcome Y, conditional on X [36]. Denote by KT (T) the counterfactual variable of 
which version of treatment that an individual would have been received if the indi-
vidual has been given T ∈ {0, 1} . Then

where the third step is by the assumption that there is a fixed version of treatment 
that an individual would have been received, and the third step is by the consistency 
for Y. Therefore, �[Y(T)] = �X[�[Y|T ,X]] and we obtain the desired the average 
treatment effect

Suppose that X = (X1,X2) , where X1 consists of observed confounders and X2 repre-
sents unobserved confounders. Then

(B3)ATE∗
≡ �X[�[Y|T = 1,X]] − �X[�[Y|T = 0,X]].

�[Y(T)] = �X[�[Y(T)|X]] = �X[�[Y(T)|T ,X]].

�X[�[Y(T)|T ,X]] = �X[�[Y(T ,K
T (T))|T ,X]]

= �kT ,X[�[Y(T , k
T )|T ,KT (T) = kT ,X]]

= �kT ,X[�[Y(T , k
T )|T ,KT = kT ,X]]

= �kT ,X[�[Y|T ,KT = kT ,X]]

= �X[�[Y|T ,X]].

�X[�[Y|T = 1,X]] − �X[�[Y|T = 0,X]].

Fig. 30  Causal graph illustrating relationship between treatment T, version of T, outcome Y, and X con-
sists of observed and unobserved confounders
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where

By the sampling strategy of the I-Rand estimator (1) yields that ℙ(X2 = x2) = 2−N 
and ATE(m) is a matching method estimator for ATE(X2 = x2) . This completes the 
proof.   ◻

Variables Definition and Summary Statistics of Data Used 
in the Paper

Gender: a binary variable with “female”= 0 and “male” = 1 (Table 6).
Age: the age of the participants at their visit.

𝔼X[𝔼[Y|T = 1,X]] − 𝔼X[𝔼[Y|T = 0,X]] =
∑

x2

ATE(X2 = x2)ℙ(X2 = x2).

ATE(X2 = x2) = �X1
[�[Y|T = 1,X1,X2 = x2]] − �X1

[�[Y|T = 0,X1,X2 = x2]].

Table 6  Summary statistics of variables collected in the study

LCD=0 corresponds to data collected at the first visit and LCD=1 for data collected at the second visit

Count Mean SD Min 25% 50% 75% Max
LCD Variable

Gender 256 0.590 0.493 0.000 0.000 1.000 1.000 1.000
Age 256 61.574 12.111 23.000 53.000 60.000 71.000 91.000
Height 75 1.706 0.092 1.473 1.625 1.720 1.770 1.900
Weight 251 96.160 18.621 55.300 83.700 95.000 107.000 159.000
BMI 66 33.887 6.071 21.660 29.890 33.495 36.980 57.100

0 T2D 256 1.281 0.811 0.000 1.000 2.000 2.000 2.000
HbA1c/ mmol/mol 202 61.376 20.652 37.000 45.000 54.500 71.000 135.000
TBC 176 5.314 1.302 2.500 4.385 5.200 6.225 9.300
HDL 195 1.280 0.421 0.600 1.000 1.200 1.450 3.500
SBP 171 143.503 15.476 114.000 132.000 142.000 152.000 223.000
Gender 256 0.590 0.493 0.000 0.000 1.000 1.000 1.000
Age 256 63.424 12.387 23.167 54.750 62.750 73.500 91.500
Height 75 1.706 0.092 1.473 1.625 1.720 1.770 1.900
Weight 251 87.070 17.352 51.000 75.000 84.400 97.100 140.000
BMI 65 30.356 5.923 19.240 27.040 29.270 32.470 53.620

1 T2D 256 0.719 0.867 0.000 0.000 0.000 2.000 2.000
HbA1c/ mmol/mol 201 45.925 9.319 32.000 40.000 43.000 50.000 84.000
TBC 174 4.892 1.247 2.400 4.025 4.700 5.700 8.800
HDL 189 1.413 0.542 0.700 1.090 1.340 1.610 4.900
SBP 170 132.100 11.021 108.000 125.000 132.000 139.500 170.000
Months 256 22.199 17.456 1.000 8.000 19.000 32.000 84.000
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BMI: the body mass index of the participants. Here BMI is defined as the ratio of 
the weight squared height. We note that although recent studies on nutrition suggest 
that different obesity metrics can lead to different relationships between obesity to 
CVD risk, the consensus is that compared to BMI measures the more refined modal-
ities (e.g., waist circumference, waist-to-hip ratio, waist-to-height ratio) do not add 
significantly to the BMI assessment from a clinical perspective [60].

T2D: a three-states variable to inform of the type-2 diabetes status; 0 for non-
diabetic, 1 for pre-diabetic and 2 for diabetic.

HbA1c: the glycated haemoglobin of the participants. It develops when haemo-
globi, a protein within red blood cells that carries oxygen throughout the body, joins 
with glucose in the blood, becoming ‘glycated’. This measure allows to determine 
the T2D status.

LCD: a binary variable which equals to 1 only if the participant is suggested to 
follow a low-carbohydrate diet.

TBC: the total blood cholesterol level of the participants. It is a measurement of 
certain elements in the blood, including the amount of high- and low-density lipo-
protein cholesterol (HDL and LDL) in a person’s blood.

HDL: the high-density lipoprotein cholesterol of the participants. The HDL is the 
well-behaved "good cholesterol." This friendly scavenger cruises the bloodstream. 
As it does, it removes harmful “bad" cholesterol from where it doesn’t belong. A 
high HDL level reduces the risk for heart disease.

SBP: the systolic blood pressure of the participants. The SBP indicates how 
much pressure the blood is exerting against your artery walls when the heart beats. It 
is one of the CVD risk factors used to calculate the Reynolds risk score.

Months: the number of months between the two visits of participants to the clinic 
(end date - start date).

Supplementary Numerical Results

Treatment Effect of LCD on T2D

We provide details on assessing the significance of the reduction of the risk of T2D 
due to the LCD using the I-Rand algorithm, where the causal diagram is shown in 
Fig. 1. We show the distribution of ATEs for the subsampling step in Fig. 31 and 
the distribution of the p value from the permutation test under the null hypothesis of 
no causal effect (ATE = 0) in Fig. 32. The distributions confirm the consistency of 
these results across the subsamples.

Mediation Analysis for the Effect of LCD on CVD

We provide details on assessing the significance of reduction in Reynolds risk score 
due to the low-carbohydrate using the I-Rand algorithm. The causal diagrams are 
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shown in Fig. 20 for the direct and indirect effects. We show the distribution of ATE 
for the subsampling step in Fig. 33 and the distribution of the p-values from the per-
mutation test under the null hypothesis of no causal effect (ATE = 0) in Fig. 34, for 
the total effect (sum of direct and indirect effect); and correspondingly, Figs. 35 and 
36, for the direct effect. The distributions confirm the consistency of these results 
across the subsamples.

Fig. 31  Distribution of the ATE of the LCD on T2D in Fig. 1. The results are based on 500 subsamples

Fig. 32  Distribution of p values of the ATE of the LCD on T2D in Fig. 1. The results are based on 500 
subsamples
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Causal Effect of Obesity on T2D

We provide additional details on testing the significance of obesity as a cause of 
T2D, where the causal diagram is shown in Fig. 23. In particular, we show the dis-
tribution of ATE for the subsampling step in Fig. 37 and the distribution of p-values 
from the permutation test under the null hypothesis of no causal effect (ATE = 0) 
in Fig. 38, using the I-Rand algorithm. The distributions confirm the consistency of 
these results across the subsamples.

Fig. 33  Distribution of total effect of the LCD on the Reynold risk score in Fig. 20. The results are from 
500 subsamples

Fig. 34  Distribution of p-values 
the total effect of the LCD 
on the Reynolds risk score in 
Fig. 20. The results are based on 
500 subsamples
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Mediation Analysis for the Effect of Obesity on CVD

We provide results on testing the significance of. the effect of obesity on high sys-
tolic blood pressure, according to the proposed I-Rand algorithm. The causal dia-
grams are shown in Fig. 25 for the direct and indirect effects. In particular, we show 
the distribution of ATE for the subsampling step in Fig. 39 and the distribution of 
the p-value from the permutation test under the null hypothesis of no causal effect 
(ATE = 0) in Fig. 40, for the total effect; and correspondingly, Figs. 41 and 42, for 
the direct effect. The distributions confirm the causal effect of the obesity to CVD 
consistently across the subsamples.

Fig. 35  Distribution of the direct effect of the LCD on the Reynolds risk score in Fig. 20. The results are 
based on 500 subsamples

Fig. 36  Distribution of p-values 
of the direct effect of the LCD 
on the Reynold risk score in 
Fig. 20. The results are based on 
500 subsamples
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Fig. 37  Distributions of ATE of obesity on T2D in Fig.  23. The results are based on 500 subsamples 
with different BMI splits

Fig. 38  Distributions of p-values of the ATE of obesity on T2D in Fig. 23. The results are based on 500 
subsamples with different BMI splits
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Fig. 39  Distributions of the total effect of obesity on the systolic blood pressure in Fig. 25. The results 
are based on 500 subsamples with different BMI splits

Fig. 40  Distributions of p-values of the total effect of obesity on the systolic blood pressure in Fig. 25. 
The results are based on 500 subsamples with different BMI splits
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